1
|
Kim B, Seo HW, Lee K, Yong D, Park YK, Lee Y, Lee S, Kim D, Kim D, Ryu C. Lipid Nanoparticle-Mediated CRISPR-Cas13a Delivery for the Control of Bacterial Infection. Adv Healthc Mater 2025; 14:e2403281. [PMID: 39580667 PMCID: PMC11912093 DOI: 10.1002/adhm.202403281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/10/2024] [Indexed: 11/26/2024]
Abstract
Lipid nanoparticles (LNPs) can assist in the delivery of nucleic acid inside animal cells, as demonstrated by their use in COVID-19 vaccine development. However, LNPs applicable to bacteria have not been reported. Here, the screening of 511 LNPs containing random combinations of different lipid components identified two LNPs, LNP 496 and LNP 470, that efficiently delivered plasmids into Escherichia coli BW25113. Since Gram-negative bacteria have lipid bilayers, the bacteria are pretreated with LNP-helper that weakens the bacterial membrane. The cationic lipid DOTAP improved delivery of LNP-encapsulated plasmid DNA when present at a molar ratio of 10-25 mol% in the LNP. LNP encapsulation of the Cas13a/gRNA expression vector controlled infection by a clinical Escherichia strain in Galleria mellonela larvae and mouse infection models when used in combination with non-cytotoxic concentrations of polymyxin B, a bacterial membrane disruptor. Together, the results show that LNPs can be useful as a delivery platform for agents that counteract pathogenic bacterial infections.
Collapse
Affiliation(s)
- Bookun Kim
- Infectious Disease Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeon34141Republic of Korea
| | - Hwi Won Seo
- Infectious Disease Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeon34141Republic of Korea
| | - Kyuri Lee
- College of Pharmacy and Research Institute of Pharmaceutical SciencesGyeongsang National UniversityJinju52828Republic of Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial ResistanceYonsei University College of MedicineSeoul03722Republic of Korea
| | - Yoon Kyung Park
- Department of Biomedical ScienceChosun UniversityGwangju501–759Republic of Korea
| | - Yujin Lee
- Infectious Disease Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeon34141Republic of Korea
| | - Solip Lee
- Infectious Disease Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeon34141Republic of Korea
| | - Do‐Wan Kim
- Infectious Disease Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeon34141Republic of Korea
| | - Dajeong Kim
- Infectious Disease Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeon34141Republic of Korea
| | - Choong‐Min Ryu
- Infectious Disease Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeon34141Republic of Korea
- Department of Pediatrics School of MedicineUniversity of California at San DiegoLa JollaCA92093USA
| |
Collapse
|
2
|
Chauhan SM, Ardalani O, Hyun JC, Monk JM, Phaneuf PV, Palsson BO. Decomposition of the pangenome matrix reveals a structure in gene distribution in the Escherichia coli species. mSphere 2025; 10:e0053224. [PMID: 39745367 PMCID: PMC11774025 DOI: 10.1128/msphere.00532-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/08/2024] [Indexed: 01/29/2025] Open
Abstract
Thousands of complete genome sequences for strains of a species that are now available enable the advancement of pangenome analytics to a new level of sophistication. We collected 2,377 publicly available complete genomes of Escherichia coli for detailed pangenome analysis. The core genome and accessory genomes consisted of 2,398 and 5,182 genes, respectively. We developed a machine learning approach to define the accessory genes characterizing the major phylogroups of E. coli plus Shigella: A, B1, B2, C, D, E, F, G, and Shigella. The analysis resulted in a detailed structure of the genetic basis of the phylogroups' differential traits. This pangenome structure was largely consistent with a housekeeping-gene-based MLST distribution, sequence-based Mash distance, and the Clermont quadruplex classification. The rare genome (consisting of genes found in <6.8% of all strains) consisted of 163,619 genes, about 79% of which represented variations of 315 underlying transposon elements. This analysis generated a mathematical definition of the genetic basis for a species. IMPORTANCE The comprehensive analysis of the pangenome of Escherichia coli presented in this study marks a significant advancement in understanding bacterial genetic diversity. By employing machine learning techniques to analyze 2,377 complete E. coli genomes, the study provides a detailed mapping of core, accessory, and rare genes. This approach reveals the genetic basis for differential traits across phylogroups, offering insights into pathogenicity, antibiotic resistance, and evolutionary adaptations. The findings enhance the potential for genome-based diagnostics and pave the way for future studies aimed at achieving a global genetic definition of bacterial phylogeny.
Collapse
Affiliation(s)
- Siddharth M. Chauhan
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Omid Ardalani
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Kongens, Lyngby, Denmark
| | - Jason C. Hyun
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Jonathan M. Monk
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Patrick V. Phaneuf
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Kongens, Lyngby, Denmark
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Kongens, Lyngby, Denmark
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, California, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
3
|
Wang F, Sun H, Kang C, Yan J, Chen J, Feng X, Yang B. Genomic island-encoded regulatory proteins in enterohemorrhagic Escherichia coli O157:H7. Virulence 2024; 15:2313407. [PMID: 38357901 PMCID: PMC10877973 DOI: 10.1080/21505594.2024.2313407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is an important zoonotic pathogen that is a major cause of foodborne diseases in most developed and developing countries and can cause uncomplicated diarrhoea, haemorrhagic colitis, and haemolytic uraemic syndrome. O islands (OIs), which are unique genomic islands in EHEC O157:H7, are composed of 177 isolated genomic features and harbour 26% of the total genes that are absent in the non-pathogenic E. coli K-12 genome. In the last twenty years, many OI-encoded proteins have been characterized, including proteins regulating virulence, motility, and acid resistance. Given the critical role of regulatory proteins in the systematic and hierarchical regulation of bacterial biological processes, this review summarizes the OI-encoded regulatory proteins in EHEC O157:H7 characterized to date, emphasizing OI-encoded regulatory proteins for bacterial virulence, motility, and acid resistance. This summary will be significant for further exploration and understanding of the virulence and pathogenesis of EHEC O157:H7.
Collapse
Affiliation(s)
- Fang Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Intensive Care Unit, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Hongmin Sun
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Chenbo Kang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Jun Yan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Jingnan Chen
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Xuequan Feng
- Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| |
Collapse
|
4
|
Nakamura K, Taniguchi I, Gotoh Y, Isobe J, Kimata K, Igawa Y, Kitahashi T, Takahashi Y, Nomoto R, Iwabuchi K, Morimoto Y, Iyoda S, Hayashi T. Diversity of Shiga toxin transducing phages in Escherichia coli O145:H28 and the different Shiga toxin 2 production levels associated with short- or long-tailed phages. Front Microbiol 2024; 15:1453887. [PMID: 39165568 PMCID: PMC11333237 DOI: 10.3389/fmicb.2024.1453887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024] Open
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) causes serious gastrointestinal illness, including hemorrhagic colitis and hemolytic uremic syndrome. Two types of Stxs (Stx1 and Stx2) are known and both are encoded by bacteriophages (Stx phages), but the production of Stx2 is known to be a major risk factor for severe STEC infections. The production of Stx2, but not Stx1, is tightly coupled with the induction of Stx phages, and Stx2 production levels vary between STEC strains even within the same serotype. Here, we analyzed the genomic diversity of all Stx phages in 71 strains representing the entire O145:H28 lineage, one of the often highly pathogenic STECs, and the relationship between the variations in Stx phage genomes and the levels of Stx2 production by host strains. Our analysis reveals highly dynamic natures of Stx phages in O145:H28, including the independent acquisition of similar Stx phages by different sublineages, the recent transfer of Stx phage between different sublineages, and the frequent gain and loss of Stx phages in some sublineages. We also show the association of the Stx2 phage types with the Stx2 production levels of host strains: strains carrying short-tailed Stx2 phages exhibited significantly higher Stx2 production levels than those carrying long-tailed Stx2 phages. Detailed analyses of the Stx2 phage genomes revealed that both of short- and long-tailed phages exhibited sequence diversification and they were divided into two groups, respectively, based on the sequence similarity of the phage early region encoding genes responsible for phage induction, short-tailed phages contained early regions clearly different in genetic organization from those in long-tailed phages. Therefore, the variations in the early regions between short-and long-tailed Stx2 phages appeared to be linked to a striking difference in Stx2 production levels in their host strains. These results broaden our understanding of the diversification and dynamism of Stx phages in O145:H28 and the association of Stx2 phage types with the Stx2 production level in this STEC lineage.
Collapse
Affiliation(s)
- Keiji Nakamura
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Itsuki Taniguchi
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuhiro Gotoh
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | - Yukiko Igawa
- Nagano Prefecture Suwa Public Health and Welfare Office, Suwa, Japan
| | | | | | | | - Kaori Iwabuchi
- Iwate Prefectural Research Institute for Environmental Sciences and Public Health, Morioka, Japan
| | - Yo Morimoto
- Hokkaido Institute of Public Health, Sapporo, Japan
| | - Sunao Iyoda
- National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
5
|
Kalalah AA, Koenig SSK, Feng P, Bosilevac JM, Bono JL, Eppinger M. Pathogenomes of Shiga Toxin Positive and Negative Escherichia coli O157:H7 Strains TT12A and TT12B: Comprehensive Phylogenomic Analysis Using Closed Genomes. Microorganisms 2024; 12:699. [PMID: 38674643 PMCID: PMC11052207 DOI: 10.3390/microorganisms12040699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Shiga toxin-producing Escherichia coli are zoonotic pathogens that cause food-borne human disease. Among these, the O157:H7 serotype has evolved from an enteropathogenic O55:H7 ancestor through the displacement of the somatic gene cluster and recurrent toxigenic conversion by Shiga toxin-converting bacteriophages. However, atypical strains that lack the Shiga toxin, the characteristic virulence hallmark, are circulating in this lineage. For this study, we analyzed the pathogenome and virulence inventories of the stx+ strain, TT12A, isolated from a patient with hemorrhagic colitis, and its respective co-isolated stx- strain, TT12B. Sequencing the genomes to closure proved critical to the cataloguing of subtle strain differentiating sequence and structural polymorphisms at a high-level of phylogenetic accuracy and resolution. Phylogenomic profiling revealed SNP and MLST profiles similar to the near clonal outbreak isolates. Their prophage inventories, however, were notably different. The attenuated atypical non-shigatoxigenic status of TT12B is explained by the absence of both the ΦStx1a- and ΦStx2a-prophages carried by TT12A, and we also recorded further alterations in the non-Stx prophage complement. Phenotypic characterization indicated that culture growth was directly impacted by the strains' distinct lytic phage complement. Altogether, our phylogenomic and phenotypic analyses show that these intimately related isogenic strains are on divergent Stx(+/stx-) evolutionary paths.
Collapse
Affiliation(s)
- Anwar A. Kalalah
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX 78249, USA
| | - Sara S. K. Koenig
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX 78249, USA
| | - Peter Feng
- U.S. Food and Drug Administration (FDA), College Park, MD 20740, USA
| | - Joseph M. Bosilevac
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - James L. Bono
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - Mark Eppinger
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX 78249, USA
| |
Collapse
|
6
|
Naidoo N, Zishiri OT. Comparative genomics analysis and characterization of Shiga toxin-producing Escherichia coli O157:H7 strains reveal virulence genes, resistance genes, prophages and plasmids. BMC Genomics 2023; 24:791. [PMID: 38124028 PMCID: PMC10731853 DOI: 10.1186/s12864-023-09902-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Escherichia coli O157:H7 is a foodborne pathogen that has been linked to global disease outbreaks. These diseases include hemorrhagic colitis and hemolytic uremic syndrome. It is vital to know the features that make this strain pathogenic to understand the development of disease outbreaks. In the current study, a comparative genomic analysis was carried out to determine the presence of structural and functional features of O157:H7 strains obtained from 115 National Center for Biotechnology Information database. These strains of interest were analysed in the following programs: BLAST Ring Image Generator, PlasmidFinder, ResFinder, VirulenceFinder, IslandViewer 4 and PHASTER. Five strains (ECP19-198, ECP19-798, F7508, F8952, H2495) demonstrated a great homology with Sakai because of a few regions missing. Five resistant genes were identified, however, Macrolide-associated resistance gene mdf(A) was commonly found in all genomes. Majority of the strains (97%) were positive for 15 of the virulent genes (espA, espB, espF, espJ, gad, chuA, eae, iss, nleA, nleB, nleC, ompT, tccP, terC and tir). The plasmid analysis demonstrated that the IncF group was the most prevalent in the strains analysed. The prophage and genomic island analysis showed a distribution of bacteriophages and genomic islands respectively. The results indicated that structural and functional features of the many O157:H7 strains differ and may be a result of obtaining mobile genetic elements via horizontal gene transfer. Understanding the evolution of O157:H7 strains pathogenicity in terms of their structural and functional features will enable the development of detection and control of transmission strategies.
Collapse
Affiliation(s)
- Natalie Naidoo
- School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, South Africa.
| | - Oliver T Zishiri
- School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, South Africa
| |
Collapse
|
7
|
Barros MM, Castro J, Araújo D, Campos AM, Oliveira R, Silva S, Outor-Monteiro D, Almeida C. Swine Colibacillosis: Global Epidemiologic and Antimicrobial Scenario. Antibiotics (Basel) 2023; 12:antibiotics12040682. [PMID: 37107044 PMCID: PMC10135039 DOI: 10.3390/antibiotics12040682] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Swine pathogenic infection caused by Escherichia coli, known as swine colibacillosis, represents an epidemiological challenge not only for animal husbandry but also for health authorities. To note, virulent E. coli strains might be transmitted, and also cause disease, in humans. In the last decades, diverse successful multidrug-resistant strains have been detected, mainly due to the growing selective pressure of antibiotic use, in which animal practices have played a relevant role. In fact, according to the different features and particular virulence factor combination, there are four different pathotypes of E. coli that can cause illness in swine: enterotoxigenic E. coli (ETEC), Shiga toxin-producing E. coli (STEC) that comprises edema disease E. coli (EDEC) and enterohemorrhagic E. coli (EHEC), enteropathogenic E. coli (EPEC), and extraintestinal pathogenic E. coli (ExPEC). Nevertheless, the most relevant pathotype in a colibacillosis scenario is ETEC, responsible for neonatal and postweaning diarrhea (PWD), in which some ETEC strains present enhanced fitness and pathogenicity. To explore the distribution of pathogenic ETEC in swine farms and their diversity, resistance, and virulence profiles, this review summarizes the most relevant works on these subjects over the past 10 years and discusses the importance of these bacteria as zoonotic agents.
Collapse
Affiliation(s)
- Maria Margarida Barros
- I.P—National Institute for Agrarian and Veterinariay Research (INIAV), Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (M.M.B.); (J.C.); (D.A.); (A.M.C.); (R.O.); (S.S.)
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
| | - Joana Castro
- I.P—National Institute for Agrarian and Veterinariay Research (INIAV), Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (M.M.B.); (J.C.); (D.A.); (A.M.C.); (R.O.); (S.S.)
| | - Daniela Araújo
- I.P—National Institute for Agrarian and Veterinariay Research (INIAV), Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (M.M.B.); (J.C.); (D.A.); (A.M.C.); (R.O.); (S.S.)
| | - Ana Maria Campos
- I.P—National Institute for Agrarian and Veterinariay Research (INIAV), Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (M.M.B.); (J.C.); (D.A.); (A.M.C.); (R.O.); (S.S.)
| | - Ricardo Oliveira
- I.P—National Institute for Agrarian and Veterinariay Research (INIAV), Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (M.M.B.); (J.C.); (D.A.); (A.M.C.); (R.O.); (S.S.)
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Sónia Silva
- I.P—National Institute for Agrarian and Veterinariay Research (INIAV), Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (M.M.B.); (J.C.); (D.A.); (A.M.C.); (R.O.); (S.S.)
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Divanildo Outor-Monteiro
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
| | - Carina Almeida
- I.P—National Institute for Agrarian and Veterinariay Research (INIAV), Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (M.M.B.); (J.C.); (D.A.); (A.M.C.); (R.O.); (S.S.)
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- Correspondence:
| |
Collapse
|
8
|
Alharbi MG, Al-Hindi RR, Esmael A, Alotibi IA, Azhari SA, Alseghayer MS, Teklemariam AD. The "Big Six": Hidden Emerging Foodborne Bacterial Pathogens. Trop Med Infect Dis 2022; 7:356. [PMID: 36355898 PMCID: PMC9693546 DOI: 10.3390/tropicalmed7110356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 04/20/2024] Open
Abstract
Non-O157 Shiga toxin-producing Escherichia coli (STEC) are emerging serogroups that often result in diseases ranging from diarrhea to severe hemorrhagic colitis in humans. The most common non-O157 STEC are O26, O45, O103, O111, O121, and O145. These serogroups are known by the name "big six" because they cause severe illness and death in humans and the United States Department of Agriculture declared these serogroups as food contaminants. The lack of fast and efficient diagnostic methods exacerbates the public impact of the disease caused by these serogroups. Numerous outbreaks have been reported globally and most of these outbreaks were caused by ingestion of contaminated food or water as well as direct contact with reservoirs. Livestock harbor a variety of non-O157 STEC serovars that can contaminate meat and dairy products, or water sources when used for irrigation. Hence, effective control and prevention approaches are required to safeguard the public from infections. This review addresses the disease characteristics, reservoirs, the source of infections, the transmission of the disease, and major outbreaks associated with the six serogroups ("big six") of non-O157 STEC encountered all over the globe.
Collapse
Affiliation(s)
- Mona G. Alharbi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rashad R. Al-Hindi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed Esmael
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Ibrahim A. Alotibi
- Health Information Technology Department, Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sheren A. Azhari
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mazen S. Alseghayer
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Monitoring and Risk Assessment Department, Saudi Food and Drug Authority, Riyadh 13513, Saudi Arabia
| | - Addisu D. Teklemariam
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
9
|
Comparative Genomics Applied to Systematically Assess Pathogenicity Potential in Shiga Toxin-Producing Escherichia coli O145:H28. Microorganisms 2022; 10:microorganisms10050866. [PMID: 35630311 PMCID: PMC9144400 DOI: 10.3390/microorganisms10050866] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 01/27/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) O145:H28 can cause severe disease in humans and is a predominant serotype in STEC O145 environmental isolates. Here, comparative genomics was applied to a set of clinical and environmental strains to systematically evaluate the pathogenicity potential in environmental strains. While the core genes-based tree separated all O145:H28 strains from the non O145:H28 reference strains, it failed to segregate environmental strains from the clinical. In contrast, the accessory genes-based tree placed all clinical strains in the same clade regardless of their genotypes or serotypes, apart from the environmental strains. Loss-of-function mutations were common in the virulence genes examined, with a high frequency in genes related to adherence, autotransporters, and the type three secretion system. Distinct differences in pathogenicity islands LEE, OI-122, and OI-57, the acid fitness island, and the tellurite resistance island were detected between the O145:H28 and reference strains. A great amount of genetic variation was detected in O145:H28, which was mainly attributed to deletions, insertions, and gene acquisition at several chromosomal “hot spots”. Our study demonstrated a distinct virulence gene repertoire among the STEC O145:H28 strains originating from the same geographical region and revealed unforeseen contributions of loss-of-function mutations to virulence evolution and genetic diversification in STEC.
Collapse
|
10
|
Carbonari CC, Miliwebsky ES, Zolezzi G, Deza NL, Fittipaldi N, Manfredi E, Baschkier A, D’Astek BA, Melano RG, Schesi C, Rivas M, Chinen I. The Importance of Shiga Toxin-Producing Escherichia coli O145:NM[H28]/H28 Infections in Argentina, 1998–2020. Microorganisms 2022; 10:microorganisms10030582. [PMID: 35336157 PMCID: PMC8950694 DOI: 10.3390/microorganisms10030582] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 02/01/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is known as a pathogen associated with food-borne diseases. The STEC O145 serogroup has been related with acute watery diarrhea, bloody diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome (HUS). Argentina has the highest rate of HUS worldwide with 70% of the cases associated with STEC infections. We aimed to describe the epidemiology and genetic diversity of STEC O145 strains isolated across Argentina between 1998–2020. The strains isolated from 543 cases of human disease and four cattle, were pheno-genotipically characterized. Sequencing of five strains was performed. The strains were serotyped as O145:NM[H28]/H28, O145:H25, and O145:HNT, and mainly characterized as O145:NM[H28]/stx2a/eae/ehxA (98.1%). The results obtained by sequencing were consistent with those obtained by traditional methods and additional genes involved in different mechanisms of the pathogen were observed. In this study, we confirmed that STEC O145 strains are the second serogroup after O157 and represent 20.3% of HUS cases in Argentina. The frequency of STEC O145 and other significant serogroups is of utmost importance for public health in the country. This study encourages the improvement of the surveillance system to prevent severe cases of human disease.
Collapse
Affiliation(s)
- Claudia Carolina Carbonari
- Servicio Fisiopatogenia, Departamento Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires 1282, Argentina; (E.S.M.); (G.Z.); (N.L.D.); (E.M.); (A.B.); (B.A.D.); (C.S.); (M.R.); (I.C.)
- Correspondence:
| | - Elizabeth Sandra Miliwebsky
- Servicio Fisiopatogenia, Departamento Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires 1282, Argentina; (E.S.M.); (G.Z.); (N.L.D.); (E.M.); (A.B.); (B.A.D.); (C.S.); (M.R.); (I.C.)
| | - Gisela Zolezzi
- Servicio Fisiopatogenia, Departamento Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires 1282, Argentina; (E.S.M.); (G.Z.); (N.L.D.); (E.M.); (A.B.); (B.A.D.); (C.S.); (M.R.); (I.C.)
| | - Natalia Lorena Deza
- Servicio Fisiopatogenia, Departamento Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires 1282, Argentina; (E.S.M.); (G.Z.); (N.L.D.); (E.M.); (A.B.); (B.A.D.); (C.S.); (M.R.); (I.C.)
| | - Nahuel Fittipaldi
- Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | - Eduardo Manfredi
- Servicio Fisiopatogenia, Departamento Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires 1282, Argentina; (E.S.M.); (G.Z.); (N.L.D.); (E.M.); (A.B.); (B.A.D.); (C.S.); (M.R.); (I.C.)
| | - Ariela Baschkier
- Servicio Fisiopatogenia, Departamento Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires 1282, Argentina; (E.S.M.); (G.Z.); (N.L.D.); (E.M.); (A.B.); (B.A.D.); (C.S.); (M.R.); (I.C.)
| | - Beatriz Alejandra D’Astek
- Servicio Fisiopatogenia, Departamento Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires 1282, Argentina; (E.S.M.); (G.Z.); (N.L.D.); (E.M.); (A.B.); (B.A.D.); (C.S.); (M.R.); (I.C.)
| | - Roberto Gustavo Melano
- Public Health Ontario, Toronto Laboratories, Toronto, ON M5G 1M1, Canada;
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Carla Schesi
- Servicio Fisiopatogenia, Departamento Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires 1282, Argentina; (E.S.M.); (G.Z.); (N.L.D.); (E.M.); (A.B.); (B.A.D.); (C.S.); (M.R.); (I.C.)
| | - Marta Rivas
- Servicio Fisiopatogenia, Departamento Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires 1282, Argentina; (E.S.M.); (G.Z.); (N.L.D.); (E.M.); (A.B.); (B.A.D.); (C.S.); (M.R.); (I.C.)
| | - Isabel Chinen
- Servicio Fisiopatogenia, Departamento Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires 1282, Argentina; (E.S.M.); (G.Z.); (N.L.D.); (E.M.); (A.B.); (B.A.D.); (C.S.); (M.R.); (I.C.)
| |
Collapse
|
11
|
Comparative Pathogenomics of Escherichia coli: Polyvalent Vaccine Target Identification through Virulome Analysis. Infect Immun 2021; 89:e0011521. [PMID: 33941580 PMCID: PMC8281228 DOI: 10.1128/iai.00115-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Comparative genomics of bacterial pathogens has been useful for revealing potential virulence factors. Escherichia coli is a significant cause of human morbidity and mortality worldwide but can also exist as a commensal in the human gastrointestinal tract. With many sequenced genomes, it has served as a model organism for comparative genomic studies to understand the link between genetic content and potential for virulence. To date, however, no comprehensive analysis of its complete “virulome” has been performed for the purpose of identifying universal or pathotype-specific targets for vaccine development. Here, we describe the construction of a pathotype database of 107 well-characterized completely sequenced pathogenic and nonpathogenic E. coli strains, which we annotated for major virulence factors (VFs). The data are cross referenced for patterns against pathotype, phylogroup, and sequence type, and the results were verified against all 1,348 complete E. coli chromosomes in the NCBI RefSeq database. Our results demonstrate that phylogroup drives many of the “pathotype-associated” VFs, and ExPEC-associated VFs are found predominantly within the B2/D/F/G phylogenetic clade, suggesting that these phylogroups are better adapted to infect human hosts. Finally, we used this information to propose polyvalent vaccine targets with specificity toward extraintestinal strains, targeting key invasive strategies, including immune evasion (group 2 capsule), iron acquisition (FyuA, IutA, and Sit), adherence (SinH, Afa, Pap, Sfa, and Iha), and toxins (Usp, Sat, Vat, Cdt, Cnf1, and HlyA). While many of these targets have been proposed before, this work is the first to examine their pathotype and phylogroup distribution and how they may be targeted together to prevent disease.
Collapse
|
12
|
Carter MQ, Hu B, Chain PS. Epigenetic regulation of gene expression in Shiga toxin-producing Escherichia coli: Transcriptomic data. Data Brief 2021; 36:107065. [PMID: 34307800 PMCID: PMC8257988 DOI: 10.1016/j.dib.2021.107065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 11/20/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) strain RM13514 is a clinical isolate linked to the 2010 romaine lettuce-associated outbreak in the U.S. The genes encoding a type II restriction and modification system, PstI R-M, are located in a prophage genome that is also encoding Shiga toxin. In-frame deletion of the PstI R-M genes or dam, encoding a DNA adenine methylase, in strain RM13514 were generated, resulting in two mutant strains MQC599 and MQC602, respectively. The mutant strain MQC599 exhibited a similar growth rate as the wild-type (WT) strain RM13514 when grown in Luria-Bertani (LB) broth at 37 °C. In contrast, the growth of mutant strain MQC602 was significantly slower than either RM13514 or MQC599. Genes transcriptionally regulated by the PstI R-M system or by Dam were examined by the RNA-Seq based comparative transcriptomics. The total RNA was extracted from cells of each strain grown in LB broth at exponential and stationary phases. Three biological replicates were collected for each strain. After removal of ribosomal RNA, the mRNAs were converted to cDNAs followed by Illumina sequence library construction. For strains RM13514 and MQC599, six libraires were generated for each, three from the cells in the exponential growth phase and three from the cells in the stationary phase. For strain MQC602, three additional libraries were constructed from the cells in the early exponential growth phase. The resulting 21 libraries were combined in equal amounts and sequenced on an Illumina HighSeq 2000 instrument with the Paired End 100 bp (PE100) read format, generating a total of 45.83 Gbp sequence reads. This set of sequence data is available in the NCBI SRA database under the BioProject accession number PRJNA684587. This set of transcriptomic data provides information on methylation-mediated epigenetic regulation in STEC, an important foodborne pathogen that is frequently associated with large epidemic outbreaks and can cause life-threatening disease in humans [1]. This set of data will be useful for researchers who are interested in physiology and pathogenicity of foodborne pathogens or in the fundamental mechanisms of epigenetic regulation in bacteria.
Collapse
Affiliation(s)
- Michelle Qiu Carter
- U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Produce Safety and Microbiology Research Unit, Albany, CA, USA
- Corresponding author.
| | - Bin Hu
- Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Patrick S.G. Chain
- Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| |
Collapse
|
13
|
Bai X, Zhang J, Hua Y, Jernberg C, Xiong Y, French N, Löfgren S, Hedenström I, Ambikan A, Mernelius S, Matussek A. Genomic Insights Into Clinical Shiga Toxin-Producing Escherichia coli Strains: A 15-Year Period Survey in Jönköping, Sweden. Front Microbiol 2021; 12:627861. [PMID: 33613494 PMCID: PMC7893091 DOI: 10.3389/fmicb.2021.627861] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/05/2021] [Indexed: 11/13/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are important foodborne pathogens that can cause human infections ranging from asymptomatic carriage to bloody diarrhea (BD) and fatal hemolytic uremic syndrome (HUS). However, the molecular mechanism of STEC pathogenesis is not entirely known. Here, we demonstrated a large scale of molecular epidemiology and in-depth genomic study of clinical STEC isolates utilizing clinical and epidemiological data collected in Region Jönköping County, Sweden, over a 15-year period. Out of 184 STEC isolates recovered from distinct patients, 55 were from patients with BD, and 129 were from individuals with non-bloody stools (NBS). Five individuals developed HUS. Adults were more associated with BD. Serotypes O157:H7, O26:H11, O103:H2, O121:H19, and O104:H4 were more often associated with BD. The presence of Shiga toxin-encoding gene subtypes stx 2a, stx 2a + stx 2c, and stx 1a + stx 2c was associated with BD, while stx 1 a was associated with milder disease. Multiplex virulence and accessory genes were correlated with BD; these genes encode toxins, adhesion, autotransporters, invasion, and secretion system. A number of antimicrobial resistance (AMR) genes, such as aminoglycoside, aminocoumarin, macrolide, and fluoroquinolone resistance genes, were prevalent among clinical STEC isolates. Whole-genome phylogeny revealed that O157 and non-O157 STEC isolates evolved from distinct lineages with a few exceptions. Isolates from BD showed more tendency to cluster closely. In conclusion, this study unravels molecular trait of clinical STEC strains and identifies genetic factors associated with severe clinical outcomes, which could contribute to management of STEC infections and disease progression if confirmed by further functional validation.
Collapse
Affiliation(s)
- Xiangning Bai
- Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ji Zhang
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Ying Hua
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
- Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
| | | | - Yanwen Xiong
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Nigel French
- New Zealand Food Safety Science and Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Sture Löfgren
- Laboratory Medicine, Jönköping Region County, Department of Clinical and Experimental Medicine, Linköping University, Jönköping, Sweden
| | | | - Anoop Ambikan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Sara Mernelius
- Laboratory Medicine, Jönköping Region County, Department of Clinical and Experimental Medicine, Linköping University, Jönköping, Sweden
| | - Andreas Matussek
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
- Laboratory Medicine, Jönköping Region County, Department of Clinical and Experimental Medicine, Linköping University, Jönköping, Sweden
- Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway
- Division of Laboratory Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
14
|
Carter MQ, Pham A, Huynh S, Parker CT, Miller A, He X, Hu B, Chain PSG. DNA adenine methylase, not the PstI restriction-modification system, regulates virulence gene expression in Shiga toxin-producing Escherichia coli. Food Microbiol 2020; 96:103722. [PMID: 33494894 DOI: 10.1016/j.fm.2020.103722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 01/20/2023]
Abstract
We previously reported a distinct methylome between the two Shiga toxin-producing Escherichia coli (STEC) O145:H28 strains linked to the 2010 U.S. lettuce-associated outbreak (RM13514) and the 2007 Belgium ice cream-associated outbreak (RM13516), respectively. This difference was thought to be attributed to a prophage encoded type II restriction-modification system (PstI R-M) in RM13514. Here, we characterized this PstI R-M system in comparison to DNA adenine methylase (Dam), a highly conserved enzyme in γ proteobacteria, by functional genomics. Deficiency in Dam led to a differential expression of over 1000 genes in RM13514, whereas deficiency in PstI R-M only impacted a few genes transcriptionally. Dam regulated genes involved in diverse functions, whereas PstI R-M regulated genes mostly encoding transporters and adhesins. Dam regulated a large number of genes located on prophages, pathogenicity islands, and plasmids, including Shiga toxin genes, type III secretion system (TTSS) genes, and enterohemolysin genes. Production of Stx2 in dam mutant was significantly higher than in RM13514, supporting a role of Dam in maintaining lysogeny of Stx2-prophage. However, following mitomycin C treatment, Stx2 in RM13514 was significantly higher than that of dam or PstI R-M deletion mutant, implying that both Dam and PstI R-M contributed to maximum Stx2 production.
Collapse
Affiliation(s)
- Michelle Qiu Carter
- U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Produce Safety and Microbiology Research Unit, Albany, CA, USA.
| | - Antares Pham
- U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Produce Safety and Microbiology Research Unit, Albany, CA, USA
| | - Steven Huynh
- U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Produce Safety and Microbiology Research Unit, Albany, CA, USA
| | - Craig T Parker
- U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Produce Safety and Microbiology Research Unit, Albany, CA, USA
| | - Avalon Miller
- U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Produce Safety and Microbiology Research Unit, Albany, CA, USA
| | - Xiaohua He
- U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Foodborne Toxin and Detection Research Unit, Albany, CA, USA
| | - Bin Hu
- Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Patrick S G Chain
- Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| |
Collapse
|
15
|
Differential induction of Shiga toxin in environmental Escherichia coli O145:H28 strains carrying the same genotype as the outbreak strains. Int J Food Microbiol 2020; 339:109029. [PMID: 33360585 DOI: 10.1016/j.ijfoodmicro.2020.109029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
Shiga toxin-producing Escherichia coli (STEC) O145 is a major serotype associated with severe human disease. Production of Shiga toxins (Stxs), especially Stx2a, is thought to be correlated with STEC virulence. Since stx genes are located in prophages genomes, induction of prophages is required for effective Stxs production. Here, we investigated the production of Stxs in 12 environmental STEC O145:H28 strains under stresses STEC encounter in natural habitats and performed comparative analysis with two O145:H28 clinical strains, one linked to a 2010 U.S. lettuce-associated outbreak (RM13514) and the other linked to a 2007 Belgium ice cream-associated outbreak (RM13516). Similar to the outbreak strains, all environmental strains belong to Sequence Type (ST)-78 using the EcMLST typing scheme. Although all Stx1a-prophages were grouped together, variations in Stx1a production were observed prior to or following the inductions. Among all stx2a positive environmental strains, only the Stx2a-prophage in cattle isolate RM9154-C1 was clustered with the Stx2a-prophages in RM13514, the Stx2a-phage induced from a STEC O104:H4 strain linked to the 2011 outbreak of enterohemorrhagic infection in Germany, and the Stx2a-prophage in STEC O157:H7 strain EDL933, a prototype of enterohemorrhagic E. coli. Furthermore, the Stx2a-prophage in RM9154-C1 shared the same chromosomal insertion site and carried the same antiterminator Q gene and the late promoter PR' as the Stx2a-prophage in RM13514. Following mitomycin C or enrofloxacin treatment, the production of Stx2a in RM9154-C1 was the highest among all environmental strains tested. In contrast, following acid challenge and recovery, the production of Stx2a in RM9154-C1 was the lowest among all the environmental strains tested, at a level comparable to the clinical strains. A significant increase in Stx2a production was detected in all strains when exposed to H2O2, although the induction fold was much lower than those by other inducers. This low-efficiency induction of Stx-prophages by H2O2, a natural inducer of Stx-prophages, supports the hypothesis of bacterial altruism in controlling Stxs production, a strategy that assures the survival of the STEC population as a whole by sacrificing a small fraction of cells for Stxs production and release. Differential induction of Stxs among strains carrying nearly identical Stx-prophages suggests a role of host bacteria in regulating Stxs production. Our study revealed diverse Stx-prophages in STEC O145:H28 strains that were genotypically indistinguishable. Identification of a cattle isolate harboring a Stx2a-prophage associated with high virulence supports the premise that cattle, a natural reservoir of STEC, serve as a source of hypervirulent STEC strains.
Collapse
|
16
|
Zhou Z, Zhang Y, Guo M, Huang K, Xu W. Ultrasensitive magnetic DNAzyme-copper nanoclusters fluorescent biosensor with triple amplification for the visual detection of E. coli O157:H7. Biosens Bioelectron 2020; 167:112475. [DOI: 10.1016/j.bios.2020.112475] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 01/10/2023]
|
17
|
Guerra JA, Zhang C, Bard JE, Yergeau D, Halasa N, Gómez-Duarte OG. Comparative genomic analysis of a Shiga toxin-producing Escherichia coli (STEC) O145:H25 associated with a severe pediatric case of hemolytic uremic syndrome in Davidson County, Tennessee, US. BMC Genomics 2020; 21:564. [PMID: 32807093 PMCID: PMC7437938 DOI: 10.1186/s12864-020-06967-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 08/03/2020] [Indexed: 12/02/2022] Open
Abstract
Background Shiga toxin-producing E. coli (STECs) are foodborne pathogens associated with bloody diarrhea and hemolytic uremic syndrome (HUS). Although the STEC O157 serogroup accounts for the highest number of infections, HUS-related complications and deaths, the STEC non-O157, as a group, accounts for a larger proportion of STEC infections and lower HUS cases. There is limited information available on how to recognize non-O157 serotypes associated with severe disease. The objectives of this study were to describe a patient with STEC non-O157 infection complicated with HUS and to conduct a comparative whole genome sequence (WGS) analysis among the patient’s STEC clinical isolate and STEC O157 and non-O157 strains. Results The STEC O145:H25 strain EN1I-0044-2 was isolated from a pediatric patient with diarrhea, HUS and severe neurologic and cardiorespiratory complications, who was enrolled in a previously reported case-control study of acute gastroenteritis conducted in Davidson County, Tennessee in 2013. The strain EN1I-0044-2 genome sequence contained a chromosome and three plasmids. Two of the plasmids were similar to those present in O145:H25 strains whereas the third unique plasmid EN1I-0044-2_03 shared no similarity with other STEC plasmids, and it carried 23 genes of unknown function. Strain EN1I-0044-2, compared with O145:H25 and O157 serogroup strains shared chromosome- and plasmid-encoded virulence factors, including Shiga toxin, LEE type III secretion system, LEE effectors, SFP fimbriae, and additional toxins and colonization factors. Conclusions A STEC O145:H25 strain EN1I-0044-2 was isolated from a pediatric patient with severe disease, including HUS, in Davidson County, TN. Phylogenetic and comparison WGS analysis provided evidence that strain EN1I-0044-2 closely resembles O145:H25, and confirmed an independent evolutionary path of STEC O145:H25 and O145:H28 serotypes. The strain EN1I-0044-2 virulence make up was similar to other O145:H25 and O157 serogroups. It carried stx2 and the LEE pathogenicity island, and additional colonization factors and enterotoxin genes. A unique feature of strain EN1I-0044-2 was the presence of plasmid pEN1I-0044-2_03 carrying genes with functions to be determined. Further studies will be necessary to elucidate the role that newly acquired genes by O145:H25 strains play in pathogenesis, and to determine if they may serve as genetic markers of severe disease.
Collapse
Affiliation(s)
- Julio A Guerra
- International Enteric Vaccine Research Program, Division of Infectious Diseases, Department of Pediatrics, University at Buffalo, The State University of New York (SUNY), Jacobs School of Medicine and Biomedical Sciences, 875 Ellicott St. Office 6090, Buffalo, NY, 14203, USA
| | - Chengxian Zhang
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jonathan E Bard
- UB Genomics and Bioinformatics Core, Center of Excellence in Bioinformatics, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Donald Yergeau
- UB Genomics and Bioinformatics Core, Center of Excellence in Bioinformatics, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Natasha Halasa
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Oscar G Gómez-Duarte
- International Enteric Vaccine Research Program, Division of Infectious Diseases, Department of Pediatrics, University at Buffalo, The State University of New York (SUNY), Jacobs School of Medicine and Biomedical Sciences, 875 Ellicott St. Office 6090, Buffalo, NY, 14203, USA. .,Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
18
|
Collis RM, Biggs PJ, Midwinter AC, Browne AS, Wilkinson DA, Irshad H, French NP, Brightwell G, Cookson AL. Genomic epidemiology and carbon metabolism of Escherichia coli serogroup O145 reflect contrasting phylogenies. PLoS One 2020; 15:e0235066. [PMID: 32584859 PMCID: PMC7316241 DOI: 10.1371/journal.pone.0235066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/08/2020] [Indexed: 11/18/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are a leading cause of foodborne outbreaks of human disease, but they reside harmlessly as an asymptomatic commensal in the ruminant gut. STEC serogroup O145 are difficult to isolate as routine diagnostic methods are unable to distinguish non-O157 serogroups due to their heterogeneous metabolic characteristics, resulting in under-reporting which is likely to conceal their true prevalence. In light of these deficiencies, the purpose of this study was a twofold approach to investigate enhanced STEC O145 diagnostic culture-based methods: firstly, to use a genomic epidemiology approach to understand the genetic diversity and population structure of serogroup O145 at both a local (New Zealand) (n = 47) and global scale (n = 75) and, secondly, to identify metabolic characteristics that will help the development of a differential media for this serogroup. Analysis of a subset of E. coli serogroup O145 strains demonstrated considerable diversity in carbon utilisation, which varied in association with eae subtype and sequence type. Several carbon substrates, such as D-serine and D-malic acid, were utilised by the majority of serogroup O145 strains, which, when coupled with current molecular and culture-based methods, could aid in the identification of presumptive E. coli serogroup O145 isolates. These carbon substrates warrant subsequent testing with additional serogroup O145 strains and non-O145 strains. Serogroup O145 strains displayed extensive genetic heterogeneity that was correlated with sequence type and eae subtype, suggesting these genetic markers are good indicators for distinct E. coli phylogenetic lineages. Pangenome analysis identified a core of 3,036 genes and an open pangenome of >14,000 genes, which is consistent with the identification of distinct phylogenetic lineages. Overall, this study highlighted the phenotypic and genotypic heterogeneity within E. coli serogroup O145, suggesting that the development of a differential media targeting this serogroup will be challenging.
Collapse
Affiliation(s)
- Rose M. Collis
- AgResearch Ltd, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
- Molecular Epidemiology and Veterinary Public Health Laboratory (EpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Patrick J. Biggs
- Molecular Epidemiology and Veterinary Public Health Laboratory (EpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Anne C. Midwinter
- Molecular Epidemiology and Veterinary Public Health Laboratory (EpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - A. Springer Browne
- Molecular Epidemiology and Veterinary Public Health Laboratory (EpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - David A. Wilkinson
- Molecular Epidemiology and Veterinary Public Health Laboratory (EpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Hamid Irshad
- Animal Health Programme, National Agricultural Research Centre, Islamabad, Pakistan
| | - Nigel P. French
- Molecular Epidemiology and Veterinary Public Health Laboratory (EpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Gale Brightwell
- AgResearch Ltd, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Adrian L. Cookson
- AgResearch Ltd, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
- Molecular Epidemiology and Veterinary Public Health Laboratory (EpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- * E-mail:
| |
Collapse
|
19
|
Wang C, Hang H, Zhou S, Niu YD, Du H, Stanford K, McAllister TA. Bacteriophage biocontrol of Shiga toxigenic Escherichia coli (STEC) O145 biofilms on stainless steel reduces the contamination of beef. Food Microbiol 2020; 92:103572. [PMID: 32950157 DOI: 10.1016/j.fm.2020.103572] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/01/2020] [Accepted: 06/13/2020] [Indexed: 12/15/2022]
Abstract
Shiga toxigenic Escherichia coli (STEC) can form biofilms and frequently cause serious foodborne illnesses. A strain of STEC O145:H25 (EC19990166) known to be a strong biofilm former was used to evaluate the efficacy of bacteriophage AZO145A against biofilms formed on stainless steel (SS) coupons. Exposure of STEC O145:H25 to phage AZO145A (1010 PFU/mL) for 2 h resulted in a 4.0 log10 reduction (P < 0.01) of planktonic cells grown in M9 broth at 24 °C for 24 h, while reductions were 2.0 log10 CFU/mL if these cells were grown for 48 h or 72 h prior to phage treatment. STEC O145 biofilms formed on SS coupons for 24, 48 and 72 h were reduced (P < 0.01) 2.9, 1.9 and 1.9 log10 CFU/coupon by phages. STEC O145 cells in biofilms were readily transferred from the surface of the SS coupon to beef (3.6 log10 CFU/coupon) even with as little as 10 s of contact with the meat surface. However, transfer of STEC O145 cells from biofilms that formed on SS coupons for 48 h to beef was reduced (P < 0.01) by 3.1 log10 CFU by phage (2 × 1010 PFU/mL) at 24 °C. Scanning electron microscopy revealed that bacterial cells within indentations on the surface of SS coupons were reduced by phage. These results suggest that bacteriophage AZO145A could be effective in reducing the viability of biofilm-adherent STEC O145 on stainless steel in food industry environments.
Collapse
Affiliation(s)
- Changbao Wang
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu, Anhui, 241002, PR China; Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada
| | - Hua Hang
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu, Anhui, 241002, PR China
| | - Shoubiao Zhou
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu, Anhui, 241002, PR China.
| | - Yan D Niu
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Hechao Du
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada; Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Kim Stanford
- Alberta Agriculture and Forestry, Lethbridge, AB, T1J 4V6, Canada
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada.
| |
Collapse
|
20
|
Is Shiga Toxin-Producing Escherichia coli O45 No Longer a Food Safety Threat? The Danger is Still Out There. Microorganisms 2020; 8:microorganisms8050782. [PMID: 32455956 PMCID: PMC7285328 DOI: 10.3390/microorganisms8050782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 01/03/2023] Open
Abstract
Many Shiga toxin-producing Escherichia coli (STEC) strains, including the serogroups of O157 and most of the top six non-O157 serotypes, are frequently associated with foodborne outbreaks. Therefore, they have been extensively studied using next-generation sequencing technology. However, related information regarding STEC O45 strains is scarce. In this study, three environmental E. coli O45:H16 strains (RM11911, RM13745, and RM13752) and one clinical E. coli O45:H2 strain (SJ7) were sequenced and used to characterize virulence factors using two reference E. coli O45:H2 strains of clinical origin. Subsequently, whole-genome-based phylogenetic analysis was conducted for the six STEC O45 strains and nine other reference STEC genomes, in order to evaluate their evolutionary relationship. The results show that one locus of enterocyte effacement pathogenicity island was found in all three STEC O45:H2 strains, but not in the STEC O45:H16 strains. Additionally, E. coli O45:H2 strains were evolutionarily close to E. coli O103:H2 strains, sharing high homology in terms of virulence factors, such as Stx prophages, but were distinct from E. coli O45:H16 strains. The findings show that E. coli O45:H2 may be as virulent as E. coli O103:H2, which is frequently associated with severe illness and can provide genomic evidence to facilitate STEC surveillance.
Collapse
|
21
|
Nyong EC, Zaia SR, Allué-Guardia A, Rodriguez AL, Irion-Byrd Z, Koenig SSK, Feng P, Bono JL, Eppinger M. Pathogenomes of Atypical Non-shigatoxigenic Escherichia coli NSF/SF O157:H7/NM: Comprehensive Phylogenomic Analysis Using Closed Genomes. Front Microbiol 2020; 11:619. [PMID: 32351476 PMCID: PMC7175801 DOI: 10.3389/fmicb.2020.00619] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/19/2020] [Indexed: 12/19/2022] Open
Abstract
The toxigenic conversion of Escherichia coli strains by Shiga toxin-converting (Stx) bacteriophages were prominent and recurring events in the stepwise evolution of enterohemorrhagic E. coli (EHEC) O157:H7 from an enteropathogenic (EPEC) O55:H7 ancestor. Atypical, attenuated isolates have been described for both non-sorbitol fermenting (NSF) O157:H7 and SF O157:NM serotypes, which are distinguished by the absence of Stx, the characteristic virulence hallmark of Stx-producing E. coli (STEC). Such atypical isolates either never acquired Stx-phages or may have secondarily lost stx during the course of infection, isolation, or routine subculture; the latter are commonly referred to as LST (Lost Shiga Toxin)-isolates. In this study we analyzed the genomes of 15 NSF O157:H7 and SF O157:NM strains from North America, Europe, and Asia that are characterized by the absence of stx, the virulence hallmark of STEC. The individual genomic basis of the Stx (-) phenotype has remained largely undetermined as the majority of STEC genomes in public genome repositories were generated using short read technology and are in draft stage, posing a major obstacle for the high-resolution whole genome sequence typing (WGST). The application of LRT (long-read technology) sequencing provided us with closed genomes, which proved critical to put the atypical non-shigatoxigenic NSF O157:H7 and SF O157:NM strains into the phylogenomic context of the stepwise evolutionary model. Availability of closed chromosomes for representative Stx (-) NSF O157:H7 and SF O157:NM strains allowed to describe the genomic basis and individual evolutionary trajectories underlying the absence of Stx at high accuracy and resolution. The ability of LRT to recover and accurately assemble plasmids revealed a strong correlation between the strains' featured plasmid genotype and chromosomally inferred clade, which suggests the coevolution of the chromosome and accessory plasmids. The identified ancestral traits in the pSFO157 plasmid of NSF O157:H7 strain LSU-61 provided additional evidence for its intermediate status. Taken together, these observations highlight the utility of LRTs for advancing our understanding of EHEC O157:H7/NM pathogenome evolution. Insights into the genomic and phenotypic plasticity of STEC on a lineage- and genome-wide scale are foundational to improve and inform risk assessment, biosurveillance, and prevention strategies.
Collapse
Affiliation(s)
- Emmanuel C. Nyong
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | - Sam R. Zaia
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | - Anna Allué-Guardia
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | - Armando L. Rodriguez
- Research Computing Support Group, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Zaina Irion-Byrd
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | - Sara S. K. Koenig
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | | | - James L. Bono
- United States Meat Animal Research Center, Agricultural Research Service, United States Department of Agriculture (ARS-USDA), Clay Center, NE, United States
| | - Mark Eppinger
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| |
Collapse
|
22
|
Chukwu MO, Abia ALK, Ubomba-Jaswa E, Dewar JB, Obi C. Mixed Aetiology of Diarrhoea in Infants Attending Clinics in the North-West Province of South Africa: Potential for Sub-Optimal Treatment. Pathogens 2020; 9:E198. [PMID: 32155961 PMCID: PMC7157715 DOI: 10.3390/pathogens9030198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 11/28/2019] [Accepted: 12/01/2019] [Indexed: 11/17/2022] Open
Abstract
Routine diagnostic methods for the aetiologic agents of diarrhoea in most developing countries are usually not sensitive enough, leading to under-diagnosis. Thus, this study investigated possible mixed diarrhoeal aetiology by using cultures and real-time polymerase chain reactions (PCR) in children younger than four years old in the Northwest Province, South Africa. In total, 505 stool samples were collected from symptomatic and asymptomatic children who were attending three clinics and the Brits hospital in Madibeng District, between September 2016 and December 2017. Rotavirus, norovirus, Campylobacter, Arcobacter, and diarrhoeagenic Escherichia coli (DEC) were targeted. Campylobacter spp. (24.6%), Arcobacter (15.8%) and DEC (19.6%) were detected using PCR; only Campylobacter spp. (29.7%) and DEC (26.9%) were detected through the culture. Campylobacter jejuni (36%), Campylobacter coli (28%), Campylobacter upsalensis (12%), and Arcobacter butzleri (15.8%) were the only spp. of Campylobacter and Arcobacter identified. The eaeA gene (31.4%) of enteropathogenic E. coli/enterohaemorrhagic E. coli (EPEC/EHEC) was the most prevalent DEC virulence gene (VG) identified. Rotavirus and norovirus were detected at 23.4% and 20%, respectively. Mixed viral aetiology (7.3%) and the co-infection of A. butzleri and Campylobacter (49%) were recorded. A mixed bacterial-viral aetiology was observed in 0.6% of the specimens. Sensitive diagnostic procedures like PCR should be considered to provide the best treatment to children experiencing diarrhoea.
Collapse
Affiliation(s)
- Martina O. Chukwu
- Department of Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Corner Christiaan De wet and Pioneer Avenue, Florida Park, Roodepoort 1724, Gauteng, South Africa;
| | - Akebe Luther King Abia
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa;
| | - Eunice Ubomba-Jaswa
- Department of Biotechnology, University of Johannesburg, 37 Nind Street, Doornfontein 2094, Gauteng, South Africa;
- Water Research Commission, Lynnwood Bridge Office Park, Bloukrans Building, 4 Daventry Street, Lynnwood Manor, Pretoria 0081, South Africa
| | - John Barr Dewar
- Department of Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Corner Christiaan De wet and Pioneer Avenue, Florida Park, Roodepoort 1724, Gauteng, South Africa;
| | - C.L. Obi
- School of Science and Technology, Sefako Makgatho Health Science University, Ga-Rankuwa 0208, South Africa;
| |
Collapse
|
23
|
张 汉, 高 杰, 何 肖, 龚 泽, 万 宇, 胡 彤, 李 煜, 曹 虹. [The postbiotic HM0539 from Lactobacillus rhamnosus GG prevents intestinal infection by enterohemorrhagic E. coli O157: H7 in mice]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:211-218. [PMID: 32376527 PMCID: PMC7086141 DOI: 10.12122/j.issn.1673-4254.2020.02.12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To assess the protective effect of the novel postbiotic HM0539 from Lactobacillus rhamnosus GG against intestinal infection by enterohemorrhagic E. coli O157: H7. METHODS We performed adhesion and invasion experiments to evaluate whether HM0539 could block E. coli O157: H7 adhesion to HT-29 cells. The expressions of mucin2 and the tight junction proteins ZO-1 and Occludin in HM0539-treated HT-29 cells were analyzed using immunofluorescence assay and Western blotting. Animal experiments were conducted in mice to observe the survival rate and changes in body weight, intestinal morphology and the intestinal barrier function after the challenge and HM0539 treatment. RESULTS HM0539 significantly inhibited the adhesion and invasion of E. coli O157: H7 to HT-29 cells in a dose-dependent manner. HM0539 treatment 4 h prior to E. coli O157: H7 challenge significantly lowered the adhesion and invasion rates of bacteria as compared with the treatment administered at the same time of challenge (P < 0.05). E. coli O157: H7-induced down-regulation of mucin2 and tight junction proteins in HT-29 cells was obviously alleviated by HM0539 treatment of (P < 0.05). In the animal experiment, HM0539 treatment significantly inhibited body weight loss (P < 0.05), alleviated jejunal injury, and inhibited E. coli O157: H7-induced destruction of jejunal goblet cells in the challenged mice (P < 0.05). HM0539 also significantly up-regulated the expression of mucin2 and ZO-1 proteins in the jejunum of E. coli O157:H7-infected mice (P < 0.05). CONCLUSIONS HM0539 not only inhibits the adhesion and invasion of E. coli O157: H7 to HT-29 cells, but also enhances the resistance against E. coli O157: H7 infection in mice by attenuating the destruction of mucin and tight junction proteins.
Collapse
Affiliation(s)
- 汉运 张
- />南方医科大学公共卫生学院//广东省热带病研究重点实验室,微生物学系,广东 广州 510515Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 杰 高
- />南方医科大学公共卫生学院//广东省热带病研究重点实验室,微生物学系,广东 广州 510515Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 肖龙 何
- />南方医科大学公共卫生学院//广东省热带病研究重点实验室,微生物学系,广东 广州 510515Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 泽龙 龚
- />南方医科大学公共卫生学院//广东省热带病研究重点实验室,微生物学系,广东 广州 510515Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 宇 万
- />南方医科大学公共卫生学院//广东省热带病研究重点实验室,微生物学系,广东 广州 510515Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 彤彤 胡
- />南方医科大学公共卫生学院//广东省热带病研究重点实验室,微生物学系,广东 广州 510515Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 煜彬 李
- />南方医科大学公共卫生学院//广东省热带病研究重点实验室,微生物学系,广东 广州 510515Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 虹 曹
- />南方医科大学公共卫生学院//广东省热带病研究重点实验室,微生物学系,广东 广州 510515Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
24
|
Shakya M, Ahmed SA, Davenport KW, Flynn MC, Lo CC, Chain PSG. Standardized phylogenetic and molecular evolutionary analysis applied to species across the microbial tree of life. Sci Rep 2020; 10:1723. [PMID: 32015354 PMCID: PMC6997174 DOI: 10.1038/s41598-020-58356-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/06/2020] [Indexed: 12/02/2022] Open
Abstract
There is growing interest in reconstructing phylogenies from the copious amounts of genome sequencing projects that target related viral, bacterial or eukaryotic organisms. To facilitate the construction of standardized and robust phylogenies for disparate types of projects, we have developed a complete bioinformatic workflow, with a web-based component to perform phylogenetic and molecular evolutionary (PhaME) analysis from sequencing reads, draft assemblies or completed genomes of closely related organisms. Furthermore, the ability to incorporate raw data, including some metagenomic samples containing a target organism (e.g. from clinical samples with suspected infectious agents), shows promise for the rapid phylogenetic characterization of organisms within complex samples without the need for prior assembly.
Collapse
Affiliation(s)
- Migun Shakya
- Bioscience Division, Los Alamos National Laboratory, MS-M888, Los Alamos, NM, 87545, USA.
| | - Sanaa A Ahmed
- Bioscience Division, Los Alamos National Laboratory, MS-M888, Los Alamos, NM, 87545, USA
| | - Karen W Davenport
- Bioscience Division, Los Alamos National Laboratory, MS-M888, Los Alamos, NM, 87545, USA
| | - Mark C Flynn
- Bioscience Division, Los Alamos National Laboratory, MS-M888, Los Alamos, NM, 87545, USA
| | - Chien-Chi Lo
- Bioscience Division, Los Alamos National Laboratory, MS-M888, Los Alamos, NM, 87545, USA
| | - Patrick S G Chain
- Bioscience Division, Los Alamos National Laboratory, MS-M888, Los Alamos, NM, 87545, USA.
| |
Collapse
|
25
|
Nakamura K, Murase K, Sato MP, Toyoda A, Itoh T, Mainil JG, Piérard D, Yoshino S, Kimata K, Isobe J, Seto K, Etoh Y, Narimatsu H, Saito S, Yatsuyanagi J, Lee K, Iyoda S, Ohnishi M, Ooka T, Gotoh Y, Ogura Y, Hayashi T. Differential dynamics and impacts of prophages and plasmids on the pangenome and virulence factor repertoires of Shiga toxin-producing Escherichia coli O145:H28. Microb Genom 2020; 6:e000323. [PMID: 31935184 PMCID: PMC7067040 DOI: 10.1099/mgen.0.000323] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 12/09/2019] [Indexed: 12/20/2022] Open
Abstract
Phages and plasmids play important roles in bacterial evolution and diversification. Although many draft genomes have been generated, phage and plasmid genomes are usually fragmented, limiting our understanding of their dynamics. Here, we performed a systematic analysis of 239 draft genomes and 7 complete genomes of Shiga toxin (Stx)-producing Escherichia coli O145:H28, the major virulence factors of which are encoded by prophages (PPs) or plasmids. The results indicated that PPs are more stably maintained than plasmids. A set of ancestrally acquired PPs was well conserved, while various PPs, including Stx phages, were acquired by multiple sublineages. In contrast, gains and losses of a wide range of plasmids have frequently occurred across the O145:H28 lineage, and only the virulence plasmid was well conserved. The different dynamics of PPs and plasmids have differentially impacted the pangenome of O145:H28, with high proportions of PP- and plasmid-associated genes in the variably present and rare gene fractions, respectively. The dynamics of PPs and plasmids have also strongly impacted virulence gene repertoires, such as the highly variable distribution of stx genes and the high conservation of a set of type III secretion effectors, which probably represents the core effectors of O145:H28 and the genes on the virulence plasmid in the entire O145:H28 population. These results provide detailed insights into the dynamics of PPs and plasmids, and show the application of genomic analyses using a large set of draft genomes and appropriately selected complete genomes.
Collapse
Affiliation(s)
- Keiji Nakamura
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazunori Murase
- Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Mitsuhiko P. Sato
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Atsushi Toyoda
- Center for Information Biology, National Institute of Genetics, Tokyo, Japan
| | - Takehiko Itoh
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Tokyo, Japan
| | | | | | - Shuji Yoshino
- Miyazaki Prefectural Institute for Public Health and Environment, Miyazaki, Japan
| | | | | | - Kazuko Seto
- Osaka Institute of Public Health, Osaka, Japan
| | - Yoshiki Etoh
- Fukuoka Institute of Health and Environmental Sciences, Fukuoka, Japan
| | | | - Shioko Saito
- Akita Research Center for Public Health and Environment, Akita, Japan
| | - Jun Yatsuyanagi
- Akita Research Center for Public Health and Environment, Akita, Japan
| | - Kenichi Lee
- National Institute of Infectious Diseases, Tokyo, Japan
| | - Sunao Iyoda
- National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Tadasuke Ooka
- Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yasuhiro Gotoh
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshitoshi Ogura
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuya Hayashi
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
26
|
Analysis of virulence potential of Escherichia coli O145 isolated from cattle feces and hide samples based on whole genome sequencing. PLoS One 2019; 14:e0225057. [PMID: 31774847 PMCID: PMC6881001 DOI: 10.1371/journal.pone.0225057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/28/2019] [Indexed: 12/29/2022] Open
Abstract
Escherichia coli O145 serogroup is one of the big six non-O157 Shiga toxin producing E. coli (STEC) that causes foodborne illnesses in the United States and other countries. Cattle are a major reservoir of STEC, which harbor them in their hindgut and shed in the feces. Cattle feces is the main source of hide and subsequent carcass contaminations during harvest leading to foodborne illnesses in humans. The objective of our study was to determine the virulence potential of STEC O145 strains isolated from cattle feces and hide samples. A total of 71 STEC O145 strains isolated from cattle feces (n = 16), hide (n = 53), and human clinical samples (n = 2) were used in the study. The strains were subjected to whole genome sequencing using Illumina MiSeq platform. The average draft genome size of the fecal, hide, and human clinical strains were 5.41, 5.28, and 5.29 Mb, respectively. The average number of genes associated with mobile genetic elements was 260, 238, and 259, in cattle fecal, hide, and human clinical strains, respectively. All strains belonged to O145:H28 serotype and carried eae subtype γ. Shiga toxin 1a was the most common Shiga toxin gene subtype among the strains, followed by stx2a and stx2c. The strains also carried genes encoding type III secretory system proteins, nle, and plasmid-encoded virulence genes. Phylogenetic analysis revealed clustering of cattle fecal strains separately from hide strains, and the human clinical strains were more closely related to the hide strains. All the strains belonged to sequence type (ST)-32. The virulence gene profile of STEC O145 strains isolated from cattle sources was similar to that of human clinical strains and were phylogenetically closely related to human clinical strains. The genetic analysis suggests the potential of cattle STEC O145 strains to cause human illnesses. Inclusion of more strains from cattle and their environment in the analysis will help in further elucidation of the genetic diversity and virulence potential of cattle O145 strains.
Collapse
|
27
|
Complete Genome Sequences of Two Shiga Toxin-Producing Escherichia coli Strains Isolated from Crows. Microbiol Resour Announc 2019; 8:8/45/e01082-19. [PMID: 31699762 PMCID: PMC6838620 DOI: 10.1128/mra.01082-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli strains RM9088 and RM10410 were isolated from crows near a leafy greens-growing region in California in April and July 2009, respectively. Both strains carry genes encoding Shiga toxins and other virulence factors in enteric pathogens. Here, we report the complete genome sequences of RM9088 and RM10410. Escherichia coli strains RM9088 and RM10410 were isolated from crows near a leafy greens-growing region in California in April and July 2009, respectively. Both strains carry genes encoding Shiga toxins and other virulence factors in enteric pathogens. Here, we report the complete genome sequences of RM9088 and RM10410.
Collapse
|
28
|
Forde BM, McAllister LJ, Paton JC, Paton AW, Beatson SA. SMRT sequencing reveals differential patterns of methylation in two O111:H- STEC isolates from a hemolytic uremic syndrome outbreak in Australia. Sci Rep 2019; 9:9436. [PMID: 31263188 PMCID: PMC6602927 DOI: 10.1038/s41598-019-45760-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 05/23/2019] [Indexed: 11/21/2022] Open
Abstract
In 1995 a severe haemolytic-uremic syndrome (HUS) outbreak in Adelaide occurred. A recent genomic analysis of Shiga toxigenic Escherichia coli (STEC) O111:H- strains 95JB1 and 95NR1 from this outbreak found that the more virulent isolate, 95NR1, harboured two additional copies of the Shiga toxin 2 (Stx2) genes encoded within prophage regions. The structure of the Stx2-converting prophages could not be fully resolved using short-read sequence data alone and it was not clear if there were other genomic differences between 95JB1 and 95NR1. In this study we have used Pacific Biosciences (PacBio) single molecule real-time (SMRT) sequencing to characterise the genome and methylome of 95JB1 and 95NR1. We completely resolved the structure of all prophages including two, tandemly inserted, Stx2-converting prophages in 95NR1 that were absent from 95JB1. Furthermore we defined all insertion sequences and found an additional IS1203 element in the chromosome of 95JB1. Our analysis of the methylome of 95NR1 and 95JB1 identified hemi-methylation of a novel motif (5′-CTGCm6AG-3′) in more than 4000 sites in the 95NR1 genome. These sites were entirely unmethylated in the 95JB1 genome, and included at least 177 potential promoter regions that could contribute to regulatory differences between the strains. IS1203 mediated deactivation of a novel type IIG methyltransferase in 95JB1 is the likely cause of the observed differential patterns of methylation between 95NR1 and 95JB1. This study demonstrates the capability of PacBio SMRT sequencing to resolve complex prophage regions and reveal the genetic and epigenetic heterogeneity within a clonal population of bacteria.
Collapse
Affiliation(s)
- Brian M Forde
- Australian Infectious Diseases Centre, The University of Queensland, Brisbane, QLD, Australia.,Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Lauren J McAllister
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - Adrienne W Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - Scott A Beatson
- Australian Infectious Diseases Centre, The University of Queensland, Brisbane, QLD, Australia. .,Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
29
|
|
30
|
González-Escalona N, Kase JA. Virulence gene profiles and phylogeny of Shiga toxin-positive Escherichia coli strains isolated from FDA regulated foods during 2010-2017. PLoS One 2019; 14:e0214620. [PMID: 30934002 PMCID: PMC6443163 DOI: 10.1371/journal.pone.0214620] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/15/2019] [Indexed: 11/19/2022] Open
Abstract
Illnesses caused by Shiga toxin-producing Escherichia coli (STECs) can be life threatening, such as hemolytic uremic syndrome (HUS). The STECs most frequently identified by USDA's Microbiological Data Program (MDP) carried toxin gene subtypes stx1a and/or stx2a. Here we described the genome sequences of 331 STECs isolated from foods regulated by the FDA 2010-2017, and determined their genomic identity, serotype, sequence type, virulence potential, and prevalence of antimicrobial resistance. Isolates were selected from the MDP archive, routine food testing by FDA field labs (ORA), and food testing by a contract company. Only 276 (83%) strains were confirmed as STECs by in silico analysis. Foods from which STECs were recovered included cilantro (6%), spinach (25%), lettuce (11%), and flour (9%). Phylogenetic analysis using core genome MLST revealed these STEC genomes were highly variable, with some clustering associated with ST types and serotypes. We detected 95 different sequence types (ST); several ST were previously associated with HUS: ST21 and ST29 (O26:H11), ST11 (O157:H7), ST33 (O91:H14), ST17 (O103:H2), and ST16 (O111:H-). in silico virulome analyses showed ~ 51% of these strains were potentially pathogenic [besides stx gene they also carried eae (25%) or 26% saa (26%)]. Virulence gene prevalence was also determined: stx1 only (19%); stx2 only (66%); and stx1/sxt2 (15%). Our data form a new WGS dataset that can be used to support food safety investigations and monitor the recurrence/emergence of E. coli in foods.
Collapse
Affiliation(s)
- Narjol González-Escalona
- Division of Microbiology, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States of America
| | - Julie Ann Kase
- Division of Microbiology, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States of America
| |
Collapse
|
31
|
Improving hazard characterization in microbial risk assessment using next generation sequencing data and machine learning: Predicting clinical outcomes in shigatoxigenic Escherichia coli. Int J Food Microbiol 2019; 292:72-82. [DOI: 10.1016/j.ijfoodmicro.2018.11.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 10/23/2018] [Accepted: 11/17/2018] [Indexed: 12/20/2022]
|
32
|
Bandoy DD. Large scale enterohemorrhagic E coli population genomic analysis using whole genome typing reveals recombination clusters and potential drug target. F1000Res 2019; 8:33. [PMID: 33204407 PMCID: PMC7610179 DOI: 10.12688/f1000research.17620.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/25/2020] [Indexed: 11/24/2022] Open
Abstract
Enterohemorrhagic
Escherichia coli continues to be a significant public health risk. With the onset of next generation sequencing, whole genome sequences require a new paradigm of analysis relevant for epidemiology and drug discovery. A large-scale bacterial population genomic analysis was applied to 702 isolates of serotypes associated with EHEC resulting in five pangenome clusters. Serotype incongruence with pangenome types suggests recombination clusters. Core genome analysis was performed to determine the population wide distribution of sdiA as potential drug target. Protein modelling revealed nonsynonymous variants are notably absent in the ligand binding site for quorum sensing, indicating that population wide conservation of the sdiA ligand site can be targeted for potential prophylactic purposes. Applying pathotype-wide pangenomics as a guide for determining evolution of pharmacophore sites is a potential approach in drug discovery.
Collapse
Affiliation(s)
- Dj Darwin Bandoy
- Department of Veterinary Paraclinical Sciences, University of the Philippines Los Baños, Los Baños, Laguna, 4031, Philippines
| |
Collapse
|
33
|
Ambrose SJ, Harmer CJ, Hall RM. Evolution and typing of IncC plasmids contributing to antibiotic resistance in Gram-negative bacteria. Plasmid 2018; 99:40-55. [PMID: 30081066 DOI: 10.1016/j.plasmid.2018.08.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/12/2018] [Accepted: 08/02/2018] [Indexed: 01/14/2023]
Abstract
The large, broad host range IncC plasmids are important contributors to the spread of key antibiotic resistance genes and over 200 complete sequences of IncC plasmids have been reported. To track the spread of these plasmids accurate typing to identify the closest relatives is needed. However, typing can be complicated by the high variability in resistance gene content and various typing methods that rely on features of the conserved backbone have been developed. Plasmids can be broadly typed into two groups, type 1 and type 2, using four features that differentiate the otherwise closely related backbones. These types are found in many different countries in bacteria from humans and animals. However, hybrids of type 1 and type 2 are also occasionally seen, and two further types, each represented by a single plasmid, were distinguished. Generally, the antibiotic resistance genes are located within a small number of resistance islands, only one of which, ARI-B, is found in both type 1 and type 2. The introduction of each resistance island generates a new lineage and, though they are continuously evolving via the loss of resistance genes or introduction of new ones, the island positions serve as valuable lineage-specific markers. A current type 2 lineage of plasmids is derived from an early type 2 plasmid but the sequences of early type 1 plasmids include features not seen in more recent type 1 plasmids, indicating a shared ancestor rather than a direct lineal relationship. Some features, including ones essential for maintenance or for conjugation, have been examined experimentally.
Collapse
Affiliation(s)
- Stephanie J Ambrose
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Christopher J Harmer
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia.
| | - Ruth M Hall
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
34
|
Variability in Characterizing Escherichia coli from Cattle Feces: A Cautionary Tale. Microorganisms 2018; 6:microorganisms6030074. [PMID: 30037096 PMCID: PMC6165469 DOI: 10.3390/microorganisms6030074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 11/17/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are diverse bacteria, with seven serogroups (O26, O45, O103, O111, O121, O145, O157; "Top 7") of interest due to their predominance in human disease. Confirmation of STEC relies on a combination of culturing, immunological and molecular assays, but no single gold standard for identification exists. In this study, we compared analysis of STEC between three independent laboratories (LAB) using different methodologies. In LAB A, colonies of Top 7 were picked after serogroup-specific immunomagnetic separation of feces from western-Canadian slaughter cattle. A fraction of each colony was tested by PCR (stx1, stx2, eae, O group), and Top 7 isolates were saved as glycerol stocks (n = 689). In LAB B, a subsample of isolates (n = 171) were evaluated for stx1 and stx2 using different primer sets. For this, approximately half of the PCR were performed using original DNA template provided by LAB A and half using DNA extracted from sub-cultured isolates. All Top 7 isolates were sub-cultured by LAB A and shipped to LAB C for traditional serotyping (TS) to determine O and H groups, with PCR-confirmation of virulence genes using a third set of primers. By TS, 76% of O groups (525/689) matched PCR-determined O groups. Lowest proportions (p < 0.05) of O group matches between PCR and TS (62.6% and 69.8%) occurred for O26 and O45 serogroups, respectively. PCR-detection of stx differed most between LAB A and LAB C. Excluding isolates where O groups by PCR and TS did not match, detection of stx1 was most consistent (p < 0.01) for O111 and O157:H7/NM. In contrast, for O45 and O103, stx1 was detected in >65% of isolates by LAB A and <5% by LAB C. Stx2 was only detected by LAB C in isolates of serogroups O121, O145, and O157:H7/NM. LAB B also detected stx2 in O26 and O157:H12/H29, while LAB A detected stx2 in all serogroups. Excluding O111 and O157:H7/NM, marked changes in stx detection were observed between initial isolation and sub-cultures of the same isolate. While multiple explanations exist for discordant O-typing between PCR and TS and for differences in stx detection across labs, these data suggest that assays for STEC classification may require re-evaluation and/or standardization.
Collapse
|
35
|
Liao YT, Liu F, Sun X, Li RW, Wu VCH. Complete Genome Sequence of Escherichia coli Phage vB_EcoS Sa179lw, Isolated from Surface Water in a Produce-Growing Area in Northern California. GENOME ANNOUNCEMENTS 2018; 6:e00337-18. [PMID: 29976601 PMCID: PMC6033975 DOI: 10.1128/genomea.00337-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/31/2018] [Indexed: 11/20/2022]
Abstract
We report here the whole-genome sequence of a novel Escherichia coli phage, vB_EcoS Sa179lw, isolated from surface water collected in a produce-growing area. With the presence of a putative eae-like gene that was associated with previous non-O157 Shiga toxin-producing E. coli outbreaks, this phage is a candidate for the study of virulence gene transfer.
Collapse
Affiliation(s)
- Yen-Te Liao
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, USA
| | - Fang Liu
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, USA
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xincheng Sun
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, USA
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
- Collaborative Innovation Center of Food Production and Safety, Zhengzhou, China
| | - Robert W Li
- Animal Genomics and Improvement Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, Maryland, USA
| | - Vivian C H Wu
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, USA
| |
Collapse
|
36
|
Complete Genome Sequences of Two Atypical Enteropathogenic Escherichia coli O145 Environmental Strains. GENOME ANNOUNCEMENTS 2018; 6:6/19/e00418-18. [PMID: 29748413 PMCID: PMC5946043 DOI: 10.1128/genomea.00418-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Escherichia coli O145 strains RM14715 and RM14723 were isolated from wildlife feces near a leafy greens-growing region in Yuma, Arizona. Both strains carry a distinct genotype compared with the E. coli O145 strains isolated from Salinas Valley, California. Here we report complete genome sequences and annotations of RM14715 and RM14723.
Collapse
|
37
|
Complete Genome Sequence of a Natural Escherichia coli O145:H11 Isolate That Belongs to Phylogroup A. GENOME ANNOUNCEMENTS 2018; 6:6/16/e00349-18. [PMID: 29674560 PMCID: PMC5908948 DOI: 10.1128/genomea.00349-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Escherichia coli O145:H11 strain RM14721 was originally isolated from wildlife feces near a leafy greens-growing region in Yuma, AZ. This strain was initially positive for stx1; however, in subsequent cultures, stx1 was not detected by PCR. Here, we report the complete genome sequence and annotation of RM14721.
Collapse
|
38
|
Krüger A, Burgán J, Friedrich AW, Rossen JWA, Lucchesi PMA. ArgO145, a Stx2a prophage of a bovine O145:H- STEC strain, is closely related to phages of virulent human strains. INFECTION GENETICS AND EVOLUTION 2018; 60:126-132. [PMID: 29476813 DOI: 10.1016/j.meegid.2018.02.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 01/18/2018] [Accepted: 02/17/2018] [Indexed: 01/08/2023]
Abstract
Shiga toxins (Stx) are the main virulence factor of a pathogroup of Escherichia coli strains that cause severe human diseases. These toxins are encoded in prophages (Stx prophages), and generally their expression depends on prophage induction. Several studies have reported high diversity among both Stx prophages and Stx. In particular, the toxin subtype Stx2a is associated with high virulence and HUS. Here, we report the genome of ArgO145, an inducible Stx2a prophage identified in a bovine O145:H- strain which produced high levels of Shiga toxin and Stx phage particles. The ArgO145 genome shared lambda phage organization, with recombination, regulation, replication, lysis, and head and tail structural gene regions, although some lambda genes encoding regulatory proteins could not be identified. Remarkably, some Stx2a phages of strains isolated from patients in other countries showed high similarity to ArgO145.
Collapse
Affiliation(s)
- A Krüger
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CONICET-CIC, Laboratorio de Inmunoquímica y Biotecnología, Argentina.
| | - J Burgán
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CONICET-CIC, Laboratorio de Inmunoquímica y Biotecnología, Argentina
| | - A W Friedrich
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, The Netherlands
| | - J W A Rossen
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, The Netherlands
| | - P M A Lucchesi
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CONICET-CIC, Laboratorio de Inmunoquímica y Biotecnología, Argentina
| |
Collapse
|
39
|
Conditional Function of Autoaggregative Protein Cah and Common cah Mutations in Shiga Toxin-Producing Escherichia coli. Appl Environ Microbiol 2017; 84:AEM.01739-17. [PMID: 29054868 DOI: 10.1128/aem.01739-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/11/2017] [Indexed: 01/05/2023] Open
Abstract
Cah is a calcium-binding autotransporter protein involved in autoaggregation and biofilm formation. Although cah is widespread in Shiga toxin-producing Escherichia coli (STEC), we detected mutations in cah at a frequency of 31.3% in this pathogen. In STEC O157:H7 supershedder strain SS17, a large deletion results in a smaller coding sequence, encoding a protein lacking the C-terminal 71 amino acids compared with Cah in STEC O157:H7 strain EDL933. We examined the function of Cah in biofilm formation and host colonization to better understand the selective pressures for cah mutations. EDL933-Cah played a conditional role in biofilm formation in vitro: it enhanced E. coli DH5α biofilm formation on glass surfaces under agitated culture conditions that prevented autoaggregation but inhibited biofilm formation under hydrostatic conditions that facilitated autoaggregation. This function appeared to be strain dependent since Cah-mediated biofilm formation was diminished when an EDL933 cah gene was expressed in SS17. Deletion of cah in EDL933 enhanced bacterial attachment to spinach leaves and altered the adherence pattern of EDL933 to bovine recto-anal junction squamous epithelial (RSE) cells. In contrast, in trans expression of EDL933 cah in SS17 increased its attachment to leaf surfaces, and in DH5α, it enhanced its adherence to RSE cells. Hence, the ecological function of Cah appears to be modulated by environmental conditions and other bacterial strain-specific properties. Considering the prevalence of cah in STEC and its role in attachment and biofilm formation, cah mutations might be selected in ecological niches in which inactivation of Cah would result in an increased fitness in STEC during colonization of plants or animal hosts.IMPORTANCE Shiga toxin-producing Escherichia coli (STEC) harbors genes encoding diverse adhesins, and many of these are known to play an important role in bacterial attachment and host colonization. We demonstrated here that the autotransporter protein Cah confers on E. coli DH5α cells a strong autoaggregative phenotype that is inversely correlated with its ability to form biofilms and plays a strain-specific role in plant and animal colonization by STEC. Although cah is widespread in the STEC population, we detected a mutation rate of 31.3% in cah, which is similar to that reported for rpoS and fimH The formation of cell aggregates due to increased bacterium-to-bacterium interactions may be disadvantageous to bacterial populations under conditions that favor a planktonic state in STEC. Therefore, a loss-of-function mutation in cah is likely a selective trait in STEC when autoaggregative properties become detrimental to bacterial cells and may contribute to the adaptability of STEC to fluctuating environments.
Collapse
|
40
|
Delannoy S, Mariani-Kurkdjian P, Webb HE, Bonacorsi S, Fach P. The Mobilome; A Major Contributor to Escherichia coli stx2-Positive O26:H11 Strains Intra-Serotype Diversity. Front Microbiol 2017; 8:1625. [PMID: 28932209 PMCID: PMC5592225 DOI: 10.3389/fmicb.2017.01625] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 08/10/2017] [Indexed: 12/12/2022] Open
Abstract
Shiga toxin-producing Escherichia coli of serotype O26:H11/H- constitute a diverse group of strains and several clones with distinct genetic characteristics have been identified and characterized. Whole genome sequencing was performed using Illumina and PacBio technologies on eight stx2-positive O26:H11 strains circulating in France. Comparative analyses of the whole genome of the stx2-positive O26:H11 strains indicate that several clones of EHEC O26:H11 are co-circulating in France. Phylogenetic analysis of the French strains together with stx2-positive and stx-negative E. coli O26:H11 genomes obtained from Genbank indicates the existence of four clonal complexes (SNP-CCs) separated in two distinct lineages, one of which comprises the "new French clone" (SNP-CC1) that appears genetically closely related to stx-negative attaching and effacing E. coli (AEEC) strains. Interestingly, the whole genome SNP (wgSNP) phylogeny is summarized in the cas gene phylogeny, and a simple qPCR assay targeting the CRISPR array specific to SNP-CC1 (SP_O26-E) can distinguish between the two main lineages. The PacBio sequencing allowed a detailed analysis of the mobile genetic elements (MGEs) of the strains. Numerous MGEs were identified in each strain, including a large number of prophages and up to four large plasmids, representing overall 8.7-19.8% of the total genome size. Analysis of the prophage pool of the strains shows a considerable diversity with a complex history of recombination. Each clonal complex (SNP-CC) is characterized by a unique set of plasmids and phages, including stx-prophages, suggesting evolution through separate acquisition events. Overall, the MGEs appear to play a major role in O26:H11 intra-serotype clonal diversification.
Collapse
Affiliation(s)
- Sabine Delannoy
- Université Paris-Est, ANSES, Food Safety Laboratory, Platform IdentyPathMaisons-Alfort, France
| | - Patricia Mariani-Kurkdjian
- Assistance Publique Hopitaux de Paris, Hôpital Robert-Debré, Service de Microbiologie, CNR Associé Escherichia coliParis, France
- Infection, Antimicrobials, Modelling, Evolution, UMR 1137, Institut National de la Santé et de la Recherche MédicaleParis, France
- Infection, Antimicrobials, Modelling, Evolution, UMR 1137, Univ Paris Diderot, Sorbonne Paris CitéParis, France
| | - Hattie E. Webb
- Department of Animal and Food Sciences, Texas Tech UniversityLubbock, TX, United States
| | - Stephane Bonacorsi
- Assistance Publique Hopitaux de Paris, Hôpital Robert-Debré, Service de Microbiologie, CNR Associé Escherichia coliParis, France
- Infection, Antimicrobials, Modelling, Evolution, UMR 1137, Institut National de la Santé et de la Recherche MédicaleParis, France
- Infection, Antimicrobials, Modelling, Evolution, UMR 1137, Univ Paris Diderot, Sorbonne Paris CitéParis, France
| | - Patrick Fach
- Université Paris-Est, ANSES, Food Safety Laboratory, Platform IdentyPathMaisons-Alfort, France
| |
Collapse
|
41
|
Lorenz SC, Gonzalez-Escalona N, Kotewicz ML, Fischer M, Kase JA. Genome sequencing and comparative genomics of enterohemorrhagic Escherichia coli O145:H25 and O145:H28 reveal distinct evolutionary paths and marked variations in traits associated with virulence & colonization. BMC Microbiol 2017; 17:183. [PMID: 28830351 PMCID: PMC5567499 DOI: 10.1186/s12866-017-1094-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/14/2017] [Indexed: 12/14/2022] Open
Abstract
Background Enterohemorrhagic Escherichia coli (EHEC) O145 are among the top non-O157 serogroups associated with severe human disease worldwide. Two serotypes, O145:H25 and O145:H28 have been isolated from human patients but little information is available regarding the virulence repertoire, origin and evolutionary relatedness of O145:H25. Hence, we sequenced the complete genome of two O145:H25 strains associated with hemolytic uremic syndrome (HUS) and compared the genomes with those of previously sequenced O145:H28 and other EHEC strains. Results The genomes of the two O145:H25 strains were 5.3 Mbp in size; slightly smaller than those of O145:H28 and other EHEC strains. Both strains contained three nearly identical plasmids and several prophages and integrative elements, many of which differed significantly in size, gene content and organization as compared to those present in O145:H28 and other EHECs. Furthermore, notable variations were observed in several fimbrial gene cluster and intimin types possessed by O145:H25 and O145:H28 indicating potential adaptation to distinct areas of host colonization. Comparative genomics further revealed that O145:H25 are genetically more similar to other non-O157 EHEC strains than to O145:H28. Conclusion Phylogenetic analysis accompanied by comparative genomics revealed that O145:H25 and O145:H28 evolved from two separate clonal lineages and that horizontal gene transfer and gene loss played a major role in the divergence of these EHEC serotypes. The data provide further evidence that ruminants might be a possible reservoir for O145:H25 but that they might be impaired in their ability to establish a persistent colonization as compared to other EHEC strains. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-1094-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sandra C Lorenz
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Division of Microbiology, College Park, MD, 20740, USA. .,University of Hamburg, Hamburg School of Food Science, Institute of Food Chemistry, 20146, Hamburg, Germany.
| | - Narjol Gonzalez-Escalona
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Division of Microbiology, College Park, MD, 20740, USA
| | - Michael L Kotewicz
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Division of Molecular Biology, Laurel, MD, 20708, USA
| | - Markus Fischer
- University of Hamburg, Hamburg School of Food Science, Institute of Food Chemistry, 20146, Hamburg, Germany
| | - Julie A Kase
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Division of Microbiology, College Park, MD, 20740, USA
| |
Collapse
|
42
|
Leimbach A, Poehlein A, Vollmers J, Görlich D, Daniel R, Dobrindt U. No evidence for a bovine mastitis Escherichia coli pathotype. BMC Genomics 2017; 18:359. [PMID: 28482799 PMCID: PMC5422975 DOI: 10.1186/s12864-017-3739-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 04/27/2017] [Indexed: 11/30/2022] Open
Abstract
Background Escherichia coli bovine mastitis is a disease of significant economic importance in the dairy industry. Molecular characterization of mastitis-associated E. coli (MAEC) did not result in the identification of common traits. Nevertheless, a mammary pathogenic E. coli (MPEC) pathotype has been proposed suggesting virulence traits that differentiate MAEC from commensal E. coli. The present study was designed to investigate the MPEC pathotype hypothesis by comparing the genomes of MAEC and commensal bovine E. coli. Results We sequenced the genomes of eight E. coli isolated from bovine mastitis cases and six fecal commensal isolates from udder-healthy cows. We analyzed the phylogenetic history of bovine E. coli genomes by supplementing this strain panel with eleven bovine-associated E. coli from public databases. The majority of the isolates originate from phylogroups A and B1, but neither MAEC nor commensal strains could be unambiguously distinguished by phylogenetic lineage. The gene content of both MAEC and commensal strains is highly diverse and dominated by their phylogenetic background. Although individual strains carry some typical E. coli virulence-associated genes, no traits important for pathogenicity could be specifically attributed to MAEC. Instead, both commensal strains and MAEC have very few gene families enriched in either pathotype. Only the aerobactin siderophore gene cluster was enriched in commensal E. coli within our strain panel. Conclusions This is the first characterization of a phylogenetically diverse strain panel including several MAEC and commensal isolates. With our comparative genomics approach we could not confirm previous studies that argue for a positive selection of specific traits enabling MAEC to elicit bovine mastitis. Instead, MAEC are facultative and opportunistic pathogens recruited from the highly diverse bovine gastrointestinal microbiota. Virulence-associated genes implicated in mastitis are a by-product of commensalism with the primary function to enhance fitness in the bovine gastrointestinal tract. Therefore, we put the definition of the MPEC pathotype into question and suggest to designate corresponding isolates as MAEC. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3739-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andreas Leimbach
- Institute of Hygiene, University of Münster, Mendelstrasse 7, 48149, Münster, Germany. .,Department of Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Göttingen, Germany. .,Institute for Molecular Infection Biology, Julius-Maximilians-University of Würzburg, Würzburg, Germany.
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Göttingen, Germany
| | - John Vollmers
- Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Dennis Görlich
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Göttingen, Germany
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Münster, Mendelstrasse 7, 48149, Münster, Germany. .,Institute for Molecular Infection Biology, Julius-Maximilians-University of Würzburg, Würzburg, Germany.
| |
Collapse
|
43
|
Saeedi P, Yazdanparast M, Behzadi E, Salmanian AH, Mousavi SL, Nazarian S, Amani J. A review on strategies for decreasing E. coli O157:H7 risk in animals. Microb Pathog 2017; 103:186-195. [PMID: 28062285 DOI: 10.1016/j.micpath.2017.01.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 12/25/2016] [Accepted: 01/02/2017] [Indexed: 11/17/2022]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) serotype O157:H7 is a food-borne pathogen that younger children are most prone to this microorganism. Hemolytic Uremic Syndrome (HUS) caused by EHEC, leads to the destruction of red blood cells and kidney failure. The virulence of E.coli O157:H7 is attributed to fimbriae, that facilitate colonization of bacteria within the colon and verotoxins (VT) or Shiga toxins (Stx) that are released into the blood. Although, in most cases, the infection is self-limitedin young children and aged population, it may cause HUS. Therefore, several investigations are performed in order to offer effective therapies and vaccines, which can prevent and treat the infection in appropriate time. As the pathogenesis of this infection is complicated, a multi-targeted strategy is required. Since cattle are the most important reservoir of EHEC and the root of contamination, reducing E. coli O157:H7 at the farm level should decrease the risk of human illness. Several vaccine approaches have been employed with different proper outcomes in animal models, including recombinant proteins (virulence factors such as; Stx1/2, intimin, EspA, fusion proteins of A and B Stx subunits), avirulent ghost cells of EHEC O157:H7, live attenuated bacteria expressing recombinant proteins, recombinant fimbrial proteins. In addition to protein-based vaccines, DNA vaccines have provided proper prevention in the laboratory animal model. This review paper summarizes the previous studies, current status and future perspective of different immunization strategies for eradicating Enterohemorrhagic Escherichia coli O157:H7.
Collapse
Affiliation(s)
- Pardis Saeedi
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maryam Yazdanparast
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | - Elham Behzadi
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Hatef Salmanian
- Plant Bioproducts Department, Institute of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Seyed Latif Mousavi
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | - Shahram Nazarian
- Department of Biology, Faculty of Science, Imam Hossein University, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
44
|
Genes essential for the morphogenesis of the Shiga toxin 2-transducing phage from Escherichia coli O157:H7. Sci Rep 2016; 6:39036. [PMID: 27966628 PMCID: PMC5155283 DOI: 10.1038/srep39036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/16/2016] [Indexed: 11/28/2022] Open
Abstract
Shiga toxin 2 (Stx2), one of the most important virulence factors of enterohaemorrhagic Escherichia coli (EHEC), is encoded by phages. These phages (Stx2 phages) are often called lambda-like. However, most Stx2 phages are short-tailed, thus belonging to the family Podoviridae, and the functions of many genes, especially those in the late region, are unknown. In this study, we performed a systematic genetic and morphological analysis of genes with unknown functions in Sp5, the Stx2 phage from EHEC O157:H7 strain Sakai. We identified nine essential genes, which, together with the terminase genes, determine Sp5 morphogenesis. Four of these genes most likely encoded portal, major capsid, scaffolding and tail fiber proteins. Although exact roles/functions of the other five genes are unknown, one was involved in head formation and four were required for tail formation. One of the four tail genes encoded an unusually large protein of 2,793 amino-acid residues. Two genes that are likely required to maintain the lysogenic state were also identified. Because the late regions of Stx2 phages from various origins are highly conserved, the present study provides an important basis for better understanding the biology of this unique and medically important group of bacteriophages.
Collapse
|
45
|
Plasmids from Shiga Toxin-Producing Escherichia coli Strains with Rare Enterohemolysin Gene (ehxA) Subtypes Reveal Pathogenicity Potential and Display a Novel Evolutionary Path. Appl Environ Microbiol 2016; 82:6367-6377. [PMID: 27542930 DOI: 10.1128/aem.01839-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/11/2016] [Indexed: 12/27/2022] Open
Abstract
Most Shiga toxin-producing Escherichia coli (STEC) strains associated with severe disease, such as hemolytic-uremic syndrome (HUS), carry large enterohemolysin-encoding (ehxA) plasmids, e.g., pO157 and pO103, that contribute to STEC clinical manifestations. Six ehxA subtypes (A through F) exist that phylogenetically cluster into eae-positive (B, C, F), a mix of eae-positive (E) and eae-negative (A), and a third, more distantly related, cluster of eae-negative (D) STEC strains. While subtype B, C, and F plasmids share a number of virulence traits that are distinct from those of subtype A, sequence data have not been available for subtype D and E plasmids. Here, we determined and compared the genetic composition of four subtype D and two subtype E plasmids to establish their evolutionary relatedness among ehxA subtypes and define their potential role in pathogenicity. We found that subtype D strains carry one exceptionally large plasmid (>200 kbp) that carries a variety of virulence genes that are associated with enterotoxigenic and enterohemorrhagic E. coli, which, quite possibly, enables these strains to cause disease despite being food isolates. Our data offer further support for the hypothesis that this subtype D plasmid represents a novel virulence plasmid, sharing very few genetic features with other plasmids; we conclude that these plasmids have evolved from a different evolutionary lineage than the plasmids carrying the other ehxA subtypes. In contrast, the 50-kbp plasmids of subtype E (pO145), although isolated from HUS outbreak strains, carried only few virulence-associated determinants, suggesting that the clinical presentation of subtype E strains is largely a result of chromosomally encoded virulence factors. IMPORTANCE Bacterial plasmids are known to be key agents of change in microbial populations, promoting the dissemination of various traits, such as drug resistance and virulence. This study determined the genetic makeup of virulence plasmids from rare enterohemolysin subtype D and E Shiga toxin-producing E. coli strains. We demonstrated that ehxA subtype D plasmids represent a novel E. coli virulence plasmid, and although subtype D plasmids were derived from nonclinical isolates, they encoded a variety of virulence determinants that are associated with pathogenic E. coli In contrast, subtype E plasmids, isolated from strains recovered from severely ill patients, carry only a few virulence determinants. The results of this study reemphasize the plasticity and vast diversity among E. coli plasmids. This work demonstrates that, although E. coli strains of certain serogroups may not be frequently associated with disease, they should not be underestimated in protecting human health and food safety.
Collapse
|
46
|
Complete Genome Sequences of Four Enterohemolysin-Positive (ehxA) Enterocyte Effacement-Negative Shiga Toxin-Producing Escherichia coli Strains. GENOME ANNOUNCEMENTS 2016; 4:4/5/e00846-16. [PMID: 27587806 PMCID: PMC5009963 DOI: 10.1128/genomea.00846-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Shiga toxin-producing Escherichia coli (STEC) strains are important foodborne pathogens associated with human disease. Most disease-associated STEC strains carry the locus of enterocyte effacement (LEE); however, regularly LEE-negative STEC strains are recovered from ill patients. Few reference sequences are available for these isolate types. Here, we report here the complete genome sequences for four LEE-negative STEC strains.
Collapse
|
47
|
Stanford K, Johnson RP, Alexander TW, McAllister TA, Reuter T. Influence of Season and Feedlot Location on Prevalence and Virulence Factors of Seven Serogroups of Escherichia coli in Feces of Western-Canadian Slaughter Cattle. PLoS One 2016; 11:e0159866. [PMID: 27482711 PMCID: PMC4970752 DOI: 10.1371/journal.pone.0159866] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/08/2016] [Indexed: 11/19/2022] Open
Abstract
Pooled feces collected over two years from 1749 transport trailers hauling western-Canadian slaughter cattle were analysed by PCR for detection of Escherichia coli serogroups O26, O45, O103, O111, O121, O145, and O157. Sequential immunomagnetic separation was then used to collect bacterial isolates (n = 1035) from feces positive for target serogroups. Isolated bacteria were tested by PCR to confirm serogroup and the presence of eae, ehxA, stx1, and stx2 virulence genes. Based on PCR screening, serogroup prevalence in feces ranged from 7.0% (O145) to 94.4% (O103) with at least 3 serogroups present in 79.5% of samples. Origin of cattle affected serogroup PCR prevalence and O157 was most prevalent in feces from south-west Alberta (P < 0.001). All serogroups demonstrated seasonal variations in PCR prevalence, with O26, O45, O103, O121, and O157 least prevalent (P < 0.001) in cooler winter months, while uncommon serogroups O111 and O145 increased in prevalence during winter (P < 0.001). However, isolates collected during winter were predominantly from serogroups O103 and O45. No seasonal variation was noted in proportion of isolates which were Shiga toxin containing E. coli (STEC; P = 0.18) or positive for Shiga toxin and eae (enterohemorrhagic E. coli; EHEC; P = 0.29). Isolates of serogroups O111, O145, and O157 were more frequently EHEC than were others, although 37.6–54.3% of isolates from other serogroups were also EHEC. Shiga-toxin genes present also varied by geographic origin of cattle (P < 0.05) in all serogroups except O157. As cattle within feedlots are sourced from multiple regions, locational differences in serogroup prevalence and virulence genes imply existence of selection pressures for E. coli and their virulence in western-Canadian cattle. Factors which reduce carriage or expression of virulence genes, particularly in non-O157 serogroups, should be investigated.
Collapse
Affiliation(s)
- Kim Stanford
- Alberta Agriculture and Forestry, Lethbridge, Alberta, Canada
- * E-mail:
| | | | | | | | - Tim Reuter
- Alberta Agriculture and Forestry, Lethbridge, Alberta, Canada
| |
Collapse
|
48
|
Zhang YC, Zhang Y, Zhu BR, Zhang BW, Ni C, Zhang DY, Huang Y, Pang E, Lin K. Genome sequences of two closely related strains of Escherichia coli K-12 GM4792. Stand Genomic Sci 2015; 10:125. [PMID: 26664654 PMCID: PMC4675052 DOI: 10.1186/s40793-015-0114-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 11/09/2015] [Indexed: 11/15/2022] Open
Abstract
Escherichia coli lab strains K-12 GM4792 Lac+ and GM4792 Lac- carry opposite lactose markers, which are useful for distinguishing evolved lines as they produce different colored colonies. The two closely related strains are chosen as ancestors for our ongoing studies of experimental evolution. Here, we describe the genome sequences, annotation, and features of GM4792 Lac+ and GM4792 Lac-. GM4792 Lac+ has a 4,622,342-bp long chromosome with 4,061 protein-coding genes and 83 RNA genes. Similarly, the genome of GM4792 Lac- consists of a 4,621,656-bp chromosome containing 4,043 protein-coding genes and 74 RNA genes. Genome comparison analysis reveals that the differences between GM4792 Lac+ and GM4792 Lac- are minimal and limited to only the targeted lac region. Moreover, a previous study on competitive experimentation indicates the two strains are identical or nearly identical in survivability except for lactose utilization in a nitrogen-limited environment. Therefore, at both a genetic and a phenotypic level, GM4792 Lac+ and GM4792 Lac-, with opposite neutral markers, are ideal systems for future experimental evolution studies.
Collapse
Affiliation(s)
- Yan-Cong Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Street, Beijing, 100875 China
| | - Yan Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Street, Beijing, 100875 China ; Present address: National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Bi-Ru Zhu
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Street, Beijing, 100875 China
| | - Bo-Wen Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Street, Beijing, 100875 China
| | - Chuan Ni
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Street, Beijing, 100875 China ; Present address: The second high school attached to Beijing Normal University, Beijing, 100192 China
| | - Da-Yong Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Street, Beijing, 100875 China
| | - Ying Huang
- State Key Laboratory for Infectious Disease Prevention and Control, and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206 China
| | - Erli Pang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Street, Beijing, 100875 China
| | - Kui Lin
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Street, Beijing, 100875 China
| |
Collapse
|
49
|
An Environmental Shiga Toxin-Producing Escherichia coli O145 Clonal Population Exhibits High-Level Phenotypic Variation That Includes Virulence Traits. Appl Environ Microbiol 2015; 82:1090-1101. [PMID: 26637597 DOI: 10.1128/aem.03172-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/24/2015] [Indexed: 11/20/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) serotype O145 is one of the major non-O157 serotypes associated with severe human disease. Here we examined the genetic diversity, population structure, virulence potential, and antimicrobial resistance profiles of environmental O145 strains recovered from a major produce production region in California. Multilocus sequence typing analyses revealed that sequence type 78 (ST-78), a common ST in clinical strains, was the predominant genotype among the environmental strains. Similarly, all California environmental strains belonged to H28, a common H serotype in clinical strains. Although most environmental strains carried an intact fliC gene, only one strain retained swimming motility. Diverse stx subtypes were identified, including stx1a, stx2a, stx2c, and stx2e. Although no correlation was detected between the stx genotype and Stx1 production, high Stx2 production was detected mainly in strains carrying stx2a only and was correlated positively with the cytotoxicity of Shiga toxin. All environmental strains were capable of producing enterohemolysin, whereas only 10 strains were positive for anaerobic hemolytic activity. Multidrug resistance appeared to be common, as nearly half of the tested O145 strains displayed resistance to at least two different classes of antibiotics. The core virulence determinants of enterohemorrhagic E. coli were conserved in the environmental STEC O145 strains; however, there was large variation in the expression of virulence traits among the strains that were highly related genotypically, implying a trend of clonal divergence. Several cattle isolates exhibited key virulence traits comparable to those of the STEC O145 outbreak strains, emphasizing the emergence of hypervirulent strains in agricultural environments.
Collapse
|
50
|
Lineage-Specific Methyltransferases Define the Methylome of the Globally Disseminated Escherichia coli ST131 Clone. mBio 2015; 6:e01602-15. [PMID: 26578678 PMCID: PMC4659465 DOI: 10.1128/mbio.01602-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED Escherichia coli sequence type 131 (ST131) is a clone of uropathogenic E. coli that has emerged rapidly and disseminated globally in both clinical and community settings. Members of the ST131 lineage from across the globe have been comprehensively characterized in terms of antibiotic resistance, virulence potential, and pathogenicity, but to date nothing is known about the methylome of these important human pathogens. Here we used single-molecule real-time (SMRT) PacBio sequencing to determine the methylome of E. coli EC958, the most-well-characterized completely sequenced ST131 strain. Our analysis of 52,081 methylated adenines in the genome of EC958 discovered three (m6)A methylation motifs that have not been described previously. Subsequent SMRT sequencing of isogenic knockout mutants identified the two type I methyltransferases (MTases) and one type IIG MTase responsible for (m6)A methylation of novel recognition sites. Although both type I sites were rare, the type IIG sites accounted for more than 12% of all methylated adenines in EC958. Analysis of the distribution of MTase genes across 95 ST131 genomes revealed their prevalence is highly conserved within the ST131 lineage, with most variation due to the presence or absence of mobile genetic elements on which individual MTase genes are located. IMPORTANCE DNA modification plays a crucial role in bacterial regulation. Despite several examples demonstrating the role of methyltransferase (MTase) enzymes in bacterial virulence, investigation of this phenomenon on a whole-genome scale has remained elusive until now. Here we used single-molecule real-time (SMRT) sequencing to determine the first complete methylome of a strain from the multidrug-resistant E. coli sequence type 131 (ST131) lineage. By interrogating the methylome computationally and with further SMRT sequencing of isogenic mutants representing previously uncharacterized MTase genes, we defined the target sequences of three novel ST131-specific MTases and determined the genomic distribution of all MTase target sequences. Using a large collection of 95 previously sequenced ST131 genomes, we identified mobile genetic elements as a major factor driving diversity in DNA methylation patterns. Overall, our analysis highlights the potential for DNA methylation to dramatically influence gene regulation at the transcriptional level within a well-defined E. coli clone.
Collapse
|