1
|
Li C, Zhao J, Liu Z, Yang Y, Lai C, Ma J, Aierxi A. Comparative Transcriptomic Analysis of Gossypium hirsutum Fiber Development in Mutant Materials ( xin w 139) Provides New Insights into Cotton Fiber Development. PLANTS (BASEL, SWITZERLAND) 2024; 13:1127. [PMID: 38674536 PMCID: PMC11054599 DOI: 10.3390/plants13081127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/02/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024]
Abstract
Cotton is the most widely planted fiber crop in the world, and improving cotton fiber quality has long been a research hotspot. The development of cotton fibers is a complex process that includes four consecutive and overlapping stages, and although many studies on cotton fiber development have been reported, most of the studies have been based on cultivars that are promoted in production or based on lines that are used in breeding. Here, we report a phenotypic evaluation of Gossypium hirsutum based on immature fiber mutant (xin w 139) and wild-type (Xin W 139) lines and a comparative transcriptomic study at seven time points during fiber development. The results of the two-year study showed that the fiber length, fiber strength, single-boll weight and lint percentage of xin w 139 were significantly lower than those of Xin W 139, and there were no significant differences in the other traits. Principal component analysis (PCA) and cluster analysis of the RNA-sequencing (RNA-seq) data revealed that these seven time points could be clearly divided into three different groups corresponding to the initiation, elongation and secondary cell wall (SCW) synthesis stages of fiber development, and the differences in fiber development between the two lines were mainly due to developmental differences after twenty days post anthesis (DPA). Differential expression analysis revealed a total of 5131 unique differentially expressed genes (DEGs), including 290 transcription factors (TFs), between the 2 lines. These DEGs were divided into five clusters. Each cluster functional category was annotated based on the KEGG database, and different clusters could describe different stages of fiber development. In addition, we constructed a gene regulatory network by weighted correlation network analysis (WGCNA) and identified 15 key genes that determined the differences in fiber development between the 2 lines. We also screened seven candidate genes related to cotton fiber development through comparative sequence analysis and qRT-PCR; these genes included three TFs (GH_A08G1821 (bHLH), GH_D05G3074 (Dof), and GH_D13G0161 (C3H)). These results provide a theoretical basis for obtaining an in-depth understanding of the molecular mechanism of cotton fiber development and provide new genetic resources for cotton fiber research.
Collapse
Affiliation(s)
- Chunping Li
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (C.L.); (Z.L.); (Y.Y.); (C.L.)
| | - Jieyin Zhao
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China;
| | - Zhongshan Liu
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (C.L.); (Z.L.); (Y.Y.); (C.L.)
| | - Yanlong Yang
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (C.L.); (Z.L.); (Y.Y.); (C.L.)
| | - Chengxia Lai
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (C.L.); (Z.L.); (Y.Y.); (C.L.)
| | - Jun Ma
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (C.L.); (Z.L.); (Y.Y.); (C.L.)
| | - Alifu Aierxi
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (C.L.); (Z.L.); (Y.Y.); (C.L.)
| |
Collapse
|
2
|
Liu Y, Kim HJ. Attenuated Total Reflection Fourier Transform Infrared Spectroscopy with Soft Independent Modeling of Class Analogy-Principal Component Analysis for Classifying Cotton Fiber Maturity Phenotypes of Cotton Population Composed of Various Genotypes. APPLIED SPECTROSCOPY 2024; 78:99-110. [PMID: 37933119 DOI: 10.1177/00037028231211942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Maturity is a major fiber trait that affects the processing and performance of cotton fiber. Rapid and accurate identification of fiber maturity phenotypes and genotypes is of importance to breeders. Previous studies showed that either conventional fiber measurements or attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) analysis discriminated the immature fiber (im) phenotype from the wild type (WT) mature fiber phenotype in a segregating F2 population from a cross between two upland cotton lines differing in fiber maturity. However, both conventional fiber property measurement methods and FT-IR analyses with current algorithms could not detect the subtle differences among the WT fibers composed of two different genotypes, WT homozygosity (WT-homo) and WT heterozygosity (WT-hetero). This research explored the FT-IR method, in combination with soft independent modeling of class analogy of principal component analysis (SIMCA-PCA), for the discrimination of WT fiber phenotypes consisting of two different genotypes (WT-homo and WT-hetero). The new approach enabled the detection of IR spectral intensity differences between WT-homo and WT-hetero fibers. Successful classification originated from a distinctive spectral difference in the low-wavenumber region (<700 cm-1) between WT-hetero fibers and WT-homo fibers. This observation emphasized that ATR FT-IR with a SIMCA-PCA approach would be a sensitive tool for classifying the WT fibers demonstrating minor phenotypic differences. The improved sensitivity of the infrared method may provide a way of dissecting genotype-phenotype interactions of cotton fibers rapidly and efficiently.
Collapse
Affiliation(s)
- Yongliang Liu
- USDA, ARS, Southern Regional Research Center, Cotton Structure and Quality Research Unit, New Orleans, Louisiana, USA
| | - Hee-Jin Kim
- USDA, ARS, Southern Regional Research Center, Cotton Fiber Bioscience Research Unit, New Orleans, Louisiana, USA
| |
Collapse
|
3
|
Iqbal A, Aslam S, Ahmed M, Khan F, Ali Q, Han S. Role of Actin Dynamics and GhACTIN1 Gene in Cotton Fiber Development: A Prototypical Cell for Study. Genes (Basel) 2023; 14:1642. [PMID: 37628693 PMCID: PMC10454433 DOI: 10.3390/genes14081642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Cotton crop is considered valuable for its fiber and seed oil. Cotton fiber is a single-celled outgrowth from the ovule epidermis, and it is a very dynamic cell for study. It has four distinct but overlapping developmental stages: initiation, elongation, secondary cell wall synthesis, and maturation. Among the various qualitative characteristics of cotton fiber, the important ones are the cotton fiber staple length, tensile strength, micronaire values, and fiber maturity. Actin dynamics are known to play an important role in fiber elongation and maturation. The current review gives an insight into the cotton fiber developmental stages, the qualitative traits associated with cotton fiber, and the set of genes involved in regulating these developmental stages and fiber traits. This review also highlights some prospects for how biotechnological approaches can improve cotton fiber quality.
Collapse
Affiliation(s)
- Adnan Iqbal
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui 553004, China;
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzikow, 05-870 Blonie, Poland
| | - Sibgha Aslam
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzikow, 05-870 Blonie, Poland
| | - Mukhtar Ahmed
- Government Boys College Sokasan, Higher Education Department, Azad Jammu and Kashmir, Bhimber 10040, Pakistan
| | - Fahad Khan
- Department of Plant Protection, Faculty of Agricultural Sciences, Ghazi University, Dera Ghazi Khan 33001, Pakistan
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Shiming Han
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui 553004, China;
| |
Collapse
|
4
|
Bao Y, Wei Y, Liu Y, Gao J, Cheng S, Liu G, You Q, Liu P, Lu Q, Li P, Zhang S, Hu N, Han Y, Liu S, Wu Y, Yang Q, Li Z, Ao G, Liu F, Wang K, Jiang J, Zhang T, Zhang W, Peng R. Genome-wide chromatin accessibility landscape and dynamics of transcription factor networks during ovule and fiber development in cotton. BMC Biol 2023; 21:165. [PMID: 37525156 PMCID: PMC10391996 DOI: 10.1186/s12915-023-01665-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 07/18/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND The development of cotton fiber is regulated by the orchestrated binding of regulatory proteins to cis-regulatory elements associated with developmental genes. The cis-trans regulatory dynamics occurred throughout the course of cotton fiber development are elusive. Here we generated genome-wide high-resolution DNase I hypersensitive sites (DHSs) maps to understand the regulatory mechanisms of cotton ovule and fiber development. RESULTS We generated DNase I hypersensitive site (DHS) profiles from cotton ovules at 0 and 3 days post anthesis (DPA) and fibers at 8, 12, 15, and 18 DPA. We obtained a total of 1185 million reads and identified a total of 199,351 DHSs through ~ 30% unique mapping reads. It should be noted that more than half of DNase-seq reads mapped multiple genome locations and were not analyzed in order to achieve a high specificity of peak profile and to avoid bias from repetitive genomic regions. Distinct chromatin accessibilities were observed in the ovules (0 and 3 DPA) compared to the fiber elongation stages (8, 12, 15, and 18 DPA). Besides, the chromatin accessibility during ovules was particularly elevated in genomic regions enriched with transposable elements (TEs) and genes in TE-enriched regions were involved in ovule cell division. We analyzed cis-regulatory modules and revealed the influence of hormones on fiber development from the regulatory divergence of transcription factor (TF) motifs. Finally, we constructed a reliable regulatory network of TFs related to ovule and fiber development based on chromatin accessibility and gene co-expression network. From this network, we discovered a novel TF, WRKY46, which may shape fiber development by regulating the lignin content. CONCLUSIONS Our results not only reveal the contribution of TEs in fiber development, but also predict and validate the TFs related to fiber development, which will benefit the research of cotton fiber molecular breeding.
Collapse
Affiliation(s)
- Yu Bao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Anyang Institute of Technology, Anyang, Henan, 455000, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Yangyang Wei
- Anyang Institute of Technology, Anyang, Henan, 455000, China
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, China
| | - Yuling Liu
- Anyang Institute of Technology, Anyang, Henan, 455000, China
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, China
| | - Jingjing Gao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored By Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, Jiangsu, China
| | - Shuang Cheng
- Anyang Institute of Technology, Anyang, Henan, 455000, China
- Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Guanqing Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Qi You
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Peng Liu
- Institutes of Agricultural Science and Technology Development, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, 225009, China
| | - Quanwei Lu
- Anyang Institute of Technology, Anyang, Henan, 455000, China
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, China
| | - Pengtao Li
- Anyang Institute of Technology, Anyang, Henan, 455000, China
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, China
| | - Shulin Zhang
- Anyang Institute of Technology, Anyang, Henan, 455000, China
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, China
| | - Nan Hu
- Anyang Institute of Technology, Anyang, Henan, 455000, China
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, China
| | - Yangshuo Han
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Shuo Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Yuechao Wu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Qingqing Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Zhaoguo Li
- Anyang Institute of Technology, Anyang, Henan, 455000, China
- Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Guowei Ao
- Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Fang Liu
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, China
| | - Kunbo Wang
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, China
| | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
- Michigan State University AgBioResearch, East Lansing, MI, USA
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| | - Wenli Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored By Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, Jiangsu, China.
| | - Renhai Peng
- Anyang Institute of Technology, Anyang, Henan, 455000, China.
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, China.
- Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
5
|
Kim HJ, Kato N, Ndathe R, Thyssen GN, Jones DC, Ratnayaka HH. Evidence for thermosensitivity of the cotton (Gossypium hirsutum L.) immature fiber (im) mutant via hypersensitive stomatal activity. PLoS One 2021; 16:e0259562. [PMID: 34898615 PMCID: PMC8668099 DOI: 10.1371/journal.pone.0259562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 10/22/2021] [Indexed: 11/18/2022] Open
Abstract
Thickness of cotton fiber, referred to as fiber maturity, is a key determinant of fiber quality, lint yield, and textile performance. The cotton immature fiber (im) mutant has been used to study fiber maturity since its fiber is thinner than the wild type near isogeneic line (NIL), Texas Marker-1 (TM-1). The im phenotype is caused by a single recessive mutation of a pentatricopeptide repeat (PPR) gene that reduces the activity of mitochondrial complex I and up-regulates stress responsive genes. However, the mechanisms altering the stress responses in im mutant are not well understood. Thus, we characterized growth and gas exchange in im and TM-1 under no stress and also investigated their stress responses by comparing gas exchange and transcriptomic profiles under high temperature. Phenotypic differences were detected between the NILs in non-fiber tissues although less pronounced than the variation in fibers. At near optimum temperature (28±3°C), im maintained the same photosynthetic performance as TM-1 by means of greater stomatal conductance. In contrast, under high temperature stress (>34°C), im leaves reduced photosynthesis by decreasing the stomatal conductance disproportionately more than TM-1. Transcriptomic analyses showed that the genes involved in heat stress responses were differentially expressed between the NIL leaves. These results indicate that the im mutant previously reported to have low activity of mitochondrial complex I displays increased thermosensitivity by impacting stomatal conductance. They also support a notion that mitochondrial complex I activity is required for maintenance of optimal photosynthetic performance and acclimation of plants to high temperature stress. These findings may be useful in the future efforts to understand how physiological mechanisms play a role in determining cotton fiber maturity and may influence stress responses in other crops.
Collapse
Affiliation(s)
- Hee Jin Kim
- USDA-ARS, Southern Regional Research Center, Cotton Fiber Bioscience Research Unit, New Orleans, LA, United States of America
- * E-mail: (HJK); (HHR)
| | - Naohiro Kato
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States of America
| | - Ruth Ndathe
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States of America
| | - Gregory N. Thyssen
- USDA-ARS, Southern Regional Research Center, Cotton Fiber Bioscience Research Unit, New Orleans, LA, United States of America
| | - Don C. Jones
- Cotton Incorporated, Cary, NC, United States of America
| | - Harish H. Ratnayaka
- Department of Biology, Xavier University of Louisiana, New Orleans, LA, United States of America
- * E-mail: (HJK); (HHR)
| |
Collapse
|
6
|
Zhang D, Chen C, Wang H, Niu E, Zhao P, Fang S, Zhu G, Shang X, Guo W. Cotton Fiber Development Requires the Pentatricopeptide Repeat Protein GhIm for Splicing of Mitochondrial nad7 mRNA. Genetics 2021; 217:1-17. [PMID: 33683356 DOI: 10.1093/genetics/iyaa017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/18/2020] [Indexed: 12/27/2022] Open
Abstract
Pentatricopeptide repeat (PPR) proteins encoded by nuclear genomes can bind to organellar RNA and are involved in the regulation of RNA metabolism. However, the functions of many PPR proteins remain unknown in plants, especially in polyploidy crops. Here, through a map-based cloning strategy and Clustered regularly interspaced short palindromic repeats/cas9 (CRISPR/cas9) gene editing technology, we cloned and verified an allotetraploid cotton immature fiber (im) mutant gene (GhImA) encoding a PPR protein in chromosome A03, that is associated with the non-fluffy fiber phenotype. GhImA protein targeted mitochondrion and could bind to mitochondrial nad7 mRNA, which encodes the NAD7 subunit of Complex I. GhImA and its homolog GhImD had the same function and were dosage-dependent. GhImA in the im mutant was a null allele with a 22 bp deletion in the coding region. Null GhImA resulted in the insufficient GhIm dosage, affected mitochondrial nad7 pre-mRNA splicing, produced less mature nad7 transcripts, and eventually reduced Complex I activities, up-regulated alternative oxidase metabolism, caused reactive oxygen species (ROS) burst and activation of stress or hormone response processes. This study indicates that the GhIm protein participates in mitochondrial nad7 splicing, affects respiratory metabolism, and further regulates cotton fiber development via ATP supply and ROS balance.
Collapse
Affiliation(s)
- Dayong Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Chuan Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Haitang Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Erli Niu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Peiyue Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuai Fang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Guozhong Zhu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoguang Shang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Pei W, Song J, Wang W, Ma J, Jia B, Wu L, Wu M, Chen Q, Qin Q, Zhu H, Hu C, Lei H, Gao X, Hu H, Zhang Y, Zhang J, Yu J, Qu Y. Quantitative Trait Locus Analysis and Identification of Candidate Genes for Micronaire in an Interspecific Backcross Inbred Line Population of Gossypium hirsutum × Gossypium barbadense. FRONTIERS IN PLANT SCIENCE 2021; 12:763016. [PMID: 34777444 PMCID: PMC8579039 DOI: 10.3389/fpls.2021.763016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/22/2021] [Indexed: 05/08/2023]
Abstract
Cotton is the most important fiber crop and provides indispensable natural fibers for the textile industry. Micronaire (MIC) is determined by fiber fineness and maturity and is an important component of fiber quality. Gossypium barbadense L. possesses long, strong and fine fibers, while upland cotton (Gossypium hirsutum L.) is high yielding with high MIC and widely cultivated worldwide. To identify quantitative trait loci (QTLs) and candidate genes for MIC in G. barbadense, a population of 250 backcross inbred lines (BILs), developed from an interspecific cross of upland cotton CRI36 × Egyptian cotton (G. barbadense) Hai7124, was evaluated in 9 replicated field tests. Based on a high-density genetic map with 7709 genotyping-by-sequencing (GBS)-based single-nucleotide polymorphism (SNP) markers, 25 MIC QTLs were identified, including 12 previously described QTLs and 13 new QTLs. Importantly, two stable MIC QTLs (qMIC-D03-2 on D03 and qMIC-D08-1 on D08) were identified. Of a total of 338 genes identified within the two QTL regions, eight candidate genes with differential expression between TM-1 and Hai7124 were identified. Our research provides valuable information for improving MIC in cotton breeding.
Collapse
Affiliation(s)
- Wenfeng Pei
- Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Jikun Song
- Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wenkui Wang
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jianjiang Ma
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Bing Jia
- Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Luyao Wu
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Man Wu
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Quanjia Chen
- Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| | - Qin Qin
- Western Agriculture Research Centre, Chinese Academy of Agricultural Sciences, Changji, China
| | - Haiyong Zhu
- Western Agriculture Research Centre, Chinese Academy of Agricultural Sciences, Changji, China
| | - Chengcheng Hu
- Western Agriculture Research Centre, Chinese Academy of Agricultural Sciences, Changji, China
| | - Hai Lei
- Seed Management Station, Department of Agriculture and Rural Affairs of Xinjiang, Urumqi, China
| | - Xuefei Gao
- Join Hope Seed Co., Ltd., Changji, China
| | - Haijun Hu
- Join Hope Seed Co., Ltd., Changji, China
| | - Yu Zhang
- Join Hope Seed Co., Ltd., Changji, China
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States
- Jinfa Zhang,
| | - Jiwen Yu
- Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- *Correspondence: Jiwen Yu,
| | - Yanying Qu
- Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China
- Yanying Qu,
| |
Collapse
|
8
|
Liu Y, Kim HJ. Separation of underdeveloped from developed cotton fibers by attenuated total reflection Fourier transform infrared spectroscopy. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Zhang L, Lu G, Huang X, Guo H, Su X, Han L, Zhang Y, Qi Z, Xiao Y, Cheng H. Overexpression of the caryophyllene synthase gene GhTPS1 in cotton negatively affects multiple pests while attracting parasitoids. PEST MANAGEMENT SCIENCE 2020; 76:1722-1730. [PMID: 31762173 DOI: 10.1002/ps.5695] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 11/12/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUD Volatile terpenes can act as ecological signals to affect insect behavior. It has been proposed that the manipulation of terpenes in plants can help to control herbivore pests. In order to investigate the potential pest management function of (E)-β-caryophyllene in cotton plants, the (E)-β-caryophyllene synthase gene (GhTPS1) was inserted into Gossypium hirsutum variety R15 to generate overexpression lines. RESULTS Four GhTPS1-transgenic lines were generated, and GhTPS1 expression in transgenic L18 and L46 lines was 3-5-fold higher than in R15 plants. The transgenic L18 and L46 lines also emitted significantly more (E)-β-caryophyllene than R15. In laboratory bioassays, L18 and L46 plants reduced pests Apolygus lucorum, Aphis gossypii and Helicoverpa armigera, and attracted parasitoids Peristenus spretus and Aphidius gifuensis, but not Microplitis mediator. In open-field trials, L18 and L46 plants reduced A. lucorum, Adelphocoris suturalis and H. armigera, but had no significant effects on predators. CONCLUSION Our findings suggest that L18 and L46 plants reduce several major hemipteran and lepidopteran cotton pests, whereas, two parasitoids P. spretus and A. gifuensis, were attracted by L18 and L46 plants. This study shows that overexpressing GhTPS1 in cotton may help to improve pest management in cotton fields. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lihua Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Guoqing Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinzheng Huang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Huiming Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofeng Su
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lida Han
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhi Qi
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yutao Xiao
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hongmei Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
10
|
Ahmed M, Iqbal A, Latif A, Din SU, Sarwar MB, Wang X, Rao AQ, Husnain T, Ali Shahid A. Overexpression of a Sucrose Synthase Gene Indirectly Improves Cotton Fiber Quality Through Sucrose Cleavage. FRONTIERS IN PLANT SCIENCE 2020; 11:476251. [PMID: 33281834 PMCID: PMC7688987 DOI: 10.3389/fpls.2020.476251] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/05/2020] [Indexed: 05/18/2023]
Abstract
The study aims to improve fiber traits of local cotton cultivar through genetic transformation of sucrose synthase (SuS) gene in cotton. Sucrose synthase (SuS) is an important factor that is involved in the conversion of sucrose to fructose and UDP-glucose, which are essential for the synthesis of cell wall cellulose. In the current study, we expressed a synthetic SuS gene in cotton plants under the control of a CaMV35S promoter. Amplification of an 813-bp fragment using gene-specific primers confirmed the successful introduction of SuS gene into the genome of cotton variety CEMB-00. High SuS mRNA expression was observed in two transgenic cotton plants, MA0023 and MA0034, when compared to the expression in two other transgenic cotton plants, MA0035 and MA0038. Experiments showed that SuS mRNA expression was positively correlated with SuS activity at the vegetative (54%) and reproductive stages (40%). Furthermore, location of transgene was found to be at chromosome no. 9 in the form of single insertion, while no signal was evident in non-transgenic control cotton plant when evaluated through fluorescent in situ hybridization and karyotyping analysis. Fiber analyses of the transgenic cotton plants showed increases of 11.7% fiber length, 18.65% fiber strength, and up to 5% cellulose contents. An improvement in the micronaire value of 4.21 was also observed in the MA0038 transgenic cotton line. Scanning electron microscopy (SEM) revealed that the fibers of the SuS transgenic cotton plants were highly spiral with a greater number of twists per unit length than the fibers of the non-transgenic control plants. These results determined that SuS gene expression influenced cotton fiber structure and quality, suggesting that SuS gene has great potential for cotton fiber quality improvement.
Collapse
Affiliation(s)
- Mukhtar Ahmed
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Department of Higher Education, Government Boys College Sokasan, Azad Jammu and Kashmir, Pakistan
- *Correspondence: Mukhtar Ahmed,
| | - Adnan Iqbal
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Ayesha Latif
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Salah ud Din
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
- Institute of Molecular Biology and Biotechnology (IMBB), Center for Research in Molecular Medicine (CRM), University of Lahore, Lahore, Pakistan
| | - Muhammad Bilal Sarwar
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Xuede Wang
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Abdul Qayyum Rao
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
- Abdul Qayyum Rao,
| | - Tayyab Husnain
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Ahmad Ali Shahid
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| |
Collapse
|
11
|
Liu Y, Kim HJ. Comparative Investigation of Secondary Cell Wall Development in Cotton Fiber Near Isogenic Lines Using Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR FT-IR). APPLIED SPECTROSCOPY 2019; 73:329-336. [PMID: 30457346 DOI: 10.1177/0003702818818171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this investigation, we applied previously proposed simple algorithms to analyze the attenuated total reflection Fourier transform infrared (ATR FT-IR) spectra of cotton fibers during secondary cell wall (SCW) biosynthesis. The infrared crystallinity ( CIIR) and maturity ( MIR) indices were compared from developmental fibers representing two pairs of upland cotton near isogenic lines (NILs). One pair of NILs consisted of Texas Marker-1 (TM-1) and an immature fiber ( im) mutant that differ in fiber maturity. The other pair of NILs included MD52ne and MD90ne that show variations in fiber strength. The observations revealed significant difference in the MIR values between developmental TM-1 and im NILs grown at a field in crop year 2015, and also a significant difference in the CIIR values between these NILs grown at the same field in crop year 2011. These different patterns of CIIR and MIR values during fiber development for the two different crop years indicated the impact of genetics and crop year on the development of fiber maturity and crystallinity of the TM-1 and im fibers. Furthermore, the tendency of linking CIIR with MIR values suggested that the im fibers have more CIIR development than the TM-1 fibers when the fibers have the similar MIR values. In contrast, the NIL pair having variations in fiber strength showed insignificant differences in the patterns of CIIR and MIR as well as the relationship between CIIR and MIR values. The results suggested that CIIR and MIR indices from ATR FT-IR measurement could be used to facilitate the understanding of how fiber genetics and crop year affect fiber maturity and crystallinity during SCW biosynthesis.
Collapse
Affiliation(s)
- Yongliang Liu
- 1 USDA, ARS, Southern Regional Research Center (SRRC), Cotton Structure & Quality Research Unit, New Orleans, LA, USA
| | - Hee-Jin Kim
- 2 USDA, ARS, Southern Regional Research Center (SRRC), Cotton Fiber Bioscience Research Unit, New Orleans, LA, USA
| |
Collapse
|
12
|
Khan A, Pan X, Najeeb U, Tan DKY, Fahad S, Zahoor R, Luo H. Coping with drought: stress and adaptive mechanisms, and management through cultural and molecular alternatives in cotton as vital constituents for plant stress resilience and fitness. Biol Res 2018; 51:47. [PMID: 30428929 PMCID: PMC6234603 DOI: 10.1186/s40659-018-0198-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/07/2018] [Indexed: 12/18/2022] Open
Abstract
Increased levels of greenhouse gases in the atmosphere and associated climatic variability is primarily responsible for inducing heat waves, flooding and drought stress. Among these, water scarcity is a major limitation to crop productivity. Water stress can severely reduce crop yield and both the severity and duration of the stress are critical. Water availability is a key driver for sustainable cotton production and its limitations can adversely affect physiological and biochemical processes of plants, leading towards lint yield reduction. Adaptation of crop husbandry techniques suitable for cotton crop requires a sound understanding of environmental factors, influencing cotton lint yield and fiber quality. Various defense mechanisms e.g. maintenance of membrane stability, carbon fixation rate, hormone regulation, generation of antioxidants and induction of stress proteins have been found play a vital role in plant survival under moisture stress. Plant molecular breeding plays a functional role to ascertain superior genes for important traits and can offer breeder ready markers for developing ideotypes. This review highlights drought-induced damage to cotton plants at structural, physiological and molecular levels. It also discusses the opportunities for increasing drought tolerance in cotton either through modern gene editing technology like clustered regularly interspaced short palindromic repeat (CRISPR/Cas9), zinc finger nuclease, molecular breeding as well as through crop management, such as use of appropriate fertilization, growth regulator application and soil amendments.
Collapse
Affiliation(s)
- Aziz Khan
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832003 People’s Republic of China
- Key Laboratory of Plant Genetic and Breeding, College of Agriculture, Guangxi University, Nanning, 530005 People’s Republic of China
| | - Xudong Pan
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832003 People’s Republic of China
| | - Ullah Najeeb
- Queensland Alliance for Agriculture and Food Innovation, Centre for Plant Science, The University of Queensland, Toowoomba, QLD 4350 Australia
- Plant Breeding Institute, Sydney Institute of Agriculture, School of Life and Environmental Faculty of Science, The University of Sydney, Sydney, NSW 2006 Australia
| | - Daniel Kean Yuen Tan
- Plant Breeding Institute, Sydney Institute of Agriculture, School of Life and Environmental Faculty of Science, The University of Sydney, Sydney, NSW 2006 Australia
| | - Shah Fahad
- Department of Plant Sciences and Technology, Huazhong Agriculture University, Wuhan, 430000 People’s Republic of China
- Department of Agronomy, The University of Swabi, Swabi, Pakistan
- College of Life Science, Linyi University, Linyi, 276000 Shandong China
| | - Rizwan Zahoor
- Key Laboratory of Crop Growth Regulation, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Honghai Luo
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832003 People’s Republic of China
| |
Collapse
|
13
|
Ashraf J, Zuo D, Wang Q, Malik W, Zhang Y, Abid MA, Cheng H, Yang Q, Song G. Recent insights into cotton functional genomics: progress and future perspectives. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:699-713. [PMID: 29087016 PMCID: PMC5814580 DOI: 10.1111/pbi.12856] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/03/2017] [Accepted: 10/18/2017] [Indexed: 05/11/2023]
Abstract
Functional genomics has transformed from futuristic concept to well-established scientific discipline during the last decade. Cotton functional genomics promise to enhance the understanding of fundamental plant biology to systematically exploit genetic resources for the improvement of cotton fibre quality and yield, as well as utilization of genetic information for germplasm improvement. However, determining the cotton gene functions is a much more challenging task, which has not progressed at a rapid pace. This article presents a comprehensive overview of the recent tools and resources available with the major advances in cotton functional genomics to develop elite cotton genotypes. This effort ultimately helps to filter a subset of genes that can be used to assemble a final list of candidate genes that could be employed in future novel cotton breeding programme. We argue that next stage of cotton functional genomics requires the draft genomes refinement, re-sequencing broad diversity panels with the development of high-throughput functional genomics tools and integrating multidisciplinary approaches in upcoming cotton improvement programmes.
Collapse
Affiliation(s)
- Javaria Ashraf
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangHenanChina
| | - Dongyun Zuo
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangHenanChina
| | - Qiaolian Wang
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangHenanChina
| | - Waqas Malik
- Genomics LabDepartment of Plant Breeding and GeneticsFaculty of Agricultural Sciences and TechnologyBahauddin Zakariya UniversityMultanPunjabPakistan
| | - Youping Zhang
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangHenanChina
| | - Muhammad Ali Abid
- Genomics LabDepartment of Plant Breeding and GeneticsFaculty of Agricultural Sciences and TechnologyBahauddin Zakariya UniversityMultanPunjabPakistan
| | - Hailiang Cheng
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangHenanChina
| | - Qiuhong Yang
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangHenanChina
| | - Guoli Song
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangHenanChina
| |
Collapse
|
14
|
Najeeb U, Tan DKY, Bange MP, Atwell BJ. Protecting cotton crops under elevated CO 2 from waterlogging by managing ethylene. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:340-349. [PMID: 32290957 DOI: 10.1071/fp17184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/13/2017] [Indexed: 05/29/2023]
Abstract
Soil waterlogging and subsequent ethylene release from cotton (Gossypium hirsutum L.) tissues has been linked with abscission of developing cotton fruits. This glasshouse study investigates the effect of a 9-day waterlogging event and CO2 enrichment (eCO2, 700 parts per million (ppm)) on a fully linted cultivar 'Empire' and a lintless cotton mutant (5B). We hypothesised that cotton performance in extreme environments such as waterlogging can be improved through mitigating ethylene action. Plants were grown at 28:20°C day:night temperature, 50-70% relative humidity and a 14:10 light:dark photoperiod under natural light and were exposed to waterlogging and eCO2 at early reproductive growth. Ethylene synthesis was inhibited by spraying aminoethoxyvinylglycine (830ppm) 1 day before waterlogging. Waterlogging significantly increased ethylene release from both cotton genotypes, although fruit production was significantly inhibited only in Empire. Aminoethoxyvinylglycine consistently reduced waterlogging-induced abscission of fruits, mainly in Empire. Limited damage to fruits in 5B, despite increased ethylene production during waterlogging, suggested that fruit abscission in 5B was inhibited by disrupting ethylene metabolism genetically. Elevated CO2 promoted fruit production in both genotypes and was more effective in 5B than in Empire plants. Hence 5B produced more fruits than Empire, providing additional sinks (existing and new fruit) that enhanced the response to CO2 enrichment.
Collapse
Affiliation(s)
- Ullah Najeeb
- The University of Sydney, Sydney Institute of Agriculture, School of Life and Environmental Sciences, Faculty of Science, Sydney, NSW 2015, Australia
| | - Daniel K Y Tan
- The University of Sydney, Sydney Institute of Agriculture, School of Life and Environmental Sciences, Faculty of Science, Sydney, NSW 2015, Australia
| | - Michael P Bange
- The University of Sydney, Sydney Institute of Agriculture, School of Life and Environmental Sciences, Faculty of Science, Sydney, NSW 2015, Australia
| | - Brian J Atwell
- Department of Biological Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
15
|
Liu Y, Kim HJ. Characterization of Developmental Immature Fiber ( im) Mutant and Texas Marker-1 (TM-1) Cotton Fibers Using Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy. APPLIED SPECTROSCOPY 2017; 71:1689-1695. [PMID: 28106475 DOI: 10.1177/0003702816684639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The immature fiber ( im) mutant is one type of cotton fiber mutant with unique characteristics of non-fluffy cotton bolls. Compared to its near-isogenic wild type Texas Marker-1 (TM-1), im fiber has a thin secondary cell wall and is less mature. In this work, we applied the previously proposed principal component analysis (PCA) and simple algorithms to analyze the attenuated total reflection Fourier transform infrared (ATR FT-IR) spectra of developmental im and TM-1 fibers. The results from these approaches could not effectively and consistently indicate the inherent difference between TM-1 and im fibers at the same developmental stage. The difference between TM-1 and corresponding im fibers was detected when comparing the normalized intensity variations of the 730 cm-1 bands. The 730 cm-1 band intensities in developmental im fibers are temporally lower than those in developmental TM-1 fibers although they became similar when the TM-1 and im fibers are fully mature. The observation might imply the likelihood of temporal reduction of amorphous regions in developmental im fibers rather than in developmental TM-1 fibers.
Collapse
Affiliation(s)
- Yongliang Liu
- 1 USDA, ARS, Cotton Structure & Quality Research Unit, Southern Regional Research Center (SRRC), New Orleans, LA, USA
| | - Hee-Jin Kim
- 2 USDA, ARS, Cotton Fiber Bioscience Research Unit, Southern Regional Research Center (SRRC), New Orleans, LA, USA
| |
Collapse
|
16
|
Tang K, Liu JY. Molecular characterization of GhPLDα1 and its relationship with secondary cell wall thickening in cotton fibers. Acta Biochim Biophys Sin (Shanghai) 2017; 49:33-43. [PMID: 27864277 DOI: 10.1093/abbs/gmw113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/18/2016] [Indexed: 02/07/2023] Open
Abstract
Phospholipase D (PLD) hydrolyzes phospholipids to generate a free polar head group (e.g., choline) and a second messenger phosphatidic acid and plays diverse roles in plant growth and development, including seed germination, leaf senescence, root hair growth, and hypocotyl elongation. However, the function of PLD in cotton remains largely unexplored. Here, the comprehensive molecular characterization of GhPLDα1 was explored with its role in upland cotton (Gossypium hirsutum) fiber development. The GhPLDα1 gene was cloned successfully, and a sequence alignment showed that GhPLDα1 contains one C2 domain and two HKD (HxKxxxxD) domains. Quantitative reverse transcriptase-polymerase chain reaction measured the expression of GhPLDα1 in various cotton tissues with the highest level in fibers at 20 days post anthesis (d.p.a.). Fluorescent microscopy and immunoblotting in tobacco epidermis showed the GhPLDα1 distribution in both cell membranes and the cytoplasm. An activity assay indicated changes in PLDα enzyme activity in developing fiber cells with a peak level at 20 d.p.a., coinciding with the onset of cellulose accumulation and the increased H2O2 content during fiber development. Furthermore, the inhibition of PLDα activity obviously decreased the cellulose and H2O2 contents of in vitro-cultured cotton fibers. These results provide important evidence explaining the relationship of GhPLDα1 with secondary cell wall thickening in cotton fibers in that GhPLDα1 may correlate with the increased H2O2 content at the onset of secondary cell wall thickening, ultimately promoting cellulose biosynthesis.
Collapse
Affiliation(s)
- Kai Tang
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jin-Yuan Liu
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
17
|
Islam MS, Thyssen GN, Jenkins JN, Zeng L, Delhom CD, McCarty JC, Deng DD, Hinchliffe DJ, Jones DC, Fang DD. A MAGIC population-based genome-wide association study reveals functional association of GhRBB1_A07 gene with superior fiber quality in cotton. BMC Genomics 2016; 17:903. [PMID: 27829353 PMCID: PMC5103610 DOI: 10.1186/s12864-016-3249-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 11/02/2016] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Cotton supplies a great majority of natural fiber for the global textile industry. The negative correlation between yield and fiber quality has hindered breeders' ability to improve these traits simultaneously. A multi-parent advanced generation inter-cross (MAGIC) population developed through random-mating of multiple diverse parents has the ability to break this negative correlation. Genotyping-by-sequencing (GBS) is a method that can rapidly identify and genotype a large number of single nucleotide polymorphisms (SNP). Genotyping a MAGIC population using GBS technologies will enable us to identify marker-trait associations with high resolution. RESULTS An Upland cotton MAGIC population was developed through random-mating of 11 diverse cultivars for five generations. In this study, fiber quality data obtained from four environments and 6071 SNP markers generated via GBS and 223 microsatellite markers of 547 recombinant inbred lines (RILs) of the MAGIC population were used to conduct a genome wide association study (GWAS). By employing a mixed linear model, GWAS enabled us to identify markers significantly associated with fiber quantitative trait loci (QTL). We identified and validated one QTL cluster associated with four fiber quality traits [short fiber content (SFC), strength (STR), length (UHM) and uniformity (UI)] on chromosome A07. We further identified candidate genes related to fiber quality attributes in this region. Gene expression and amino acid substitution analysis suggested that a regeneration of bulb biogenesis 1 (GhRBB1_A07) gene is a candidate for superior fiber quality in Upland cotton. The DNA marker CFBid0004 designed from an 18 bp deletion in the coding sequence of GhRBB1_A07 in Acala Ultima is associated with the improved fiber quality in the MAGIC RILs and 105 additional commercial Upland cotton cultivars. CONCLUSION Using GBS and a MAGIC population enabled more precise fiber QTL mapping in Upland cotton. The fiber QTL and associated markers identified in this study can be used to improve fiber quality through marker assisted selection or genomic selection in a cotton breeding program. Target manipulation of the GhRBB1_A07 gene through biotechnology or gene editing may potentially improve cotton fiber quality.
Collapse
Affiliation(s)
- Md Sariful Islam
- Cotton Fiber Bioscience Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, LA 70124 USA
| | - Gregory N. Thyssen
- Cotton Chemistry and Utilization Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, LA 70124 USA
| | - Johnie N. Jenkins
- Genetics & Sustainable Agriculture Research Unit, USDA-ARS, Mississippi State, MS 39762 USA
| | - Linghe Zeng
- Crop Genetics Research Unit, USDA-ARS, Stoneville, MS 38772 USA
| | - Christopher D. Delhom
- Cotton Structure and Quality Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, LA 70124 USA
| | - Jack C. McCarty
- Genetics & Sustainable Agriculture Research Unit, USDA-ARS, Mississippi State, MS 39762 USA
| | - Dewayne D. Deng
- Genetics & Sustainable Agriculture Research Unit, USDA-ARS, Mississippi State, MS 39762 USA
| | - Doug J. Hinchliffe
- Cotton Chemistry and Utilization Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, LA 70124 USA
| | | | - David D. Fang
- Cotton Fiber Bioscience Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, LA 70124 USA
| |
Collapse
|
18
|
Ma L, Wang Y, Yan G, Wei S, Zhou D, Kuang M, Fang D, Xu S, Yang W. Global analysis of the developmental dynamics of Gossypium hirsutum based on strand-specific transcriptome. PHYSIOLOGIA PLANTARUM 2016; 158:106-121. [PMID: 26892265 DOI: 10.1111/ppl.12432] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 12/06/2015] [Accepted: 01/04/2016] [Indexed: 06/05/2023]
Abstract
Cotton is an economically important crop that provides both natural fiber and by-products such as oil and protein. Its global gene expression could provide insight into the biological processes underlying growth and development, which involve suites of genes expressed with temporal and spatial control by regulatory networks. Generally, the goal for cotton breeding is improvement of the fiber; thus, most previous research has focused on identifying genes specific to the fiber. However, seeds may also play an important role in fiber development. In this study, we constructed and systematically analyzed 21 strand-specific RNA-Seq libraries for Gossypium hirsutum, covering different tissues, organs and development stages, from which approximately 970 million reads were generated to provide a global view of gene expression during cotton development. The organ (tissue)-specific gene expression patterns were investigated, providing further insight into the dynamic programming associated with developmental processes and a way to study the coordination of development between fiber cells and ovules. Series of transcription factors and seed-specific genes have been identified as candidate genes that could elucidate key mechanisms and regulatory networks in nutrient accumulation during ovule development and in fiber development. This study reports comprehensive transcriptome dynamics at various stages of cotton development and will serve as a valuable genome-wide transcriptome resource for initial gene discovery and functional characterization of genes in cotton.
Collapse
Affiliation(s)
- Lei Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Yanqin Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Gentu Yan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Shoujun Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Dayun Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Meng Kuang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Dan Fang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Shuangjiao Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Weihua Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| |
Collapse
|
19
|
Zhang F, Jin X, Wang L, Li S, Wu S, Cheng C, Zhang T, Guo W. A Cotton Annexin Affects Fiber Elongation and Secondary Cell Wall Biosynthesis Associated with Ca2+ Influx, ROS Homeostasis, and Actin Filament Reorganization. PLANT PHYSIOLOGY 2016; 171:1750-70. [PMID: 27255486 PMCID: PMC4936584 DOI: 10.1104/pp.16.00597] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/01/2016] [Indexed: 05/23/2023]
Abstract
Annexins play pivotal roles in a variety of cellular processes as well as in fiber development; however, the functional mechanisms of their activities are unclear. Here, an annexin gene that is preferentially expressed in fibers, GhFAnnxA, was found to be significantly associated with various cotton (Gossypium hirsutum) fiber traits. Transgenic analysis demonstrated that GhFAnnxA affected cotton fiber elongation and was involved in secondary cell wall (SCW) biosynthesis. Functional studies demonstrated that GhFAnnxA may act as a Ca(2+) conductance regulator and that reactive oxygen species (ROS) produced by Rbohs in a Ca(2+)-dependent manner may determine fiber elongation caused by elevated intracellular turgor and cell wall loosening. However, excessive hydrogen peroxide (H2O2) inhibited cotton fiber elongation in vitro. We speculate that a positive feedback loop involving ROS and Ca(2+) is regulated by GhCDPK1 and regulates fiber cell elongation. Furthermore, the convergence of actin filaments is altered by their interaction with GhFAnnxA, and this also may contribute to fiber elongation. Moreover, GhFAnnxA may affect SCW biosynthesis through changes in cell wall components caused by an increase in H2O2 levels. These results not only provide new insights into the signaling pathways of GhFAnnxA in fiber development but also clarify the role of ROS in fiber development.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Xuanxiang Jin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Like Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Shufen Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Shuang Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Chaoze Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Tianzhen Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| |
Collapse
|
20
|
Islam MS, Zeng L, Thyssen GN, Delhom CD, Kim HJ, Li P, Fang DD. Mapping by sequencing in cotton (Gossypium hirsutum) line MD52ne identified candidate genes for fiber strength and its related quality attributes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1071-86. [PMID: 26883043 DOI: 10.1007/s00122-016-2684-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/23/2016] [Indexed: 05/22/2023]
Abstract
Three QTL regions controlling three fiber quality traits were validated and further fine-mapped with 27 new single nucleotide polymorphism (SNP) markers. Transcriptome analysis suggests that receptor-like kinases found within the validated QTLs are potential candidate genes responsible for superior fiber strength in cotton line MD52ne. Fiber strength, length, maturity and fineness determine the market value of cotton fibers and the quality of spun yarn. Cotton fiber strength has been recognized as a critical quality attribute in the modern textile industry. Fine mapping along with quantitative trait loci (QTL) validation and candidate gene prediction can uncover the genetic and molecular basis of fiber quality traits. Four previously-identified QTLs (qFBS-c3, qSFI-c14, qUHML-c14 and qUHML-c24) related to fiber bundle strength, short fiber index and fiber length, respectively, were validated using an F3 population that originated from a cross of MD90ne × MD52ne. A group of 27 new SNP markers generated from mapping-by-sequencing (MBS) were placed in QTL regions to improve and validate earlier maps. Our refined QTL regions spanned 4.4, 1.8 and 3.7 Mb of physical distance in the Gossypium raimondii reference genome. We performed RNA sequencing (RNA-seq) of 15 and 20 days post-anthesis fiber cells from MD52ne and MD90ne and aligned reads to the G. raimondii genome. The QTL regions contained 21 significantly differentially expressed genes (DEGs) between the two near-isogenic parental lines. SNPs that result in non-synonymous substitutions to amino acid sequences of annotated genes were identified within these DEGs, and mapped. Taken together, transcriptome and amino acid mutation analysis indicate that receptor-like kinase pathway genes are likely candidates for superior fiber strength and length in MD52ne. MBS along with RNA-seq demonstrated a powerful strategy to elucidate candidate genes for the QTLs that control complex traits in a complex genome like tetraploid upland cotton.
Collapse
Affiliation(s)
- Md S Islam
- Cotton Fiber Bioscience Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, LA, 70124, USA
| | - Linghe Zeng
- Crop Genetics Research Unit, USDA-ARS, 141 Experiment Station Road, Stoneville, MS, 38772, USA
| | - Gregory N Thyssen
- Cotton Chemistry and Utilization Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, LA, 70124, USA
| | - Christopher D Delhom
- Cotton Structure and Quality Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, LA, 70124, USA
| | - Hee Jin Kim
- Cotton Fiber Bioscience Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, LA, 70124, USA
| | - Ping Li
- Cotton Fiber Bioscience Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, LA, 70124, USA
| | - David D Fang
- Cotton Fiber Bioscience Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, LA, 70124, USA.
| |
Collapse
|
21
|
The Immature Fiber Mutant Phenotype of Cotton (Gossypium hirsutum) Is Linked to a 22-bp Frame-Shift Deletion in a Mitochondria Targeted Pentatricopeptide Repeat Gene. G3-GENES GENOMES GENETICS 2016; 6:1627-33. [PMID: 27172184 PMCID: PMC4889659 DOI: 10.1534/g3.116.027649] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cotton seed trichomes are the most important source of natural fibers globally. The major fiber thickness properties influence the price of the raw material, and the quality of the finished product. The recessive immature fiber (im) gene reduces the degree of fiber cell wall thickening by a process that was previously shown to involve mitochondrial function in allotetraploid Gossypium hirsutum. Here, we present the fine genetic mapping of the im locus, gene expression analysis of annotated proteins near the locus, and association analysis of the linked markers. Mapping-by-sequencing identified a 22-bp deletion in a pentatricopeptide repeat (PPR) gene that is completely linked to the immature fiber phenotype in 2837 F2 plants, and is absent from all 163 cultivated varieties tested, although other closely linked marker polymorphisms are prevalent in the diversity panel. This frame-shift mutation results in a transcript with two long open reading frames: one containing the N-terminal transit peptide that targets mitochondria, the other containing only the RNA-binding PPR domains, suggesting that a functional PPR protein cannot be targeted to mitochondria in the im mutant. Taken together, these results suggest that PPR gene Gh_A03G0489 is involved in the cotton fiber wall thickening process, and is a promising candidate gene at the im locus. Our findings expand our understanding of the molecular mechanisms that modulate cotton fiber fineness and maturity, and may facilitate the development of cotton varieties with superior fiber attributes.
Collapse
|
22
|
Gunapati S, Naresh R, Ranjan S, Nigam D, Hans A, Verma PC, Gadre R, Pathre UV, Sane AP, Sane VA. Expression of GhNAC2 from G. herbaceum, improves root growth and imparts tolerance to drought in transgenic cotton and Arabidopsis. Sci Rep 2016; 6:24978. [PMID: 27113714 PMCID: PMC4844984 DOI: 10.1038/srep24978] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/22/2016] [Indexed: 02/07/2023] Open
Abstract
NAC proteins are plant-specific transcription factors that play essential roles in regulating development and responses to abiotic and biotic stresses. We show that over-expression of the cotton GhNAC2 under the CaMV35S promoter increases root growth in both Arabidopsis and cotton under unstressed conditions. Transgenic Arabidopsis plants also show improved root growth in presence of mannitol and NaCl while transgenic cotton expressing GhNAC2 show reduced leaf abscission and wilting upon water stress compared to control plants. Transgenic Arabidopsis plants also have larger leaves, higher seed number and size under well watered conditions, reduced transpiration and higher relative leaf water content. Micro-array analysis of transgenic plants over-expressing GhNAC2 reveals activation of the ABA/JA pathways and a suppression of the ethylene pathway at several levels to reduce expression of ERF6/ERF1/WRKY33/ MPK3/MKK9/ACS6 and their targets. This probably suppresses the ethylene-mediated inhibition of organ expansion, leading to larger leaves, better root growth and higher yields under unstressed conditions. Suppression of the ethylene pathway and activation of the ABA/JA pathways also primes the plant for improved stress tolerance by reduction in transpiration, greater stomatal control and suppression of growth retarding factors.
Collapse
Affiliation(s)
- Samatha Gunapati
- Plant Gene Expression Lab, CSIR- National Botanical Research Institute, Lucknow-226001, India
| | - Ram Naresh
- Plant Gene Expression Lab, CSIR- National Botanical Research Institute, Lucknow-226001, India
| | - Sanjay Ranjan
- Dept. of Plant Physiology, CSIR- National Botanical Research Institute, Lucknow-226001, India
| | - Deepti Nigam
- Dept. of Bioinformatics, CSIR- National Botanical Research Institute, Lucknow-226001, India
| | - Aradhana Hans
- Plant tissue culture, CSIR- National Botanical Research Institute, Lucknow-226001, India
| | - Praveen C Verma
- Plant tissue culture, CSIR- National Botanical Research Institute, Lucknow-226001, India
| | - Rekha Gadre
- Dept of Biochemistry, DeviAhilyaBai University, Indore-452001, India
| | - Uday V Pathre
- Dept. of Plant Physiology, CSIR- National Botanical Research Institute, Lucknow-226001, India
| | - Aniruddha P Sane
- Plant Gene Expression Lab, CSIR- National Botanical Research Institute, Lucknow-226001, India
| | - Vidhu A Sane
- Plant Gene Expression Lab, CSIR- National Botanical Research Institute, Lucknow-226001, India
| |
Collapse
|
23
|
Islam MS, Fang DD, Thyssen GN, Delhom CD, Liu Y, Kim HJ. Comparative fiber property and transcriptome analyses reveal key genes potentially related to high fiber strength in cotton (Gossypium hirsutum L.) line MD52ne. BMC PLANT BIOLOGY 2016; 16:36. [PMID: 26833213 PMCID: PMC4736178 DOI: 10.1186/s12870-016-0727-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/28/2016] [Indexed: 05/25/2023]
Abstract
BACKGROUND Individual fiber strength is an important quality attribute that greatly influences the strength of the yarn spun from cotton fibers. Fiber strength is usually measured from bundles of fibers due to the difficulty of reliably measuring strength from individual cotton fibers. However, bundle fiber strength (BFS) is not always correlated with yarn strength since it is affected by multiple fiber properties involved in fiber-to-fiber interactions within a bundle in addition to the individual fiber strength. Molecular mechanisms responsible for regulating individual fiber strength remain unknown. Gossypium hirsutum near isogenic lines (NILs), MD52ne and MD90ne showing variations in BFS provide an opportunity for dissecting the regulatory mechanisms involved in individual fiber strength. RESULTS Comprehensive fiber property analyses of the NILs revealed that the superior bundle strength of MD52ne fibers resulted from high individual fiber strength with minor contributions from greater fiber length. Comparative transcriptome analyses of the NILs showed that the superior bundle strength of MD52ne fibers was potentially related to two signaling pathways: one is ethylene and the interconnected phytohormonal pathways that are involved in cotton fiber elongation, and the other is receptor-like kinases (RLKs) signaling pathways that are involved in maintaining cell wall integrity. Multiple RLKs were differentially expressed in MD52ne fibers and localized in genomic regions encompassing the strength quantitative trait loci (QTLs). Several candidate genes involved in crystalline cellulose assembly were also up-regulated in MD52ne fibers while the secondary cell wall was produced. CONCLUSION Comparative phenotypic and transcriptomic analyses revealed differential expressions of the genes involved in crystalline cellulose assembly, ethylene and RLK signaling pathways between the MD52ne and MD90ne developing fibers. Ethylene and its phytohormonal network might promote the elongation of MD52ne fibers and indirectly contribute to the bundle strength by potentially improving fiber-to-fiber interactions. RLKs that were suggested to mediate a coordination of cell elongation and SCW biosynthesis in other plants might be candidate genes for regulating cotton fiber cell wall assembly and strength.
Collapse
Affiliation(s)
- Md S Islam
- USDA-ARS, Southern Regional Research Center, Cotton Fiber Bioscience Research Unit, New Orleans, LA, 70124, USA.
| | - David D Fang
- USDA-ARS, Southern Regional Research Center, Cotton Fiber Bioscience Research Unit, New Orleans, LA, 70124, USA.
| | - Gregory N Thyssen
- USDA-ARS, Southern Regional Research Center, Cotton Chemistry and Utilization Research Unit, New Orleans, LA, 70124, USA.
| | - Chris D Delhom
- USDA-ARS, Southern Regional Research Center, Cotton Structure and Quality Research Unit, New Orleans, LA, 70124, USA.
| | - Yongliang Liu
- USDA-ARS, Southern Regional Research Center, Cotton Structure and Quality Research Unit, New Orleans, LA, 70124, USA.
| | - Hee Jin Kim
- USDA-ARS, Southern Regional Research Center, Cotton Fiber Bioscience Research Unit, New Orleans, LA, 70124, USA.
| |
Collapse
|
24
|
Mittal A, Jiang Y, Ritchie GL, Burke JJ, Rock CD. AtRAV1 and AtRAV2 overexpression in cotton increases fiber length differentially under drought stress and delays flowering. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 241:78-95. [PMID: 26706061 DOI: 10.1016/j.plantsci.2015.09.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/11/2015] [Accepted: 09/16/2015] [Indexed: 05/23/2023]
Abstract
There is a longstanding problem of an inverse relationship between cotton fiber qualities versus high yields. To better understand drought stress signaling and adaptation in cotton (Gossypium hirsutum) fiber development, we expressed the Arabidopsis transcription factors RELATED_TO_ABA-INSENSITIVE3/VIVIPAROUS1/(RAV1) and AtRAV2, which encode APETALA2-Basic3 domain proteins shown to repress transcription of FLOWERING_LOCUS_T (FT) and to promote stomatal opening cell-autonomously. In three years of field trials, we show that AtRAV1 and AtRAV2-overexpressing cotton had ∼5% significantly longer fibers with only marginal decreases in yields under well-watered or drought stress conditions that resulted in 40-60% yield penalties and 3-7% fiber length penalties in control plants. The longer transgenic fibers from drought-stressed transgenics could be spun into yarn which was measurably stronger and more uniform than that from well-watered control fibers. The transgenic AtRAV1 and AtRAV2 lines flowered later and retained bolls at higher nodes, which correlated with repression of endogenous GhFT-Like (FTL) transcript accumulation. Elevated expression early in development of ovules was observed for GhRAV2L, GhMYB25-Like (MYB25L) involved in fiber initiation, and GhMYB2 and GhMYB25 involved in fiber elongation. Altered expression of RAVs controlling critical nodes in developmental and environmental signaling hierarchies has the potential for phenotypic modification of crops.
Collapse
Affiliation(s)
- Amandeep Mittal
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, United States.
| | - Yingwen Jiang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, United States.
| | - Glen L Ritchie
- Department of Plant and Soils Science, Texas Tech University, Lubbock, TX 79409-2122, United States.
| | - John J Burke
- USDA-ARS Plant Stress and Germplasm Laboratory, Lubbock, TX 79415, United States.
| | - Christopher D Rock
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, United States.
| |
Collapse
|
25
|
|
26
|
Tuttle JR, Nah G, Duke MV, Alexander DC, Guan X, Song Q, Chen ZJ, Scheffler BE, Haigler CH. Metabolomic and transcriptomic insights into how cotton fiber transitions to secondary wall synthesis, represses lignification, and prolongs elongation. BMC Genomics 2015; 16:477. [PMID: 26116072 PMCID: PMC4482290 DOI: 10.1186/s12864-015-1708-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 06/19/2015] [Indexed: 11/20/2022] Open
Abstract
Background The morphogenesis of single-celled cotton fiber includes extreme elongation and staged cell wall differentiation. Designing strategies for improving cotton fiber for textiles and other uses relies on uncovering the related regulatory mechanisms. In this research we compared the transcriptomes and metabolomes of two Gossypium genotypes, Gossypium barbadense cv Phytogen 800 and G. hirsutum cv Deltapine 90. When grown in parallel, the two types of fiber developed similarly except for prolonged fiber elongation in the G. barbadense cultivar. The data were collected from isolated fibers between 10 to 28 days post anthesis (DPA) representing: primary wall synthesis to support elongation; transitional cell wall remodeling; and secondary wall cellulose synthesis, which was accompanied by continuing elongation only in G. barbadense fiber. Results Of 206 identified fiber metabolites, 205 were held in common between the two genotypes. Approximately 38,000 transcripts were expressed in the fiber of each genotype, and these were mapped to the reference set and interpreted by homology to known genes. The developmental changes in the transcriptomes and the metabolomes were compared within and across genotypes with several novel implications. Transitional cell wall remodeling is a distinct stable developmental stage lasting at least four days (18 to 21 DPA). Expression of selected cell wall related transcripts was similar between genotypes, but cellulose synthase gene expression patterns were more complex than expected. Lignification was transcriptionally repressed in both genotypes. Oxidative stress was lower in the fiber of G. barbadense cv Phytogen 800 as compared to G. hirsutum cv Deltapine 90. Correspondingly, the G. barbadense cultivar had enhanced capacity for management of reactive oxygen species during its prolonged elongation period, as indicated by a 138-fold increase in ascorbate concentration at 28 DPA. Conclusions The parallel data on deep-sequencing transcriptomics and non-targeted metabolomics for two genotypes of single-celled cotton fiber showed that a discrete developmental stage of transitional cell wall remodeling occurs before secondary wall cellulose synthesis begins. The data showed how lignification can be transcriptionally repressed during secondary cell wall synthesis, and they implicated enhanced capacity to manage reactive oxygen species through the ascorbate-glutathione cycle as a positive contributor to fiber length. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1708-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- John R Tuttle
- Department of Crop Science, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Gyoungju Nah
- Institute for Cellular and Molecular Biology and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Mary V Duke
- USDA ARS Genomics and Bioinformatics Research Unit, Stoneville, MS, 38776, USA.
| | | | - Xueying Guan
- Institute for Cellular and Molecular Biology and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Qingxin Song
- Institute for Cellular and Molecular Biology and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Z Jeffrey Chen
- Institute for Cellular and Molecular Biology and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Brian E Scheffler
- USDA ARS Genomics and Bioinformatics Research Unit, Stoneville, MS, 38776, USA.
| | - Candace H Haigler
- Department of Crop Science, North Carolina State University, Raleigh, NC, 27695, USA. .,Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
27
|
Thyssen GN, Song X, Naoumkina M, Kim HJ, Fang DD. Independent replication of mitochondrial genes supports the transcriptional program in developing fiber cells of cotton (Gossypium hirsutum L.). Gene 2014; 544:41-8. [PMID: 24768176 DOI: 10.1016/j.gene.2014.04.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 04/16/2014] [Accepted: 04/18/2014] [Indexed: 11/16/2022]
Abstract
The mitochondrial genomes of flowering plants exist both as a "master circle" chromosome and as numerous subgenomic sublimons that are generated by intramolecular recombination. Differential stability or replication of these sublimons allows individual mitochondrial gene copy numbers to vary independently between different cell types and developmental stages. Our objective was to determine the relationship between mitochondrial gene copy number and transcript abundance in the elongating fiber cells of Upland cotton (Gossypium hirsutum L.). We compared RNA and DNA from cotton fiber cells at five developmental time points from early elongation through secondary cell wall thickening from the Ligon-lintless 2 (Li2) short fiber mutant and its wild type near isogenic line (NIL) DP5690. Mitochondrial gene copy number decreased from 3 to 8-DPA in the developing cotton fiber cells while transcript levels remained low. As secondary cell wall biosynthesis began in developing fibers, the expression levels and copy numbers of mitochondrial genes involved in energy production and respiration were up-regulated in wild type cotton DP5690. However, the short fiber mutant Li2, failed to increase expression of these genes, which include three subunits of ATP synthase, atp1, atp8 and atp9 and two cytochrome genes cox1 and cob. At the same time, Li2 failed to increase the copy numbers of these highly expressed genes. Surprisingly, we found that when mitochondrial genes were highly transcribed, they also had very high copy numbers. This observation suggests that in developing cotton fibers, increased mitochondrial sublimon replication may support increases in gene transcription.
Collapse
Affiliation(s)
- Gregory N Thyssen
- Cotton Fiber Bioscience Research Unit, USDA-ARS-SRRC, 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA.
| | - Xianliang Song
- Cotton Fiber Bioscience Research Unit, USDA-ARS-SRRC, 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA; College of Agronomy, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Marina Naoumkina
- Cotton Fiber Bioscience Research Unit, USDA-ARS-SRRC, 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA.
| | - Hee-Jin Kim
- Cotton Fiber Bioscience Research Unit, USDA-ARS-SRRC, 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA.
| | - David D Fang
- Cotton Fiber Bioscience Research Unit, USDA-ARS-SRRC, 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA.
| |
Collapse
|