1
|
Cortes-Guzman MA, Treviño V. CoGTEx: Unscaled system-level coexpression estimation from GTEx data forecast novel functional gene partners. PLoS One 2024; 19:e0309961. [PMID: 39365797 PMCID: PMC11451983 DOI: 10.1371/journal.pone.0309961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/21/2024] [Indexed: 10/06/2024] Open
Abstract
MOTIVATION Coexpression estimations are helpful for analysis of pathways, cofactors, regulators, targets, and human health and disease. Ideally, coexpression estimations should consider as many diverse cell types as possible and consider that available data is not uniform across tissues. Importantly, the coexpression estimations accessible today are performed on a "tissue level", which is based on cell type standardized formulations. Little or no attention is paid to overall gene expression levels. The tissue-level estimation assumes that variance expression levels are more important than mean expression levels. Here, we challenge this assumption by estimating a coexpression calculation at the "system level", which is estimated without standardization by tissue, and show that it provides valuable information. We made available a resource to view, download, and analyze both, tissue- and system-level coexpression estimations from GTEx human data. METHODS GTEx v8 expression data was globally normalized, batch-processed, and filtered. Then, PCA, clustering, and tSNE stringent procedures were applied to generate 42 distinct and curated tissue clusters. Coexpression was estimated from these 42 tissue clusters computing the correlation of 33,445 genes by sampling 70 samples per tissue cluster to avoid tissue overrepresentation. This process was repeated 20 times, extracting the minimum value provided as a robust estimation. Three metrics were calculated (Pearson, Spearman, and G-statistic) in two data processing modes, at the system-level (TPM scale) and tissue levels (z-score scale). RESULTS We first validate our tissue-level estimations compared with other databases. Then, by specific analyses in several examples and literature validations of predictions, we show that system-level coexpression estimation differs from tissue-level estimations and that both contain valuable information reflected in biological pathways. We also show that coexpression estimations are associated to transcriptional regulation. Finally, we present CoGTEx, a valuable resource for viewing and analyzing coexpressed genes in human adult tissues from GTEx v8 data. We introduce our web resource to list, view and explore the coexpressed genes from GTEx data. CONCLUSION We conclude that system-level coexpression is a novel and interesting coexpression metric capable of generating plausible predictions and biological hypotheses; and that CoGTEx is a valuable resource to view, compare, and download system- and tissue- level coexpression estimations from GTEx data. AVAILABILITY The web resource is available at http://bioinformatics.mx/cogtex.
Collapse
Affiliation(s)
| | - Víctor Treviño
- Tecnologico de Monterrey, Escuela de Medicina, Bioinformática, Monterrey, Nuevo León, México
- Tecnologico de Monterrey, OriGen Project, Monterrey, Nuevo León, México
| |
Collapse
|
2
|
Wang Q, Wang Y, Zhang F, Han C, Wang Y, Ren M, Qi K, Xie Z, Zhang S, Tao S, Shiratake K. Genome-wide characterisation of HD-Zip transcription factors and functional analysis of PbHB24 during stone cell formation in Chinese white pear (Pyrus bretschneideri). BMC PLANT BIOLOGY 2024; 24:444. [PMID: 38778247 PMCID: PMC11112822 DOI: 10.1186/s12870-024-05138-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND The homodomain-leucine zipper (HD-Zip) is a conserved transcription factor family unique to plants that regulate multiple developmental processes including lignificaion. Stone cell content is a key determinant negatively affecting pear fruit quality, which causes a grainy texture of fruit flesh, because of the lignified cell walls. RESULTS In this study, a comprehensive bioinformatics analysis of HD-Zip genes in Chinese white pear (Pyrus bretschneideri) (PbHBs) was performed. Genome-wide identification of the PbHB gene family revealed 67 genes encoding PbHB proteins, which could be divided into four subgroups (I, II, III, and IV). For some members, similar intron/exon structural patterns support close evolutionary relationships within the same subgroup. The functions of each subgroup of the PbHB family were predicted through comparative analysis with the HB genes in Arabidopsis and other plants. Cis-element analysis indicated that PbHB genes might be involved in plant hormone signalling and external environmental responses, such as light, stress, and temperature. Furthermore, RNA-sequencing data and quantitative real-time PCR (RT-qPCR) verification revealed the regulatory roles of PbHB genes in pear stone cell formation. Further, co-expression network analysis revealed that the eight PbHB genes could be classified into different clusters of co-expression with lignin-related genes. Besides, the biological function of PbHB24 in promoting stone cell formation has been demonstrated by overexpression in fruitlets. CONCLUSIONS This study provided the comprehensive analysis of PbHBs and highlighted the importance of PbHB24 during stone cell development in pear fruits.
Collapse
Affiliation(s)
- Qi Wang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Laboratory of Horticultural Science, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Yueyang Wang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fanhang Zhang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chengyang Han
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanling Wang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mei Ren
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kaijie Qi
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhihua Xie
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaoling Zhang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shutian Tao
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Katsuhiro Shiratake
- Laboratory of Horticultural Science, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan.
| |
Collapse
|
3
|
Orduña L, Santiago A, Navarro-Payá D, Zhang C, Wong DCJ, Matus JT. Aggregated gene co-expression networks predict transcription factor regulatory landscapes in grapevine. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6522-6540. [PMID: 37668374 DOI: 10.1093/jxb/erad344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
Gene co-expression networks (GCNs) have not been extensively studied in non-model plants. However, the rapid accumulation of transcriptome datasets in certain species represents an opportunity to explore underutilized network aggregation approaches. In fact, aggregated GCNs (aggGCNs) highlight robust co-expression interactions and improve functional connectivity. We applied and evaluated two different aggregation methods on public grapevine RNA-Seq datasets from three different tissues (leaf, berry, and 'all organs'). Our results show that co-occurrence-based aggregation generally yielded the best-performing networks. We applied aggGCNs to study several transcription factor gene families, showing their capacity for detecting both already-described and novel regulatory relationships between R2R3-MYBs, bHLH/MYC, and multiple specialized metabolic pathways. Specifically, transcription factor gene- and pathway-centered network analyses successfully ascertained the previously established role of VviMYBPA1 in controlling the accumulation of proanthocyanidins while providing insights into its novel role as a regulator of p-coumaroyl-CoA biosynthesis as well as the shikimate and aromatic amino acid pathways. This network was validated using DNA affinity purification sequencing data, demonstrating that co-expression networks of transcriptional activators can serve as a proxy of gene regulatory networks. This study presents an open repository to reproduce networks in other crops and a GCN application within the Vitviz platform, a user-friendly tool for exploring co-expression relationships.
Collapse
Affiliation(s)
- Luis Orduña
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46908, Valencia, Spain
| | - Antonio Santiago
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46908, Valencia, Spain
| | - David Navarro-Payá
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46908, Valencia, Spain
| | - Chen Zhang
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46908, Valencia, Spain
| | - Darren C J Wong
- Ecology and Evolution, Research School of Biology, The Australian National University, Acton, Australia
| | - José Tomás Matus
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46908, Valencia, Spain
| |
Collapse
|
4
|
Da L, Li J, Zhao F, Liu H, Shi P, Shi S, Zhang X, Yang J, Zhang H. RoseAP: an analytical platform for gene function of Rosa rugosa. FRONTIERS IN PLANT SCIENCE 2023; 14:1197119. [PMID: 37457357 PMCID: PMC10348015 DOI: 10.3389/fpls.2023.1197119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 07/18/2023]
Abstract
Rosa rugosa, a perennial shrub belonging to family Rosaceae, is a well-known ornamental plant. Its petals contain an abundance of essential oils and anthocyanins with enormous economic and health benefits when used as edible or cosmetic ingredients. The whole genome of R. rugosa was sequenced in 2021, which provided opportunities and challenges for gene regulation. However, many gene functions remain unknown. Therefore, an analytical platform named RoseAP (http://www.gzybioinformatics.cn/RoseAP/index.php) for the functional analysis of R. rugosa genes was constructed. It improved the gene annotation rate by integrating and analyzing genomic and transcriptomic datasets. First, 38,815 genes, covering 97.76% of the coding genes, were annotated functionally and structurally using a variety of algorithms and rules. Second, a total of 33 transcriptome samples were integrated, including 23 samples from our lab and 10 samples from the SRA database. A co-expression network containing approximately 29,657 positive or negative gene pairs, covering 74.7% of the coding genes, was constructed based on PCC and MR algorithms. Network analysis revealed that the DFR function was closely related to anthocyanin metabolism. It demonstrated the reliability of the network. Several SAUR genes of R. rugosa shared similar expression patterns. RoseAP was used to determine the sequence, structure, functional annotation, expression profile, regulatory network, and functional modules at the transcriptional and protein levels by inputting gene IDs. In addition, auxiliary analytical tools, including BLAST, gene set enrichment, orthologue conversion, gene sequence extraction, gene expression value extraction, and JBrowse, were utilized. Regular updates to RoseAP are expected to facilitate mining of gene function and promote genetic improvement in R. rugosa.
Collapse
Affiliation(s)
- Lingling Da
- College of Life Science, Northwest Normal University, Lanzhou, China
| | - Jiande Li
- College of Life Science, Northwest Normal University, Lanzhou, China
| | - Fan Zhao
- College of Life Science, Northwest Normal University, Lanzhou, China
| | - Huilin Liu
- College of Life Science, Northwest Normal University, Lanzhou, China
| | - Pengxia Shi
- College of Life Science, Northwest Normal University, Lanzhou, China
| | - Shaoming Shi
- College of Life Science, Northwest Normal University, Lanzhou, China
| | - Xinxin Zhang
- College of Life Science, Northwest Normal University, Lanzhou, China
| | - Jiaotong Yang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Hui Zhang
- College of Life Science, Northwest Normal University, Lanzhou, China
| |
Collapse
|
5
|
Savoi S, Santiago A, Orduña L, Matus JT. Transcriptomic and metabolomic integration as a resource in grapevine to study fruit metabolite quality traits. FRONTIERS IN PLANT SCIENCE 2022; 13:937927. [PMID: 36340350 PMCID: PMC9630917 DOI: 10.3389/fpls.2022.937927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Transcriptomics and metabolomics are methodologies being increasingly chosen to perform molecular studies in grapevine (Vitis vinifera L.), focusing either on plant and fruit development or on interaction with abiotic or biotic factors. Currently, the integration of these approaches has become of utmost relevance when studying key plant physiological and metabolic processes. The results from these analyses can undoubtedly be incorporated in breeding programs whereby genes associated with better fruit quality (e.g., those enhancing the accumulation of health-promoting compounds) or with stress resistance (e.g., those regulating beneficial responses to environmental transition) can be used as selection markers in crop improvement programs. Despite the vast amount of data being generated, integrative transcriptome/metabolome meta-analyses (i.e., the joint analysis of several studies) have not yet been fully accomplished in this species, mainly due to particular specificities of metabolomic studies, such as differences in data acquisition (i.e., different compounds being investigated), unappropriated and unstandardized metadata, or simply no deposition of data in public repositories. These meta-analyses require a high computational capacity for data mining a priori, but they also need appropriate tools to explore and visualize the integrated results. This perspective article explores the universe of omics studies conducted in V. vinifera, focusing on fruit-transcriptome and metabolome analyses as leading approaches to understand berry physiology, secondary metabolism, and quality. Moreover, we show how omics data can be integrated in a simple format and offered to the research community as a web resource, giving the chance to inspect potential gene-to-gene and gene-to-metabolite relationships that can later be tested in hypothesis-driven research. In the frame of the activities promoted by the COST Action CA17111 INTEGRAPE, we present the first grapevine transcriptomic and metabolomic integrated database (TransMetaDb) developed within the Vitis Visualization (VitViz) platform (https://tomsbiolab.com/vitviz). This tool also enables the user to conduct and explore meta-analyses utilizing different experiments, therefore hopefully motivating the community to generate Findable, Accessible, Interoperable and Reusable (F.A.I.R.) data to be included in the future.
Collapse
Affiliation(s)
- Stefania Savoi
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | - Antonio Santiago
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| | - Luis Orduña
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| | - José Tomás Matus
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| |
Collapse
|
6
|
Abdullah-Zawawi MR, Govender N, Harun S, Muhammad NAN, Zainal Z, Mohamed-Hussein ZA. Multi-Omics Approaches and Resources for Systems-Level Gene Function Prediction in the Plant Kingdom. PLANTS (BASEL, SWITZERLAND) 2022; 11:2614. [PMID: 36235479 PMCID: PMC9573505 DOI: 10.3390/plants11192614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
In higher plants, the complexity of a system and the components within and among species are rapidly dissected by omics technologies. Multi-omics datasets are integrated to infer and enable a comprehensive understanding of the life processes of organisms of interest. Further, growing open-source datasets coupled with the emergence of high-performance computing and development of computational tools for biological sciences have assisted in silico functional prediction of unknown genes, proteins and metabolites, otherwise known as uncharacterized. The systems biology approach includes data collection and filtration, system modelling, experimentation and the establishment of new hypotheses for experimental validation. Informatics technologies add meaningful sense to the output generated by complex bioinformatics algorithms, which are now freely available in a user-friendly graphical user interface. These resources accentuate gene function prediction at a relatively minimal cost and effort. Herein, we present a comprehensive view of relevant approaches available for system-level gene function prediction in the plant kingdom. Together, the most recent applications and sought-after principles for gene mining are discussed to benefit the plant research community. A realistic tabulation of plant genomic resources is included for a less laborious and accurate candidate gene discovery in basic plant research and improvement strategies.
Collapse
Affiliation(s)
- Muhammad-Redha Abdullah-Zawawi
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Institute of System Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
| | - Nisha Govender
- Institute of System Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
| | - Sarahani Harun
- Institute of System Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
| | - Nor Azlan Nor Muhammad
- Institute of System Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
| | - Zamri Zainal
- Institute of System Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
| | - Zeti-Azura Mohamed-Hussein
- Institute of System Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
| |
Collapse
|
7
|
Sircar S, Musaddi M, Parekh N. NetREx: Network-based Rice Expression Analysis Server for abiotic stress conditions. Database (Oxford) 2022; 2022:baac060. [PMID: 35932239 PMCID: PMC9356536 DOI: 10.1093/database/baac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/30/2022] [Accepted: 08/02/2022] [Indexed: 11/14/2022]
Abstract
Recent focus on transcriptomic studies in food crops like rice, wheat and maize provide new opportunities to address issues related to agriculture and climate change. Re-analysis of such data available in public domain supplemented with annotations across molecular hierarchy can be of immense help to the plant research community, particularly co-expression networks representing transcriptionally coordinated genes that are often part of the same biological process. With this objective, we have developed NetREx, a Network-based Rice Expression Analysis Server, that hosts ranked co-expression networks of Oryza sativa using publicly available messenger RNA sequencing data across uniform experimental conditions. It provides a range of interactable data viewers and modules for analysing user-queried genes across different stress conditions (drought, flood, cold and osmosis) and hormonal treatments (abscisic and jasmonic acid) and tissues (root and shoot). Subnetworks of user-defined genes can be queried in pre-constructed tissue-specific networks, allowing users to view the fold change, module memberships, gene annotations and analysis of their neighbourhood genes and associated pathways. The web server also allows querying of orthologous genes from Arabidopsis, wheat, maize, barley and sorghum. Here, we demonstrate that NetREx can be used to identify novel candidate genes and tissue-specific interactions under stress conditions and can aid in the analysis and understanding of complex phenotypes linked to stress response in rice. Database URL: https://bioinf.iiit.ac.in/netrex/index.html.
Collapse
Affiliation(s)
| | - Mayank Musaddi
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Gachibowli, Hyderabad 500032, India
| | - Nita Parekh
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Gachibowli, Hyderabad 500032, India
| |
Collapse
|
8
|
Zainal-Abidin RA, Harun S, Vengatharajuloo V, Tamizi AA, Samsulrizal NH. Gene Co-Expression Network Tools and Databases for Crop Improvement. PLANTS (BASEL, SWITZERLAND) 2022; 11:1625. [PMID: 35807577 PMCID: PMC9269215 DOI: 10.3390/plants11131625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/05/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Transcriptomics has significantly grown as a functional genomics tool for understanding the expression of biological systems. The generated transcriptomics data can be utilised to produce a gene co-expression network that is one of the essential downstream omics data analyses. To date, several gene co-expression network databases that store correlation values, expression profiles, gene names and gene descriptions have been developed. Although these resources remain scattered across the Internet, such databases complement each other and support efficient growth in the functional genomics area. This review presents the features and the most recent gene co-expression network databases in crops and summarises the present status of the tools that are widely used for constructing the gene co-expression network. The highlights of gene co-expression network databases and the tools presented here will pave the way for a robust interpretation of biologically relevant information. With this effort, the researcher would be able to explore and utilise gene co-expression network databases for crops improvement.
Collapse
Affiliation(s)
- Rabiatul-Adawiah Zainal-Abidin
- Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), Serdang 43400, Selangor, Malaysia; (R.-A.Z.-A.); (A.-A.T.)
| | - Sarahani Harun
- Centre for Bioinformatics Research, Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia;
| | - Vinothienii Vengatharajuloo
- Centre for Bioinformatics Research, Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia;
| | - Amin-Asyraf Tamizi
- Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), Serdang 43400, Selangor, Malaysia; (R.-A.Z.-A.); (A.-A.T.)
- Department of Plant Science, Kulliyyah of Science, International Islamic Universiti Malaysia (IIUM), Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia
| | - Nurul Hidayah Samsulrizal
- Department of Plant Science, Kulliyyah of Science, International Islamic Universiti Malaysia (IIUM), Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia
| |
Collapse
|
9
|
Amato A, Cardone MF, Ocarez N, Alagna F, Ruperti B, Fattorini C, Velasco R, Mejía N, Zenoni S, Bergamini C. VviAGL11 self-regulates and targets hormone- and secondary metabolism-related genes during seed development. HORTICULTURE RESEARCH 2022; 9:uhac133. [PMID: 36061618 PMCID: PMC9433981 DOI: 10.1093/hr/uhac133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
VviAGL11, the Arabidopsis SEEDSTICK homolog, has been proposed to have a causative role in grapevine stenospermocarpy. An association between a mutation in the coding sequence (CDS) and the seedless phenotype was reported, however, no working mechanisms have been demonstrated yet. We performed a deep investigation of the full VviAGL11 gene sequence in a collection of grapevine varieties belonging to several seedlessness classes that revealed three different promoter-CDS combinations. By investigating the expression of the three VviAGL11 alleles, and by evaluating their ability to activate the promoter region, we observed that VviAGL11 self-activates in a specific promoter-CDS combination manner. Furthermore, by transcriptomic analyses on ovule and developing seeds in seeded and seedless varieties and co-expression approaches, candidate VviAGL11 targets were identified and further validated through luciferase assay and in situ hybridization. We demonstrated that VviAGL11 Wild Type CDS activates Methyl jasmonate esterase and Indole-3-acetate beta-glucosyltransferase, both involved in hormone signaling and Isoflavone reductase, involved in secondary metabolism. The dominant-negative effect of the mutated CDS was also functionally ectopically validated in target induction. VviAGL11 was shown to co-localize with its targets in the outer seed coat integument, supporting its direct involvement in seed development, possibly by orchestrating the crosstalk among MeJA, auxin, and isoflavonoids synthesis. In conclusion, the VviAGL11 expression level depends on the promoter-CDS allelic combination, and this will likely affect its ability to activate important triggers of the seed coat development. The dominant-negative effect of the mutated VviAGL11 CDS on the target genes activation was molecularly validated. A new regulatory mechanism correlating VviAGL11 haplotype assortment and seedlessness class in grapevine is proposed.
Collapse
Affiliation(s)
- Alessandra Amato
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Maria Francesca Cardone
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA), 70010 Turi, Italy
| | - Nallatt Ocarez
- Instituto de Investigaciones Agropecuarias (INIA), Centro Regional de Investigación La Platina, Santiago RM 8831314, Chile
| | - Fiammetta Alagna
- Trisaia Research Centre, National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 75026 Rotondella, Italy
| | - Benedetto Ruperti
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, 35020 Padova, Italy
| | - Chiara Fattorini
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Riccardo Velasco
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA), 70010 Turi, Italy
| | - Nilo Mejía
- Instituto de Investigaciones Agropecuarias (INIA), Centro Regional de Investigación La Platina, Santiago RM 8831314, Chile
| | | | | |
Collapse
|
10
|
Moretto M, Sonego P, Pilati S, Matus JT, Costantini L, Malacarne G, Engelen K. A COMPASS for VESPUCCI: A FAIR Way to Explore the Grapevine Transcriptomic Landscape. FRONTIERS IN PLANT SCIENCE 2022; 13:815443. [PMID: 35283898 PMCID: PMC8908374 DOI: 10.3389/fpls.2022.815443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Successfully integrating transcriptomic experiments is a challenging task with the ultimate goal of analyzing gene expression data in the broader context of all available measurements, all from a single point of access. In its second major release VESPUCCI, the integrated database of gene expression data for grapevine, has been updated to be FAIR-compliant, employing standards and created with open-source technologies. It includes all public grapevine gene expression experiments from both microarray and RNA-seq platforms. Transcriptomic data can be accessed in multiple ways through the newly developed COMPASS GraphQL interface, while the expression values are normalized using different methodologies to flexibly satisfy different analysis requirements. Sample annotations are manually curated and use standard formats and ontologies. The updated version of VESPUCCI provides easy querying and analyzing of integrated grapevine gene expression (meta)data and can be seamlessly embedded in any analysis workflow or tools. VESPUCCI is freely accessible and offers several ways of interaction, depending on the specific goals and purposes and/or user expertise; an overview can be found at https://vespucci.readthedocs.io/.
Collapse
Affiliation(s)
- Marco Moretto
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Paolo Sonego
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Stefania Pilati
- Unit of Plant Biology and Physiology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - José Tomás Matus
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| | - Laura Costantini
- Unit of Grapevine Genetics and Breeding, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Giulia Malacarne
- Unit of Plant Biology and Physiology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Kristof Engelen
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| |
Collapse
|
11
|
Du Q, Campbell MT, Yu H, Liu K, Walia H, Zhang Q, Zhang C. Gene Co-expression Network Analysis and Linking Modules to Phenotyping Response in Plants. Methods Mol Biol 2022; 2539:261-268. [PMID: 35895209 DOI: 10.1007/978-1-0716-2537-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Environmental factors, including different stresses, can have an impact on the expression of genes and subsequently the phenotype and development of plants. Since a large number of genes are involved in response to the perturbation of the environment, identifying groups of co-expressed genes is meaningful. The gene co-expression network models can be used for the exploration, interpretation, and identification of genes responding to environmental changes. Once a gene co-expression network is constructed, one can determine gene modules and the association of gene modules to the phenotypic response. To link modules to phenotype, one approach is to find the correlated eigengenes of given modules or to integrate all eigengenes in regularized linear model. This manuscript describes the method from construction of co-expression network, module discovery, association between modules and phenotypic data, and finally to annotation/visualization.
Collapse
Affiliation(s)
- Qian Du
- School of Biological Sciences, Center for Plant Science and Innovation, University of Nebraska, Lincoln, NE, USA
| | - Malachy T Campbell
- Department of Agronomy and Horticulture, Center for Plant Science and Innovation, University of Nebraska, Lincoln, NE, USA
| | - Huihui Yu
- School of Biological Sciences, Center for Plant Science and Innovation, University of Nebraska, Lincoln, NE, USA
| | - Kan Liu
- School of Biological Sciences, Center for Plant Science and Innovation, University of Nebraska, Lincoln, NE, USA
| | - Harkamal Walia
- Department of Agronomy and Horticulture, Center for Plant Science and Innovation, University of Nebraska, Lincoln, NE, USA
| | - Qi Zhang
- Department of Mathematics and Statistics, College of Engineering and Physical Sciences (CEPS), University of New Hampshire, Durham, NH, USA
| | - Chi Zhang
- School of Biological Sciences, Center for Plant Science and Innovation, University of Nebraska, Lincoln, NE, USA.
| |
Collapse
|
12
|
Pervaiz T, Liu T, Fang X, Ren Y, Li X, Liu Z, Fiaz M, Fang J, Shangguan L. Identification of GH17 gene family in Vitis vinifera and expression analysis of GH17 under various adversities. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1423-1436. [PMID: 34366587 PMCID: PMC8295436 DOI: 10.1007/s12298-021-01014-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
Glycoside hydrolase (GH, EC 3.2.1) is a group of enzymes that hydrolyzes glycosidic bonds and play a role in the hydrolysis and synthesis of sugars in living organisms. Vitis vinifera is an important fruit crop and it harbors GH17 gene family however, their function in grapes has not been systematically investigated. In this study, a total of 870 GH17 genes were identified from 14 plant species and their structural domain, sequence alignment, phylogenetic tree, collinear analysis, with the expression profiles of VviGH17 gene family was performed. The promoter analysis of VviGH17 gene showed the presence of cis-acting elements, which are responsive to plant growth and development. In addition, elements for plant hormones were found that are triggered in response to abiotic/biological stress. Transcriptomic data led to the identification of several VviGH17 genes, which are associated with bud dormancy and in response to abiotic stress. Transcript analysis was carried out for some of the selected VviGH17 genes RT-qPCR. VviGH17-16 and VviGH17-30 genes were differentially expressed during bud dormancy, fruit development and different abiotic stresses. Moreover, VviGH17-37 and VviGH17-44 were differentially expressed at fruit development, in response to abiotic stress. In addition, subcellular localization predicts that the VviGH17-16, VviGH17-30, and VviGH17-37 genes were located in the cell membrane, while VviGH17-44 gene was located in the vacuole. In conclusion, our study led to the identification of several GH17s and their probable role in development and stress. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01014-1.
Collapse
Affiliation(s)
- Tariq Pervaiz
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095 People’s Republic of China
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Tianhua Liu
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095 People’s Republic of China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering, Center of Jiangsu Province, Nanjing, 210095 People’s Republic of China
| | - Xiang Fang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095 People’s Republic of China
| | - Yanhua Ren
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095 People’s Republic of China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering, Center of Jiangsu Province, Nanjing, 210095 People’s Republic of China
| | - Xiyang Li
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095 People’s Republic of China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering, Center of Jiangsu Province, Nanjing, 210095 People’s Republic of China
| | - Zhongjie Liu
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095 People’s Republic of China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering, Center of Jiangsu Province, Nanjing, 210095 People’s Republic of China
| | - Muhammad Fiaz
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095 People’s Republic of China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering, Center of Jiangsu Province, Nanjing, 210095 People’s Republic of China
| | - Jinggui Fang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095 People’s Republic of China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering, Center of Jiangsu Province, Nanjing, 210095 People’s Republic of China
| | - Lingfei Shangguan
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095 People’s Republic of China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering, Center of Jiangsu Province, Nanjing, 210095 People’s Republic of China
| |
Collapse
|
13
|
Wong DCJ. Network aggregation improves gene function prediction of grapevine gene co-expression networks. PLANT MOLECULAR BIOLOGY 2020; 103:425-441. [PMID: 32266646 DOI: 10.1007/s11103-020-01001-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 03/21/2020] [Indexed: 05/08/2023]
Abstract
Aggregation across multiple networks highlights robust co-expression interactions and improves the functional connectivity of grapevine gene co-expression networks. In recent years, the rapid accumulation of transcriptome datasets from diverse experimental conditions has enabled the widespread use of gene co-expression network (GCN) analysis in plants. In grapevine, GCN analysis has shown great promise for gene function prediction, however, measurable progress is currently lacking. Using accumulated microarray datasets from the grapevine whole-genome array (33 experiments, 1359 samples), we explored how meta-analysis through aggregation influences the functional connectivity (performance) of derived networks using guilt-by-association neighbor voting. Two annotation schemes, i.e. MapMan BIN and Pfam, at two sparsity thresholds, i.e. top 100 (stringent) and 300 (relaxed) ranked genes were evaluated. We observed that aggregating across multiple networks improves performance dramatically, with the aggregate outperforming the majority of functional terms across individual networks. Network sparsity and size (i.e. the number of samples and aggregates) were key factors influencing performance while the choice of annotation scheme had little. Systematic comparison with various state-of-the-art microarray and RNA-seq networks was also performed, however, none outperformed the aggregate microarray network despite having good predictive performance. Repeating these series of tests using a functional enrichment-based performance metric also showed remarkably consistent findings with guilt-by-association neighbor voting. To demonstrate its functionality, we explore the function and transcriptional regulation of grapevine EXPANSIN genes. We envisage that network aggregation will offer new and unique opportunities for gene function prediction in future grapevine functional genomics studies. To this end, we make the aggregate networks and associated metadata publicly available at VTC-Agg (https://sites.google.com/view/vtc-agg).
Collapse
Affiliation(s)
- Darren C J Wong
- Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia.
| |
Collapse
|
14
|
Daldoul S, Boubakri H, Gargouri M, Mliki A. Recent advances in biotechnological studies on wild grapevines as valuable resistance sources for smart viticulture. Mol Biol Rep 2020; 47:3141-3153. [PMID: 32130616 DOI: 10.1007/s11033-020-05363-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/28/2020] [Indexed: 12/11/2022]
Abstract
Cultivated grapevines, Vitis vinifera subsp. sativa, are thought to have been domesticated from wild populations of Vitis vinifera subsp. sylvestris in Central Asia. V. vinifera subsp. sativa is one of the most economically important fruit crops worldwide. Since cultivated grapevines are susceptible to multiple biotic and abiotic soil factors, they also need to be grafted on resistant rootstocks that are mostly developed though hybridization between American wild grapevine species (V. berlandieri, V. riparia, and V. rupestris). Therefore, wild grapevine species are essential genetic materials for viticulture to face biotic and abiotic stresses in both cultivar and rootstock parts. Actually, viticulture faces several environmental constraints that are further intensified by climate change. Recently, several reports on biotic and abiotic stresses-response in wild grapevines revealed accessions tolerant to different constraints. The emergence of advanced techniques such as omics technologies, marker-assisted selection (MAS), and functional analysis tools allowed a more detailed characterization of resistance mechanisms in these wild grapevines and suggest a number of species (V. rotundifolia, V. rupestris, V. riparia, V. berlandieri and V. amurensis) have untapped potential for new resistance traits including disease resistance loci and key tolerance genes. The present review reports on the importance of different biotechnological tools in exploring and examining wild grapevines tolerance mechanisms that can be employed to promote elite cultivated grapevines under climate change conditions.
Collapse
Affiliation(s)
- Samia Daldoul
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-lif, Tunisia.
| | - Hatem Boubakri
- Laboratory of Legumes, Centre of Biotechnology of Borj-Cedria, 2050, BP 901, Hammam-lif, Tunisia
| | - Mahmoud Gargouri
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-lif, Tunisia
| | - Ahmed Mliki
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-lif, Tunisia
| |
Collapse
|
15
|
Smita S, Katiyar A, Lenka SK, Dalal M, Kumar A, Mahtha SK, Yadav G, Chinnusamy V, Pandey DM, Bansal KC. Gene network modules associated with abiotic stress response in tolerant rice genotypes identified by transcriptome meta-analysis. Funct Integr Genomics 2019; 20:29-49. [PMID: 31286320 DOI: 10.1007/s10142-019-00697-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/31/2019] [Accepted: 06/19/2019] [Indexed: 10/26/2022]
Abstract
Abiotic stress tolerance is a complex trait regulated by multiple genes and gene networks in plants. A range of abiotic stresses are known to limit rice productivity. Meta-transcriptomics has emerged as a powerful approach to decipher stress-associated molecular network in model crops. However, retaining specificity of gene expression in tolerant and susceptible genotypes during meta-transcriptome analysis is important for understanding genotype-dependent stress tolerance mechanisms. Addressing this aspect, we describe here "abiotic stress tolerant" (ASTR) genes and networks specifically and differentially expressing in tolerant rice genotypes in response to different abiotic stress conditions. We identified 6,956 ASTR genes, key hub regulatory genes, transcription factors, and functional modules having significant association with abiotic stress-related ontologies and cis-motifs. Out of the 6956 ASTR genes, 73 were co-located within the boundary of previously identified abiotic stress trait-related quantitative trait loci. Functional annotation of 14 uncharacterized ASTR genes is proposed using multiple computational methods. Around 65% of the top ASTR genes were found to be differentially expressed in at least one of the tolerant genotypes under different stress conditions (cold, salt, drought, or heat) from publicly available RNAseq data comparison. The candidate ASTR genes specifically associated with tolerance could be utilized for engineering rice and possibly other crops for broad-spectrum tolerance to abiotic stresses.
Collapse
Affiliation(s)
- Shuchi Smita
- ICAR-National Bureau of Plant Genetic Resources, Indian Agricultural Research Institute Campus, New Delhi, 110012, India
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amit Katiyar
- ICAR-National Bureau of Plant Genetic Resources, Indian Agricultural Research Institute Campus, New Delhi, 110012, India
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
- ICMR-AIIMS Computational Genomics Center, Div. of I.S.R.M., Indian Council of Medical Research, Ansari Nagar, New Delhi, 110029, India
| | - Sangram Keshari Lenka
- TERI-Deakin Nanobiotechnology Center, The Energy and Resources Institute, Gurgaon, Haryana, 122001, India
| | - Monika Dalal
- ICAR-National Research Center on Plant Biotechnology, Indian Agricultural Research Institute Campus, New Delhi, 110012, India
| | - Amish Kumar
- Computational Biology Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sanjeet Kumar Mahtha
- Computational Biology Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Gitanjali Yadav
- Computational Biology Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Viswanathan Chinnusamy
- ICAR-Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Dev Mani Pandey
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Kailash Chander Bansal
- ICAR-National Bureau of Plant Genetic Resources, Indian Agricultural Research Institute Campus, New Delhi, 110012, India.
- TERI-Deakin Nanobiotechnology Center, The Energy and Resources Institute, Gurgaon, Haryana, 122001, India.
| |
Collapse
|
16
|
De Ollas C, Morillón R, Fotopoulos V, Puértolas J, Ollitrault P, Gómez-Cadenas A, Arbona V. Facing Climate Change: Biotechnology of Iconic Mediterranean Woody Crops. FRONTIERS IN PLANT SCIENCE 2019; 10:427. [PMID: 31057569 PMCID: PMC6477659 DOI: 10.3389/fpls.2019.00427] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 03/21/2019] [Indexed: 05/03/2023]
Abstract
The Mediterranean basin is especially sensitive to the adverse outcomes of climate change and especially to variations in rainfall patterns and the incidence of extremely high temperatures. These two concurring adverse environmental conditions will surely have a detrimental effect on crop performance and productivity that will be particularly severe on woody crops such as citrus, olive and grapevine that define the backbone of traditional Mediterranean agriculture. These woody species have been traditionally selected for traits such as improved fruit yield and quality or alteration in harvesting periods, leaving out traits related to plant field performance. This is currently a crucial aspect due to the progressive and imminent effects of global climate change. Although complete genome sequence exists for sweet orange (Citrus sinensis) and clementine (Citrus clementina), olive tree (Olea europaea) and grapevine (Vitis vinifera), the development of biotechnological tools to improve stress tolerance still relies on the study of the available genetic resources including interspecific hybrids, naturally occurring (or induced) polyploids and wild relatives under field conditions. To this respect, post-genomic era studies including transcriptomics, metabolomics and proteomics provide a wide and unbiased view of plant physiology and biochemistry under adverse environmental conditions that, along with high-throughput phenotyping, could contribute to the characterization of plant genotypes exhibiting physiological and/or genetic traits that are correlated to abiotic stress tolerance. The ultimate goal of precision agriculture is to improve crop productivity, in terms of yield and quality, making a sustainable use of land and water resources under adverse environmental conditions using all available biotechnological tools and high-throughput phenotyping. This review focuses on the current state-of-the-art of biotechnological tools such as high throughput -omics and phenotyping on grapevine, citrus and olive and their contribution to plant breeding programs.
Collapse
Affiliation(s)
- Carlos De Ollas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castellón de la Plana, Spain
| | - Raphaël Morillón
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Petit-Bourg, France
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Jaime Puértolas
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Patrick Ollitrault
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), San-Giuliano, France
| | - Aurelio Gómez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castellón de la Plana, Spain
| | - Vicent Arbona
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castellón de la Plana, Spain
| |
Collapse
|
17
|
Xue C, Yao JL, Xue YS, Su GQ, Wang L, Lin LK, Allan AC, Zhang SL, Wu J. PbrMYB169 positively regulates lignification of stone cells in pear fruit. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1801-1814. [PMID: 30715420 DOI: 10.1093/jxb/erz039] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/17/2019] [Indexed: 05/09/2023]
Abstract
Stone cells negatively affect fruit quality because of their firm and lignified cell walls, so are targets for reduction in pear breeding programmes. However, there is only limited knowledge of the molecular mechanisms underlying the formation of stone cells. Here, we show that PbrMYB169, an R2R3 MYB transcription factor, of Pyrus bretschneideri positively regulates lignification of stone cells in pear fruit. PbrMYB169 was shown to be co-expressed with lignin biosynthesis genes during pear fruit development, and this co-expression pattern was coincident with stone cell formation in the fruit of Pyrus bretschneideri 'Dangshansuli'. The PbrMYB169 expression level was also positively correlated with stone cell content in 36 pear cultivars tested. PbrMYB169 protein significantly activated the promoter of lignin genes C3H1, CCR1, CCOMT2, CAD, 4CL1, 4CL2, HCT2, and LAC18 via binding to AC elements [ACC(T/A)ACC] in these promoters. Furthermore, overexpression of PbrMYB169 in transgenic Arabidopsis plants enhanced the expression of lignin genes, and increased lignin deposition and cell wall thickness of vessel elements, but did not change the ratio of syringyl and guaiacyl lignin monomers. In conclusion, PbrMYB169 appears to be a transcriptional activator of lignin biosynthesis and regulates secondary wall formation in fruit stone cells. This study advances the understanding of the regulation of lignin biosynthesis and provides valuable molecular genetic information for reducing stone cell content in pear fruit.
Collapse
Affiliation(s)
- Cheng Xue
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jia-Long Yao
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Yong-Song Xue
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Guan-Qing Su
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Liang Wang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Li-Kun Lin
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Andrew C Allan
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag, Auckland, New Zealand
| | - Shao-Ling Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jun Wu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
18
|
Da L, Liu Y, Yang J, Tian T, She J, Ma X, Xu W, Su Z. AppleMDO: A Multi-Dimensional Omics Database for Apple Co-Expression Networks and Chromatin States. FRONTIERS IN PLANT SCIENCE 2019; 10:1333. [PMID: 31695717 PMCID: PMC6817610 DOI: 10.3389/fpls.2019.01333] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/25/2019] [Indexed: 05/17/2023]
Abstract
As an economically important crop, apple is one of the most cultivated fruit trees in temperate regions worldwide. Recently, a large number of high-quality transcriptomic and epigenomic datasets for apple were made available to the public, which could be helpful in inferring gene regulatory relationships and thus predicting gene function at the genome level. Through integration of the available apple genomic, transcriptomic, and epigenomic datasets, we constructed co-expression networks, identified functional modules, and predicted chromatin states. A total of 112 RNA-seq datasets were integrated to construct a global network and a conditional network (tissue-preferential network). Furthermore, a total of 1,076 functional modules with closely related gene sets were identified to assess the modularity of biological networks and further subjected to functional enrichment analysis. The results showed that the function of many modules was related to development, secondary metabolism, hormone response, and transcriptional regulation. Transcriptional regulation is closely related to epigenetic marks on chromatin. A total of 20 epigenomic datasets, which included ChIP-seq, DNase-seq, and DNA methylation analysis datasets, were integrated and used to classify chromatin states. Based on the ChromHMM algorithm, the genome was divided into 620,122 fragments, which were classified into 24 states according to the combination of epigenetic marks and enriched-feature regions. Finally, through the collaborative analysis of different omics datasets, the online database AppleMDO (http://bioinformatics.cau.edu.cn/AppleMDO/) was established for cross-referencing and the exploration of possible novel functions of apple genes. In addition, gene annotation information and functional support toolkits were also provided. Our database might be convenient for researchers to develop insights into the function of genes related to important agronomic traits and might serve as a reference for other fruit trees.
Collapse
|
19
|
Chitarra W, Pagliarani C, Abbà S, Boccacci P, Birello G, Rossi M, Palmano S, Marzachì C, Perrone I, Gambino G. miRVIT: A Novel miRNA Database and Its Application to Uncover Vitis Responses to Flavescence dorée Infection. FRONTIERS IN PLANT SCIENCE 2018; 9:1034. [PMID: 30065744 PMCID: PMC6057443 DOI: 10.3389/fpls.2018.01034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/26/2018] [Indexed: 05/08/2023]
Abstract
Micro(mi)RNAs play crucial roles in plant developmental processes and in defense responses to biotic and abiotic stresses. In the last years, many works on small RNAs in grapevine (Vitis spp.) were published, and several conserved and putative novel grapevine-specific miRNAs were identified. In order to reorganize the high quantity of available data, we produced "miRVIT," the first database of all novel grapevine miRNA candidates characterized so far, and still not deposited in miRBase. To this aim, each miRNA accession was renamed, repositioned in the last version of the grapevine genome, and compared with all the novel and conserved miRNAs detected in grapevine. Conserved and novel miRNAs cataloged in miRVIT were then used for analyzing Vitis vinifera plants infected by Flavescence dorée (FD), one of the most severe phytoplasma diseases affecting grapevine. The analysis of small RNAs from healthy, recovered (plants showing spontaneous and stable remission of symptoms), and FD-infected "Barbera" grapevines showed that FD altered the expression profiles of several miRNAs, including those involved in cell development and photosynthesis, jasmonate signaling, and disease resistance response. The application of miRVIT in a biological context confirmed the effectiveness of the followed approach, especially for the identification of novel miRNA candidates in grapevine. miRVIT database is available at http://mirvit.ipsp.cnr.it. Highlights: The application of the newly produced database of grapevine novel miRNAs to the analysis of plants infected by Flavescence dorée reveals key roles of miRNAs in photosynthesis and jasmonate signaling.
Collapse
Affiliation(s)
- Walter Chitarra
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
- Viticultural and Enology Research Centre, Council for Agricultural Research and Economics, Conegliano, Italy
| | - Chiara Pagliarani
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Simona Abbà
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Paolo Boccacci
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Giancarlo Birello
- Research Institute on Sustainable Economic Growth, National Research Council of Italy, Turin, Italy
| | - Marika Rossi
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Sabrina Palmano
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Cristina Marzachì
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Irene Perrone
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| |
Collapse
|
20
|
Vannozzi A, Wong DCJ, Höll J, Hmmam I, Matus JT, Bogs J, Ziegler T, Dry I, Barcaccia G, Lucchin M. Combinatorial Regulation of Stilbene Synthase Genes by WRKY and MYB Transcription Factors in Grapevine (Vitis vinifera L.). PLANT & CELL PHYSIOLOGY 2018; 59:1043-1059. [PMID: 29529275 DOI: 10.1093/pcp/pcy045] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/20/2018] [Indexed: 05/20/2023]
Abstract
Stilbene synthase (STS) is the key enzyme leading to the biosynthesis of resveratrol. Recently we reported two R2R3-MYB transcription factor (TF) genes that regulate the stilbene biosynthetic pathway in grapevine: VviMYB14 and VviMYB15. These genes are strongly co-expressed with STS genes under a range of stress and developmental conditions, in agreement with the specific activation of STS promoters by these TFs. Genome-wide gene co-expression analysis using two separate transcriptome compendia based on microarray and RNA sequencing data revealed that WRKY TFs were the top TF family correlated with STS genes. On the basis of correlation frequency, four WRKY genes, namely VviWRKY03, VviWRKY24, VviWRKY43 and VviWRKY53, were further shortlisted and functionally validated. Expression analyses under both unstressed and stressed conditions, together with promoter-luciferase reporter assays, suggested different hierarchies for these TFs in the regulation of the stilbene biosynthetic pathway. In particular, VviWRKY24 seems to act as a singular effector in the activation of the VviSTS29 promoter, while VviWRKY03 acts through a combinatorial effect with VviMYB14, suggesting that these two regulators may interact at the protein level as previously reported in other species.
Collapse
Affiliation(s)
- Alessandro Vannozzi
- Department of Agronomy, Food, Natural resources, Animals, and Environment (DAFNAE), University of Padova, Legnaro 35020, Italy
| | - Darren Chern Jan Wong
- Ecology and Evolution, Research School of Biology, Australian National University Acton, ACT 2601, Australia
| | - Janine Höll
- Centre for Organismal Studies Heidelberg, University of Heidelberg, Heidelberg D-69120, Germany
| | - Ibrahim Hmmam
- Department of Agronomy, Food, Natural resources, Animals, and Environment (DAFNAE), University of Padova, Legnaro 35020, Italy
| | - José Tomás Matus
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona 08034, Spain
| | - Jochen Bogs
- Centre for Organismal Studies Heidelberg, University of Heidelberg, Heidelberg D-69120, Germany
| | - Tobias Ziegler
- Centre for Organismal Studies Heidelberg, University of Heidelberg, Heidelberg D-69120, Germany
| | - Ian Dry
- CSIRO Agriculture & Food, Urrbrae, SA 5064, Australia
| | - Gianni Barcaccia
- Department of Agronomy, Food, Natural resources, Animals, and Environment (DAFNAE), University of Padova, Legnaro 35020, Italy
| | - Margherita Lucchin
- Department of Agronomy, Food, Natural resources, Animals, and Environment (DAFNAE), University of Padova, Legnaro 35020, Italy
| |
Collapse
|
21
|
Wong DCJ, Ariani P, Castellarin S, Polverari A, Vandelle E. Co-expression network analysis and cis-regulatory element enrichment determine putative functions and regulatory mechanisms of grapevine ATL E3 ubiquitin ligases. Sci Rep 2018; 8:3151. [PMID: 29453355 PMCID: PMC5816651 DOI: 10.1038/s41598-018-21377-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 02/02/2018] [Indexed: 02/06/2023] Open
Abstract
Arabidopsis thaliana Toxicos en Levadura (ATL) proteins are a subclass of the RING-H2 zinc finger binding E3 ubiquitin ligases. The grapevine (Vitis vinifera) ATL family was recently characterized, revealing 96 members that are likely to be involved in several physiological processes through protein ubiquitination. However, the final targets and biological functions of most ATL E3 ligases are still unknown. We analyzed the co-expression networks among grapevine ATL genes across a set of transcriptomic data related to defense and abiotic stress, combined with a condition-independent dataset. This revealed strong correlations between ATL proteins and diverse signal transduction components and transcriptional regulators, in particular those involved in immunity. An enrichment analysis of cis-regulatory elements in ATL gene promoters and related co-expressed genes highlighted the importance of hormones in the regulation of ATL gene expression. Our work identified several ATL proteins as candidates for further studies aiming to decipher specific grapevine resistance mechanisms activated in response to pathogens.
Collapse
Affiliation(s)
- Darren C J Wong
- Wine Research Centre, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
- Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| | - Pietro Ariani
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Verona, 37134, Italy
| | - Simone Castellarin
- Wine Research Centre, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Annalisa Polverari
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Verona, 37134, Italy.
| | - Elodie Vandelle
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Verona, 37134, Italy.
| |
Collapse
|
22
|
Malacarne G, Pilati S, Valentini S, Asnicar F, Moretto M, Sonego P, Masera L, Cavecchia V, Blanzieri E, Moser C. Discovering Causal Relationships in Grapevine Expression Data to Expand Gene Networks. A Case Study: Four Networks Related to Climate Change. FRONTIERS IN PLANT SCIENCE 2018; 9:1385. [PMID: 30298082 PMCID: PMC6161569 DOI: 10.3389/fpls.2018.01385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 08/31/2018] [Indexed: 05/08/2023]
Abstract
In recent years the scientific community has been heavily engaged in studying the grapevine response to climate change. Final goal is the identification of key genetic traits to be used in grapevine breeding and the setting of agronomic practices to improve climatic resilience. The increasing availability of transcriptomic studies, describing gene expression in many tissues and developmental, or treatment conditions, have allowed the implementation of gene expression compendia, which enclose a huge amount of information. The mining of transcriptomic data represents an effective approach to expand a known local gene network (LGN) by finding new related genes. We recently published a pipeline based on the iterative application of the PC-algorithm, named NES2RA, to expand gene networks in Escherichia coli and Arabidopsis thaliana. Here, we propose the application of this method to the grapevine transcriptomic compendium Vespucci, in order to expand four LGNs related to the grapevine response to climate change. Two networks are related to the secondary metabolic pathways for anthocyanin and stilbenoid synthesis, involved in the response to solar radiation, whereas the other two are signaling networks, related to the hormones abscisic acid and ethylene, possibly involved in the regulation of cell water balance and cuticle transpiration. The expansion networks produced by NES2RA algorithm have been evaluated by comparison with experimental data and biological knowledge on the identified genes showing fairly good consistency of the results. In addition, the algorithm was effective in retaining only the most significant interactions among the genes providing a useful framework for experimental validation. The application of the NES2RA to Vitis vinifera expression data by means of the BOINC-based implementation is available upon request (valter.cavecchia@cnr.it).
Collapse
Affiliation(s)
- Giulia Malacarne
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all′Adige, Italy
| | - Stefania Pilati
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all′Adige, Italy
| | - Samuel Valentini
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all′Adige, Italy
| | - Francesco Asnicar
- Department of Information Engineering and Computer Science, University of Trento, Trento, Italy
| | - Marco Moretto
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all′Adige, Italy
| | - Paolo Sonego
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all′Adige, Italy
| | - Luca Masera
- Department of Information Engineering and Computer Science, University of Trento, Trento, Italy
| | - Valter Cavecchia
- Consiglio Nazionale delle Ricerche-Institute of Materials for Electronics and Magnetism, Trento, Italy
| | - Enrico Blanzieri
- Department of Information Engineering and Computer Science, University of Trento, Trento, Italy
- Consiglio Nazionale delle Ricerche-Institute of Materials for Electronics and Magnetism, Trento, Italy
| | - Claudio Moser
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all′Adige, Italy
- *Correspondence: Claudio Moser,
| |
Collapse
|
23
|
Rogiers SY, Coetzee ZA, Walker RR, Deloire A, Tyerman SD. Potassium in the Grape ( Vitis vinifera L.) Berry: Transport and Function. FRONTIERS IN PLANT SCIENCE 2017; 8:1629. [PMID: 29021796 PMCID: PMC5623721 DOI: 10.3389/fpls.2017.01629] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/05/2017] [Indexed: 05/20/2023]
Abstract
K+ is the most abundant cation in the grape berry. Here we focus on the most recent information in the long distance transport and partitioning of K+ within the grapevine and postulate on the potential role of K+ in berry sugar accumulation, berry water relations, cellular growth, disease resistance, abiotic stress tolerance and mitigating senescence. By integrating information from several different plant systems we have been able to generate new hypotheses on the integral functions of this predominant cation and to improve our understanding of how these functions contribute to grape berry growth and ripening. Valuable contributions to the study of K+ in membrane stabilization, turgor maintenance and phloem transport have allowed us to propose a mechanistic model for the role of this cation in grape berry development.
Collapse
Affiliation(s)
- Suzy Y. Rogiers
- New South Wales Department of Primary Industries, Wagga Wagga, NSW, Australia
- National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW, Australia
- The Australian Research Council Training Centre for Innovative Wine Production, University of Adelaide, Glen Osmond, SA, Australia
| | - Zelmari A. Coetzee
- National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW, Australia
- The Australian Research Council Training Centre for Innovative Wine Production, University of Adelaide, Glen Osmond, SA, Australia
- School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Rob R. Walker
- The Australian Research Council Training Centre for Innovative Wine Production, University of Adelaide, Glen Osmond, SA, Australia
- School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
- Agriculture and Food (CSIRO), Glen Osmond, SA, Australia
- School of Agriculture, Food, and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Alain Deloire
- National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW, Australia
- The Australian Research Council Training Centre for Innovative Wine Production, University of Adelaide, Glen Osmond, SA, Australia
- Department of Biology-Ecology, SupAgro, Montpellier, France
| | - Stephen D. Tyerman
- The Australian Research Council Training Centre for Innovative Wine Production, University of Adelaide, Glen Osmond, SA, Australia
- School of Agriculture, Food, and Wine, University of Adelaide, Urrbrae, SA, Australia
| |
Collapse
|
24
|
Wong DCJ, Lopez Gutierrez R, Gambetta GA, Castellarin SD. Genome-wide analysis of cis-regulatory element structure and discovery of motif-driven gene co-expression networks in grapevine. DNA Res 2017; 24:311-326. [PMID: 28119334 PMCID: PMC5499852 DOI: 10.1093/dnares/dsw061] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/13/2016] [Indexed: 11/29/2022] Open
Abstract
Coordinated transcriptional and metabolic reprogramming ensures a plant’s continued growth and survival under adverse environmental conditions. Transcription factors (TFs) act to modulate gene expression through complex cis-regulatory element (CRE) interactions. Genome-wide analysis of known plant CREs was performed for all currently predicted protein-coding gene promoters in grapevine (Vitis vinifera L.). Many CREs such as abscisic acid (ABA)-responsive, drought-responsive, auxin-responsive, and evening elements, exhibit bona fide CRE properties such as strong position bias towards the transcription start site (TSS) and over-representation when compared with random promoters. Genes containing these CREs are enriched in a large repertoire of plant biological pathways. Large-scale transcriptome analyses also show that these CREs are highly implicated in grapevine development and stress response. Numerous CRE-driven modules in condition-specific gene co-expression networks (GCNs) were identified and many of these modules were highly enriched for plant biological functions. Several modules corroborate known roles of CREs in drought response, pathogen defense, cell wall metabolism, and fruit ripening, whereas others reveal novel functions in plants. Comparisons with Arabidopsis suggest a general conservation in promoter architecture, gene expression dynamics, and GCN structure across species. Systems analyses of CREs provide insights into the grapevine cis-regulatory code and establish a foundation for future genomic studies in grapevine.
Collapse
Affiliation(s)
| | | | - Gregory Alan Gambetta
- Ecophysiologie et Génomique Fonctionnelle de la Vigne, Bordeaux Sciences Agro, INRA, Université de Bordeaux, 33140 Villenave d'Ornon, France
| | | |
Collapse
|
25
|
Connectivity in gene coexpression networks negatively correlates with rates of molecular evolution in flowering plants. PLoS One 2017; 12:e0182289. [PMID: 28759647 PMCID: PMC5536297 DOI: 10.1371/journal.pone.0182289] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/14/2017] [Indexed: 12/22/2022] Open
Abstract
Gene coexpression networks are a useful tool for summarizing transcriptomic data and providing insight into patterns of gene regulation in a variety of species. Though there has been considerable interest in studying the evolution of network topology across species, less attention has been paid to the relationship between network position and patterns of molecular evolution. Here, we generated coexpression networks from publicly available expression data for seven flowering plant taxa (Arabidopsis thaliana, Glycine max, Oryza sativa, Populus spp., Solanum lycopersicum, Vitis spp., and Zea mays) to investigate the relationship between network position and rates of molecular evolution. We found a significant negative correlation between network connectivity and rates of molecular evolution, with more highly connected (i.e., “hub”) genes having significantly lower nonsynonymous substitution rates and dN/dS ratios compared to less highly connected (i.e., “peripheral”) genes across the taxa surveyed. These findings suggest that more centrally located hub genes are, on average, subject to higher levels of evolutionary constraint than are genes located on the periphery of gene coexpression networks. The consistency of this result across disparate taxa suggests that it holds for flowering plants in general, as opposed to being a species-specific phenomenon.
Collapse
|
26
|
Narise T, Sakurai N, Obayashi T, Ohta H, Shibata D. Co-expressed Pathways DataBase for Tomato: a database to predict pathways relevant to a query gene. BMC Genomics 2017; 18:437. [PMID: 28583129 PMCID: PMC5460524 DOI: 10.1186/s12864-017-3786-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 05/10/2017] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Gene co-expression, the similarity of gene expression profiles under various experimental conditions, has been used as an indicator of functional relationships between genes, and many co-expression databases have been developed for predicting gene functions. These databases usually provide users with a co-expression network and a list of strongly co-expressed genes for a query gene. Several of these databases also provide functional information on a set of strongly co-expressed genes (i.e., provide biological processes and pathways that are enriched in these strongly co-expressed genes), which is generally analyzed via over-representation analysis (ORA). A limitation of this approach may be that users can predict gene functions only based on the strongly co-expressed genes. RESULTS In this study, we developed a new co-expression database that enables users to predict the function of tomato genes from the results of functional enrichment analyses of co-expressed genes while considering the genes that are not strongly co-expressed. To achieve this, we used the ORA approach with several thresholds to select co-expressed genes, and performed gene set enrichment analysis (GSEA) applied to a ranked list of genes ordered by the co-expression degree. We found that internal correlation in pathways affected the significance levels of the enrichment analyses. Therefore, we introduced a new measure for evaluating the relationship between the gene and pathway, termed the percentile (p)-score, which enables users to predict functionally relevant pathways without being affected by the internal correlation in pathways. In addition, we evaluated our approaches using receiver operating characteristic curves, which concluded that the p-score could improve the performance of the ORA. CONCLUSIONS We developed a new database, named Co-expressed Pathways DataBase for Tomato, which is available at http://cox-path-db.kazusa.or.jp/tomato . The database allows users to predict pathways that are relevant to a query gene, which would help to infer gene functions.
Collapse
Affiliation(s)
- Takafumi Narise
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818 Japan
| | - Nozomu Sakurai
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818 Japan
| | - Takeshi Obayashi
- Graduate School of Information Sciences, Tohoku University, 6-3-09 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, 980-8579 Japan
| | - Hiroyuki Ohta
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501 Japan
| | - Daisuke Shibata
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818 Japan
| |
Collapse
|
27
|
Wong DCJ, Matus JT. Constructing Integrated Networks for Identifying New Secondary Metabolic Pathway Regulators in Grapevine: Recent Applications and Future Opportunities. FRONTIERS IN PLANT SCIENCE 2017; 8:505. [PMID: 28446914 PMCID: PMC5388765 DOI: 10.3389/fpls.2017.00505] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/22/2017] [Indexed: 05/19/2023]
Abstract
Representing large biological data as networks is becoming increasingly adopted for predicting gene function while elucidating the multifaceted organization of life processes. In grapevine (Vitis vinifera L.), network analyses have been mostly adopted to contribute to the understanding of the regulatory mechanisms that control berry composition. Whereas, some studies have used gene co-expression networks to find common pathways and putative targets for transcription factors related to development and metabolism, others have defined networks of primary and secondary metabolites for characterizing the main metabolic differences between cultivars throughout fruit ripening. Lately, proteomic-related networks and those integrating genome-wide analyses of promoter regulatory elements have also been generated. The integration of all these data in multilayered networks allows building complex maps of molecular regulation and interaction. This perspective article describes the currently available network data and related resources for grapevine. With the aim of illustrating data integration approaches into network construction and analysis in grapevine, we searched for berry-specific regulators of the phenylpropanoid pathway. We generated a composite network consisting of overlaying maps of co-expression between structural and transcription factor genes, integrated with the presence of promoter cis-binding elements, microRNAs, and long non-coding RNAs (lncRNA). This approach revealed new uncharacterized transcription factors together with several microRNAs potentially regulating different steps of the phenylpropanoid pathway, and one particular lncRNA compromising the expression of nine stilbene synthase (STS) genes located in chromosome 10. Application of network-based approaches into multi-omics data will continue providing supplementary resources to address important questions regarding grapevine fruit quality and composition.
Collapse
Affiliation(s)
- Darren C. J. Wong
- Ecology and Evolution, Research School of Biology, Australian National UniversityActon, ACT, Australia
| | - José Tomás Matus
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UBBarcelona, Spain
- *Correspondence: José Tomás Matus
| |
Collapse
|
28
|
Fabres PJ, Collins C, Cavagnaro TR, Rodríguez López CM. A Concise Review on Multi-Omics Data Integration for Terroir Analysis in Vitis vinifera. FRONTIERS IN PLANT SCIENCE 2017; 8:1065. [PMID: 28676813 PMCID: PMC5477006 DOI: 10.3389/fpls.2017.01065] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/02/2017] [Indexed: 05/19/2023]
Abstract
Vitis vinifera (grapevine) is one of the most important fruit crops, both for fresh consumption and wine and spirit production. The term terroir is frequently used in viticulture and the wine industry to relate wine sensory attributes to its geographic origin. Although, it can be cultivated in a wide range of environments, differences in growing conditions have a significant impact on fruit traits that ultimately affect wine quality. Understanding how fruit quality and yield are controlled at a molecular level in grapevine in response to environmental cues has been a major driver of research. Advances in the area of genomics, epigenomics, transcriptomics, proteomics and metabolomics, have significantly increased our knowledge on the abiotic regulation of yield and quality in many crop species, including V. vinifera. The integrated analysis of multiple 'omics' can give us the opportunity to better understand how plants modulate their response to different environments. However, 'omics' technologies provide a large amount of biological data and its interpretation is not always straightforward, especially when different 'omic' results are combined. Here we examine the current strategies used to integrate multi-omics, and how these have been used in V. vinifera. In addition, we also discuss the importance of including epigenomics data when integrating omics data as epigenetic mechanisms could play a major role as an intermediary between the environment and the genome.
Collapse
Affiliation(s)
- Pastor Jullian Fabres
- Environmental Epigenetics and Genetics Group, Plant Research Centre, School of Agriculture, Food and Wine, University of Adelaide, Glen OsmondSA, Australia
| | - Cassandra Collins
- The Waite Research Institute, The School of Agriculture, Food and Wine, The University of Adelaide, Glen OsmondSA, Australia
| | - Timothy R. Cavagnaro
- The Waite Research Institute, The School of Agriculture, Food and Wine, The University of Adelaide, Glen OsmondSA, Australia
| | - Carlos M. Rodríguez López
- Environmental Epigenetics and Genetics Group, Plant Research Centre, School of Agriculture, Food and Wine, University of Adelaide, Glen OsmondSA, Australia
- *Correspondence: Carlos M. Rodríguez López,
| |
Collapse
|
29
|
Serrano A, Espinoza C, Armijo G, Inostroza-Blancheteau C, Poblete E, Meyer-Regueiro C, Arce A, Parada F, Santibáñez C, Arce-Johnson P. Omics Approaches for Understanding Grapevine Berry Development: Regulatory Networks Associated with Endogenous Processes and Environmental Responses. FRONTIERS IN PLANT SCIENCE 2017; 8:1486. [PMID: 28936215 PMCID: PMC5594091 DOI: 10.3389/fpls.2017.01486] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/10/2017] [Indexed: 05/21/2023]
Abstract
Grapevine fruit development is a dynamic process that can be divided into three stages: formation (I), lag (II), and ripening (III), in which physiological and biochemical changes occur, leading to cell differentiation and accumulation of different solutes. These stages can be positively or negatively affected by multiple environmental factors. During the last decade, efforts have been made to understand berry development from a global perspective. Special attention has been paid to transcriptional and metabolic networks associated with the control of grape berry development, and how external factors affect the ripening process. In this review, we focus on the integration of global approaches, including proteomics, metabolomics, and especially transcriptomics, to understand grape berry development. Several aspects will be considered, including seed development and the production of seedless fruits; veraison, at which anthocyanin accumulation begins in the berry skin of colored varieties; and hormonal regulation of berry development and signaling throughout ripening, focusing on the transcriptional regulation of hormone receptors, protein kinases, and genes related to secondary messenger sensing. Finally, berry responses to different environmental factors, including abiotic (temperature, water-related stress and UV-B radiation) and biotic (fungi and viruses) stresses, and how they can significantly modify both, development and composition of vine fruit, will be discussed. Until now, advances have been made due to the application of Omics tools at different molecular levels. However, the potential of these technologies should not be limited to the study of single-level questions; instead, data obtained by these platforms should be integrated to unravel the molecular aspects of grapevine development. Therefore, the current challenge is the generation of new tools that integrate large-scale data to assess new questions in this field, and to support agronomical practices.
Collapse
Affiliation(s)
- Alejandra Serrano
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Carmen Espinoza
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Grace Armijo
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Claudio Inostroza-Blancheteau
- Núcleo de Investigación en Producción Alimentaría, Facultad de Recursos Naturales, Escuela de Agronomía, Universidad Católica de TemucoTemuco, Chile
| | - Evelyn Poblete
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Carlos Meyer-Regueiro
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Anibal Arce
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Francisca Parada
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Claudia Santibáñez
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de ChileSantiago, Chile
- Ecophysiology and Functional Genomic of Grapevine, Institut des Sciences de la Vigne et du Vin, Institut National de la Recherche Agronomique, Université de BordeauxBordeaux, France
| | - Patricio Arce-Johnson
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de ChileSantiago, Chile
- *Correspondence: Patricio Arce-Johnson,
| |
Collapse
|
30
|
Loyola R, Herrera D, Mas A, Wong DCJ, Höll J, Cavallini E, Amato A, Azuma A, Ziegler T, Aquea F, Castellarin SD, Bogs J, Tornielli GB, Peña-Neira A, Czemmel S, Alcalde JA, Matus JT, Arce-Johnson P. The photomorphogenic factors UV-B RECEPTOR 1, ELONGATED HYPOCOTYL 5, and HY5 HOMOLOGUE are part of the UV-B signalling pathway in grapevine and mediate flavonol accumulation in response to the environment. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5429-5445. [PMID: 27543604 PMCID: PMC5049392 DOI: 10.1093/jxb/erw307] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Grapevine (Vitis vinifera L.) is a species well known for its adaptation to radiation. However, photomorphogenic factors related to UV-B responses have not been molecularly characterized. We cloned and studied the role of UV-B RECEPTOR (UVR1), ELONGATED HYPOCOTYL 5 (HY5), and HY5 HOMOLOGUE (HYH) from V. vinifera We performed gene functional characterizations, generated co-expression networks, and tested them in different environmental conditions. These genes complemented the Arabidopsis uvr8 and hy5 mutants in morphological and secondary metabolic responses to radiation. We combined microarray and RNA sequencing (RNA-seq) data with promoter inspections to identify HY5 and HYH putative target genes and their DNA binding preferences. Despite sharing a large set of common co-expressed genes, we found different hierarchies for HY5 and HYH depending on the organ and stress condition, reflecting both co-operative and partially redundant roles. New candidate UV-B gene markers were supported by the presence of HY5-binding sites. These included a set of flavonol-related genes that were up-regulated in a HY5 transient expression assay. We irradiated in vitro plantlets and fruits from old potted vines with high and low UV-B exposures and followed the accumulation of flavonols and changes in gene expression in comparison with non-irradiated conditions. UVR1, HY5, and HYH expression varied with organ, developmental stage, and type of radiation. Surprisingly, UVR1 expression was modulated by shading and temperature in berries, but not by UV-B radiation. We propose that the UV-B response machinery favours berry flavonol accumulation through the activation of HY5 and HYH at different developmental stages at both high and low UV-B exposures.
Collapse
Affiliation(s)
- Rodrigo Loyola
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela Herrera
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Abraham Mas
- Centre for Research in Agricultural Genomics-CSIC-IRTA-UAB-UB (CRAG), Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | | | - Janine Höll
- Centre for Organismal Studies Heidelberg, University of Heidelberg, D-69120 Heidelberg, Germany
| | | | | | - Akifumi Azuma
- Grape and Persimmon Research Division, Institute of Fruit Tree and Tea Science, NARO, Higashihiroshima, 73992494, Japan
| | - Tobias Ziegler
- Centre for Organismal Studies Heidelberg, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Felipe Aquea
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile Center for Applied Ecology and Sustainability, Santiago, Chile
| | | | - Jochen Bogs
- Centre for Organismal Studies Heidelberg, University of Heidelberg, D-69120 Heidelberg, Germany Weincampus Neustadt, DLR Rheinpfalz, D-67435 Neustadt, Germany
| | | | - Alvaro Peña-Neira
- Departamento de Agroindustria y Enología, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| | - Stefan Czemmel
- Quantitative Biology Center (QBIC), University of Tuebingen, Germany
| | - José Antonio Alcalde
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José Tomás Matus
- Centre for Research in Agricultural Genomics-CSIC-IRTA-UAB-UB (CRAG), Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Patricio Arce-Johnson
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
31
|
Ren C, Zhang Z, Wang Y, Li S, Liang Z. Genome-wide identification and characterization of the NF-Y gene family in grape (vitis vinifera L.). BMC Genomics 2016; 17:605. [PMID: 27516172 PMCID: PMC4982312 DOI: 10.1186/s12864-016-2989-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/02/2016] [Indexed: 12/13/2022] Open
Abstract
Background Nuclear factor Y (NF-Y) transcription factor is composed of three distinct subunits: NF-YA, NF-YB and NF-YC. Many members of NF-Y family have been reported to be key regulators in plant development, phytohormone signaling and drought tolerance. However, the function of the NF-Y family is less known in grape (Vitis vinifera L.). Results A total of 34 grape NF-Y genes that distributed unevenly on grape (V. vinifera) chromosomes were identified in this study. Phylogenetic analysis was performed to predict functional similarities between Arabidopsis thaliana and grape NF-Y genes. Comparison of the structures of grape NF-Y genes (VvNF-Ys) revealed their functional conservation and alteration. Furthermore, we investigated the expression profiles of VvNF-Ys in response to various stresses, phytohormone treatments, and in leaves and grape berries with various sugar contents at different developmental stages. The relationship between VvNF-Y transcript levels and sugar content was examined to select candidates for exogenous sugar treatments. Quantitative real-time PCR (qPCR) indicated that many VvNF-Ys responded to different sugar stimuli with variations in transcript abundance. qPCR and publicly available microarray data suggest that VvNF-Ys exhibit distinct expression patterns in different grape organs and developmental stages, and a number of VvNF-Ys may participate in responses to multiple abiotic and biotic stresses, phytohormone treatments and sugar accumulation or metabolism. Conclusions In this study, we characterized 34 VvNF-Ys based on their distributions on chromosomes, gene structures, phylogenetic relationship with Arabidopsis NF-Y genes, and their expression patterns. The potential roles of VvNF-Ys in sugar accumulation or metabolism were also investigated. Altogether, the data provide significant insights on VvNF-Ys, and lay foundations for further functional studies of NF-Y genes in grape. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2989-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chong Ren
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resource, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zhan Zhang
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resource, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yi Wang
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resource, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resource, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resource, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
| |
Collapse
|
32
|
Wong DCJ, Schlechter R, Vannozzi A, Höll J, Hmmam I, Bogs J, Tornielli GB, Castellarin SD, Matus JT. A systems-oriented analysis of the grapevine R2R3-MYB transcription factor family uncovers new insights into the regulation of stilbene accumulation. DNA Res 2016; 23:451-466. [PMID: 27407139 PMCID: PMC5066171 DOI: 10.1093/dnares/dsw028] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/17/2016] [Indexed: 01/12/2023] Open
Abstract
R2R3-MYB transcription factors (TFs) belong to a large and functionally diverse protein superfamily in plants. In this study, we explore the evolution and function of this family in grapevine (Vitis vinifera L.), a high-value fruit crop. We identified and manually curated 134 genes using RNA-Seq data, and named them systematically according to the Super-Nomenclature Committee. We identified novel genes, splicing variants and grapevine/woody-specific duplicated subgroups, suggesting possible neo- and sub-functionalization events. Regulatory network analysis ascribed biological functions to uncharacterized genes and validated those of known genes (e.g. secondary cell wall biogenesis and flavonoid biosynthesis). A comprehensive analysis of different MYB binding motifs in the promoters of co-expressed genes predicted grape R2R3-MYB binding preferences and supported evidence for putative downstream targets. Enrichment of cis-regulatory motifs for diverse TFs reinforced the notion of transcriptional coordination and interaction between MYBs and other regulators. Analysis of the network of Subgroup 2 showed that the resveratrol-related VviMYB14 and VviMYB15 share common co-expressed STILBENE SYNTHASE genes with the uncharacterized VviMYB13. These regulators have distinct expression patterns within organs and in response to biotic and abiotic stresses, suggesting a pivotal role of VviMYB13 in regulating stilbene accumulation in vegetative tissues and under biotic stress conditions.
Collapse
Affiliation(s)
| | | | - Alessandro Vannozzi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, 35020 Legnaro, Padova, Italy
| | - Janine Höll
- Centre for Organismal Studies Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| | - Ibrahim Hmmam
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, 35020 Legnaro, Padova, Italy
| | - Jochen Bogs
- Dienstleistungszentrum Laendlicher Raum Rheinpfalz, Breitenweg 71, Viticulture and Enology Group, 67435 Neustadt/W, Germany.,Fachhochschule Bingen, Berlinstr. 109, 55411 Bingen am Rhein, Germany
| | | | | | - José Tomás Matus
- Center for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Barcelona 08193, Spain
| |
Collapse
|
33
|
Wong DCJ, Lopez Gutierrez R, Dimopoulos N, Gambetta GA, Castellarin SD. Combined physiological, transcriptome, and cis-regulatory element analyses indicate that key aspects of ripening, metabolism, and transcriptional program in grapes (Vitis vinifera L.) are differentially modulated accordingly to fruit size. BMC Genomics 2016; 17:416. [PMID: 27245662 PMCID: PMC4886440 DOI: 10.1186/s12864-016-2660-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/25/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In wine grape production, management practices have been adopted to optimize grape and wine quality attributes by producing, or screening for, berries of smaller size. Fruit size and composition are influenced by numerous factors that include both internal (e.g. berry hormone metabolism) and external (e.g. environment and cultural practices) factors. Combined physiological, biochemical, and transcriptome analyses were performed to improve our current understanding of metabolic and transcriptional pathways related to berry ripening and composition in berries of different sizes. RESULTS The comparison of berry physiology between small and large berries throughout development (from 31 to 121 days after anthesis, DAA) revealed significant differences in firmness, the rate of softening, and sugar accumulation at specific developmental stages. Small berries had significantly higher skin to berry weight ratio, lower number of seeds per berry, and higher anthocyanin concentration compared to large berries. RNA-sequencing analyses of berry skins at 47, 74, 103, and 121 DAA revealed a total of 3482 differentially expressed genes between small and large berries. Abscisic acid, auxin, and ethylene hormone pathway genes were differentially modulated between berry sizes. Fatty acid degradation and stilbenoid pathway genes were upregulated at 47 DAA while cell wall degrading and modification genes were downregulated at 74 DAA in small compared to large berries. In the late ripening stage, concerted upregulation of the general phenylpropanoid and stilbenoid pathway genes and downregulation of flavonoid pathway genes were observed in skins of small compared to large berries. Cis-regulatory element analysis of differentially expressed hormone, fruit texture, flavor, and aroma genes revealed an enrichment of specific regulatory motifs related to bZIP, bHLH, AP2/ERF, NAC, MYB, and MADS-box transcription factors. CONCLUSIONS The study demonstrates that physiological and compositional differences between berries of different sizes parallel transcriptome changes that involve fruit texture, flavor, and aroma pathways. These results suggest that, in addition to direct effects brought about by differences in size, key aspects involved in the regulation of ripening likely contribute to different quality profiles between small and large berries.
Collapse
Affiliation(s)
- D C J Wong
- Wine Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - R Lopez Gutierrez
- Wine Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - N Dimopoulos
- Wine Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - G A Gambetta
- Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, Ecophysiologie et Génomique Fonctionnelle de la Vigne, UMR 1287, F-33140, Villenave d' Ornon, France
| | - S D Castellarin
- Wine Research Centre, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
34
|
Savoi S, Wong DCJ, Arapitsas P, Miculan M, Bucchetti B, Peterlunger E, Fait A, Mattivi F, Castellarin SD. Transcriptome and metabolite profiling reveals that prolonged drought modulates the phenylpropanoid and terpenoid pathway in white grapes (Vitis vinifera L.). BMC PLANT BIOLOGY 2016; 16:67. [PMID: 27001212 PMCID: PMC4802899 DOI: 10.1186/s12870-016-0760-1] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/15/2016] [Indexed: 05/19/2023]
Abstract
BACKGROUND Secondary metabolism contributes to the adaptation of a plant to its environment. In wine grapes, fruit secondary metabolism largely determines wine quality. Climate change is predicted to exacerbate drought events in several viticultural areas, potentially affecting the wine quality. In red grapes, water deficit modulates flavonoid accumulation, leading to major quantitative and compositional changes in the profile of the anthocyanin pigments; in white grapes, the effect of water deficit on secondary metabolism is still largely unknown. RESULTS In this study we investigated the impact of water deficit on the secondary metabolism of white grapes using a large scale metabolite and transcript profiling approach in a season characterized by prolonged drought. Irrigated grapevines were compared to non-irrigated grapevines that suffered from water deficit from early stages of berry development to harvest. A large effect of water deficit on fruit secondary metabolism was observed. Increased concentrations of phenylpropanoids, monoterpenes, and tocopherols were detected, while carotenoid and flavonoid accumulations were differentially modulated by water deficit according to the berry developmental stage. The RNA-sequencing analysis carried out on berries collected at three developmental stages-before, at the onset, and at late ripening-indicated that water deficit affected the expression of 4,889 genes. The Gene Ontology category secondary metabolic process was overrepresented within up-regulated genes at all the stages of fruit development considered, and within down-regulated genes before ripening. Eighteen phenylpropanoid, 16 flavonoid, 9 carotenoid, and 16 terpenoid structural genes were modulated by water deficit, indicating the transcriptional regulation of these metabolic pathways in fruit exposed to water deficit. An integrated network and promoter analyses identified a transcriptional regulatory module that encompasses terpenoid genes, transcription factors, and enriched drought-responsive elements in the promoter regions of those genes as part of the grapes response to drought. CONCLUSION Our study reveals that grapevine berries respond to drought by modulating several secondary metabolic pathways, and particularly, by stimulating the production of phenylpropanoids, the carotenoid zeaxanthin, and of volatile organic compounds such as monoterpenes, with potential effects on grape and wine antioxidant potential, composition, and sensory features.
Collapse
Affiliation(s)
- Stefania Savoi
- />Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Italy
- />Dipartimento di Scienze Agro-alimentari, Ambientali e Animali, University of Udine, Via delle Scienze 208, 33100 Udine, Italy
| | - Darren C. J. Wong
- />Wine Research Centre, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4 Canada
| | - Panagiotis Arapitsas
- />Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Italy
| | - Mara Miculan
- />Dipartimento di Scienze Agro-alimentari, Ambientali e Animali, University of Udine, Via delle Scienze 208, 33100 Udine, Italy
- />Istituto di Genomica Applicata, Parco Scientifco e Tecnologico Luigi Danieli, via Jacopo Linussio 51, 33100 Udine, Italy
| | - Barbara Bucchetti
- />Dipartimento di Scienze Agro-alimentari, Ambientali e Animali, University of Udine, Via delle Scienze 208, 33100 Udine, Italy
| | - Enrico Peterlunger
- />Dipartimento di Scienze Agro-alimentari, Ambientali e Animali, University of Udine, Via delle Scienze 208, 33100 Udine, Italy
| | - Aaron Fait
- />The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Fulvio Mattivi
- />Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Italy
| | - Simone D. Castellarin
- />Dipartimento di Scienze Agro-alimentari, Ambientali e Animali, University of Udine, Via delle Scienze 208, 33100 Udine, Italy
- />Wine Research Centre, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4 Canada
| |
Collapse
|
35
|
Identification of Gene Modules Associated with Low Temperatures Response in Bambara Groundnut by Network-Based Analysis. PLoS One 2016; 11:e0148771. [PMID: 26859686 PMCID: PMC4747569 DOI: 10.1371/journal.pone.0148771] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/22/2016] [Indexed: 11/19/2022] Open
Abstract
Bambara groundnut (Vigna subterranea (L.) Verdc.) is an African legume and is a promising underutilized crop with good seed nutritional values. Low temperature stress in a number of African countries at night, such as Botswana, can effect the growth and development of bambara groundnut, leading to losses in potential crop yield. Therefore, in this study we developed a computational pipeline to identify and analyze the genes and gene modules associated with low temperature stress responses in bambara groundnut using the cross-species microarray technique (as bambara groundnut has no microarray chip) coupled with network-based analysis. Analyses of the bambara groundnut transcriptome using cross-species gene expression data resulted in the identification of 375 and 659 differentially expressed genes (p<0.01) under the sub-optimal (23°C) and very sub-optimal (18°C) temperatures, respectively, of which 110 genes are commonly shared between the two stress conditions. The construction of a Highest Reciprocal Rank-based gene co-expression network, followed by its partition using a Heuristic Cluster Chiseling Algorithm resulted in 6 and 7 gene modules in sub-optimal and very sub-optimal temperature stresses being identified, respectively. Modules of sub-optimal temperature stress are principally enriched with carbohydrate and lipid metabolic processes, while most of the modules of very sub-optimal temperature stress are significantly enriched with responses to stimuli and various metabolic processes. Several transcription factors (from MYB, NAC, WRKY, WHIRLY & GATA classes) that may regulate the downstream genes involved in response to stimulus in order for the plant to withstand very sub-optimal temperature stress were highlighted. The identified gene modules could be useful in breeding for low-temperature stress tolerant bambara groundnut varieties.
Collapse
|
36
|
Amato A, Cavallini E, Zenoni S, Finezzo L, Begheldo M, Ruperti B, Tornielli GB. A Grapevine TTG2-Like WRKY Transcription Factor Is Involved in Regulating Vacuolar Transport and Flavonoid Biosynthesis. FRONTIERS IN PLANT SCIENCE 2016; 7:1979. [PMID: 28105033 PMCID: PMC5214514 DOI: 10.3389/fpls.2016.01979] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/13/2016] [Indexed: 05/20/2023]
Abstract
A small set of TTG2-like homolog proteins from different species belonging to the WRKY family of transcription factors were shown to share a similar mechanism of action and to control partially conserved biochemical/developmental processes in their native species. In particular, by activating P-ATPases residing on the tonoplast, PH3 from Petunia hybrida promotes vacuolar acidification in petal epidermal cells whereas TTG2 from Arabidopsis thaliana enables the accumulation of proanthocyanidins in the seed coat. In this work we functionally characterized VvWRKY26 identified as the closest grapevine homolog of PhPH3 and AtTTG2. When constitutively expressed in petunia ph3 mutant, VvWRKY26 can fulfill the PH3 function in the regulation of vacuolar pH and restores the wild type pigmentation phenotype. By a global correlation analysis of gene expression and by transient over-expression in Vitis vinifera, we showed transcriptomic relationships of VvWRKY26 with many genes related to vacuolar acidification and transport in grapevine. Moreover, our results indicate an involvement in flavonoid pathway possibly restricted to the control of proanthocyanidin biosynthesis that is consistent with its expression pattern in grape berry tissues. Overall, the results show that, in addition to regulative mechanisms and biological roles shared with TTG2-like orthologs, VvWRKY26 can play roles in fleshy fruit development that have not been previously reported in studies from dry fruit species. This study paves the way toward the comprehension of the regulatory network controlling vacuolar acidification and flavonoid accumulation mechanisms that contribute to the final berry quality traits in grapevine.
Collapse
Affiliation(s)
| | - Erika Cavallini
- Department of Biotechnology, University of VeronaVerona, Italy
| | - Sara Zenoni
- Department of Biotechnology, University of VeronaVerona, Italy
| | - Laura Finezzo
- Department of Biotechnology, University of VeronaVerona, Italy
| | - Maura Begheldo
- Department of Agriculture, Food, Natural Resources, Animals and Environment, University of PadovaPadova, Italy
| | - Benedetto Ruperti
- Department of Agriculture, Food, Natural Resources, Animals and Environment, University of PadovaPadova, Italy
| | | |
Collapse
|
37
|
Moretto M, Sonego P, Pilati S, Malacarne G, Costantini L, Grzeskowiak L, Bagagli G, Grando MS, Moser C, Engelen K. VESPUCCI: Exploring Patterns of Gene Expression in Grapevine. FRONTIERS IN PLANT SCIENCE 2016; 7:633. [PMID: 27242836 PMCID: PMC4862315 DOI: 10.3389/fpls.2016.00633] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/25/2016] [Indexed: 05/20/2023]
Abstract
Large-scale transcriptional studies aim to decipher the dynamic cellular responses to a stimulus, like different environmental conditions. In the era of high-throughput omics biology, the most used technologies for these purposes are microarray and RNA-Seq, whose data are usually required to be deposited in public repositories upon publication. Such repositories have the enormous potential to provide a comprehensive view of how different experimental conditions lead to expression changes, by comparing gene expression across all possible measured conditions. Unfortunately, this task is greatly impaired by differences among experimental platforms that make direct comparisons difficult. In this paper, we present the Vitis Expression Studies Platform Using COLOMBOS Compendia Instances (VESPUCCI), a gene expression compendium for grapevine which was built by adapting an approach originally developed for bacteria, and show how it can be used to investigate complex gene expression patterns. We integrated nearly all publicly available microarray and RNA-Seq expression data: 1608 gene expression samples from 10 different technological platforms. Each sample has been manually annotated using a controlled vocabulary developed ad hoc to ensure both human readability and computational tractability. Expression data in the compendium can be visually explored using several tools provided by the web interface or can be programmatically accessed using the REST interface. VESPUCCI is freely accessible at http://vespucci.colombos.fmach.it.
Collapse
Affiliation(s)
- Marco Moretto
- Department of Computational Biology, Research and Innovation Center, Fondazione Edmund MachTrento, Italy
- Department of Biology, University of PadovaPadova, Italy
| | - Paolo Sonego
- Department of Computational Biology, Research and Innovation Center, Fondazione Edmund MachTrento, Italy
| | - Stefania Pilati
- Department of Genomics and Biology of Fruit Crop, Research and Innovation Center, Fondazione Edmund MachTrento, Italy
| | - Giulia Malacarne
- Department of Genomics and Biology of Fruit Crop, Research and Innovation Center, Fondazione Edmund MachTrento, Italy
| | - Laura Costantini
- Department of Genomics and Biology of Fruit Crop, Research and Innovation Center, Fondazione Edmund MachTrento, Italy
| | - Lukasz Grzeskowiak
- Department of Genomics and Biology of Fruit Crop, Research and Innovation Center, Fondazione Edmund MachTrento, Italy
| | - Giorgia Bagagli
- Department of Genomics and Biology of Fruit Crop, Research and Innovation Center, Fondazione Edmund MachTrento, Italy
| | - Maria Stella Grando
- Department of Genomics and Biology of Fruit Crop, Research and Innovation Center, Fondazione Edmund MachTrento, Italy
| | - Claudio Moser
- Department of Genomics and Biology of Fruit Crop, Research and Innovation Center, Fondazione Edmund MachTrento, Italy
| | - Kristof Engelen
- Department of Computational Biology, Research and Innovation Center, Fondazione Edmund MachTrento, Italy
- *Correspondence: Kristof Engelen,
| |
Collapse
|
38
|
Malacarne G, Costantini L, Coller E, Battilana J, Velasco R, Vrhovsek U, Grando MS, Moser C. Regulation of flavonol content and composition in (Syrah×Pinot Noir) mature grapes: integration of transcriptional profiling and metabolic quantitative trait locus analyses. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4441-53. [PMID: 26071529 PMCID: PMC4507773 DOI: 10.1093/jxb/erv243] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Flavonols are a ubiquitous class of flavonoids that accumulate preferentially in flowers and mature berries. Besides their photo-protective function, they play a fundamental role during winemaking, stabilizing the colour by co-pigmentation with anthocyanins and contributing to organoleptic characteristics. Although the general flavonol pathway has been genetically and biochemically elucidated, the genetic control of flavonol content and composition at harvest is still not clear. To this purpose, the grapes of 170 segregating F1 individuals from a 'Syrah'×'Pinot Noir' population were evaluated at the mature stage for the content of six flavonol aglycons in four seasons. Metabolic data in combination with genetic data enabled the identification of 16 mQTLs (metabolic quantitative trait loci). For the first time, major genetic control by the linkage group 2 (LG 2)/MYBA region on flavonol variation, in particular of tri-hydroxylated flavonols, is demonstrated. Moreover, seven regions specifically associated with the fine control of flavonol biosynthesis are identified. Gene expression profiling of two groups of individuals significantly divergent for their skin flavonol content identified a large set of differentially modulated transcripts. Among these, the transcripts coding for MYB and bZIP transcription factors, methyltranferases, and glucosyltranferases specific for flavonols, proteins, and factors belonging to the UV-B signalling pathway and co-localizing with the QTL regions are proposed as candidate genes for the fine regulation of flavonol content and composition in mature grapes.
Collapse
Affiliation(s)
- Giulia Malacarne
- Genomics and Biology of Fruit Crops Department, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Trento, Italy
| | - Laura Costantini
- Genomics and Biology of Fruit Crops Department, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Trento, Italy
| | - Emanuela Coller
- Computational Biology Department, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Trento, Italy
| | - Juri Battilana
- Genomics and Biology of Fruit Crops Department, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Trento, Italy
| | - Riccardo Velasco
- Genomics and Biology of Fruit Crops Department, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Trento, Italy
| | - Urska Vrhovsek
- Food Quality and Nutrition Department, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Trento, Italy
| | - Maria Stella Grando
- Genomics and Biology of Fruit Crops Department, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Trento, Italy
| | - Claudio Moser
- Genomics and Biology of Fruit Crops Department, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Trento, Italy
| |
Collapse
|
39
|
Costantini L, Malacarne G, Lorenzi S, Troggio M, Mattivi F, Moser C, Grando MS. New candidate genes for the fine regulation of the colour of grapes. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4427-40. [PMID: 26071528 PMCID: PMC4507754 DOI: 10.1093/jxb/erv159] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In the last decade, great progress has been made in clarifying the main determinants of anthocyanin accumulation in grape berry skin. However, the molecular details of the fine variation among cultivars, which ultimately contributes to wine typicity, are still not completely understood. To shed light on this issue, the grapes of 170 F1 progeny from the cross 'Syrah'×'Pinot Noir' were characterized at the mature stage for the content of 15 anthocyanins during four growing seasons. This huge data set was used in combination with a dense genetic map to detect genomic regions controlling the anthocyanin pathway both at key enzymatic points and at particular branches. Genes putatively involved in fine tuning the global regulation of anthocyanin biosynthesis were identified by exploring the gene predictions in the QTL (quantitative trait locus) confidence intervals and their expression profile during berry development in offspring with contrasting anthocyanin accumulation. New information on some aspects which had scarcely been investigated so far, such as anthocyanin transport into the vacuole, or completely neglected, such as acylation, is provided. These genes represent a valuable resource in grapevine molecular-based breeding programmes to improve both fruit and wine quality and to tailor wine sensory properties according to consumer demand.
Collapse
Affiliation(s)
- Laura Costantini
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Trento, Italy
| | - Giulia Malacarne
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Trento, Italy
| | - Silvia Lorenzi
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Trento, Italy
| | - Michela Troggio
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Trento, Italy
| | - Fulvio Mattivi
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Trento, Italy
| | - Claudio Moser
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Trento, Italy
| | - Maria Stella Grando
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Trento, Italy
| |
Collapse
|
40
|
Pulvirenti A, Giugno R, Distefano R, Pigola G, Mongiovi M, Giudice G, Vendramin V, Lombardo A, Cattonaro F, Ferro A. A knowledge base for Vitis vinifera functional analysis. BMC SYSTEMS BIOLOGY 2015; 9 Suppl 3:S5. [PMID: 26050794 PMCID: PMC4464603 DOI: 10.1186/1752-0509-9-s3-s5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background Vitis vinifera (Grapevine) is the most important fruit species in the modern world. Wine and table grapes sales contribute significantly to the economy of major wine producing countries. The most relevant goals in wine production concern quality and safety. In order to significantly improve the achievement of these objectives and to gain biological knowledge about cultivars, a genomic approach is the most reliable strategy. The recent grapevine genome sequencing offers the opportunity to study the potential roles of genes and microRNAs in fruit maturation and other physiological and pathological processes. Although several systems allowing the analysis of plant genomes have been reported, none of them has been designed specifically for the functional analysis of grapevine genomes of cultivars under environmental stress in connection with microRNA data. Description Here we introduce a novel knowledge base, called BIOWINE, designed for the functional analysis of Vitis vinifera genomes of cultivars present in Sicily. The system allows the analysis of RNA-seq experiments of two different cultivars, namely Nero d'Avola and Nerello Mascalese. Samples were taken under different climatic conditions of phenological phases, diseases, and geographic locations. The BIOWINE web interface is equipped with data analysis modules for grapevine genomes. In particular users may analyze the current genome assembly together with the RNA-seq data through a customized version of GBrowse. The web interface allows users to perform gene set enrichment by exploiting third-party databases. Conclusions BIOWINE is a knowledge base implementing a set of bioinformatics tools for the analysis of grapevine genomes. The system aims to increase our understanding of the grapevine varieties and species of Sicilian products focusing on adaptability to different climatic conditions, phenological phases, diseases, and geographic locations.
Collapse
|
41
|
Jia Y, Wong DCJ, Sweetman C, Bruning JB, Ford CM. New insights into the evolutionary history of plant sorbitol dehydrogenase. BMC PLANT BIOLOGY 2015; 15:101. [PMID: 25879735 PMCID: PMC4404067 DOI: 10.1186/s12870-015-0478-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 03/23/2015] [Indexed: 05/08/2023]
Abstract
BACKGROUND Sorbitol dehydrogenase (SDH, EC 1.1.1.14) is the key enzyme involved in sorbitol metabolism in higher plants. SDH genes in some Rosaceae species could be divided into two groups. L-idonate-5-dehydrogenase (LIDH, EC 1.1.1.264) is involved in tartaric acid (TA) synthesis in Vitis vinifera and is highly homologous to plant SDHs. Despite efforts to understand the biological functions of plant SDH, the evolutionary history of plant SDH genes and their phylogenetic relationship with the V. vinifera LIDH gene have not been characterized. RESULTS A total of 92 SDH genes were identified from 42 angiosperm species. SDH genes have been highly duplicated within the Rosaceae family while monocot, Brassicaceae and most Asterid species exhibit singleton SDH genes. Core Eudicot SDHs have diverged into two phylogenetic lineages, now classified as SDH Class I and SDH Class II. V. vinifera LIDH was identified as a Class II SDH. Tandem duplication played a dominant role in the expansion of plant SDH family and Class II SDH genes were positioned in tandem with Class I SDH genes in several plant genomes. Protein modelling analyses of V. vinifera SDHs revealed 19 putative active site residues, three of which exhibited amino acid substitutions between Class I and Class II SDHs and were influenced by positive natural selection in the SDH Class II lineage. Gene expression analyses also demonstrated a clear transcriptional divergence between Class I and Class II SDH genes in V. vinifera and Citrus sinensis (orange). CONCLUSIONS Phylogenetic, natural selection and synteny analyses provided strong support for the emergence of SDH Class II by positive natural selection after tandem duplication in the common ancestor of core Eudicot plants. The substitutions of three putative active site residues might be responsible for the unique enzyme activity of V. vinifera LIDH, which belongs to SDH Class II and represents a novel function of SDH in V. vinifera that may be true also of other Class II SDHs. Gene expression analyses also supported the divergence of SDH Class II at the expression level. This study will facilitate future research into understanding the biological functions of plant SDHs.
Collapse
Affiliation(s)
- Yong Jia
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, 5005, Australia.
| | - Darren C J Wong
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, 5005, Australia.
- Present address: Wine Research Center, Faculty of Land and Food Systems, University of British Columbia, Vancouver, V6T 1Z4, BC, Canada.
| | - Crystal Sweetman
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, 5005, Australia.
- Present address: School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, 5001, Australia.
| | - John B Bruning
- School of Biological Sciences, University of Adelaide, Adelaide, 5005, Australia.
| | - Christopher M Ford
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, 5005, Australia.
| |
Collapse
|
42
|
Lee T, Kim H, Lee I. Network-assisted crop systems genetics: network inference and integrative analysis. CURRENT OPINION IN PLANT BIOLOGY 2015; 24:61-70. [PMID: 25698380 DOI: 10.1016/j.pbi.2015.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 01/15/2015] [Accepted: 02/02/2015] [Indexed: 05/24/2023]
Abstract
Although next-generation sequencing (NGS) technology has enabled the decoding of many crop species genomes, most of the underlying genetic components for economically important crop traits remain to be determined. Network approaches have proven useful for the study of the reference plant, Arabidopsis thaliana, and the success of network-based crop genetics will also require the availability of a genome-scale functional networks for crop species. In this review, we discuss how to construct functional networks and elucidate the holistic view of a crop system. The crop gene network then can be used for gene prioritization and the analysis of resequencing-based genome-wide association study (GWAS) data, the amount of which will rapidly grow in the field of crop science in the coming years.
Collapse
Affiliation(s)
- Tak Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Hyojin Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Insuk Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
43
|
A co-expression gene network associated with developmental regulation of apple fruit acidity. Mol Genet Genomics 2015; 290:1247-63. [PMID: 25576355 DOI: 10.1007/s00438-014-0986-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 12/30/2014] [Indexed: 12/27/2022]
Abstract
Apple fruit acidity, which affects the fruit's overall taste and flavor to a large extent, is primarily determined by the concentration of malic acid. Previous studies demonstrated that the major QTL malic acid (Ma) on chromosome 16 is largely responsible for fruit acidity variations in apple. Recent advances suggested that a natural mutation that gives rise to a premature stop codon in one of the two aluminum-activated malate transporter (ALMT)-like genes (called Ma1) is the genetic causal element underlying Ma. However, the natural mutation does not explain the developmental changes of fruit malate levels in a given genotype. Using RNA-seq data from the fruit of 'Golden Delicious' taken at 14 developmental stages from 1 week after full-bloom (WAF01) to harvest (WAF20), we characterized their transcriptomes in groups of high (12.2 ± 1.6 mg/g fw, WAF03-WAF08), mid (7.4 ± 0.5 mg/g fw, WAF01-WAF02 and WAF10-WAF14) and low (5.4 ± 0.4 mg/g fw, WAF16-WAF20) malate concentrations. Detailed analyses showed that a set of 3,066 genes (including Ma1) were expressed not only differentially (P FDR < 0.05) between the high and low malate groups (or between the early and late developmental stages) but also in significant (P < 0.05) correlation with malate concentrations. The 3,066 genes fell in 648 MapMan (sub-) bins or functional classes, and 19 of them were significantly (P FDR < 0.05) co-enriched or co-suppressed in a malate dependent manner. Network inferring using the 363 genes encompassed in the 19 (sub-) bins, identified a major co-expression network of 239 genes. Since the 239 genes were also differentially expressed between the early (WAF03-WAF08) and late (WAF16-WAF20) developmental stages, the major network was considered to be associated with developmental regulation of apple fruit acidity in 'Golden Delicious'.
Collapse
|
44
|
Smita S, Katiyar A, Chinnusamy V, Pandey DM, Bansal KC. Transcriptional Regulatory Network Analysis of MYB Transcription Factor Family Genes in Rice. FRONTIERS IN PLANT SCIENCE 2015; 6:1157. [PMID: 26734052 PMCID: PMC4689866 DOI: 10.3389/fpls.2015.01157] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/07/2015] [Indexed: 05/18/2023]
Abstract
MYB transcription factor (TF) is one of the largest TF families and regulates defense responses to various stresses, hormone signaling as well as many metabolic and developmental processes in plants. Understanding these regulatory hierarchies of gene expression networks in response to developmental and environmental cues is a major challenge due to the complex interactions between the genetic elements. Correlation analyses are useful to unravel co-regulated gene pairs governing biological process as well as identification of new candidate hub genes in response to these complex processes. High throughput expression profiling data are highly useful for construction of co-expression networks. In the present study, we utilized transcriptome data for comprehensive regulatory network studies of MYB TFs by "top-down" and "guide-gene" approaches. More than 50% of OsMYBs were strongly correlated under 50 experimental conditions with 51 hub genes via "top-down" approach. Further, clusters were identified using Markov Clustering (MCL). To maximize the clustering performance, parameter evaluation of the MCL inflation score (I) was performed in terms of enriched GO categories by measuring F-score. Comparison of co-expressed cluster and clads analyzed from phylogenetic analysis signifies their evolutionarily conserved co-regulatory role. We utilized compendium of known interaction and biological role with Gene Ontology enrichment analysis to hypothesize function of coexpressed OsMYBs. In the other part, the transcriptional regulatory network analysis by "guide-gene" approach revealed 40 putative targets of 26 OsMYB TF hubs with high correlation value utilizing 815 microarray data. The putative targets with MYB-binding cis-elements enrichment in their promoter region, functional co-occurrence as well as nuclear localization supports our finding. Specially, enrichment of MYB binding regions involved in drought-inducibility implying their regulatory role in drought response in rice. Thus, the co-regulatory network analysis facilitated the identification of complex OsMYB regulatory networks, and candidate target regulon genes of selected guide MYB genes. The results contribute to the candidate gene screening, and experimentally testable hypotheses for potential regulatory MYB TFs, and their targets under stress conditions.
Collapse
Affiliation(s)
- Shuchi Smita
- ICAR-National Bureau of Plant Genetic Resources, Indian Agricultural Research InstituteNew Delhi, India
- Department of Biotechnology, Birla Institute of TechnologyMesra, Ranchi, India
| | - Amit Katiyar
- ICAR-National Bureau of Plant Genetic Resources, Indian Agricultural Research InstituteNew Delhi, India
- Department of Biotechnology, Birla Institute of TechnologyMesra, Ranchi, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research InstituteNew Delhi, India
| | - Dev M. Pandey
- Department of Biotechnology, Birla Institute of TechnologyMesra, Ranchi, India
| | - Kailash C. Bansal
- ICAR-National Bureau of Plant Genetic Resources, Indian Agricultural Research InstituteNew Delhi, India
- *Correspondence: Kailash C. Bansal
| |
Collapse
|
45
|
Sweetman C, Sadras VO, Hancock RD, Soole KL, Ford CM. Metabolic effects of elevated temperature on organic acid degradation in ripening Vitis vinifera fruit. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5975-88. [PMID: 25180109 PMCID: PMC4203137 DOI: 10.1093/jxb/eru343] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Berries of the cultivated grapevine Vitis vinifera are notably responsive to temperature, which can influence fruit quality and hence the future compatibility of varieties with their current growing regions. Organic acids represent a key component of fruit organoleptic quality and their content is significantly influenced by temperature. The objectives of this study were to (i) manipulate thermal regimes to realistically capture warming-driven reduction of malate content in Shiraz berries, and (ii) investigate the mechanisms behind temperature-sensitive malate loss and the potential downstream effects on berry metabolism. In the field we compared untreated controls at ambient temperature with longer and milder warming (2-4 °C differential for three weeks; Experiment 1) or shorter and more severe warming (4-6 °C differential for 11 days; Experiment 2). We complemented field trials with control (25/15 °C) and elevated (35/20 °C) day/night temperature controlled-environment trials using potted vines (Experiment 3). Elevating maximum temperatures (4-10 °C above controls) during pre-véraison stages led to higher malate content, particularly with warmer nights. Heating at véraison and ripening stages reduced malate content, consistent with effects typically seen in warm vintages. However, when minimum temperatures were also raised by 4-6 °C, malate content was not reduced, suggesting that the regulation of malate metabolism differs during the day and night. Increased NAD-dependent malic enzyme activity and decreased phosphoenolpyruvate carboxylase and pyruvate kinase activities, as well as the accumulation of various amino acids and γ-aminobutyric acid, suggest enhanced anaplerotic capacity of the TCA cycle and a need for coping with decreased cytosolic pH in heated fruit.
Collapse
Affiliation(s)
- C Sweetman
- School of Agriculture, Food & Wine, The University of Adelaide, Australia
| | - V O Sadras
- School of Agriculture, Food & Wine, The University of Adelaide, Australia South Australian Research and Development Institute, Australia
| | - R D Hancock
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - K L Soole
- School of Biological Sciences, Flinders University, South Australia
| | - C M Ford
- School of Agriculture, Food & Wine, The University of Adelaide, Australia
| |
Collapse
|
46
|
Wang P, Qi H, Song S, Li S, Huang N, Han W, Ma D. ImmuCo: a database of gene co-expression in immune cells. Nucleic Acids Res 2014; 43:D1133-9. [PMID: 25326331 PMCID: PMC4384033 DOI: 10.1093/nar/gku980] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Current gene co-expression databases and correlation networks do not support cell-specific analysis. Gene co-expression and expression correlation are subtly different phenomena, although both are likely to be functionally significant. Here, we report a new database, ImmuCo (http://immuco.bjmu.edu.cn), which is a cell-specific database that contains information about gene co-expression in immune cells, identifying co-expression and correlation between any two genes. The strength of co-expression of queried genes is indicated by signal values and detection calls, whereas expression correlation and strength are reflected by Pearson correlation coefficients. A scatter plot of the signal values is provided to directly illustrate the extent of co-expression and correlation. In addition, the database allows the analysis of cell-specific gene expression profile across multiple experimental conditions and can generate a list of genes that are highly correlated with the queried genes. Currently, the database covers 18 human cell groups and 10 mouse cell groups, including 20 283 human genes and 20 963 mouse genes. More than 8.6 × 108 and 7.4 × 108 probe set combinations are provided for querying each human and mouse cell group, respectively. Sample applications support the distinctive advantages of the database.
Collapse
Affiliation(s)
- Pingzhang Wang
- Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing 100191, China Peking University Center for Human Disease Genomics, No. 38 Xueyuan Road, Beijing 100191, China
| | - Huiying Qi
- Department of Natural Science in Medicine, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing 100191, China
| | - Shibin Song
- Information and Communication Center, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing 100191, China
| | - Shuang Li
- Information and Communication Center, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing 100191, China
| | - Ningyu Huang
- Information and Communication Center, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing 100191, China
| | - Wenling Han
- Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing 100191, China Peking University Center for Human Disease Genomics, No. 38 Xueyuan Road, Beijing 100191, China
| | - Dalong Ma
- Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing 100191, China Peking University Center for Human Disease Genomics, No. 38 Xueyuan Road, Beijing 100191, China
| |
Collapse
|
47
|
Wong DCJ, Sweetman C, Ford CM. Annotation of gene function in citrus using gene expression information and co-expression networks. BMC PLANT BIOLOGY 2014; 14:186. [PMID: 25023870 PMCID: PMC4108274 DOI: 10.1186/1471-2229-14-186] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/30/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND The genus Citrus encompasses major cultivated plants such as sweet orange, mandarin, lemon and grapefruit, among the world's most economically important fruit crops. With increasing volumes of transcriptomics data available for these species, Gene Co-expression Network (GCN) analysis is a viable option for predicting gene function at a genome-wide scale. GCN analysis is based on a "guilt-by-association" principle whereby genes encoding proteins involved in similar and/or related biological processes may exhibit similar expression patterns across diverse sets of experimental conditions. While bioinformatics resources such as GCN analysis are widely available for efficient gene function prediction in model plant species including Arabidopsis, soybean and rice, in citrus these tools are not yet developed. RESULTS We have constructed a comprehensive GCN for citrus inferred from 297 publicly available Affymetrix Genechip Citrus Genome microarray datasets, providing gene co-expression relationships at a genome-wide scale (33,000 transcripts). The comprehensive citrus GCN consists of a global GCN (condition-independent) and four condition-dependent GCNs that survey the sweet orange species only, all citrus fruit tissues, all citrus leaf tissues, or stress-exposed plants. All of these GCNs are clustered using genome-wide, gene-centric (guide) and graph clustering algorithms for flexibility of gene function prediction. For each putative cluster, gene ontology (GO) enrichment and gene expression specificity analyses were performed to enhance gene function, expression and regulation pattern prediction. The guide-gene approach was used to infer novel roles of genes involved in disease susceptibility and vitamin C metabolism, and graph-clustering approaches were used to investigate isoprenoid/phenylpropanoid metabolism in citrus peel, and citric acid catabolism via the GABA shunt in citrus fruit. CONCLUSIONS Integration of citrus gene co-expression networks, functional enrichment analysis and gene expression information provide opportunities to infer gene function in citrus. We present a publicly accessible tool, Network Inference for Citrus Co-Expression (NICCE, http://citrus.adelaide.edu.au/nicce/home.aspx), for the gene co-expression analysis in citrus.
Collapse
Affiliation(s)
- Darren CJ Wong
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide 5064, South Australia, Australia
| | - Crystal Sweetman
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide 5064, South Australia, Australia
| | - Christopher M Ford
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide 5064, South Australia, Australia
| |
Collapse
|