1
|
Mise K, Masuda Y, Senoo K, Itoh H. Betaproteobacterial clade II nosZ activated under high N2O concentrations in paddy soil microcosms. J Appl Microbiol 2025; 136:lxaf055. [PMID: 40052378 DOI: 10.1093/jambio/lxaf055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
AIMS Microbial communities in paddy soils act as potential sinks of nitrous oxide (N2O), a notorious greenhouse gas, but their potential to reduce external N2O is unclear. The direct observation of N2O reduction in submerged field soils is technically difficult. Here, we aimed to identify soil microbial clades that underpin the strong N2O mitigation capacity. METHODS AND RESULTS We constructed paddy soil microcosms with external N2O amendment that enabled the simultaneous evaluation of N2O reductase gene (nosZ) transcripts and N2O consumption. Although the amount of N2O amended was large, it was mostly consumed after 6-8 days of microcosm incubation. Metatranscriptomic sequencing revealed that betaproteobacterial nosZ, especially those classified as clade II nosZ belonging to the orders Rhodocyclales or Nitrosomonadales, occupied >50% of the nosZ transcripts in three of the five paddy soils used. On the other hand, publicly available shotgun metagenomic sequences of 46 paddy soils were not dominated by betaproteobacterial clade II nosZ sequences, although they were ubiquitous. The same applied to the 16S rRNA sequences of Rhodocyclales or Nitrosomonadales. CONCLUSIONS The results indicated that betaproteobacterial N2O reducers potentially serve as powerful N2O sinks. Betaproteobacteria holding clade II nosZ can be targets of biostimulation, although further studies are required to understand their ecophysiology.
Collapse
Affiliation(s)
- Kazumori Mise
- National Institute of Advanced Industrial Science and Technology, 2-17-2-1 Tsukisamu-higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517, Japan
| | - Yoko Masuda
- Department of Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Keishi Senoo
- Department of Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hideomi Itoh
- National Institute of Advanced Industrial Science and Technology, 2-17-2-1 Tsukisamu-higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517, Japan
| |
Collapse
|
2
|
Yusim EJ, Zarecki R, Medina S, Carmi G, Mousa S, Hassanin M, Ronen Z, Wu Z, Jiang J, Baransi-Karkaby K, Avisar D, Sabbah I, Yanuka-Golub K, Freilich S. Integrated use of electrochemical anaerobic reactors and genomic based modeling for characterizing methanogenic activity in microbial communities exposed to BTEX contamination. ENVIRONMENTAL RESEARCH 2025; 268:120691. [PMID: 39746623 DOI: 10.1016/j.envres.2024.120691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/03/2024] [Accepted: 12/22/2024] [Indexed: 01/04/2025]
Abstract
In soil polluted with benzene, toluene, ethylbenzene, and xylenes (BTEX), oxygen is rapidly depleted by aerobic respiration, creating a redox gradient across the plume. Under anaerobic conditions, BTEX biodegradation is then coupled with fermentation and methanogenesis. This study aimed to characterize this multi-step process, focusing on the interactions and functional roles of key microbial groups involved. A reactor system, comprising an Anaerobic Bioreactor (AB) and two Microbial Electrolysis Cell (MEC) chambers, designed to represent different spatial zones along the redox gradient, operated for 160 days with intermittent exposure to BTEX. The functional differentiation of each chamber was reflected by the gas emission profiles: 50%, 12% and 84% methane in the AB, anode and cathode chambers, respectively. The taxonomic profiling, assessed using 16S amplicon sequencing, led to the identification chamber-characteristic taxonomic groups. To translate the taxonomic shift into a functional shift, community dynamics was transformed into a simulative platform based on genome scale metabolic models constructed for 21 species that capture both key functionalities and taxonomies. Representatives include BTEX degraders, fermenters, iron reducers acetoclastic and hydrogenotrophic methanogens. Functionality was inferred according to the identification of the functional gene bamA as a biomarker for anaerobic BTEX degradation, taxonomy and literature support. Comparison of the predicted performances of the reactor-specific communities confirmed that the simulation successfully captured the experimentally recorded functional variation. Variations in the predicted exchange profiles between chambers capture reported and novel competitive and cooperative interactions between methanogens and non-methanogens. Examples include the exchange profiles of hypoxanthine (HYXN) and acetate between fermenters and methanogens, suggesting mechanisms underlying the supportive/repressive effect of taxonomic divergence on methanogenesis. Hence, the platform represents a pioneering attempt to capture the full spectrum of community activity in methanogenic hydrocarbon biodegradation while supporting the future design of optimization strategies.
Collapse
Affiliation(s)
- Evgenia Jenny Yusim
- The Galilee Society Institute of Applied Research, Shefa-Amr, 20200, Israel; Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay 30095, Israel; The Water Research Center, The Porter School of Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 66978, Israel.
| | - Raphy Zarecki
- Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay 30095, Israel
| | - Shlomit Medina
- Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay 30095, Israel
| | - Gon Carmi
- Bioinformatics Unit, Institute of Plant Sciences, Newe Ya'ar Research Center, Agricultural Research Organization (ARO) - Volcani Institute, Ramat Yishay, Israel
| | - Sari Mousa
- The Galilee Society Institute of Applied Research, Shefa-Amr, 20200, Israel
| | - Mahdi Hassanin
- The Galilee Society Institute of Applied Research, Shefa-Amr, 20200, Israel
| | - Zeev Ronen
- Department of Environmental Hydrology and Microbiology, The Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Sede-Boqer 8499000, Israel
| | - Zhiming Wu
- Department of Microbiology, College of Life Sciences, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Katie Baransi-Karkaby
- The Galilee Society Institute of Applied Research, Shefa-Amr, 20200, Israel; School of Environmental Sciences, University of Haifa, Haifa 3498838, Israel
| | - Dror Avisar
- The Water Research Center, The Porter School of Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 66978, Israel
| | - Isam Sabbah
- The Galilee Society Institute of Applied Research, Shefa-Amr, 20200, Israel; Department of Biotechnology Engineering, Braude College of Engineering, Karmiel, Israel
| | - Keren Yanuka-Golub
- The Galilee Society Institute of Applied Research, Shefa-Amr, 20200, Israel
| | - Shiri Freilich
- Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay 30095, Israel.
| |
Collapse
|
3
|
Reiss RA, Guerra PA, Makhnin O, Kellom M. Whole metagenome sequencing and 16S rRNA gene amplicon analyses reveal the complex microbiome responsible for the success of enhanced in-situ reductive dechlorination (ERD) of a tetrachloroethene-contaminated Superfund site. PLoS One 2025; 20:e0306503. [PMID: 39951402 PMCID: PMC11828348 DOI: 10.1371/journal.pone.0306503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 01/01/2025] [Indexed: 02/16/2025] Open
Abstract
The North Railroad Avenue Plume (NRAP) Superfund site in New Mexico, USA exemplifies successful chlorinated solvent bioremediation. NRAP was the result of leakage from a dry-cleaning that operated for 37 years. The presence of tetrachloroethene biodegradation byproducts, organohalide respiring genera (OHRG), and reductive dehalogenase (rdh) genes detected in groundwater samples indicated that enhanced reductive dechlorination (ERD) was the remedy of choice. This was achieved through biostimulation by mixing emulsified vegetable oil into the contaminated aquifer. This report combines metagenomic techniques with site monitoring metadata to reveal new details of ERD. DNA extracts from groundwater samples collected prior to and at four, 23 and 39 months after remedy implementation were subjected to whole metagenome sequencing (WMS) and 16S rRNA gene amplicon (16S) analyses. The response of the indigenous NRAP microbiome to ERD protocols is consistent with results obtained from microcosms, dechlorinating consortia, and observations at other contaminated sites. WMS detects three times as many phyla and six times as many genera as 16S. Both techniques reveal abundance changes in Dehalococcoides and Dehalobacter that reflect organohalide form and availability. Methane was not detected before biostimulation but appeared afterwards, corresponding to an increase in methanogenic Archaea. Assembly of WMS reads produced scaffolds containing rdh genes from Dehalococcoides, Dehalobacter, Dehalogenimonas, Desulfocarbo, and Desulfobacula. Anaerobic and aerobic cometabolic organohalide degrading microbes that increase in abundance include methanogenic Archaea, methanotrophs, Dechloromonas, and Xanthobacter, some of which contain hydrolytic dehalogenase genes. Aerobic cometabolism may be supported by oxygen gradients existing in aquifer microenvironments or by microbes that produce O2 via microbial dismutation. The NRAP model for successful ERD is consistent with the established pathway and identifies new taxa and processes that support this syntrophic process. This project explores the potential of metagenomic tools (MGT) as the next advancement in bioremediation.
Collapse
Affiliation(s)
- Rebecca A. Reiss
- Biology Department, New Mexico Tech, Socorro, New Mexico, United States of America
- LifeScience Testing and Analysis, Albuquerque, New Mexico, United States of America
| | - Peter A. Guerra
- Lynker Corporation, Albuquerque, New Mexico, United States of America
| | - Oleg Makhnin
- Mathematics Department, New Mexico Tech, Socorro, New Mexico, United States of America
| | - Matthew Kellom
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| |
Collapse
|
4
|
Castañeda-Espinosa A, Duque-Granda D, Cadavid-Restrepo G, Murcia LM, Junca H, Moreno-Herrera CX, Vivero-Gómez RJ. Study of Bacterial Communities in Water and Different Developmental Stages of Aedes aegypti from Aquatic Breeding Sites in Leticia City, Colombian Amazon Biome. INSECTS 2025; 16:195. [PMID: 40003826 PMCID: PMC11856942 DOI: 10.3390/insects16020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/07/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
Aedes aegypti is a key vector in the transmission of arboviral diseases in the Colombian Amazon. This study aimed to characterize microbiota composition using DNA extracted from water in artificial breeding sites, immature stages, and adults of Ae. aegypti in Leticia, Amazonas. Additionally, the physicochemical water variables were correlated with the bacterial communities present. Eight artificial breeding sites were identified, with bucket, plant pot, and tire being the most frequent. The breeding sites exhibited similar physicochemical profiles, with significant temperature and salinity differences (p-value < 0.03). The most representative bacterial genera included Ottowia (82%), Xanthobacter (70.59%), and Rhodocyclaceae (92.78%) in breeding site water; Aquabacterium (61.07%), Dechloromonas (82.85%), and Flectobacillus (58.94%) in immature stages; and Elizabethkingia (70.89%) and Cedecea (39.19%) in males and females of Ae. aegypti. Beta diversity analysis revealed distinct clustering between adults and the water and immature communities (p-value < 0.001). Multivariate analysis showed strong correlations among bacterial communities, breeding sites, and physicochemical variables such as tire and drum cover which exhibited high levels of total dissolved solids, conductivity, and salinity associated with Flectobacillus, Leifsonia, Novosphingobium, Ottowia, and Rhodobacter. Bacterial genera such as Mycobacterium, Escherichia, Salmonella, and Clostridium, present in artificial breeding sites, are associated with public health relevance. This study provides insights into bacterial community dynamics across Ae. aegypti's life cycle and underscores the importance of water physicochemical and biological characteristics for developing new vector control strategies.
Collapse
Affiliation(s)
- Alejandro Castañeda-Espinosa
- Grupo de Microbiodiversidad y Bioprospección-Microbiop, Departamento de Biociencias, Facultad de Ciencias, Universidad Nacional de Colombia, St. 65 #59a-110, Medellín 050034, Colombia; (A.C.-E.); (D.D.-G.); (G.C.-R.)
| | - Daniela Duque-Granda
- Grupo de Microbiodiversidad y Bioprospección-Microbiop, Departamento de Biociencias, Facultad de Ciencias, Universidad Nacional de Colombia, St. 65 #59a-110, Medellín 050034, Colombia; (A.C.-E.); (D.D.-G.); (G.C.-R.)
| | - Gloria Cadavid-Restrepo
- Grupo de Microbiodiversidad y Bioprospección-Microbiop, Departamento de Biociencias, Facultad de Ciencias, Universidad Nacional de Colombia, St. 65 #59a-110, Medellín 050034, Colombia; (A.C.-E.); (D.D.-G.); (G.C.-R.)
| | - Luz Mila Murcia
- Grupo de Estudios en Salud Pública del Amazonas (GESPA), Laboratorio de Salud Pública Departamental del Amazonas, St. 10 #6-127 a 6-1, Leticia 910001, Colombia;
| | - Howard Junca
- Microbiomas Foundation, Div. Ecogenomics & Holobionts, RG Microbial Ecology, Metabolism, Genomics & Evolution, LT11A, Chía 250008, Colombia;
| | - Claudia X. Moreno-Herrera
- Grupo de Microbiodiversidad y Bioprospección-Microbiop, Departamento de Biociencias, Facultad de Ciencias, Universidad Nacional de Colombia, St. 65 #59a-110, Medellín 050034, Colombia; (A.C.-E.); (D.D.-G.); (G.C.-R.)
| | - Rafael J. Vivero-Gómez
- Grupo de Microbiodiversidad y Bioprospección-Microbiop, Departamento de Biociencias, Facultad de Ciencias, Universidad Nacional de Colombia, St. 65 #59a-110, Medellín 050034, Colombia; (A.C.-E.); (D.D.-G.); (G.C.-R.)
| |
Collapse
|
5
|
Xie K, Wang Y, Xue J, Wang H, Lai A, Mao Z, Li H, Lauridsen TL, Li B, Wu QL. Microbial nitrogen cycling in Microcystis colonies and its contribution to nitrogen removal in eutrophic Lake Taihu, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176323. [PMID: 39299336 DOI: 10.1016/j.scitotenv.2024.176323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Cyanobacterial blooms induced by excessive loadings of nitrogen (N) and other nutrients are a severe ecological problem in aquatic ecosystems. Previous studies of N removal have primarily focused on sediment-water interface, yet the role of cyanobacterial colonies has recently been attracting more research attention. In this study, N cycling processes were quantified for cyanobacterial colonies (primarily Microcystis colonies) and their contribution to N removal was estimated for a large, shallow eutrophic lake in China, Lake Taihu. Various N cycling processes were determined via stable 15N isotope, together with 16S rRNA gene sequencing and quantitative microbial element cycling (QMEC) chip. Denitrification was found to be the most prominent process, estimated to be 36.63, 9.85, 3.35, and 3.15 times higher than dissimilatory nitrate reduction to ammonium (DNRA), nitrification, ammonium (NH4+) uptake and nitrate (NO3-) uptake rates, respectively. Denitrifiers accounted for a large part of the bacterial taxa (35.50 ± 24.65%), and the nirS gene was the most abundant among N cycling-related genes, with (2.54 ± 0.51) × 109 copies g-1Microcystis colonies. A field investigation revealed a positive correlation between the potential denitrification rate and the Chl-a concentration (mostly derived from Microcystis colonies). Based on a multiple stepwise regression model and historical data from 2007 to 2015 for Lake Taihu, the total amount of N removed via denitrification by Microcystis colonies was estimated at 171.72 ± 49.74 t yr-1; this suggests that Microcystis colonies have played an important role in N removal in Lake Taihu since the drinking water crisis in 2007. Overall, this study revealed the importance of denitrification within Microcystis colonies for N removal in eutrophic lakes, like Lake Taihu.
Collapse
Affiliation(s)
- Ke Xie
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yujing Wang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jingya Xue
- School of Geographical Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Hongwei Wang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Anxing Lai
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhengdu Mao
- Center for Evolution and Conservation Biology, Southern Marine Sciences and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Huabing Li
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Torben L Lauridsen
- Sino-Danish Center for Science and Education, University of Chinese Academy of Sciences, Beijing 100039, China; Department of Ecoscience and Centre for Water Technology (WATEC), Aarhus University, C.F. Møllers Allé 3, 8000 Aarhus C, Denmark
| | - Biao Li
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Qinglong L Wu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Center for Evolution and Conservation Biology, Southern Marine Sciences and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Sino-Danish Center for Science and Education, University of Chinese Academy of Sciences, Beijing 100039, China; The Fuxianhu Station of Plateau Deep Lake Research, Chinese Academy of Sciences, Yuxi 653100, China.
| |
Collapse
|
6
|
Quan Q, Liu J, Xia X, Zhang S, Ke Z, Wang M, Tan Y. Cold seep nitrogen fixation and its potential relationship with sulfur cycling. Microbiol Spectr 2024; 12:e0053624. [PMID: 39171911 PMCID: PMC11448218 DOI: 10.1128/spectrum.00536-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/25/2024] [Indexed: 08/23/2024] Open
Abstract
Dinitrogen (N2) fixation is a crucial source of bioavailable nitrogen in carbon-dominated cold seep systems. Previous studies have shown that diazotrophy is not necessarily dependent on sulfate-dependent anaerobic oxidation of methane for energy, and diverse catabolism can fuel the high-energy-demanding process in sediments. However, it remains unclear whether diazotroph can obtain energy by sulfur oxidation in sulfur-rich cold seep water column. Here, field investigations and in situ experiments were conducted in Haima cold seep to examine the effects of diverse sources of dissolved organic matter (DOM) on N2 fixation, specifically containing sulfur, carbon, nitrogen, and phosphorus. We found that active N2 fixation occurred in the water column above the Haima cold seep, with the Dechloromonas genus dominating the diazotroph community as revealed by nifH gene using high-throughput sequencing. In situ experiments showed an increased rate of N2 fixation (1.15- to 12.70-fold compared to that in control group) and a greater relative abundance of the Dechloromonas genus following enrichment with sulfur-containing organic matter. Furthermore, metagenomic assembly and binning revealed that Dechloromonas sp. carried genes related to N2 fixation (nifDHK) and sulfur compound oxidation (fccAB and soxABCXYZ), implying that the genus potentially serves as a multifunctional mediator for N2 fixation and sulfur cycling. Our results provide new insights regarding potential coupling mechanism associated with sulfur-driven N2 fixation in methane- and sulfide-rich environments. IMPORTANCE N2 fixation is an important source of biologically available in carbon-dominated cold seep systems as little nitrogen is released by hydrocarbon seepage, thereby promoting biological productivity and the degradation of non-nitrogenous organic matter. Cold seeps are rich in diverse sources of dissolved organic matter (DOM) derived from the sinking of photosynthetic products in euphotic layer and the release of chemosynthesis products on the seafloor. However, it remains unclear whether N2 fixation is coupled to the metabolic processes of DOM, as determined by e.g., carbon, nitrogen, phosphorus, and sulfur content, for energy acquisition in sulfur-rich cold seeps. In this study, diazotroph community structure and its response to DOM compositions were revealed. Moreover, the metagenomics analysis suggested that Dechloromonas genus plays a dominant role in potential coupling N2 fixation and sulfur oxidation. Our study highlighted that sulfur oxidation in deep-sea cold seeps may serve as an energy source to drive N2 fixation.
Collapse
Affiliation(s)
- Qiumei Quan
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiaxing Liu
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaomin Xia
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Si Zhang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Zhixin Ke
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Minxiao Wang
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yehui Tan
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Wang J, Ju F, Yu P, Lou J, Jiang M, Zhang H, Lu H. Metabolomics-based estimation of activated sludge microbial composition and prediction of filamentous bulking. WATER RESEARCH 2024; 259:121805. [PMID: 38838481 DOI: 10.1016/j.watres.2024.121805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 06/07/2024]
Abstract
Understanding the structure and activity of activated sludge (AS) microbiome is key to ensuring optimal operation of wastewater treatment processes. While high-throughput metagenomics offers a comprehensive view of AS microbiome, its cost and time demands warrant alternative approaches. This study employed machine learning methods to integrate metabolomic and metagenomic data, enabling predictions of selected microbial abundances from metabolite profiling. Model training relied on rich microbial and metabolite abundance data collected in an intensively sampled AS system, including a period of filamentous bulking, as well as a few other AS systems. Multiple linear regression out-competed other three algorithms in achieving relatively high prediction accuracy (R2 = 0.70±0.02) for the abundances of 10 selected, either keystone or core metagenome-assembled genomes (MAGs). The model predicted the abundances of filamentous Microtrichaceae and Thiotrichaceae during bulking with an error range of 14-17.8 %. This predictive power extends beyond the specific system studied, showcasing potentials for broader applications across other AS systems. Aspartate, glycine, and folate were the most influential metabolite features contributing to model performance, which were also effective indicators for filamentous bulking, with up to one week of early warning potential. This study pioneers the application of metabolomics for fast, relatively accurate and cost-effective prediction of AS community composition, enabling proactive management of AS systems towards improved efficiency and stability.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
| | - Pingfeng Yu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jinxiu Lou
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Minxi Jiang
- Department of Civil and Environmental Engineering, University of California, Berkeley, 94720, CA, USA
| | - Huichun Zhang
- Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States.
| | - Huijie Lu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
8
|
Pirete LDM, Camargo FP, Grosseli GM, Sakamoto IK, Fadini PS, Silva EL, Varesche MBA. Microbial diversity and metabolic inference of diclofenac removal in optimised batch heterotrophic-denitrifying conditions by means of factorial design. ENVIRONMENTAL TECHNOLOGY 2024; 45:2847-2866. [PMID: 36927407 DOI: 10.1080/09593330.2023.2192365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Using the Response Surface Methodology (RSM) and Rotational Central Composite Design (RCCD), this study evaluated the removal of DCF under denitrifying conditions, with ethanol as cosubstrate, in batch reactors, being 1 L Erlenmeyer flasks (330 mL of reactional volume) containing Dofing medium and kept under agitation at 130 rpm and incubated at mesophilic temperature (30 °C). It considered the individual and multiple effects of the variables: nitrate (130 - 230 mg NO3- L-1), DCF (60-100 µg DCF L-1) and ethanol (130 - 230 mg EtOH L-1). The highest drug removal efficiency (17.5%) and total nitrate removal were obtained at 176.6 ± 4.3 mg NO3 -L-1, 76.8 ± 3.7 µg DCF L-1, and 180.0 ± 2.5 mg EtOH L-1. Under such conditions, the addition of ethanol and nitrate was significant for the additional removal of diclofenac (p > 0.05). The prevalence of Rhodanobacter, Haliangium and Terrimonas in the inoculum biomass (activated sludge systems) was identified through the 16S rRNA gene sequencing. The potential of these genera to remove nitrate and degrade diclofenac was inferred, and the main enzymes potentially involved in this process were α-methylacyl-CoA racemase, long-chain fatty acid-CoA ligase, catalases and pseudoperoxidases.
Collapse
Affiliation(s)
- Luciana de Melo Pirete
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| | - Franciele Pereira Camargo
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| | | | - Isabel K Sakamoto
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| | | | | | | |
Collapse
|
9
|
Brar B, Kumar R, Sharma D, Sharma AK, Thakur K, Mahajan D, Kumar R. Metagenomic analysis reveals diverse microbial community and potential functional roles in Baner rivulet, India. J Genet Eng Biotechnol 2023; 21:147. [PMID: 38015339 PMCID: PMC10684477 DOI: 10.1186/s43141-023-00601-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND The health index of any population is directly correlated with the water quality, which in turn depends upon physicochemical characteristics and the microbiome of that aquatic source. For maintaining the water quality, knowledge of microbial diversity is a must. The present investigation attempts to evaluate the microflora of Baner. Metagenomics has been proven to be the technique for examining the genetic diversity of unculturable microbiota without using traditional culturing techniques. The microbial profile of Baner is analyzed using metagenomics for the first time to the best of our knowledge. RESULTS To explore the microbial diversity of Baner, metagenomics analysis from 3 different sites was done. Data analysis identified 29 phyla, 62 classes, 131 orders, 268 families, and 741 genera. Proteobacteria was found to be the most abundant phylum in all the sampling sites, with the highest abundance at S3 sampling site (94%). Bacteroidetes phylum was found to be second abundant in S1 and S2 site, whereas Actinobacteria was second dominant in sampling site S3. Enterobacteriaceae family was dominant in site S1, whereas Comamonadaceae and Pseudomonadaceae was abundant in sites S2 and S3 respectively. The Baner possesses an abundant bacterial profile that holds great promise for developing bioremediation tactics against a variety of harmful substances. CONCLUSION Baner river's metagenomic analysis offers the first insight into the microbial profile of this hilly stream. Proteobacteria was found to be the most abundant phylum in all the sampling sites indicating anthropogenic interference and sewage contamination. The highest abundance of proteobacteria at S3 reveals it to be the most polluted site, as it is the last sampling site downstream of the area under investigation, and falls after crossing the main city, so more human intervention and pollution were observed. Despite some pathogens, a rich profile of bacteria involved in bioremediation, xenobiotic degradation, and beneficial fish probiotics was observed, reflecting their potential applications for improving water quality and establishing a healthy aquaculture and fishery section.
Collapse
Affiliation(s)
- Bhavna Brar
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India
| | - Ravi Kumar
- Department of Microbiology, Dr. Rajendra Prasad Government Medical College & Hospital, Tanda, Kangra, Himachal Pradesh, India
| | - Dixit Sharma
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India
| | - Amit Kumar Sharma
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India
| | - Kushal Thakur
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India
| | - Danish Mahajan
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India
| | - Rakesh Kumar
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India.
| |
Collapse
|
10
|
Zhao W, Bi X, Peng Y, Bai M. Research advances of the phosphorus-accumulating organisms of Candidatus Accumulibacter, Dechloromonas and Tetrasphaera: Metabolic mechanisms, applications and influencing factors. CHEMOSPHERE 2022; 307:135675. [PMID: 35842039 DOI: 10.1016/j.chemosphere.2022.135675] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/19/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Phosphorus-accumulating organisms (PAOs), which harbor metabolic mechanisms for phosphorus removal, are widely applied in wastewater treatment. Recently, novel PAOs and phosphorus removal metabolic pathways have been identified and studied. Specifically, Dechloromonas and Tetrasphaera can remove phosphorus via the denitrifying phosphorus removal and fermentation phosphorus removal pathways, respectively. As the main PAOs in biological phosphorus removal systems, the conventional PAO Candidatus Accumulibacter and the novel PAOs Dechloromonas and Tetrasphaera are thoroughly discussed in this paper, with a specific focus on their phosphorus removal metabolic mechanisms, process applications, community abundance and influencing factors. Dechloromonas can achieve simultaneous nitrogen and phosphorus removal in an anoxic environment through the denitrifying phosphorus removal metabolic pathway, which can further reduce carbon source requirements and aeration energy consumption. The metabolic pathways of Tetrasphaera are diverse, with phosphorus removal occurring in conjunction with macromolecular organics degradation through anaerobic fermentation. A collaborative oxic phosphorus removal pathway between Tetrasphaera and Ca. Accumulibacter, or a collaborative anoxic denitrifying phosphorus removal pathway between Tetrasphaera and Dechloromonas are future development directions for biological phosphorus removal technologies, which can further reduce carbon source and energy consumption while achieving enhanced phosphorus removal.
Collapse
Affiliation(s)
- Weihua Zhao
- State and Local Joint Engineering Research Center of Municipal Wastewater Treatment and Resource Recycling, Qingdao University of Technology, Qingdao, 266033, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, China
| | - Xuejun Bi
- State and Local Joint Engineering Research Center of Municipal Wastewater Treatment and Resource Recycling, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, China.
| | - Meng Bai
- State and Local Joint Engineering Research Center of Municipal Wastewater Treatment and Resource Recycling, Qingdao University of Technology, Qingdao, 266033, PR China
| |
Collapse
|
11
|
Li S, Diao M, Wang S, Zhu X, Dong X, Strous M, Ji G. Distinct oxygen isotope fractionations driven by different electron donors during microbial nitrate reduction in lake sediments. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:812-821. [PMID: 35691702 DOI: 10.1111/1758-2229.13101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Microbial nitrate reduction can be driven by organic carbon oxidation, as well as by inorganic electron donors, such as reduced forms of sulfur and iron. An apparent inverse oxygen isotope fractionation effect was observed during nitrate reduction in sediment incubations from five sampling sites of a freshwater lake, Hongze Lake, China. Incubations with organic and inorganic electron donor additions were performed. Especially, the inverse oxygen isotope effect was intensified after glucose addition, whereas the incubations with sulfide and Fe2+ showed normal fractionation factors. Nitrate reductase encoding genes, napA and narG, were analysed with metagenomics. Higher napA/narG ratios were associated with higher oxygen fractionation factors. The most abundant clade (59%) of NapA in the incubation with glucose was affiliated with Rhodocyclales. In contrast, it only accounted for 8%-9% of NapA in the incubations with sulfide and Fe2+ . Differences in nitrate reductases might explain different oxygen isotope effects. Our findings also suggested that large variance of O-nitrate isotope fractionations might have to be considered in the interpretation of natural isotope records.
Collapse
Affiliation(s)
- Shengjie Li
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, China
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Muhe Diao
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Shuo Wang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, China
| | - Xianfang Zhu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, China
| | - Xiaoli Dong
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Marc Strous
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, China
| |
Collapse
|
12
|
Taxonomic and functional trait-based approaches suggest that aerobic and anaerobic soil microorganisms allow the natural attenuation of oil from natural seeps. Sci Rep 2022; 12:7245. [PMID: 35508504 PMCID: PMC9068923 DOI: 10.1038/s41598-022-10850-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/31/2022] [Indexed: 12/02/2022] Open
Abstract
Natural attenuation, involving microbial adaptation, helps mitigating the effect of oil contamination of surface soils. We hypothesized that in soils under fluctuating conditions and receiving oil from seeps, aerobic and anaerobic bacteria as well as fungi could coexist to efficiently degrade hydrocarbons and prevent the spread of pollution. Microbial community diversity was studied in soil longitudinal and depth gradients contaminated with petroleum seeps for at least a century. Hydrocarbon contamination was high just next to the petroleum seeps but this level drastically lowered from 2 m distance and beyond. Fungal abundance and alpha-diversity indices were constant along the gradients. Bacterial abundance was constant but alpha-diversity indices were lower next to the oil seeps. Hydrocarbon contamination was the main driver of microbial community assemblage. 281 bacterial OTUs were identified as indicator taxa, tolerant to hydrocarbon, potentially involved in hydrocarbon-degradation or benefiting from the degradation by-products. These taxa belonging to lineages of aerobic and anaerobic bacteria, have specific functional traits indicating the development of a complex community adapted to the biodegradation of petroleum hydrocarbons and to fluctuating conditions. Fungi are less impacted by oil contamination but few taxa should contribute to the metabolic complementary within the microbial consortia forming an efficient barrier against petroleum dissemination.
Collapse
|
13
|
Bolstering fitness via CO 2 fixation and organic carbon uptake: mixotrophs in modern groundwater. THE ISME JOURNAL 2022; 16:1153-1162. [PMID: 34876683 PMCID: PMC8941145 DOI: 10.1038/s41396-021-01163-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/11/2021] [Accepted: 11/22/2021] [Indexed: 12/04/2022]
Abstract
Current understanding of organic carbon inputs into ecosystems lacking photosynthetic primary production is predicated on data and inferences derived almost entirely from metagenomic analyses. The elevated abundances of putative chemolithoautotrophs in groundwaters suggest that dark CO2 fixation is an integral component of subsurface trophic webs. To understand the impact of autotrophically fixed carbon, the flux of CO2-derived carbon through various populations of subsurface microbiota must first be resolved, both quantitatively and temporally. Here we implement novel Stable Isotope Cluster Analysis to render a time-resolved and quantitative evaluation of 13CO2-derived carbon flow through a groundwater community in microcosms stimulated with reduced sulfur compounds. We demonstrate that mixotrophs, not strict autotrophs, were the most abundant active organisms in groundwater microcosms. Species of Hydrogenophaga, Polaromonas, Dechloromonas, and other metabolically versatile mixotrophs drove the production and remineralization of organic carbon. Their activity facilitated the replacement of 43% and 80% of total microbial carbon stores in the groundwater microcosms with 13C in just 21 and 70 days, respectively. The mixotrophs employed different strategies for satisfying their carbon requirements by balancing CO2 fixation and uptake of available organic compounds. These different strategies might provide fitness under nutrient-limited conditions, explaining the great abundances of mixotrophs in other oligotrophic habitats, such as the upper ocean and boreal lakes.
Collapse
|
14
|
Santos VHJMD, Engelmann PDM, Marconatto L, Borge LGDA, Palhano PDL, Augustin AH, Rodrigues LF, Ketzer JMM, Giongo A. Exploratory analysis of the microbial community profile of the municipal solid waste leachate treatment system: A case study. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 141:125-135. [PMID: 35114563 DOI: 10.1016/j.wasman.2022.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/11/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Studies on the degradation dynamics of landfill leachate indicate that the microbial community profile is a valuable and sensitive tool for landfill monitoring programs. Although knowledge about the microbial community can improve the efficiency of leachate treatment systems, little is known about the microbial profile changes that occur throughout the leachate attenuation process. In the present work, an exploratory analysis of the microbial community profile of the MSW leachate treatment system in the municipality of Osório (Brazil) was conducted. In this way, a comprehensive analysis of chemical parameters, isotopic signature and microbial profile data were applied to monitor the changes in the structure of the microbial community throughout the leachate attenuation process and to describe the relationship between the microbial community structure and the attenuation of chemical and isotopic parameters. From data analysis, it was possible to assess the microbial community structure and relate it to the attenuation of chemical and isotopic parameters. Based on massive parallel 16S rRNA gene sequencing, it was possible to observe that each leachate treatment unit has a specific microbial consortium, reflecting the adaptation of different microorganisms to changes in leachate characteristics throughout treatment. From our results, we concluded that the structure of the microbial community is sensitive to the leachate composition and can be applied to study the municipal solid waste management system.
Collapse
Affiliation(s)
- Victor Hugo Jacks Mendes Dos Santos
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, Institute of Petroleum and Natural Resources, 6681 Ipiranga Avenue, TECNOPUC, Building 96J, 90619-900 Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul, PUCRS, Materials Engineering and Technology Graduate Program, 6681 Ipiranga Avenue, Building 32, 90619-900 Porto Alegre, Brazil.
| | - Pâmela de Medeiros Engelmann
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, Institute of Petroleum and Natural Resources, 6681 Ipiranga Avenue, TECNOPUC, Building 96J, 90619-900 Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul, PUCRS, Materials Engineering and Technology Graduate Program, 6681 Ipiranga Avenue, Building 32, 90619-900 Porto Alegre, Brazil.
| | - Letícia Marconatto
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, Institute of Petroleum and Natural Resources, 6681 Ipiranga Avenue, TECNOPUC, Building 96J, 90619-900 Porto Alegre, Brazil
| | - Luiz Gustavo Dos Anjos Borge
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, Institute of Petroleum and Natural Resources, 6681 Ipiranga Avenue, TECNOPUC, Building 96J, 90619-900 Porto Alegre, Brazil
| | - Pâmela de Lara Palhano
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, Institute of Petroleum and Natural Resources, 6681 Ipiranga Avenue, TECNOPUC, Building 96J, 90619-900 Porto Alegre, Brazil
| | - Adolpho Herbert Augustin
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, Institute of Petroleum and Natural Resources, 6681 Ipiranga Avenue, TECNOPUC, Building 96J, 90619-900 Porto Alegre, Brazil
| | - Luiz Frederico Rodrigues
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, Institute of Petroleum and Natural Resources, 6681 Ipiranga Avenue, TECNOPUC, Building 96J, 90619-900 Porto Alegre, Brazil
| | - João Marcelo Medina Ketzer
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, Institute of Petroleum and Natural Resources, 6681 Ipiranga Avenue, TECNOPUC, Building 96J, 90619-900 Porto Alegre, Brazil; Linnaeus University, Department of Biology and Environmental Sciences, 391 82 Kalmar, Sweden
| | - Adriana Giongo
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, Institute of Petroleum and Natural Resources, 6681 Ipiranga Avenue, TECNOPUC, Building 96J, 90619-900 Porto Alegre, Brazil; Regional University of Blumenau, Environmental Engineering Graduate Program, Blumenau, Brazil.
| |
Collapse
|
15
|
Govindarajan A, Crum M, Adolacion J, Kiaghadi A, Acuña-Gonzalez E, Rifai HS, Willson RC. Sediment and their bacterial communities in an industrialized estuary after Hurricane Harvey. MARINE POLLUTION BULLETIN 2022; 175:113359. [PMID: 35124375 DOI: 10.1016/j.marpolbul.2022.113359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/26/2021] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Estuaries experience variable physicochemical conditions, especially after hurricanes and due to anthropogenic sources of pollution. Their microbial communities are not as well understood in terms of community structure and diversity, particularly in response to stresses from pollution and severe events. This study presents a 16S rRNA-based description of sediment microbial communities in the Houston Ship Channel-Galveston Bay estuary after Hurricane Harvey in 2017. A total of 11 sites were sampled, and microbial genomic DNA was isolated from sediment. The presence and abundance of specific bacterial and archaeal taxa in the sediment indicated pollutant inputs from identified legacy sources. The abundance of certain microbial groups was explained by the mobilization of contaminated sediment and sediment transport due to Harvey. Several microorganisms involved in the biodegradation of xenobiotics were observed. The spatial occurrence of Dehalococcoidia, a degrader of persistent polychlorinated compounds, was explained in relation to sediment properties and contaminant concentrations.
Collapse
Affiliation(s)
| | - Mary Crum
- Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Jay Adolacion
- School of Engineering and Science, Tecnológico de Monterrey, Monterrey, Mexico
| | - Amin Kiaghadi
- Civil and Environmental Engineering, University of Houston, Houston, TX, USA
| | - Edgar Acuña-Gonzalez
- School of Medicine and Health Sciences, Tecnológico de Monterrey, Monterrey, Mexico
| | - Hanadi S Rifai
- Civil and Environmental Engineering, University of Houston, Houston, TX, USA.
| | - Richard C Willson
- Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| |
Collapse
|
16
|
Community-Based 16S rDNA Fingerprinting Analysis of Geographically Distinct Marine Sediments of Unexplored Coastal Regions of Palk Bay and Gulf of Mannar. Curr Microbiol 2022; 79:60. [PMID: 34982232 DOI: 10.1007/s00284-021-02692-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 10/01/2021] [Indexed: 11/03/2022]
Abstract
The present study aims to carefully delineate the bacterial community composition in marine sediments from different geographical coastal regions of Palk Bay and Gulf of Mannar that are known for human recreational activities. Bacterial richness in different marine sediments was assessed using 16S rRNA gene-based Denaturing Gradient Gel Electrophoresis (DGGE) which is a widely deployed fingerprinting technique. The DGGE profiles revealed that the bacterial community profiles of sediment from different coastal regions were complex and dynamic. The most dominant phylum present in the marine sediment samples were Proteobacteria followed by Cyanobacteria, Bacteriodetes, Firmicutes, Acidobacteria, and Actinobacteria. Cosmopolitan presence of Thioalkalivibrio sp. was observed in all the marine sediments. Sequencing of the abundant band reveals the presence of Vibrio spp. in all the marine sediments. Comparative illumina data analysis revealed the presence of 51 different Vibrio species in which Vibrio alginolyticus holds the highest abundance (67.2%) followed by V. harveyi (13.5%). This is the one of the very few reports that compared the complex microbial community composition of the marine sediments of different geographical regions of unexplored coastal region. Further in-depth analysis needs to be taken to understand the presence of complex microbial compositions and their functions through high-throughput whole metagenome sequencing and metaproteomic approaches.
Collapse
|
17
|
Petriglieri F, Singleton C, Peces M, Petersen JF, Nierychlo M, Nielsen PH. "Candidatus Dechloromonas phosphoritropha" and "Ca. D. phosphorivorans", novel polyphosphate accumulating organisms abundant in wastewater treatment systems. THE ISME JOURNAL 2021; 15:3605-3614. [PMID: 34155336 PMCID: PMC8630035 DOI: 10.1038/s41396-021-01029-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/22/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023]
Abstract
Members of the genus Dechloromonas are often abundant in enhanced biological phosphorus removal (EBPR) systems and are recognized putative polyphosphate accumulating organisms (PAOs), but their role in phosphate removal is still unclear. Here, we used 16S rRNA gene sequencing and fluorescence in situ hybridization (FISH) to investigate the abundance and distribution of Dechloromonas spp. in Danish and global wastewater treatment plants. The two most abundant species worldwide revealed in situ dynamics of important intracellular storage polymers, measured by FISH-Raman in activated sludge from four full-scale EBPR plants and from a lab-scale reactor fed with different substrates. Moreover, seven distinct Dechloromonas species were determined from a set of ten high-quality metagenome-assembled genomes (MAGs) from Danish EBPR plants, each encoding the potential for polyphosphate (poly-P), glycogen, and polyhydroxyalkanoates (PHA) accumulation. The two species exhibited an in situ phenotype in complete accordance with the metabolic information retrieved by the MAGs, with dynamic levels of poly-P, glycogen, and PHA during feast-famine anaerobic-aerobic cycling, legitimately placing these microorganisms among the important PAOs. They are potentially involved in denitrification showing niche partitioning within the genus and with other important PAOs. As no isolates are available for the two species, we propose the names Candidatus Dechloromonas phosphoritropha and Candidatus Dechloromonas phosphorivorans.
Collapse
Affiliation(s)
- Francesca Petriglieri
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Caitlin Singleton
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Miriam Peces
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Jette F Petersen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Marta Nierychlo
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Per H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
18
|
Atashgahi S, Oosterkamp MJ, Peng P, Frank J, Kraft B, Hornung B, Schleheck D, Lücker S, Jetten MSM, Stams AJM, Smidt H. Proteogenomic analysis of Georgfuchsia toluolica revealed unexpected concurrent aerobic and anaerobic toluene degradation. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:841-851. [PMID: 34374217 PMCID: PMC9290046 DOI: 10.1111/1758-2229.12996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Denitrifying Betaproteobacteria play a key role in the anaerobic degradation of monoaromatic hydrocarbons. We performed a multi-omics study to better understand the metabolism of the representative organism Georgfuchsia toluolica strain G5G6 known as a strict anaerobe coupling toluene oxidation with dissimilatory nitrate and Fe(III) reduction. Despite the genomic potential for degradation of different carbon sources, we did not find sugar or organic acid transporters, in line with the inability of strain G5G6 to use these substrates. Using a proteomics analysis, we detected proteins of fumarate-dependent toluene activation, membrane-bound nitrate reductase, and key components of the metal-reducing (Mtr) pathway under both nitrate- and Fe(III)-reducing conditions. High abundance of the multiheme cytochrome MtrC implied that a porin-cytochrome complex was used for respiratory Fe(III) reduction. Remarkably, strain G5G6 contains a full set of genes for aerobic toluene degradation, and we detected enzymes of aerobic toluene degradation under both nitrate- and Fe(III)-reducing conditions. We further detected an ATP-dependent benzoyl-CoA reductase, reactive oxygen species detoxification proteins, and cytochrome c oxidase indicating a facultative anaerobic lifestyle of strain G5G6. Correspondingly, we found diffusion through the septa a substantial source of oxygen in the cultures enabling concurrent aerobic and anaerobic toluene degradation by strain G5G6.
Collapse
Affiliation(s)
- Siavash Atashgahi
- Laboratory of MicrobiologyWageningen University & ResearchWageningen6708 WEThe Netherlands
- Department of Microbiology, IWWRRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
- Soehngen Institute of Anaerobic Microbiology, Heyendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Margreet J. Oosterkamp
- Laboratory of MicrobiologyWageningen University & ResearchWageningen6708 WEThe Netherlands
- Sub‐department of Environmental TechnologyWageningen University & Research, Bornse weilanden 9Wageningen6708 DWThe Netherlands
| | - Peng Peng
- Laboratory of MicrobiologyWageningen University & ResearchWageningen6708 WEThe Netherlands
- Department of Civil and Environmental EngineeringUniversity of Michigan, 1351 Beal AvenueAnn ArborMI48109‐2125USA
| | - Jeroen Frank
- Department of Microbiology, IWWRRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
- Soehngen Institute of Anaerobic Microbiology, Heyendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Beate Kraft
- Nordic Center for Earth EvolutionUniversity of Southern DenmarkOdenseDK‐5230Denmark
| | - Bastian Hornung
- Laboratory of MicrobiologyWageningen University & ResearchWageningen6708 WEThe Netherlands
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, 163 avenue de Luminy13288 Aix Marseille UniversitéMarseilleFrance
| | - David Schleheck
- Department of BiologyUniversity of KonstanzKonstanz78457Germany
| | - Sebastian Lücker
- Department of Microbiology, IWWRRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Mike S. M. Jetten
- Department of Microbiology, IWWRRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
- Soehngen Institute of Anaerobic Microbiology, Heyendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Alfons J. M. Stams
- Laboratory of MicrobiologyWageningen University & ResearchWageningen6708 WEThe Netherlands
- Soehngen Institute of Anaerobic Microbiology, Heyendaalseweg 135Nijmegen6525 AJThe Netherlands
- Centre of Biological EngineeringUniversity of Minho, Campus de GualtarBraga4710‐057Portugal
| | - Hauke Smidt
- Laboratory of MicrobiologyWageningen University & ResearchWageningen6708 WEThe Netherlands
| |
Collapse
|
19
|
Hagel C, Blaum B, Friedrich T, Heider J. Characterisation of the redox centers of ethylbenzene dehydrogenase. J Biol Inorg Chem 2021; 27:143-154. [PMID: 34843002 PMCID: PMC8840923 DOI: 10.1007/s00775-021-01917-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/29/2021] [Indexed: 01/18/2023]
Abstract
Ethylbenzene dehydrogenase (EbDH), the initial enzyme of anaerobic ethylbenzene degradation from the beta-proteobacterium Aromatoleum aromaticum, is a soluble periplasmic molybdenum enzyme consisting of three subunits. It contains a Mo-bis-molybdopterin guanine dinucleotide (Mo-bis-MGD) cofactor and an 4Fe-4S cluster (FS0) in the α-subunit, three 4Fe-4S clusters (FS1 to FS3) and a 3Fe-4S cluster (FS4) in the β-subunit and a heme b cofactor in the γ-subunit. Ethylbenzene is hydroxylated by a water molecule in an oxygen-independent manner at the Mo-bis-MGD cofactor, which is reduced from the MoVI to the MoIV state in two subsequent one-electron steps. The electrons are then transferred via the Fe-S clusters to the heme b cofactor. In this report, we determine the midpoint redox potentials of the Mo-bis-MGD cofactor and FS1-FS4 by EPR spectroscopy, and that of the heme b cofactor by electrochemically induced redox difference spectroscopy. We obtained relatively high values of > 250 mV both for the MoVI-MoV redox couple and the heme b cofactor, whereas FS2 is only reduced at a very low redox potential, causing magnetic coupling with the neighboring FS1 and FS3. We compare the results with the data on related enzymes and interpret their significance for the function of EbDH.
Collapse
Affiliation(s)
- Corina Hagel
- Labor für Mikrobielle Biochemie and Synmikro Zentrum für Synthetische Mikrobiologie, Philipps Universität Marburg, 35043, Marburg, Germany
| | - Bärbel Blaum
- Institut für Biochemie, Albert-Ludwigs Universität, Albertstr. 21, 79104, Freiburg im Breisgau, Germany
| | - Thorsten Friedrich
- Institut für Biochemie, Albert-Ludwigs Universität, Albertstr. 21, 79104, Freiburg im Breisgau, Germany.
| | - Johann Heider
- Labor für Mikrobielle Biochemie and Synmikro Zentrum für Synthetische Mikrobiologie, Philipps Universität Marburg, 35043, Marburg, Germany.
| |
Collapse
|
20
|
Li D, Chu Z, Zeng Z, Sima M, Huang M, Zheng B. Effects of design parameters, microbial community and nitrogen removal on the field-scale multi-pond constructed wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:148989. [PMID: 34351277 DOI: 10.1016/j.scitotenv.2021.148989] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Ecological multi-pond constructed wetlands (CWs) are an alternative wastewater treatment technology for nitrogen removal from non-point source pollution. As an important component of nitrogen cycles in the field-scale CWs, microorganisms are affected by design parameters. Nevertheless, the mechanism of design parameters affecting the distribution of microbial community and removal performance remains largely unexplored. In this study, satisfactory nitrogen removal performance was obtained in three multi-pond CWs. The highest mass removal rate per square meter (1104.0 mg/m2/day) and mass removal rate per cubic meter (590.2 mg/m3/day) for total nitrogen removal were obtained in the XY CW system during the wet season. The changes in seasonal parameters accounted for different removal performances and distributions of the microbial community. The combination of wastewater treatment technologies in the XY CW system consisting of ponds, CWs, and eco-floating treatment wetlands enriched the abundances of nitrogen-related functional genera. Correlation network analysis further demonstrated that longer hydraulic residence time and higher nitrogen concentration could intensify the enrichment of nitrogen-related functional genera. Regulating the combination of wastewater treatment technologies, the nitrogen concentration of influent, hydraulic loading rate, and water depth might promote the accumulation of microbial communities and enhance nitrogen removal. Macroscopical spatial/temporal regulation were proposed to enhance the treatment of non-point source pollution. The clarification of driving mechanism on design parameters, microbial community, and removal performance provided a novel perspective on the long-term maintenance of purification performance, practically sustainable applications, and scientific management of field-scale multi-pond CWs.
Collapse
Affiliation(s)
- Dan Li
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zhaosheng Chu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Zhenzhong Zeng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Matthew Sima
- Department of Civil and Environmental Engineering, Princeton University, NJ 08540, USA
| | - Minsheng Huang
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Binghui Zheng
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
21
|
Zhang Z, Guo H, Sun J, Gong X, Wang C, Wang H. Anaerobic phenanthrene biodegradation by a newly isolated sulfate-reducer, strain PheS1, and exploration of the biotransformation pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149148. [PMID: 34311378 DOI: 10.1016/j.scitotenv.2021.149148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Phenanthrene is a widespread and harmful polycyclic aromatic hydrocarbon that is difficult to anaerobically biodegrade. Current challenges in anaerobic phenanthrene bioremediation are a lack of degrading cultures and limited knowledge of biotransformation pathways. Under sulfate-reducing conditions, pure-cultures and biotransformation processes for anaerobic phenanthrene biodegradation are poorly understood. In this study, strain PheS1, which is phylogenetically closely related to Desulfotomaculum, was found to be a sulfate-reducing phenanthrene-degrading bacterium. Anaerobic phenanthrene biodegradation using PheS1 was proposed based on metabolite and genome analyses, and the initial step was identified as carboxylation based on the detection of 2-phenanthroic acid, [13C]-2-phenanthroic acid, and [D9]-2- phenanthroic acid when phenanthrene+HCO3-, phenanthrene+H13CO3-, and [D10]-phenanthrene+HCO3- were used as the substrate, respectively. PheS1 genome ubiD gene encoding of carboxylase putatively involved in the biodegradation was performed. Next, benzene ring reduction and cleavage that produced benzene compounds and cyclohexane derivative were reported to occur in the downstream biotransformation processes. Additionally, benzene, naphthalene, benz[a]anthracene, and anthracene can be utilised by PheS1, whereas pyrene and benz[a]pyrene cannot. We discovered a new phenanthrene-degrading sulfate-reducer and provided the anaerobic phenanthrene biotransformation pathway under sulfate-reducing conditions, which can act as a reference for practical applications in bioremediation and for studying the molecular mechanisms of phenanthrene in anaerobic zones.
Collapse
Affiliation(s)
- Zuotao Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Haijiao Guo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiao Sun
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoqiang Gong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Chongyang Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hui Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
22
|
Ruen-Pham K, Graham LE, Satjarak A. Spatial Variation of Cladophora Epiphytes in the Nan River, Thailand. PLANTS (BASEL, SWITZERLAND) 2021; 10:2266. [PMID: 34834629 PMCID: PMC8622721 DOI: 10.3390/plants10112266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022]
Abstract
Cladophora is an algal genus known to be ecologically important. It provides habitats for microorganisms known to provide ecological services such as biosynthesis of cobalamin (vitamin B12) and nutrient cycling. Most knowledge of microbiomes was obtained from studies of lacustrine Cladophora species. However, whether lotic freshwater Cladophora microbiomes are as complex as the lentic ones or provide similar ecological services is not known. To illuminate these issues, we used amplicons of 16S rDNA, 18S rDNA, and ITS to investigate the taxonomy and diversity of the microorganisms associated with replicate Cladophora samples from three sites along the Nan River, Thailand. Results showed that the diversity of prokaryotic and eukaryotic members of Cladophora microbiomes collected from different sampling sites was statistically different. Fifty percent of the identifiable taxa were shared across sampling sites: these included organisms belonging to different trophic levels, decomposers, and heterotrophic bacteria. These heterogeneous assemblages of bacteria, by functional inference, have the potential to perform various ecological functions, i.e., cellulose degradation, cobalamin biosynthesis, fermentative hydrogen production, ammonium oxidation, amino acid fermentation, dissimilatory reduction of nitrate to ammonium, nitrite reduction, nitrate reduction, sulfur reduction, polyphosphate accumulation, denitrifying phosphorus-accumulation, and degradation of aromatic compounds. Results suggested that river populations of Cladophora provide ecologically important habitat for microorganisms that are key to nutrient cycling in lotic ecosystems.
Collapse
Affiliation(s)
- Karnjana Ruen-Pham
- Plants of Thailand Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Linda E. Graham
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA;
| | - Anchittha Satjarak
- Plants of Thailand Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| |
Collapse
|
23
|
Kim H, Jeon J, Lee KK, Lee YH. Compositional Shift of Bacterial, Archaeal, and Fungal Communities Is Dependent on Trophic Lifestyles in Rice Paddy Soil. Front Microbiol 2021; 12:719486. [PMID: 34539610 PMCID: PMC8440912 DOI: 10.3389/fmicb.2021.719486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/16/2021] [Indexed: 11/29/2022] Open
Abstract
The soil environment determines plants’ health and performance during their life cycle. Therefore, ecological understanding on variations in soil environments, including physical, chemical, and biological properties, is crucial for managing agricultural fields. Here, we present a comprehensive and extensive blueprint of the bacterial, archaeal, and fungal communities in rice paddy soils with differing soil types and chemical properties. We discovered that natural variations of soil nutrients are important factors shaping microbial diversity. The responses of microbial diversity to soil nutrients were related to the distribution of microbial trophic lifestyles (oligotrophy and copiotrophy) in each community. The compositional changes of bacterial and archaeal communities in response to soil nutrients were mainly governed by oligotrophs, whereas copiotrophs were mainly involved in fungal compositional changes. Compositional shift of microbial communities by fertilization is linked to switching of microbial trophic lifestyles. Random forest models demonstrated that depletion of prokaryotic oligotrophs and enrichment of fungal copiotrophs are the dominant responses to fertilization in low-nutrient conditions, whereas enrichment of putative copiotrophs was important in high-nutrient conditions. Network inference also revealed that trophic lifestyle switching appertains to decreases in intra- and inter-kingdom microbial associations, diminished network connectivity, and switching of hub nodes from oligotrophs to copiotrophs. Our work provides ecological insight into how soil nutrient-driven variations in microbial communities affect soil health in modern agricultural systems.
Collapse
Affiliation(s)
- Hyun Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Jongbum Jeon
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
| | - Kiseok Keith Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea.,Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.,Center for Fungal Genetic Resources, Seoul National University, Seoul, South Korea.,Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea.,Plant Immunity Research Center, Seoul National University, Seoul, South Korea
| |
Collapse
|
24
|
Inoue D, Fukuyama A, Ren Y, Ike M. Optimization of aerobic dynamic discharge process for very rapid enrichment of polyhydroxyalkanoates-accumulating bacteria from activated sludge. BIORESOURCE TECHNOLOGY 2021; 336:125314. [PMID: 34051571 DOI: 10.1016/j.biortech.2021.125314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
The aerobic dynamic discharge (ADD) process has the potential to reduce the enrichment period of polyhydroxyalkanoates (PHA)-accumulating bacteria in PHA production using mixed microbial cultures (MMCs). This study aimed to efficiently enrich PHA-accumulating bacteria from activated sludge within a fixed period of 2 d by optimizing operating conditions of the ADD process. Based on the results, enrichment with separate feeding of carbon and nutrients in the feast and famine phases, respectively, and a settling duration of 10 min after the feast phase in the sequencing batch cycle for 12 h was found to be optimal. The MMC enriched at optimum conditions could store as much as 68.4 wt% of PHA. Dechloromonas and Zoogloea were identified as potential PHA-accumulating bacteria responsible for enhancing PHA accumulation ability in the enriched MMC. The optimized ADD process will facilitate the consecutive use of daily generated waste activated sludge for PHA production.
Collapse
Affiliation(s)
- Daisuke Inoue
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Atsushi Fukuyama
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yu Ren
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
25
|
Alegbeleye O, Alisoltani A, Abia ALK, Awe AA, Adetunji AT, Rabiu S, Opeolu BO. Investigation into the bacterial diversity of sediment samples obtained from Berg River, Western Cape, South Africa. Folia Microbiol (Praha) 2021; 66:931-947. [PMID: 34224087 DOI: 10.1007/s12223-021-00893-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 06/22/2021] [Indexed: 11/29/2022]
Abstract
This study used conventional culturing and 16S rRNA metagenomics analyses to assess the diversity of bacterial communities in sediment samples obtained from the Berg River, Western Cape, South Africa. Samples were collected from six points: a residential and recreational area, an industrial area, an informal residential settlement, a point next to a wastewater treatment plant (WWTP), a pumping station, and a residential and agricultural farming area along the river. High bacterial counts recorded on general selective and differential culture media signify substantial microbial contamination along the sampling sites. The most prevalent bacterial phyla detected (through metagenomics analyses) along the sampling sites were Proteobacteria (61%), Planctomycetes (9.5%), Firmicutes (7.8%), Bacteroidetes (5%), Acidobacteria (4.6%), and Actinobacteria (4.6%). Some members of the identified predominant bacterial phyla, genera, and classes are important public health bacteria that have been implicated in human diseases and outbreaks, while some others are metal or hydrocarbon tolerant, indicating possible significant environmental pollution. Notable human pathogenic genera such as Bacillus, Clostridium, Shigella, Legionella, Mycobacterium, and Pseudomonas were identified in varying percentages at five of the six sampling areas. Fecal contamination was particularly rife at all residential areas, with the informal housing area being the most notably polluted. Diverse functional pathways were predicted for identified bacteria, such as those associated with different chronic and infectious human diseases as well as those related to hydrocarbon and metal remediation. The point next to a WWTP contained vastly diverse groups of bacterial contaminants as well as the most abundant pathway identities and titles.
Collapse
Affiliation(s)
- Oluwadara Alegbeleye
- Department of Food Science, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas, SP, 13083-862, Brazil.
| | | | - Akebe Luther King Abia
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Adetunji Ajibola Awe
- Department of Conservation and Marine Sciences, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Adewole Tomiwa Adetunji
- Department of Agriculture, Faculty of Applied Sciences, Cape Peninsula University of Technology, Western Cape, Wellington, 7654, South Africa
| | - Saidat Rabiu
- Department of Environmental and Occupational Studies, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Beatrice Olutoyin Opeolu
- Extended Curriculum Programmes, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town, 8000, South Africa
| |
Collapse
|
26
|
Zhang Z, Sun J, Guo H, Gong X, Wang C, Wang H. Investigation of anaerobic biodegradation of phenanthrene by a sulfate-dependent Geobacter sulfurreducens strain PheS2. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124522. [PMID: 33229262 DOI: 10.1016/j.jhazmat.2020.124522] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous and harmful contaminants, which can be degraded aerobically. However, the persistence of PAHs in anoxic environments indicates that anaerobic biodegradation of PAHs should also be investigated. Pure-culture and biotransformation processes for anaerobic phenanthrene biodegradation with sulfate as a terminal electron acceptor remains in its infancy. In this study, we investigated anaerobic biodegradation of PAHs by PheS2, an isolated phenanthrene-utilizing sulfate-reducer, using phenanthrene as a model compound. PheS2 was phylogenetically closely related to Geobacter sulfurreducens and reduced sulfate to sulfide during anaerobic phenanthrene biodegradation. Phenanthrene biodegradation processes were detected using gas chromatography-mass spectrometry, genome, and reverse transcription quantitative PCR analyses. Carboxylation was the initial step of anaerobic phenanthrene biodegradation based upon detection of 2- and 4-phenanthroic acid, its isotopically labeled analogs when using 13C-labeled bicarbonate and fully deuterated-phenanthrene (C14D10), and genes encoding enzymes putatively involved in the biodegradation. Further, ring-system reducing and cleavage occurred, and substituted benzene series and cyclohexane derivatives were detected in downstream biotransformation metabolites. Additionally, PheS2 can degrade benzene, naphthalene, anthracene, and benz[a]anthracene, but not pyrene and benz[a]pyrene. This study describes the isolation of an anaerobic phenanthrene-degrading sulfate-reducer, the first pure-culture evidence of phenanthrene biotransformation processes with sulfate as an electron acceptor.
Collapse
Affiliation(s)
- Zuotao Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiao Sun
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Haijiao Guo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoqiang Gong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Chongyang Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hui Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
27
|
Duffner C, Holzapfel S, Wunderlich A, Einsiedl F, Schloter M, Schulz S. Dechloromonas and close relatives prevail during hydrogenotrophic denitrification in stimulated microcosms with oxic aquifer material. FEMS Microbiol Ecol 2021; 97:6081091. [PMID: 33428716 DOI: 10.1093/femsec/fiab004] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 01/08/2021] [Indexed: 11/12/2022] Open
Abstract
Globally occurring nitrate pollution in groundwater is harming the environment and human health. In situ hydrogen addition to stimulate denitrification has been proposed as a remediation strategy. However, observed nitrite accumulation and incomplete denitrification are severe drawbacks that possibly stem from the specific microbial community composition. We set up a microcosm experiment comprising sediment and groundwater from a nitrate polluted oxic oligotrophic aquifer. After the microcosms were sparged with hydrogen gas, samples were taken regularly within 122 h for nitrate and nitrite measurements, community composition analysis via 16S rRNA gene amplicon sequencing and gene and transcript quantification via qPCR of reductase genes essential for complete denitrification. The highest nitrate reduction rates and greatest increase in bacterial abundance coincided with a 15.3-fold increase in relative abundance of Rhodocyclaceae, specifically six ASVs that are closely related to the genus Dechloromonas. The denitrification reductase genes napA, nirS and clade I nosZ also increased significantly over the observation period. We conclude that taxa of the genus Dechloromonas are the prevailing hydrogenotrophic denitrifiers in this nitrate polluted aquifer and the ability of hydrogenotrophic denitrification under the given conditions is species-specific.
Collapse
Affiliation(s)
- Clara Duffner
- Chair of Soil Science, TUM School of Life Sciences Weihenstephan, Technical University Munich, Emil-Ramann-Straße 2, 85354 Freising, Germany.,Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Sebastian Holzapfel
- Chair of Hydrogeology, Technical University Munich, Arcisstraße 21, 80333 Munich, Germany
| | - Anja Wunderlich
- Chair of Hydrogeology, Technical University Munich, Arcisstraße 21, 80333 Munich, Germany
| | - Florian Einsiedl
- Chair of Hydrogeology, Technical University Munich, Arcisstraße 21, 80333 Munich, Germany
| | - Michael Schloter
- Chair of Soil Science, TUM School of Life Sciences Weihenstephan, Technical University Munich, Emil-Ramann-Straße 2, 85354 Freising, Germany.,Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Stefanie Schulz
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| |
Collapse
|
28
|
Liu S, Chen Y, Xiao L. Metagenomic insights into mixotrophic denitrification facilitated nitrogen removal in a full-scale A2/O wastewater treatment plant. PLoS One 2021; 16:e0250283. [PMID: 33857258 PMCID: PMC8049308 DOI: 10.1371/journal.pone.0250283] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/01/2021] [Indexed: 11/18/2022] Open
Abstract
Wastewater treatment plants (WWTPs) are important for pollutant removal from wastewater, elimination of point discharges of nutrients into the environment and water resource protection. The anaerobic/anoxic/oxic (A2/O) process is widely used in WWTPs for nitrogen removal, but the requirement for additional organics to ensure a suitable nitrogen removal efficiency makes this process costly and energy consuming. In this study, we report mixotrophic denitrification at a low COD (chemical oxygen demand)/TN (total nitrogen) ratio in a full-scale A2/O WWTP with relatively high sulfate in the inlet. Nitrogen and sulfur species analysis in different units of this A2/O WWTP showed that the internal sulfur cycle of sulfate reduction and reoxidation occurred and that the reduced sulfur species might contribute to denitrification. Microbial community analysis revealed that Thiobacillus, an autotrophic sulfur-oxidizing denitrifier, dominated the activated sludge bacterial community. Metagenomics data also supported the potential of sulfur-based denitrification when high levels of denitrification occurred, and sulfur oxidation and sulfate reduction genes coexisted in the activated sludge. Although most of the denitrification genes were affiliated with heterotrophic denitrifiers with high abundance, the narG and napA genes were mainly associated with autotrophic sulfur-oxidizing denitrifiers. The functional genes related to nitrogen removal were actively expressed even in the unit containing relatively highly reduced sulfur species, indicating that the mixotrophic denitrification process in A2/O could overcome not only a shortage of carbon sources but also the inhibition by reduced sulfur of nitrification and denitrification. Our results indicate that a mixotrophic denitrification process could be developed in full-scale WWTPs and reduce the requirement for additional carbon sources, which could endow WWTPs with more flexible and adaptable nitrogen removal.
Collapse
Affiliation(s)
- Shulei Liu
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse (SKL-PCRR), Nanjing University, Nanjing, China
| | - Yasong Chen
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse (SKL-PCRR), Nanjing University, Nanjing, China
| | - Lin Xiao
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse (SKL-PCRR), Nanjing University, Nanjing, China
- * E-mail:
| |
Collapse
|
29
|
Alkylphenols and Chlorophenols Remediation in Vertical Flow Constructed Wetlands: Removal Efficiency and Microbial Community Response. WATER 2021. [DOI: 10.3390/w13050715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This study aims to investigate the effect of two different groups of phenolic compounds (the alkylphenols nonylphenol (NP) and octylphenol (OP), and the chlorophenol pentachlorophenol (PCP)) on constructed wetlands (CWs) performance, including on organic matter, nutrients and contaminants removal efficiency, and on microbial community structure in the plant bed substrate. CWs were assembled at lab scale simulating a vertical flow configuration and irrigated along eight weeks with Ribeira de Joane (an urban stream) water not doped (control) or doped with a mixture of NP and OP or with PCP (at a 100 μg·L−1 concentration each). The presence of the phenolic contaminants did not interfere in the removal of organic matter or nutrients in CWs in the long term. Removals of NP and OP were >99%, whereas PCP removals varied between 87% and 98%, mainly due to biodegradation. Microbial richness, diversity and dominance in CWs substrate were generally not affected by phenolic compounds, with only PCP decreasing diversity. Microbial community structure, however, showed that there was an adaptation of the microbial community to the presence of each contaminant, with several specialist genera being enriched following exposure. The three more abundant specialist genera were Methylotenera and Methylophilus (methylophilaceae family) and Hyphomicrobium (hyphomicrobiaceae family) when the systems were exposed to a mixture of NP and OP. When exposed to PCP, the three more abundant genera were Denitromonas (Rhodocyclaceae family), Xenococcus_PCC_7305 (Xenococcaceae family) and Rhodocyclaceae_uncultured (Rhodocyclaceae family). To increase CWs efficiency in the elimination of phenolic compounds, namely PCP which was not totally removed, strategies to stimulate (namely biostimulation) or increase (namely bioaugmentation) the presence of these bacteria should be explore. This study clearly shows the potential of vertical flow CWs for the removal of phenolic compounds, a still little explored subject, contributing to promote the use of CWs as nature-based solutions to remediate water contaminated with different families of persistent and/or emergent contaminants.
Collapse
|
30
|
Yoo K, Lee G. Investigation of the Prevalence of Antibiotic Resistance Genes According to the Wastewater Treatment Scale Using Metagenomic Analysis. Antibiotics (Basel) 2021; 10:antibiotics10020188. [PMID: 33671905 PMCID: PMC7918964 DOI: 10.3390/antibiotics10020188] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/03/2021] [Accepted: 02/11/2021] [Indexed: 12/30/2022] Open
Abstract
Although extensive efforts have been made to investigate the dynamics of the occurrence and abundance of antibiotic resistance genes (ARGs) in wastewater treatment plants (WWTPs), understanding the acquisition of antibiotic resistance based on the WWTP scale and the potential effects on WWTPs is of relatively less interest. In this study, metagenomic analysis was carried out to investigate whether the WWTP scale could be affected by the prevalence and persistence of ARGs and mobile genetic elements (MGEs). As a result, 152 ARG subtypes were identified in small-scale WWTP samples, while 234 ARG subtypes were identified in large-scale WWTP samples. Among the detectable ARGs, multidrug, MLS (macrolide–lincosamide–streptogramin), sulfonamide, and tetracycline resistance genes had the highest abundance, and large and small WWTPs had similar composition characteristics of ARGs. In MGE analysis, plasmids and integrons were 1.5–2.0-fold more abundant in large-scale WWTPs than in small-scale WWTPs. The profile of bacteria at the phylum level showed that Proteobacteria and Actinobacteria were the most dominant bacteria, representing approximately 70% across large- and small-scale WWTPs. Overall, the results of this study elucidate the different abundances and dissemination of ARGs between large- and small-scale WWTPs, which facilitates the development of next-generation engineered wastewater treatment systems.
Collapse
|
31
|
Marzocchi U, Bonaglia S, Zaiko A, Quero GM, Vybernaite-Lubiene I, Politi T, Samuiloviene A, Zilius M, Bartoli M, Cardini U. Zebra Mussel Holobionts Fix and Recycle Nitrogen in Lagoon Sediments. Front Microbiol 2021; 11:610269. [PMID: 33542710 PMCID: PMC7851879 DOI: 10.3389/fmicb.2020.610269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/29/2020] [Indexed: 01/04/2023] Open
Abstract
Bivalves are ubiquitous filter-feeders able to alter ecosystems functions. Their impact on nitrogen (N) cycling is commonly related to their filter-feeding activity, biodeposition, and excretion. A so far understudied impact is linked to the metabolism of the associated microbiome that together with the host constitute the mussel's holobiont. Here we investigated how colonies of the invasive zebra mussel (Dreissena polymorpha) alter benthic N cycling in the shallow water sediment of the largest European lagoon (the Curonian Lagoon). A set of incubations was conducted to quantify the holobiont's impact and to quantitatively compare it with the indirect influence of the mussel on sedimentary N transformations. Zebra mussels primarily enhanced the recycling of N to the water column by releasing mineralized algal biomass in the form of ammonium and by stimulating dissimilatory nitrate reduction to ammonium (DNRA). Notably, however, not only denitrification and DNRA, but also dinitrogen (N2) fixation was measured in association with the holobiont. The diazotrophic community of the holobiont diverged substantially from that of the water column, suggesting a unique niche for N2 fixation associated with the mussels. At the densities reported in the lagoon, mussel-associated N2 fixation may account for a substantial (and so far, overlooked) source of bioavailable N. Our findings contribute to improve our understanding on the ecosystem-level impact of zebra mussel, and potentially, of its ability to adapt to and colonize oligotrophic environments.
Collapse
Affiliation(s)
- Ugo Marzocchi
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, National Institute of Marine Biology, Ecology and Biotechnology, Naples, Italy
- Marine Research Institute, Klaipėda University, Klaipėda, Lithuania
- Center for Water Technology (WATEC), Department of Biology, Aarhus University, Aarhus, Denmark
| | - Stefano Bonaglia
- Marine Research Institute, Klaipėda University, Klaipėda, Lithuania
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Nordcee, Department of Biology, University of Southern Denmark, Odense, Denmark
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Anastasija Zaiko
- Marine Research Institute, Klaipėda University, Klaipėda, Lithuania
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - Grazia M. Quero
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, National Institute of Marine Biology, Ecology and Biotechnology, Naples, Italy
- Institute for Biological Resources and Marine Biotechnologies, National Research Council of Italy, Ancona, Italy
| | | | - Tobia Politi
- Marine Research Institute, Klaipėda University, Klaipėda, Lithuania
| | | | - Mindaugas Zilius
- Marine Research Institute, Klaipėda University, Klaipėda, Lithuania
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Marco Bartoli
- Marine Research Institute, Klaipėda University, Klaipėda, Lithuania
- Department of Chemistry, Life science and Environmental Sustainability, Parma University, Parma, Italy
| | - Ulisse Cardini
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, National Institute of Marine Biology, Ecology and Biotechnology, Naples, Italy
- Marine Research Institute, Klaipėda University, Klaipėda, Lithuania
| |
Collapse
|
32
|
Comparative Genomics Provides Insights into the Taxonomy of Azoarcus and Reveals Separate Origins of Nif Genes in the Proposed Azoarcus and Aromatoleum Genera. Genes (Basel) 2021; 12:genes12010071. [PMID: 33430351 PMCID: PMC7825797 DOI: 10.3390/genes12010071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 01/19/2023] Open
Abstract
Among other attributes, the Betaproteobacterial genus Azoarcus has biotechnological importance for plant growth-promotion and remediation of petroleum waste-polluted water and soils. It comprises at least two phylogenetically distinct groups. The "plant-associated" group includes strains that are isolated from the rhizosphere or root interior of the C4 plant Kallar Grass, but also strains from soil and/or water; all are considered to be obligate aerobes and all are diazotrophic. The other group (now partly incorporated into the new genus Aromatoleum) comprises a diverse range of species and strains that live in water or soil that is contaminated with petroleum and/or aromatic compounds; all are facultative or obligate anaerobes. Some are diazotrophs. A comparative genome analysis of 32 genomes from 30 Azoarcus-Aromatoleum strains was performed in order to delineate generic boundaries more precisely than the single gene, 16S rRNA, that has been commonly used in bacterial taxonomy. The origin of diazotrophy in Azoarcus-Aromatoleum was also investigated by comparing full-length sequences of nif genes, and by physiological measurements of nitrogenase activity using the acetylene reduction assay. Based on average nucleotide identity (ANI) and whole genome analyses, three major groups could be discerned: (i) Azoarcus comprising Az. communis, Az. indigens and Az. olearius, and two unnamed species complexes, (ii) Aromatoleum Group 1 comprising Ar. anaerobium, Ar. aromaticum, Ar. bremense, and Ar. buckelii, and (iii) Aromatoleum Group 2 comprising Ar. diolicum, Ar. evansii, Ar. petrolei, Ar. toluclasticum, Ar. tolulyticum, Ar. toluolicum, and Ar. toluvorans. Single strain lineages such as Azoarcus sp. KH32C, Az. pumilus, and Az. taiwanensis were also revealed. Full length sequences of nif-cluster genes revealed two groups of diazotrophs in Azoarcus-Aromatoleum with nif being derived from Dechloromonas in Azoarcus sensu stricto (and two Thauera strains) and from Azospira in Aromatoleum Group 2. Diazotrophy was confirmed in several strains, and for the first time in Az. communis LMG5514, Azoarcus sp. TTM-91 and Ar. toluolicum TT. In terms of ecology, with the exception of a few plant-associated strains in Azoarcus (s.s.), across the group, most strains/species are found in soil and water (often contaminated with petroleum or related aromatic compounds), sewage sludge, and seawater. The possession of nar, nap, nir, nor, and nos genes by most Azoarcus-Aromatoleum strains suggests that they have the potential to derive energy through anaerobic nitrate respiration, so this ability cannot be usefully used as a phenotypic marker to distinguish genera. However, the possession of bzd genes indicating the ability to degrade benzoate anaerobically plus the type of diazotrophy (aerobic vs. anaerobic) could, after confirmation of their functionality, be considered as distinguishing phenotypes in any new generic delineations. The taxonomy of the Azoarcus-Aromatoleum group should be revisited; retaining the generic name Azoarcus for its entirety, or creating additional genera are both possible outcomes.
Collapse
|
33
|
Hao Z, Wang Q, Yan Z, Jiang H. Novel magnetic loofah sponge biochar enhancing microbial responses for the remediation of polycyclic aromatic hydrocarbons-contaminated sediment. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123859. [PMID: 33113749 DOI: 10.1016/j.jhazmat.2020.123859] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/12/2020] [Accepted: 08/22/2020] [Indexed: 05/22/2023]
Abstract
Magnetic activated carbon and magnetic biochar have been widely used for contaminants removal due to the advantages of sequestration and recovery. However, the remediation function and microbial response of conductive magnetic carbonaceous materials for treating organic contaminated sediment are poorly understood. In this study we applied novel three-dimensional mesh magnetic loofah sponge biochar (MagLsBC), made from natural agricultural product, to remediate polycyclic aromatic hydrocarbons (PAHs)-contaminated sediment. Compared to other carbon-based materials, MagLsBC achieved the high reduction of PAHs content and bioavailability in sediment by respectively 31.9 % and 38.1 % after 350 days. Microbial analysis showed that MagLsBC amended sediment had different community diversity, structure and enriched dominant species associated with the aromatic hydrocarbon metabolism. And MagLsBC amendment significantly increased the aromatic compounds degradation function, which was not observed in other treatments, and methanogenesis function. Further analysis revealed that the enhanced microbial responses in MagLsBC amended sediment were related with the high conductivity of MagLsBC. These results give the new insights into the effect of magnetic carbon materials on microbial community and organic pollutants degradation function during the long period amendment, demonstrating MagLsBC as an effective material with the biostimulation potential for the risk control of PAHs contamination.
Collapse
Affiliation(s)
- Zheng Hao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianhong Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zaisheng Yan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
34
|
Zhang Z, Guo H, Sun J, Gong X, Wang C, Wang H. Exploration of the biotransformation processes in the biodegradation of phenanthrene by a facultative anaerobe, strain PheF2, with Fe(III) or O 2 as an electron acceptor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:142245. [PMID: 33182168 DOI: 10.1016/j.scitotenv.2020.142245] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
The study of biodegradation of polycyclic aromatic hydrocarbons (PAHs) with metal ions as electron acceptors is still in its infancy. Here, a pure culture of PheF2 sharing 99.79% 16S rRNA-sequence similarity with Trichococcus alkaliphilus, which was recently reported to degrade PAHs, was isolated and found to degrade PAHs with Fe (III) or O2 reduction. Phenanthrene was selected as a model of PAH to study the biodegradation process by PheF2 with Fe (III) or O2 as an electron acceptor. PheF2 exhibited nearly 100%, 37.1%, and 28.5% anaerobic biodegradation of phenanthrene at initial concentrations of 280.7 μM, 280.6 μM, and 281.3 μM, respectively, within 10 days under anaerobic conditions with XAD-7 as a carrier, heptamethylnonane (HMN) as a solution, and nothing, respectively. PheF2 could degrade nearly 100% of the initial phenanthrene concentration of 283.4 μM under aerobic conditions within three days. The initial step of phenanthrene biodegradation by PheF2 involved carboxylation and dioxygenation under anaerobic and aerobic conditions, respectively. The biotransformation processes of phenanthrene degradation by PheF2 with Fe(III) or O2 as an electron acceptor were explored by metabolite and genome analysis. These findings provide an important theoretical support for evaluation of PAHs fate and for PAHs pollution control or remediation in anaerobic and aerobic environments.
Collapse
Affiliation(s)
- Zuotao Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Haijiao Guo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiao Sun
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoqiang Gong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Chongyang Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hui Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
35
|
Spatial Changes in Microbial Communities along Different Functional Zones of a Free-Water Surface Wetland. Microorganisms 2020; 8:microorganisms8101604. [PMID: 33081036 PMCID: PMC7603099 DOI: 10.3390/microorganisms8101604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 01/04/2023] Open
Abstract
Constructed wetlands (CWs) are complicated ecosystems that include vegetation, sediments, and the associated microbiome mediating numerous processes in wastewater treatment. CWs have various functional zones where contrasting biochemical processes occur. Since these zones are characterized by different particle-size composition, physicochemical conditions, and vegetation, one can expect the presence of distinct microbiomes across different CW zones. Here, we investigated spatial changes in microbiomes along different functional zones of a free-water surface wetland located in Moscow, Russia. The microbiome structure was analyzed using Illumina MiSeq amplicon sequencing. We also determined particle diameter and surface area of sediments, as well as chemical composition of organic pollutants in different CW zones. Specific organic particle aggregates similar to activated sludge flocs were identified in the sediments. The highest accumulation of hydrocarbons was found in the zones with predominant sedimentation of fine fractions. Phytofilters had the highest rate of organic pollutants decomposition and predominance of Smithella, Ignavibacterium, and Methanothrix. The sedimentation tank had lower microbial diversity, and higher relative abundances of Parcubacteria, Proteiniclasticum, and Macellibacteroides, as well as higher predicted abundances of genes related to methanogenesis and methanotrophy. Thus, spatial changes in microbiomes of constructed wetlands can be associated with different types of wastewater treatment processes.
Collapse
|
36
|
Isolation and Characterization of Facultative-Anaerobic Antimonate-Reducing Bacteria. Microorganisms 2020; 8:microorganisms8091435. [PMID: 32962178 PMCID: PMC7563848 DOI: 10.3390/microorganisms8091435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 11/17/2022] Open
Abstract
Microbial antimonate (Sb(V)) reduction is a promising approach to remove Sb(V) from wastewater. However, current knowledge regarding microbial Sb(V) reduction is limited to strictly anaerobic conditions. This study was the first to isolate three facultative-anaerobic Sb(V)-reducing bacterial strains from the sludge collected from a wastewater treatment facility in an antimony products plant. Two of the isolated strains, designated Dechloromonas sp. AR-2 and Propionivibrio sp. AR-3, were characterized based on their Sb(V)-reducing abilities. When cultivated under anaerobic conditions with Sb(V) and acetate as the electron acceptor and donor, respectively, both strains could efficiently reduce 5.0 mM Sb(V), removing most of it from the water phase within 7 d. Along with Sb(V) reduction by the strains, white precipitates, which were likely amorphous Sb(OH)3 solids, were formed with a minor generation of soluble antimonite. Additionally, respiratory Sb(V) reduction by both strains occurred not only under anaerobic but also microaerobic conditions. It was suggested that Sb(V) reduction and the growth abilities of the strains under microaerobic conditions presented a substantial advantage of the use of strains AR-2 and AR-3 for practical applications to Sb(V)-containing wastewater treatment.
Collapse
|
37
|
Zhang Z, Sun J, Guo H, Wang C, Fang T, Rogers MJ, He J, Wang H. Anaerobic biodegradation of phenanthrene by a newly isolated nitrate-dependent Achromobacter denitrificans strain PheN1 and exploration of the biotransformation processes by metabolite and genome analyses. Environ Microbiol 2020; 23:908-923. [PMID: 32812321 DOI: 10.1111/1462-2920.15201] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/15/2020] [Indexed: 11/29/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread and harmful contaminants and are more persistent under anaerobic conditions. The bioremediation of PAHs in anaerobic zones has been enhanced by treating the contamination with nitrate, which is thermodynamically favourable, cost-effective, and highly soluble. However, anaerobic PAHs biotransformation processes that employ nitrate as an electron acceptor have not been fully explored. In this study, we investigated the anaerobic biotransformation of PAHs by strain PheN1, a newly isolated phenanthrene-degrading denitrifier, using phenanthrene as a model compound. PheN1 is phylogenetically closely related to Achromobacter denitrificans and reduces nitrate to nitrite (not N2 ) during the anaerobic phenanthrene degradation process. Phenanthrene biotransformation processes were detected using gas chromatography-mass spectrometry and were further examined by reverse transcription-quantitative PCR and genome analyses. Carboxylation and methylation were both found to be the initial steps in the phenanthrene degradation process. Downstream biotransformation processed benzene compounds and cyclohexane derivatives. This study describes the isolation of an anaerobic phenanthrene-degrading bacterium along with the pure-culture evidence of phenanthrene biotransformation processes with nitrate as an electron acceptor. The findings in this study can improve our understanding of anaerobic PAHs biodegradation processes and guide PAHs bioremediation by adding nitrate to anaerobic environments.
Collapse
Affiliation(s)
- Zuotao Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jiao Sun
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Haijiao Guo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Chongyang Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Tingting Fang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Matthew J Rogers
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore
| | - Hui Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
38
|
Hidalgo KJ, Teramoto EH, Soriano AU, Valoni E, Baessa MP, Richnow HH, Vogt C, Chang HK, Oliveira VM. Taxonomic and functional diversity of the microbiome in a jet fuel contaminated site as revealed by combined application of in situ microcosms with metagenomic analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:135152. [PMID: 31812384 DOI: 10.1016/j.scitotenv.2019.135152] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Natural attenuation represents all processes that govern contaminant mass removal, which mainly occurs via microbial degradation in the environment. Although this process is intrinsic its rate and efficiency depend on multiple factors. This study aimed to characterize the microbial taxonomic and functional diversity in different aquifer sediments collected in the saturated zone and in situ microcosms (BACTRAP®s) amended with hydrocarbons (13C-labeled and non-labeled benzene, toluene and naphthalene) using 16S rRNA gene and "shotgun" Illumina high throughput sequencing at a jet-fuel contaminated site. The BACTRAP®s were installed to assess hydrocarbon metabolism by native bacteria. Results indicated that Proteobacteria, Actinobacteria and Firmicutes were the most dominant phyla (~98%) in the aquifer sediment samples. Meanwhile, in the benzene- and toluene-amended BACTRAP®s the phyla Firmicutes and Proteobacteria accounted for about 90% of total community. In the naphthalene-amended BACTRAP®, members of the SR-FBR-L83 family (Order Ignavibacteriales) accounted for almost 80% of bacterial community. Functional annotation of metagenomes showed that only the sediment sample located at the source zone border and with the lowest BTEX concentration, has metabolic potential to degrade hydrocarbons aerobically. On the other hand, in situ BACTRAP®s allowed enrichment of hydrocarbon-degrading bacteria. Metagenomic data suggest that fumarate addition is the main mechanism for hydrocarbon activation of toluene. Also, indications for methylation, hydroxylation and carboxylation as activation mechanisms for benzene anaerobic conversion were found. After 120 days of exposure in the contaminated groundwater, the isotopic analysis of fatty acids extracted from BACTRAP®s demonstrated the assimilation of isotopic labeled compounds in the cells of microbes expressed by strong isotopic enrichment. We propose that the microbiota in this jet-fuel contaminated site has metabolic potential to degrade benzene and toluene by a syntrophic process, between members of the families Geobacteraceae and Peptococcaceae (genus Pelotomaculum), coupled to nitrate, iron and/or sulfate reduction.
Collapse
Affiliation(s)
- K J Hidalgo
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato 255, Cidade Universitária, Campinas, SP. ZIP 13083-862, Brazil.
| | - E H Teramoto
- Laboratory of Basin Studies (LEBAC), São Paulo State University (UNESP), Rio Claro, Av. 24A, 1515 ZIP 13506-900, Brazil
| | - A U Soriano
- PETROBRAS/ R&D Center (CENPES), Av. Horácio Macedo, 950. ZIP 21941-915 Ilha do Fundão, Rio de Janeiro, Brazil
| | - E Valoni
- PETROBRAS/ R&D Center (CENPES), Av. Horácio Macedo, 950. ZIP 21941-915 Ilha do Fundão, Rio de Janeiro, Brazil
| | - M P Baessa
- PETROBRAS/ R&D Center (CENPES), Av. Horácio Macedo, 950. ZIP 21941-915 Ilha do Fundão, Rio de Janeiro, Brazil
| | - H H Richnow
- Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research (UFZ), Permoserstrasse 15 04318 Leipzig, Germany
| | - C Vogt
- Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research (UFZ), Permoserstrasse 15 04318 Leipzig, Germany
| | - H K Chang
- Laboratory of Basin Studies (LEBAC), São Paulo State University (UNESP), Rio Claro, Av. 24A, 1515 ZIP 13506-900, Brazil
| | - V M Oliveira
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas - UNICAMP, Paulínia, Brazil, Av. Alexandre Cazellato, 999, ZIP 13148-218, Brazil
| |
Collapse
|
39
|
Ding Q, Liu K, Song Z, Sun R, Zhang J, Yin L, Pu Y. Effects of Microcystin-LR on Metabolic Functions and Structure Succession of Sediment Bacterial Community under Anaerobic Conditions. Toxins (Basel) 2020; 12:toxins12030183. [PMID: 32183408 PMCID: PMC7150748 DOI: 10.3390/toxins12030183] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/05/2020] [Accepted: 03/14/2020] [Indexed: 01/02/2023] Open
Abstract
Microcystins (MCs), which are produced by harmful cyanobacteria blooms, pose a serious threat to environmental health. However, the effect of MCs on the bacterial community under anaerobic conditions is still unclear. This study examined the dynamic changes of MC-degrading capacity, metabolic activity, and structure of the bacterial community in lake sediment repeatedly treated with 1 mg/L microcystin-LR (MC-LR) under anaerobic conditions. The results showed that the MC-degrading capacity of the bacterial community was increased nearly three-fold with increased treatment frequency. However, the metabolic profile behaved in exactly opposite trend, in which the overall carbon metabolic activity was inhibited by repeated toxin addition. Microbial diversity was suppressed by the first addition of MC-LR and then gradually recovered. The 16S amplicon sequencing showed that the dominant genera were changed from Exiguobacterium and Acinetobacter to Prosthecobacter, Dechloromonas, and Agrobacterium. Furthermore, the increase in the relative abundance of Dechloromonas, Pseudomonas, Hydrogenophaga, and Agrobacterium was positively correlated with the MC-LR treatment times. This indicates that they might be responsible for MC degradation under anaerobic conditions. Our findings reveal the relationship between MC-LR and the sediment bacterial community under anaerobic conditions and indicate that anaerobic biodegradation is an effective and promising method to remediate MCs pollution.
Collapse
Affiliation(s)
- Qin Ding
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing 210009, China; (Q.D.)
| | - Kaiyan Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing 210009, China; (Q.D.)
| | - Zhiquan Song
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697, USA
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing 210009, China; (Q.D.)
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing 210009, China; (Q.D.)
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing 210009, China; (Q.D.)
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing 210009, China; (Q.D.)
- Correspondence: ; Tel.: +86-25-83272582
| |
Collapse
|
40
|
Nguyen LN, Commault AS, Kahlke T, Ralph PJ, Semblante GU, Johir MAH, Nghiem LD. Genome sequencing as a new window into the microbial community of membrane bioreactors - A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135279. [PMID: 31791792 DOI: 10.1016/j.scitotenv.2019.135279] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Recent developed sequencing techniques have resulted in a new and unprecedented way to study biological wastewater treatment, in which most organisms are uncultivable. This review provides (i) an insight on state-of-the-art sequencing techniques and their limitations; (ii) a critical assessment of the microbial community in biological reactor and biofouling layer in a membrane bioreactor (MBR). The data from high-throughput sequencing has been used to infer microbial growth conditions and metabolisms of microorganisms present in MBRs at the time of sampling. These data shed new insight to two fundamental questions about a microbial community in the MBR process namely the microbial composition (who are they?) and the functions of each specific microbial assemblage (what are their function?). The results to date also highlight the complexity of the microbial community growing on MBRs. Environmental conditions are dynamic and diverse, and can influence the diversity and structural dynamics of any given microbial community for wastewater treatment. The benefits of understanding the structure of microbial communities on three major aspects of the MBR process (i.e. nutrient removal, biofouling control, and micropollutant removal) were symmetrically delineated. This review also indicates that the deployment of microbial community analysis for a practical engineering context, in terms of process design and system optimization, can be further realized.
Collapse
Affiliation(s)
- Luong N Nguyen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia.
| | - Audrey S Commault
- Climate Change Cluster (C3), University of Technology Sydney, NSW 2007, Australia
| | - Tim Kahlke
- Climate Change Cluster (C3), University of Technology Sydney, NSW 2007, Australia
| | - Peter J Ralph
- Climate Change Cluster (C3), University of Technology Sydney, NSW 2007, Australia
| | - Galilee U Semblante
- Technical Services, Western Sydney University, Kingswood, NSW 2747, Australia
| | - Md Abu Hasan Johir
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia; NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
41
|
Górecki K, McEvoy MM. Phylogenetic analysis reveals an ancient gene duplication as the origin of the MdtABC efflux pump. PLoS One 2020; 15:e0228877. [PMID: 32050009 PMCID: PMC7015380 DOI: 10.1371/journal.pone.0228877] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/23/2020] [Indexed: 11/19/2022] Open
Abstract
The efflux pumps from the Resistance-Nodulation-Division family, RND, are main contributors to intrinsic antibiotic resistance in Gram-negative bacteria. Among this family, the MdtABC pump is unusual by having two inner membrane components. The two components, MdtB and MdtC are homologs, therefore it is evident that the two components arose by gene duplication. In this paper, we describe the results obtained from a phylogenetic analysis of the MdtBC pumps in the context of other RNDs. We show that the individual inner membrane components (MdtB and MdtC) are conserved throughout the Proteobacterial species and that their existence is a result of a single gene duplication. We argue that this gene duplication was an ancient event which occurred before the split of Proteobacteria into Alpha-, Beta- and Gamma- classes. Moreover, we find that the MdtABC pumps and the MexMN pump from Pseudomonas aeruginosa share a close common ancestor, suggesting the MexMN pump arose by another gene duplication event of the original Mdt ancestor. Taken together, these results shed light on the evolution of the RND efflux pumps and demonstrate the ancient origin of the Mdt pumps and suggest that the core bacterial efflux pump repertoires have been generally stable throughout the course of evolution.
Collapse
Affiliation(s)
- Kamil Górecki
- Institute for Society & Genetics, University of California, Los Angeles, California, United States of America
| | - Megan M. McEvoy
- Institute for Society & Genetics, University of California, Los Angeles, California, United States of America
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
42
|
Defining the Environmental Adaptations of Genus Devosia: Insights into its Expansive Short Peptide Transport System and Positively Selected Genes. Sci Rep 2020; 10:1151. [PMID: 31980727 PMCID: PMC6981132 DOI: 10.1038/s41598-020-58163-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022] Open
Abstract
Devosia are well known for their dominance in soil habitats contaminated with various toxins and are best characterized for their bioremediation potential. In this study, we compared the genomes of 27 strains of Devosia with aim to understand their metabolic abilities. The analysis revealed their adaptive gene repertoire which was bared from 52% unique pan-gene content. A striking feature of all genomes was the abundance of oligo- and di-peptide permeases (oppABCDF and dppABCDF) with each genome harboring an average of 60.7 ± 19.1 and 36.5 ± 10.6 operon associated genes respectively. Apart from their primary role in nutrition, these permeases may help Devosia to sense environmental signals and in chemotaxis at stressed habitats. Through sequence similarity network analyses, we identified 29 Opp and 19 Dpp sequences that shared very little homology with any other sequence suggesting an expansive short peptidic transport system within Devosia. The substrate determining components of these permeases viz. OppA and DppA further displayed a large diversity that separated into 12 and 9 homologous clusters respectively in addition to large number of isolated nodes. We also dissected the genome scale positive evolution and found genes associated with growth (exopolyphosphatase, HesB_IscA_SufA family protein), detoxification (moeB, nifU-like domain protein, alpha/beta hydrolase), chemotaxis (cheB, luxR) and stress response (phoQ, uspA, luxR, sufE) were positively selected. The study highlights the genomic plasticity of the Devosia spp. for conferring adaptation, bioremediation and the potential to utilize a wide range of substrates. The widespread toxin-antitoxin loci and ‘open’ state of the pangenome provided evidence of plastic genomes and a much larger genetic repertoire of the genus which is yet uncovered.
Collapse
|
43
|
Nitz H, Duarte M, Jauregui R, Pieper DH, Müller JA, Kästner M. Identification of benzene-degrading Proteobacteria in a constructed wetland by employing in situ microcosms and RNA-stable isotope probing. Appl Microbiol Biotechnol 2019; 104:1809-1820. [DOI: 10.1007/s00253-019-10323-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/30/2019] [Accepted: 12/15/2019] [Indexed: 11/24/2022]
|
44
|
Zhu CM, Zhang JY, Guan R, Hale L, Chen N, Li M, Lu ZH, Ge QY, Yang YF, Zhou JZ, Chen T. Alternate succession of aggregate-forming cyanobacterial genera correlated with their attached bacteria by co-pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:867-879. [PMID: 31255824 DOI: 10.1016/j.scitotenv.2019.06.150] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
Freshwater lakes are threatened by harmful blooms characterized by Cyanobacterial Aggregates (CAs) that are normally aggregated with extracellular polysaccharides released by cyanobacteria to form a phycosphere. It is possible that mutualistic relationships exist between bacteria and cyanobacteria in these CAs wherein bacterial products supplement cyanobacterial growth, and cyanobacterial exudates, in turn, serve as substrates for bacteria, thus augmenting the stability of each constituent. However, little is known about the exact interaction between cyanobacteria and their attached bacteria in CAs. Therefore, in this study, we collected 26 CA samples from Lake Taihu, a large freshwater lake in China from March of 2015 to February of 2016. We then sequenced both the V4 regions of 16S rRNA genes and full metagenomes, resulting in 610 Mb of 16S rRNA gene data and 198.98 Gb of high-quality metagenomic data. We observed that two cyanobacteria genera (Microcystis and Dolichospermum) alternately dominated CAs along the sampling time and specific bacterial genera attached to different cyanobacteria genera dominated CAs. More specifically, Dolichospermum dominates CAs when water temperature is low and total nitrogen is high, while Microcystis dominates CAs when water temperature is high and total nitrogen is low. Moreover, we found specific bacterial genera attached to different cyanobacteria genera dominated CAs. The cyanobacteria-bacteria related pairs Dolichospermum-Burkholderia and Microcystis-Hyphomonas were detected by ecological networks construction. Bacterial communities in CAs were found to be more correlated with the cyanobacterial community (Mantel's r = 0.76, P = 0.001) than with environmental factors (Mantel's r = 0.27, P = 0.017). A potential codependent nitrogen-cycling pathway between cyanobacteria and their attached bacteria was constructed, indicating their functional link. Overall, these results demonstrated that mutualistic relationships do, indeed, exist between cyanobacteria and bacteria in CAs at both taxonomic and gene levels, providing biological clues potentially leading to the control of blooms by interventional strategies to disrupt bacteria-cyanobacteria relationships and co-pathways.
Collapse
Affiliation(s)
- Cong-Min Zhu
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division, Center for Synthetic & Systems Biology, Beijing National Research Center for Information Science and Technology, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Jun-Yi Zhang
- State Key Lab for Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China; Wuxi Environmental Monitoring Centre, Wuxi, China
| | - Rui Guan
- State Key Lab for Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Lauren Hale
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Ning Chen
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division, Center for Synthetic & Systems Biology, Beijing National Research Center for Information Science and Technology, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Ming Li
- College of Resources and Environment, Northwest A & F University, Yangling, People's Republic of China
| | - Zu-Hong Lu
- State Key Lab for Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Qin-Yu Ge
- State Key Lab for Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Yun-Feng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Ji-Zhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China; School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA; Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ting Chen
- Institute for Artificial Intelligence, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China; Tsinghua-Fuzhou Institute for Data Technology, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
45
|
Lai YS, Ontiveros‐Valencia A, Coskun T, Zhou C, Rittmann BE. Electron‐acceptor loadings affect chloroform dechlorination in a hydrogen‐based membrane biofilm reactor. Biotechnol Bioeng 2019; 116:1439-1448. [DOI: 10.1002/bit.26945] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 01/24/2019] [Accepted: 01/30/2019] [Indexed: 11/09/2022]
Affiliation(s)
- YenJung Sean Lai
- School of Sustainable Engineering and the Built EnvironmentArizona State University, Biodesign InstituteTempe Arizona
| | - Aura Ontiveros‐Valencia
- School of Sustainable Engineering and the Built EnvironmentArizona State University, Biodesign InstituteTempe Arizona
- Present address: Escuela de Ingenieria y CienciasTecnologico de Monterrey, Campus PueblaPuebla Pue Mexico
| | - Tamer Coskun
- School of Sustainable Engineering and the Built EnvironmentArizona State University, Biodesign InstituteTempe Arizona
| | - Chen Zhou
- School of Sustainable Engineering and the Built EnvironmentArizona State University, Biodesign InstituteTempe Arizona
| | - Bruce E. Rittmann
- School of Sustainable Engineering and the Built EnvironmentArizona State University, Biodesign InstituteTempe Arizona
| |
Collapse
|
46
|
Reyes-Sosa MB, Apodaca-Hernández JE, Arena-Ortiz ML. Bioprospecting for microbes with potential hydrocarbon remediation activity on the northwest coast of the Yucatan Peninsula, Mexico, using DNA sequencing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 642:1060-1074. [PMID: 30045488 DOI: 10.1016/j.scitotenv.2018.06.097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 05/16/2023]
Abstract
Coastal environments harbor diverse microbial communities, which can contain genera with potential bioremediation activity. Next-generation DNA sequencing was used to identify bacteria to the genus level in water and sediment samples collected from the open ocean, shoreline, wetlands and freshwater upwellings on the northwest coast of the Yucatan Peninsula. Supported by an extensive literature review, a phylogenetic investigation of the communities was done using reconstruction of unobserved states software (PICRUSt) to predict metagenome functional content from the sequenced 16S gene in all the samples. Bacterial genera were identified for their potential hydrocarbon bioremediation activity. These included generalist genera commonly reported in hydrocarbon-polluted areas and petroleum reservoirs, as well as specialists such as Alcanivorax and Cycloclasticus. The highest readings for bacteria with potential hydrocarbon bioremediation activity were for the genera Vibrio, Alteromonas, Pseudomonas, Acinetobacter, Burkholderia, Acidovorax and Pseudoalteromonas from different environments in the study area. Some genera were identified only in specific sites; for example, Aquabacterium and Polaromonas were found only in freshwater upwellings. Variation in genera distribution was probably due to differences in environmental conditions in the sampled zones. Bacterial diversity was high in the study area and included numerous genera with known bioremediation activity. Functional prediction of the metagenome indicated that the studied bacterial communities would most probably degrade toluene, naphthalene, chloroalkane and chloroalkene, with lower degradation proportions for aromatic hydrocarbons, fluorobenzoate and xylene. Differences in predicted degradation existed between sediments and water, and between different locations.
Collapse
Affiliation(s)
| | | | - María Leticia Arena-Ortiz
- Posgrado en Ciencias del Mar y Limnología UNAM, Mérida, Yucatán, Mexico; Laboratorio de Ecogenonomica Universidad Nacional Autonoma de Mexico.
| |
Collapse
|
47
|
Lv H, Su X, Wang Y, Dai Z, Liu M. Effectiveness and mechanism of natural attenuation at a petroleum-hydrocarbon contaminated site. CHEMOSPHERE 2018; 206:293-301. [PMID: 29753292 DOI: 10.1016/j.chemosphere.2018.04.171] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/26/2018] [Accepted: 04/28/2018] [Indexed: 06/08/2023]
Abstract
This study applied an integrated method for evaluating the effectiveness and mechanism of natural attenuation (NA) of petroleum-hydrocarbon contaminated groundwater. Site groundwater and soil samples were analysed to characterize spatial and temporal variations in petroleum hydrocarbons, geochemical indicators, microbial diversity and isotopes. The results showed that the area of petroleum hydrocarbon contamination plume decreased almost 60% in four years, indicating the presence of natural attenuation. The 14C content and sequence analysis indicate that there are more relatively 'old' HCO3- that have been produced from petroleum hydrocarbons in the upgradient portion of the contaminated plume, confirming that intrinsic biodegradation was the major factor limiting spread of the contaminated plume. The main degradation mechanisms were identified as sulfate reduction and methanogenesis based on the following: (1) more SO42- have been consumed in the contamination source than downgradient, and the δ34S values in the resident SO42- were also more enriched in the contamination source, (2) production of more CH4 in the contamination source with the δ13C values for CH4 was much lower than that of CO2, and the fractionation factor was 1.030-1.046. The results of this study provide significant insight for applying natural attenuation and enhanced bioremediation as alternative options for remediation of petroleum-hydrocarbon contaminated sites.
Collapse
Affiliation(s)
- Hang Lv
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education/Institute of Water Resources and Environment, Jilin University, Changchun 130026, PR China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, PR China
| | - Xiaosi Su
- College of Construction Engineering, Jilin University, Changchun 130026, PR China
| | - Yan Wang
- College of Construction Engineering, Jilin University, Changchun 130026, PR China.
| | - Zhenxue Dai
- College of Construction Engineering, Jilin University, Changchun 130026, PR China
| | - Mingyao Liu
- Geological Survey of Jiangsu Province, Nanjing 210018, PR China; Key Laboratory of Earth Fissures Geological Disaster, Ministry of Land and Resources, Nanjing 210018, PR China
| |
Collapse
|
48
|
Delgado Vela J, Dick GJ, Love NG. Sulfide inhibition of nitrite oxidation in activated sludge depends on microbial community composition. WATER RESEARCH 2018; 138:241-249. [PMID: 29604576 DOI: 10.1016/j.watres.2018.03.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/19/2018] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
Increasingly, technologies that use sulfide as an electron donor are being considered for nitrogen removal; however, our understanding of how sulfide affects microbial communities in nitrifying treatment processes is limited. In this study, we used batch experiments to quantify sulfide inhibition of both ammonium oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) using activated sludge from two full-scale treatment plants with distinct treatment processes. The batch experiments showed that NOB were more vulnerable to sulfide inhibition than AOB, and that inhibition constants (KI) for NOB were distinct between the two treatment plants, which also had distinct nitrite oxidizing microbial communities. A Nitrospira-rich, less diverse NOB community was inhibited more by sulfide than a more diverse community rich in Nitrotoga and Nitrobacter. Therefore, sulfide-induced nitritation may be more successful in less diverse, Nitrospira-rich communities. Additionally, sulfide significantly influenced the activity of non-nitrifying microbial community members, as measured by 16S rRNA cDNA sequencing. Overall, these results indicate that sulfide has a strong impact on both nitrification and the activity of the underlying microbial communities, and that the response is community-specific.
Collapse
Affiliation(s)
- Jeseth Delgado Vela
- Department of Civil and Environmental Engineering, University of Michigan, USA
| | - Gregory J Dick
- Department of Earth and Environmental Sciences, University of Michigan, USA
| | - Nancy G Love
- Department of Civil and Environmental Engineering, University of Michigan, USA.
| |
Collapse
|
49
|
Yu Y, Zhang J, Petropoulos E, Baluja MQ, Zhu C, Zhu J, Lin X, Feng Y. Divergent Responses of the Diazotrophic Microbiome to Elevated CO 2 in Two Rice Cultivars. Front Microbiol 2018; 9:1139. [PMID: 29910783 PMCID: PMC5992744 DOI: 10.3389/fmicb.2018.01139] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/14/2018] [Indexed: 01/20/2023] Open
Abstract
The species-specific responses of plant growth to elevated atmospheric CO2 concentration (eCO2) could lead to N limitation and potentially influence the sustainability of ecosystem. Questions remain unanswered with regards to the response of soil N2-fixing community to eCO2 when developing high-yielding agroecosystem to dampen the future rate of increase in CO2 levels and associated climate warming. This study demonstrates the divergent eCO2 influences on the paddy diazotrophic community between weak- and strong-responsive rice cultivars. In response to eCO2, the diazotrophic abundance increased more for the strong-responsive cultivar treatments than for the weak-responsive ones. Only the strong-responsive cultivars decreased the alpha diversity and separated the composition of diazotrophic communities in response to eCO2. The topological indices of the ecological networks further highlighted the different co-occurrence patterns of the diazotrophic microbiome in rice cultivars under eCO2. Strong-responsive cultivars destabilized the diazotrophic community by complicating and centralizing the co-occurrence network as well as by shifting the hub species from Bradyrhizobium to Dechloromonas in response to eCO2. On the contrary, the network pattern of the weak-responsive cultivars was simplified and decentralized in response to eCO2, with the hub species shifting from Halorhodospira under aCO2 to Sideroxydans under eCO2. Collectively, the above information indicates that the strong-responsive cultivars could potentially undermine the belowground ecosystem from the diazotrophs perspective in response to eCO2. This information highlights that more attention should be paid to the stability of the belowground ecosystem when developing agricultural strategies to adapt prospective climatic scenarios by growing high-yielding crop cultivars under eCO2.
Collapse
Affiliation(s)
- Yongjie Yu
- College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jianwei Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | | | - Marcos Q. Baluja
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Chunwu Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Jianguo Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Xiangui Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Youzhi Feng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
50
|
Táncsics A, Szalay AR, Farkas M, Benedek T, Szoboszlay S, Szabó I, Lueders T. Stable isotope probing of hypoxic toluene degradation at the Siklós aquifer reveals prominent role of Rhodocyclaceae. FEMS Microbiol Ecol 2018; 94:4995907. [PMID: 29767715 PMCID: PMC5972620 DOI: 10.1093/femsec/fiy088] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 05/09/2018] [Indexed: 02/01/2023] Open
Abstract
The availability of oxygen is often a limiting factor for the degradation of aromatic hydrocarbons in subsurface environments. However, while both aerobic and anaerobic degraders have been intensively studied, degradation betwixt, under micro- or hypoxic conditions has rarely been addressed. It is speculated that in environments with limited, but sustained oxygen supply, such as in the vicinity of groundwater monitoring wells, hypoxic degradation may take place. A large diversity of subfamily I.2.C extradiol dioxygenase genes has been previously detected in a BTEX-contaminated aquifer in Hungary. Older literature suggests that such catabolic potentials could be associated to hypoxic degradation. Bacterial communities dominated by members of the Rhodocyclaceae were found, but the majority of the detected C23O genotypes could not be affiliated to any known bacterial degrader lineages. To address this, a stable isotope probing (SIP) incubation of site sediments with 13C7-toluene was performed under microoxic conditions. A combination of 16S rRNA gene amplicon sequencing and T-RFLP fingerprinting of C23O genes from SIP gradient fractions revealed the central role of degraders within the Rhodocyclaceae in hypoxic toluene degradation. The main assimilators of 13C were identified as members of the genera Quatrionicoccus and Zoogloea, and a yet uncultured group of the Rhodocyclaceae.
Collapse
Affiliation(s)
- András Táncsics
- Regional University Center of Excellence in Environmental Industry, Szent István University, Páter K. u. 1., 2100 Gödöllő, Hungary
| | - Anna Róza Szalay
- Institute of Groundwater Ecology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1., 85764 Neuherberg, Germany
| | - Milan Farkas
- Regional University Center of Excellence in Environmental Industry, Szent István University, Páter K. u. 1., 2100 Gödöllő, Hungary
| | - Tibor Benedek
- Regional University Center of Excellence in Environmental Industry, Szent István University, Páter K. u. 1., 2100 Gödöllő, Hungary
| | - Sándor Szoboszlay
- Department of Environmental Safety and Ecotoxicology, Szent István University, Páter K. u. 1., 2100 Gödöllő, Hungary
| | - István Szabó
- Department of Environmental Safety and Ecotoxicology, Szent István University, Páter K. u. 1., 2100 Gödöllő, Hungary
| | - Tillmann Lueders
- Institute of Groundwater Ecology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1., 85764 Neuherberg, Germany
| |
Collapse
|