1
|
Xu T, He C, Han X, Kong L, Li Q. Comparative mitogenomic analysis and phylogeny of Veneridae with doubly uniparental inheritance. Open Biol 2024; 14:240186. [PMID: 39591991 PMCID: PMC11597414 DOI: 10.1098/rsob.240186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Doubly uniparental inheritance (DUI) is an atypical animal mtDNA inheritance system, reported so far only in bivalve species, in which two mitochondrial lineages exist: one transmitted through the egg (F-type) and the other through the sperm (M-type). Although numerous species exhibit this unusual organelle inheritance, it is primarily documented in marine and freshwater mussels. The distribution, function and molecular evolutionary implications of DUI in the family Veneridae, however, remain unclear. Here, we investigated 17 species of Veneridae, compared mitochondrial genomes of DUI species and reconstructed their phylogenetic framework. Different sex-linked mitochondrial genomes have been identified in the male gonads and adductor muscles of 7 venerids, indicating the presence of DUI in these species. Analysis of the unassigned regions (URs) of the mitochondrial genome in DUI species revealed that 13 out of 44 URs contained repetitive sequences, with nine being long unassigned regions (LURs). All LURs were capable of forming secondary structures, and most of them exhibited patterns of significant sequence similarity to elements known to have specific functions in the control regions of sea urchins and mammals. The F/M phylogeny showed that DUI venerids exhibit both taxon-specific patterns and gender-specific patterns, with Gafrarium dispar experiencing masculinization events.
Collapse
Affiliation(s)
- Tao Xu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, People’s Republic of China
| | - Chuandong He
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, People’s Republic of China
| | - Xiao Han
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, People’s Republic of China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, People’s Republic of China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong266237, People’s Republic of China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, People’s Republic of China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong266237, People’s Republic of China
| |
Collapse
|
2
|
Muneretto G, Plazzi F, Passamonti M. Mitochondrion-to-nucleus communication mediated by RNA export: a survey of potential mechanisms and players across eukaryotes. Biol Lett 2024; 20:20240147. [PMID: 38982851 PMCID: PMC11283861 DOI: 10.1098/rsbl.2024.0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/16/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024] Open
Abstract
The nucleus interacts with the other organelles to perform essential functions of the eukaryotic cell. Mitochondria have their own genome and communicate back to the nucleus in what is known as mitochondrial retrograde response. Information is transferred to the nucleus in many ways, leading to wide-ranging changes in nuclear gene expression and culminating with changes in metabolic, regulatory or stress-related pathways. RNAs are emerging molecules involved in this signalling. RNAs encode precise information and are involved in highly target-specific signalling, through a wide range of processes known as RNA interference. RNA-mediated mitochondrial retrograde response requires these molecules to exit the mitochondrion, a process that is still mostly unknown. We suggest that the proteins/complexes translocases of the inner membrane, polynucleotide phosphorylase, mitochondrial permeability transition pore, and the subunits of oxidative phosphorylation complexes may be responsible for RNA export.
Collapse
Affiliation(s)
- Giorgio Muneretto
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Federico Plazzi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Marco Passamonti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
3
|
Zhang N, Li Y, Halanych KM, Kong L, Li Q. A comparative analysis of mitochondrial ORFs provides new insights on expansion of mitochondrial genome size in Arcidae. BMC Genomics 2022; 23:809. [PMID: 36474182 PMCID: PMC9727918 DOI: 10.1186/s12864-022-09040-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Arcidae, comprising about 260 species of ark shells, is an ecologically and economically important lineage of bivalve mollusks. Interestingly, mitochondrial genomes of several Arcidae species are 2-3 times larger than those of most bilaterians, and are among the largest bilaterian mitochondrial genomes reported to date. The large mitochondrial genome size is mainly due to expansion of unassigned regions (regions that are functionally unassigned). Previous work on unassigned regions of Arcidae mtDNA genomes has focused on nucleotide-level analyses to observe sequence characteristics, however the origin of expansion remains unclear. RESULTS We assembled six new mitogenomes and sequenced six transcriptomes of Scapharca broughtonii to identify conserved functional ORFs that are transcribed in unassigned regions. Sixteen lineage-specific ORFs with different copy numbers were identified from seven Arcidae species, and 11 of 16 ORFs were expressed and likely biologically active. Unassigned regions of 32 Arcidae mitogenomes were compared to verify the presence of these novel mitochondrial ORFs and their distribution. Strikingly, multiple structural analyses and functional prediction suggested that these additional mtDNA-encoded proteins have potential functional significance. In addition, our results also revealed that the ORFs have a strong connection to the expansion of Arcidae mitochondrial genomes and their large-scale duplication play an important role in multiple expansion events. We discussed the possible origin of ORFs and hypothesized that these ORFs may originate from duplication of mitochondrial genes. CONCLUSIONS The presence of lineage-specific mitochondrial ORFs with transcriptional activity and potential functional significance supports novel features for Arcidae mitochondrial genomes. Given our observation and analyses, these ORFs may be products of mitochondrial gene duplication. These findings shed light on the origin and function of novel mitochondrial genes in bivalves and provide new insights into evolution of mitochondrial genome size in metazoans.
Collapse
Affiliation(s)
- Ning Zhang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | | | - Kenneth M Halanych
- Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC, 28409, USA
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
4
|
Zhao B, Gao S, Zhao M, Lv H, Song J, Wang H, Zeng Q, Liu J. Mitochondrial genomic analyses provide new insights into the "missing" atp8 and adaptive evolution of Mytilidae. BMC Genomics 2022; 23:738. [PMID: 36324074 PMCID: PMC9628169 DOI: 10.1186/s12864-022-08940-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
Background Mytilidae, also known as marine mussels, are widely distributed in the oceans worldwide. Members of Mytilidae show a tremendous range of ecological adaptions, from the species distributed in freshwater to those that inhabit in deep-sea. Mitochondria play an important role in energy metabolism, which might contribute to the adaptation of Mytilidae to different environments. In addition, some bivalve species are thought to lack the mitochondrial protein-coding gene ATP synthase F0 subunit 8. Increasing studies indicated that the absence of atp8 may be caused by annotation difficulties for atp8 gene is characterized by highly divergent, variable length. Results In this study, the complete mitochondrial genomes of three marine mussels (Xenostrobus securis, Bathymodiolus puteoserpentis, Gigantidas vrijenhoeki) were newly assembled, with the lengths of 14,972 bp, 20,482, and 17,786 bp, respectively. We annotated atp8 in the sequences that we assembled and the sequences lacking atp8. The newly annotated atp8 sequences all have one predicted transmembrane domain, a similar hydropathy profile, as well as the C-terminal region with positively charged amino acids. Furthermore, we reconstructed the phylogenetic trees and performed positive selection analysis. The results showed that the deep-sea bathymodiolines experienced more relaxed evolutionary constraints. And signatures of positive selection were detected in nad4 of Limnoperna fortunei, which may contribute to the survival and/or thriving of this species in freshwater. Conclusions Our analysis supported that atp8 may not be missing in the Mytilidae. And our results provided evidence that the mitochondrial genes may contribute to the adaptation of Mytilidae to different environments. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08940-8.
Collapse
Affiliation(s)
- Baojun Zhao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shengtao Gao
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanog Inst, Ocean University of China, Sanya, 572000, China
| | - Mingyang Zhao
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanog Inst, Ocean University of China, Sanya, 572000, China
| | - Hongyu Lv
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanog Inst, Ocean University of China, Sanya, 572000, China
| | - Jingyu Song
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanog Inst, Ocean University of China, Sanya, 572000, China
| | - Hao Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Qifan Zeng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China. .,Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanog Inst, Ocean University of China, Sanya, 572000, China. .,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Jing Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
5
|
Lubośny M, Śmietanka B, Lasota R, Burzyński A. Confirmation of the first intronic sequence in the bivalvian mitochondrial genome of Macoma balthica (Linnaeus, 1758). Biol Lett 2022; 18:20220275. [PMID: 36196553 PMCID: PMC9532982 DOI: 10.1098/rsbl.2022.0275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/12/2022] [Indexed: 11/12/2022] Open
Abstract
In 2020, the first male-type mitochondrial genome from the clam Macoma balthica was published. Apart from the unusual doubly uniparental inheritance of mtDNA, scientists observed a unique (over 4k bp long) extension in the middle of the cox2 gene. We have attempted to replicate these data by NGS DNA sequencing and explore further the expression of the long cox2 gene. In our study, we report an even longer cox2 gene (over 5.5 kbp) with no stop codon separating conserved cox2 domains, as well as, based on the rtPCR, a lower relative gene expression pattern of the middle part of the gene (5' = 1; mid = 0.46; 3' = 0.89). Lastly, we sequenced the cox2 gene transcript proving the excision of the intronic sequence.
Collapse
Affiliation(s)
- Marek Lubośny
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Sopot 81-712, Poland
| | - Beata Śmietanka
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Sopot 81-712, Poland
| | - Rafał Lasota
- Faculty of Oceanography and Geography, Division of Marine Ecosystems Functioning, University of Gdańsk, Gdynia 81-378, Poland
| | - Artur Burzyński
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Sopot 81-712, Poland
| |
Collapse
|
6
|
Lubośny M, Śmietanka B, Arculeo M, Burzyński A. No evidence of DUI in the Mediterranean alien species Brachidontes pharaonis (P. Fisher, 1870) despite mitochondrial heteroplasmy. Sci Rep 2022; 12:8569. [PMID: 35595866 PMCID: PMC9122905 DOI: 10.1038/s41598-022-12606-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/13/2022] [Indexed: 01/05/2023] Open
Abstract
Two genetically different mitochondrial haplogroups of Brachidontes pharaonis (p-distance 6.8%) have been identified in the Mediterranean Sea. This hinted at a possible presence of doubly uniparental inheritance in this species. To ascertain this possibility, we sequenced two complete mitogenomes of Brachidontes pharaonis mussels and performed a qPCR analysis to measure the relative mitogenome copy numbers of both mtDNAs. Despite the presence of two very similar regions composed entirely of repetitive sequences in the two haplogroups, no recombination between mitogenomes was detected. In heteroplasmic individuals, both mitogenomes were present in the generative tissues of both sexes, which argues against the presence of doubly uniparental inheritance in this species.
Collapse
Affiliation(s)
- Marek Lubośny
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland.
| | - Beata Śmietanka
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
| | - Marco Arculeo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Artur Burzyński
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
| |
Collapse
|
7
|
Lee J, Willett CS. Frequent Paternal Mitochondrial Inheritance and Rapid Haplotype Frequency Shifts in Copepod Hybrids. J Hered 2022; 113:171-183. [PMID: 35575078 DOI: 10.1093/jhered/esab068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Mitochondria are assumed to be maternally inherited in most animal species, and this foundational concept has fostered advances in phylogenetics, conservation, and population genetics. Like other animals, mitochondria were thought to be solely maternally inherited in the marine copepod Tigriopus californicus, which has served as a useful model for studying mitonuclear interactions, hybrid breakdown, and environmental tolerance. However, we present PCR, Sanger sequencing, and Illumina Nextera sequencing evidence that extensive paternal mitochondrial DNA (mtDNA) transmission is occurring in inter-population hybrids of T. californicus. PCR on four types of crosses between three populations (total sample size of 376 F1 individuals) with 20% genome-wide mitochondrial divergence showed 2% to 59% of F1 hybrids with both paternal and maternal mtDNA, where low and high paternal leakage values were found in different cross directions of the same population pairs. Sequencing methods further verified nucleotide similarities between F1 mtDNA and paternal mtDNA sequences. Interestingly, the paternal mtDNA in F1s from some crosses inherited haplotypes that were uncommon in the paternal population. Compared to some previous research on paternal leakage, we employed more rigorous methods to rule out contamination and false detection of paternal mtDNA due to non-functional nuclear mitochondrial DNA fragments. Our results raise the potential that other animal systems thought to only inherit maternal mitochondria may also have paternal leakage, which would then affect the interpretation of past and future population genetics or phylogenetic studies that rely on mitochondria as uniparental markers.
Collapse
Affiliation(s)
- Jeeyun Lee
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christopher S Willett
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Breton S, Stewart DT, Brémaud J, Havird JC, Smith CH, Hoeh WR. Did doubly uniparental inheritance (DUI) of mtDNA originate as a cytoplasmic male sterility (CMS) system? Bioessays 2022; 44:e2100283. [PMID: 35170770 PMCID: PMC9083018 DOI: 10.1002/bies.202100283] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 01/10/2023]
Abstract
Animal and plant species exhibit an astonishing diversity of sexual systems, including environmental and genetic determinants of sex, with the latter including genetic material in the mitochondrial genome. In several hermaphroditic plants for example, sex is determined by an interaction between mitochondrial cytoplasmic male sterility (CMS) genes and nuclear restorer genes. Specifically, CMS involves aberrant mitochondrial genes that prevent pollen development and specific nuclear genes that restore it, leading to a mixture of female (male-sterile) and hermaphroditic individuals in the population (gynodioecy). Such a mitochondrial-nuclear sex determination system is thought to be rare outside plants. Here, we present one possible case of CMS in animals. We hypothesize that the only exception to the strict maternal mtDNA inheritance in animals, the doubly uniparental inheritance (DUI) system in bivalves, might have originated as a mitochondrial-nuclear sex-determination system. We document and explore similarities that exist between DUI and CMS, and we propose various ways to test our hypothesis.
Collapse
Affiliation(s)
- Sophie Breton
- Département des sciences biologiques, Université de Montréal, Montréal, Québec, Canada
| | - Donald T Stewart
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada
| | - Julie Brémaud
- Département des sciences biologiques, Université de Montréal, Montréal, Québec, Canada
| | - Justin C Havird
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Chase H Smith
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Walter R Hoeh
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| |
Collapse
|
9
|
The Mitochondrial Genome of a Freshwater Pelagic Amphipod Macrohectopus branickii Is among the Longest in Metazoa. Genes (Basel) 2021; 12:genes12122030. [PMID: 34946978 PMCID: PMC8700879 DOI: 10.3390/genes12122030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022] Open
Abstract
There are more than 350 species of amphipods (Crustacea) in Lake Baikal, which have emerged predominantly through the course of endemic radiation. This group represents a remarkable model for studying various aspects of evolution, one of which is the evolution of mitochondrial (mt) genome architectures. We sequenced and assembled the mt genome of a pelagic Baikalian amphipod species Macrohectopus branickii. The mt genome is revealed to have an extraordinary length (42,256 bp), deviating significantly from the genomes of other amphipod species and the majority of animals. The mt genome of M. branickii has a unique gene order within amphipods, duplications of the four tRNA genes and Cox2, and a long non-coding region, that makes up about two thirds of the genome’s size. The extension of the mt genome was most likely caused by multiple duplications and inversions of regions harboring ribosomal RNA genes. In this study, we analyzed the patterns of mt genome length changes in amphipods and other animal phyla. Through a statistical analysis, we demonstrated that the variability in the mt genome length may be a characteristic of certain phyla and is primarily conferred by expansions of non-coding regions.
Collapse
|
10
|
Ghiselli F, Iannello M, Piccinini G, Milani L. Bivalve molluscs as model systems for studying mitochondrial biology. Integr Comp Biol 2021; 61:1699-1714. [PMID: 33944910 DOI: 10.1093/icb/icab057] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The class Bivalvia is a highly successful and ancient taxon including ∼25,000 living species. During their long evolutionary history bivalves adapted to a wide range of physicochemical conditions, habitats, biological interactions, and feeding habits. Bivalves can have strikingly different size, and despite their apparently simple body plan, they evolved very different shell shapes, and complex anatomic structures. One of the most striking features of this class of animals is their peculiar mitochondrial biology: some bivalves have facultatively anaerobic mitochondria that allow them to survive prolonged periods of anoxia/hypoxia. Moreover, more than 100 species have now been reported showing the only known evolutionarily stable exception to the strictly maternal inheritance of mitochondria in animals, named doubly uniparental inheritance. Mitochondrial activity is fundamental to eukaryotic life, and thanks to their diversity and uncommon features, bivalves represent a great model system to expand our knowledge about mitochondrial biology, so far limited to a few species. We highlight recent works studying mitochondrial biology in bivalves at either genomic or physiological level. A link between these two approaches is still missing, and we believe that an integrated approach and collaborative relationships are the only possible ways to be successful in such endeavour.
Collapse
Affiliation(s)
- Fabrizio Ghiselli
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Mariangela Iannello
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Giovanni Piccinini
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Liliana Milani
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| |
Collapse
|
11
|
Ghiselli F, Gomes-Dos-Santos A, Adema CM, Lopes-Lima M, Sharbrough J, Boore JL. Molluscan mitochondrial genomes break the rules. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200159. [PMID: 33813887 DOI: 10.1098/rstb.2020.0159] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The first animal mitochondrial genomes to be sequenced were of several vertebrates and model organisms, and the consistency of genomic features found has led to a 'textbook description'. However, a more broad phylogenetic sampling of complete animal mitochondrial genomes has found many cases where these features do not exist, and the phylum Mollusca is especially replete with these exceptions. The characterization of full mollusc mitogenomes required considerable effort involving challenging molecular biology, but has created an enormous catalogue of surprising deviations from that textbook description, including wide variation in size, radical genome rearrangements, gene duplications and losses, the introduction of novel genes, and a complex system of inheritance dubbed 'doubly uniparental inheritance'. Here, we review the extraordinary variation in architecture, molecular functioning and intergenerational transmission of molluscan mitochondrial genomes. Such features represent a great potential for the discovery of biological history, processes and functions that are novel for animal mitochondrial genomes. This provides a model system for studying the evolution and the manifold roles that mitochondria play in organismal physiology, and many ways that the study of mitochondrial genomes are useful for phylogeny and population biology. This article is part of the Theo Murphy meeting issue 'Molluscan genomics: broad insights and future directions for a neglected phylum'.
Collapse
Affiliation(s)
- Fabrizio Ghiselli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Italy
| | - André Gomes-Dos-Santos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, and Department of Biology, Faculty of Sciences, University of Porto, Portugal
| | - Coen M Adema
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, USA
| | - Manuel Lopes-Lima
- CIBIO/InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
| | - Joel Sharbrough
- Department of Biology, Colorado State University, Fort Collins, USA
| | - Jeffrey L Boore
- Providence St Joseph Health and the Institute for Systems Biology, Seattle, USA
| |
Collapse
|
12
|
Lubośny M, Przyłucka A, Śmietanka B, Burzyński A. Semimytilus algosus: first known hermaphroditic mussel with doubly uniparental inheritance of mitochondrial DNA. Sci Rep 2020; 10:11256. [PMID: 32647112 PMCID: PMC7347871 DOI: 10.1038/s41598-020-67976-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/11/2020] [Indexed: 11/08/2022] Open
Abstract
Doubly uniparental inheritance (DUI) of mitochondrial DNA is a rare phenomenon occurring in some freshwater and marine bivalves and is usually characterized by the mitochondrial heteroplasmy of male individuals. Previous research on freshwater Unionida mussels showed that hermaphroditic species do not have DUI even if their closest gonochoristic counterparts do. No records showing DUI in a hermaphrodite have ever been reported. Here we show for the first time that the hermaphroditic mussel Semimytilus algosus (Mytilida), very likely has DUI, based on the complete sequences of both mitochondrial DNAs and the distribution of mtDNA types between male and female gonads. The two mitogenomes show considerable divergence (34.7%). The presumably paternal M type mitogenome dominated the male gonads of most studied mussels, while remaining at very low or undetectable levels in the female gonads of the same individuals. If indeed DUI can function in the context of simultaneous hermaphroditism, a change of paradigm regarding its involvement in sex determination is needed. It is apparently associated with gonadal differentiation rather than with sex determination in bivalves.
Collapse
Affiliation(s)
- Marek Lubośny
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland.
| | - Aleksandra Przyłucka
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
| | - Beata Śmietanka
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
| | - Artur Burzyński
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
| |
Collapse
|
13
|
Soroka M. Doubly uniparental inheritance of mitochondrial DNA in freshwater mussels: History and status of the European species. J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Capt C, Bouvet K, Guerra D, Robicheau BM, Stewart DT, Pante E, Breton S. Unorthodox features in two venerid bivalves with doubly uniparental inheritance of mitochondria. Sci Rep 2020; 10:1087. [PMID: 31974502 PMCID: PMC6978325 DOI: 10.1038/s41598-020-57975-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/09/2020] [Indexed: 12/02/2022] Open
Abstract
In animals, strictly maternal inheritance (SMI) of mitochondria is the rule, but one exception (doubly uniparental inheritance or DUI), marked by the transmission of sex-specific mitogenomes, has been reported in bivalves. Associated with DUI is a frequent modification of the mitochondrial cox2 gene, as well as additional sex-specific mitochondrial genes not involved in oxidative phosphorylation. With the exception of freshwater mussels (for 3 families of the order Unionida), these DUI-associated features have only been shown in few species [within Mytilidae (order Mytilida) and Veneridae (order Venerida)] because of the few complete sex-specific mitogenomes published for these orders. Here, we present the complete sex-specific mtDNAs of two recently-discovered DUI species in two families of the order Venerida, Scrobicularia plana (Semelidae) and Limecola balthica (Tellinidae). These species display the largest differences in genome size between sex-specific mitotypes in DUI species (>10 kb), as well as the highest mtDNA divergences (sometimes reaching >50%). An important in-frame insertion (>3.5 kb) in the male cox2 gene is partly responsible for the differences in genome size. The S. plana cox2 gene is the largest reported so far in the Kingdom Animalia. The mitogenomes may be carrying sex-specific genes, indicating that general mitochondrial features are shared among DUI species.
Collapse
Affiliation(s)
- Charlotte Capt
- Department of Biological Sciences, Université de Montréal, Montréal, QC, Canada.
| | - Karim Bouvet
- Department of Biological Sciences, Université de Montréal, Montréal, QC, Canada
| | - Davide Guerra
- Department of Biological Sciences, Université de Montréal, Montréal, QC, Canada
| | | | - Donald T Stewart
- Department of Biology, Acadia University, Wolfville, NS, B4P 2R6, Canada
| | - Eric Pante
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | - Sophie Breton
- Department of Biological Sciences, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
15
|
Lubośny M, Śmietanka B, Przyłucka A, Burzyński A. Highly divergent mitogenomes ofGeukensia demissa(Bivalvia, Mytilidae) with extreme AT content. J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marek Lubośny
- Department of Genetics and Marine Biotechnology Institute of Oceanology Polish Academy of Sciences Sopot Poland
| | - Beata Śmietanka
- Department of Genetics and Marine Biotechnology Institute of Oceanology Polish Academy of Sciences Sopot Poland
| | - Aleksandra Przyłucka
- Department of Genetics and Marine Biotechnology Institute of Oceanology Polish Academy of Sciences Sopot Poland
| | - Artur Burzyński
- Department of Genetics and Marine Biotechnology Institute of Oceanology Polish Academy of Sciences Sopot Poland
| |
Collapse
|
16
|
Guerra D, Lopes-Lima M, Froufe E, Gan HM, Ondina P, Amaro R, Klunzinger MW, Callil C, Prié V, Bogan AE, Stewart DT, Breton S. Variability of mitochondrial ORFans hints at possible differences in the system of doubly uniparental inheritance of mitochondria among families of freshwater mussels (Bivalvia: Unionida). BMC Evol Biol 2019; 19:229. [PMID: 31856711 PMCID: PMC6923999 DOI: 10.1186/s12862-019-1554-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 12/09/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Supernumerary ORFan genes (i.e., open reading frames without obvious homology to other genes) are present in the mitochondrial genomes of gonochoric freshwater mussels (Bivalvia: Unionida) showing doubly uniparental inheritance (DUI) of mitochondria. DUI is a system in which distinct female-transmitted and male-transmitted mitotypes coexist in a single species. In families Unionidae and Margaritiferidae, the transition from dioecy to hermaphroditism and the loss of DUI appear to be linked, and this event seems to affect the integrity of the ORFan genes. These observations led to the hypothesis that the ORFans have a role in DUI and/or sex determination. Complete mitochondrial genome sequences are however scarce for most families of freshwater mussels, therefore hindering a clear localization of DUI in the various lineages and a comprehensive understanding of the influence of the ORFans on DUI and sexual systems. Therefore, we sequenced and characterized eleven new mitogenomes from poorly sampled freshwater mussel families to gather information on the evolution and variability of the ORFan genes and their protein products. RESULTS We obtained ten complete plus one almost complete mitogenome sequence from ten representative species (gonochoric and hermaphroditic) of families Margaritiferidae, Hyriidae, Mulleriidae, and Iridinidae. ORFan genes are present only in DUI species from Margaritiferidae and Hyriidae, while non-DUI species from Hyriidae, Iridinidae, and Mulleriidae lack them completely, independently of their sexual system. Comparisons among the proteins translated from the newly characterized ORFans and already known ones provide evidence of conserved structures, as well as family-specific features. CONCLUSIONS The ORFan proteins show a comparable organization of secondary structures among different families of freshwater mussels, which supports a conserved physiological role, but also have distinctive family-specific features. Given this latter observation and the fact that the ORFans can be either highly mutated or completely absent in species that secondarily lost DUI depending on their respective family, we hypothesize that some aspects of the connection among ORFans, sexual systems, and DUI may differ in the various lineages of unionids.
Collapse
Affiliation(s)
- Davide Guerra
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC Canada
| | - Manuel Lopes-Lima
- CIBIO/InBIO - Research Center in Biodiversity and Genetic Resources, University of Porto, Campus Agrário de Vairão, Vairão, Portugal
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Elsa Froufe
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Han Ming Gan
- Deakin Genomics Centre, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria Australia
| | - Paz Ondina
- Departamento de Zooloxía, Xenética e Antropoloxía Física, Facultade de Veterinaria, Universidade de Santiago de Compostela, Campus de Lugo, Lugo, Spain
| | - Rafaela Amaro
- Departamento de Zooloxía, Xenética e Antropoloxía Física, Facultade de Veterinaria, Universidade de Santiago de Compostela, Campus de Lugo, Lugo, Spain
| | - Michael W. Klunzinger
- BWG Environmental, Brisbane, QLD Australia
- Mollusca, Department of Aquatic Zoology, Western Australian Museum, Welshpool, WA Australia
- School of Veterinary and Biological Sciences, Murdoch University, Perth, WA Australia
| | - Claudia Callil
- ECOBiv - Ecology and Conservation of Bivalves Research Group, Department of Biology and Zoology, Federal University of Mato Grosso, Cuiabá, MT Brazil
| | - Vincent Prié
- Institut Systématique Evolution Biodiversité ISYEB - Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | | | | | - Sophie Breton
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC Canada
| |
Collapse
|
17
|
A mitochondrial genome phylogeny of Mytilidae (Bivalvia: Mytilida). Mol Phylogenet Evol 2019; 139:106533. [PMID: 31185299 DOI: 10.1016/j.ympev.2019.106533] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 11/22/2022]
Abstract
The family Mytilidae is a family of bivalve mussels that are distributed worldwide in diverse marine habitats. Within the family, classification systems and phylogenetic relationships among subfamilies remain not yet fully resolved. In this study, we newly determined 9 mitochondrial genome sequences from 7 subfamilies: Bathymodiolus thermophilus (Bathymodiolinae), Modiolus nipponicus (Modiolinae), Lithophaga curta (the first representative of Lithophaginae), Brachidontes mutabilis (Brachidontinae), Mytilisepta virgata (Brachidontinae), Mytilisepta keenae (Brachidontinae), Crenomytilus grayanus (Mytilinae), Gregariella coralliophaga (Crenellinae), and Septifer bilocularis (the first representative of Septiferinae). Phylogenetic trees using maximum likelihood and Bayesian inference methods for 28 mitochondrial genomes (including 19 previously published sequences) showed two major clades with high support values: Clade 1 ((Bathymodiolinae + Modiolinae) + (Lithophaginae + Limnoperninae)) and Clade 2 (((Mytilinae + Crenellinae) + Septiferinae) + Brachidontinae). The position of the genus Lithophaga (representing Lithophaginae) differed from a previously published molecular phylogeny. Divergence time analysis with a molecular clock indicated that lineage splitting among the major subfamilies of Mytilidae (including the habitat transition from marine to freshwater environments by ancestral Limnoperninae) occurred in the Mesozoic period, coinciding with high diversification rates of marine fauna during that time. This is the first mitochondrial genome-based phylogenetic study of the Mytilidae that covers nearly all subfamily members, excluding the subfamily Dacrydiinae.
Collapse
|
18
|
Chacón GM, Arias‐Pérez A, Freire R, Martínez L, Nóvoa S, Naveira H, Insua A. Evidence of doubly uniparental inheritance of the mitochondrial
DNA
in
Polititapes rhomboides
(Bivalvia, Veneridae): Evolutionary and population genetic analysis of F and M mitotypes. J ZOOL SYST EVOL RES 2019. [DOI: 10.1111/jzs.12267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ginna M. Chacón
- Departamento de Bioloxía‐Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA)Universidade da Coruña A Coruña Spain
| | - Alberto Arias‐Pérez
- Departamento de Bioloxía‐Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA)Universidade da Coruña A Coruña Spain
| | - Ruth Freire
- Departamento de Bioloxía‐Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA)Universidade da Coruña A Coruña Spain
| | - Luisa Martínez
- Departamento de Bioloxía‐Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA)Universidade da Coruña A Coruña Spain
| | - Susana Nóvoa
- Centro de Cultivos Marinos de Ribadeo‐CIMAXunta de Galicia Ribadeo (Lugo) Spain
| | - Horacio Naveira
- Departamento de Bioloxía‐Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA)Universidade da Coruña A Coruña Spain
| | - Ana Insua
- Departamento de Bioloxía‐Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA)Universidade da Coruña A Coruña Spain
| |
Collapse
|
19
|
Śmietanka B, Lubośny M, Przyłucka A, Gérard K, Burzyński A. Mitogenomics of Perumytilus purpuratus (Bivalvia: Mytilidae) and its implications for doubly uniparental inheritance of mitochondria. PeerJ 2018; 6:e5593. [PMID: 30245933 PMCID: PMC6149501 DOI: 10.7717/peerj.5593] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/14/2018] [Indexed: 12/29/2022] Open
Abstract
Animal mitochondria are usually inherited through the maternal lineage. The exceptional system allowing fathers to transmit their mitochondria to the offspring exists in some bivalves. Its taxonomic spread is poorly understood and new mitogenomic data are needed to fill the gap. Here, we present for the first time the two divergent mitogenomes from Chilean mussel Perumytilus purpuratus. The existence of these sex-specific mitogenomes confirms that this species has the doubly uniparental inheritance (DUI) of mitochondria. The genetic distance between the two mitochondrial lineages in P. purpuratus is not only much bigger than in the Mytilus edulis species complex but also greater than the distance observed in Musculista senhousia, the only other DUI-positive member of the Mytilidae family for which both complete mitochondrial genomes were published to date. One additional, long ORF (open reading frame) is present exclusively in the maternal mitogenome of P. purpuratus. This ORF evolves under purifying selection, and will likely be a target for future DUI research.
Collapse
Affiliation(s)
- Beata Śmietanka
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
| | - Marek Lubośny
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
| | - Aleksandra Przyłucka
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
| | - Karin Gérard
- Centro de Investigacion Gaia-Antartica, Departamento de Recursos Naturales, Universidad de Magallanes, Punta Arenas, Chile.,Laboratorio de Ecosistemas Marinos Antárticos y Subantárticos, Universidad de Magallanes, Punta Arenas, Chile
| | - Artur Burzyński
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
| |
Collapse
|
20
|
Ghiselli F, Milani L, Iannello M, Procopio E, Chang PL, Nuzhdin SV, Passamonti M. The complete mitochondrial genome of the grooved carpet shell, Ruditapes decussatus (Bivalvia, Veneridae). PeerJ 2017; 5:e3692. [PMID: 28848689 PMCID: PMC5571815 DOI: 10.7717/peerj.3692] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/25/2017] [Indexed: 12/30/2022] Open
Abstract
Despite the large number of animal complete mitochondrial genomes currently available in public databases, knowledge about mitochondrial genomics in invertebrates is uneven. This paper reports, for the first time, the complete mitochondrial genome of the grooved carpet shell, Ruditapes decussatus, also known as the European clam. Ruditapes decussatus is morphologically and ecologically similar to the Manila clam Ruditapes philippinarum, which has been recently introduced for aquaculture in the very same habitats of Ruditapes decussatus, and that is replacing the native species. Currently the production of the European clam is almost insignificant, nonetheless it is considered a high value product, and therefore it is an economically important species, especially in Portugal, Spain and Italy. In this work we: (i) assembled Ruditapes decussatus mitochondrial genome from RNA-Seq data, and validated it by Sanger sequencing; (ii) analyzed and characterized the Ruditapes decussatus mitochondrial genome, comparing its features with those of other venerid bivalves; (iii) assessed mitochondrial sequence polymorphism (SP) and copy number variation (CNV) of tandem repeats across 26 samples. Despite using high-throughput approaches we did not find evidence for the presence of two sex-linked mitochondrial genomes, typical of the doubly uniparental inheritance of mitochondria, a phenomenon known in ∼100 bivalve species. According to our analyses, Ruditapes decussatus is more genetically similar to species of the Genus Paphia than to the congeneric Ruditapes philippinarum, a finding that bolsters the already-proposed need of a taxonomic revision. We also found a quite low genetic variability across the examined samples, with few SPs and little variability of the sequences flanking the control region (Largest Unassigned Regions (LURs). Strikingly, although we found low nucleotide variability along the entire mitochondrial genome, we observed high levels of length polymorphism in the LUR due to CNV of tandem repeats, and even a LUR length heteroplasmy in two samples. It is not clear if the lack of genetic variability in the mitochondrial genome of Ruditapes decussatus is a cause or an effect of the ongoing replacement of Ruditapes decussatus with the invasive Ruditapes philippinarum, and more analyses, especially on nuclear sequences, are required to assess this point.
Collapse
Affiliation(s)
- Fabrizio Ghiselli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Italy, Bologna, Italy
| | - Liliana Milani
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Italy, Bologna, Italy
| | - Mariangela Iannello
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Italy, Bologna, Italy
| | - Emanuele Procopio
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Italy, Bologna, Italy
| | - Peter L Chang
- Department of Biological Sciences, Program in Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Sergey V Nuzhdin
- Department of Biological Sciences, Program in Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Marco Passamonti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Italy, Bologna, Italy
| |
Collapse
|
21
|
Evolution of sex-dependent mtDNA transmission in freshwater mussels (Bivalvia: Unionida). Sci Rep 2017; 7:1551. [PMID: 28484275 PMCID: PMC5431520 DOI: 10.1038/s41598-017-01708-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/31/2017] [Indexed: 12/25/2022] Open
Abstract
Doubly uniparental inheritance (DUI) describes a mode of mtDNA transmission widespread in gonochoric freshwater mussels (Bivalvia: Palaeoheterodonta: Unionida). In this system, both female- and male-transmitted mtDNAs, named F and M respectively, coexist in the same species. In unionids, DUI is strictly correlated to gonochorism and to the presence of the atypical open reading frames (ORFans) F-orf and M-orf, respectively inside F and M mtDNAs, which are hypothesized to participate in sex determination. However, DUI is not found in all three Unionida superfamilies (confirmed in Hyrioidea and Unionoidea but not in Etherioidea), raising the question of its origin in these bivalves. To reconstruct the co-evolution of DUI and of ORFans, we sequenced the mtDNAs of four unionids (two gonochoric with DUI, one gonochoric and one hermaphroditic without DUI) and of the related gonochoric species Neotrigonia margaritacea (Palaeoheterodonta: Trigoniida). Our analyses suggest that rearranged mtDNAs appeared early during unionid radiation, and that a duplicated and diverged atp8 gene evolved into the M-orf associated with the paternal transmission route in Hyrioidea and Unionoidea, but not in Etherioidea. We propose that novel mtDNA-encoded genes can deeply influence bivalve sex determining systems and the evolution of the mitogenomes in which they occur.
Collapse
|
22
|
Robicheau BM, Breton S, Stewart DT. Sequence motifs associated with paternal transmission of mitochondrial DNA in the horse mussel, Modiolus modiolus (Bivalvia: Mytilidae). Gene 2016; 605:32-42. [PMID: 28027966 DOI: 10.1016/j.gene.2016.12.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/10/2016] [Accepted: 12/23/2016] [Indexed: 12/01/2022]
Abstract
In the majority of metazoans paternal mitochondria represent evolutionary dead-ends. In many bivalves, however, this paradigm does not hold true; both maternal and paternal mitochondria are inherited. Herein, we characterize maternal and paternal mitochondrial control regions of the horse mussel, Modiolus modiolus (Bivalvia: Mytilidae). The maternal control region is 808bp long, while the paternal control region is longer at 2.3kb. We hypothesize that the size difference is due to a combination of repeated duplications within the control region of the paternal mtDNA genome, as well as an evolutionarily ancient recombination event between two sex-associated mtDNA genomes that led to the insertion of a second control region sequence in the genome that is now transmitted via males. In a comparison to other mytilid male control regions, we identified two evolutionarily Conserved Motifs, CMA and CMB, associated with paternal transmission of mitochondrial DNA. CMA is characterized by a conserved purine/pyrimidine pattern, while CMB exhibits a specific 13bp nucleotide string within a stem and loop structure. The identification of motifs CMA and CMB in M. modiolus extends our understanding of Sperm Transmission Elements (STEs) that have recently been identified as being associated with the paternal transmission of mitochondria in marine bivalves.
Collapse
Affiliation(s)
| | - Sophie Breton
- Departement de Science Biologiques, Université de Montréal, QC, Canada
| | - Donald T Stewart
- Departement de Science Biologiques, Université de Montréal, QC, Canada.
| |
Collapse
|
23
|
Robicheau BM, Powell AE, Del Bel L, Breton S, Stewart DT. Evidence for extreme sequence divergence between the male- and female-transmitted mitochondrial genomes in the bivalve mollusc,Modiolus modiolus(Mytilidae). J ZOOL SYST EVOL RES 2016. [DOI: 10.1111/jzs.12160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
| | - Amy E. Powell
- Faculty of Medicine; Memorial University; Saint John's NFL Canada
| | | | - Sophie Breton
- Departement de Science Biologiques; Université de Montréal; Montreal QC Canada
| | | |
Collapse
|
24
|
Plazzi F, Puccio G, Passamonti M. Comparative Large-Scale Mitogenomics Evidences Clade-Specific Evolutionary Trends in Mitochondrial DNAs of Bivalvia. Genome Biol Evol 2016; 8:2544-64. [PMID: 27503296 PMCID: PMC5010914 DOI: 10.1093/gbe/evw187] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2016] [Indexed: 12/28/2022] Open
Abstract
Despite the figure of complete bivalve mitochondrial genomes keeps growing, an assessment of the general features of these genomes in a phylogenetic framework is still lacking, despite the fact that bivalve mitochondrial genomes are unusual under different aspects. In this work, we constructed a dataset of one hundred mitochondrial genomes of bivalves to perform the first systematic comparative mitogenomic analysis, developing a phylogenetic background to scaffold the evolutionary history of the class' mitochondrial genomes. Highly conserved domains were identified in all protein coding genes; however, four genes (namely, atp6, nad2, nad4L, and nad6) were found to be very divergent for many respects, notwithstanding the overall purifying selection working on those genomes. Moreover, the atp8 gene was newly annotated in 20 mitochondrial genomes, where it was previously declared as lacking or only signaled. Supernumerary mitochondrial proteins were compared, but it was possible to find homologies only among strictly related species. The rearrangement rate on the molecule is too high to be used as a phylogenetic marker, but here we demonstrate for the first time in mollusks that there is correlation between rearrangement rates and evolutionary rates. We also developed a new index (HERMES) to estimate the amount of mitochondrial evolution. Many genomic features are phylogenetically congruent and this allowed us to highlight three main phases in bivalve history: the origin, the branching of palaeoheterodonts, and the second radiation leading to the present-day biodiversity.
Collapse
Affiliation(s)
- Federico Plazzi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi, 3 - 40126 Bologna, Italy
| | - Guglielmo Puccio
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi, 3 - 40126 Bologna, Italy
| | - Marco Passamonti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi, 3 - 40126 Bologna, Italy
| |
Collapse
|
25
|
Amaro R, Bouza C, Pardo BG, Castro J, San Miguel E, Villalba A, Lois S, Outeiro A, Ondina P. Identification of novel gender-associated mitochondrial haplotypes in Margaritifera margaritifera(Linnaeus, 1758). Zool J Linn Soc 2016. [DOI: 10.1111/zoj.12472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Rafaela Amaro
- Department of Genetics; Faculty of Veterinary Science; University of Santiago de Compostela; 27002 Lugo Spain
| | - Carmen Bouza
- Department of Genetics; Faculty of Veterinary Science; University of Santiago de Compostela; 27002 Lugo Spain
| | - Belén G. Pardo
- Department of Genetics; Faculty of Veterinary Science; University of Santiago de Compostela; 27002 Lugo Spain
| | - Jaime Castro
- Department of Genetics; Faculty of Veterinary Science; University of Santiago de Compostela; 27002 Lugo Spain
| | - Eduardo San Miguel
- Department of Genetics; Faculty of Veterinary Science; University of Santiago de Compostela; 27002 Lugo Spain
| | - Antonio Villalba
- Centro de Investigacións Mariñas de Corón (CIMA); Consellería do Medio Rural e do Mar da Xunta de Galicia; Aptdo. 13 36620 Vilanova de Arousa Spain
| | - Sabela Lois
- Department of Zoology; Faculty of Veterinary Science; University of Santiago de Compostela; 27002 Lugo Spain
| | - Adolfo Outeiro
- Department of Zoology; Faculty of Veterinary Science; University of Santiago de Compostela; 27002 Lugo Spain
| | - Paz Ondina
- Department of Zoology; Faculty of Veterinary Science; University of Santiago de Compostela; 27002 Lugo Spain
| |
Collapse
|
26
|
Wen M, Peng L, Hu X, Zhao Y, Liu S, Hong Y. Transcriptional quiescence of paternal mtDNA in cyprinid fish embryos. Sci Rep 2016; 6:28571. [PMID: 27334806 PMCID: PMC4917824 DOI: 10.1038/srep28571] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/03/2016] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial homoplasmy signifies the existence of identical copies of mitochondrial DNA (mtDNA) and is essential for normal development, as heteroplasmy causes abnormal development and diseases in human. Homoplasmy in many organisms is ensured by maternal mtDNA inheritance through either absence of paternal mtDNA delivery or early elimination of paternal mtDNA. However, whether paternal mtDNA is transcribed has remained unknown. Here we report that paternal mtDNA shows late elimination and transcriptional quiescence in cyprinid fishes. Paternal mtDNA was present in zygotes but absent in larvae and adult organs of goldfish and blunt-snout bream, demonstrating paternal mtDNA delivery and elimination for maternal mtDNA inheritance. Surprisingly, paternal mtDNA remained detectable up to the heartbeat stage, suggesting its late elimination leading to embryonic heteroplasmy up to advanced embryogenesis. Most importantly, we never detected the cytb RNA of paternal mtDNA at all stages when paternal mtDNA was easily detectable, which reveals that paternal mtDNA is transcriptionally quiescent and thus excludes its effect on the development of heteroplasmic embryos. Therefore, paternal mtDNA in cyprinids shows late elimination and transcriptional quiescence. Clearly, transcriptional quiescence of paternal mtDNA represents a new mechanism for maternal mtDNA inheritance and provides implications for treating mitochondrion-associated diseases by mitochondrial transfer or replacement.
Collapse
Affiliation(s)
- Ming Wen
- State Ministry of Education Key Laboratory of Protein Chemistry and Developmental Biology, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Liangyue Peng
- State Ministry of Education Key Laboratory of Protein Chemistry and Developmental Biology, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Xinjiang Hu
- State Ministry of Education Key Laboratory of Protein Chemistry and Developmental Biology, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yuling Zhao
- State Ministry of Education Key Laboratory of Protein Chemistry and Developmental Biology, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Shaojun Liu
- State Ministry of Education Key Laboratory of Protein Chemistry and Developmental Biology, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yunhan Hong
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
27
|
Ye F, Lan XE, Zhu WB, You P. Mitochondrial genomes of praying mantises (Dictyoptera, Mantodea): rearrangement, duplication, and reassignment of tRNA genes. Sci Rep 2016; 6:25634. [PMID: 27157299 PMCID: PMC4860592 DOI: 10.1038/srep25634] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/20/2016] [Indexed: 01/20/2023] Open
Abstract
Insect mitochondrial genomes (mitogenomes) contain a conserved set of 37 genes for an extensive diversity of lineages. Previously reported dictyopteran mitogenomes share this conserved mitochondrial gene arrangement, although surprisingly little is known about the mitogenome of Mantodea. We sequenced eight mantodean mitogenomes including the first representatives of two families: Hymenopodidae and Liturgusidae. Only two of these genomes retain the typical insect gene arrangement. In three Liturgusidae species, the trnM genes have translocated. Four species of mantis (Creobroter gemmata, Mantis religiosa, Statilia sp., and Theopompa sp.-HN) have multiple identical tandem duplication of trnR, and Statilia sp. additionally includes five extra duplicate trnW. These extra trnR and trnW in Statilia sp. are erratically arranged and form another novel gene order. Interestingly, the extra trnW is converted from trnR by the process of point mutation at anticodon, which is the first case of tRNA reassignment for an insect. Furthermore, no significant differences were observed amongst mantodean mitogenomes with variable copies of tRNA according to comparative analysis of codon usage. Combined with phylogenetic analysis, the characteristics of tRNA only possess limited phylogenetic information in this research. Nevertheless, these features of gene rearrangement, duplication, and reassignment provide valuable information toward understanding mitogenome evolution in insects.
Collapse
Affiliation(s)
- Fei Ye
- Co-Innovation Center for Qinba Regions’ Sustainable Development, College of Life Science, Shaanxi Normal University, Xi’an, 710062, China
| | - Xu-e Lan
- Co-Innovation Center for Qinba Regions’ Sustainable Development, College of Life Science, Shaanxi Normal University, Xi’an, 710062, China
| | - Wen-bo Zhu
- Co-Innovation Center for Qinba Regions’ Sustainable Development, College of Life Science, Shaanxi Normal University, Xi’an, 710062, China
| | - Ping You
- Co-Innovation Center for Qinba Regions’ Sustainable Development, College of Life Science, Shaanxi Normal University, Xi’an, 710062, China
| |
Collapse
|
28
|
Bettinazzi S, Plazzi F, Passamonti M. The Complete Female- and Male-Transmitted Mitochondrial Genome of Meretrix lamarckii. PLoS One 2016; 11:e0153631. [PMID: 27083010 PMCID: PMC4833323 DOI: 10.1371/journal.pone.0153631] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/02/2016] [Indexed: 11/17/2022] Open
Abstract
Bivalve mitochondrial genomes show many uncommon features, like additional genes, high rates of gene rearrangement, high A-T content. Moreover, Doubly Uniparental Inheritance (DUI) is a distinctive inheritance mechanism allowing some bivalves to maintain and transmit two separate sex-linked mitochondrial genomes. Many bivalve mitochondrial features, such as gene extensions or additional ORFs, have been proposed to be related to DUI but, up to now, this topic is far from being understood. Several species are known to show this unusual organelle inheritance but, being widespread only among Unionidae and Mytilidae, DUI distribution is unclear. We sequenced and characterized the complete female- (F) and male-transmitted (M) mitochondrial genomes of Meretrix lamarckii, which, in fact, is the second species of the family Veneridae where DUI has been demonstrated so far. The two mitochondrial genomes are comparable in length and show roughly the same gene content and order, except for three additional tRNAs found in the M one. The two sex-linked genomes show an average nucleotide divergence of 16%. A 100-aminoacid insertion in M. lamarckii M-cox2 gene was found; moreover, additional ORFs have been found in both F and M Long Unassigned Regions of M. lamarckii. Even if no direct involvement in DUI process has been demonstrated so far, the finding of cox2 insertions and supernumerary ORFs in M. lamarckii both strengthens this hypothesis and widens the taxonomical distribution of such unusual features. Finally, the analysis of inter-sex genetic variability shows that DUI species form two separate clusters, namely Unionidae and Mytilidae+Veneridae; this dichotomy is probably due to different DUI regimes acting on separate taxa.
Collapse
Affiliation(s)
- Stefano Bettinazzi
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, BO, Italy
| | - Federico Plazzi
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, BO, Italy
| | - Marco Passamonti
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, BO, Italy
| |
Collapse
|
29
|
Luo YJ, Satoh N, Endo K. Mitochondrial gene order variation in the brachiopod Lingula anatina and its implications for mitochondrial evolution in lophotrochozoans. Mar Genomics 2015; 24 Pt 1:31-40. [PMID: 26342990 DOI: 10.1016/j.margen.2015.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 08/07/2015] [Accepted: 08/25/2015] [Indexed: 11/18/2022]
Abstract
Vertebrate mitochondrial (mt) genomes display highly conserved gene order and relatively low evolutionary rates. However, these features are variable in marine invertebrates. Here we present the mt genome of the lingulid brachiopod, Lingula anatina, from Amami Island, Japan, as part of the nuclear genome project. We obtain ~2000-fold coverage of the 17.9-kb mt genome using Illumina sequencing, and we identify hypervariable regions within the same individual. Transcriptome analyses show that mt transcripts are polycistronic and expressed differentially. Unexpectedly, we find that the mt gene order of Amami Lingula is completely shuffled compared to that of a specimen from Yanagawa, suggesting that there may be cryptic species. Using breakpoint distance analyses with 101 metazoan mt genomes, we show that the evolutionary history of mt gene order among lophotrochozoans is unique. Analyses of non-synonymous substitution rates reveal that mt protein-coding genes of Lingula have experienced rapid evolution comparable to that expected for interspecific comparisons. Whole genome phylogenetic analyses suggest that mt genomes have limited value for inferring the phylogenetic positions of lophotrochozoans because of their high evolutionary rates in brachiopods and bivalves.
Collapse
Affiliation(s)
- Yi-Jyun Luo
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan.
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Kazuyoshi Endo
- Department of Earth and Planetary Science, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
30
|
Han Z, Wang G, Xue T, Chen Y, Li J. The F-type complete mitochondrial genome of Chinese freshwater mussels Cuneopsis pisciculus. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:3376-7. [PMID: 25799348 DOI: 10.3109/19401736.2015.1018228] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The complete F-type mitochondrial genome of Cuneopsis pisciculus was first determined in this research. This circular genome (15,907 bp in size) contained 13 protein-coding genes, 22 tRNA genes and 2rRNA genes. The protein-coding genes initiated with orthodox ATG or ATA start codon. Twenty-five non-coding regions were found throughout the mitochondrial genome of C. pisciculus, ranging in size from 1 to 326 bp. The maximum was between tRNA(Gln) and gene ND5 (326 bp).
Collapse
Affiliation(s)
- Zhenyong Han
- a Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by Ministry of Agriculture , College of Fisheries and Life Science, Shanghai Ocean University , Shanghai , China and.,b Shanghai Engineering Research Center of Aquaculture , Shanghai , China
| | - Guiling Wang
- a Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by Ministry of Agriculture , College of Fisheries and Life Science, Shanghai Ocean University , Shanghai , China and.,b Shanghai Engineering Research Center of Aquaculture , Shanghai , China
| | - Ting Xue
- a Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by Ministry of Agriculture , College of Fisheries and Life Science, Shanghai Ocean University , Shanghai , China and.,b Shanghai Engineering Research Center of Aquaculture , Shanghai , China
| | - Ya Chen
- a Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by Ministry of Agriculture , College of Fisheries and Life Science, Shanghai Ocean University , Shanghai , China and.,b Shanghai Engineering Research Center of Aquaculture , Shanghai , China
| | - Jiale Li
- a Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by Ministry of Agriculture , College of Fisheries and Life Science, Shanghai Ocean University , Shanghai , China and.,b Shanghai Engineering Research Center of Aquaculture , Shanghai , China
| |
Collapse
|
31
|
Plazzi F. The detection of sex-linked heteroplasmy in Pseudocardium sachalinense
(Bivalvia: Mactridae) and its implications for the distribution of doubly uniparental inheritance of mitochondrial DNA. J ZOOL SYST EVOL RES 2015. [DOI: 10.1111/jzs.12097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Federico Plazzi
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali; University of Bologna; Bologna BO Italy
| |
Collapse
|
32
|
Breton S, Milani L, Ghiselli F, Guerra D, Stewart DT, Passamonti M. A resourceful genome: updating the functional repertoire and evolutionary role of animal mitochondrial DNAs. Trends Genet 2014; 30:555-64. [PMID: 25263762 DOI: 10.1016/j.tig.2014.09.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 11/24/2022]
Abstract
Recent data from mitochondrial genomics and proteomics research demonstrate the existence of several atypical mitochondrial protein-coding genes (other than the standard set of 13) and the involvement of mtDNA-encoded proteins in functions other than energy production in several animal species including humans. These results are of considerable importance for evolutionary and cellular biology because they indicate that animal mtDNAs have a larger functional repertoire than previously believed. This review summarizes recent studies on animal species with a non-standard mitochondrial functional repertoire and discusses how these genetic novelties represent promising candidates for studying the role of the mitochondrial genome in speciation.
Collapse
Affiliation(s)
- Sophie Breton
- Département de Sciences Biologiques, Université de Montréal, 90 Avenue Vincent d'Indy, Montréal, Québec H2V 2S9, Canada.
| | - Liliana Milani
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Fabrizio Ghiselli
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Davide Guerra
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Donald T Stewart
- Department of Biology, Acadia University, 24 University Avenue, Wolfville, Nova Scotia B4P 2R6, Canada
| | - Marco Passamonti
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| |
Collapse
|
33
|
Plazzi F, Cassano A, Passamonti M. The quest for Doubly Uniparental Inheritance in heterodont bivalves and its detection inMeretrix lamarckii(Veneridae: Meretricinae). J ZOOL SYST EVOL RES 2014. [DOI: 10.1111/jzs.12078] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Federico Plazzi
- Dipartimento di Scienze Biologiche; Geologiche e Ambientali; Bologna Italy
| | - Antonello Cassano
- Dipartimento di Scienze Biologiche; Geologiche e Ambientali; Bologna Italy
| | - Marco Passamonti
- Dipartimento di Scienze Biologiche; Geologiche e Ambientali; Bologna Italy
| |
Collapse
|
34
|
Milani L, Ghiselli F, Guerra D, Breton S, Passamonti M. A comparative analysis of mitochondrial ORFans: new clues on their origin and role in species with doubly uniparental inheritance of mitochondria. Genome Biol Evol 2013; 5:1408-34. [PMID: 23824218 PMCID: PMC3730352 DOI: 10.1093/gbe/evt101] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Despite numerous comparative mitochondrial genomics studies revealing that animal mitochondrial genomes are highly conserved in terms of gene content, supplementary genes are sometimes found, often arising from gene duplication. Mitochondrial ORFans (ORFs having no detectable homology and unknown function) were found in bivalve molluscs with Doubly Uniparental Inheritance (DUI) of mitochondria. In DUI animals, two mitochondrial lineages are present: one transmitted through females (F-type) and the other through males (M-type), each showing a specific and conserved ORF. The analysis of 34 mitochondrial major Unassigned Regions of Musculista senhousia F- and M-mtDNA allowed us to verify the presence of novel mitochondrial ORFs in this species and to compare them with ORFs from other species with ascertained DUI, with other bivalves and with animals showing new mitochondrial elements. Overall, 17 ORFans from nine species were analyzed for structure and function. Many clues suggest that the analyzed ORFans arose from endogenization of viral genes. The co-option of such novel genes by viral hosts may have determined some evolutionary aspects of host life cycle, possibly involving mitochondria. The structure similarity of DUI ORFans within evolutionary lineages may also indicate that they originated from independent events. If these novel ORFs are in some way linked to DUI establishment, a multiple origin of DUI has to be considered. These putative proteins may have a role in the maintenance of sperm mitochondria during embryo development, possibly masking them from the degradation processes that normally affect sperm mitochondria in species with strictly maternal inheritance.
Collapse
Affiliation(s)
- Liliana Milani
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Bologna, Italy.
| | | | | | | | | |
Collapse
|
35
|
Huang XC, Rong J, Liu Y, Zhang MH, Wan Y, Ouyang S, Zhou CH, Wu XP. The complete maternally and paternally inherited mitochondrial genomes of the endangered freshwater mussel Solenaia carinatus (Bivalvia: Unionidae) and implications for Unionidae taxonomy. PLoS One 2013; 8:e84352. [PMID: 24358356 PMCID: PMC3866145 DOI: 10.1371/journal.pone.0084352] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 11/14/2013] [Indexed: 11/30/2022] Open
Abstract
Doubly uniparental inheritance (DUI) is an exception to the typical maternal inheritance of mitochondrial (mt) DNA in Metazoa, and found only in some bivalves. In species with DUI, there are two highly divergent gender-associated mt genomes: maternal (F) and paternal (M), which transmit independently and show different tissue localization. Solenaia carinatus is an endangered freshwater mussel species exclusive to Poyang Lake basin, China. Anthropogenic events in the watershed greatly threaten the survival of this species. Nevertheless, the taxonomy of S. carinatus based on shell morphology is confusing, and the subfamilial placement of the genus Solenaia remains unclear. In order to clarify the taxonomic status and discuss the phylogenetic implications of family Unionidae, the entire F and M mt genomes of S. carinatus were sequenced and compared with the mt genomes of diverse freshwater mussel species. The complete F and M mt genomes of S. carinatus are 16716 bp and 17102 bp in size, respectively. The F and M mt genomes of S. carinatus diverge by about 40% in nucleotide sequence and 48% in amino acid sequence. Compared to F counterparts, the M genome shows a more compact structure. Different gene arrangements are found in these two gender-associated mt genomes. Among these, the F genome cox2-rrnS gene order is considered to be a genome-level synapomorphy for female lineage of the subfamily Gonideinae. From maternal and paternal mtDNA perspectives, the phylogenetic analyses of Unionoida indicate that S. carinatus belongs to Gonideinae. The F and M clades in freshwater mussels are reciprocal monophyly. The phylogenetic trees advocate the classification of sampled Unionidae species into four subfamilies: Gonideinae, Ambleminae, Anodontinae, and Unioninae, which is supported by the morphological characteristics of glochidia.
Collapse
Affiliation(s)
- Xiao-Chen Huang
- Center for Watershed Ecology, Institute of Life Science, Nanchang University, Nanchang, P. R. China
- School of Life Sciences and Food Engineering, Nanchang University, Nanchang, P. R. China
| | - Jun Rong
- Center for Watershed Ecology, Institute of Life Science, Nanchang University, Nanchang, P. R. China
| | - Yong Liu
- School of Life Sciences and Food Engineering, Nanchang University, Nanchang, P. R. China
| | - Ming-Hua Zhang
- School of Life Sciences and Food Engineering, Nanchang University, Nanchang, P. R. China
| | - Yuan Wan
- Center for Watershed Ecology, Institute of Life Science, Nanchang University, Nanchang, P. R. China
- School of Life Sciences and Food Engineering, Nanchang University, Nanchang, P. R. China
| | - Shan Ouyang
- School of Life Sciences and Food Engineering, Nanchang University, Nanchang, P. R. China
| | - Chun-Hua Zhou
- Center for Watershed Ecology, Institute of Life Science, Nanchang University, Nanchang, P. R. China
- School of Life Sciences and Food Engineering, Nanchang University, Nanchang, P. R. China
| | - Xiao-Ping Wu
- Center for Watershed Ecology, Institute of Life Science, Nanchang University, Nanchang, P. R. China
- School of Life Sciences and Food Engineering, Nanchang University, Nanchang, P. R. China
| |
Collapse
|
36
|
Guerra D, Ghiselli F, Passamonti M. The largest unassigned regions of the male- and female-transmitted mitochondrial DNAs in Musculista senhousia (Bivalvia Mytilidae). Gene 2013; 536:316-25. [PMID: 24342661 DOI: 10.1016/j.gene.2013.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 09/24/2013] [Accepted: 12/01/2013] [Indexed: 11/17/2022]
Abstract
Musculista senhousia is a marine mussel with doubly uniparental inheritance (DUI) of mitochondria. In this study we analyzed the largest unassigned region (LUR) of its female- and male-transmitted mitochondrial genomes, described their fine characteristics and searched for shared features. Our results suggest that both LURs contain the control region of their respective mitochondrial genomes. The female-transmitted control region is duplicated in tandem, with the two copies evolving in concert. This makes the F-mtDNA of M. senhousia the first Bivalve mitochondrial genome with this feature. We also compared M. senhousia control regions to that of other Mytilidae, and demonstrated that signals for basic mtDNA functions are retained over evolutionary times even among the fast-evolving mitochondrial genomes of DUI species. Finally, we discussed how similarities between female and male LURs may be explained in the context of DUI evolution and if the duplicated female control region might have influenced the DUI system in this species.
Collapse
Affiliation(s)
- Davide Guerra
- Department of Biological Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126 Bologna, Italy.
| | - Fabrizio Ghiselli
- Department of Biological Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126 Bologna, Italy
| | - Marco Passamonti
- Department of Biological Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126 Bologna, Italy
| |
Collapse
|
37
|
Diz AP, Dudley E, Cogswell A, MacDonald BW, Kenchington ELR, Zouros E, Skibinski DOF. Proteomic analysis of eggs from Mytilus edulis females differing in mitochondrial DNA transmission mode. Mol Cell Proteomics 2013; 12:3068-80. [PMID: 23869045 DOI: 10.1074/mcp.m113.031401] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Many bivalves have an unusual mechanism of mitochondrial DNA (mtDNA) inheritance called doubly uniparental inheritance (DUI) in which distinctly different genomes are inherited through the female (F genome) and male (M genome) lineages. In fertilized eggs that will develop into male embryos, the sperm mitochondria remain in an aggregation, which is believed to be delivered to the primordial germ cells and passed to the next generation through the sperm. In fertilized eggs that will develop into female embryos, the sperm mitochondria are dispersed throughout the developing embryo and make little if any contribution to the next generation. The frequency of embryos with the aggregated or dispersed mitochondrial type varies among females. Previous models of DUI have predicted that maternal nuclear factors cause molecular differences among unfertilized eggs from females producing embryos with predominantly dispersed or aggregated mitochondria. We test this hypothesis using females of each of the two types from a natural population. We have found small, yet detectable, differences of the predicted type at the proteome level. We also provide evidence that eggs of females giving the dispersed pattern have consistently lower expression for different proteasome subunits than eggs of females giving the aggregated pattern. These results, combined with those of an earlier study in which we used hatchery lines of Mytilus, and with a transcriptomic study in a clam that has the DUI system of mtDNA transmission, reinforce the hypothesis that the ubiquitin-proteasome system plays a key role in the mechanism of DUI and sex determination in bivalves. We also report that eggs of females giving the dispersed pattern have higher expression for arginine kinase and enolase, enzymes involved in energy production, whereas ferritin, which is involved in iron homeostasis, has lower expression. We discuss these results in the context of genetic models for DUI and suggest experimental methods for further understanding the role of these proteins in DUI.
Collapse
Affiliation(s)
- Angel P Diz
- Institute of Life Science, College of Medicine, Swansea University, Swansea SA28PP, Wales UK
| | | | | | | | | | | | | |
Collapse
|
38
|
Plazzi F, Ribani A, Passamonti M. The complete mitochondrial genome of Solemya velum (Mollusca: Bivalvia) and its relationships with conchifera. BMC Genomics 2013; 14:409. [PMID: 23777315 PMCID: PMC3704766 DOI: 10.1186/1471-2164-14-409] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 06/11/2013] [Indexed: 11/17/2022] Open
Abstract
Background Bivalve mitochondrial genomes exhibit a wide array of uncommon features, like extensive gene rearrangements, large sizes, and unusual ways of inheritance. Species pertaining to the order Solemyida (subclass Opponobranchia) show many peculiar evolutionary adaptations, f.i. extensive symbiosis with chemoautotrophic bacteria. Despite Opponobranchia are central in bivalve phylogeny, being considered the sister group of all Autobranchia, a complete mitochondrial genome has not been sequenced yet. Results In this paper, we characterized the complete mitochondrial genome of the Atlantic awning clam Solemya velum: A-T content, gene arrangement and other features are more similar to putative ancestral mollusks than to other bivalves. Two supranumerary open reading frames are present in a large, otherwise unassigned, region, while the origin of replication could be located in a region upstream to the cox3 gene. Conclusions We show that S. velum mitogenome retains most of the ancestral conchiferan features, which is unusual among bivalve mollusks, and we discuss main peculiarities of this first example of an organellar genome coming from the subclass Opponobranchia. Mitochondrial genomes of Solemya (for bivalves) and Haliotis (for gastropods) seem to retain the original condition of mollusks, as most probably exemplified by Katharina.
Collapse
Affiliation(s)
- Federico Plazzi
- Department of Biological Geological and Environmental Sciences, University of Bologna, Via Selmi, 3, Bologna 40126, Italy.
| | | | | |
Collapse
|
39
|
Wang G, Cao X, Li J. Complete F-type mitochondrial genome of Chinese freshwater mussel Lamprotula tortuosa. ACTA ACUST UNITED AC 2013; 24:513-5. [PMID: 23521580 DOI: 10.3109/19401736.2013.770508] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lamprotula tortuosa is the endemic species of freshwater pearl mussel in China. The complete F-type mitochondrial genome of L. tortuosa was first determined. This circle genome (15,722 bp in size) comprises 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, except for COI, CYTB, ND6, and ND4L, with TTG, ATT, ATT, and ATA start codon, respectively; the remaining protein-coding genes initiated with the orthodox ATG start codon. There were 25 noncoding regions found throughout the mitogenome of L. tortuosa, ranging in size from 1 to 241 bp, the largest of which is between ND5 and tRNA(Gln) (241 bp), but is shorter than the control region sequences(about 280 bp) of freshwater mussels from Poland and South Korea.
Collapse
Affiliation(s)
- Guiling Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by Ministry of Agriculture, College of Fisheries and Life Science, Shanghai Ocean University , Shanghai 201306 , People's Republic of China
| | | | | |
Collapse
|
40
|
The complete mitochondrial genome of the Antarctic sea spider Ammothea carolinensis (Chelicerata; Pycnogonida). Polar Biol 2013. [DOI: 10.1007/s00300-013-1288-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
41
|
Ghiselli F, Milani L, Guerra D, Chang PL, Breton S, Nuzhdin SV, Passamonti M. Structure, transcription, and variability of metazoan mitochondrial genome: perspectives from an unusual mitochondrial inheritance system. Genome Biol Evol 2013; 5:1535-54. [PMID: 23882128 PMCID: PMC3762199 DOI: 10.1093/gbe/evt112] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2013] [Indexed: 12/13/2022] Open
Abstract
Despite its functional conservation, the mitochondrial genome (mtDNA) presents strikingly different features among eukaryotes, such as size, rearrangements, and amount of intergenic regions. Nonadaptive processes such as random genetic drift and mutation rate play a fundamental role in shaping mtDNA: the mitochondrial bottleneck and the number of germ line replications are critical factors, and different patterns of germ line differentiation could be responsible for the mtDNA diversity observed in eukaryotes. Among metazoan, bivalve mollusc mtDNAs show unusual features, like hypervariable gene arrangements, high mutation rates, large amount of intergenic regions, and, in some species, an unique inheritance system, the doubly uniparental inheritance (DUI). The DUI system offers the possibility to study the evolutionary dynamics of mtDNAs that, despite being in the same organism, experience different genetic drift and selective pressures. We used the DUI species Ruditapes philippinarum to study intergenic mtDNA functions, mitochondrial transcription, and polymorphism in gonads. We observed: 1) the presence of conserved functional elements and novel open reading frames (ORFs) that could explain the evolutionary persistence of intergenic regions and may be involved in DUI-specific features; 2) that mtDNA transcription is lineage-specific and independent from the nuclear background; and 3) that male-transmitted and female-transmitted mtDNAs have a similar amount of polymorphism but of different kinds, due to different population size and selection efficiency. Our results are consistent with the hypotheses that mtDNA evolution is strongly dependent on the dynamics of germ line formation, and that the establishment of a male-transmitted mtDNA lineage can increase male fitness through selection on sperm function.
Collapse
Affiliation(s)
- Fabrizio Ghiselli
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali (BiGeA), Università di Bologna, Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
42
|
Dettai A, Gallut C, Brouillet S, Pothier J, Lecointre G, Debruyne R. Conveniently pre-tagged and pre-packaged: extended molecular identification and metagenomics using complete metazoan mitochondrial genomes. PLoS One 2012; 7:e51263. [PMID: 23251474 PMCID: PMC3522660 DOI: 10.1371/journal.pone.0051263] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 10/31/2012] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Researchers sorely need markers and approaches for biodiversity exploration (both specimen linked and metagenomics) using the full potential of next generation sequencing technologies (NGST). Currently, most studies rely on expensive multiple tagging, PCR primer universality and/or the use of few markers, sometimes with insufficient variability. METHODOLOGY/PRINCIPAL FINDINGS We propose a novel approach for the isolation and sequencing of a universal, useful and popular marker across distant, non-model metazoans: the complete mitochondrial genome. It relies on the properties of metazoan mitogenomes for enrichment, on careful choice of the organisms to multiplex, as well as on the wide collection of accumulated mitochondrial reference datasets for post-sequencing sorting and identification instead of individual tagging. Multiple divergent organisms can be sequenced simultaneously, and their complete mitogenome obtained at a very low cost. We provide in silico testing of dataset assembly for a selected set of example datasets. CONCLUSIONS/SIGNIFICANCE This approach generates large mitogenome datasets. These sequences are useful for phylogenetics, molecular identification and molecular ecology studies, and are compatible with all existing projects or available datasets based on mitochondrial sequences, such as the Barcode of Life project. Our method can yield sequences both from identified samples and metagenomic samples. The use of the same datasets for both kinds of studies makes for a powerful approach, especially since the datasets have a high variability even at species level, and would be a useful complement to the less variable 18S rDNA currently prevailing in metagenomic studies.
Collapse
Affiliation(s)
- Agnes Dettai
- Muséum national d'Histoire naturelle, Département Systématique et Évolution, UMR 7138 Systématique, Adaptation, Évolution UPMC-CNRS-MNHN-IRD-ENS, Paris, France.
| | | | | | | | | | | |
Collapse
|
43
|
Núñez-Acuña G, Aguilar-Espinoza A, Gallardo-Escárate C. Complete mitochondrial genome of Concholepas concholepas inferred by 454 pyrosequencing and mtDNA expression in two mollusc populations. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2012. [PMID: 23201902 DOI: 10.1016/j.cbd.2012.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Despite the great relevance of mitochondrial genome analysis in evolutionary studies, there is scarce information on how the transcripts associated with the mitogenome are expressed and their role in the genetic structuring of populations. This work reports the complete mitochondrial genome of the marine gastropod Concholepas concholepas, obtained by 454 pryosequencing, and an analysis of mitochondrial transcripts of two populations 1000 km apart along the Chilean coast. The mitochondrion of C. concholepas is 15,495 base pairs (bp) in size and contains the 37 subunits characteristic of metazoans, as well as a non-coding region of 330 bp. In silico analysis of mitochondrial gene variability showed significant differences among populations. In terms of levels of relative abundance of transcripts associated with mitochondrion in the two populations (assessed by qPCR), the genes associated with complexes III and IV of the mitochondrial genome had the highest levels of expression in the northern population while transcripts associated with the ATP synthase complex had the highest levels of expression in the southern population. Moreover, fifteen polymorphic SNPs were identified in silico between the mitogenomes of the two populations. Four of these markers implied different amino acid substitutions (non-synonymous SNPs). This work contributes novel information regarding the mitochondrial genome structure and mRNA expression levels of C. concholepas.
Collapse
Affiliation(s)
- Gustavo Núñez-Acuña
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research, University of Concepción, Chile
| | | | | |
Collapse
|
44
|
Biparental Inheritance Through Uniparental Transmission: The Doubly Uniparental Inheritance (DUI) of Mitochondrial DNA. Evol Biol 2012. [DOI: 10.1007/s11692-012-9195-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
45
|
Mitochondrial DNA paradox: sex-specific genetic structure in a marine mussel--despite maternal inheritance and passive dispersal. BMC Genet 2012; 13:45. [PMID: 22694765 PMCID: PMC3465189 DOI: 10.1186/1471-2156-13-45] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 06/13/2012] [Indexed: 12/29/2022] Open
Abstract
Background When genetic structure is identified using mitochondrial DNA (mtDNA), but no structure is identified using biparentally-inherited nuclear DNA, the discordance is often attributed to differences in dispersal potential between the sexes. Results We sampled the intertidal rocky shore mussel Perna perna in a South African bay and along the nearby open coast, and sequenced maternally-inherited mtDNA (there is no evidence for paternally-inherited mtDNA in this species) and a biparentally-inherited marker. By treating males and females as different populations, we identified significant genetic structure on the basis of mtDNA data in the females only. Conclusions This is the first study to report sex-specific differences in genetic structure based on matrilineally-inherited mtDNA in a passively dispersing species that lacks social structure or sexual dimorphism. The observed pattern most likely stems from females being more vulnerable to selection in habitats from which they did not originate, which also manifests itself in a male-biased sex ratio. Our results have three important implications for the interpretation of population genetic data. First, even when mtDNA is inherited exclusively in the female line, it also contains information about males. For that reason, using it to identify sex-specific differences in genetic structure by contrasting it with biparentally-inherited markers is problematic. Second, the fact that sex-specific differences were found in a passively dispersing species in which sex-biased dispersal is unlikely highlights the fact that significant genetic structure is not necessarily a function of low dispersal potential or physical barriers. Third, even though mtDNA is typically used to study historical demographic processes, it also contains information about contemporary processes. Higher survival rates of males in non-native habitats can erase the genetic structure present in their mothers within a single generation.
Collapse
|
46
|
Deakin JE. Marsupial genome sequences: providing insight into evolution and disease. SCIENTIFICA 2012; 2012:543176. [PMID: 24278712 PMCID: PMC3820666 DOI: 10.6064/2012/543176] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 09/26/2012] [Indexed: 05/08/2023]
Abstract
Marsupials (metatherians), with their position in vertebrate phylogeny and their unique biological features, have been studied for many years by a dedicated group of researchers, but it has only been since the sequencing of the first marsupial genome that their value has been more widely recognised. We now have genome sequences for three distantly related marsupial species (the grey short-tailed opossum, the tammar wallaby, and Tasmanian devil), with the promise of many more genomes to be sequenced in the near future, making this a particularly exciting time in marsupial genomics. The emergence of a transmissible cancer, which is obliterating the Tasmanian devil population, has increased the importance of obtaining and analysing marsupial genome sequence for understanding such diseases as well as for conservation efforts. In addition, these genome sequences have facilitated studies aimed at answering questions regarding gene and genome evolution and provided insight into the evolution of epigenetic mechanisms. Here I highlight the major advances in our understanding of evolution and disease, facilitated by marsupial genome projects, and speculate on the future contributions to be made by such sequences.
Collapse
Affiliation(s)
- Janine E. Deakin
- Division of Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
- *Janine E. Deakin:
| |
Collapse
|