1
|
Gibu K, Mizusawa N, Iijima M, Ohno Y, Yasumoto J, Yasumoto K, Iguchi A. Polyamine impact on physiology of early stages of reef-building corals-insights from rearing experiments and RNA-Seq analysis. Sci Rep 2024; 14:23465. [PMID: 39379401 PMCID: PMC11461621 DOI: 10.1038/s41598-024-72943-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 09/11/2024] [Indexed: 10/10/2024] Open
Abstract
Polyamines are involved in various functions related to the cellular-level responses. To assess effects of polyamines on marine organisms, rearing experiments and comprehensive gene expression analyses were conducted on Acropora digitifera and Acropora sp.1, representative reef-building corals along the west-central coast of Okinawa, Japan, to evaluate effects of putrescine. Concentrations of putrescine ≥ 1 mM dissolved tissues of juvenile polyps and increased mortality of planula larvae. RNA-Seq analysis of juvenile polyps exposed to putrescine at the stage before effects became visible revealed dynamic fluctuations in gene expression in the putrescine-treated samples, with increased expression of stress-responsive genes (e.g. NAD-dependent protein deacylase sirtuin-6) and the polyamine transporter Slc18b1-like protein. These results also suggest that putrescine affects expression of genes related to ribosomes and translation. This study provides important insights into roles of polyamines and future directions regarding physiological responses of corals.
Collapse
Affiliation(s)
- Kodai Gibu
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8567, Japan
- Department of Ecosystem Studies, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, 113-0032, Japan
| | - Nanami Mizusawa
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0373, Japan
| | - Mariko Iijima
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8567, Japan
| | - Yoshikazu Ohno
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0373, Japan
| | - Jun Yasumoto
- Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Nakagusuku, Okinawa, 903-0213, Japan
| | - Ko Yasumoto
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0373, Japan
| | - Akira Iguchi
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8567, Japan.
- Research Laboratory On Environmentally-Conscious Developments and Technologies [E-Code], National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8567, Japan.
| |
Collapse
|
2
|
Ricaurte M, Schizas NV, Weil EF, Ciborowski P, Boukli NM. Seasonal Proteome Variations in Orbicella faveolata Reveal Molecular Thermal Stress Adaptations. Proteomes 2024; 12:20. [PMID: 39051238 PMCID: PMC11270422 DOI: 10.3390/proteomes12030020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Although seasonal water temperatures typically fluctuate by less than 4 °C across most tropical reefs, sustained heat stress with an increase of even 1 °C can alter and destabilize metabolic and physiological coral functions, leading to losses of coral reefs worldwide. The Caribbean region provides a natural experimental design to study how corals respond physiologically throughout the year. While characterized by warm temperatures and precipitation, there is a significant seasonal component with relative cooler and drier conditions during the months of January to February and warmer and wetter conditions during September and October. We conducted a comparative abundance of differentially expressed proteins with two contrasting temperatures during the cold and warm seasons of 2014 and 2015 in Orbicella faveolata, one of the most important and affected reef-building corals of the Caribbean. All presented proteoforms (42) were found to be significant in our proteomics differential expression analysis and classified based on their gene ontology. The results were accomplished by a combination of two-dimensional gel electrophoresis (2DE) to separate and visualize proteins and mass spectrometry (MS) for protein identification. To validate the differentially expressed proteins of Orbicella faveolata at the transcription level, qRT-PCR was performed. Our data indicated that a 3.1 °C increase in temperature in O. faveolata between the cold and warm seasons in San Cristobal and Enrique reefs of southwestern Puerto Rico was enough to affect the expression of a significant number of proteins associated with oxidative and heat stress responses, metabolism, immunity, and apoptosis. This research extends our knowledge into the mechanistic response of O. faveolata to mitigate thermal seasonal temperature variations in coral reefs.
Collapse
Affiliation(s)
- Martha Ricaurte
- Department of Marine Sciences, University of Puerto Rico, Mayagüez, Call Box 9000, Mayagüez, PR 00681, USA; (M.R.)
| | - Nikolaos V. Schizas
- Department of Marine Sciences, University of Puerto Rico, Mayagüez, Call Box 9000, Mayagüez, PR 00681, USA; (M.R.)
| | - Ernesto F. Weil
- Department of Marine Sciences, University of Puerto Rico, Mayagüez, Call Box 9000, Mayagüez, PR 00681, USA; (M.R.)
| | - Pawel Ciborowski
- Mass Spectrometry and Proteomics Core Facility, Durham Research Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nawal M. Boukli
- Biomedical Proteomics Facility, Microbiology and Immunology Department, Universidad Central del Caribe, Bayamón, PR 00960, USA
| |
Collapse
|
3
|
Dilworth J, Million WC, Ruggeri M, Hall ER, Dungan AM, Muller EM, Kenkel CD. Synergistic response to climate stressors in coral is associated with genotypic variation in baseline expression. Proc Biol Sci 2024; 291:20232447. [PMID: 38531406 DOI: 10.1098/rspb.2023.2447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/16/2024] [Indexed: 03/28/2024] Open
Abstract
As environments are rapidly reshaped due to climate change, phenotypic plasticity plays an important role in the ability of organisms to persist and is considered an especially important acclimatization mechanism for long-lived sessile organisms such as reef-building corals. Often, this ability of a single genotype to display multiple phenotypes depending on the environment is modulated by changes in gene expression, which can vary in response to environmental changes via two mechanisms: baseline expression and expression plasticity. We used transcriptome-wide expression profiling of eleven genotypes of common-gardened Acropora cervicornis to explore genotypic variation in the expression response to thermal and acidification stress, both individually and in combination. We show that the combination of these two stressors elicits a synergistic gene expression response, and that both baseline expression and expression plasticity in response to stress show genotypic variation. Additionally, we demonstrate that frontloading of a large module of coexpressed genes is associated with greater retention of algal symbionts under combined stress. These results illustrate that variation in the gene expression response of individuals to climate change stressors can persist even when individuals have shared environmental histories, affecting their performance under future climate change scenarios.
Collapse
Affiliation(s)
| | | | - Maria Ruggeri
- University of Southern California, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
4
|
Selwyn JD, Vollmer SV. Whole genome assembly and annotation of the endangered Caribbean coral Acropora cervicornis. G3 (BETHESDA, MD.) 2023; 13:jkad232. [PMID: 37804092 PMCID: PMC10700113 DOI: 10.1093/g3journal/jkad232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/08/2023]
Abstract
Coral species in the genus Acropora are key ecological components of coral reefs worldwide and represent the most diverse genus of scleractinian corals. While key species of Indo-Pacific Acropora have annotated genomes, no annotated genome has been published for either of the two species of Caribbean Acropora. Here we present the first fully annotated genome of the endangered Caribbean staghorn coral, Acropora cervicornis. We assembled and annotated this genome using high-fidelity nanopore long-read sequencing with gene annotations validated with mRNA sequencing. The assembled genome size is 318 Mb, with 28,059 validated genes. Comparative genomic analyses with other Acropora revealed unique features in A. cervicornis, including contractions in immune pathways and expansions in signaling pathways. Phylogenetic analysis confirms previous findings showing that A. cervicornis diverged from Indo-Pacific relatives around 41 million years ago, with the closure of the western Tethys Sea, prior to the primary radiation of Indo-Pacific Acropora. This new A. cervicornis genome enriches our understanding of the speciose Acropora and addresses evolutionary inquiries concerning speciation and hybridization in this diverse clade.
Collapse
Affiliation(s)
- Jason D Selwyn
- Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA 01908, USA
| | - Steven V Vollmer
- Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA 01908, USA
| |
Collapse
|
5
|
Engleman A, Cox K, Brooke S. Dead but not forgotten: complexity of Acropora palmata colonies increases with greater composition of dead coral. PeerJ 2023; 11:e16101. [PMID: 37842045 PMCID: PMC10576496 DOI: 10.7717/peerj.16101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/25/2023] [Indexed: 10/17/2023] Open
Abstract
Coral reefs are highly biodiverse ecosystems that have declined due to natural and anthropogenic stressors. Researchers often attribute reef ecological processes to corals' complex structure, but effective conservation requires disentangling the contributions of coral versus reef structures. Many studies assessing the relationships between reef structure and ecological dynamics commonly use live coral as a proxy for reef complexity, disregarding the contribution of dead coral skeletons to reef habitat provision or other biogeochemical reef dynamics. This study aimed to assess the contribution of dead coral to reef complexity by examining structural variations in live and dead Acropora palmata colonies. We used photogrammetry to reconstruct digital elevation models (DEMs) and orthomosaics of the benthic region immediately surrounding 10 A. palmata colonies. These reconstructions were used to quantify structural metrics, including surface rugosity, fractal dimension, slope, planform curvature, and profile curvature, as a function of benthic composition (i.e., live A. palmata, dead A. palmata, or non-A. palmata substrate). The results revealed that dead coral maintained more varied profile curvatures and higher fractal dimensions than live or non-coral substrate. Conversely, A. palmata colonies with a higher proportion of live coral displayed more uniform structure, with lower fractal dimensions and less variability in profile curvature measures. Other metrics showed no significant difference among substrate types. These findings provide novel insights into the structural differences between live and dead coral, and an alternative perspective on the mechanisms driving the observed structural complexity on reefs. Overall, our results highlight the overlooked potential contributions of dead coral to reef habitat provision, ecological processes, and other biogeochemical reef dynamics, and could have important implications for coral reef conservation.
Collapse
Affiliation(s)
- Abigail Engleman
- Department of Biological Science, Florida State University, Tallahassee, United States of America
- Coastal and Marine Laboratory, Florida State University, St. Teresa, FL, United States of America
- Marine Station, Smithsonian, Fort Pierce, FL, United States of America
| | - Kieran Cox
- Marine Station, Smithsonian, Fort Pierce, FL, United States of America
- Biology Department, University of Victoria, Victoria, British Columbia, Canada
- Hakai Institute, Calvert Island, British Columbia, Canada
| | - Sandra Brooke
- Coastal and Marine Laboratory, Florida State University, St. Teresa, FL, United States of America
| |
Collapse
|
6
|
Leiva C, Pérez-Portela R, Lemer S. Genomic signatures suggesting adaptation to ocean acidification in a coral holobiont from volcanic CO 2 seeps. Commun Biol 2023; 6:769. [PMID: 37481685 PMCID: PMC10363134 DOI: 10.1038/s42003-023-05103-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/06/2023] [Indexed: 07/24/2023] Open
Abstract
Ocean acidification, caused by anthropogenic CO2 emissions, is predicted to have major consequences for reef-building corals, jeopardizing the scaffolding of the most biodiverse marine habitats. However, whether corals can adapt to ocean acidification and how remains unclear. We addressed these questions by re-examining transcriptome and genome data of Acropora millepora coral holobionts from volcanic CO2 seeps with end-of-century pH levels. We show that adaptation to ocean acidification is a wholistic process involving the three main compartments of the coral holobiont. We identified 441 coral host candidate adaptive genes involved in calcification, response to acidification, and symbiosis; population genetic differentiation in dinoflagellate photosymbionts; and consistent transcriptional microbiome activity despite microbial community shifts. Coral holobionts from natural analogues to future ocean conditions harbor beneficial genetic variants with far-reaching rapid adaptation potential. In the face of climate change, these populations require immediate conservation strategies as they could become key to coral reef survival.
Collapse
Affiliation(s)
- Carlos Leiva
- University of Guam Marine Laboratory, 303 University Drive, 96923, Mangilao, Guam, USA.
| | - Rocío Pérez-Portela
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Sarah Lemer
- University of Guam Marine Laboratory, 303 University Drive, 96923, Mangilao, Guam, USA
| |
Collapse
|
7
|
Yao S, Li L, Guan X, He Y, Jouaux A, Xu F, Guo X, Zhang G, Zhang L. Pooled resequencing of larvae and adults reveals genomic variations associated with Ostreid herpesvirus 1 resistance in the Pacific oyster Crassostrea gigas. Front Immunol 2022; 13:928628. [PMID: 36059443 PMCID: PMC9437489 DOI: 10.3389/fimmu.2022.928628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022] Open
Abstract
The Ostreid herpesvirus 1 (OsHV-1) is a lethal pathogen of the Pacific oyster (Crassostrea gigas), an important aquaculture species. To understand the genetic architecture of the defense against the pathogen, we studied genomic variations associated with herpesvirus-caused mortalities by pooled whole-genome resequencing of before and after-mortality larval samples as well as dead and surviving adults from a viral challenge. Analysis of the resequencing data identified 5,271 SNPs and 1,883 genomic regions covering 3,111 genes in larvae, and 18,692 SNPs and 28,314 regions covering 4,863 genes in adults that were significantly associated with herpesvirus-caused mortalities. Only 1,653 of the implicated genes were shared by larvae and adults, suggesting that the antiviral response or resistance in larvae and adults involves different sets of genes or differentiated members of expanded gene families. Combined analyses with previous transcriptomic data from challenge experiments revealed that transcription of many mortality-associated genes was also significantly upregulated by herpesvirus infection confirming their importance in antiviral response. Key immune response genes especially those encoding antiviral receptors such as TLRs and RLRs displayed strong association between variation in regulatory region and herpesvirus-caused mortality, suggesting they may confer resistance through transcriptional modulation. These results point to previously undescribed genetic mechanisms for disease resistance at different developmental stages and provide candidate polymorphisms and genes that are valuable for understanding antiviral immune responses and breeding for herpesvirus resistance.
Collapse
Affiliation(s)
- Shanshan Yao
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Li Li
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, College of Marine Science, Beijing, China
| | - Xudong Guan
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yan He
- Ministry of Education (MOE) Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Aude Jouaux
- UMR BOREA, “Biologie des Organismes et Ecosystèmes Aquatiques”, MNHN, UPMC, UCBN, CNRS-7208, IRD, Université de Caen Basse-Normandie, Esplanade de la Paix, Caen, France
| | - Fei Xu
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, Port Norris, NJ, United States
| | - Guofan Zhang
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, College of Marine Science, Beijing, China
| | - Linlin Zhang
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, College of Marine Science, Beijing, China
| |
Collapse
|
8
|
Fietzke J, Wall M. Distinct fine-scale variations in calcification control revealed by high-resolution 2D boron laser images in the cold-water coral Lophelia pertusa. SCIENCE ADVANCES 2022; 8:eabj4172. [PMID: 35302850 PMCID: PMC8932653 DOI: 10.1126/sciadv.abj4172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/26/2022] [Indexed: 05/18/2023]
Abstract
Coral calcification is a complex biologically controlled process of hard skeleton formation, and it is influenced by environmental conditions. The chemical composition of coral skeletons responds to calcification conditions and can be used to gain insights into both the control asserted by the organism and the environment. Boron and its isotopic composition have been of particular interest because of links to carbon chemistry and pH. In this study, we acquired high-resolution boron images (concentration and isotopes) in a skeleton sample of the azooxanthellate cold-water coral Lophelia pertusa. We observed high boron variability at a small spatial scale related to skeletal structure. This implies differences in calcification control during different stages of skeleton formation. Our data point to bicarbonate active transport as a critical pathway during early skeletal growth, and the variable activity rates explain the majority of the observed boron systematic.
Collapse
Affiliation(s)
- Jan Fietzke
- GEOMAR Helmholtz Center for Ocean Research Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany
- Corresponding author.
| | - Marlene Wall
- GEOMAR Helmholtz Center for Ocean Research Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), Am Handelshafen 12, 27570 Bremerhaven, Germany
| |
Collapse
|
9
|
Takahashi-Kariyazono S, Terai Y. Two divergent haplogroups of a sacsin-like gene in Acropora corals. Sci Rep 2021; 11:23018. [PMID: 34837037 PMCID: PMC8626496 DOI: 10.1038/s41598-021-02386-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 11/08/2021] [Indexed: 11/24/2022] Open
Abstract
Reef-building corals are declining due to environmental changes. Sacsin is a member of the heat shock proteins and has been reported as a candidate protein associated with the stress response in Acropora corals. Recently, high nucleotide diversity and the persistence of two divergent haplogroups of sacsin-like genes in Acropora millepora have been reported. While it was not clear when the two haplogroups have split and whether the haplogroups have persisted in only A. millepora or the other lineages in the genus Acropora. In this study, we analyzed a genomic region containing a sacsin-like gene from Acropora and Montipora species. Higher nucleotide diversity in the sacsin-like gene compared with that of surrounding regions was also observed in A. digitifera. This nucleotide diversity is derived from two divergent haplogroups of a sacsin-like gene, which are present in at least three Acropora species. The origin of these two haplogroups can be traced back before the divergence of Acropora and Montipora (119 Ma). Although the link between exceptionally high genetic variation in sacsin-like genes and functional differences in sacsin-like proteins is not clear, the divergent haplogroups may respond differently to envionmental stressors and serve in the adaptive phsiological ecology of these keystone species.
Collapse
Affiliation(s)
- Shiho Takahashi-Kariyazono
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, 240-0193, Japan.
| | - Yohey Terai
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, 240-0193, Japan.
| |
Collapse
|
10
|
Alderdice R, Pernice M, Cárdenas A, Hughes DJ, Harrison PL, Boulotte N, Chartrand K, Kühl M, Suggett DJ, Voolstra CR. Hypoxia as a physiological cue and pathological stress for coral larvae. Mol Ecol 2021; 31:571-587. [PMID: 34716959 DOI: 10.1111/mec.16259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 11/30/2022]
Abstract
Ocean deoxygenation events are intensifying worldwide and can rapidly drive adult corals into a state of metabolic crisis and bleaching-induced mortality, but whether coral larvae are subject to similar stress remains untested. We experimentally exposed apo-symbiotic coral larvae of Acropora selago to deoxygenation stress with subsequent reoxygenation aligned to their night-day light cycle, and followed their gene expression using RNA-Seq. After 12 h of deoxygenation stress (~2 mg O2 /L), coral planulae demonstrated a low expression of HIF-targeted hypoxia response genes concomitant with a significantly high expression of PHD2 (a promoter of HIFα proteasomal degradation), similar to corresponding adult corals. Despite exhibiting a consistent swimming phenotype compared to control samples, the differential gene expression observed in planulae exposed to deoxygenation-reoxygenation suggests a disruption of pathways involved in developmental regulation, mitochondrial activity, lipid metabolism, and O2 -sensitive epigenetic regulators. Importantly, we found that treated larvae exhibited a disruption in the expression of conserved HIF-targeted developmental regulators, for example, Homeobox (HOX) genes, corroborating how changes in external oxygen levels can affect animal development. We discuss how the observed deoxygenation responses may be indicative of a possible acclimation response or alternatively may imply negative latent impacts for coral larval fitness.
Collapse
Affiliation(s)
- Rachel Alderdice
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Mathieu Pernice
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Anny Cárdenas
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - David J Hughes
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Peter L Harrison
- Marine Ecology Research Centre, Southern Cross University, Lismore, NSW, Australia
| | - Nadine Boulotte
- Marine Ecology Research Centre, Southern Cross University, Lismore, NSW, Australia
| | - Katie Chartrand
- Centre of Tropical Water and Aquatic Ecosystem Research, James Cook University, Townsville, Qld, Australia
| | - Michael Kühl
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia.,Marine Biology Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - David J Suggett
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | | |
Collapse
|
11
|
Fifer J, Bentlage B, Lemer S, Fujimura AG, Sweet M, Raymundo LJ. Going with the flow: How corals in high-flow environments can beat the heat. Mol Ecol 2021; 30:2009-2024. [PMID: 33655552 DOI: 10.1111/mec.15869] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 01/28/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022]
Abstract
Coral reefs are experiencing unprecedented declines in health on a global scale leading to severe reductions in coral cover. One major cause of this decline is increasing sea surface temperature. However, conspecific colonies separated by even small spatial distances appear to show varying responses to this global stressor. One factor contributing to differential responses to heat stress is variability in the coral's micro-environment, such as the amount of water flow a coral experiences. High flow provides corals with a variety of health benefits, including heat stress mitigation. Here, we investigate how water flow affects coral gene expression and provides resilience to increasing temperatures. We examined host and photosymbiont gene expression of Acropora cf. pulchra colonies in discrete in situ flow environments during a natural bleaching event. In addition, we conducted controlled ex situ tank experiments where we exposed A. cf. pulchra to different flow regimes and acute heat stress. Notably, we observed distinct flow-driven transcriptomic signatures related to energy expenditure, growth, heterotrophy and a healthy coral host-photosymbiont relationship. We also observed disparate transcriptomic responses during bleaching recovery between the high- and low-flow sites. Additionally, corals exposed to high flow showed "frontloading" of specific heat-stress-related genes such as heat shock proteins, antioxidant enzymes, genes involved in apoptosis regulation, innate immunity and cell adhesion. We posit that frontloading is a result of increased oxidative metabolism generated by the increased water movement. Gene frontloading may at least partially explain the observation that colonies in high-flow environments show higher survival and/or faster recovery in response to bleaching events.
Collapse
Affiliation(s)
- James Fifer
- University of Guam Marine Laboratory, UOG Station, Mangilao, GU, USA.,Department of Biology, Boston University, Boston, MA, USA
| | - Bastian Bentlage
- University of Guam Marine Laboratory, UOG Station, Mangilao, GU, USA
| | - Sarah Lemer
- University of Guam Marine Laboratory, UOG Station, Mangilao, GU, USA
| | | | - Michael Sweet
- Aquatic Research Facility, Environmental Sustainability Research Centre, University of Derby, Derby, UK
| | - Laurie J Raymundo
- University of Guam Marine Laboratory, UOG Station, Mangilao, GU, USA
| |
Collapse
|
12
|
Rivera HE, Aichelman HE, Fifer JE, Kriefall NG, Wuitchik DM, Wuitchik SJS, Davies SW. A framework for understanding gene expression plasticity and its influence on stress tolerance. Mol Ecol 2021; 30:1381-1397. [PMID: 33503298 DOI: 10.1111/mec.15820] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/10/2020] [Accepted: 01/20/2021] [Indexed: 12/18/2022]
Abstract
Phenotypic plasticity can serve as a stepping stone towards adaptation. Recently, studies have shown that gene expression contributes to emergent stress responses such as thermal tolerance, with tolerant and susceptible populations showing distinct transcriptional profiles. However, given the dynamic nature of gene expression, interpreting transcriptomic results in a way that elucidates the functional connection between gene expression and the observed stress response is challenging. Here, we present a conceptual framework to guide interpretation of gene expression reaction norms in the context of stress tolerance. We consider the evolutionary and adaptive potential of gene expression reaction norms and discuss the influence of sampling timing, transcriptomic resilience, as well as complexities related to life history when interpreting gene expression dynamics and how these patterns relate to host tolerance. We highlight corals as a case study to demonstrate the value of this framework for non-model systems. As species face rapidly changing environmental conditions, modulating gene expression can serve as a mechanistic link from genetic and cellular processes to the physiological responses that allow organisms to thrive under novel conditions. Interpreting how or whether a species can employ gene expression plasticity to ensure short-term survival will be critical for understanding the global impacts of climate change across diverse taxa.
Collapse
Affiliation(s)
- Hanny E Rivera
- Department of Biology, Boston University, Boston, MA, USA
| | | | - James E Fifer
- Department of Biology, Boston University, Boston, MA, USA
| | | | | | - Sara J S Wuitchik
- Department of Biology, Boston University, Boston, MA, USA.,FAS Informatics, Harvard University, Cambridge, MA, USA
| | - Sarah W Davies
- Department of Biology, Boston University, Boston, MA, USA
| |
Collapse
|
13
|
Leclère L, Nir TS, Bazarsky M, Braitbard M, Schneidman-Duhovny D, Gat U. Dynamic Evolution of the Cthrc1 Genes, a Newly Defined Collagen-Like Family. Genome Biol Evol 2020; 12:3957-3970. [PMID: 32022859 PMCID: PMC7058181 DOI: 10.1093/gbe/evaa020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2020] [Indexed: 12/11/2022] Open
Abstract
Collagen triple helix repeat containing protein 1 (Cthrc1) is a secreted glycoprotein reported to regulate collagen deposition and to be linked to the Transforming growth factor β/Bone morphogenetic protein and the Wnt/planar cell polarity pathways. It was first identified as being induced upon injury to rat arteries and was found to be highly expressed in multiple human cancer types. Here, we explore the phylogenetic and evolutionary trends of this metazoan gene family, previously studied only in vertebrates. We identify Cthrc1 orthologs in two distant cnidarian species, the sea anemone Nematostella vectensis and the hydrozoan Clytia hemisphaerica, both of which harbor multiple copies of this gene. We find that Cthrc1 clade-specific diversification occurred multiple times in cnidarians as well as in most metazoan clades where we detected this gene. Many other groups, such as arthropods and nematodes, have entirely lost this gene family. Most vertebrates display a single highly conserved gene, and we show that the sequence evolutionary rate of Cthrc1 drastically decreased within the gnathostome lineage. Interestingly, this reduction coincided with the origin of its conserved upstream neighboring gene, Frizzled 6 (FZD6), which in mice has been shown to functionally interact with Cthrc1. Structural modeling methods further reveal that the yet uncharacterized C-terminal domain of Cthrc1 is similar in structure to the globular C1q superfamily domain, also found in the C-termini of collagens VIII and X. Thus, our studies show that the Cthrc1 genes are a collagen-like family with a variable short collagen triple helix domain and a highly conserved C-terminal domain structure resembling the C1q family.
Collapse
Affiliation(s)
- Lucas Leclère
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| | - Tal S Nir
- Department of Cell and Developmental Biology, Silberman Life Sciences Institute, The Hebrew University of Jerusalem, Israel
| | - Michael Bazarsky
- Department of Cell and Developmental Biology, Silberman Life Sciences Institute, The Hebrew University of Jerusalem, Israel
| | - Merav Braitbard
- Department of Biochemistry, Silberman Life Sciences Institute, The Hebrew University of Jerusalem, Israel
| | - Dina Schneidman-Duhovny
- Department of Biochemistry, Silberman Life Sciences Institute, The Hebrew University of Jerusalem, Israel.,School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel
| | - Uri Gat
- Department of Cell and Developmental Biology, Silberman Life Sciences Institute, The Hebrew University of Jerusalem, Israel
| |
Collapse
|
14
|
Fuller ZL, Mocellin VJL, Morris LA, Cantin N, Shepherd J, Sarre L, Peng J, Liao Y, Pickrell J, Andolfatto P, Matz M, Bay LK, Przeworski M. Population genetics of the coral Acropora millepora: Toward genomic prediction of bleaching. Science 2020; 369:369/6501/eaba4674. [PMID: 32675347 DOI: 10.1126/science.aba4674] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 06/01/2020] [Indexed: 12/11/2022]
Abstract
Although reef-building corals are declining worldwide, responses to bleaching vary within and across species and are partly heritable. Toward predicting bleaching response from genomic data, we generated a chromosome-scale genome assembly for the coral Acropora millepora We obtained whole-genome sequences for 237 phenotyped samples collected at 12 reefs along the Great Barrier Reef, among which we inferred little population structure. Scanning the genome for evidence of local adaptation, we detected signatures of long-term balancing selection in the heat-shock co-chaperone sacsin We conducted a genome-wide association study of visual bleaching score for 213 samples, incorporating the polygenic score derived from it into a predictive model for bleaching in the wild. These results set the stage for genomics-based approaches in conservation strategies.
Collapse
Affiliation(s)
- Zachary L Fuller
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| | | | - Luke A Morris
- Australian Institute of Marine Science, Townsville, QLD, Australia.,AIMS@JCU, Australian Institute of Marine Science, College of Science and Engineering, James Cook University, Townsville, QLD, Australia.,College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Neal Cantin
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Jihanne Shepherd
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Luke Sarre
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Julie Peng
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Yi Liao
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.,Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | | | - Peter Andolfatto
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Mikhail Matz
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Line K Bay
- Australian Institute of Marine Science, Townsville, QLD, Australia.
| | - Molly Przeworski
- Department of Biological Sciences, Columbia University, New York, NY, USA. .,Department of Systems Biology, Columbia University, New York, NY, USA.,Program for Mathematical Genomics, Columbia University, New York, NY, USA
| |
Collapse
|
15
|
Glazier A, Herrera S, Weinnig A, Kurman M, Gómez CE, Cordes E. Regulation of ion transport and energy metabolism enables certain coral genotypes to maintain calcification under experimental ocean acidification. Mol Ecol 2020; 29:1657-1673. [PMID: 32286706 DOI: 10.1111/mec.15439] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 12/23/2022]
Abstract
Cold-water corals (CWCs) are important foundation species in the world's largest ecosystem, the deep sea. They support a rich faunal diversity but are threatened by climate change and increased ocean acidification. As part of this study, fragments from three genetically distinct Lophelia pertusa colonies were subjected to ambient pH (pH = 7.9) and low pH (pH = 7.6) for six months. RNA was sampled at two, 4.5, and 8.5 weeks and sequenced. The colony from which the fragments were sampled explained most of the variance in expression patterns, but a general pattern emerged where upregulation of ion transport, required to maintain normal function and calcification, was coincident with lowered expression of genes involved in metabolic processes; RNA regulation and processing in particular. Furthermore, there was no differential expression of carbonic anhydrase detected in any analyses, which agrees with a previously described lack of response in enzyme activity in the same corals. However, one colony was able to maintain calcification longer than the other colonies when exposed to low pH and showed increased expression of ion transport genes including proton transport and expression of genes associated with formation of microtubules and the organic matrix, suggesting that certain genotypes may be better equipped to cope with ocean acidification in the future. While these genotypes exist in the contemporary gene pool, further stresses would reduce the genetic variability of the species, which would have repercussions for the maintenance of existing populations and the ecosystem as a whole.
Collapse
Affiliation(s)
- Amanda Glazier
- Biology Department, Temple University, Philadelphia, PA, USA
| | - Santiago Herrera
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Alexis Weinnig
- Biology Department, Temple University, Philadelphia, PA, USA
| | - Melissa Kurman
- Biology Department, Temple University, Philadelphia, PA, USA.,First Hand, University City Science Center Philadelphia, PA, USA
| | - Carlos E Gómez
- Biology Department, Temple University, Philadelphia, PA, USA.,Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Erik Cordes
- Biology Department, Temple University, Philadelphia, PA, USA
| |
Collapse
|
16
|
Wuitchik DM, Wang D, Pells TJ, Karimi K, Ward S, Vize PD. Seasonal temperature, the lunar cycle and diurnal rhythms interact in a combinatorial manner to modulate genomic responses to the environment in a reef-building coral. Mol Ecol 2019; 28:3629-3641. [PMID: 31294494 PMCID: PMC6851572 DOI: 10.1111/mec.15173] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 06/14/2019] [Accepted: 06/28/2019] [Indexed: 12/15/2022]
Abstract
Rhythms of various periodicities drive cyclical processes in organisms ranging from single cells to the largest mammals on earth, and on scales from cellular physiology to global migrations. The molecular mechanisms that generate circadian behaviours in model organisms have been well studied, but longer phase cycles and interactions between cycles with different periodicities remain poorly understood. Broadcast spawning corals are one of the best examples of an organism integrating inputs from multiple environmental parameters, including seasonal temperature, the lunar phase and hour of the day, to calibrate their annual reproductive event. We present a deep RNA-sequencing experiment utilizing multiple analyses to differentiate transcriptomic responses modulated by the interactions between the three aforementioned environmental parameters. Acropora millepora was sampled over multiple 24-hr periods throughout a full lunar month and at two seasonal temperatures. Temperature, lunar and diurnal cycles produce distinct transcriptomic responses, with interactions between all three variables identifying a core set of genes. These core genes include mef2, a developmental master regulator, and two heterogeneous nuclear ribonucleoproteins, one of which is known to post-transcriptionally interact with mef2 and with biological clock-regulating mRNAs. Interactions between diurnal and temperature differences impacted a range of core processes ranging from biological clocks to stress responses. Genes involved with developmental processes and transcriptional regulation were impacted by the lunar phase and seasonal temperature differences. Lastly, there was a diurnal and lunar phase interaction in which genes involved with RNA-processing and translational regulation were differentially regulated. These data illustrate the extraordinary levels of transcriptional variation across time in a simple radial cnidarian in response to the environment under normal conditions.
Collapse
Affiliation(s)
- Daniel M Wuitchik
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - DongZhuo Wang
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Troy J Pells
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Kamran Karimi
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Selina Ward
- Department of Biological Sciences, The University of Queensland, St. Lucia, Qld, Australia
| | - Peter D Vize
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.,Department of Biological Sciences, The University of Queensland, St. Lucia, Qld, Australia
| |
Collapse
|
17
|
Durante MK, Baums IB, Williams DE, Vohsen S, Kemp DW. What drives phenotypic divergence among coral clonemates of Acropora palmata? Mol Ecol 2019; 28:3208-3224. [PMID: 31282031 PMCID: PMC6852117 DOI: 10.1111/mec.15140] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/16/2022]
Abstract
Evolutionary rescue of populations depends on their ability to produce phenotypic variation that is heritable and adaptive. DNA mutations are the best understood mechanisms to create phenotypic variation, but other, less well-studied mechanisms exist. Marine benthic foundation species provide opportunities to study these mechanisms because many are dominated by isogenic stands produced through asexual reproduction. For example, Caribbean acroporid corals are long lived and reproduce asexually via breakage of branches. Fragmentation is often the dominant mode of local population maintenance. Thus, large genets with many ramets (colonies) are common. Here, we observed phenotypic variation in stress responses within genets following the coral bleaching events in 2014 and 2015 caused by high water temperatures. This was not due to genetic variation in their symbiotic dinoflagellates (Symbiodinium "fitti") because each genet of this coral species typically harbours a single strain of S. "fitti". Characterization of the microbiome via 16S tag sequencing correlated the abundance of only two microbiome members (Tepidiphilus, Endozoicomonas) with a bleaching response. Epigenetic changes were significantly correlated with the host's genetic background, the location of the sampled polyps within the colonies (e.g., branch vs. base of colony), and differences in the colonies' condition during the bleaching event. We conclude that long-term microenvironmental differences led to changes in the way the ramets methylated their genomes, contributing to the differential bleaching response. However, most of the variation in differential bleaching response among clonemates of Acropora palmata remains unexplained. This research provides novel data and hypotheses to help understand intragenet variability in stress phenotypes of sessile marine species.
Collapse
Affiliation(s)
| | | | - Dana E. Williams
- National Oceanic and Atmospheric AdministrationSoutheast Fisheries Science CenterMiamiFLUSA
| | - Sam Vohsen
- The Pennsylvania State UniversityUniversity ParkPAUSA
| | - Dustin W. Kemp
- The Pennsylvania State UniversityUniversity ParkPAUSA
- Present address:
University of Alabama at BirminghamBirminghamALUSA
| |
Collapse
|
18
|
Conlan JA, Humphrey CA, Severati A, Francis DS. Intra-colonial diversity in the scleractinian coral, Acropora millepora: identifying the nutritional gradients underlying physiological integration and compartmentalised functioning. PeerJ 2018; 6:e4239. [PMID: 29404204 PMCID: PMC5793706 DOI: 10.7717/peerj.4239] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/16/2017] [Indexed: 11/30/2022] Open
Abstract
Scleractinian corals are colonial organisms comprising multiple physiologically integrated polyps and branches. Colonialism in corals is highly beneficial, and allows a single colony to undergo several life processes at once through physiological integration and compartmentalised functioning. Elucidating differences in the biochemical composition of intra-colonial branch positions will provide valuable insight into the nutritional reserves underlying different regions in individual coral colonies. This will also ascertain prudent harvesting strategies of wild donor-colonies to generate coral stock with high survival and vigour prospects for reef-rehabilitation efforts and captive husbandry. This study examined the effects of colony branch position on the nutritional profile of two different colony sizes of the common scleractinian, Acropora millepora. For smaller colonies, branches were sampled at three locations: the colony centre (S-centre), 50% of the longitudinal radius length (LRL) (S-50), and the colony edge (S-edge). For larger colonies, four locations were sampled: the colony centre (L-centre), 33.3% of the LRL (L-33), 66.6% of the LRL (L-66), and the edge (L-edge). Results demonstrate significant branch position effects, with the edge regions containing higher protein, likely due to increased tissue synthesis and calcification. Meanwhile, storage lipid and total fatty acid concentrations were lower at the edges, possibly reflecting catabolism of high-energy nutrients to support proliferating cells. Results also showed a significant effect of colony size in the two classes examined. While the major protein and structural lipid sink was exhibited at the edge for both sizes, the major sink for high-energy lipids and fatty acids appeared to be the L-66 position of the larger colonies and the S-centre and S-50 positions for the smaller colonies. These results confirm that the scleractinian coral colony is not nutritionally homogeneous, and while different regions of the coral colony are functionally specialised, so too are their nutritional profiles geared toward meeting specific energetic demands.
Collapse
Affiliation(s)
- Jessica A Conlan
- School of Life and Environmental Sciences, Deakin University, Warrnambool, Victoria, Australia
| | - Craig A Humphrey
- The National Sea Simulator, Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Andrea Severati
- The National Sea Simulator, Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - David S Francis
- School of Life and Environmental Sciences, Deakin University, Warrnambool, Victoria, Australia
| |
Collapse
|
19
|
Ben-Ari H, Paz M, Sher D. The chemical armament of reef-building corals: inter- and intra-specific variation and the identification of an unusual actinoporin in Stylophora pistilata. Sci Rep 2018; 8:251. [PMID: 29321526 PMCID: PMC5762905 DOI: 10.1038/s41598-017-18355-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 12/04/2017] [Indexed: 01/20/2023] Open
Abstract
Corals, like other cnidarians, are venomous animals that rely on stinging cells (nematocytes) and their toxins to catch prey and defend themselves against predators. However, little is known about the chemical arsenal employed by stony corals, despite their ecological importance. Here, we show large differences in the density of nematocysts and whole-body hemolytic activity between different species of reef-building corals. In the branched coral Stylophora pistillata, the tips of the branches exhibited a greater hemolytic activity than the bases. Hemolytic activity and nematocyst density were significantly lower in Stylophora that were maintained for close to a year in captivity compared to corals collected from the wild. A cysteine-containing actinoporin was identified in Stylophora following partial purification and tandem mass spectrometry. This toxin, named Δ-Pocilopotoxin-Spi1 (Δ-PCTX-Spi1) is the first hemolytic toxin to be partially isolated and characterized in true reef-building corals. Loss of hemolytic activity during chromatography suggests that this actinoporin is only one of potentially several hemolytic molecules. These results suggest that the capacity to employ offensive and defensive chemicals by corals is a dynamic trait within and between coral species, and provide a first step towards identifying the molecular components of the coral chemical armament.
Collapse
Affiliation(s)
- Hanit Ben-Ari
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.,The Interuniversity Institute for Marine Sciences, Eilat, Israel
| | - Moran Paz
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Daniel Sher
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
20
|
Smith H, Epstein H, Torda G. The molecular basis of differential morphology and bleaching thresholds in two morphs of the coral Pocillopora acuta. Sci Rep 2017; 7:10066. [PMID: 28855618 PMCID: PMC5577224 DOI: 10.1038/s41598-017-10560-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/10/2017] [Indexed: 11/24/2022] Open
Abstract
Processes of cnidarian evolution, including hybridization and phenotypic plasticity, have complicated the clear diagnosis of species boundaries within the phylum. Pocillopora acuta, a species of scleractinian coral that was recently split from the widespread Pocillopora damicornis species complex, occurs in at least two distinct morphs on the Great Barrier Reef. Contrasting morphology combined with evidence of differential bleaching thresholds among sympatrically distributed colonies suggest that the taxonomy of this recently described species is not fully resolved and may represent its own species complex. To examine the basis of sympatric differentiation between the two morphs, we combined analyses of micro- and macro-skeletal morphology with genome wide sequencing of the coral host, as well as ITS2 genotyping of the associated Symbiodinium communities. We found consistent differences between morphs on both the macro- and micro-skeletal scale. In addition, we identified 18 candidate functional genes that relate to skeletal formation and morphology that may explain how the two morphs regulate growth to achieve their distinct growth forms. With inconclusive results in endosymbiotic algal community diversity between the two morphs, we propose that colony morphology may be linked to bleaching susceptibility. We conclude that cryptic speciation may be in the early stages within the species P. acuta.
Collapse
Affiliation(s)
- Hillary Smith
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia. .,Australian Institute of Marine Science, PMB 3, Townsville, Queensland 4810, Australia. .,College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia. .,AIMS@JCU, James Cook University, Townsville, Queensland 4811, Australia.
| | - Hannah Epstein
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia.,Australian Institute of Marine Science, PMB 3, Townsville, Queensland 4810, Australia.,College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia.,AIMS@JCU, James Cook University, Townsville, Queensland 4811, Australia
| | - Gergely Torda
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia.,Australian Institute of Marine Science, PMB 3, Townsville, Queensland 4810, Australia
| |
Collapse
|
21
|
Conlan JA, Rocker MM, Francis DS. A comparison of two common sample preparation techniques for lipid and fatty acid analysis in three different coral morphotypes reveals quantitative and qualitative differences. PeerJ 2017; 5:e3645. [PMID: 28785524 PMCID: PMC5544933 DOI: 10.7717/peerj.3645] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/13/2017] [Indexed: 01/07/2023] Open
Abstract
Lipids are involved in a host of biochemical and physiological processes in corals. Therefore, changes in lipid composition reflect changes in the ecology, nutrition, and health of corals. As such, accurate lipid extraction, quantification, and identification is critical to obtain comprehensive insight into a coral’s condition. However, discrepancies exist in sample preparation methodology globally, and it is currently unknown whether these techniques generate analogous results. This study compared the two most common sample preparation techniques for lipid analysis in corals: (1) tissue isolation by air-spraying and (2) crushing the coral in toto. Samples derived from each preparation technique were subsequently analysed to quantify lipids and their constituent classes and fatty acids in four common, scleractinian coral species representing three distinct morphotypes (Acropora millepora, Montipora crassotuberculata, Porites cylindrica, and Pocillopora damicornis). Results revealed substantial amounts of organic material, including lipids, retained in the skeletons of all species following air-spraying, causing a marked underestimation of total lipid concentration using this method. Moreover, lipid class and fatty acid compositions between the denuded skeleton and sprayed tissue were substantially different. In particular, the majority of the total triacylglycerol and total fatty acid concentrations were retained in the skeleton (55–69% and 56–64%, respectively). As such, the isolated, sprayed tissue cannot serve as a reliable proxy for lipid quantification or identification in the coral holobiont. The in toto crushing method is therefore recommended for coral sample preparation prior to lipid analysis to capture the lipid profile of the entire holobiont, permitting accurate diagnoses of coral condition.
Collapse
Affiliation(s)
- Jessica A Conlan
- School of Life and Environmental Sciences, Deakin University, Warrnambool, Victoria, Australia.,Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Melissa M Rocker
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - David S Francis
- School of Life and Environmental Sciences, Deakin University, Warrnambool, Victoria, Australia.,Australian Institute of Marine Science, Townsville, Queensland, Australia
| |
Collapse
|
22
|
Babonis LS, Martindale MQ. Phylogenetic evidence for the modular evolution of metazoan signalling pathways. Philos Trans R Soc Lond B Biol Sci 2017; 372:20150477. [PMID: 27994120 PMCID: PMC5182411 DOI: 10.1098/rstb.2015.0477] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2016] [Indexed: 12/12/2022] Open
Abstract
Communication among cells was paramount to the evolutionary increase in cell type diversity and, ultimately, the origin of large body size. Across the diversity of Metazoa, there are only few conserved cell signalling pathways known to orchestrate the complex cell and tissue interactions regulating development; thus, modification to these few pathways has been responsible for generating diversity during the evolution of animals. Here, we summarize evidence for the origin and putative function of the intracellular, membrane-bound and secreted components of seven metazoan cell signalling pathways with a special focus on early branching metazoans (ctenophores, poriferans, placozoans and cnidarians) and basal unikonts (amoebozoans, fungi, filastereans and choanoflagellates). We highlight the modular incorporation of intra- and extracellular components in each signalling pathway and suggest that increases in the complexity of the extracellular matrix may have further promoted the modulation of cell signalling during metazoan evolution. Most importantly, this updated view of metazoan signalling pathways highlights the need for explicit study of canonical signalling pathway components in taxa that do not operate a complete signalling pathway. Studies like these are critical for developing a deeper understanding of the evolution of cell signalling.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.
Collapse
Affiliation(s)
- Leslie S Babonis
- Whitney Lab for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
| | - Mark Q Martindale
- Whitney Lab for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
| |
Collapse
|
23
|
Kitchen SA, Weis VM. The sphingosine rheostat is involved in the cnidarian heat stress response but not necessarily in bleaching. J Exp Biol 2017; 220:1709-1720. [DOI: 10.1242/jeb.153858] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 02/16/2017] [Indexed: 12/17/2022]
Abstract
Sphingolipids play important roles in mitigating cellular heat and oxidative stress by altering membrane fluidity, receptor clustering and gene expression. Accumulation of signaling sphingolipids that comprise the sphingosine rheostat, pro-apoptotic sphingosine (Sph) and pro-survival sphingosine-1-phosphate (S1P), is key to determining cell fate. Reef-building corals and other symbiotic cnidarians living in shallow tropical waters can experience elevated seawater temperature and high UV irradiance, two stressors that are increasing in frequency and severity with climate change. In symbiotic cnidarians, these stressors disrupt the photosynthetic machinery of the endosymbiont and ultimately result in the collapse of the partnership (dysbiosis), known as cnidarian bleaching. In a previous study, exogenously applied sphingolipids altered heat-induced bleaching in the symbiotic anemone Aiptasia pallida, but endogenous regulation of these lipids is unknown. Here, we characterized the role of the rheostat in the cnidarian heat stress response (HSR) and in dysbiosis. Gene expression of rheostat enzymes sphingosine kinase (AP-SPHK) and S1P phosphatase (AP-SGPP), and concentrations of sphingolipids were quantified from anemones incubated at elevated temperatures. We observed a biphasic HSR in A. pallida. At early exposure, rheostat gene expression and lipid levels were suppressed while gene expression of a heat stress biomarker increased and 40% of symbionts were lost. After longer incubations at the highest temperature, AP-SGPP and then Sph levels both increased. These results indicate that the sphingosine rheostat in A. pallida does not participate in initiation of dysbiosis, but instead functions in the chronic response to prolonged heat stress that promotes host survival.
Collapse
Affiliation(s)
- Sheila A. Kitchen
- Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, OR 97331, USA
| | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, OR 97331, USA
| |
Collapse
|
24
|
Louis YD, Bhagooli R, Kenkel CD, Baker AC, Dyall SD. Gene expression biomarkers of heat stress in scleractinian corals: Promises and limitations. Comp Biochem Physiol C Toxicol Pharmacol 2017; 191:63-77. [PMID: 27585119 DOI: 10.1016/j.cbpc.2016.08.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/02/2016] [Accepted: 08/21/2016] [Indexed: 12/13/2022]
Abstract
Gene expression biomarkers (GEBs) are emerging as powerful diagnostic tools for identifying and characterizing coral stress. Their capacity to detect sublethal stress prior to the onset of signs at the organismal level that might already indicate significant damage makes them more precise and proactive compared to traditional monitoring techniques. A high number of candidate GEBs, including certain heat shock protein genes, metabolic genes, oxidative stress genes, immune response genes, ion transport genes, and structural genes have been investigated, and some genes, including hsp16, Cacna1, MnSOD, SLC26, and Nf-kB, are already showing excellent potential as reliable indicators of thermal stress in corals. In this mini-review, we synthesize the current state of knowledge of scleractinian coral GEBs and highlight gaps in our understanding that identify directions for future work. We also address the underlying sources of variation that have sometimes led to contrasting results between studies, such as differences in experimental set-up and approach, intrinsic variation in the expression profiles of different experimental organisms (such as between different colonies or their algal symbionts), diel cycles, varying thermal history, and different expression thresholds. Despite advances in our understanding there is still no universally accepted biomarker of thermal stress, the molecular response of corals to heat stress is still unclear, and biomarker research in Symbiodinium still lags behind that of the host. These gaps should be addressed in future work.
Collapse
Affiliation(s)
- Yohan D Louis
- Department of Biosciences, Faculty of Science, University of Mauritius, Réduit 80837, Mauritius
| | - Ranjeet Bhagooli
- Department of Marine & Ocean Science, Fisheries & Mariculture, Faculty of Ocean Studies, University of Mauritius, Réduit 80837, Mauritius.
| | - Carly D Kenkel
- Australian Institute of Marine Science, PMB No. 3, Townsville MC, QLD 4810, Australia
| | - Andrew C Baker
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy., Miami, FL, USA
| | - Sabrina D Dyall
- Department of Biosciences, Faculty of Science, University of Mauritius, Réduit 80837, Mauritius
| |
Collapse
|
25
|
Addamo AM, Vertino A, Stolarski J, García-Jiménez R, Taviani M, Machordom A. Merging scleractinian genera: the overwhelming genetic similarity between solitary Desmophyllum and colonial Lophelia. BMC Evol Biol 2016; 16:108. [PMID: 27193263 PMCID: PMC4870751 DOI: 10.1186/s12862-016-0654-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/12/2016] [Indexed: 12/16/2022] Open
Abstract
Background In recent years, several types of molecular markers and new microscale skeletal characters have shown potential as powerful tools for phylogenetic reconstructions and higher-level taxonomy of scleractinian corals. Nonetheless, discrimination of closely related taxa is still highly controversial in scleractinian coral research. Here we used newly sequenced complete mitochondrial genomes and 30 microsatellites to define the genetic divergence between two closely related azooxanthellate taxa of the family Caryophylliidae: solitary Desmophyllum dianthus and colonial Lophelia pertusa. Results In the mitochondrial control region, an astonishing 99.8 % of nucleotides between L. pertusa and D. dianthus were identical. Variability of the mitochondrial genomes of the two species is represented by only 12 non-synonymous out of 19 total nucleotide substitutions. Microsatellite sequence (37 loci) analysis of L. pertusa and D. dianthus showed genetic similarity is about 97 %. Our results also indicated that L. pertusa and D. dianthus show high skeletal plasticity in corallum shape and similarity in skeletal ontogeny, micromorphological (septal and wall granulations) and microstructural characters (arrangement of rapid accretion deposits, thickening deposits). Conclusions Molecularly and morphologically, the solitary Desmophyllum and the dendroid Lophelia appear to be significantly more similar to each other than other unambiguous coral genera analysed to date. This consequently leads to ascribe both taxa under the generic name Desmophyllum (priority by date of publication). Findings of this study demonstrate that coloniality may not be a robust taxonomic character in scleractinian corals. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0654-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Maria Addamo
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Agostina Vertino
- Dipartimento di Scienze dell'Ambiente e del Territorio e di Scienze della Terra, Università di Milano Bicocca (UNIMIB), Piazza della Scienza 4, 20126, Milan, Italy.,Department of Geology Renard Centre of Marine Geology, Universiteit Ghent, Krijgslaan 281, B-9000, Ghent, Belgium
| | - Jaroslaw Stolarski
- Polskiej Akademii Nauk, Instytut Paleobiologii, Twarda 51/55, PL-00-818, Warsaw, Poland
| | - Ricardo García-Jiménez
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Marco Taviani
- Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine (ISMAR), Via Gobetti 101, 40129, Bologna, Italy.,Biology Department, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, 02543, MA, USA.,Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Annie Machordom
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006, Madrid, Spain.
| |
Collapse
|
26
|
Maor-Landaw K, Levy O. Gene expression profiles during short-term heat stress; branching vs. massive Scleractinian corals of the Red Sea. PeerJ 2016; 4:e1814. [PMID: 27069783 PMCID: PMC4824894 DOI: 10.7717/peerj.1814] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/24/2016] [Indexed: 11/20/2022] Open
Abstract
It is well-established that there is a hierarchy of susceptibilities amongst coral genera during heat-stress. However, molecular mechanisms governing these differences are still poorly understood. Here we explored if specific corals possessing different morphologies and different susceptibilities to heat stress may manifest varied gene expression patterns. We examined expression patterns of seven genes in the branching corals Stylophora pistillata and Acropora eurystoma and additionally in the massive robust coral, Porites sp. The tested genes are representatives of key cellular processes occurring during heat-stress in Cnidaria: oxidative stress, ER stress, energy metabolism, DNA repair and apoptosis. Varied response to the heat-stress, in terms of visual coral paling, algal maximum quantum yield and host gene expression was evident in the different growth forms. The two branching corals exhibited similar overall responses that differed from that of the massive coral. A. eurystoma that is considered as a susceptible species did not bleach in our experiment, but tissue sloughing was evident at 34 °C. Interestingly, in this species redox regulation genes were up-regulated at the very onset of the thermal challenge. In S. pistillata, bleaching was evident at 34 °C and most of the stress markers were already up-regulated at 32 °C, either remaining highly expressed or decreasing when temperatures reached 34 °C. The massive Porites species displayed severe bleaching at 32 °C but stress marker genes were only significantly elevated at 34 °C. We postulate that by expelling the algal symbionts from Porites tissues, oxidation damages are reduced and stress genes are activated only at a progressed stage. The differential gene expression responses exhibited here can be correlated with the literature well-documented hierarchy of susceptibilities amongst coral morphologies and genera in Eilat’s coral reef.
Collapse
Affiliation(s)
- Keren Maor-Landaw
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University , Ramat Gan , Israel
| | - Oren Levy
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University , Ramat Gan , Israel
| |
Collapse
|
27
|
McGrath LL, Vollmer SV, Kaluziak ST, Ayers J. De novo transcriptome assembly for the lobster Homarus americanus and characterization of differential gene expression across nervous system tissues. BMC Genomics 2016; 17:63. [PMID: 26772543 PMCID: PMC4715275 DOI: 10.1186/s12864-016-2373-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 01/06/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The American lobster, Homarus americanus, is an important species as an economically valuable fishery, a key member in marine ecosystems, and a well-studied model for central pattern generation, the neural networks that control rhythmic motor patterns. Despite multi-faceted scientific interest in this species, currently our genetic resources for the lobster are limited. In this study, we de novo assemble a transcriptome for Homarus americanus using central nervous system (CNS), muscle, and hybrid neurosecretory tissues and compare gene expression across these tissue types. In particular, we focus our analysis on genes relevant to central pattern generation and the identity of the neurons in a neural network, which is defined by combinations of genes distinguishing the neuronal behavior and phenotype, including ion channels, neurotransmitters, neuromodulators, receptors, transcription factors, and other gene products. RESULTS Using samples from the central nervous system (brain, abdominal ganglia), abdominal muscle, and heart (cardiac ganglia, pericardial organs, muscle), we used RNA-Seq to characterize gene expression patterns across tissues types. We also compared control tissues with those challenged with the neuropeptide proctolin in vivo. Our transcriptome generated 34,813 transcripts with known protein annotations. Of these, 5,000-10,000 of annotated transcripts were significantly differentially expressed (DE) across tissue types. We found 421 transcripts for ion channels and identified receptors and/or proteins for over 20 different neurotransmitters and neuromodulators. Results indicated tissue-specific expression of select neuromodulator (allostatin, myomodulin, octopamine, nitric oxide) and neurotransmitter (glutamate, acetylcholine) pathways. We also identify differential expression of ion channel families, including kainite family glutamate receptors, inward-rectifying K(+) (IRK) channels, and transient receptor potential (TRP) A family channels, across central pattern generating tissues. CONCLUSIONS Our transcriptome-wide profiles of the rhythmic pattern generating abdominal and cardiac nervous systems in Homarus americanus reveal candidates for neuronal features that drive the production of motor output in these systems.
Collapse
Affiliation(s)
- Lara Lewis McGrath
- Northeastern University Marine Science Center, 430 Nahant Rd, Nahant, MA, 01908, USA. .,Current address: AstraZeneca, 35 Gatehouse Dr, Waltham, MA, 02451, USA.
| | - Steven V Vollmer
- Northeastern University Marine Science Center, 430 Nahant Rd, Nahant, MA, 01908, USA.
| | - Stefan T Kaluziak
- Northeastern University Marine Science Center, 430 Nahant Rd, Nahant, MA, 01908, USA.
| | - Joseph Ayers
- Northeastern University Marine Science Center, 430 Nahant Rd, Nahant, MA, 01908, USA.
| |
Collapse
|
28
|
Hemond EM, Vollmer SV. Diurnal and nocturnal transcriptomic variation in the Caribbean staghorn coral,
Acropora cervicornis. Mol Ecol 2015; 24:4460-73. [DOI: 10.1111/mec.13320] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 06/26/2015] [Accepted: 07/10/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Elizabeth M. Hemond
- Northeastern University Marine Science Center 430 Nahant Rd. Nahant MA 01908 USA
| | - Steven V. Vollmer
- Northeastern University Marine Science Center 430 Nahant Rd. Nahant MA 01908 USA
| |
Collapse
|
29
|
Barott KL, Perez SO, Linsmayer LB, Tresguerres M. Differential localization of ion transporters suggests distinct cellular mechanisms for calcification and photosynthesis between two coral species. Am J Physiol Regul Integr Comp Physiol 2015; 309:R235-46. [PMID: 26062631 DOI: 10.1152/ajpregu.00052.2015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 06/08/2015] [Indexed: 12/20/2022]
Abstract
Ion transport is fundamental for multiple physiological processes, including but not limited to pH regulation, calcification, and photosynthesis. Here, we investigated ion-transporting processes in tissues from the corals Acropora yongei and Stylophora pistillata, representatives of the complex and robust clades that diverged over 250 million years ago. Antibodies against complex IV revealed that mitochondria, an essential source of ATP for energetically costly ion transporters, were abundant throughout the tissues of A. yongei. Additionally, transmission electron microscopy revealed septate junctions in all cell layers of A. yongei, as previously reported for S. pistillata, as well as evidence for transcellular vesicular transport in calicoblastic cells. Antibodies against the alpha subunit of Na(+)/K(+)-ATPase (NKA) and plasma membrane Ca(2+)-ATPase (PMCA) immunolabeled cells in the calicoblastic epithelium of both species, suggesting conserved roles in calcification. However, NKA was abundant in the apical membrane of the oral epithelium in A. yongei but not S. pistillata, while PMCA was abundant in the gastroderm of S. pistillata but not A. yongei. These differences indicate that these two coral species utilize distinct pathways to deliver ions to the sites of calcification and photosynthesis. Finally, antibodies against mammalian sodium bicarbonate cotransporters (NBC; SLC4 family) resulted in strong immunostaining in the apical membrane of oral epithelial cells and in calicoblastic cells in A. yongei, a pattern identical to NKA. Characterization of ion transport mechanisms is an essential step toward understanding the cellular mechanisms of coral physiology and will help predict how different coral species respond to environmental stress.
Collapse
Affiliation(s)
- Katie L Barott
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California
| | - Sidney O Perez
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California
| | - Lauren B Linsmayer
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California
| | - Martin Tresguerres
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California
| |
Collapse
|