1
|
Riddell J, Headon D. Embryonic feather bud development - A keystone model for vertebrate organogenesis. Dev Biol 2025; 521:142-148. [PMID: 39954756 DOI: 10.1016/j.ydbio.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 01/30/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
The development of feathers in the embryonic skin has been used as a model for biological self-organisation for many decades. The availability, size and ease of manipulation of the skin has enabled it to serve as a model revealing concepts of epithelial-mesenchymal interaction, origins of periodic patterns in the anatomy, and the effects of growth factors and structural and mechanical properties on tissue development. These efforts provide a rich history of observation, informing continued development of new concepts in this system. Here we review the process of early feather bud development, the understanding gained from decades of experimentation, and current debate and future directions for progress.
Collapse
Affiliation(s)
- Jon Riddell
- Roslin Institute and the Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
| | - Denis Headon
- Roslin Institute and the Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom.
| |
Collapse
|
2
|
Zhou Y, Mabrouk I, Ma J, Liu Q, Song Y, Xue G, Li X, Wang S, Liu C, Hu J, Sun Y. Chromosome-level genome sequencing and multi-omics of the Hungarian White Goose (Anser anser domesticus) reveals novel miRNA-mRNA regulation mechanism of waterfowl feather follicle development. Poult Sci 2024; 103:103933. [PMID: 38943801 PMCID: PMC11261457 DOI: 10.1016/j.psj.2024.103933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/07/2024] [Accepted: 05/29/2024] [Indexed: 07/01/2024] Open
Abstract
The Hungarian White Goose (Anser anser domesticus) is an excellent European goose breed, with high feather and meat production. Despite its importance in the poultry industry, no available genome assembly information has been published. This study aimed to present Chromosome-level and functional genome sequencing of the Hungarian White Goose. The results showed that the genome assembly has a total length of 1115.82 Mb, 39 pairs of chromosomes, 92.98% of the BUSCO index, and contig N50 and scaffold N50 were up to 2.32 Mb and 60.69 Mb, respectively. Annotation of the genome assembly revealed 19550 genes, 286 miRNAs, etc. We identified 235 expanded and 1,167 contracted gene families in this breed compared with the other 16 species. We performed a positive selection analysis between this breed and four species of Anatidae to uncover the genetic information underlying feather follicle development. Further, we detected the function of miR-199-x, miR-143-y, and miR-23-z on goose embryonic skin fibroblast. In summary, we have successfully generated a highly complete genome sequence of the Hungarian white goose, which will provide a great resource to improve our understanding of gene functions and enhance the studies on feather follicle development at the genomic level.
Collapse
Affiliation(s)
- Yuxuan Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Ichraf Mabrouk
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jingyun Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Qiuyuan Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yupu Song
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Guizhen Xue
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xinyue Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Sihui Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Chang Liu
- Changchun Municipal People's Government, Changchun Animal Husbandry Service, Changchun, 130062, China
| | - Jingtao Hu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yongfeng Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Jilin Agricultural University, Ministry of Education, Changchun, 130118, China..
| |
Collapse
|
3
|
Van Greenen JD, Hockman D. FGF20. Differentiation 2024; 139:100737. [PMID: 38007375 DOI: 10.1016/j.diff.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/25/2023] [Accepted: 10/24/2023] [Indexed: 11/27/2023]
Abstract
Fibroblast growth factor 20 (FGF20) is a neurotrophic factor and a member of the FGF9 subfamily. It was first identified in Xenopus embryos and was isolated shortly thereafter from the adult rat brain. Its receptors include FGFR4, FGFR3b, FGFR2b and the FGFRc splice forms. In adults it is highly expressed in the brain, while it is expressed in a variety of regions during embryonic development, including the inner ear, heart, hair placodes, mammary buds, dental epithelium and limbs. As a result of its wide-spread expression, FGF20 mouse mutants exhibit a variety of phenotypes including congenital deafness, lack of hair, small kidneys and delayed mammary ductal outgrowth. FGF20 is also associated with human diseases including Parkinson's Disease, cancer and hereditary deafness.
Collapse
Affiliation(s)
- Justine D Van Greenen
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Neuroscience Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Dorit Hockman
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Neuroscience Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
4
|
Lee SH, Platt S, Lim CH, Ito M, Myung P. The development of hair follicles and nail. Dev Biol 2024; 513:3-11. [PMID: 38759942 DOI: 10.1016/j.ydbio.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
The hair follicle and nail unit develop and regenerate through epithelial-mesenchymal interactions. Here, we review some of the key signals and molecular interactions that regulate mammalian hair follicle and nail formation during embryonic development and how these interactions are reutilized to promote their regeneration during adult homeostasis and in response to skin wounding. Finally, we highlight the role of some of these signals in mediating human hair follicle and nail conditions.
Collapse
Affiliation(s)
- Soung-Hoon Lee
- The Ronald O. Perelman Department of Dermatology and Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Sarah Platt
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Chae Ho Lim
- The Ronald O. Perelman Department of Dermatology and Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Mayumi Ito
- The Ronald O. Perelman Department of Dermatology and Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Peggy Myung
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA; Department of Pathology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
Nawaz AH, Setthaya P, Feng C. Exploring Evolutionary Adaptations and Genomic Advancements to Improve Heat Tolerance in Chickens. Animals (Basel) 2024; 14:2215. [PMID: 39123741 PMCID: PMC11311085 DOI: 10.3390/ani14152215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Climate change poses a significant threat to the poultry industry, especially in hot climates that adversely affect chicken growth, development, and productivity through heat stress. This literature review evaluates the evolutionary background of chickens with the specific genetic characteristics that can help chickens to cope with hot conditions. Both natural selection and human interventions have influenced the genetic characteristics of the breeds used in the current poultry production system. The domestication of chickens from the Red junglefowl (Gallus gallus) has resulted in the development of various breeds with distinct genetic differences. Over the past few years, deliberate breeding for desirable traits (such as meat production and egg quality) in chickens has resulted in the emergence of various economically valuable breeds. However, this selective breeding has also caused a decrease in the genetic diversity of chickens, making them more susceptible to environmental stressors like heat stress. Consequently, the chicken breeds currently in use may possess a limited ability to adapt to challenging conditions, such as extreme heat. This review focuses on evaluating potential genes and pathways responsible for heat tolerance, including heat shock response, antioxidant defense systems, immune function, and cellular homeostasis. This article will also discuss the physiological and behavioral responses of chicken varieties that exhibit genetic resistance to heat, such as the naked neck and dwarf traits in different indigenous chickens. This article intends to review the current genomic findings related to heat tolerance in chickens that used methods such as the genome-wide association study (GWAS) and quantitative trait loci (QTL) mapping, offering valuable insights for the sustainability of poultry in the face of global warming.
Collapse
Affiliation(s)
- Ali Hassan Nawaz
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China;
| | - Phatthawin Setthaya
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Chungang Feng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China;
| |
Collapse
|
6
|
Dhouailly D. The avian ectodermal default competence to make feathers. Dev Biol 2024; 508:64-76. [PMID: 38190932 DOI: 10.1016/j.ydbio.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/24/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
Feathers originate as protofeathers before birds, in pterosaurs and basal dinosaurs. What characterizes a feather is not only its outgrowth, but its barb cells differentiation and a set of beta-corneous proteins. Reticula appear concomitantly with feathers, as small bumps on plantar skin, made only of keratins. Avian scales, with their own set of beta-corneous proteins, appear more recently than feathers on the shank, and only in some species. In the chick embryo, when feather placodes form, all the non-feather areas of the integument are already specified. Among them, midventral apterium, cornea, reticula, and scale morphogenesis appear to be driven by negative regulatory mechanisms, which modulate the inherited capacity of the avian ectoderm to form feathers. Successive dermal/epidermal interactions, initiated by the Wnt/β-catenin pathway, and involving principally Eda/Edar, BMP, FGF20 and Shh signaling, are responsible for the formation not only of feather, but also of scale placodes and reticula, with notable differences in the level of Shh, and probably FGF20 expressions. This sequence is a dynamic and labile process, the turning point being the FGF20 expression by the placode. This epidermal signal endows its associated dermis with the memory to aggregate and to stimulate the morphogenesis that follows, involving even a re-initiation of the placode.
Collapse
Affiliation(s)
- Danielle Dhouailly
- Department of Biology and Chemistry, University Grenoble-Alpes, Institute for Advanced Biosciences, 38700, La Tronche, France.
| |
Collapse
|
7
|
Sudderick ZR, Glover JD. Periodic pattern formation during embryonic development. Biochem Soc Trans 2024; 52:75-88. [PMID: 38288903 PMCID: PMC10903485 DOI: 10.1042/bst20230197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 02/29/2024]
Abstract
During embryonic development many organs and structures require the formation of series of repeating elements known as periodic patterns. Ranging from the digits of the limb to the feathers of the avian skin, the correct formation of these embryonic patterns is essential for the future form and function of these tissues. However, the mechanisms that produce these patterns are not fully understood due to the existence of several modes of pattern generation which often differ between organs and species. Here, we review the current state of the field and provide a perspective on future approaches to studying this fundamental process of embryonic development.
Collapse
Affiliation(s)
- Zoe R. Sudderick
- The Roslin Institute & R(D)SVS, University of Edinburgh, Edinburgh, U.K
| | - James D. Glover
- The Roslin Institute & R(D)SVS, University of Edinburgh, Edinburgh, U.K
| |
Collapse
|
8
|
Pan R, Qi L, Xu Z, Zhang D, Nie Q, Zhang X, Luo W. Weighted single-step GWAS identified candidate genes associated with carcass traits in a Chinese yellow-feathered chicken population. Poult Sci 2024; 103:103341. [PMID: 38134459 PMCID: PMC10776626 DOI: 10.1016/j.psj.2023.103341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Carcass traits in broiler chickens are complex traits that are influenced by multiple genes. To gain deeper insights into the genetic mechanisms underlying carcass traits, here we conducted a weighted single-step genome-wide association study (wssGWAS) in a population of Chinese yellow-feathered chicken. The objective was to identify genomic regions and candidate genes associated with carcass weight (CW), eviscerated weight with giblets (EWG), eviscerated weight (EW), breast muscle weight (BMW), drumstick weight (DW), abdominal fat weight (AFW), abdominal fat percentage (AFP), gizzard weight (GW), and intestine length (IL). A total of 1,338 broiler chickens with phenotypic and pedigree information were included in this study. Of these, 435 chickens were genotyped using a 600K single nucleotide polymorphism chip for association analysis. The results indicate that the most significant regions for 9 traits explained 2.38% to 5.09% of the phenotypic variation, from which the region of 194.53 to 194.63Mb on chromosome 1 with the gene RELT and FAM168A identified on it was significantly associated with CW, EWG, EW, BMW, and DW. Meanwhile, the 5 traits have a strong genetic correlation, indicating that the region and the genes can be used for further research. In addition, some candidate genes associated with skeletal muscle development, fat deposition regulation, intestinal repair, and protection were identified. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses suggested that the genes are involved in processes such as vascular development (CD34, FGF7, FGFR3, ITGB1BP1, SEMA5A, LOXL2), bone formation (FGFR3, MATN1, MEF2D, DHRS3, SKI, STC1, HOXB1, HOXB3, TIPARP), and anatomical size regulation (ADD2, AKT1, CFTR, EDN3, FLII, HCLS1, ITGB1BP1, SEMA5A, SHC1, ULK1, DSTN, GSK3B, BORCS8, GRIP2). In conclusion, the integration of phenotype, genotype, and pedigree information without creating pseudo-phenotype will facilitate the genetic improvement of carcass traits in chickens, providing valuable insights into the genetic architecture and potential candidate genes underlying carcass traits, enriching our understanding and contributing to the breeding of high-quality broiler chickens.
Collapse
Affiliation(s)
- Rongyang Pan
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Xugang Yellow Poultry Seed Industry Group Co., Ltd, Jiangmen City, Guangdong Province, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Lin Qi
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhenqiang Xu
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Dexiang Zhang
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qinghua Nie
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiquan Zhang
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wen Luo
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
9
|
Juiputta J, Chankitisakul V, Boonkum W. Appropriate Genetic Approaches for Heat Tolerance and Maintaining Good Productivity in Tropical Poultry Production: A Review. Vet Sci 2023; 10:591. [PMID: 37888543 PMCID: PMC10611393 DOI: 10.3390/vetsci10100591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/16/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Heat stress is a major environmental threat to poultry production systems, especially in tropical areas. The effects of heat stress have been discovered in several areas, including reduced growth rate, reduced egg production, low feed efficiency, impaired immunological responses, changes in intestinal microflora, metabolic changes, and deterioration of meat quality. Although several methods have been used to address the heat stress problem, it persists. The answer to this problem can be remedied sustainably if genetic improvement approaches are available. Therefore, the purpose of this review article was to present the application of different approaches to genetic improvement in poultry in the hope that users will find suitable solutions for their poultry population and be able to plan future poultry breeding programs.
Collapse
Affiliation(s)
- Jiraporn Juiputta
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (J.J.); (V.C.)
| | - Vibuntita Chankitisakul
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (J.J.); (V.C.)
- Network Center for Animal Breeding and Omics Research, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wuttigrai Boonkum
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (J.J.); (V.C.)
- Network Center for Animal Breeding and Omics Research, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
10
|
Tzika AC, Ullate-Agote A, Zakany S, Kummrow M, Milinkovitch MC. Somitic positional information guides self-organized patterning of snake scales. SCIENCE ADVANCES 2023; 9:eadf8834. [PMID: 37315141 DOI: 10.1126/sciadv.adf8834] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/12/2023] [Indexed: 06/16/2023]
Abstract
Two influential concepts in tissue patterning are Wolpert's positional information and Turing's self-organized reaction-diffusion (RD). The latter establishes the patterning of hair and feathers. Here, our morphological, genetic, and functional-by CRISPR-Cas9-mediated gene disruption-characterization of wild-type versus "scaleless" snakes reveals that the near-perfect hexagonal pattern of snake scales is established through interactions between RD in the skin and somitic positional information. First, we show that ventral scale development is guided by hypaxial somites and, second, that ventral scales and epaxial somites guide the sequential RD patterning of the dorsolateral scales. The RD intrinsic length scale evolved to match somite periodicity, ensuring the alignment of ribs and scales, both of which play a critical role in snake locomotion.
Collapse
Affiliation(s)
- Athanasia C Tzika
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, CH-1211 Geneva, Switzerland
- SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Asier Ullate-Agote
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, CH-1211 Geneva, Switzerland
| | - Szabolcs Zakany
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, CH-1211 Geneva, Switzerland
| | - Maya Kummrow
- Tierspital, University of Zurich, Zurich, Switzerland
| | - Michel C Milinkovitch
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, CH-1211 Geneva, Switzerland
- SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
11
|
Dhouailly D. Evo Devo of the Vertebrates Integument. J Dev Biol 2023; 11:25. [PMID: 37367479 DOI: 10.3390/jdb11020025] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/28/2023] Open
Abstract
All living jawed vertebrates possess teeth or did so ancestrally. Integumental surface also includes the cornea. Conversely, no other anatomical feature differentiates the clades so readily as skin appendages do, multicellular glands in amphibians, hair follicle/gland complexes in mammals, feathers in birds, and the different types of scales. Tooth-like scales are characteristic of chondrichthyans, while mineralized dermal scales are characteristic of bony fishes. Corneous epidermal scales might have appeared twice, in squamates, and on feet in avian lineages, but posteriorly to feathers. In contrast to the other skin appendages, the origin of multicellular glands of amphibians has never been addressed. In the seventies, pioneering dermal-epidermal recombination between chick, mouse and lizard embryos showed that: (1) the clade type of the appendage is determined by the epidermis; (2) their morphogenesis requires two groups of dermal messages, first for primordia formation, second for appendage final architecture; (3) the early messages were conserved during amniotes evolution. Molecular biology studies that have identified the involved pathways, extending those data to teeth and dermal scales, suggest that the different vertebrate skin appendages evolved in parallel from a shared placode/dermal cells unit, present in a common toothed ancestor, c.a. 420 mya.
Collapse
Affiliation(s)
- Danielle Dhouailly
- Department of Biology and Chemistry, Institute for Advanced Biosciences, University Grenoble-Alpes, 38700 La Tronche, France
| |
Collapse
|
12
|
Li S, Yang G, Chu J, Wang J, Liu A, Mou C. Revealing the impacts on shaping scutate scales in goose skin. Gene 2022; 844:146840. [PMID: 36031017 DOI: 10.1016/j.gene.2022.146840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 07/30/2022] [Accepted: 08/22/2022] [Indexed: 11/04/2022]
Abstract
Feather follicles and scales are two types of skin appendages distributed on different parts of avian skin. The morphogenesis and development of scales in waterfowl remain largely unknown. Here, we used H&E staining, ISH and RNA sequencing to reveal the morphological and molecular variations at the early development of scutate scales in goose shank skin. Transcriptome analysis produced 1824 differentially expressed genes (DEGs) regulating the induction of scales and further enriched gene function in cell adhesion and Wnt signaling pathway, etc. A total of 8 candidate genes (ALDOC, CSRP2, KRT15, KRT75, LGALS1, S100A6, OGN and SFRP2) were further detected by RT-qPCR to show upregulated (6 genes) and downregulated (2 genes) from pre-placodal to placode stage during the induction of goose scales. The localization of 7 candidate genes (ALDOC, CSRP2, CD109, KRT15, KRT75, S100A6, and OGN) by ISH suggests the potential roles for dermal and epidermal development during the induction of scutate scales. The dynamic molecular changes and specific gene expression patterns revealed in this report provide general knowledge of scale development in waterfowl as well as skin appendage diversity.
Collapse
Affiliation(s)
- Shaomei Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Ge Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Jinyu Chu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Jian Wang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou 215300, China
| | - Anfang Liu
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Chunyan Mou
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| |
Collapse
|
13
|
Woo J, Suh W, Sung JH. Hair Growth Regulation by Fibroblast Growth Factor 12 (FGF12). Int J Mol Sci 2022; 23:ijms23169467. [PMID: 36012732 PMCID: PMC9409131 DOI: 10.3390/ijms23169467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/03/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
The fibroblast growth factor (FGF) family has various biological functions, including cell growth, tissue regeneration, embryonic development, metabolism, and angiogenesis. In the case of hair growth, several members of the FGF family, such as FGF1 and FGF2, are involved in hair growth, while FGF5 has the opposite effect. In this study, the regulation of the hair growth cycle by FGF12 was investigated. To observe its effect, the expression of FGF12 was downregulated in mice and outer root sheath (ORS) by siRNA transfection, while FGF12 overexpression was carried out using FGF12 adenovirus. For the results, FGF12 was primarily expressed in ORS cells with a high expression during the anagen phase of hair follicles. Knockdown of FGF12 delayed telogen-to-anagen transition in mice and decreased the hair length in vibrissae hair follicles. It also inhibited the proliferation and migration of ORS cells. On the contrary, FGF12 overexpression increased the migration of ORS cells. FGF12-overexpressed ORS cells induced the telogen-to-anagen transition in the animal model. In addition, FGF12 overexpression regulated the expression of PDGF-CC, MDK, and HB-EGF, and treatment of these factors exhibited hair growth promotion. Altogether, FGF12 promoted hair growth by inducing the anagen phase of hair follicles, suggesting the potential for hair loss therapy.
Collapse
Affiliation(s)
- Jiwon Woo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea;
| | - Wonhee Suh
- Department of Global Innovative Drug, The Graduate School of Chung-Ang University, Seoul 06974, Korea
- Correspondence: (W.S.); (J.-H.S.)
| | - Jong-Hyuk Sung
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea;
- Epi Biotech Co., Ltd., Incheon 21983, Korea
- Correspondence: (W.S.); (J.-H.S.)
| |
Collapse
|
14
|
HOXC10 intronic duplication is associated with unsealed skull and crest in crested chicken with cerebral hernia. Gene 2022; 840:146758. [PMID: 35905851 DOI: 10.1016/j.gene.2022.146758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 06/21/2022] [Accepted: 07/24/2022] [Indexed: 11/22/2022]
Abstract
The genetic basis and developmental mechanism of unsealed skull in crested chicken with cerebral hernia remain unclear. Here, a genomic region including six HOXC genes was mapped by bulked segregant analysis (BSA) in a crested chicken resource population. A 195-bp intronic tandem duplication was further confirmed in the HOXC10 gene. HOXC genes, particularly HOXC10, were expressed ectopically in fetal skin and meningeal tissues of crested chicken with cerebral hernia, indicating its impact on the cranial mesenchymal tissues that drive the development of scalp skin, frontal bone, and meninges. The restricted expansion of frontal bone progenitors labeled with anti-RUNX2 antibody in the supraorbital mesenchyme of the fetal head implied abnormal migration, which contributed to the formation of the unsealed skull. This study suggests that HOXC genes were potent drivers for the abnormalities of the head crest and unsealed skull observed in crested chicken with cerebral hernia.
Collapse
|
15
|
Potapova NA. Nonsense Mutations in Eukaryotes. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:400-412. [PMID: 35790376 DOI: 10.1134/s0006297922050029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/14/2022] [Accepted: 03/22/2022] [Indexed: 06/15/2023]
Abstract
Nonsense mutations are a type of mutations which results in a premature termination codon occurrence. In general, these mutations have been considered to be among the most harmful ones which lead to premature protein translation termination and result in shortened nonfunctional polypeptide. However, there is evidence that not all nonsense mutations are harmful as well as some molecular mechanisms exist which allow to avoid pathogenic effects of these mutations. This review addresses relevant information on nonsense mutations in eukaryotic genomes, characteristics of these mutations, and different molecular mechanisms preventing or mitigating harmful effects thereof.
Collapse
Affiliation(s)
- Nadezhda A Potapova
- Kharkevich Institute for Information Transmission Problems (IITP), Russian Academy of Sciences, Moscow, 127051, Russia.
| |
Collapse
|
16
|
Cerebral Polymorphisms for Lateralisation: Modelling the Genetic and Phenotypic Architectures of Multiple Functional Modules. Symmetry (Basel) 2022. [DOI: 10.3390/sym14040814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent fMRI and fTCD studies have found that functional modules for aspects of language, praxis, and visuo-spatial functioning, while typically left, left and right hemispheric respectively, frequently show atypical lateralisation. Studies with increasing numbers of modules and participants are finding increasing numbers of module combinations, which here are termed cerebral polymorphisms—qualitatively different lateral organisations of cognitive functions. Polymorphisms are more frequent in left-handers than right-handers, but it is far from the case that right-handers all show the lateral organisation of modules described in introductory textbooks. In computational terms, this paper extends the original, monogenic McManus DC (dextral-chance) model of handedness and language dominance to multiple functional modules, and to a polygenic DC model compatible with the molecular genetics of handedness, and with the biology of visceral asymmetries found in primary ciliary dyskinesia. Distributions of cerebral polymorphisms are calculated for families and twins, and consequences and implications of cerebral polymorphisms are explored for explaining aphasia due to cerebral damage, as well as possible talents and deficits arising from atypical inter- and intra-hemispheric modular connections. The model is set in the broader context of the testing of psychological theories, of issues of laterality measurement, of mutation-selection balance, and the evolution of brain and visceral asymmetries.
Collapse
|
17
|
Painter KJ, Ptashnyk M, Headon DJ. Systems for intricate patterning of the vertebrate anatomy. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200270. [PMID: 34743605 PMCID: PMC8580425 DOI: 10.1098/rsta.2020.0270] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/11/2021] [Indexed: 05/05/2023]
Abstract
Periodic patterns form intricate arrays in the vertebrate anatomy, notably the hair and feather follicles of the skin, but also internally the villi of the gut and the many branches of the lung, kidney, mammary and salivary glands. These tissues are composite structures, being composed of adjoined epithelium and mesenchyme, and the patterns that arise within them require interaction between these two tissue layers. In embryonic development, cells change both their distribution and state in a periodic manner, defining the size and relative positions of these specialized structures. Their placement is determined by simple spacing mechanisms, with substantial evidence pointing to a variety of local enhancement/lateral inhibition systems underlying the breaking of symmetry. The nature of the cellular processes involved, however, has been less clear. While much attention has focused on intercellular soluble signals, such as protein growth factors, experimental evidence has grown for contributions of cell movement or mechanical forces to symmetry breaking. In the mesenchyme, unlike the epithelium, cells may move freely and can self-organize into aggregates by chemotaxis, or through generation and response to mechanical strain on their surrounding matrix. Different modes of self-organization may coexist, either coordinated into a single system or with hierarchical relationships. Consideration of a broad range of distinct biological processes is required to advance understanding of biological pattern formation. This article is part of the theme issue 'Recent progress and open frontiers in Turing's theory of morphogenesis'.
Collapse
Affiliation(s)
- Kevin J. Painter
- Dipartimento Interateneo di Scienze, Progetto e Politiche del Territorio, Politecnico di Torino, Torino, Italy
| | - Mariya Ptashnyk
- School of Mathematical and Computer Sciences and Maxwell Institute, Heriot-Watt University, Edinburgh, UK
| | | |
Collapse
|
18
|
Dadousis C, Somavilla A, Ilska JJ, Johnsson M, Batista L, Mellanby RJ, Headon D, Gottardo P, Whalen A, Wilson D, Dunn IC, Gorjanc G, Kranis A, Hickey JM. A genome-wide association analysis for body weight at 35 days measured on 137,343 broiler chickens. Genet Sel Evol 2021; 53:70. [PMID: 34496773 PMCID: PMC8424881 DOI: 10.1186/s12711-021-00663-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/23/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Body weight (BW) is an economically important trait in the broiler (meat-type chickens) industry. Under the assumption of polygenicity, a "large" number of genes with "small" effects is expected to control BW. To detect such effects, a large sample size is required in genome-wide association studies (GWAS). Our objective was to conduct a GWAS for BW measured at 35 days of age with a large sample size. METHODS The GWAS included 137,343 broilers spanning 15 pedigree generations and 392,295 imputed single nucleotide polymorphisms (SNPs). A false discovery rate of 1% was adopted to account for multiple testing when declaring significant SNPs. A Bayesian ridge regression model was implemented, using AlphaBayes, to estimate the contribution to the total genetic variance of each region harbouring significant SNPs (1 Mb up/downstream) and the combined regions harbouring non-significant SNPs. RESULTS GWAS revealed 25 genomic regions harbouring 96 significant SNPs on 13 Gallus gallus autosomes (GGA1 to 4, 8, 10 to 15, 19 and 27), with the strongest associations on GGA4 at 65.67-66.31 Mb (Galgal4 assembly). The association of these regions points to several strong candidate genes including: (i) growth factors (GGA1, 4, 8, 13 and 14); (ii) leptin receptor overlapping transcript (LEPROT)/leptin receptor (LEPR) locus (GGA8), and the STAT3/STAT5B locus (GGA27), in connection with the JAK/STAT signalling pathway; (iii) T-box gene (TBX3/TBX5) on GGA15 and CHST11 (GGA1), which are both related to heart/skeleton development); and (iv) PLAG1 (GGA2). Combined together, these 25 genomic regions explained ~ 30% of the total genetic variance. The region harbouring significant SNPs that explained the largest portion of the total genetic variance (4.37%) was on GGA4 (~ 65.67-66.31 Mb). CONCLUSIONS To the best of our knowledge, this is the largest GWAS that has been conducted for BW in chicken to date. In spite of the identified regions, which showed a strong association with BW, the high proportion of genetic variance attributed to regions harbouring non-significant SNPs supports the hypothesis that the genetic architecture of BW35 is polygenic and complex. Our results also suggest that a large sample size will be required for future GWAS of BW35.
Collapse
Affiliation(s)
| | | | - Joanna J. Ilska
- The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - Martin Johnsson
- The Roslin Institute, University of Edinburgh, Midlothian, UK
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Lorena Batista
- The Roslin Institute, University of Edinburgh, Midlothian, UK
| | | | - Denis Headon
- The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - Paolo Gottardo
- Italian Brown Breeders Association, Loc. Ferlina 204, 37012 Bussolengo, Italy
| | - Andrew Whalen
- The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - David Wilson
- The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - Ian C. Dunn
- The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - Gregor Gorjanc
- The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - Andreas Kranis
- The Roslin Institute, University of Edinburgh, Midlothian, UK
- Aviagen Ltd, Midlothian, UK
| | - John M. Hickey
- The Roslin Institute, University of Edinburgh, Midlothian, UK
| |
Collapse
|
19
|
Li J, Lee M, Davis BW, Lamichhaney S, Dorshorst BJ, Siegel PB, Andersson L. Mutations Upstream of the TBX5 and PITX1 Transcription Factor Genes Are Associated with Feathered Legs in the Domestic Chicken. Mol Biol Evol 2021; 37:2477-2486. [PMID: 32344431 PMCID: PMC7475036 DOI: 10.1093/molbev/msaa093] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Feathered leg is a trait in domestic chickens that has undergone intense selection by fancy breeders. Previous studies have shown that two major loci controlling feathered leg are located on chromosomes 13 and 15. Here, we present genetic evidence for the identification of candidate causal mutations at these loci. This was accomplished by combining classical linkage mapping using an experimental cross segregating for feathered leg and high-resolution identical-by-descent mapping using whole-genome sequence data from 167 samples of chicken with or without feathered legs. The first predicted causal mutation is a single-base change located 25 kb upstream of the gene for the forelimb-specific transcription factor TBX5 on chromosome 15. The second is a 17.7-kb deletion located ∼200 kb upstream of the gene for the hindlimb-specific transcription factor PITX1 on chromosome 13. These mutations are predicted to activate TBX5 and repress PITX1 expression, respectively. The study reveals a remarkable convergence in the evolution of the feathered-leg phenotype in domestic chickens and domestic pigeons, as this phenotype is caused by noncoding mutations upstream of the same two genes. Furthermore, the PITX1 causal variants are large overlapping deletions, 17.7 kb in chicken and 44 kb in pigeons. The results of the present study are consistent with the previously proposed model for pigeon that feathered leg is caused by reduced PITX1 expression and ectopic expression of TBX5 in hindlimb buds resulting in a shift of limb identity from hindlimb to more forelimb-like identity.
Collapse
Affiliation(s)
- Jingyi Li
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX.,Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - MiOk Lee
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| | - Brian W Davis
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| | - Sangeet Lamichhaney
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ben J Dorshorst
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Paul B Siegel
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Leif Andersson
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX.,Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
20
|
Perini F, Cendron F, Rovelli G, Castellini C, Cassandro M, Lasagna E. Emerging Genetic Tools to Investigate Molecular Pathways Related to Heat Stress in Chickens: A Review. Animals (Basel) 2020; 11:ani11010046. [PMID: 33383690 PMCID: PMC7823582 DOI: 10.3390/ani11010046] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary New genomic tools have been used as an instrument in order to assess the molecular pathway involved in heat stress resistance. Local chicken breeds have a better attitude to face heat stress. This review aims to summarize studies linked to chickens, heat stress, and heat shock protein. Abstract Chicken products are the most consumed animal-sourced foods at a global level across greatly diverse cultures, traditions, and religions. The consumption of chicken meat has increased rapidly in the past few decades and chicken meat is the main animal protein source in developing countries. Heat stress is one of the environmental factors which decreases the productive performance of poultry and meat quality. Heat stress produces the over-expression of heat shock factors and heat shock proteins in chicken tissues. Heat shock proteins regulate several molecular pathways in cells in response to stress conditions, changing the homeostasis of cells and tissues. These changes can affect the physiology of the tissue and hence the production ability of chickens. Indeed, commercial chicken strains can reach a high production level, but their body metabolism, being comparatively accelerated, has poor thermoregulation. In contrast, native backyard chickens are more adapted to the environments in which they live, with a robustness that allows them to survive and reproduce constantly. In the past few years, new molecular tools have been developed, such as RNA-Seq, Single Nucleotide Polymorphisms (SNPs), and bioinformatics approaches such as Genome-Wide Association Study (GWAS). Based on these genetic tools, many studies have detected the main pathways involved in cellular response mechanisms. In this context, it is necessary to clarify all the genetic and molecular mechanisms involved in heat stress response. Hence, this paper aims to review the ability of the new generation of genetic tools to clarify the molecular pathways associated with heat stress in chickens, offering new perspectives for the use of these findings in the animal breeding field.
Collapse
Affiliation(s)
- Francesco Perini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia (PG), Italy; (F.P.); (G.R.); (C.C.); (E.L.)
| | - Filippo Cendron
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell’Università, 16, 35020 Legnaro (PD), Italy;
- Correspondence:
| | - Giacomo Rovelli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia (PG), Italy; (F.P.); (G.R.); (C.C.); (E.L.)
| | - Cesare Castellini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia (PG), Italy; (F.P.); (G.R.); (C.C.); (E.L.)
| | - Martino Cassandro
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell’Università, 16, 35020 Legnaro (PD), Italy;
| | - Emiliano Lasagna
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia (PG), Italy; (F.P.); (G.R.); (C.C.); (E.L.)
| |
Collapse
|
21
|
Kinoshita-Ise M, Tsukashima A, Kinoshita T, Yamazaki Y, Ohyama M. Altered FGF expression profile in human scalp-derived fibroblasts upon WNT activation: implication of their role to provide folliculogenetic microenvironment. Inflamm Regen 2020; 40:35. [PMID: 32973962 PMCID: PMC7507293 DOI: 10.1186/s41232-020-00141-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/04/2020] [Indexed: 01/12/2023] Open
Abstract
Background Hair follicle (HF) formation and growth are sustained by epithelial-mesenchymal interaction via growth factors and cytokines. Pivotal roles of FGFs on HF regeneration and neogenesis have been reported mainly in rodent models. FGF expression is regulated by upstream pathways, represented by canonical WNT signaling; however, how FGFs influence on human folliculogenesis remains elusive. The aim of this study is to assess if human scalp-derived fibroblasts (sFBs) are able to modulate their FGF expression profile in response to WNT activation and to evaluate the influence of WNT-activated or suppressed FGFs on folliculogenesis. Methods Dermal papilla cells (DPCs), dermal sheath cells (DSCs), and sFBs were isolated from the human scalp and cultured independently. The gene expression profile of FGFs in DPCs, DSCs, and sFBs and the influence of WNT activator, CHIR99021, on FGF expression pattern in sFBs were evaluated by reverse transcription polymerase chain reaction, which were confirmed at protein level by western blotting analysis. The changes in the expression of DPC or keratinocyte (KC) biomarkers under the presence of FGF7 or 9 were examined in both single and co-culture assay of DPCs and/or KCs. The influence of FGF 7 and FGF 9 on hair morphogenesis and growth was analyzed in vivo using mouse chamber assay. Results In single culture, sFBs were distinguished from DPCs and DSCs by relatively high expression of FGF5 and FGF18, potential inducers of hair cycle retardation or catagen phase. In WNT-activated state, sFBs downregulated FGF7 while upregulating FGF9, a positive regulator of HF morphogenesis, FGF16 and FGF20 belonging to the same FGF subfamily. In addition, CHIR99021, a WNT activator, dose-dependently modulated FGF7 and 9 expression to be folliculogenic. Altered expressions of FGF7 and FGF9 by CHIR99021 were confirmed at protein level. Supplementation of FGF9 to cultured DPCs resulted in upregulation of representative DP biomarkers and this tendency was sustained, when DPCs were co-cultured with KCs. In mouse chamber assay, FGF9 increased both the number and the diameter of newly formed HFs, while FGF7 decreased HF diameter. Conclusion The results implied that sFBs support HF formation by modulating regional FGF expression profile responding to WNT activation.
Collapse
Affiliation(s)
- Misaki Kinoshita-Ise
- Department of Dermatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, 181-8611 Japan.,Department of Dermatology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku, Tokyo, 160-8582 Japan
| | - Aki Tsukashima
- Department of Dermatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, 181-8611 Japan
| | - Tomonari Kinoshita
- Division of Cellular Signaling Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Yoshimi Yamazaki
- Department of Dermatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, 181-8611 Japan
| | - Manabu Ohyama
- Department of Dermatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, 181-8611 Japan.,Department of Dermatology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku, Tokyo, 160-8582 Japan
| |
Collapse
|
22
|
Giffin JL, Franz-Odendaal TA. Quantitative gene expression dynamics of key placode signalling factors in the embryonic chicken scleral ossicle system. Gene Expr Patterns 2020; 38:119131. [PMID: 32755633 DOI: 10.1016/j.gep.2020.119131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/25/2020] [Accepted: 07/29/2020] [Indexed: 10/23/2022]
Abstract
Development of the scleral ossicles, a ring of bony elements within the sclera, is directed by a series of papillae that arise from placodes in the conjunctival epithelium over a 1.5-day induction period in the chicken embryo. The regular spacing of the papillae around the corneal-scleral limbus suggests that their induction may be regulated by a reaction-diffusion mechanism, similar to other epithelial appendages. Some key placode signalling molecules, including β-catenin, are known to be expressed throughout the induction period. However, others have been studied only at certain stages or have not been successfully detected. Here we use qPCR to study the gene expression patterns of the wingless integration (WNT)/β-catenin, bone morphogenetic protein (BMP), ectodysplasin (EDA), fibroblast growth factor (FGF) and hedgehog (HH) signalling families in discrete regions of the eye throughout the complete conjunctival placode and papillae induction period. This comprehensive analysis revealed a variable level of gene expression within specific eye regions, with some genes exhibiting high, moderate or low changes. Most genes exhibited an initial increase in gene expression, followed by a decrease or plateau as development proceeded, suggesting that some genes are important for a brief initial period whilst the sustained elevated expression level of other genes is needed for developmental progression. The timing or magnitude of these changes, and/or the overall gene expression trend differed in the temporal, nasal and/or dorsal eye regions for some, but not all genes, demonstrating that gene expression may vary across different eye regions. Temporal and nasal EDA receptor (EDAR) had the greatest number of strong correlations (r > 0.700) with other genes and β-catenin had the greatest number of moderate correlations (r = 0.400-0.700), while EDA had the greatest range in correlation strengths. Among the strongly correlated genes, two distinct signalling modules were identified, connected by some intermediate genes. The dynamic gene expression patterns of the five signalling pathways studied here from conjunctival placode formation through to papillae development is consistent with other epithelial appendages and confirms the presence of a conserved induction and patterning signalling network. Two unique gene expression patterns and corresponding gene interaction modules suggest functionally distinct roles throughout placode development. Furthermore, spatial differences in gene expression patterns among the temporal, nasal and dorsal regions of the eye may indicate that the expression of certain genes is influenced by mechanical forces exerted throughout development. Therefore, this study identifies key placode signalling factors and their interactions, as well as some potential region-specific features of gene expression in the scleral ossicle system and provides a basis for further exploration of the spatial expression of these genes and the patterning mechanism(s) active throughout conjunctival placode and papillae formation.
Collapse
Affiliation(s)
- Jennifer L Giffin
- Department of Biology, Mount Saint Vincent University, 166 Bedford Highway, Halifax, NS, B3M 2J6, Canada.
| | - Tamara A Franz-Odendaal
- Department of Biology, Mount Saint Vincent University, 166 Bedford Highway, Halifax, NS, B3M 2J6, Canada.
| |
Collapse
|
23
|
Comparative investigation of coarse and fine wool sheep skin indicates the early regulators for skin and wool diversity. Gene 2020; 758:144968. [PMID: 32707304 DOI: 10.1016/j.gene.2020.144968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/01/2020] [Accepted: 07/17/2020] [Indexed: 02/08/2023]
Abstract
The hair follicle is an excellent mini-system illustrating the mechanisms governing organogenesis and regeneration. Although the general mechanisms modulating skin and hair follicle development are widely studied in mouse and chicken models, the delicate network regulating skin and hair diversity remains largely unclear. Sheep is an additional model to address the various wool characteristics observed in nature. The coarse and fine wool sheep with diverse fibers were examined to show differences in the primary wool follicle size and skin thickness. The molecular dynamics in skin staged at the primary wool follicle induction between two sheep lines were investigated by RNA-sequencing analyses to generate 1994 differentially expressed genes revealing marker genes for epithelium (6 genes), dermal condensate (38 genes) and dermal fibroblast (58 genes) highly correlated with skin and wool follicle morphological differences. The DEGs were enriched in GO terms represented by epithelial cell migration and differentiation, regulation of hair follicle development and ectodermal placode formation, and KEGG pathways typified by WNT and Hedgehog signaling pathways governing the differences of skin structure. The qPCR detection of 9 genes confirmed the similar expression tendency with RNA-sequencing profiles. This comparative study of coarse and fine wool sheep skin reveals the presence of skin and wool follicle differences at primary wool follicle induction stage, and indicates the potential effectors (APCDD1, FGF20, DKK1, IGFBP3 and SFRP4) regulating the skin compartments during the early morphogenesis of primary wool follicles to shape the variable wool fiber thickness in later developmental stages.
Collapse
|
24
|
Ji G, Zhang M, Liu Y, Shan Y, Tu Y, Ju X, Zou J, Shu J, Wu J, Xie J. A gene co‐expression network analysis of the candidate genes and molecular pathways associated with feather follicle traits of chicken skin. J Anim Breed Genet 2020; 138:122-134. [DOI: 10.1111/jbg.12481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/23/2020] [Accepted: 04/03/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Gai‐ge Ji
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province Institute of Poultry Science Chinese Academy of Agricultural Science Yangzhou China
| | - Ming Zhang
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province Institute of Poultry Science Chinese Academy of Agricultural Science Yangzhou China
| | - Yi‐fan Liu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province Institute of Poultry Science Chinese Academy of Agricultural Science Yangzhou China
| | - Yan‐ju Shan
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province Institute of Poultry Science Chinese Academy of Agricultural Science Yangzhou China
| | - Yun‐jie Tu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province Institute of Poultry Science Chinese Academy of Agricultural Science Yangzhou China
| | - Xiao‐jun Ju
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province Institute of Poultry Science Chinese Academy of Agricultural Science Yangzhou China
| | - Jian‐min Zou
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province Institute of Poultry Science Chinese Academy of Agricultural Science Yangzhou China
| | - Jing‐ting Shu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province Institute of Poultry Science Chinese Academy of Agricultural Science Yangzhou China
| | - Jun‐feng Wu
- Jiangsu Li‐hua Animal Husbandry Company Jiangsu China
| | - Jin‐fang Xie
- Jiangxi Academy of Agricultural Sciences Nanchang China
| |
Collapse
|
25
|
Feather Evolution from Precocial to Altricial Birds. Zool Stud 2019; 58:e24. [PMID: 31966325 DOI: 10.6620/zs.2019.58-24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/16/2019] [Indexed: 12/28/2022]
Abstract
Birds are the most abundant terrestrial vertebrates and their diversity is greatly shaped by the feathers. How avian evolution is linked to feather evolution has long been a fascinating question. Numerous excellent studies have shed light on this complex relationship by investigating feather diversity and its underlying molecular mechanisms. However, most have focused on adult domestic birds, and the contribution of feather diversity to environmental adaptation has not been well-studied. In this review, we described bird diversity using the traditional concept of the altricial-precocial spectrum in bird hatchlings. We combined the spectrum with a recently published avian phylogeny to profile the spectrum evolution. We then focused on the discrete diagnostic character of the spectrum, the natal down, and propose a hypothesis for the precocial-to-altricial evolution. For the underlying molecular mechanisms in feather diversity and bird evolution, we reviewed the literature and constructed the known mechanisms for feather tract definition and natal down development. Finally, we suggested some future directions for research on altricial-precocial divergence, which may expand our understanding of the relationship between natal down diversity and bird evolution.
Collapse
|
26
|
Yang S, Shi Z, Ou X, Liu G. Whole-genome resequencing reveals genetic indels of feathered-leg traits in domestic chickens. J Genet 2019; 98:47. [PMID: 31204699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Whole-genome resequencing provides the opportunity to explore the genomic variations and pave way for further functional assays to map the economical trait loci. In this study, we sequenced the genomes of mixed chicken samples from a full-sib family, with feathered and unfeathered legs at an average effective depth of 4.43×, using Illumina Hiseq 2000 instruments. Over 2.1 million nonredundant short indels (1-71 bp) were obtained. Among them, 16,375 common indels that were polymorphic between the comparison groups were revealed for further analysis. The majority of the common differential indels (76.52%) were novel. Follow-up validation assays confirmed that 80% randomly selected indels represented true variations. The indels were annotated based on the chicken genome sequence assembly. As a result, 16,375 indels were found to be located within 2756 annotated genes, with only 33 (0.202%) located in exons. By integrated analysis of the 2756 genes with gene function and known quantitative trait loci, we identified a total of 24 promising candidate genes potentially affecting feathered-leg trait, i.e. FGF1, FGF4, FGF10, FGFR1, FRZB, WNT1, WNT3A, WNT11, PCDH1, PCDH10, PCDH19, SOX3, BMP2, NOTCH2, TGF-β2, DLX5, REPS2, SCN3B, TCF20, FGF3, FSTL1, WNT7B, ELOVL2 and FGF8. Our findings provide a basis for further study and reveal key genes for feathered-leg trait in chickens.
Collapse
Affiliation(s)
- Shaohua Yang
- College of Food Science and Bioengineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui, People's Republic of China.
| | | | | | | |
Collapse
|
27
|
Yang S, Shi Z, OU X, LIU G. Whole-genome resequencing reveals genetic indels of feathered-leg traits in domestic chickens. J Genet 2019. [DOI: 10.1007/s12041-019-1083-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
28
|
Ho WKW, Freem L, Zhao D, Painter KJ, Woolley TE, Gaffney EA, McGrew MJ, Tzika A, Milinkovitch MC, Schneider P, Drusko A, Matthäus F, Glover JD, Wells KL, Johansson JA, Davey MG, Sang HM, Clinton M, Headon DJ. Feather arrays are patterned by interacting signalling and cell density waves. PLoS Biol 2019; 17:e3000132. [PMID: 30789897 PMCID: PMC6383868 DOI: 10.1371/journal.pbio.3000132] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/17/2019] [Indexed: 12/30/2022] Open
Abstract
Feathers are arranged in a precise pattern in avian skin. They first arise during development in a row along the dorsal midline, with rows of new feather buds added sequentially in a spreading wave. We show that the patterning of feathers relies on coupled fibroblast growth factor (FGF) and bone morphogenetic protein (BMP) signalling together with mesenchymal cell movement, acting in a coordinated reaction-diffusion-taxis system. This periodic patterning system is partly mechanochemical, with mechanical-chemical integration occurring through a positive feedback loop centred on FGF20, which induces cell aggregation, mechanically compressing the epidermis to rapidly intensify FGF20 expression. The travelling wave of feather formation is imposed by expanding expression of Ectodysplasin A (EDA), which initiates the expression of FGF20. The EDA wave spreads across a mesenchymal cell density gradient, triggering pattern formation by lowering the threshold of mesenchymal cells required to begin to form a feather bud. These waves, and the precise arrangement of feather primordia, are lost in the flightless emu and ostrich, though via different developmental routes. The ostrich retains the tract arrangement characteristic of birds in general but lays down feather primordia without a wave, akin to the process of hair follicle formation in mammalian embryos. The embryonic emu skin lacks sufficient cells to enact feather formation, causing failure of tract formation, and instead the entire skin gains feather primordia through a later process. This work shows that a reaction-diffusion-taxis system, integrated with mechanical processes, generates the feather array. In flighted birds, the key role of the EDA/Ectodysplasin A receptor (EDAR) pathway in vertebrate skin patterning has been recast to activate this process in a quasi-1-dimensional manner, imposing highly ordered pattern formation.
Collapse
Affiliation(s)
- William K. W. Ho
- Roslin Institute Chicken Embryology, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Lucy Freem
- Roslin Institute Chicken Embryology, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Debiao Zhao
- Roslin Institute Chicken Embryology, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Kevin J. Painter
- School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Thomas E. Woolley
- School of Mathematics, Cardiff University, Cathays, Cardiff, United Kingdom
| | - Eamonn A. Gaffney
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Michael J. McGrew
- Roslin Institute Chicken Embryology, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Athanasia Tzika
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | | | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Armin Drusko
- FIAS and Faculty of Biological Sciences, University of Frankfurt, Frankfurt, Germany
| | - Franziska Matthäus
- FIAS and Faculty of Biological Sciences, University of Frankfurt, Frankfurt, Germany
| | - James D. Glover
- Roslin Institute Chicken Embryology, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Kirsty L. Wells
- Roslin Institute Chicken Embryology, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Jeanette A. Johansson
- Cancer Research UK Edinburgh Centre and MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Megan G. Davey
- Roslin Institute Chicken Embryology, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Helen M. Sang
- Roslin Institute Chicken Embryology, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael Clinton
- Roslin Institute Chicken Embryology, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Denis J. Headon
- Roslin Institute Chicken Embryology, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
29
|
Li J, Bed’hom B, Marthey S, Valade M, Dureux A, Moroldo M, Péchoux C, Coville J, Gourichon D, Vieaud A, Dorshorst B, Andersson L, Tixier‐Boichard M. A missense mutation in
TYRP1
causes the chocolate plumage color in chicken and alters melanosome structure. Pigment Cell Melanoma Res 2018; 32:381-390. [DOI: 10.1111/pcmr.12753] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 09/19/2018] [Accepted: 10/02/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Jingyi Li
- Department of Animal and Poultry Sciences Virginia Tech Blacksburg Virginia
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences Texas A&M University College Station Texas
| | - Bertrand Bed’hom
- GABI, AgroParisTech, INRA Université Paris‐Saclay Jouy‐en‐Josas France
| | - Sylvain Marthey
- GABI, AgroParisTech, INRA Université Paris‐Saclay Jouy‐en‐Josas France
| | - Mathieu Valade
- GABI, AgroParisTech, INRA Université Paris‐Saclay Jouy‐en‐Josas France
| | - Audrey Dureux
- GABI, AgroParisTech, INRA Université Paris‐Saclay Jouy‐en‐Josas France
| | - Marco Moroldo
- GABI, AgroParisTech, INRA Université Paris‐Saclay Jouy‐en‐Josas France
| | - Christine Péchoux
- GABI, AgroParisTech, INRA Université Paris‐Saclay Jouy‐en‐Josas France
| | - Jean‐Luc Coville
- GABI, AgroParisTech, INRA Université Paris‐Saclay Jouy‐en‐Josas France
| | | | - Agathe Vieaud
- GABI, AgroParisTech, INRA Université Paris‐Saclay Jouy‐en‐Josas France
| | - Ben Dorshorst
- Department of Animal and Poultry Sciences Virginia Tech Blacksburg Virginia
| | - Leif Andersson
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences Texas A&M University College Station Texas
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology Uppsala University Uppsala Sweden
- Department of Animal Breeding and Genetics Swedish University of Agricultural Sciences Uppsala Sweden
| | | |
Collapse
|
30
|
Kumar S, Franz-Odendaal TA. Analysis of the FGFR spatiotemporal expression pattern within the chicken scleral ossicle system. Gene Expr Patterns 2018; 30:7-13. [DOI: 10.1016/j.gep.2018.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 12/26/2022]
|
31
|
High fidelity CRISPR/Cas9 increases precise monoallelic and biallelic editing events in primordial germ cells. Sci Rep 2018; 8:15126. [PMID: 30310080 PMCID: PMC6181960 DOI: 10.1038/s41598-018-33244-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/17/2018] [Indexed: 12/21/2022] Open
Abstract
Primordial germ cells (PGCs), the embryonic precursors of the sperm and egg, are used for the introduction of genetic modifications into avian genome. Introduction of small defined sequences using genome editing has not been demonstrated in bird species. Here, we compared oligonucleotide-mediated HDR using wild type SpCas9 (SpCas9-WT) and high fidelity SpCas9-HF1 in PGCs and show that many loci in chicken PGCs can be precise edited using donors containing CRISPR/Cas9-blocking mutations positioned in the protospacer adjacent motif (PAM). However, targeting was more efficient using SpCas9-HF1 when mutations were introduced only into the gRNA target sequence. We subsequently employed an eGFP-to-BFP conversion assay, to directly compare HDR mediated by SpCas9-WT and SpCas9-HF1 and discovered that SpCas9-HF1 increases HDR while reducing INDEL formation. Furthermore, SpCas9-HF1 increases the frequency of single allele editing in comparison to SpCas9-WT. We used SpCas9-HF1 to demonstrate the introduction of monoallelic and biallelic point mutations into the FGF20 gene and generate clonal populations of edited PGCs with defined homozygous and heterozygous genotypes. Our results demonstrate the use of oligonucleotide donors and high fidelity CRISPR/Cas9 variants to perform precise genome editing with high efficiency in PGCs.
Collapse
|
32
|
Ng CS, Li WH. Genetic and Molecular Basis of Feather Diversity in Birds. Genome Biol Evol 2018; 10:2572-2586. [PMID: 30169786 PMCID: PMC6171735 DOI: 10.1093/gbe/evy180] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2018] [Indexed: 12/16/2022] Open
Abstract
Feather diversity is striking in many aspects. Although the development of feather has been studied for decades, genetic and genomic studies of feather diversity have begun only recently. Many questions remain to be answered by multidisciplinary approaches. In this review, we discuss three levels of feather diversity: Feather morphotypes, intraspecific variations, and interspecific variations. We summarize recent studies of feather evolution in terms of genetics, genomics, and developmental biology and provide perspectives for future research. Specifically, this review includes the following topics: 1) Diversity of feather morphotype; 2) feather diversity among different breeds of domesticated birds, including variations in pigmentation pattern, in feather length or regional identity, in feather orientation, in feather distribution, and in feather structure; and 3) diversity of feathers among avian species, including plumage color and morph differences between species and the regulatory differences in downy feather development between altricial and precocial birds. Finally, we discussed future research directions.
Collapse
Affiliation(s)
- Chen Siang Ng
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan.,The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Wen-Hsiung Li
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.,Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.,Department of Ecology and Evolution, University of Chicago
| |
Collapse
|
33
|
Biggs LC, Mäkelä OJ, Myllymäki SM, Das Roy R, Närhi K, Pispa J, Mustonen T, Mikkola ML. Hair follicle dermal condensation forms via Fgf20 primed cell cycle exit, cell motility, and aggregation. eLife 2018; 7:36468. [PMID: 30063206 PMCID: PMC6107334 DOI: 10.7554/elife.36468] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/30/2018] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal condensation is a critical step in organogenesis, yet the underlying molecular and cellular mechanisms remain poorly understood. The hair follicle dermal condensate is the precursor to the permanent mesenchymal unit of the hair follicle, the dermal papilla, which regulates hair cycling throughout life and bears hair inductive potential. Dermal condensate morphogenesis depends on epithelial Fibroblast Growth Factor 20 (Fgf20). Here, we combine mouse models with 3D and 4D microscopy to demonstrate that dermal condensates form de novo and via directional migration. We identify cell cycle exit and cell shape changes as early hallmarks of dermal condensate morphogenesis and find that Fgf20 primes these cellular behaviors and enhances cell motility and condensation. RNAseq profiling of immediate Fgf20 targets revealed induction of a subset of dermal condensate marker genes. Collectively, these data indicate that dermal condensation occurs via directed cell movement and that Fgf20 orchestrates the early cellular and molecular events. All mammal hair springs from hair follicles under the skin. These follicles sit in the dermis, beneath the outermost skin layer, the epidermis. In the embryo, hair follicles develop from unspecialized cells in two tissues, the epithelium and the mesenchyme, which will later develop into the dermis and epidermis, respectively. As development progresses, the cells of these tissues begin to cluster, and signals passing back and forth between the epithelium and mesenchyme instruct the cells what to do. In the mesenchyme, cells called fibroblasts squeeze up against their neighbors, forming patches called dermal condensates. These mature into so-called dermal papillae, which supply specific molecules called growth factors that regulate hair formation throughout lifetime. Fibroblasts in the developing skin respond to a signal from the epithelium called fibroblast growth factor 20 (Fgf20), but we do not yet understand its effects. It is possible that Fgf20 tells the cells to divide, forming clusters of daughter cells around their current location. Or, it could be that Fgf20 tells the cells to move, encouraging them to travel towards one another to form groups. To address this question, Biggs, Mäkelä et al. examined developing mouse skin grown in the laboratory. They traced cells marked with fluorescent tags to analyze their behavior as the condensates formed. This revealed that the Fgf20 signal acts as a rallying call, triggering fibroblast movement. The cells changed shape and moved towards one another, rather than dividing to create their own clusters. In fact, they switched off their own cell cycle as the condensates formed, halting their ability to divide. A technique called RNA sequencing revealed that Fgf20 also promotes the use of genes known to be active in dermal condensates. Dermal papillae control hair growth, and transplanting them under the skin can form new hair follicles. However, these cells lose this ability when grown in the laboratory. Understanding how they develop could be beneficial for future hair growth therapy. Further work could also address fundamental questions in embryology. Condensates of cells from the mesenchyme also precede the formation of limbs, bones, muscles and organs. Extending this work could help us to understand this critical developmental step.
Collapse
Affiliation(s)
- Leah C Biggs
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Otto Jm Mäkelä
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Satu-Marja Myllymäki
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Rishi Das Roy
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Katja Närhi
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Johanna Pispa
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Tuija Mustonen
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Marja L Mikkola
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
34
|
Albertson RC, Kawasaki KC, Tetrault ER, Powder KE. Genetic analyses in Lake Malawi cichlids identify new roles for Fgf signaling in scale shape variation. Commun Biol 2018; 1:55. [PMID: 30271938 PMCID: PMC6123627 DOI: 10.1038/s42003-018-0060-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/30/2018] [Indexed: 01/30/2023] Open
Abstract
Elasmoid scales are the most common epithelial appendage among vertebrates, however an understanding of the genetic mechanisms that underlie variation in scale shape is lacking. Using an F2 mapping cross between morphologically distinct cichlid species, we identified >40 QTL for scale shape at different body positions. We show that while certain regions of the genome regulate variation in multiple scales, most are specific to scales at distinct positions. This suggests a degree of regional modularity in scale development. We also identified a single QTL for variation in scale shape disparity across the body. Finally, we screened a QTL hotspot for candidate loci, and identified the Fgf receptor fgfr1b as a prime target. Quantitative rtPCR and small molecule manipulation support a role for Fgf signaling in shaping cichlid scales. While Fgfs have previously been implicated in scale loss, these data reveal new roles for the pathway in scale shape variation.
Collapse
Affiliation(s)
- R Craig Albertson
- Department of Biology, University of Massachusetts, 611 North Pleasant Street, Amherst, MA, 01003, USA.
| | - Kenta C Kawasaki
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts, 611 North Pleasant Street, Amherst, MA, 01003, USA
| | - Emily R Tetrault
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts, 611 North Pleasant Street, Amherst, MA, 01003, USA
| | - Kara E Powder
- Department of Biological Sciences, Clemson University, 190 Collings Street, Clemson, SC, 29634, USA
| |
Collapse
|
35
|
A chemotaxis model of feather primordia pattern formation during avian development. J Theor Biol 2018; 437:225-238. [DOI: 10.1016/j.jtbi.2017.10.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/17/2017] [Accepted: 10/25/2017] [Indexed: 11/21/2022]
|
36
|
Hammer CL, Franz-Odendaal TA. Towards understanding the dose and timing effect of hydrocortisone treatment on the scleral ossicle system within the chicken eye. J Anat 2017; 232:270-282. [PMID: 29210090 DOI: 10.1111/joa.12744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2017] [Indexed: 10/18/2022] Open
Abstract
Previous work, almost four decades ago, showed that hydrocortisone (HC) treatment reduces the number of skeletogenic condensations that give rise to the scleral ossicles in the chicken eye. The scleral ossicles are a ring of overlapping intramembranous bones, the sclerotic ring, and are present in most reptiles, including birds. The scleral condensations that give rise to the scleral ossicles are induced by a series of overlying thickenings (or papillae) of the conjunctival epithelium. Here, we further explore the effects of altering the dosage and timing of HC treatment on the morphology and number of skeletogenic condensations and conjunctival papillae. We show that high doses can completely obliterate the entire sclerotic ring. Significantly, the reduction in papillae number we observed was less extreme than that of the scleral condensations, indicating that additional factors contribute to the observed skeletogenic condensation loss. Via immunohistochemical analyses, we show that HC treatment alters the spatial expression pattern of several extracellular matrix components (tenascin-C, decorin and procollagen I) and also alters the vasculature network within the sclera. This research provides important insights into understanding the role of the scleral tissue components in ossicle development within the vertebrate eye.
Collapse
|
37
|
Dhouailly D, Godefroit P, Martin T, Nonchev S, Caraguel F, Oftedal O. Getting to the root of scales, feather and hair: As deep as odontodes? Exp Dermatol 2017; 28:503-508. [DOI: 10.1111/exd.13391] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Danielle Dhouailly
- Department of Biology and ChemistryUniversité Grenoble‐Alpes La Tronche France
| | - Pascal Godefroit
- Directorate “Earth and History of Life” Royal Belgian Institute of Natural Sciences Bruxelles Belgium
| | - Thomas Martin
- Steinmann‐Institut für GeologieMineralogie und PaläontologieUniversität Bonn Bonn Germany
| | - Stefan Nonchev
- INSERM, U823Institute for Advanced BiosciencesUniversité Grenoble‐Alpes Rhône‐Alpes France
| | - Flavien Caraguel
- Department of Biology and ChemistryUniversité Grenoble‐Alpes La Tronche France
| | - Olav Oftedal
- Smithsonian Environmental Research Center Edgewater MD USA
| |
Collapse
|
38
|
Genomic determinants of epidermal appendage patterning and structure in domestic birds. Dev Biol 2017; 429:409-419. [PMID: 28347644 DOI: 10.1016/j.ydbio.2017.03.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/17/2017] [Accepted: 03/23/2017] [Indexed: 11/20/2022]
Abstract
Variation in regional identity, patterning, and structure of epidermal appendages contributes to skin diversity among many vertebrate groups, and is perhaps most striking in birds. In pioneering work on epidermal appendage patterning, John Saunders and his contemporaries took advantage of epidermal appendage diversity within and among domestic chicken breeds to establish the importance of mesoderm-ectoderm signaling in determining skin patterning. Diversity in chickens and other domestic birds, including pigeons, is driving a new wave of research to dissect the molecular genetic basis of epidermal appendage patterning. Domestic birds are not only outstanding models for embryonic manipulations, as Saunders recognized, but they are also ideal genetic models for discovering the specific genes that control normal development and the mutations that contribute to skin diversity. Here, we review recent genetic and genomic approaches to uncover the basis of epidermal macropatterning, micropatterning, and structural variation. We also present new results that confirm expression changes in two limb identity genes in feather-footed pigeons, a case of variation in appendage structure and identity.
Collapse
|
39
|
Lyon A, Powers AK, Gross JB, O’Quin KE. Two - three loci control scleral ossicle formation via epistasis in the cavefish Astyanax mexicanus. PLoS One 2017; 12:e0171061. [PMID: 28182695 PMCID: PMC5300192 DOI: 10.1371/journal.pone.0171061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/16/2017] [Indexed: 11/28/2022] Open
Abstract
The sclera is the protective outer layer of the eye. In fishes, birds, and reptiles, the sclera may be reinforced with additional bony elements called scleral ossicles. Teleost fish vary in the number and size of scleral ossicles; however, the genetic mechanisms responsible for this variation remain poorly understood. In this study, we examine the inheritance of scleral ossicles in the Mexican tetra, Astyanax mexicanus, which exhibits both a cave morph and a surface fish morph. As these morphs and their hybrids collectively exhibit zero, one, and two scleral ossicles, they represent a microcosm of teleost scleral ossicle diversity. Our previous research in F2 hybrids of cavefish from Pachón cave and surface fish from Texas suggested that three genes likely influence the formation of scleral ossicles in this group through an epistatic threshold model of inheritance, though our sample size was small. In this study, we expand our sample size using additional hybrids of Pachón cavefish and Mexican surface fish to (1) confirm the threshold model of inheritance, (2) refine the number of genes responsible for scleral ossicle formation, and (3) increase our power to detect quantitative trait loci (QTL) for this trait. To answer these three questions, we scored surface fish and cavefish F2 hybrids for the presence of zero, one, or two scleral ossicles. We then analyzed their distribution among the F2 hybrids using a chi-square (χ2) test, and used a genetic linkage map of over 100 microsatellite markers to identify QTL responsible for scleral ossicle number. We found that inheritance of scleral ossicles follows an epistatic threshold model of inheritance controlled by two genes, which contrasts the three-locus model estimated from our previous study. Finally, the combined analysis of hybrids from both crosses identified two strong QTL for scleral ossicle number on linkage groups 4.2 and 21, and a weaker QTL on linkage group 4.1. Scleral ossification remains a complex trait with limited knowledge of its genetic basis. This study provides new insight into the number and location of genes controlling the formation of scleral ossicles in a teleost fish species.
Collapse
Affiliation(s)
- Anastasia Lyon
- Biology Program, Centre College, Danville, KY, United States of America
| | - Amanda K. Powers
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States of America
| | - Joshua B. Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States of America
| | - Kelly E. O’Quin
- Biology Program, Centre College, Danville, KY, United States of America
- * E-mail:
| |
Collapse
|
40
|
Chen CK, Yu CP, Li SC, Wu SM, Lu MYJ, Chen YH, Chen DR, Ng CS, Ting CT, Li WH. Identification and evolutionary analysis of long non-coding RNAs in zebra finch. BMC Genomics 2017; 18:117. [PMID: 28143393 PMCID: PMC5282891 DOI: 10.1186/s12864-017-3506-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 01/14/2017] [Indexed: 02/06/2023] Open
Abstract
Background Long non-coding RNAs (lncRNAs) are important in various biological processes, but very few studies on lncRNA have been conducted in birds. To identify IncRNAs expressed during feather development, we analyzed single-stranded RNA-seq (ssRNA-seq) data from the anterior and posterior dorsal regions during zebra finch (Taeniopygia guttata) embryonic development. Using published transcriptomic data, we further analyzed the evolutionary conservation of IncRNAs in birds and amniotes. Results A total of 1,081 lncRNAs, including 965 intergenic lncRNAs (lincRNAs), 59 intronic lncRNAs, and 57 antisense lncRNAs (lncNATs), were identified using our newly developed pipeline. These avian IncRNAs share similar characteristics with lncRNAs in mammals, such as shorter transcript length, lower exon number, lower average expression level and less sequence conservation than mRNAs. However, the proportion of lncRNAs overlapping with transposable elements in birds is much lower than that in mammals. We predicted the functions of IncRNAs based on the enriched functions of co-expressed protein-coding genes. Clusters of lncRNAs associated with natal down development were identified. The sequences and expression levels of candidate lncRNAs that shared conserved sequences among birds were validated by qPCR in both zebra finch and chicken. Finally, we identified three highly conserved lncRNAs that may be associated with natal down development. Conclusions Our study provides the first systematical identification of avian lncRNAs using ssRNA-seq analysis and offers a resource of embryonically expressed lncRNAs in zebra finch. We also predicted the biological function of identified lncRNAs. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3506-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chih-Kuan Chen
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, 10617, Taiwan.,Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Chun-Ping Yu
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Sung-Chou Li
- Department of Medical Research, Genomics and Proteomics Core Laboratory, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Siao-Man Wu
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Mei-Yeh Jade Lu
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Hua Chen
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Di-Rong Chen
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Chen Siang Ng
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| | - Chau-Ti Ting
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, 10617, Taiwan. .,Department of Life Science & Genome and Systems Biology Degree Program, National Taiwan University, Taipei, 10617, Taiwan. .,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, 10617, Taiwan.
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan. .,Center for the Integrative and Evolutionary Galliformes Genomics (iEGG Center), National Chung Hsing University, Taichung, 40227, Taiwan. .,Department of Ecology and Evolution, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
41
|
Jourdeuil K, Franz-Odendaal TA. Gene expression analysis during the induction and patterning of the conjunctival papillae in the chick embryonic eye. Gene Expr Patterns 2016; 22:30-36. [DOI: 10.1016/j.gep.2016.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/25/2016] [Accepted: 09/20/2016] [Indexed: 11/28/2022]
|
42
|
Shibata E, Yokota Y, Horita N, Kudo A, Abe G, Kawakami K, Kawakami A. Fgf signalling controls diverse aspects of fin regeneration. Development 2016; 143:2920-9. [PMID: 27402707 DOI: 10.1242/dev.140699] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/05/2016] [Indexed: 12/18/2022]
Abstract
Studies have shown that fibroblast growth factor (Fgf) signalling is necessary for appendage regeneration, but its exact function and the ligands involved during regeneration have not yet been elucidated. Here, we performed comprehensive expression analyses and identified fgf20a and fgf3/10a as major Fgf ligands in the wound epidermis and blastema, respectively. To reveal the target cells and processes of Fgf signalling, we performed a transplantation experiment of mesenchymal cells that express the dominant-negative Fgf receptor 1 (dnfgfr1) under control of the heat-shock promoter. This mosaic knockdown analysis suggested that Fgf signalling is directly required for fin ray mesenchyme to form the blastema at the early pre-blastema stage and to activate the regenerative cell proliferation at a later post-blastema stage. These results raised the possibility that the early epidermal Fgf20a and the later blastemal Fgf3/10a could be responsible for these respective processes. We demonstrated by gain-of-function analyses that Fgf20a induces the expression of distal blastema marker junbl, and that Fgf3 promotes blastema cell proliferation. Our study highlights that Fgfs in the wound epidermis and blastema have distinct functions to regulate fin regeneration cooperatively.
Collapse
Affiliation(s)
- Eri Shibata
- Department of Biological Information, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Yuki Yokota
- Department of Biological Information, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Natsumi Horita
- Department of Biological Information, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Akira Kudo
- Department of Biological Information, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Gembu Abe
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima 411-8540, Japan
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima 411-8540, Japan Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, 411-8540, Japan
| | - Atsushi Kawakami
- Department of Biological Information, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
43
|
Expressed miRNAs target feather related mRNAs involved in cell signaling, cell adhesion and structure during chicken epidermal development. Gene 2016; 591:393-402. [PMID: 27320726 DOI: 10.1016/j.gene.2016.06.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 06/03/2016] [Accepted: 06/13/2016] [Indexed: 01/12/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the post-transcriptional level. Previous studies have shown that miRNA regulation contributes to a diverse set of processes including cellular differentiation and morphogenesis which leads to the creation of different cell types in multicellular organisms and is thus key to animal development. Feathers are one of the most distinctive features of extant birds and are important for multiple functions including flight, thermal regulation, and sexual selection. However, the role of miRNAs in feather development has been woefully understudied despite the identification of cell signaling pathways, cell adhesion molecules and structural genes involved in feather development. In this study, we performed a microarray experiment comparing the expression of miRNAs and mRNAs among three embryonic stages of development and two tissues (scutate scale and feather) of the chicken. We combined this expression data with miRNA target prediction tools and a curated list of feather related genes to produce a set of 19 miRNA-mRNA duplexes. These targeted mRNAs have been previously identified as important cell signaling and cell adhesion genes as well as structural genes involved in feather and scale morphogenesis. Interestingly, the miRNA target site of the cell signaling pathway gene, Aldehyde Dehydrogenase 1 Family, Member A3 (ALDH1A3), is unique to birds indicating a novel role in Aves. The identified miRNA target site of the cell adhesion gene, Tenascin C (TNC), is only found in specific chicken TNC splice variants that are differentially expressed in developing scutate scale and feather tissue indicating an important role of miRNA regulation in epidermal differentiation. Additionally, we found that β-keratins, a major structural component of avian and reptilian epidermal appendages, are targeted by multiple miRNA genes. In conclusion, our work provides quantitative expression data on miRNAs and mRNAs during feather and scale development and has produced a highly diverse, but manageable list of miRNA-mRNA duplexes for future validation experiments.
Collapse
|
44
|
A Complex Structural Variation on Chromosome 27 Leads to the Ectopic Expression of HOXB8 and the Muffs and Beard Phenotype in Chickens. PLoS Genet 2016; 12:e1006071. [PMID: 27253709 PMCID: PMC4890787 DOI: 10.1371/journal.pgen.1006071] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 04/30/2016] [Indexed: 12/13/2022] Open
Abstract
Muffs and beard (Mb) is a phenotype in chickens where groups of elongated feathers gather from both sides of the face (muffs) and below the beak (beard). It is an autosomal, incomplete dominant phenotype encoded by the Muffs and beard (Mb) locus. Here we use genome-wide association (GWA) analysis, linkage analysis, Identity-by-Descent (IBD) mapping, array-CGH, genome re-sequencing and expression analysis to show that the Mb allele causing the Mb phenotype is a derived allele where a complex structural variation (SV) on GGA27 leads to an altered expression of the gene HOXB8. This Mb allele was shown to be completely associated with the Mb phenotype in nine other independent Mb chicken breeds. The Mb allele differs from the wild-type mb allele by three duplications, one in tandem and two that are translocated to that of the tandem repeat around 1.70 Mb on GGA27. The duplications contain total seven annotated genes and their expression was tested during distinct stages of Mb morphogenesis. A continuous high ectopic expression of HOXB8 was found in the facial skin of Mb chickens, strongly suggesting that HOXB8 directs this regional feather-development. In conclusion, our results provide an interesting example of how genomic structural rearrangements alter the regulation of genes leading to novel phenotypes. Further, it again illustrates the value of utilizing derived phenotypes in domestic animals to dissect the genetic basis of developmental traits, herein providing novel insights into the likely role of HOXB8 in feather development and differentiation. Genetic variation is a key part for the study of evolution, development and differentiation. In domestic animals, many breeds display striking phenotypes that differentiate them from their wild ancestors. Several of these have been related to structural variations, including Fibromelanosis and Rose-comb in chickens, Double-muscled and Osteopetrosis in cattle, Cone degeneration in dogs, and White coat color in pigs. The feather is a type of skin appendages that exists in multiple variants on different body parts, and the derived feathering phenotypes in domestic birds are perfect resources to decipher the mechanisms regulating feather development and differentiation. Here we study the genetics of the Muffs and beard trait, a variant that alters the feather development in the facial area of chickens. We show that this phenotype is associated with a genomic structural variant that leads to an ectopic expression of HOXB8 in the facial skin during feather development. This is thus another example of how structural variants in the genome lead to novel, derived phenotypic changes in domestic animals and suggests an important role for HOXB8 in feather development.
Collapse
|
45
|
Chen CK, Ng CS, Wu SM, Chen JJ, Cheng PL, Wu P, Lu MYJ, Chen DR, Chuong CM, Cheng HC, Ting CT, Li WH. Regulatory Differences in Natal Down Development between Altricial Zebra Finch and Precocial Chicken. Mol Biol Evol 2016; 33:2030-43. [PMID: 27189543 DOI: 10.1093/molbev/msw085] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Birds can be classified into altricial and precocial. The hatchlings of altricial birds are almost naked, whereas those of precocial birds are covered with natal down. This regulatory divergence is thought to reflect environmental adaptation, but the molecular basis of the divergence is unclear. To address this issue, we chose the altricial zebra finch and the precocial chicken as the model animals. We noted that zebra finch hatchlings show natal down growth suppressed anterior dorsal (AD) skin but partially down-covered posterior dorsal (PD) skin. Comparing the transcriptomes of AD and PD skins, we found that the feather growth promoter SHH (sonic hedgehog) was expressed higher in PD skin than in AD skin. Moreover, the data suggested that the FGF (fibroblast growth factor)/Mitogen-activated protein kinase (MAPK) signaling pathway is involved in natal down growth suppression and that FGF16 is a candidate upstream signaling suppressor. Ectopic expression of FGF16 on chicken leg skin showed downregulation of SHH, upregulation of the feather growth suppressor FGF10, and suppression of feather bud elongation, similar to the phenotype found in zebra finch embryonic AD skin. Therefore, we propose that FGF16-related signals suppress natal down elongation and cause the naked AD skin in zebra finch. Our study provides insights into the regulatory divergence in natal down formation between precocial and altricial birds.
Collapse
Affiliation(s)
- Chih-Kuan Chen
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chen Siang Ng
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Siao-Man Wu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Jiun-Jie Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Po-Liang Cheng
- Department of Life Science, National Chung Hsing University, Taichung, Taiwan
| | - Ping Wu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles
| | - Mei-Yeh Jade Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Di-Rong Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles Center for the Integrative and Evolutionary Galliformes Genomics (iEGG Center), National Chung Hsing University, Taichung, Taiwan Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsu-Chen Cheng
- Department of Life Science, National Chung Hsing University, Taichung, Taiwan Center for the Integrative and Evolutionary Galliformes Genomics (iEGG Center), National Chung Hsing University, Taichung, Taiwan
| | - Chau-Ti Ting
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan Center for the Integrative and Evolutionary Galliformes Genomics (iEGG Center), National Chung Hsing University, Taichung, Taiwan Department of Ecology and Evolution, University of Chicago
| |
Collapse
|
46
|
Leroy G, Besbes B, Boettcher P, Hoffmann I, Capitan A, Baumung R. Rare phenotypes in domestic animals: unique resources for multiple applications. Anim Genet 2015; 47:141-53. [PMID: 26662214 DOI: 10.1111/age.12393] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2015] [Indexed: 12/26/2022]
Abstract
Preservation of specific and inheritable phenotypes of current or potential future importance is one of the main purposes of conservation of animal genetic resources. In this review, we investigate the issues behind the characterisation, utilisation and conservation of rare phenotypes, considering their multiple paths of relevance, variable levels of complexity and mode of inheritance. Accurately assessing the rarity of a given phenotype, especially a complex one, is not a simple task, because it requires the phenotypic and genetic characterisation of a large number of animals and populations and remains dependent of the scale of the study. Once characterised, specific phenotypes may contribute to various purposes (adaptedness, production, biological model, aesthetics, etc.) with adequate introgression programmes, which justifies the consideration of (real or potential) existence of such characteristics in in situ or ex situ conservation strategies. Recent biotechnological developments (genomic and genetic engineering) will undoubtedly bring important changes to the way phenotypes are characterised, introgressed and managed.
Collapse
Affiliation(s)
- G Leroy
- Animal Production and Health Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00153, Rome, Italy
| | - B Besbes
- Animal Production and Health Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00153, Rome, Italy
| | - P Boettcher
- Animal Production and Health Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00153, Rome, Italy
| | - I Hoffmann
- Animal Production and Health Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00153, Rome, Italy
| | - A Capitan
- INRA, UMR 1313 Génétique Animale et Biologie Intégrative, Domaine de Vilvert, F-78352, Jouy-en-Josas, France.,ALLICE, 149 rue de Bercy, F-75012, Paris, France
| | - R Baumung
- Animal Production and Health Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00153, Rome, Italy
| |
Collapse
|
47
|
Daane JM, Rohner N, Konstantinidis P, Djuranovic S, Harris MP. Parallelism and Epistasis in Skeletal Evolution Identified through Use of Phylogenomic Mapping Strategies. Mol Biol Evol 2015; 33:162-73. [PMID: 26452532 DOI: 10.1093/molbev/msv208] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The identification of genetic mechanisms underlying evolutionary change is critical to our understanding of natural diversity, but is presently limited by the lack of genetic and genomic resources for most species. Here, we present a new comparative genomic approach that can be applied to a broad taxonomic sampling of nonmodel species to investigate the genetic basis of evolutionary change. Using our analysis pipeline, we show that duplication and divergence of fgfr1a is correlated with the reduction of scales within fishes of the genus Phoxinellus. As a parallel genetic mechanism is observed in scale-reduction within independent lineages of cypriniforms, our finding exposes significant developmental constraint guiding morphological evolution. In addition, we identified fixed variation in fgf20a within Phoxinellus and demonstrated that combinatorial loss-of-function of fgfr1a and fgf20a within zebrafish phenocopies the evolved scalation pattern. Together, these findings reveal epistatic interactions between fgfr1a and fgf20a as a developmental mechanism regulating skeletal variation among fishes.
Collapse
Affiliation(s)
- Jacob M Daane
- Department of Genetics, Harvard Medical School, Boston, MA Department of Orthopaedic Research, Boston Children's Hospital, Boston, MA
| | - Nicolas Rohner
- Department of Genetics, Harvard Medical School, Boston, MA
| | - Peter Konstantinidis
- Department of Fisheries Science, Virginia Institute of Marine Science, Gloucester Point, VA
| | - Sergej Djuranovic
- Department of Cell Biology and Physiology, Washington University, Saint Louis
| | - Matthew P Harris
- Department of Genetics, Harvard Medical School, Boston, MA Department of Orthopaedic Research, Boston Children's Hospital, Boston, MA
| |
Collapse
|
48
|
Schmid M, Smith J, Burt DW, Aken BL, Antin PB, Archibald AL, Ashwell C, Blackshear PJ, Boschiero C, Brown CT, Burgess SC, Cheng HH, Chow W, Coble DJ, Cooksey A, Crooijmans RPMA, Damas J, Davis RVN, de Koning DJ, Delany ME, Derrien T, Desta TT, Dunn IC, Dunn M, Ellegren H, Eöry L, Erb I, Farré M, Fasold M, Fleming D, Flicek P, Fowler KE, Frésard L, Froman DP, Garceau V, Gardner PP, Gheyas AA, Griffin DK, Groenen MAM, Haaf T, Hanotte O, Hart A, Häsler J, Hedges SB, Hertel J, Howe K, Hubbard A, Hume DA, Kaiser P, Kedra D, Kemp SJ, Klopp C, Kniel KE, Kuo R, Lagarrigue S, Lamont SJ, Larkin DM, Lawal RA, Markland SM, McCarthy F, McCormack HA, McPherson MC, Motegi A, Muljo SA, Münsterberg A, Nag R, Nanda I, Neuberger M, Nitsche A, Notredame C, Noyes H, O'Connor R, O'Hare EA, Oler AJ, Ommeh SC, Pais H, Persia M, Pitel F, Preeyanon L, Prieto Barja P, Pritchett EM, Rhoads DD, Robinson CM, Romanov MN, Rothschild M, Roux PF, Schmidt CJ, Schneider AS, Schwartz MG, Searle SM, Skinner MA, Smith CA, Stadler PF, Steeves TE, Steinlein C, Sun L, Takata M, Ulitsky I, Wang Q, Wang Y, et alSchmid M, Smith J, Burt DW, Aken BL, Antin PB, Archibald AL, Ashwell C, Blackshear PJ, Boschiero C, Brown CT, Burgess SC, Cheng HH, Chow W, Coble DJ, Cooksey A, Crooijmans RPMA, Damas J, Davis RVN, de Koning DJ, Delany ME, Derrien T, Desta TT, Dunn IC, Dunn M, Ellegren H, Eöry L, Erb I, Farré M, Fasold M, Fleming D, Flicek P, Fowler KE, Frésard L, Froman DP, Garceau V, Gardner PP, Gheyas AA, Griffin DK, Groenen MAM, Haaf T, Hanotte O, Hart A, Häsler J, Hedges SB, Hertel J, Howe K, Hubbard A, Hume DA, Kaiser P, Kedra D, Kemp SJ, Klopp C, Kniel KE, Kuo R, Lagarrigue S, Lamont SJ, Larkin DM, Lawal RA, Markland SM, McCarthy F, McCormack HA, McPherson MC, Motegi A, Muljo SA, Münsterberg A, Nag R, Nanda I, Neuberger M, Nitsche A, Notredame C, Noyes H, O'Connor R, O'Hare EA, Oler AJ, Ommeh SC, Pais H, Persia M, Pitel F, Preeyanon L, Prieto Barja P, Pritchett EM, Rhoads DD, Robinson CM, Romanov MN, Rothschild M, Roux PF, Schmidt CJ, Schneider AS, Schwartz MG, Searle SM, Skinner MA, Smith CA, Stadler PF, Steeves TE, Steinlein C, Sun L, Takata M, Ulitsky I, Wang Q, Wang Y, Warren WC, Wood JMD, Wragg D, Zhou H. Third Report on Chicken Genes and Chromosomes 2015. Cytogenet Genome Res 2015; 145:78-179. [PMID: 26282327 PMCID: PMC5120589 DOI: 10.1159/000430927] [Show More Authors] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Michael Schmid
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Chen CF, Foley J, Tang PC, Li A, Jiang TX, Wu P, Widelitz RB, Chuong CM. Development, regeneration, and evolution of feathers. Annu Rev Anim Biosci 2014; 3:169-95. [PMID: 25387232 PMCID: PMC5662002 DOI: 10.1146/annurev-animal-022513-114127] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The feather is a complex ectodermal organ with hierarchical branching patterns. It provides functions in endothermy, communication, and flight. Studies of feather growth, cycling, and health are of fundamental importance to avian biology and poultry science. In addition, feathers are an excellent model for morphogenesis studies because of their accessibility, and their distinct patterns can be used to assay the roles of specific molecular pathways. Here we review the progress in aspects of development, regeneration, and evolution during the past three decades. We cover the development of feather buds in chicken embryos, regenerative cycling of feather follicle stem cells, formation of barb branching patterns, emergence of intrafeather pigmentation patterns, interplay of hormones and feather growth, and the genetic identification of several feather variants. The discovery of feathered dinosaurs redefines the relationship between feathers and birds. Inspiration from biomaterials and flight research further fuels biomimetic potential of feathers as a multidisciplinary research focal point.
Collapse
Affiliation(s)
- Chih-Feng Chen
- Center for the Integrative and Evolutionary Galliformes Genomics, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Moustakas-Verho JE, Zimm R, Cebra-Thomas J, Lempiäinen NK, Kallonen A, Mitchell KL, Hämäläinen K, Salazar-Ciudad I, Jernvall J, Gilbert SF. The origin and loss of periodic patterning in the turtle shell. Development 2014; 141:3033-9. [DOI: 10.1242/dev.109041] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The origin of the turtle shell over 200 million years ago greatly modified the amniote body plan, and the morphological plasticity of the shell has promoted the adaptive radiation of turtles. The shell, comprising a dorsal carapace and a ventral plastron, is a layered structure formed by basal endochondral axial skeletal elements (ribs, vertebrae) and plates of bone, which are overlain by keratinous ectodermal scutes. Studies of turtle development have mostly focused on the bones of the shell; however, the genetic regulation of the epidermal scutes has not been investigated. Here, we show that scutes develop from an array of patterned placodes and that these placodes are absent from a soft-shelled turtle in which scutes were lost secondarily. Experimentally inhibiting Shh, Bmp or Fgf signaling results in the disruption of the placodal pattern. Finally, a computational model is used to show how two coupled reaction-diffusion systems reproduce both natural and abnormal variation in turtle scutes. Taken together, these placodal signaling centers are likely to represent developmental modules that are responsible for the evolution of scutes in turtles, and the regulation of these centers has allowed for the diversification of the turtle shell.
Collapse
Affiliation(s)
- Jacqueline E. Moustakas-Verho
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, P.O. Box 56, Helsinki FIN-00014, Finland
| | - Roland Zimm
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, P.O. Box 56, Helsinki FIN-00014, Finland
| | - Judith Cebra-Thomas
- Biology Department, Millersville University, P.O. Box 1002, Millersville, PA 17551, USA
| | - Netta K. Lempiäinen
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, P.O. Box 56, Helsinki FIN-00014, Finland
| | - Aki Kallonen
- Division of Materials Physics, Department of Physics, University of Helsinki, P.O. Box 64, Helsinki FIN-00014, Finland
| | - Katherine L. Mitchell
- Biology Department, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, USA
| | - Keijo Hämäläinen
- Division of Materials Physics, Department of Physics, University of Helsinki, P.O. Box 64, Helsinki FIN-00014, Finland
| | - Isaac Salazar-Ciudad
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, P.O. Box 56, Helsinki FIN-00014, Finland
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Jukka Jernvall
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, P.O. Box 56, Helsinki FIN-00014, Finland
| | - Scott F. Gilbert
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, P.O. Box 56, Helsinki FIN-00014, Finland
- Biology Department, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, USA
| |
Collapse
|