1
|
Schluga PHDC, Larangote D, de Melo AM, Lobermayer GK, Torrejón D, de Oliveira LS, Alvarenga VG, Vivas-Ruiz DE, Veiga SS, Sanchez EF, Gremski LH. A Novel P-III Metalloproteinase from Bothrops barnetti Venom Degrades Extracellular Matrix Proteins, Inhibits Platelet Aggregation, and Disrupts Endothelial Cell Adhesion via α5β1 Integrin Receptors to Arginine-Glycine-Aspartic Acid (RGD)-Containing Molecules. Toxins (Basel) 2024; 16:486. [PMID: 39591241 PMCID: PMC11597958 DOI: 10.3390/toxins16110486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Viperid snake venoms are notably abundant in metalloproteinases (proteins) (SVMPs), which are primarily responsible for inducing hemorrhage and disrupting the hemostatic process and tissue integrity in envenomed victims. In this study, barnettlysin-III (Bar-III), a hemorrhagic P-III SVMP, was purified from the venom of the Peruvian snake Bothrops barnetti. Bar-III has a molecular mass of approximately 50 kDa and is a glycosylation-dependent functional metalloproteinase. Some biochemical properties of Bar-III, including the full amino acid sequence deduced from its cDNA, are reported. Its enzymatic activity is increased by Ca2+ ions and inhibited by an excess of Zn2+. Synthetic metalloproteinase inhibitors and EDTA also inhibit its proteolytic action. Bar-III degrades several plasma and ECM proteins, including fibrin(ogen), fibronectin, laminin, and nidogen. Platelets play a key role in hemostasis and thrombosis and in other biological process, such as inflammation and immunity, and platelet activation is driven by the platelet signaling receptors, glycoprotein (GP)Ib-IX-V, which binds vWF, and GPVI, which binds collagen. Moreover, Bar-III inhibits vWF- and convulxin-induced platelet aggregation in human washed platelets by cleaving the recombinant A1 domain of vWF and GPVI into a soluble ectodomain fraction of ~55 kDa (sGPVI). Bar-III does not reduce the viability of cultured endothelial cells; however, it interferes with the adhesion of these cells to fibronectin, vitronectin, and RGD peptides, as well as their migration profile. Bar-III binds specifically to the surface of these cells, and part of this interaction involves α5β1 integrin receptors. These results contribute to a better comprehension of the pathophysiology of snakebite accidents/incidents and could be used as a tool to explore novel and safer anti-venom therapeutics.
Collapse
Affiliation(s)
- Pedro Henrique de Caires Schluga
- Laboratório de Matriz Extracelular e Biotecnologia de Venenos, Universidade Federal do Paraná, UFPR, Curitiba 81531-980, Brazil; (P.H.d.C.S.); (A.M.d.M.); (G.K.L.); (S.S.V.)
| | - Debora Larangote
- Laboratório de Toxinologia de Venenos Animais, Fundação Ezequiel Dias, FUNED, Belo Horizonte 30510-010, Brazil; (D.L.); (L.S.d.O.); (V.G.A.); (E.F.S.)
| | - Ana Maria de Melo
- Laboratório de Matriz Extracelular e Biotecnologia de Venenos, Universidade Federal do Paraná, UFPR, Curitiba 81531-980, Brazil; (P.H.d.C.S.); (A.M.d.M.); (G.K.L.); (S.S.V.)
| | - Guilherme Kamienski Lobermayer
- Laboratório de Matriz Extracelular e Biotecnologia de Venenos, Universidade Federal do Paraná, UFPR, Curitiba 81531-980, Brazil; (P.H.d.C.S.); (A.M.d.M.); (G.K.L.); (S.S.V.)
| | - Daniel Torrejón
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru; (D.T.); (D.E.V.-R.)
| | - Luciana Souza de Oliveira
- Laboratório de Toxinologia de Venenos Animais, Fundação Ezequiel Dias, FUNED, Belo Horizonte 30510-010, Brazil; (D.L.); (L.S.d.O.); (V.G.A.); (E.F.S.)
| | - Valeria Gonçalves Alvarenga
- Laboratório de Toxinologia de Venenos Animais, Fundação Ezequiel Dias, FUNED, Belo Horizonte 30510-010, Brazil; (D.L.); (L.S.d.O.); (V.G.A.); (E.F.S.)
| | - Dan Erick Vivas-Ruiz
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru; (D.T.); (D.E.V.-R.)
| | - Silvio Sanches Veiga
- Laboratório de Matriz Extracelular e Biotecnologia de Venenos, Universidade Federal do Paraná, UFPR, Curitiba 81531-980, Brazil; (P.H.d.C.S.); (A.M.d.M.); (G.K.L.); (S.S.V.)
| | - Eladio Flores Sanchez
- Laboratório de Toxinologia de Venenos Animais, Fundação Ezequiel Dias, FUNED, Belo Horizonte 30510-010, Brazil; (D.L.); (L.S.d.O.); (V.G.A.); (E.F.S.)
| | - Luiza Helena Gremski
- Laboratório de Matriz Extracelular e Biotecnologia de Venenos, Universidade Federal do Paraná, UFPR, Curitiba 81531-980, Brazil; (P.H.d.C.S.); (A.M.d.M.); (G.K.L.); (S.S.V.)
| |
Collapse
|
2
|
Roman-Ramos H, Ho PL. Current Technologies in Snake Venom Analysis and Applications. Toxins (Basel) 2024; 16:458. [PMID: 39591213 PMCID: PMC11598588 DOI: 10.3390/toxins16110458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
This comprehensive review explores the cutting-edge advancements in snake venom research, focusing on the integration of proteomics, genomics, transcriptomics, and bioinformatics. Highlighting the transformative impact of these technologies, the review delves into the genetic and ecological factors driving venom evolution, the complex molecular composition of venoms, and the regulatory mechanisms underlying toxin production. The application of synthetic biology and multi-omics approaches, collectively known as venomics, has revolutionized the field, providing deeper insights into venom function and its therapeutic potential. Despite significant progress, challenges such as the functional characterization of toxins and the development of cost-effective antivenoms remain. This review also discusses the future directions of venom research, emphasizing the need for interdisciplinary collaborations and new technologies (mRNAs, cryo-electron microscopy for structural determinations of toxin complexes, synthetic biology, and other technologies) to fully harness the biomedical potential of venoms and toxins from snakes and other animals.
Collapse
Affiliation(s)
- Henrique Roman-Ramos
- Laboratório de Biotecnologia, Programa de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE), São Paulo 01504-001, SP, Brazil;
| | - Paulo Lee Ho
- Centro Bioindustrial, Instituto Butantan, São Paulo 05503-900, SP, Brazil
| |
Collapse
|
3
|
Nachtigall PG, Durham AM, Rokyta DR, Junqueira-de-Azevedo ILM. ToxCodAn-Genome: an automated pipeline for toxin-gene annotation in genome assembly of venomous lineages. Gigascience 2024; 13:giad116. [PMID: 38241143 PMCID: PMC10797961 DOI: 10.1093/gigascience/giad116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/19/2023] [Accepted: 12/18/2023] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND The rapid development of sequencing technologies resulted in a wide expansion of genomics studies using venomous lineages. This facilitated research focusing on understanding the evolution of adaptive traits and the search for novel compounds that can be applied in agriculture and medicine. However, the toxin annotation of genomes is a laborious and time-consuming task, and no consensus pipeline is currently available. No computational tool currently exists to address the challenges specific to toxin annotation and to ensure the reproducibility of the process. RESULTS Here, we present ToxCodAn-Genome, the first software designed to perform automated toxin annotation in genomes of venomous lineages. This pipeline was designed to retrieve the full-length coding sequences of toxins and to allow the detection of novel truncated paralogs and pseudogenes. We tested ToxCodAn-Genome using 12 genomes of venomous lineages and achieved high performance on recovering their current toxin annotations. This tool can be easily customized to allow improvements in the final toxin annotation set and can be expanded to virtually any venomous lineage. ToxCodAn-Genome is fast, allowing it to run on any personal computer, but it can also be executed in multicore mode, taking advantage of large high-performance servers. In addition, we provide a guide to direct future research in the venomics field to ensure a confident toxin annotation in the genome being studied. As a case study, we sequenced and annotated the toxin repertoire of Bothrops alternatus, which may facilitate future evolutionary and biomedical studies using vipers as models. CONCLUSIONS ToxCodAn-Genome is suitable to perform toxin annotation in the genome of venomous species and may help to improve the reproducibility of further studies. ToxCodAn-Genome and the guide are freely available at https://github.com/pedronachtigall/ToxCodAn-Genome.
Collapse
Affiliation(s)
- Pedro G Nachtigall
- Laboratório de Toxinologia Aplicada, CeTICS, Instituto Butantan, São Paulo, 05503-900 SP, Brazil
- Department of Biological Science, Florida State University, Tallahassee, 32306-4295 FL, USA
| | - Alan M Durham
- Departamento de Ciência da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo (USP), São Paulo, 05508-090 SP, Brazil
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, 32306-4295 FL, USA
| | | |
Collapse
|
4
|
Yee KT, Macrander J, Vasieva O, Rojnuckarin P. Exploring Toxin Genes of Myanmar Russell's Viper, Daboia siamensis, through De Novo Venom Gland Transcriptomics. Toxins (Basel) 2023; 15:toxins15050309. [PMID: 37235344 DOI: 10.3390/toxins15050309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/03/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
The Russell's viper (Daboia siamensis) is a medically important venomous snake in Myanmar. Next-generation sequencing (NGS) shows potential to investigate the venom complexity, giving deeper insights into snakebite pathogenesis and possible drug discoveries. mRNA from venom gland tissue was extracted and sequenced on the Illumina HiSeq platform and de novo assembled by Trinity. The candidate toxin genes were identified via the Venomix pipeline. Protein sequences of identified toxin candidates were compared with the previously described venom proteins using Clustal Omega to assess the positional homology among candidates. Candidate venom transcripts were classified into 23 toxin gene families including 53 unique full-length transcripts. C-type lectins (CTLs) were the most highly expressed, followed by Kunitz-type serine protease inhibitors, disintegrins and Bradykinin potentiating peptide/C-type natriuretic peptide (BPP-CNP) precursors. Phospholipase A2, snake venom serine proteases, metalloproteinases, vascular endothelial growth factors, L-amino acid oxidases and cysteine-rich secretory proteins were under-represented within the transcriptomes. Several isoforms of transcripts which had not been previously reported in this species were discovered and described. Myanmar Russell's viper venom glands displayed unique sex-specific transcriptome profiles which were correlated with clinical manifestation of envenoming. Our results show that NGS is a useful tool to comprehensively examine understudied venomous snakes.
Collapse
Affiliation(s)
- Khin Than Yee
- Department of Medical Research, Ministry of Health, Yangon 11191, Myanmar
| | - Jason Macrander
- Department of Biology, Florida Southern College, Lakeland, FL 33801, USA
| | - Olga Vasieva
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
- BioSynthetic Machines, Inc., Chicago, IL 60062, USA
| | - Ponlapat Rojnuckarin
- Excellence Center in Translational Hematology, Division of Hematology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
5
|
Sen S, Rathi S, Sahu J, Mandal SC, Ray S, Slama P, Roychoudhury S. In Silico Mining and Characterization of High-Quality SNP/Indels in Some Agro-Economically Important Species Belonging to the Family Euphorbiaceae. Genes (Basel) 2023; 14:332. [PMID: 36833259 PMCID: PMC9956114 DOI: 10.3390/genes14020332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/07/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
(1) Background: To assess the genetic makeup among the agro-economically important members of Euphorbiaceae, the present study was conducted to identify and characterize high-quality single-nucleotide polymorphism (SNP) markers and their comparative distribution in exonic and intronic regions from the publicly available expressed sequence tags (ESTs). (2) Methods: Quality sequences obtained after pre-processing by an EG assembler were assembled into contigs using the CAP3 program at 95% identity; the mining of SNP was performed by QualitySNP; GENSCAN (standalone) was used for detecting the distribution of SNPs in the exonic and intronic regions. (3) Results: A total of 25,432 potential SNPs (pSNP) and 14,351 high-quality SNPs (qSNP), including 2276 indels, were detected from 260,479 EST sequences. The ratio of quality SNP to potential SNP ranged from 0.22 to 0.75. A higher frequency of transitions and transversions was observed more in the exonic than the intronic region, while indels were present more in the intronic region. C↔T (transition) was the most dominant nucleotide substitution, while in transversion, A↔T was the dominant nucleotide substitution, and in indel, A/- was dominant. (4) Conclusions: Detected SNP markers may be useful for linkage mapping; marker-assisted breeding; studying genetic diversity; mapping important phenotypic traits, such as adaptation or oil production; or disease resistance by targeting and screening mutations in important genes.
Collapse
Affiliation(s)
- Surojit Sen
- Department of Zoology, Mariani College, Mariani 785634, India
| | - Sunayana Rathi
- Department of Biochemistry and Agricultural Chemistry, Assam Agricultural University, Jorhat 785013, India
| | - Jagajjit Sahu
- GyanArras Academy, Gothapatna, Malipada, Bhubaneswar 751003, India
| | - Subhash C. Mandal
- Department of Pharmaceutical Technology, Division of Pharmacognosy, Jadavpur University, Kolkata 700032, India
| | - Supratim Ray
- Department of Pharmaceutical Sciences, Assam University, Silchar 788011, India
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | | |
Collapse
|
6
|
Alsolaiss J, Alomran N, Hawkins L, Casewell NR. Commercial Antivenoms Exert Broad Paraspecific Immunological Binding and In Vitro Inhibition of Medically Important Bothrops Pit Viper Venoms. Toxins (Basel) 2022; 15:1. [PMID: 36668821 PMCID: PMC9862972 DOI: 10.3390/toxins15010001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Snakebite envenoming is a life threatening neglected tropical disease that represents a considerable public health concern in the tropics. Viperid snakes of the genus Bothrops are among those of greatest medical importance in Latin America, and they frequently cause severe systemic haemotoxicity and local tissue destructive effects in human victims. Although snakebite antivenoms can be effective therapeutics, their efficacy is undermined by venom toxin variation among snake species. In this study we investigated the extent of paraspecific venom cross-reactivity exhibited by three distinct anti-Bothrops antivenoms (Soro antibotrópico-crotálico, BothroFav and PoliVal-ICP) against seven different Bothrops pit viper venoms from across Latin America. We applied a range of in vitro assays to assess the immunological binding and recognition of venom toxins by the antivenoms and their inhibitory activities against specific venom functionalities. Our findings demonstrated that, despite some variations, the monovalent antivenom BothroFav and the polyvalent antivenoms Soro antibotrópico-crotálico and PoliVap-ICP exhibited extensive immunological recognition of the distinct toxins found in the different Bothrops venoms, with Soro antibotrópico-crotálico generally outperformed by the other two products. In vitro functional assays revealed outcomes largely consistent with the immunological binding data, with PoliVap-ICP and BothroFav exhibiting the greatest inhibitory potencies against procoagulant and fibrinogen-depleting venom activities, though Soro antibotrópico-crotálico exhibited potent inhibition of venom metalloproteinase activities. Overall, our findings demonstrate broad levels of antivenom paraspecificity, with in vitro immunological binding and functional inhibition often highly comparable between venoms used to manufacture the antivenoms and those from related species, even in the case of the monovalent antivenom BothroFav. Our findings suggest that the current clinical utility of these antivenoms could possibly be expanded to other parts of Latin America that currently suffer from a lack of specific snakebite therapies.
Collapse
Affiliation(s)
- Jaffer Alsolaiss
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
- Tropical Disease Biology Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Nessrin Alomran
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
- Tropical Disease Biology Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Laura Hawkins
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
- Tropical Disease Biology Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Nicholas R. Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
- Tropical Disease Biology Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| |
Collapse
|
7
|
David AC, Silva LMG, Garcia Denegri ME, Leiva LCA, Silva Junior JA, Zuliani JP, Zamuner SR. Photobiomodulation therapy on local effects induced by juvenile and adult venoms of Bothrops alternatus. Toxicon 2022; 220:106941. [DOI: 10.1016/j.toxicon.2022.106941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022]
|
8
|
Sofyantoro F, Yudha DS, Lischer K, Nuringtyas TR, Putri WA, Kusuma WA, Purwestri YA, Swasono RT. Bibliometric Analysis of Literature in Snake Venom-Related Research Worldwide (1933-2022). Animals (Basel) 2022; 12:2058. [PMID: 36009648 PMCID: PMC9405337 DOI: 10.3390/ani12162058] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Snake envenomation is a severe economic and health concern affecting countries worldwide. Snake venom carries a wide variety of small peptides and proteins with various immunological and pharmacological properties. A few key research areas related to snake venom, including its applications in treating cancer and eradicating antibiotic-resistant bacteria, have been gaining significant attention in recent years. The goal of the current study was to analyze the global profile of literature in snake venom research. This study presents a bibliometric review of snake venom-related research documents indexed in the Scopus database between 1933 and 2022. The overall number of documents published on a global scale was 2999, with an average annual production of 34 documents. Brazil produced the highest number of documents (n = 729), followed by the United States (n = 548), Australia (n = 240), and Costa Rica (n = 235). Since 1963, the number of publications has been steadily increasing globally. At a worldwide level, antivenom, proteomics, and transcriptomics are growing hot issues for research in this field. The current research provides a unique overview of snake venom research at global level from 1933 through 2022, and it may be beneficial in guiding future research.
Collapse
Affiliation(s)
- Fajar Sofyantoro
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Donan Satria Yudha
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Kenny Lischer
- Faculty of Engineering, University of Indonesia, Jakarta 16424, Indonesia
| | - Tri Rini Nuringtyas
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | | | - Wisnu Ananta Kusuma
- Department of Computer Science, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia
| | - Yekti Asih Purwestri
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Respati Tri Swasono
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
9
|
Gopalan SS, Perry BW, Schield DR, Smith CF, Mackessy SP, Castoe TA. Origins, genomic structure and copy number variation of snake venom myotoxins. Toxicon 2022; 216:92-106. [PMID: 35820472 DOI: 10.1016/j.toxicon.2022.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 10/17/2022]
Abstract
Crotamine, myotoxin a and homologs are short peptides that often comprise major fractions of rattlesnake venoms and have been extensively studied for their bioactive properties. These toxins are thought to be important for rapidly immobilizing mammalian prey and are implicated in serious, and sometimes fatal, responses to envenomation in humans. While high quality reference genomes for multiple venomous snakes are available, the loci that encode myotoxins have not been successfully assembled in any existing genome assembly. Here, we integrate new and existing genomic and transcriptomic data from the Prairie Rattlesnake (Crotalus viridis viridis) to reconstruct, characterize, and infer the chromosomal locations of myotoxin-encoding loci. We integrate long-read transcriptomics (Pacific Bioscience's Iso-Seq) and short-read RNA-seq to infer gene sequence diversity and characterize patterns of myotoxin and paralogous β-defensin expression across multiple tissues. We also identify two long non-coding RNA sequences which both encode functional myotoxins, demonstrating a newly discovered source of venom coding sequence diversity. We also integrate long-range mate-pair chromatin contact data and linked-read sequencing to infer the structure and chromosomal locations of the three myotoxin-like loci. Further, we conclude that the venom-associated myotoxin is located on chromosome 1 and is adjacent to non-venom paralogs. Consistent with this locus contributing to venom composition, we find evidence that the promoter of this gene is selectively open in venom gland tissue and contains transcription factor binding sites implicated in broad trans-regulatory pathways that regulate snake venoms. This study provides the best genomic reconstruction of myotoxin loci to date and raises questions about the physiological roles and interplay between myotoxin and related genes, as well as the genomic origins of snake venom variation.
Collapse
Affiliation(s)
- Siddharth S Gopalan
- Department of Biology, 501 S. Nedderman Dr., The University of Texas Arlington, Arlington, TX, 76019, USA
| | - Blair W Perry
- Department of Biology, 501 S. Nedderman Dr., The University of Texas Arlington, Arlington, TX, 76019, USA; School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Drew R Schield
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Cara F Smith
- School of Biological Sciences, 501 20th Street, University of Northern Colorado, Greeley, CO, 80639, USA; Department of Biochemistry and Molecular Biology, 12801 East 17th Avenue, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Stephen P Mackessy
- School of Biological Sciences, 501 20th Street, University of Northern Colorado, Greeley, CO, 80639, USA
| | - Todd A Castoe
- Department of Biology, 501 S. Nedderman Dr., The University of Texas Arlington, Arlington, TX, 76019, USA.
| |
Collapse
|
10
|
Production of a murine mAb against Bothrops alternatus and B. neuwiedi snake venoms and its use to isolate a thrombin-like serine protease fraction. Int J Biol Macromol 2022; 214:530-541. [PMID: 35753516 DOI: 10.1016/j.ijbiomac.2022.06.127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/08/2022] [Accepted: 06/18/2022] [Indexed: 11/22/2022]
Abstract
Accidents with snakes from the genus Bothrops represent ~90 % of all snakebites in Brazil. Monoclonal antibodies (mAbs) targeting venom components can be important assets for treating envenoming syndromes, for developing diagnostic tests and for research purposes. Therefore, in this study, we aimed to generate murine mAbs against the antigenic mixture of Bothropic venoms traditionally used as immunogen to produce Bothropic antivenoms in Brazil. ELISA showed that one of the produced mAbs recognizes B. alternatus and B. neuwiedi venoms (mAb anti-Ba/Bn) specifically and Western Blot revealed that this mAb binds to a single protein band of molecular mass of ≈50 kDa. MAb anti-Ba/Bn inhibited the coagulant activity but was unable to neutralize hemorrhagic and phospholipase A2 activities caused by the B. neuwiedi venom. MAb anti-Ba/Bn was immobilized to Sepharose beads and used for immunoaffinity chromatography of B. neuwiedi venom. Proteolytic activity assays indicated that the immunoaffinity-purified fraction (BnF-Bothrops neuwiedi fraction) has a serine protease thrombin-like profile, which was supported by coagulability assays in mice. Bottom-up proteomic analysis confirmed the prevalence of serine proteases in BnF using label-free quantification. In conclusion, this work characterized a mAb with neutralizing properties against B. neuwiedi coagulant activity and demonstrates that immunoaffinity chromatography using mAbs can be a useful technique for purification of bioactive toxic proteins from Bothrops spp. snake venoms.
Collapse
|
11
|
Regner PI, Saggese MD, de Oliveira VC, Lanari LC, Desio MA, Quaglia AIE, Wiemeyer G, Capdevielle A, Zuñiga SN, de Roodt CJI, de Roodt AR. Neutralization of "Chaco eagle" (Buteogallus coronatus) serum on some activities of Bothrops spp. venoms. Toxicon 2022; 216:73-87. [PMID: 35714890 DOI: 10.1016/j.toxicon.2022.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/27/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
Abstract
Several species of reptiles and mammals have components in their sera that can neutralize toxic components present in snake venoms. In this manuscript, we studied the neutralizing capacity of Chaco eagle's (Buteogallus coronatus) serum. This South American bird of prey eats snakes as a regular part of its diet and has anatomical features that protect from snakes' bites. The neutralizing potency of the Chaco eagle's serum was tested on lethal, hemorrhagic, procoagulant, and phospholipase activities of the venom of "yarará grande" (Bothrops alternatus) and on phospholipase activity of "yarará ñata" (Bothrops ammodytoides) venom; both snakes are known to be the prey of Chaco eagle. Sera of crested caracara (Caracara plancus-a scavenger, omnivorous pan-American bird of prey), secretary bird (Saggitarius serpentarius-an omnivorous bird of prey from Africa that can include venomous snakes in its diet), common hen (Gallus gallus), rat (Rattus norvegicus), mouse (Mus musculus), horse (Equus caballus), and dog (Canis lupus familiaris) were also tested to compare the inhibitory capacity of neutralization. To test isologous and xenologous neutralization, sera from Bothrops alternatus and white-eared opossum (Didelphis albiventris), respectively, were used due to their known inhibitory activity on Bothrops venoms. As a control for the neutralization activity, antibothropic antivenom was used. Chaco eagle's serum neutralized hemorrhagic and phospholipasic activity and slightly neutralized the coagulation and the lethal activity of Bothrops spp. venom. The neutralizing capacity was present in the non-immunoglobulin fraction of the serum, which showed components of acidic characteristics and lower molecular weight than IgY, in correspondence with the characteristics of PLA2s and SVMPs inhibitors described in sera from some snakes and mammals. These studies showed that Chaco eagle's serum neutralizes all toxic activities tested at a higher level than sera from animal species in which inhibitors of snake venoms have not been described (p < 0.05), while it is lower or similar in neutralizing capacity to white-eared opossum and B. alternatus sera.
Collapse
Affiliation(s)
- Pablo I Regner
- Laboratorio de Toxinopatología, Centro de Patología Experimental y Aplicada, Facultad de Medicina, Universidad de Buenos Aires, Caba, Argentina; Primera Cátedra de Toxicología, Facultad de Medicina, Universidad de Buenos Aires, Caba, Argentina; Cátedra de Medicina, Producción y Tecnologías de Fauna Acuática y Terrestre, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Caba, Argentina
| | - Miguel D Saggese
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, USA
| | - Vanessa C de Oliveira
- Laboratorio de Toxinopatología, Centro de Patología Experimental y Aplicada, Facultad de Medicina, Universidad de Buenos Aires, Caba, Argentina; Primera Cátedra de Toxicología, Facultad de Medicina, Universidad de Buenos Aires, Caba, Argentina
| | - Laura C Lanari
- Área Investigación y Desarrollo, Instituto Nacional de Producción de Biológicos - ANLIS "Dr. Carlos G. Malbrán", Caba, Argentina
| | - Marcela A Desio
- Área Investigación y Desarrollo, Instituto Nacional de Producción de Biológicos - ANLIS "Dr. Carlos G. Malbrán", Caba, Argentina
| | - Agustín I E Quaglia
- Laboratorio de Arbovirus, Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Argentina
| | - Guillermo Wiemeyer
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Argentina
| | - Andrés Capdevielle
- Ecoparque Buenos Aires, Ministerio de Ambiente y Espacio Público, Buenos Aires, Argentina
| | | | - Carolina J I de Roodt
- Área Investigación y Desarrollo, Instituto Nacional de Producción de Biológicos - ANLIS "Dr. Carlos G. Malbrán", Caba, Argentina
| | - Adolfo R de Roodt
- Laboratorio de Toxinopatología, Centro de Patología Experimental y Aplicada, Facultad de Medicina, Universidad de Buenos Aires, Caba, Argentina; Primera Cátedra de Toxicología, Facultad de Medicina, Universidad de Buenos Aires, Caba, Argentina; Área Investigación y Desarrollo, Instituto Nacional de Producción de Biológicos - ANLIS "Dr. Carlos G. Malbrán", Caba, Argentina.
| |
Collapse
|
12
|
Nachtigall PG, Rautsaw RM, Ellsworth SA, Mason AJ, Rokyta DR, Parkinson CL, Junqueira-de-Azevedo ILM. ToxCodAn: a new toxin annotator and guide to venom gland transcriptomics. Brief Bioinform 2021; 22:6235957. [PMID: 33866357 DOI: 10.1093/bib/bbab095] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/15/2021] [Accepted: 03/03/2021] [Indexed: 01/23/2023] Open
Abstract
MOTIVATION Next-generation sequencing has become exceedingly common and has transformed our ability to explore nonmodel systems. In particular, transcriptomics has facilitated the study of venom and evolution of toxins in venomous lineages; however, many challenges remain. Primarily, annotation of toxins in the transcriptome is a laborious and time-consuming task. Current annotation software often fails to predict the correct coding sequence and overestimates the number of toxins present in the transcriptome. Here, we present ToxCodAn, a python script designed to perform precise annotation of snake venom gland transcriptomes. We test ToxCodAn with a set of previously curated transcriptomes and compare the results to other annotators. In addition, we provide a guide for venom gland transcriptomics to facilitate future research and use Bothrops alternatus as a case study for ToxCodAn and our guide. RESULTS Our analysis reveals that ToxCodAn provides precise annotation of toxins present in the transcriptome of venom glands of snakes. Comparison with other annotators demonstrates that ToxCodAn has better performance with regard to run time ($>20x$ faster), coding sequence prediction ($>3x$ more accurate) and the number of toxins predicted (generating $>4x$ less false positives). In this sense, ToxCodAn is a valuable resource for toxin annotation. The ToxCodAn framework can be expanded in the future to work with other venomous lineages and detect novel toxins.
Collapse
Affiliation(s)
- Pedro G Nachtigall
- Laboratório de Toxinologia Aplicada, CeTICS, Instituto Butantan, São Paulo, SP 05503-900, Brazil
| | - Rhett M Rautsaw
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Schyler A Ellsworth
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Andrew J Mason
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210 USA
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Christopher L Parkinson
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC 29634, USA
| | | |
Collapse
|
13
|
Pereira LDM, Messias EA, Sorroche BP, Oliveira ADN, Arantes LMRB, de Carvalho AC, Tanaka-Azevedo AM, Grego KF, Carvalho AL, Melendez ME. In-depth transcriptome reveals the potential biotechnological application of Bothrops jararaca venom gland. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20190058. [PMID: 33149734 PMCID: PMC7579844 DOI: 10.1590/1678-9199-jvatitd-2019-0058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background: Lack of complete genomic data of Bothrops jararaca impedes molecular biology research focusing on biotechnological applications of venom gland components. Identification of full-length coding regions of genes is crucial for the correct molecular cloning design. Methods: RNA was extracted from the venom gland of one adult female specimen of Bothrops jararaca. Deep sequencing of the mRNA library was performed using Illumina NextSeq 500 platform. De novo assembly of B. jararaca transcriptome was done using Trinity. Annotation was performed using Blast2GO. All predicted proteins after clustering step were blasted against non-redundant protein database of NCBI using BLASTP. Metabolic pathways present in the transcriptome were annotated using the KAAS-KEGG Automatic Annotation Server. Toxins were identified in the B. jararaca predicted proteome using BLASTP against all protein sequences obtained from Animal Toxin Annotation Project from Uniprot KB/Swiss-Pro database. Figures and data visualization were performed using ggplot2 package in R language environment. Results: We described the in-depth transcriptome analysis of B. jararaca venom gland, in which 76,765 de novo assembled isoforms, 96,044 transcribed genes and 41,196 unique proteins were identified. The most abundant transcript was the zinc metalloproteinase-disintegrin-like jararhagin. Moreover, we identified 78 distinct functional classes of proteins, including toxins, inhibitors and tumor suppressors. Other venom proteins identified were the hemolytic lethal factors stonustoxin and verrucotoxin. Conclusion: It is believed that the application of deep sequencing to the analysis of snake venom transcriptomes may represent invaluable insight on their biotechnological potential focusing on candidate molecules.
Collapse
Affiliation(s)
- Leandro de Mattos Pereira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil.,Laboratory of Molecular Microbial Ecology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Elisa Alves Messias
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil
| | | | | | | | | | | | | | - André Lopes Carvalho
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil
| | - Matias Eliseo Melendez
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil.,Pelé Little Prince Research Institute, Curitiba, PR, Brazil.,Little Prince College, Curitiba, PR, Brazil
| |
Collapse
|
14
|
Albuquerque PLMM, Paiva JHHGL, Martins AMC, Meneses GC, da Silva GB, Buckley N, Daher EDF. Clinical assessment and pathophysiology of Bothrops venom-related acute kidney injury: a scoping review. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20190076. [PMID: 32704246 PMCID: PMC7359628 DOI: 10.1590/1678-9199-jvatitd-2019-0076] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022] Open
Abstract
Bothrops are one of the most common medically important snakes found in Latin America. Its venom is predominantly hemotoxic and proteolytic, which means that local lesion (edema and redness) and hemorrhagic symptoms are recurrent in envenoming by this snake. Although hemorrhage is usually the major cause of death, snakebite-related acute kidney injury is another potentially fatal clinical complication that may lead to chronic kidney disease. The present review highlights the main studies on Bothrops venom-related acute kidney injury, including observational, cross-sectional, case-control and cohort human studies available up to December 2019. The following descriptors were used according to Medical Subject Headings (MeSH): on Medline/Pubmed and Google Scholar "acute kidney injury" or "kidney disease" and "Bothrops"; on Lilacs and SciELO "kidney disease" or "acute kidney injury" and "Bothrops". Newcastle-Ottawa quality assessment scale was used to appraise the quality of the cross-sectional and cohort studies included. The selection of more severe patients who looked for health care units and tertiary centers is a risk of bias. Due to the methodological heterogeneity of the studies, a critical analysis of the results was performed based on the hypothesis that the design of the included studies influences the incidence of acute kidney injury. Fifteen human studies (total participants 4624) were included according to stablished criteria. The coagulation abnormalities (hemorrhagic symptoms, abnormal fibrinogen and activated partial thromboplastin time) were associated with acute kidney injury in the most recent studies reported. The findings observed in this review provide up-to-date evidence about the acute kidney injury pathogenesis following Bothrops syndrome. Studies pointed out that coagulation abnormalities comprise the major pathway for acute kidney injury development. This review may improve patient management by primary healthcare providers, allowing earlier diagnosis and treatment of Bothrops venom-related acute kidney injury.
Collapse
Affiliation(s)
- Polianna Lemos Moura Moreira Albuquerque
- University of Fortaleza (Unifor), Fortaleza, Ceará, Brazil
- Toxicological Information and Assistance Center, Instituto Doutor Jose Frota Hospital, Fortaleza, Ceará, Brazil
| | | | - Alice Maria Costa Martins
- Graduate Program in Pharmaceutical Sciences, Federal University of Ceará (UFC), Fortaleza, Ceará, Brazil
| | | | - Geraldo Bezerra da Silva
- Public Health and Medical Sciences Graduate Programs, School of Medicine, University of Fortaleza, Fortaleza, Ceará, Brazil
| | | | | |
Collapse
|
15
|
Garcia Denegri ME, Bustillo S, Gay CC, Van De Velde A, Gomez G, Echeverría S, Gauna Pereira MDC, Maruñak S, Nuñez S, Bogado F, Sanchez M, Teibler GP, Fusco L, Leiva LCA. Venoms and Isolated Toxins from Snakes of Medical Impact in the Northeast Argentina: State of the Art. Potential Pharmacological Applications. Curr Top Med Chem 2019; 19:1962-1980. [PMID: 31345151 DOI: 10.2174/1568026619666190725094851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/05/2019] [Accepted: 07/01/2019] [Indexed: 11/22/2022]
Abstract
Among the ophidians that inhabit the Northeast of Argentina, the genus Bothrops such as B. alternatus and B. diporus species (also known as yararás) and Crotalus durisus terrificus (named cascabel), represent the most studied snake venom for more than thirty years. These two genera of venomous snakes account for the majority of poisonous snake envenomations and therefore, constitute a medical emergency in this region. This review presents a broad description of the compiled knowledge about venomous snakebite: its pathophysiological action, protein composition, isolated toxins, toxin synergism, toxin-antitoxin cross-reaction assays. Properties of some isolated toxins support a potential pharmacological application.
Collapse
Affiliation(s)
- María Emilia Garcia Denegri
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| | - Soledad Bustillo
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| | - Claudia Carolina Gay
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| | - Andrea Van De Velde
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| | - Gabriela Gomez
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| | - Silvina Echeverría
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| | - María Del Carmen Gauna Pereira
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| | - Silvana Maruñak
- Laboratorio de Toxicología Veterinaria dependiente de la Cátedra de Farmacología y Veterinaria, Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Sandra Nuñez
- Laboratorio de Toxicología Veterinaria dependiente de la Cátedra de Farmacología y Veterinaria, Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Fabián Bogado
- Laboratorio de Toxicología Veterinaria dependiente de la Cátedra de Farmacología y Veterinaria, Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Matías Sanchez
- Laboratorio de Toxicología Veterinaria dependiente de la Cátedra de Farmacología y Veterinaria, Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Gladys Pamela Teibler
- Laboratorio de Toxicología Veterinaria dependiente de la Cátedra de Farmacología y Veterinaria, Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Luciano Fusco
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| | - Laura Cristina Ana Leiva
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| |
Collapse
|
16
|
First report on BaltCRP, a cysteine-rich secretory protein (CRISP) from Bothrops alternatus venom: Effects on potassium channels and inflammatory processes. Int J Biol Macromol 2019; 140:556-567. [DOI: 10.1016/j.ijbiomac.2019.08.108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 12/20/2022]
|
17
|
Severyns M, Nevière R, Resiere D, Andriamananaivo T, Decaestecker L, Mehdaoui H, Odri GA, Rouvillain JL. Case Report: Bothrops lanceolatus Snakebite Surgical Management-Relevance of Fasciotomy. Am J Trop Med Hyg 2019; 99:1350-1353. [PMID: 30226147 DOI: 10.4269/ajtmh.18-0393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Bothrops lanceolatus is an endemic Crotalidae species in Martinique, where approximately 30 cases of envenoming are managed yearly. Envenoming characteristics from Bothrops species include local tissue damage, systemic bleeding, and hemodynamic alterations. We hereby report a case of severe envenomation following B. lanceolatus snakebite to the right calf. Severe local manifestations developed progressively up to the lower limb despite adequate antivenom therapy. Systemic manifestations of venom also occurred, resulting in intensive care therapy. Surgery exploration revealed soft tissue necrosis, friability of the deep fascia, and myonecrosis. The patient needed multiple debridement procedures and fasciotomy of all leg compartments and anterior compartment of the thigh. Diagnosis of necrotizing fasciitis was confirmed by positive Aeromonas hydrophila blood cultures. This clinical case illustrates that major soft tissue infection, including necrotizing fasciitis may occur after snakebite. Abnormal coagulation tests should not delay surgical management, as severe envenoming is a life-threatening condition.
Collapse
Affiliation(s)
- M Severyns
- Orthopaedic and Traumatologic Department, CHU Martinique (University Hospital of Martinique), Fort-de-France, France
| | - R Nevière
- Physiology Department, CHU Martinique (University Hospital of Martinique), Fort-de-France, France
| | - D Resiere
- Critical Care Unit, CHU Martinique (University Hospital of Martinique), Fort-de-France, France
| | - T Andriamananaivo
- Orthopaedic and Traumatologic Department, CHU Martinique (University Hospital of Martinique), Fort-de-France, France
| | - L Decaestecker
- Orthopaedic and Traumatologic Department, CHU Martinique (University Hospital of Martinique), Fort-de-France, France
| | - H Mehdaoui
- Critical Care Unit, CHU Martinique (University Hospital of Martinique), Fort-de-France, France
| | - G A Odri
- Orthopaedic Department, CHU Lariboisière (University Hospital of Lariboisière), Paris, France
| | - J L Rouvillain
- Orthopaedic and Traumatologic Department, CHU Martinique (University Hospital of Martinique), Fort-de-France, France
| |
Collapse
|
18
|
Inhibition of snake venom induced sterile inflammation and PLA2 activity by Titanium dioxide Nanoparticles in experimental animals. Sci Rep 2019; 9:11175. [PMID: 31371738 PMCID: PMC6671979 DOI: 10.1038/s41598-019-47557-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/02/2019] [Indexed: 12/16/2022] Open
Abstract
Sterile inflammation (SI) is an essential process in response to snakebite and injury. The venom induced pathophysiological response to sterile inflammation results into many harmful and deleterious effects that ultimately leads to death. The available treatment for snakebite is antiserum which does not provide enough protection against venom-induced pathophysiological changes like haemorrhage, necrosis, nephrotoxicity and often develop hypersensitive reactions. In order to overcome these hindrances, scientists around the globe are searching for an alternative therapy to provide better treatment to the snake envenomation patients. In the present study TiO2 (Titanium dioxide)-NPs (Nanoparticles) has been assessed for antisnake venom activity and its potential to be used as an antidote. In this study, the synthesis of TiO2-NPs arrays has been demonstrated on p-type Silicon Si < 100 > substrate (∼30 ohm-cm) and the surface topography has been detected by Field-emission scanning electron microscopy (FESEM). The TiO2-NPs successfully neutralized the Daboia russelii venom (DRV) and Naja kaouthia venom (NKV)-induced lethal activity. Viper venom induced haemorrhagic, coagulant and anticoagulant activities were effectively neutralized both in in-vitro and in vivo studies. The cobra and viper venoms-induced sterile inflammatory molecules (IL-6, HMGB1, HSP70, HSP90, S100B and vWF) were effectively neutralised by the TiO2-NPs in experimental animals.
Collapse
|
19
|
Ziegman R, Undheim EAB, Baillie G, Jones A, Alewood PF. Investigation of the estuarine stonefish (Synanceia horrida) venom composition. J Proteomics 2019; 201:12-26. [PMID: 30953730 DOI: 10.1016/j.jprot.2019.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 11/29/2022]
Abstract
The Estuarine stonefish (Synanceia horrida) is recognised as one of the most venomous fish species in the world but the overall venom composition has yet to be investigated using in-depth transcriptomic and proteomic methods. To date, known venom components are restricted to a hyaluronidase and a large, pore-forming toxin known as Stonustoxin (SNTX). Transcriptomic sequencing of the venom gland resulted in over 170,000 contigs with only 0.4% that were homologous to putative venom proteins. Integration of the transcriptomic data with proteomic data from the S. horrida venom confirmed the hyaluronidase and SNTX to be present, together with several other protein families including major contributions from C-type lectins. Other protein families observed included peroxiredoxin and several minor protein families such as Golgi-associated plant pathogenesis related proteins, tissue pathway factor inhibitors, and Kazal-type serine protease inhibitors that, although not putative venom proteins, may contribute to the venom's adverse effects. BIOLOGICAL SIGNIFICANCE: Proteomic analysis of milked Synanceia horrida venom, paired with transcriptomic analysis of the venom gland tissue revealed for the first time the composition of one of the world's most dangerous fish venoms. The results demonstrate that the venom is relatively less complex compared to other well-studied venomous animals with a number of unique proteins not previously found in animal venoms.
Collapse
Affiliation(s)
- Rebekah Ziegman
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Eivind A B Undheim
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Gregory Baillie
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Alun Jones
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Paul F Alewood
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4072, Australia.
| |
Collapse
|
20
|
Yee KT, Tongsima S, Vasieva O, Ngamphiw C, Wilantho A, Wilkinson MC, Somparn P, Pisitkun T, Rojnuckarin P. Analysis of snake venom metalloproteinases from Myanmar Russell's viper transcriptome. Toxicon 2018; 146:31-41. [PMID: 29567103 DOI: 10.1016/j.toxicon.2018.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 02/25/2018] [Accepted: 03/17/2018] [Indexed: 11/23/2022]
Abstract
Snake venom metalloproteinases (SVMPs) are the key enzymes in Russell's viper (RV) venom which target all important components of haemostasis, such as clotting factors, platelets, endothelial cells and basement membrane. The structural diversity of SVMPs contributes to the broad spectrum of biological activities. The aim of the study was to investigate the SVMP transcript profile to gain better insights into the characteristic clinical manifestations of the Myanmar Russell's viper (MRV) bites that distinguish it from the RVs of other habitats. Next generation sequencing (RNA-Seq) of mRNA from MRV venom glands (2 males and 1 female) was performed on an Illumina HiSeq2000 platform and then de novo assembled using Trinity software. A total of 59 SVMP contigs were annotated through a Blastn search against the serpent nucleotide database from NCBI. Among them, disintegrins were the most abundant transcripts (75%) followed by the P-III class SVMPs (25%). The P-II SVMPs were scarce (0.002%), while no P-I SVMPs were detectable in the transcriptome. For detailed structural analysis, contigs were conceptually translated and compared with amino acid sequences from other RVs and other vipers using Clustal Omega. The RTS-disintegrin (jerdostatin homolog) was the most abundant among transcripts corresponding to 5 disintegrin isoforms. From 10 isoforms of SVMPs, RVV-X, and Vipera lebetina apoptosis-inducing protease (VLAIP) homolog, hereby termed Daboia siamensis AIP (DSAIP), were found to be highly expressed. Venom protein analysis using SDS-PAGE followed by mass spectrometry revealed that the disintegrin was scarce, while the latter two SVMPs were abundant. These two proteins can contribute to severe clinical manifestations caused by MRV envenomation.
Collapse
Affiliation(s)
- Khin Than Yee
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Biochemistry Research Division, Department of Medical Research, Yangon, Myanmar
| | - Sissades Tongsima
- Genome Technology Research Unit, National Center for Genetic Engineering and Biotechnology, PathumThani, Thailand
| | - Olga Vasieva
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom; Ingenet Limited, London, United Kingdom
| | - Chumpol Ngamphiw
- Genome Technology Research Unit, National Center for Genetic Engineering and Biotechnology, PathumThani, Thailand
| | - Alisa Wilantho
- Genome Technology Research Unit, National Center for Genetic Engineering and Biotechnology, PathumThani, Thailand
| | - Mark C Wilkinson
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | | | - Trairak Pisitkun
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | |
Collapse
|
21
|
Valente RH, Luna MS, de Oliveira UC, Nishiyama-Junior MY, Junqueira-de-Azevedo IDL, Portes-Junior JA, Clissa PB, Viana LG, Sanches L, Moura-da-Silva AM, Perales J, Yamanouye N. Bothrops jararaca accessory venom gland is an ancillary source of toxins to the snake. J Proteomics 2018; 177:137-147. [DOI: 10.1016/j.jprot.2017.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/27/2017] [Accepted: 12/17/2017] [Indexed: 12/17/2022]
|
22
|
New findings from the first transcriptome of the Bothrops moojeni snake venom gland. Toxicon 2017; 140:105-117. [DOI: 10.1016/j.toxicon.2017.10.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/22/2017] [Accepted: 10/23/2017] [Indexed: 11/18/2022]
|
23
|
Melo LL, Mendes MM, Alves LM, Isabel TF, Vieira SA, Gimenes SN, Soares AM, Rodrigues VM, Izidoro LF. Cross-reactivity and inhibition myotoxic effects induced by Bothrops snake venoms using specific polyclonal anti -BnSP7 antibodies. Biologicals 2017; 50:109-116. [DOI: 10.1016/j.biologicals.2017.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 07/31/2017] [Accepted: 08/05/2017] [Indexed: 11/29/2022] Open
|
24
|
Delafontaine M, Villas-Boas IM, Mathieu L, Josset P, Blomet J, Tambourgi DV. Enzymatic and Pro-Inflammatory Activities of Bothrops lanceolatus Venom: Relevance for Envenomation. Toxins (Basel) 2017; 9:toxins9080244. [PMID: 28783135 PMCID: PMC5577578 DOI: 10.3390/toxins9080244] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 11/26/2022] Open
Abstract
Bothrops lanceolatus, commonly named ‘Fer-de-Lance’, is an endemic snake of the French Caribbean Island of Martinique. Envenomations by B. lanceolatus present clinical aspects characterized by systemic thrombotic syndrome and important local inflammation, involving edema and pain but limited hemorrhage. To investigate mechanisms of venom-induced inflammation, B. lanceolatus venom was characterized, its cross-reactivity with bothropic antivenom explored, its cytotoxicity on human keratinocytes and vascular cells, and the production of cytokines and chemokines were analyzed. We used electrophoretic separation, zymography, colorimetric or fluorimetric enzymatic assays, and immunochemical assays. Therapeutic South American bothropic antivenom cross-reacted with B. lanceolatus venom and completely or partially abolished its PLA2, hyaluronidase, and proteolytic activities, as well as its cytotoxicity for keratinocytes. The substrate specificity of B. lanceolatus venom proteases was emphasized. B. lanceolatus venom cytotoxicity was compared to the B. jararaca venom. Both venoms were highly cytotoxic for keratinocytes (HaCaT), whereas B. lanceolatus venom showed particularly low toxicity for endothelial cells (EAhy926). Patterns of cytokine and chemokine production by cells exposed to the venoms were highly pro-inflammatory. Thus, the results presented here show that B. lanceolatus venom toxins share important antigenic similarities with South American Bothrops species toxins, although their proteases have acquired particular substrate specificity. Moreover, the venom displays important cytotoxic and pro-inflammatory action on human cell types such as keratinocytes and endothelial cells, which are important players in the local and systemic compartments affected by the envenomation.
Collapse
Affiliation(s)
| | | | - Laurence Mathieu
- Prevor Laboratory, Moulin de Verville, Valmondois 95760, France.
| | | | - Joël Blomet
- Prevor Laboratory, Moulin de Verville, Valmondois 95760, France.
| | - Denise V Tambourgi
- Immunochemistry Laboratory, Butantan Institute, São Paulo 05503-900, Brazil.
| |
Collapse
|
25
|
Hernández-Vargas MJ, Gil J, Lozano L, Pedraza-Escalona M, Ortiz E, Encarnación-Guevara S, Alagón A, Corzo G. Proteomic and transcriptomic analysis of saliva components from the hematophagous reduviid Triatoma pallidipennis. J Proteomics 2017; 162:30-39. [PMID: 28442446 DOI: 10.1016/j.jprot.2017.04.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/31/2017] [Accepted: 04/21/2017] [Indexed: 01/15/2023]
Abstract
Species belonging to the Triatominae subfamily are commonly associated with Chagas disease, as they are potential vectors of the parasite Trypanosoma cruzi. However, their saliva contains a cocktail of diverse anti-hemostatic proteins that prevent blood coagulation, vasodilation and platelet aggregation of blood; components with indisputable therapeutic potential. We performed a transcriptomic and proteomic analyses of salivary glands and protein spots from 2DE gels of milked saliva, respectively, from the Mexican Triatoma pallidipennis. Massive sequencing techniques were used to reveal this protein diversity. A total of 78 out of 233 transcripts were identified as proteins in the saliva, divided among 43 of 55 spots from 2DE gels of saliva, identified by LC-MS/MS analysis. Some of the annotated transcripts putatively code for anti-hemostatic proteins, which share sequence similarities with proteins previously described for South American triatomines. The most abundant as well as diverse transcripts and proteins in the saliva were the anti-hemostatic triabins. For the first time, a transcriptomic analysis uncovered other unrelated but relevant components in triatomines, including antimicrobial and thrombolytic polypeptides. Likewise, unique proteins such as the angiotensin-converting enzyme were identified not just in the salivary gland transcriptome but also at saliva proteome of this North American bloodsucking insect. BIOLOGICAL SIGNIFICANCE This manuscript is the first report of the correlation between proteome and transcriptome of Triatoma pallidipennis, which shows for the first time the presence of proteins in this insect that have not been characterized in other species of this family. This information contributes to a better understanding of the multiple host defense mechanisms that are being affected at the moment of blood ingestion by the insect. Furthermore, this report gives a repertoire of possible therapeutic proteins.
Collapse
Affiliation(s)
- María J Hernández-Vargas
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 61500, Mexico
| | - Jeovanis Gil
- Centro de Ciencias Genómicas - UNAM, Cuernavaca, Morelos 62210, Mexico
| | - Luis Lozano
- Centro de Ciencias Genómicas - UNAM, Cuernavaca, Morelos 62210, Mexico
| | - Martha Pedraza-Escalona
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 61500, Mexico
| | - Ernesto Ortiz
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 61500, Mexico
| | | | - Alejandro Alagón
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 61500, Mexico
| | - Gerardo Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 61500, Mexico.
| |
Collapse
|
26
|
Boldrini-França J, Cologna CT, Pucca MB, Bordon KDCF, Amorim FG, Anjolette FAP, Cordeiro FA, Wiezel GA, Cerni FA, Pinheiro-Junior EL, Shibao PYT, Ferreira IG, de Oliveira IS, Cardoso IA, Arantes EC. Minor snake venom proteins: Structure, function and potential applications. Biochim Biophys Acta Gen Subj 2017; 1861:824-838. [DOI: 10.1016/j.bbagen.2016.12.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 12/12/2016] [Accepted: 12/20/2016] [Indexed: 12/20/2022]
|
27
|
Rocha SL, Neves-Ferreira AG, Trugilho MR, Angulo Y, Lomonte B, Valente RH, Domont GB, Perales J. Screening for target toxins of the antiophidic protein DM64 through a gel-based interactomics approach. J Proteomics 2017; 151:204-213. [DOI: 10.1016/j.jprot.2016.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/05/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
|
28
|
Modahl CM, Mackessy SP. Full-Length Venom Protein cDNA Sequences from Venom-Derived mRNA: Exploring Compositional Variation and Adaptive Multigene Evolution. PLoS Negl Trop Dis 2016; 10:e0004587. [PMID: 27280639 PMCID: PMC4900637 DOI: 10.1371/journal.pntd.0004587] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/08/2016] [Indexed: 12/24/2022] Open
Abstract
Envenomation of humans by snakes is a complex and continuously evolving medical emergency, and treatment is made that much more difficult by the diverse biochemical composition of many venoms. Venomous snakes and their venoms also provide models for the study of molecular evolutionary processes leading to adaptation and genotype-phenotype relationships. To compare venom complexity and protein sequences, venom gland transcriptomes are assembled, which usually requires the sacrifice of snakes for tissue. However, toxin transcripts are also present in venoms, offering the possibility of obtaining cDNA sequences directly from venom. This study provides evidence that unknown full-length venom protein transcripts can be obtained from the venoms of multiple species from all major venomous snake families. These unknown venom protein cDNAs are obtained by the use of primers designed from conserved signal peptide sequences within each venom protein superfamily. This technique was used to assemble a partial venom gland transcriptome for the Middle American Rattlesnake (Crotalus simus tzabcan) by amplifying sequences for phospholipases A2, serine proteases, C-lectins, and metalloproteinases from within venom. Phospholipase A2 sequences were also recovered from the venoms of several rattlesnakes and an elapid snake (Pseudechis porphyriacus), and three-finger toxin sequences were recovered from multiple rear-fanged snake species, demonstrating that the three major clades of advanced snakes (Elapidae, Viperidae, Colubridae) have stable mRNA present in their venoms. These cDNA sequences from venom were then used to explore potential activities derived from protein sequence similarities and evolutionary histories within these large multigene superfamilies. Venom-derived sequences can also be used to aid in characterizing venoms that lack proteomic profiles and identify sequence characteristics indicating specific envenomation profiles. This approach, requiring only venom, provides access to cDNA sequences in the absence of living specimens, even from commercial venom sources, to evaluate important regional differences in venom composition and to study snake venom protein evolution. This work demonstrates that full-length venom protein messenger RNAs are present in secreted venoms and can be used to acquire full-length protein sequences of toxins from both front-fanged (Elapidae, Viperidae) and rear-fanged (Colubridae) snake venoms, eliminating the need to use venom glands. Full-length transcripts were obtained from venom samples that were fresh, newly lyophilized, old, field desiccated or commercially prepared, representing a significant advance over previous attempts which produced only partial sequence transcripts. Transcripts for all major venom protein families (metalloproteinases, serine proteases, C-type lectins, phospholipases A2 and three-finger toxins) responsible for clinically significant snakebite symptoms were obtained from venoms. These sequences aid in the identification and characterization of venom proteome profiles, allowing for the identification of peptide sequences, specific isoforms, and novel venom proteins. The application of this technique will help to provide venom protein sequences for many snake species, including understudied rear-fanged snakes. Venom protein transcripts offer important insights into potential snakebite envenomation profiles and the molecular evolution of venom protein multigene families. By requiring only venom to obtain venom protein cDNAs, the approach detailed here will provide access to cDNA-based protein sequences from commercial and other venom sources, facilitating study of snake venom protein composition and evolution.
Collapse
Affiliation(s)
- Cassandra M. Modahl
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, United States of America
| | - Stephen P. Mackessy
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, United States of America
- * E-mail:
| |
Collapse
|
29
|
Mamede CCN, de Sousa BB, Pereira DFDC, Matias MS, de Queiroz MR, de Morais NCG, Vieira SAPB, Stanziola L, de Oliveira F. Comparative analysis of local effects caused by Bothrops alternatus and Bothrops moojeni snake venoms: enzymatic contributions and inflammatory modulations. Toxicon 2016; 117:37-45. [PMID: 26975252 DOI: 10.1016/j.toxicon.2016.03.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/05/2016] [Accepted: 03/08/2016] [Indexed: 11/30/2022]
Abstract
Bothropic envenomation is characterised by severe local damage caused by the toxic action of venom components and aggravated by induced inflammation. In this comparative study, the local inflammatory effects caused by the venoms of Bothrops alternatus and Bothrops moojeni, two snakes of epidemiological importance in Brazil, were investigated. The toxic action of venom components induced by bothropic venom was also characterised. Herein, the oedema, hyperalgesia and myotoxicity induced by bothropic venom were monitored for various lengths of time after venom injection in experimental animals. The intensity of the local effects caused by B. moojeni venom is considerably more potent than B. alternatus venom. Our results also indicate that metalloproteases and phospholipases A2 have a central role in the local damage induced by bothropic venoms, but serine proteases also contribute to the effects of these venoms. Furthermore, we observed that specific anti-inflammatory drugs were able to considerably reduce the oedema, the pain and the muscle damage caused by both venoms. The inflammatory reaction induced by B. moojeni venom is mediated by eicosanoid action, histamine and nitric oxide, with significant participation of bradykinin on the hyperalgesic and myotoxic effects of this venom. These mediators also participate to inflammation caused by B. alternatus venom. However, the inefficient anti-inflammatory effects of some local modulation suggest that histamine, leukotrienes and nitric oxide have little role in the oedema or myotoxicity caused by B. alternatus venom.
Collapse
Affiliation(s)
- Carla Cristine Neves Mamede
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), 31270-901 Belo Horizonte, MG, Brazil.
| | - Bruna Barbosa de Sousa
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), 31270-901 Belo Horizonte, MG, Brazil
| | | | - Mariana Santos Matias
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG, Brazil
| | - Mayara Ribeiro de Queiroz
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), 31270-901 Belo Horizonte, MG, Brazil
| | - Nadia Cristina Gomes de Morais
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), 31270-901 Belo Horizonte, MG, Brazil
| | | | - Leonilda Stanziola
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), 31270-901 Belo Horizonte, MG, Brazil
| | - Fábio de Oliveira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
30
|
Suntravat M, Uzcategui NL, Atphaisit C, Helmke TJ, Lucena SE, Sánchez EE, Acosta AR. Gene expression profiling of the venom gland from the Venezuelan mapanare (Bothrops colombiensis) using expressed sequence tags (ESTs). BMC Mol Biol 2016; 17:7. [PMID: 26944950 PMCID: PMC4779267 DOI: 10.1186/s12867-016-0059-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/23/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Bothrops colombiensis is a highly dangerous pit viper and responsible for over 70% of snakebites in Venezuela. Although the composition in B. colombiensis venom has been identified using a proteome analysis, the venom gland transcriptome is currently lacking. RESULTS We constructed a cDNA library from the venom gland of B. colombiensis, and a set of 729 high quality expressed sequence tags (ESTs) was identified. A total number of 344 ESTs (47.2% of total ESTs) was related to toxins. The most abundant toxin transcripts were metalloproteinases (37.5%), phospholipases A2s (PLA2, 29.7%), and serine proteinases (11.9%). Minor toxin transcripts were linked to waprins (5.5%), C-type lectins (4.1%), ATPases (2.9%), cysteine-rich secretory proteins (CRISP, 2.3%), snake venom vascular endothelium growth factors (svVEGF, 2.3%), L-amino acid oxidases (2%), and other putative toxins (1.7%). While 160 ESTs (22% of total ESTs) coded for translation proteins, regulatory proteins, ribosomal proteins, elongation factors, release factors, metabolic proteins, and immune response proteins. Other proteins detected in the transcriptome (87 ESTs, 11.9% of total ESTs) were undescribed proteins with unknown functions. The remaining 138 (18.9%) cDNAs had no match with known GenBank accessions. CONCLUSION This study represents the analysis of transcript expressions and provides a physical resource of unique genes for further study of gene function and the development of novel molecules for medical applications.
Collapse
Affiliation(s)
- Montamas Suntravat
- National Natural Toxins Research Center, Department of Chemistry, Texas A and M University-Kingsville, Kingsville, USA.
| | - Néstor L Uzcategui
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico de la Universidad Central de Venezuela, Caracas, Venezuela.
| | - Chairat Atphaisit
- National Natural Toxins Research Center, Department of Chemistry, Texas A and M University-Kingsville, Kingsville, USA.
| | - Thomas J Helmke
- National Natural Toxins Research Center, Department of Chemistry, Texas A and M University-Kingsville, Kingsville, USA.
| | - Sara E Lucena
- National Natural Toxins Research Center, Department of Chemistry, Texas A and M University-Kingsville, Kingsville, USA.
| | - Elda E Sánchez
- National Natural Toxins Research Center, Department of Chemistry, Texas A and M University-Kingsville, Kingsville, USA.
| | - Alexis Rodríguez Acosta
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico de la Universidad Central de Venezuela, Caracas, Venezuela.
| |
Collapse
|
31
|
Wiezel GA, dos Santos PK, Cordeiro FA, Bordon KCF, Selistre-de-Araújo HS, Ueberheide B, Arantes EC. Identification of hyaluronidase and phospholipase B in Lachesis muta rhombeata venom. Toxicon 2015; 107:359-68. [PMID: 26335358 PMCID: PMC6166653 DOI: 10.1016/j.toxicon.2015.08.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/21/2015] [Accepted: 08/27/2015] [Indexed: 11/25/2022]
Abstract
Hyaluronidases contribute to local and systemic damages after envenoming, since they act as spreading factors cleaving the hyaluronan presents in the connective tissues of the victim, facilitating the diffusion of venom components. Although hyaluronidases are ubiquitous in snake venoms, they still have not been detected in transcriptomic analysis of the Lachesis venom gland and neither in the proteome of its venom performed previously. This work purified a hyaluronidase from Lachesis muta rhombeata venom whose molecular mass was estimated by SDS-PAGE to be 60 kDa. The hyaluronidase was more active at pH 6 and 37 °C when salt concentration was kept constant and more active in the presence of 0.15 M monovalent ions when the pH was kept at 6. Venom was fractionated by reversed-phase liquid chromatography (RPLC). Edman sequencing after RPLC failed to detect hyaluronidase, but identified a new serine proteinase isoform. The hyaluronidase was identified by mass spectrometry analysis of the protein bands in SDS-PAGE. Additionally, phospholipase B was identified for the first time in Lachesis genus venom. The discovery of new bioactive molecules might contribute to the design of novel drugs and biotechnology products as well as to development of more effective treatments against the envenoming.
Collapse
Affiliation(s)
- Gisele A Wiezel
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil.
| | - Patty K dos Santos
- Department of Physiological Sciences, Federal University of São Carlos, Rod. Washington Luís, km 235, 13565-905, São Carlos, SP, Brazil.
| | - Francielle A Cordeiro
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil.
| | - Karla C F Bordon
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil.
| | - Heloisa S Selistre-de-Araújo
- Department of Physiological Sciences, Federal University of São Carlos, Rod. Washington Luís, km 235, 13565-905, São Carlos, SP, Brazil.
| | - Beatrix Ueberheide
- Proteomics Resource Center, Langone Medical Center, New York University, 430 East 29th St., 8th Floor, 10016, New York, NY, USA.
| | - Eliane C Arantes
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
32
|
Gaur M, Das A, Subudhi E. High quality SNPs/Indels mining and characterization in ginger from ESTs data base. Bioinformation 2015; 11:85-9. [PMID: 25848168 PMCID: PMC4369683 DOI: 10.6026/97320630011085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 01/29/2015] [Indexed: 11/23/2022] Open
Abstract
Ginger (Zingiber officinale Rosc.) is an important herb of the family Zingiberaceae. It is accepted as a universal cure for a multitude of diseases in Indian systems of medicine and its rhizomes are equally popular as a spice ingredient throughout Asia. SNPs, the definitive genetic markers, representing the finest resolution of a DNA sequence, are abundantly found in populations having a lower rate of mutation and are used for genomic analysis. The public ESTs sequences mostly lack quality files, making high quality SNPs detection more difficult since it is exclusively based on sequence comparisons. In the present study, current dbESTs of NCBI was mined and 38115 ginger ESTs sequences were obtained and assembled into contigs using CAP3 program. In this analysis, recent software tool QualitySNP was used to detect 11523 potential SNPs sites, 8810 high quality SNPs and 1008 indels polymorphisms with a frequency of 1.61 SNPs / 10 kbp. Of ESTs libraries generated from three ginger tissues together, rhizomes had a frequency of 0.32 SNPs and 0.03 indels per 10 kbp whereas the leaves had a frequency of 2.51 SNPs and 0.23 indels per 10 kbp and root is showing relative frequency of 0.76/10 kbp SNPs and 0.02/10 kbp indels. The present analysis provides additional information about the tissue wise presence of haplotypes (222), distribution of high quality exonic (2355) and intronic (6455) SNPs and information about singletons (7538) in addition to contigs transitions and transversions ratio (0.57). Among all tissue detected SNPs, transversions number is higher in comparison to the number of transitions. Quality SNPs detected in this work can be used as markers for further ginger genetic experiments.
Collapse
Affiliation(s)
- Mahendra Gaur
- Centre of Biotechnology, Siksha ‘O’ Anushandhan University, Kalinga Nagar, Ghatikia, Bhubaneswar-751003, Odisha
| | - Aradhana Das
- Centre of Biotechnology, Siksha ‘O’ Anushandhan University, Kalinga Nagar, Ghatikia, Bhubaneswar-751003, Odisha
| | - Enketeswara Subudhi
- Centre of Biotechnology, Siksha ‘O’ Anushandhan University, Kalinga Nagar, Ghatikia, Bhubaneswar-751003, Odisha
| |
Collapse
|
33
|
Terrat Y, Ducancel F. Are there unequivocal criteria to label a given protein as a toxin? Permissive versus conservative annotation processes. Genome Biol 2015; 14:406. [PMID: 24001002 PMCID: PMC4054097 DOI: 10.1186/gb-2013-14-9-406] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
34
|
de Paula FFP, Ribeiro JU, Santos LM, de Souza DHF, Leonardecz E, Henrique-Silva F, Selistre-de-Araújo HS. Molecular characterization of metalloproteases from Bothrops alternatus snake venom. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2014; 12:74-83. [DOI: 10.1016/j.cbd.2014.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 09/09/2014] [Accepted: 09/12/2014] [Indexed: 11/15/2022]
|
35
|
The lineage-specific evolution of aquaporin gene clusters facilitated tetrapod terrestrial adaptation. PLoS One 2014; 9:e113686. [PMID: 25426855 PMCID: PMC4245216 DOI: 10.1371/journal.pone.0113686] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/27/2014] [Indexed: 01/02/2023] Open
Abstract
A major physiological barrier for aquatic organisms adapting to terrestrial life is dessication in the aerial environment. This barrier was nevertheless overcome by the Devonian ancestors of extant Tetrapoda, but the origin of specific molecular mechanisms that solved this water problem remains largely unknown. Here we show that an ancient aquaporin gene cluster evolved specifically in the sarcopterygian lineage, and subsequently diverged into paralogous forms of AQP2, -5, or -6 to mediate water conservation in extant Tetrapoda. To determine the origin of these apomorphic genomic traits, we combined aquaporin sequencing from jawless and jawed vertebrates with broad taxon assembly of >2,000 transcripts amongst 131 deuterostome genomes and developed a model based upon Bayesian inference that traces their convergent roots to stem subfamilies in basal Metazoa and Prokaryota. This approach uncovered an unexpected diversity of aquaporins in every lineage investigated, and revealed that the vertebrate superfamily consists of 17 classes of aquaporins (Aqp0 - Aqp16). The oldest orthologs associated with water conservation in modern Tetrapoda are traced to a cluster of three aqp2-like genes in Actinistia that likely arose >500 Ma through duplication of an aqp0-like gene present in a jawless ancestor. In sea lamprey, we show that aqp0 first arose in a protocluster comprised of a novel aqp14 paralog and a fused aqp01 gene. To corroborate these findings, we conducted phylogenetic analyses of five syntenic nuclear receptor subfamilies, which, together with observations of extensive genome rearrangements, support the coincident loss of ancestral aqp2-like orthologs in Actinopterygii. We thus conclude that the divergence of sarcopterygian-specific aquaporin gene clusters was permissive for the evolution of water conservation mechanisms that facilitated tetrapod terrestrial adaptation.
Collapse
|
36
|
Brahma RK, McCleary RJR, Kini RM, Doley R. Venom gland transcriptomics for identifying, cataloging, and characterizing venom proteins in snakes. Toxicon 2014; 93:1-10. [PMID: 25448392 DOI: 10.1016/j.toxicon.2014.10.022] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/27/2014] [Indexed: 01/13/2023]
Abstract
Snake venoms are cocktails of protein toxins that play important roles in capture and digestion of prey. Significant qualitative and quantitative variation in snake venom composition has been observed among and within species. Understanding these variations in protein components is instrumental in interpreting clinical symptoms during human envenomation and in searching for novel venom proteins with potential therapeutic applications. In the last decade, transcriptomic analyses of venom glands have helped in understanding the composition of various snake venoms in great detail. Here we review transcriptomic analysis as a powerful tool for understanding venom profile, variation and evolution.
Collapse
Affiliation(s)
- Rajeev Kungur Brahma
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784 028, Assam, India
| | - Ryan J R McCleary
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - R Manjunatha Kini
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore; Department of Biochemistry, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA; University of South Australia, School of Pharmacy and Medical Sciences, Adelaide, South Australia 5001, Australia
| | - Robin Doley
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784 028, Assam, India.
| |
Collapse
|
37
|
Garcia Denegri ME, Maruñak S, Todaro JS, Ponce-Soto LA, Acosta O, Leiva L. Neutralisation of the pharmacological activities of Bothrops alternatus venom by anti-PLA2 IgGs. Toxicon 2014; 86:89-95. [PMID: 24878372 DOI: 10.1016/j.toxicon.2014.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 05/16/2014] [Accepted: 05/19/2014] [Indexed: 11/16/2022]
Abstract
Basic phospholipases A2 (PLA2) are toxic and induce a wide spectrum of pharmacological effects, although the acidic enzyme types are not lethal or cause low lethality. Therefore, it is challenging to elucidate the mechanism of action of acidic phospholipases. This study used the acidic non-toxic Ba SpII RP4 PLA2 from Bothrops alternatus as an antigen to develop anti-PLA2 IgG antibodies in rabbits and used in vivo assays to examine the changes in crude venom when pre-incubated with these antibodies. Using Ouchterlony and western blot analyses on B. alternatus venom, we examined the specificity and sensitivity of phospholipase A2 recognition by the specific antibodies (anti-PLA2 IgG). Neutralisation assays using a non-toxic PLA2 antigen revealed unexpected results. The (indirect) haemolytic activity of whole venom was completely inhibited, and all catalytically active phospholipases A2 were blocked. Myotoxicity and lethality were reduced when the crude venom was pre-incubated with anti-PLA2 immunoglobulins. CK levels in the skeletal muscle were significantly reduced at 6 h, and the muscular damage was more significant at this time-point compared to 3 and 12 h. When four times the LD50 was used (224 μg), half the animals treated with the venom-anti PLA2 IgG mixture survived after 48 h. All assays performed with the specific antibodies revealed that Ba SpII RP4 PLA2 had a synergistic effect on whole-venom toxicity. IgG antibodies against the venom of the Argentinean species B. alternatus represent a valuable tool for elucidation of the roles of acidic PLA2 that appear to have purely digestive roles and for further studies on immunotherapy and snake envenoming in affected areas in Argentina and Brazil.
Collapse
Affiliation(s)
- María E Garcia Denegri
- Laboratorio de Química de Proteinas, Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Argentina; Laboratorio de Farmacología y Toxicología, Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste (UNNE), Sargento Cabral 2139, CP 3400, Corrientes, Argentina.
| | - Silvana Maruñak
- Laboratorio de Farmacología y Toxicología, Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste (UNNE), Sargento Cabral 2139, CP 3400, Corrientes, Argentina
| | - Juan S Todaro
- Laboratorio de Bioquímica, Facultad de Medicina, Universidad Nacional del Nordeste (UNNE), Corrientes, Argentina
| | - Luis A Ponce-Soto
- Laboratório de Química de Proteínas, Departamento de Bioquímica, Instituto de Biología, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Ofelia Acosta
- Laboratorio de Farmacología y Toxicología, Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste (UNNE), Sargento Cabral 2139, CP 3400, Corrientes, Argentina
| | - Laura Leiva
- Laboratorio de Química de Proteinas, Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Argentina
| |
Collapse
|
38
|
Calvete JJ. Proteomic tools against the neglected pathology of snake bite envenoming. Expert Rev Proteomics 2014; 8:739-58. [DOI: 10.1586/epr.11.61] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Snake venomics: From the inventory of toxins to biology. Toxicon 2013; 75:44-62. [DOI: 10.1016/j.toxicon.2013.03.020] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/06/2013] [Accepted: 03/13/2013] [Indexed: 01/05/2023]
|
40
|
Comparison of phylogeny, venom composition and neutralization by antivenom in diverse species of bothrops complex. PLoS Negl Trop Dis 2013; 7:e2442. [PMID: 24069493 PMCID: PMC3772048 DOI: 10.1371/journal.pntd.0002442] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/11/2013] [Indexed: 11/25/2022] Open
Abstract
In Latin America, Bothrops snakes account for most snake bites in humans, and the recommended treatment is administration of multispecific Bothrops antivenom (SAB – soro antibotrópico). However, Bothrops snakes are very diverse with regard to their venom composition, which raises the issue of which venoms should be used as immunizing antigens for the production of pan-specific Bothrops antivenoms. In this study, we simultaneously compared the composition and reactivity with SAB of venoms collected from six species of snakes, distributed in pairs from three distinct phylogenetic clades: Bothrops, Bothropoides and Rhinocerophis. We also evaluated the neutralization of Bothrops atrox venom, which is the species responsible for most snake bites in the Amazon region, but not included in the immunization antigen mixture used to produce SAB. Using mass spectrometric and chromatographic approaches, we observed a lack of similarity in protein composition between the venoms from closely related snakes and a high similarity between the venoms of phylogenetically more distant snakes, suggesting little connection between taxonomic position and venom composition. P-III snake venom metalloproteinases (SVMPs) are the most antigenic toxins in the venoms of snakes from the Bothrops complex, whereas class P-I SVMPs, snake venom serine proteinases and phospholipases A2 reacted with antibodies in lower levels. Low molecular size toxins, such as disintegrins and bradykinin-potentiating peptides, were poorly antigenic. Toxins from the same protein family showed antigenic cross-reactivity among venoms from different species; SAB was efficient in neutralizing the B. atrox venom major toxins. Thus, we suggest that it is possible to obtain pan-specific effective antivenoms for Bothrops envenomations through immunization with venoms from only a few species of snakes, if these venoms contain protein classes that are representative of all species to which the antivenom is targeted. Snakebite envenomation is a serious health issue in Latin America, particularly in the Amazon, where antivenom administration may be delayed due to logistic constraints. Bothrops snakes are involved in most of the snakebite-related accidents in Brazil. This work reports a comparative study of the toxin composition and antigenicity of the Bothrops venoms used to prepare the commercial antivenom and its effectiveness against the venom from Bothrops atrox, a prevalent Amazon species that is not included in the pool. Our data show a lack of connection between Bothrops taxonomic identity and venom composition. We also show that different toxins display distinct reactivity with the tested antivenom. However, the antivenom reacted similarly with each class of toxin present in the venoms of the different snakes studied. Important evidence was the neutralization of the major toxic effects of B. atrox venom, not included in the mixture of antigens used to produce the antivenom. Based on the observed antigenicity of the distinct protein classes of toxins, we suggest that it is possible to obtain pan-specific and efficient Bothrops antivenoms via immunization with venoms from a few species of snakes that are representative of the protein composition of a large number of targeted species.
Collapse
|
41
|
In vitro comparison of enzymatic effects among Brazilian Bothrops spp. venoms. Toxicon 2013; 76:1-10. [PMID: 23998940 DOI: 10.1016/j.toxicon.2013.08.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 08/01/2013] [Accepted: 08/13/2013] [Indexed: 12/29/2022]
Abstract
In various types of snake venom, the major toxic components are proteinases and members of the phospholipase A2 family, although other enzymes also contribute to the toxicity. In this study, we evaluated the proteolytic, phospholipase, and L-Amino acid oxidase activities in the venom of five Bothrops species-Bothrops jararaca, Bothrops jararacussu, Bothrops moojeni, Bothrops neuwiedi, and Bothrops alternatus-all of which are used in the production of commercial antivenom, prepared in horses. The enzymatic activities of each species' venom were classified as high, moderate, or low. B. moojeni venom demonstrated the highest enzymatic activity profile, followed by the venom of B. neuwiedi, B. jararacussu, B. jararaca, and B. alternatus. To our knowledge, this is the first study to compare all of these enzymes from multiple species, which is significant in view of the activity of L-amino acid oxidase across Bothrops species.
Collapse
|
42
|
Nijveen H, van Kaauwen M, Esselink DG, Hoegen B, Vosman B. QualitySNPng: a user-friendly SNP detection and visualization tool. Nucleic Acids Res 2013; 41:W587-90. [PMID: 23632165 PMCID: PMC3692117 DOI: 10.1093/nar/gkt333] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
QualitySNPng is a new software tool for the detection and interactive visualization of single-nucleotide polymorphisms (SNPs). It uses a haplotype-based strategy to identify reliable SNPs; it is optimized for the analysis of current RNA-seq data; but it can also be used on genomic DNA sequences derived from next-generation sequencing experiments. QualitySNPng does not require a sequenced reference genome and delivers reliable SNPs for di- as well as polyploid species. The tool features a user-friendly interface, multiple filtering options to handle typical sequencing errors, support for SAM and ACE files and interactive visualization. QualitySNPng produces high-quality SNP information that can be used directly in genotyping by sequencing approaches for application in QTL and genome-wide association mapping as well as to populate SNP arrays. The software can be used as a stand-alone application with a graphical user interface or as part of a pipeline system like Galaxy. Versions for Windows, Mac OS X and Linux, as well as the source code, are available from http://www.bioinformatics.nl/QualitySNPng.
Collapse
Affiliation(s)
- Harm Nijveen
- Department of Plant Sciences, Laboratory of Bioinformatics, Wageningen University, PO Box 569, 6700AN Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
43
|
Dorémus T, Urbach S, Jouan V, Cousserans F, Ravallec M, Demettre E, Wajnberg E, Poulain J, Azéma-Dossat C, Darboux I, Escoubas JM, Colinet D, Gatti JL, Poirié M, Volkoff AN. Venom gland extract is not required for successful parasitism in the polydnavirus-associated endoparasitoid Hyposoter didymator (Hym. Ichneumonidae) despite the presence of numerous novel and conserved venom proteins. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:292-307. [PMID: 23298679 DOI: 10.1016/j.ibmb.2012.12.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/21/2012] [Accepted: 12/21/2012] [Indexed: 06/01/2023]
Abstract
The venom gland is a conserved organ in Hymenoptera that shows adaptations associated with life-style diversification. Few studies have investigated venom components and function in the highly diverse parasitic wasps and all suggest that the venom regulates host physiology. We explored the venom of the endoparasitoid Hyposoter didymator (Campopleginae), a species with an associated polydnavirus produced in the ovarian tissue. We investigated the effects of the H. didymator venom on two physiological traits of the host Spodoptera frugiperda (Noctuidae): encapsulation response and growth rate. We found that H. didymator venom had no significant effect on host cellular immunity or development, suggesting that it does not contribute to parasitism success. The host physiology seemed to be modified essentially by the ovarian fluid containing the symbiotic polydnaviruses. Proteomic analyses indicated that the H. didymator venom gland produces a large variety of proteins, consistent with the classical hymenopteran venom protein signature, including: reprolysin-like, dipeptidyl peptidase IV, hyaluronidase, arginine kinase or allergen proteins. The venom extracts also contained novel proteins, encoded by venom genes conserved in Campopleginae ichneumonids, and proteins with similarities to active molecules identified in other parasitoid species, such as calreticulin, reprolysin, superoxide dismutase and serpin. However, some of these proteins appear to be produced only in small amounts or to not be secreted. Possibly, in Campopleginae carrying polydnaviruses, the host-modifying activities of venom became redundant following the acquisition of polydnaviruses by the lineage.
Collapse
Affiliation(s)
- Tristan Dorémus
- INRA (UMR 1333), Université de Montpellier 2, "Insect-Microorganisms Diversity, Genomes and Interactions", Place Eugène Bataillon, CC101, 34095 Montpellier Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
da Silva IRF, Lorenzetti R, Rennó AL, Baldissera L, Zelanis A, Serrano SMDT, Hyslop S. BJ-PI2, A non-hemorrhagic metalloproteinase from Bothrops jararaca snake venom. Biochim Biophys Acta Gen Subj 2012; 1820:1809-21. [DOI: 10.1016/j.bbagen.2012.07.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 07/07/2012] [Accepted: 07/25/2012] [Indexed: 11/25/2022]
|
45
|
Cloning and functional expression of secreted phospholipases A2 from Bothrops diporus (Yarará Chica). Biochem Biophys Res Commun 2012; 427:321-5. [DOI: 10.1016/j.bbrc.2012.09.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 09/08/2012] [Indexed: 11/23/2022]
|
46
|
|
47
|
Zelanis A, Andrade-Silva D, Rocha MM, Furtado MF, Serrano SMT, Junqueira-de-Azevedo ILM, Ho PL. A transcriptomic view of the proteome variability of newborn and adult Bothrops jararaca snake venoms. PLoS Negl Trop Dis 2012; 6:e1554. [PMID: 22428077 PMCID: PMC3302817 DOI: 10.1371/journal.pntd.0001554] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 01/19/2012] [Indexed: 11/22/2022] Open
Abstract
Background Snake bite is a neglected public health problem in communities in rural areas of several countries. Bothrops jararaca causes many snake bites in Brazil and previous studies have demonstrated that the pharmacological activities displayed by its venom undergo a significant ontogenetic shift. Similarly, the venom proteome of B. jararaca exhibits a considerable variation upon neonate to adult transition, which is associated with changes in diet from ectothermic prey in early life to endothermic prey in adulthood. Moreover, it has been shown that the Brazilian commercial antibothropic antivenom, which is produced by immunization with adult venom, is less effective in neutralizing newborn venom effects. On the other hand, venom gland transcripts of newborn snakes are poorly known since all transcriptomic studies have been carried out using mRNA from adult specimens. Methods/Principal Findings Here we analyzed venom gland cDNA libraries of newborn and adult B. jararaca in order to evaluate whether the variability demonstrated for its venom proteome and pharmacological activities was correlated with differences in the structure of toxin transcripts. The analysis revealed that the variability in B. jararaca venom gland transcriptomes is quantitative, as illustrated by the very high content of metalloproteinases in the newborn venom glands. Moreover, the variability is also characterized by the structural diversity of SVMP precursors found in newborn and adult transcriptomes. In the adult transcriptome, however, the content of metalloproteinase precursors considerably diminishes and the number of transcripts of serine proteinases, C-type lectins and bradykinin-potentiating peptides increase. Moreover, the comparison of the content of ESTs encoding toxins in adult male and female venom glands showed some gender-related differences. Conclusions/Significance We demonstrate a substantial shift in toxin transcripts upon snake development and a marked decrease in the metalloproteinase P-III/P-I class ratio which are correlated with changes in the venom proteome complexity and pharmacological activities. Bothrops jararaca is one of the most abundant venomous snake species in Brazil. It is primarily a nocturnal and generalist animal, however, it exhibits a notable ontogenetic shift in diet, feeding mainly on arthropods, lizards, and amphibians (ectothermic prey) through its juvenile phase and on small mammals (endothermic animals) during adult life. Due to its broad geographical distribution, this species is responsible for the majority of the accidents by Bothrops genus in Brazil. Studies on envenomation cases with newborn and adult B. jararaca snakes have shown distinct patterns, mainly related to blood coagulation disorders, which seems to be prominent in accidents with newborn specimens. Moreover, it has been demonstrated that the Brazilian commercial antibothropic antivenom, which is produced by immunization with adult venom, is less effective in neutralizing newborn venom effects. In this study we analyzed the venom gland transcriptome of newborn snake specimens and compared the content of toxin transcripts with that of adult specimens. We demonstrate that upon B. jararaca development, its repertoire of mRNAs encoding toxins changes both qualitatively and quantitatively and these alterations are associated with the venom proteome profiles and pharmacological activities displayed by newborn and adult specimens.
Collapse
Affiliation(s)
- André Zelanis
- Laboratório Especial de Toxinologia Aplicada (CAT/cepid), Instituto Butantan, São Paulo, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil
| | - Débora Andrade-Silva
- Laboratório Especial de Toxinologia Aplicada (CAT/cepid), Instituto Butantan, São Paulo, Brazil
| | - Marisa M. Rocha
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil
| | - Maria F. Furtado
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil
| | - Solange M. T. Serrano
- Laboratório Especial de Toxinologia Aplicada (CAT/cepid), Instituto Butantan, São Paulo, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil
- * E-mail: (SMTS) (SS); (ILMJ) (IJ); (PLH) (PH)
| | - Inácio L. M. Junqueira-de-Azevedo
- Laboratório Especial de Toxinologia Aplicada (CAT/cepid), Instituto Butantan, São Paulo, Brazil
- Centro de Biotecnologia, Instituto Butantan, São Paulo, Brazil
- * E-mail: (SMTS) (SS); (ILMJ) (IJ); (PLH) (PH)
| | - Paulo Lee Ho
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil
- Centro de Biotecnologia, Instituto Butantan, São Paulo, Brazil
- * E-mail: (SMTS) (SS); (ILMJ) (IJ); (PLH) (PH)
| |
Collapse
|
48
|
Munawar A, Trusch M, Georgieva D, Spencer P, Frochaux V, Harder S, Arni RK, Duhalov D, Genov N, Schlüter H, Betzel C. Venom peptide analysis of Vipera ammodytes meridionalis (Viperinae) and Bothrops jararacussu (Crotalinae) demonstrates subfamily-specificity of the peptidome in the family Viperidae. MOLECULAR BIOSYSTEMS 2011; 7:3298-307. [PMID: 21959992 DOI: 10.1039/c1mb05309d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Snake venom peptidomes are valuable sources of pharmacologically active compounds. We analyzed the peptidic fractions (peptides with molecular masses < 10,000 Da) of venoms of Vipera ammodytes meridionalis (Viperinae), the most toxic snake in Europe, and Bothrops jararacussu (Crotalinae), an extremely poisonous snake of South America. Liquid chromatography/mass spectrometry (LC/MS), direct infusion electrospray mass spectrometry (ESI-MS) and matrix-assisted desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) were applied to characterize the peptides of both snake venoms. 32 bradykinin-potentiating peptides (BPPs) were identified in the Crotalinae venom and their sequences determined. 3 metalloproteinase inhibitors, 10 BPPs and a Kunitz-type inhibitor were observed in the Viperinae venom peptidome. Variability in the C-terminus of homologous BPPs was observed, which can influence the pharmacological effects. The data obtained so far show a subfamily specificity of the venom peptidome in the Viperidae family: BPPs are the major peptide component of the Crotalinae venom peptidome lacking Kunitz-type inhibitors (with one exception) while the Viperinae venom, in addition to BPPs, can contain peptides of the bovine pancreatic trypsin inhibitor family. We found indications for a post-translational phosphorylation of serine residues in Bothrops jararacussu venom BPP (S[combining low line]QGLPPGPPIP), which could be a regulatory mechanism in their interactions with ACE, and might influence the hypotensive effect. Homology between venom BPPs from Viperidae snakes and venom natriuretic peptide precursors from Elapidae snakes suggests a structural similarity between the respective peptides from the peptidomes of both snake families. The results demonstrate that the venoms of both snakes are rich sources of peptides influencing important physiological systems such as blood pressure regulation and hemostasis. The data can be used for pharmacological and medical applications.
Collapse
Affiliation(s)
- Aisha Munawar
- Laboratory of Structural Biology of Infection and Inflammation, Institute of Biochemistry and Molecular Biology, University of Hamburg, Notkestr 85, Build 22a, 22603 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Williams DJ, Gutiérrez JM, Calvete JJ, Wüster W, Ratanabanangkoon K, Paiva O, Brown NI, Casewell NR, Harrison RA, Rowley PD, O'Shea M, Jensen SD, Winkel KD, Warrell DA. Ending the drought: new strategies for improving the flow of affordable, effective antivenoms in Asia and Africa. J Proteomics 2011; 74:1735-67. [PMID: 21640209 DOI: 10.1016/j.jprot.2011.05.027] [Citation(s) in RCA: 188] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 04/30/2011] [Accepted: 05/11/2011] [Indexed: 01/13/2023]
Abstract
The development of snake antivenoms more than a century ago should have heralded effective treatment of the scourge of snakebite envenoming in impoverished, mostly rural populations around the world. That snakebite still exists today, as a widely untreated illness that maims, kills and terrifies men, women and children in vulnerable communities, is a cruel anachronism. Antivenom can be an effective, safe and affordable treatment for snakebites, but apathy, inaction and the politicisation of public health have marginalised both the problem (making snakebite arguably the most neglected of all neglected tropical diseases) and its solution. For lack of any coordinated approach, provision of antivenoms has been pushed off the public health agenda, leading to an incongruous decline in demand for these crucial antidotes, excused and fed by new priorities, an absence of epidemiological data, and a poor regulatory framework. These factors facilitated the infiltration of poor quality products that degrade user confidence and undermine legitimate producers. The result is that tens of thousands are denied an essential life-saving medicine, allowing a toll of human suffering that is a summation of many individual catastrophes. No strategy has been developed to address this problem and to overcome the intransigence and inaction responsible for the global tragedy of snakebite. Attempts to engage with the broader public health community through the World Health Organisation (WHO), GAVI, and other agencies have failed. Consequently, the toxinology community has taken on a leadership role in a new approach, the Global Snakebite Initiative, which seeks to mobilise the resources, skills and experience of scientists and clinicians for whom venoms, toxins, antivenoms, snakes and snakebites are already fields of interest. Proteomics is one such discipline, which has embraced the potential of using venoms in bio-discovery and systems biology. The fields of venomics and antivenomics have recently evolved from this discipline, offering fresh hope for the victims of snakebites by providing an exciting insight into the complexities, nature, fundamental properties and significance of venom constituents. Such a rational approach brings with it the potential to design new immunising mixtures from which to raise potent antivenoms with wider therapeutic ranges. This addresses a major practical limitation in antivenom use recognised since the beginning of the 20th century: the restriction of therapeutic effectiveness to the specific venom immunogen used in production. Antivenomic techniques enable the interactions between venoms and antivenoms to be examined in detail, and if combined with functional assays of specific activity and followed up by clinical trials of effectiveness and safety, can be powerful tools with which to evaluate the suitability of current and new antivenoms for meeting urgent regional needs. We propose two mechanisms through which the Global Snakebite Initiative might seek to end the antivenom drought in Africa and Asia: first by establishing a multidisciplinary, multicentre, international collaboration to evaluate currently available antivenoms against the venoms of medically important snakes from specific nations in Africa and Asia using a combination of proteomic, antivenomic and WHO-endorsed preclinical assessment protocols, to provide a validated evidence base for either recommending or rejecting individual products; and secondly by bringing the power of proteomics to bear on the design of new immunising mixtures to raise Pan-African and Pan-Asian polyvalent antivenoms of improved potency and quality. These products will be subject to rigorous clinical assessment. We propose radically to change the basis upon which antivenoms are produced and supplied for the developing world. Donor funding and strategic public health alliances will be sought to make it possible not only to sustain the financial viability of antivenom production partnerships, but also to ensure that patients are relieved of the costs of antivenom so that poverty is no longer a barrier to the treatment of this important, but grossly neglected public health emergency.
Collapse
Affiliation(s)
- David J Williams
- Australian Venom Research Unit, Department of Pharmacology, University of Melbourne, Parkville, Vic, 3010, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|