1
|
Orsucci M, Sartori K, Lombardi A, Vanikiotis T, Ouvrard P, Wärdig C, Messer M, Köhler C, Sicard A. Sexual selection drives the speciation of lineages with contrasting mating systems. Curr Biol 2025:S0960-9822(25)00362-8. [PMID: 40245867 DOI: 10.1016/j.cub.2025.03.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 04/19/2025]
Abstract
Repeated shifts in ecological strategies often lead to consistent speciation patterns across phylogenies. One example is the transition from outcrossing to self-fertilization in plants, which generally results in the reproductive isolation of the incipient selfing lineages. However, the evolutionary mechanisms driving their speciation remain poorly understood. In this study, we investigate the hybridization rate and barriers to gene flow between the recently evolved selfing lineage Capsella rubella and its outcrossing ancestor C. grandiflora. Through a survey of sympatric populations in Greece, we found that despite coexisting in the same habitats, the two species rarely form viable hybrids. Our investigation into the mechanisms underlying this reproductive isolation revealed that differences in the intensity of sexual selection between the lineages promote significant prezygotic isolation, with the strength of this isolation depending on the direction of gene flow. Traits that enhance male competitiveness in outcrossers decrease their chance of being pollinated by selfers, lowering the hybridization rate, but simultaneously increase the likelihood of selfers being pollinated by outcrossers. Selfers nevertheless limit hybridization through rapid and efficient self-fertilization mechanisms. Finally, postzygotic barriers, such as hybrid incompatibilities likely driven by differences in parental conflict intensity,1 also contribute to the isolation of the two lineages. Therefore, shifts in the intensity of sexual selection and increase in selfing efficiency appear to be key drivers of reproductive isolation following mating system changes, possibly explaining recurrent speciation patterns in plant evolution.
Collapse
Affiliation(s)
- Marion Orsucci
- Uppsala Biocenter, Department of Plant Biology, Box 7080, 750 07 Uppsala, Sweden
| | - Kevin Sartori
- Uppsala Biocenter, Department of Plant Biology, Box 7080, 750 07 Uppsala, Sweden
| | - Alessandra Lombardi
- Uppsala Biocenter, Department of Plant Biology, Box 7080, 750 07 Uppsala, Sweden
| | - Theofilos Vanikiotis
- Department of Biological Applications & Technology, University of Ioannina, Leof. S. Niarchou GR-451 10, Ioannina, Greece
| | - Pierre Ouvrard
- Uppsala Biocenter, Department of Plant Biology, Box 7080, 750 07 Uppsala, Sweden
| | - Cecilia Wärdig
- Uppsala Biocenter, Department of Plant Biology, Box 7080, 750 07 Uppsala, Sweden
| | - Michaela Messer
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Claudia Köhler
- Uppsala Biocenter, Department of Plant Biology, Box 7080, 750 07 Uppsala, Sweden; Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Adrien Sicard
- Uppsala Biocenter, Department of Plant Biology, Box 7080, 750 07 Uppsala, Sweden.
| |
Collapse
|
2
|
Daigle A, Johri P. Hill-Robertson interference may bias the inference of fitness effects of new mutations in highly selfing species. Evolution 2025; 79:342-363. [PMID: 39565285 PMCID: PMC11879154 DOI: 10.1093/evolut/qpae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/21/2024]
Abstract
The accurate estimation of the distribution of fitness effects (DFE) of new mutations is critical for population genetic inference but remains a challenging task. While various methods have been developed for DFE inference using the site frequency spectrum of putatively neutral and selected sites, their applicability in species with diverse life history traits and complex demographic scenarios is not well understood. Selfing is common among eukaryotic species and can lead to decreased effective recombination rates, increasing the effects of selection at linked sites, including interference between selected alleles. We employ forward simulations to investigate the limitations of current DFE estimation approaches in the presence of selfing and other model violations, such as linkage, departures from semidominance, population structure, and uneven sampling. We find that distortions of the site frequency spectrum due to Hill-Robertson interference in highly selfing populations lead to mis-inference of the deleterious DFE of new mutations. Specifically, when inferring the distribution of selection coefficients, there is an overestimation of nearly neutral and strongly deleterious mutations and an underestimation of mildly deleterious mutations when interference between selected alleles is pervasive. In addition, the presence of cryptic population structure with low rates of migration and uneven sampling across subpopulations leads to the false inference of a deleterious DFE skewed towards effectively neutral/mildly deleterious mutations. Finally, the proportion of adaptive substitutions estimated at high rates of selfing is substantially overestimated. Our observations apply broadly to species and genomic regions with little/no recombination and where interference might be pervasive.
Collapse
Affiliation(s)
- Austin Daigle
- Department of Biology, University of North Carolina, Chapel Hill, NC, United States
- Department of Genetics, University of North Carolina, Chapel Hill, NC, United States
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, United States
| | - Parul Johri
- Department of Biology, University of North Carolina, Chapel Hill, NC, United States
- Department of Genetics, University of North Carolina, Chapel Hill, NC, United States
- Integrative Program for Biological & Genome Sciences, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
3
|
Kasianova AM, Mityukov VD, German DA, Kasianov AS, Penin AA, Logacheva MD. Chromosome-Scale Assembly of Capsella orientalis, Maternal Progenitor of Cosmopolitan Allotetraploid C. bursa-pastoris. Genome Biol Evol 2025; 17:evaf009. [PMID: 39887048 PMCID: PMC11783323 DOI: 10.1093/gbe/evaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2025] [Indexed: 02/01/2025] Open
Abstract
The genus Capsella serves as a model for understanding speciation, hybridization, and genome evolution in plants. Here, we present a chromosome-scale genome assembly of Capsella orientalis, the maternal progenitor of a cosmopolitan allotetraploid C. bursa-pastoris. Using nanopore sequencing and data on chromatin contacts (Hi-C), we assembled the genome into eight pseudo-chromosomes with high contiguity, evidenced by a benchmarking universal single-copy orthologs (BUSCO) completeness score of 99.3%. Comparative analysis with C. rubella and C. bursa-pastoris revealed overall synteny, except for 2 Mb inversion on chromosome 4 of C. rubella. Comparative genome analysis highlighted the conservation of gene content and structural integrity in the C. orientalis-derived subgenome of C. bursa-pastoris, with the exception of a 1.8 Mb region absent in O subgenome but present in C. orientalis. The genome annotation includes 27,675 protein-coding genes, with most exhibiting one-to-one orthology with Arabidopsis thaliana. Notably, 2,155 genes showed no similarity to A. thaliana ones. These results establish a robust genomic resource for C. orientalis, facilitating future studies on polyploid evolution, gene regulation, and species divergence within Capsella.
Collapse
Affiliation(s)
- Alexandra M Kasianova
- Skolkovo Institute of Science and Technology, Center of Molecular and Cellular Biology, Moscow, Russia
- Institute of Information Transmission Problems, Laboratory of Plant Genomics, Moscow, Russia
| | - Vladislav D Mityukov
- Institute of Gene Biology, Laboratory of Structural and Functional Organisation of Chromosomes, Moscow, Russia
| | - Dmitry A German
- Altai State University, South-Siberian Botanical Garden, Barnaul, Russia
| | - Artem S Kasianov
- BIOPOLIS, Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Aleksey A Penin
- Institute of Information Transmission Problems, Laboratory of Plant Genomics, Moscow, Russia
- Vavilov Institute of General Genetics, Laboratory of Plant Genomics, Moscow, Russia
| | - Maria D Logacheva
- Skolkovo Institute of Science and Technology, Center of Molecular and Cellular Biology, Moscow, Russia
- Institute of Information Transmission Problems, Laboratory of Plant Genomics, Moscow, Russia
| |
Collapse
|
4
|
Betancourt AJ, Wei KHC, Huang Y, Lee YCG. Causes and Consequences of Varying Transposable Element Activity: An Evolutionary Perspective. Annu Rev Genomics Hum Genet 2024; 25:1-25. [PMID: 38603565 DOI: 10.1146/annurev-genom-120822-105708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Transposable elements (TEs) are genomic parasites found in nearly all eukaryotes, including humans. This evolutionary success of TEs is due to their replicative activity, involving insertion into new genomic locations. TE activity varies at multiple levels, from between taxa to within individuals. The rapidly accumulating evidence of the influence of TE activity on human health, as well as the rapid growth of new tools to study it, motivated an evaluation of what we know about TE activity thus far. Here, we discuss why TE activity varies, and the consequences of this variation, from an evolutionary perspective. By studying TE activity in nonhuman organisms in the context of evolutionary theories, we can shed light on the factors that affect TE activity. While the consequences of TE activity are usually deleterious, some have lasting evolutionary impacts by conferring benefits on the host or affecting other evolutionary processes.
Collapse
Affiliation(s)
- Andrea J Betancourt
- Institute of Infection, Veterinary, and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Kevin H-C Wei
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yuheng Huang
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Yuh Chwen G Lee
- Center for Complex Biological Systems, University of California, Irvine, California, USA;
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| |
Collapse
|
5
|
Woźniak NJ, Sartori K, Kappel C, Tran TC, Zhao L, Erban A, Gallinger J, Fehrle I, Jantzen F, Orsucci M, Ninkovic V, Rosa S, Lenhard M, Kopka J, Sicard A. Convergence and molecular evolution of floral fragrance after independent transitions to self-fertilization. Curr Biol 2024; 34:2702-2711.e6. [PMID: 38776901 DOI: 10.1016/j.cub.2024.04.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/26/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Studying the independent evolution of similar traits provides valuable insights into the ecological and genetic factors driving phenotypic evolution.1 The transition from outcrossing to self-fertilization is common in plant evolution2 and is often associated with a reduction in floral attractive features such as display size, chemical signals, and pollinator rewards.3 These changes are believed to result from the reallocation of the resources used for building attractive flowers, as the need to attract pollinators decreases.2,3 We investigated the similarities in the evolution of flower fragrance following independent transitions to self-fertilization in Capsella.4,5,6,7,8,9 We identified several compounds that exhibited similar changes in different selfer lineages, such that the flower scent composition reflects mating systems rather than evolutionary history within this genus. We further demonstrate that the repeated loss of β-ocimene emission, one of the compounds most strongly affected by these transitions, was caused by mutations in different genes. In one of the Capsella selfing lineages, the loss of its emission was associated with a mutation altering subcellular localization of the ortholog of TERPENE SYNTHASE 2. This mutation appears to have been fixed early after the transition to selfing through the capture of variants segregating in the ancestral outcrossing population. The large extent of convergence in the independent evolution of flower scent, together with the evolutionary history and molecular consequences of a causal mutation, suggests that the emission of specific volatiles evolved as a response to changes in ecological pressures rather than resource limitation.
Collapse
Affiliation(s)
- Natalia Joanna Woźniak
- Institut für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Kevin Sartori
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter, 75007 Uppsala, Sweden
| | - Christian Kappel
- Institut für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Thi Chi Tran
- Institut für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Lihua Zhao
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter, 75007 Uppsala, Sweden
| | - Alexander Erban
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Jannicke Gallinger
- Department of Ecology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Ines Fehrle
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Friederike Jantzen
- Institut für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Marion Orsucci
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter, 75007 Uppsala, Sweden
| | - Velemir Ninkovic
- Department of Ecology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Stefanie Rosa
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter, 75007 Uppsala, Sweden
| | - Michael Lenhard
- Institut für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Joachim Kopka
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Adrien Sicard
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter, 75007 Uppsala, Sweden.
| |
Collapse
|
6
|
Dew-Budd KJ, Chow HT, Kendall T, David BC, Rozelle JA, Mosher RA, Beilstein MA. Mating system is associated with seed phenotypes upon loss of RNA-directed DNA methylation in Brassicaceae. PLANT PHYSIOLOGY 2024; 194:2136-2148. [PMID: 37987565 DOI: 10.1093/plphys/kiad622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023]
Abstract
In plants, de novo DNA methylation is guided by 24-nt short interfering (si)RNAs in a process called RNA-directed DNA methylation (RdDM). Primarily targeted at transposons, RdDM causes transcriptional silencing and can indirectly influence expression of neighboring genes. During reproduction, a small number of siRNA loci are dramatically upregulated in the maternally derived seed coat, suggesting that RdDM might have a special function during reproduction. However, the developmental consequence of RdDM has been difficult to dissect because disruption of RdDM does not result in overt phenotypes in Arabidopsis (Arabidopsis thaliana), where the pathway has been most thoroughly studied. In contrast, Brassica rapa mutants lacking RdDM have a severe seed production defect, which is determined by the maternal sporophytic genotype. To explore the factors that underlie the different phenotypes of these species, we produced RdDM mutations in 3 additional members of the Brassicaceae family: Camelina sativa, Capsella rubella, and Capsella grandiflora. Among these 3 species, only mutations in the obligate outcrosser, C. grandiflora, displayed a seed production defect similar to Brassica rapa mutants, suggesting that mating system is a key determinant for reproductive phenotypes in RdDM mutants.
Collapse
Affiliation(s)
- Kelly J Dew-Budd
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Hiu Tung Chow
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Timmy Kendall
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Brandon C David
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - James A Rozelle
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Rebecca A Mosher
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Mark A Beilstein
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
7
|
Penin AA, Kasianov AS, Klepikova AV, Omelchenko DO, Makarenko MS, Logacheva MD. Origin and diversity of Capsella bursa-pastoris from the genomic point of view. BMC Biol 2024; 22:52. [PMID: 38439107 PMCID: PMC10913212 DOI: 10.1186/s12915-024-01832-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/23/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Capsella bursa-pastoris, a cosmopolitan weed of hybrid origin, is an emerging model object for the study of early consequences of polyploidy, being a fast growing annual and a close relative of Arabidopsis thaliana. The development of this model is hampered by the absence of a reference genome sequence. RESULTS We present here a subgenome-resolved chromosome-scale assembly and a genetic map of the genome of Capsella bursa-pastoris. It shows that the subgenomes are mostly colinear, with no massive deletions, insertions, or rearrangements in any of them. A subgenome-aware annotation reveals the lack of genome dominance-both subgenomes carry similar number of genes. While most chromosomes can be unambiguously recognized as derived from either paternal or maternal parent, we also found homeologous exchange between two chromosomes. It led to an emergence of two hybrid chromosomes; this event is shared between distant populations of C. bursa-pastoris. The whole-genome analysis of 119 samples belonging to C. bursa-pastoris and its parental species C. grandiflora/rubella and C. orientalis reveals introgression from C. orientalis but not from C. grandiflora/rubella. CONCLUSIONS C. bursa-pastoris does not show genome dominance. In the earliest stages of evolution of this species, a homeologous exchange occurred; its presence in all present-day populations of C. bursa-pastoris indicates on a single origin of this species. The evidence coming from whole-genome analysis challenges the current view that C. grandiflora/rubella was a direct progenitor of C. bursa-pastoris; we hypothesize that it was an extinct (or undiscovered) species sister to C. grandiflora/rubella.
Collapse
Affiliation(s)
- Aleksey A Penin
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia.
| | - Artem S Kasianov
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Anna V Klepikova
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Denis O Omelchenko
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Maksim S Makarenko
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Maria D Logacheva
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
- Skolkovo Institute of Science and Technology, Moscow, Russia
| |
Collapse
|
8
|
Johnson AR, Yue Y, Carey SB, Park SJ, Kruse LH, Bao A, Pasha A, Harkess A, Provart NJ, Moghe GD, Frank MH. Chromosome-level Genome Assembly of Euphorbia peplus, a Model System for Plant Latex, Reveals that Relative Lack of Ty3 Transposons Contributed to Its Small Genome Size. Genome Biol Evol 2023; 15:evad018. [PMID: 36757383 PMCID: PMC10018070 DOI: 10.1093/gbe/evad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Euphorbia peplus (petty spurge) is a small, fast-growing plant that is native to Eurasia and has become a naturalized weed in North America and Australia. Euphorbia peplus is not only medicinally valuable, serving as a source for the skin cancer drug ingenol mebutate, but also has great potential as a model for latex production owing to its small size, ease of manipulation in the laboratory, and rapid reproductive cycle. To help establish E. peplus as a new model, we generated a 267.2-Mb Hi-C-anchored PacBio HiFi nuclear genome assembly with a BUSCO score of 98.5%, a genome annotation based on RNA-seq data from six organs, and publicly accessible tools including a genome browser and an interactive organ-specific expression atlas. Chromosome number is highly variable across Euphorbia species. Using a comparative analysis of our newly sequenced E. peplus genome with other Euphorbiaceae genomes, we show that variation in Euphorbia chromosome number between E. peplus and Euphorbia lathyris is likely due to fragmentation and rearrangement rather than chromosomal duplication followed by diploidization of the duplicated sequence. Moreover, we found that the E. peplus genome is relatively compact compared with related members of the genus in part due to restricted expansion of the Ty3 transposon family. Finally, we identify a large gene cluster that contains many previously identified enzymes in the putative ingenol mebutate biosynthesis pathway, along with additional gene candidates for this biosynthetic pathway. The genomic resources we have created for E. peplus will help advance research on latex production and ingenol mebutate biosynthesis in the commercially important Euphorbiaceae family.
Collapse
Affiliation(s)
- Arielle R Johnson
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York
| | - Yuanzheng Yue
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York
| | - Sarah B Carey
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama
| | - Se Jin Park
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York
| | - Lars H Kruse
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York
| | - Ashley Bao
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York
| | - Asher Pasha
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Alex Harkess
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama
| | - Nicholas J Provart
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Gaurav D Moghe
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York
| | - Margaret H Frank
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York
| |
Collapse
|
9
|
Henning PM, Roalson EH, Mir W, McCubbin AG, Shore JS. Annotation of the Turnera subulata (Passifloraceae) Draft Genome Reveals the S-Locus Evolved after the Divergence of Turneroideae from Passifloroideae in a Stepwise Manner. PLANTS (BASEL, SWITZERLAND) 2023; 12:286. [PMID: 36679000 PMCID: PMC9862265 DOI: 10.3390/plants12020286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
A majority of Turnera species (Passifloraceae) exhibit distyly, a reproductive system involving both self-incompatibility and reciprocal herkogamy. This system differs from self-incompatibility in Passiflora species. The genetic basis of distyly in Turnera is a supergene, restricted to the S-morph, and containing three S-genes. How supergenes and distyly evolved in Turnera, and the other Angiosperm families exhibiting distyly remain largely unknown. Unraveling the evolutionary origins in Turnera requires the generation of genomic resources and extensive phylogenetic analyses. Here, we present the annotated draft genome of the S-morph of distylous Turnera subulata. Our annotation allowed for phylogenetic analyses of the three S-genes' families across 56 plant species ranging from non-seed plants to eudicots. In addition to the phylogenetic analysis, we identified the three S-genes' closest paralogs in two species of Passiflora. Our analyses suggest that the S-locus evolved after the divergence of Passiflora and Turnera. Finally, to provide insights into the neofunctionalization of the S-genes, we compared expression patterns of the S-genes with close paralogs in Arabidopsis and Populus trichocarpa. The annotation of the T. subulata genome will provide a useful resource for future comparative work. Additionally, this work has provided insights into the convergent nature of distyly and the origin of supergenes.
Collapse
Affiliation(s)
- Paige M. Henning
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
- Center for Genomic Science Innovation, University of Wisconsin Madison, 425 Henry Mall, Madison, WI 53706-1577, USA
| | - Eric H. Roalson
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Wali Mir
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Andrew G. McCubbin
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Joel S. Shore
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
10
|
Huang Y, Shukla H, Lee YCG. Species-specific chromatin landscape determines how transposable elements shape genome evolution. eLife 2022; 11:81567. [PMID: 35997258 PMCID: PMC9398452 DOI: 10.7554/elife.81567] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022] Open
Abstract
Transposable elements (TEs) are selfish genetic parasites that increase their copy number at the expense of host fitness. The ‘success’, or genome-wide abundance, of TEs differs widely between species. Deciphering the causes for this large variety in TE abundance has remained a central question in evolutionary genomics. We previously proposed that species-specific TE abundance could be driven by the inadvertent consequences of host-direct epigenetic silencing of TEs—the spreading of repressive epigenetic marks from silenced TEs into adjacent sequences. Here, we compared this TE-mediated local enrichment of repressive marks, or ‘the epigenetic effect of TEs’, in six species in the Drosophila melanogaster subgroup to dissect step-by-step the role of such effect in determining genomic TE abundance. We found that TE-mediated local enrichment of repressive marks is prevalent and substantially varies across and even within species. While this TE-mediated effect alters the epigenetic states of adjacent genes, we surprisingly discovered that the transcription of neighboring genes could reciprocally impact this spreading. Importantly, our multi-species analysis provides the power and appropriate phylogenetic resolution to connect species-specific host chromatin regulation, TE-mediated epigenetic effects, the strength of natural selection against TEs, and genomic TE abundance unique to individual species. Our findings point toward the importance of host chromatin landscapes in shaping genome evolution through the epigenetic effects of a selfish genetic parasite. All the instructions required for life are encoded in the set of DNA present in a cell. It therefore seems natural to think that every bit of this genetic information should serve the organism. And yet most species carry parasitic ‘transposable’ sequences, or transposons, whose only purpose is to multiply and insert themselves at other positions in the genome. It is possible for cells to suppress these selfish elements. Chemical marks can be deposited onto the DNA to temporarily ‘silence’ transposons and prevent them from being able to move and replicate. However, this sometimes comes at a cost: the repressive chemical modifications can spread to nearby genes that are essential for the organism and perturb their function. Strangely, the prevalence of transposons varies widely across the tree of life. These sequences form the majority of the genome of certain species – in fact, they represent about half of the human genetic information. But their abundance is much lower in other organisms, forming a measly 6% of the genome of puffer fish for instance. Even amongst fruit fly species, the prevalence of transposable elements can range between 2% and 25%. What explains such differences? Huang et al. set out to examine this question through the lens of transposon silencing, systematically comparing how this process impacts nearby regions in six species of fruit flies. This revealed variations in the strength of the side effects associated with transposon silencing, resulting in different levels of perturbation on neighbouring genes. A stronger impact was associated with the species having fewer transposons in its genome, suggesting that an evolutionary pressure is at work to keep the abundance of transposons at a low level in these species. Further analyses showed that the genes which determine how silencing marks are distributed may also be responsible for the variations in the impact of transposon silencing. They could therefore be the ones driving differences in the abundance of transposons between species. Overall, this work sheds light on the complex mechanisms shaping the evolution of genomes, and it may help to better understand how transposons are linked to processes such as aging and cancer.
Collapse
Affiliation(s)
- Yuheng Huang
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, United States
| | - Harsh Shukla
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, United States
| | - Yuh Chwen G Lee
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, United States
| |
Collapse
|
11
|
Zhao Y, Li X, Xie J, Xu W, Chen S, Zhang X, Liu S, Wu J, El-Kassaby YA, Zhang D. Transposable Elements: Distribution, Polymorphism, and Climate Adaptation in Populus. FRONTIERS IN PLANT SCIENCE 2022; 13:814718. [PMID: 35178060 PMCID: PMC8843856 DOI: 10.3389/fpls.2022.814718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Transposable elements (TEs) are a class of mobile genetic elements that make effects on shaping rapid phenotypic traits of adaptive significance. TE insertions are usually related to transcription changes of nearby genes, and thus may be subjected to purifying selection. Based on the available genome resources of Populus, we found that the composition of Helitron DNA family were highly variable and could directly influence the transcription of nearby gene expression, which are involving in stress-responsive, programmed cell death, and apoptosis pathway. Next, we indicated TEs are highly enriched in Populus trichocarpa compared with three other congeneric poplar species, especially located at untranslated regions (3'UTRs and 5'UTRs) and Helitron transposons, particularly 24-nt siRNA-targeted, are significantly associated with reduced gene expression. Additionally, we scanned a representative resequenced Populus tomentosa population, and identified 9,680 polymorphic TEs loci. More importantly, we identified a Helitron transposon located at the 3'UTR, which could reduce WRKY18 expression level. Our results highlight the importance of TE insertion events, which could regulate gene expression and drive adaptive phenotypic variation in Populus.
Collapse
Affiliation(s)
- Yiyang Zhao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xian Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jianbo Xie
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Weijie Xu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Sisi Chen
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Sijia Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jiadong Wu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yousry A. El-Kassaby
- Department of Forest and Conservation Sciences, Forest Sciences Centre, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
12
|
Städler T, Florez-Rueda AM, Roth M. A revival of effective ploidy: the asymmetry of parental roles in endosperm-based hybridization barriers. CURRENT OPINION IN PLANT BIOLOGY 2021; 61:102015. [PMID: 33639340 DOI: 10.1016/j.pbi.2021.102015] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/15/2021] [Accepted: 01/25/2021] [Indexed: 05/15/2023]
Abstract
Interest in understanding hybrid seed failure (HSF) has mushroomed, both in terms of identifying underlying molecular processes and their evolutionary drivers. We review phenotypic and molecular advances with a focus on the 'effective ploidy' concept, witnessing a recent revival after long obscurity. Endosperm misdevelopment has now been shown to underlie HSF in many inter-specific, homoploid crosses. The consistent asymmetries in seed size and developmental trajectories likely reflect parental divergence in key, dosage-sensitive processes. Transcriptomic and epigenomic studies reveal genome-wide, polarized expression perturbations and shifts in parental expression proportions, consistent with small-RNA imbalances between parental roles. Among-species differences in levels of parental conflict over resource allocation enjoy strong support in explaining why differences in effective ploidy may evolve.
Collapse
Affiliation(s)
- Thomas Städler
- Institute of Integrative Biology, ETH Zurich & Zurich-Basel Plant Science Center, Universitätstrasse 16, 8092 Zurich, Switzerland.
| | - Ana M Florez-Rueda
- Department of Plant and Microbial Biology, University of Zurich and Zurich-Basel Plant Science Center, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Morgane Roth
- GAFL INRAE, Allée des Chênes 67, 84140 Montfavet, France
| |
Collapse
|
13
|
Chen J, Glémin S, Lascoux M. From Drift to Draft: How Much Do Beneficial Mutations Actually Contribute to Predictions of Ohta's Slightly Deleterious Model of Molecular Evolution? Genetics 2020; 214:1005-1018. [PMID: 32015019 PMCID: PMC7153929 DOI: 10.1534/genetics.119.302869] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/26/2020] [Indexed: 12/18/2022] Open
Abstract
Since its inception in 1973, the slightly deleterious model of molecular evolution, also known as the nearly neutral theory of molecular evolution, remains a central model to explain the main patterns of DNA polymorphism in natural populations. This is not to say that the quantitative fit to data are perfect. A recent study used polymorphism data from Drosophila melanogaster to test whether, as predicted by the nearly neutral theory, the proportion of effectively neutral mutations depends on the effective population size (Ne ). It showed that a nearly neutral model simply scaling with Ne variation across the genome could not alone explain the data, but that consideration of linked positive selection improves the fit between observations and predictions. In the present article, we extended the work in two main directions. First, we confirmed the observed pattern on a set of 59 species, including high-quality genomic data from 11 animal and plant species with different mating systems and effective population sizes, hence a priori different levels of linked selection. Second, for the 11 species with high-quality genomic data we also estimated the full distribution of fitness effects (DFE) of mutations, and not solely the DFE of deleterious mutations. Both Ne and beneficial mutations contributed to the relationship between the proportion of effectively neutral mutations and local Ne across the genome. In conclusion, the predictions of the slightly deleterious model of molecular evolution hold well for species with small Ne , but for species with large Ne , the fit is improved by incorporating linked positive selection to the model.
Collapse
Affiliation(s)
- Jun Chen
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden
| | - Sylvain Glémin
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden
- Université de Rennes, Centre National de la Recherche Scientifique (CNRS), ECOBIO (Ecosystèmes, Biodiversité, Evolution) - Unité Mixte de Recherche (UMR) 6553, F-35000 Rennes, France
| | - Martin Lascoux
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden
| |
Collapse
|
14
|
Mattila TM, Laenen B, Slotte T. Population Genomics of Transitions to Selfing in Brassicaceae Model Systems. Methods Mol Biol 2020; 2090:269-287. [PMID: 31975171 DOI: 10.1007/978-1-0716-0199-0_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Many plants harbor complex mechanisms that promote outcrossing and efficient pollen transfer. These include floral adaptations as well as genetic mechanisms, such as molecular self-incompatibility (SI) systems. The maintenance of such systems over long evolutionary timescales suggests that outcrossing is favorable over a broad range of conditions. Conversely, SI has repeatedly been lost, often in association with transitions to self-fertilization (selfing). This transition is favored when the short-term advantages of selfing outweigh the costs, primarily inbreeding depression. The transition to selfing is expected to have major effects on population genetic variation and adaptive potential, as well as on genome evolution. In the Brassicaceae, many studies on the population genetic, gene regulatory, and genomic effects of selfing have centered on the model plant Arabidopsis thaliana and the crucifer genus Capsella. The accumulation of population genomics datasets have allowed detailed investigation of where, when and how the transition to selfing occurred. Future studies will take advantage of the development of population genetics theory on the impact of selfing, especially regarding positive selection. Furthermore, investigation of systems including recent transitions to selfing, mixed mating populations and/or multiple independent replicates of the same transition will facilitate dissecting the effects of mating system variation from processes driven by demography.
Collapse
Affiliation(s)
- Tiina M Mattila
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Benjamin Laenen
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Tanja Slotte
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
15
|
Lafon Placette C. Endosperm genome dosage, hybrid seed failure, and parental imprinting: sexual selection as an alternative to parental conflict. AMERICAN JOURNAL OF BOTANY 2020; 107:17-19. [PMID: 31797356 DOI: 10.1002/ajb2.1401] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/04/2019] [Indexed: 05/15/2023]
Affiliation(s)
- Clément Lafon Placette
- Department of Botany, Faculty of Science, Charles University, CZ-128 01, Prague, Czech Republic
| |
Collapse
|
16
|
Jantzen F, Lynch JH, Kappel C, Höfflin J, Skaliter O, Wozniak N, Sicard A, Sas C, Adebesin F, Ravid J, Vainstein A, Hilker M, Dudareva N, Lenhard M. Retracing the molecular basis and evolutionary history of the loss of benzaldehyde emission in the genus Capsella. THE NEW PHYTOLOGIST 2019; 224:1349-1360. [PMID: 31400223 DOI: 10.1111/nph.16103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/18/2019] [Indexed: 05/13/2023]
Abstract
The transition from pollinator-mediated outbreeding to selfing has occurred many times in angiosperms. This is generally accompanied by a reduction in traits attracting pollinators, including reduced emission of floral scent. In Capsella, emission of benzaldehyde as a main component of floral scent has been lost in selfing C. rubella by mutation of cinnamate-CoA ligase CNL1. However, the biochemical basis and evolutionary history of this loss remain unknown, as does the reason for the absence of benzaldehyde emission in the independently derived selfer Capsella orientalis. We used plant transformation, in vitro enzyme assays, population genetics and quantitative genetics to address these questions. CNL1 has been inactivated twice independently by point mutations in C. rubella, causing a loss of enzymatic activity. Both inactive haplotypes are found within and outside of Greece, the centre of origin of C. rubella, indicating that they arose before its geographical spread. By contrast, the loss of benzaldehyde emission in C. orientalis is not due to an inactivating mutation in CNL1. CNL1 represents a hotspot for mutations that eliminate benzaldehyde emission, potentially reflecting the limited pleiotropy and large effect of its inactivation. Nevertheless, even closely related species have followed different evolutionary routes in reducing floral scent.
Collapse
Affiliation(s)
- Friederike Jantzen
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, D-14476, Potsdam-Golm, Germany
| | - Joseph H Lynch
- Department of Biochemistry, Purdue University, 175 South University St., West Lafayette, IN, 47907-2063, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Christian Kappel
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, D-14476, Potsdam-Golm, Germany
| | - Jona Höfflin
- Institute of Biology, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Haderslebener Straße 9, 12163, Berlin, Germany
| | - Oded Skaliter
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, PO Box 12, 76100, Rehovot, Israel
| | - Natalia Wozniak
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, D-14476, Potsdam-Golm, Germany
| | - Adrien Sicard
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, D-14476, Potsdam-Golm, Germany
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Claudia Sas
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, D-14476, Potsdam-Golm, Germany
| | - Funmilayo Adebesin
- Department of Biochemistry, Purdue University, 175 South University St., West Lafayette, IN, 47907-2063, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Jasmin Ravid
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, PO Box 12, 76100, Rehovot, Israel
| | - Alexander Vainstein
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, PO Box 12, 76100, Rehovot, Israel
| | - Monika Hilker
- Institute of Biology, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Haderslebener Straße 9, 12163, Berlin, Germany
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, 175 South University St., West Lafayette, IN, 47907-2063, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Michael Lenhard
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, D-14476, Potsdam-Golm, Germany
| |
Collapse
|
17
|
Bachmann JA, Tedder A, Laenen B, Fracassetti M, Désamoré A, Lafon-Placette C, Steige KA, Callot C, Marande W, Neuffer B, Bergès H, Köhler C, Castric V, Slotte T. Genetic basis and timing of a major mating system shift in Capsella. THE NEW PHYTOLOGIST 2019; 224:505-517. [PMID: 31254395 DOI: 10.1111/nph.16035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/20/2019] [Indexed: 05/23/2023]
Abstract
A crucial step in the transition from outcrossing to self-fertilization is the loss of genetic self-incompatibility (SI). In the Brassicaceae, SI involves the interaction of female and male specificity components, encoded by the genes SRK and SCR at the self-incompatibility locus (S-locus). Theory predicts that S-linked mutations, and especially dominant mutations in SCR, are likely to contribute to loss of SI. However, few studies have investigated the contribution of dominant mutations to loss of SI in wild plant species. Here, we investigate the genetic basis of loss of SI in the self-fertilizing crucifer species Capsella orientalis, by combining genetic mapping, long-read sequencing of complete S-haplotypes, gene expression analyses and controlled crosses. We show that loss of SI in C. orientalis occurred < 2.6 Mya and maps as a dominant trait to the S-locus. We identify a fixed frameshift deletion in the male specificity gene SCR and confirm loss of male SI specificity. We further identify an S-linked small RNA that is predicted to cause dominance of self-compatibility. Our results agree with predictions on the contribution of dominant S-linked mutations to loss of SI, and thus provide new insights into the molecular basis of mating system transitions.
Collapse
Affiliation(s)
- Jörg A Bachmann
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Andrew Tedder
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Benjamin Laenen
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Marco Fracassetti
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Aurélie Désamoré
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Clément Lafon-Placette
- Department of Plant Biology, Swedish University of Agricultural Sciences & Linnean Center for Plant Biology, SE-750 07, Uppsala, Sweden
| | - Kim A Steige
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Caroline Callot
- Institut National de la Recherche Agronomique, UPR 1258, Centre National des Ressources Génomiques Végétales, 31326, Castanet-Tolosan, France
| | - William Marande
- Institut National de la Recherche Agronomique, UPR 1258, Centre National des Ressources Génomiques Végétales, 31326, Castanet-Tolosan, France
| | - Barbara Neuffer
- Department of Botany, University of Osnabruck, 49076, Osnabrück, Germany
| | - Hélène Bergès
- Institut National de la Recherche Agronomique, UPR 1258, Centre National des Ressources Génomiques Végétales, 31326, Castanet-Tolosan, France
| | - Claudia Köhler
- Department of Plant Biology, Swedish University of Agricultural Sciences & Linnean Center for Plant Biology, SE-750 07, Uppsala, Sweden
| | - Vincent Castric
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000, Lille, France
| | - Tanja Slotte
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| |
Collapse
|
18
|
Rubenstein DR, Ågren JA, Carbone L, Elde NC, Hoekstra HE, Kapheim KM, Keller L, Moreau CS, Toth AL, Yeaman S, Hofmann HA. Coevolution of Genome Architecture and Social Behavior. Trends Ecol Evol 2019; 34:844-855. [PMID: 31130318 DOI: 10.1016/j.tree.2019.04.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/03/2019] [Accepted: 04/17/2019] [Indexed: 01/02/2023]
Abstract
Although social behavior can have a strong genetic component, it can also result in selection on genome structure and function, thereby influencing the evolution of the genome itself. Here we explore the bidirectional links between social behavior and genome architecture by considering variation in social and/or mating behavior among populations (social polymorphisms) and across closely related species. We propose that social behavior can influence genome architecture via associated demographic changes due to social living. We establish guidelines to exploit emerging whole-genome sequences using analytical approaches that examine genome structure and function at different levels (regulatory vs structural variation) from the perspective of both molecular biology and population genetics in an ecological context.
Collapse
Affiliation(s)
- Dustin R Rubenstein
- Columbia University, Department of Ecology, Evolution, and Environmental Biology and Center for Integrative Animal Behavior, New York, NY 10027, USA.
| | - J Arvid Ågren
- Harvard University, Department of Organismic and Evolutionary Biology, Cambridge, MA 02138, USA
| | - Lucia Carbone
- Oregon Health & Science University, Department of Medicine, KCVI, Portland, OR 97239, USA; Oregon National Primate Research Center, Division of Genetics, Beaverton, OR 97006, USA
| | - Nels C Elde
- University of Utah School of Medicine, Department of Human Genetics, Salt Lake City, UT 84112, USA
| | - Hopi E Hoekstra
- Harvard University, Department of Organismic and Evolutionary Biology, Cambridge, MA 02138, USA; Harvard University, Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Cambridge, MA 02138, USA
| | - Karen M Kapheim
- Utah State University, Department of Biology, Logan, UT 84322, USA
| | - Laurent Keller
- University of Lausanne, Department of Ecology and Evolution, Biophore, UNIL, 1015 Lausanne, Switzerland
| | - Corrie S Moreau
- Cornell University, Departments of Entomology and Ecology and Evolutionary Biology, Ithaca, NY 14850, USA
| | - Amy L Toth
- Iowa State University, Department of Ecology, Evolution, and Organismal Biology and Department of Entomology, Ames, IA 50011, USA
| | - Sam Yeaman
- University of Calgary, Department of Biological Sciences, Calgary, AB T2N 1N4, Canada
| | - Hans A Hofmann
- The University of Texas at Austin, Department of Integrative Biology and Institute for Cellular and Molecular Biology, 2415 Speedway C-0990, Austin, TX 78712, USA.
| |
Collapse
|
19
|
Abstract
The mechanisms underlying rapid adaptation to changing environments in species with reduced genetic variation, referred to as the “genetic paradox of invasion,” are unknown. We report that transposable elements (TEs) are highly enriched in the gene promoter regions of Capsella rubella compared with its outcrossing sister species Capsella grandiflora. We also show that a number of polymorphic TEs in C. rubella are associated with changes in gene expression. Frequent TE insertions at FLOWERING LOCUS C of C. rubella affect flowering-time variation, an important life history trait correlated with fitness. These results indicate that TE insertions drive rapid phenotypic variation, which could potentially help adapting to novel environments in species with limited genetic variation. Rapid phenotypic changes in traits of adaptive significance are crucial for organisms to thrive in changing environments. How such phenotypic variation is achieved rapidly, despite limited genetic variation in species that experience a genetic bottleneck is unknown. Capsella rubella, an annual and inbreeding forb (Brassicaceae), is a great system for studying this basic question. Its distribution is wider than those of its congeneric species, despite an extreme genetic bottleneck event that severely diminished its genetic variation. Here, we demonstrate that transposable elements (TEs) are an important source of genetic variation that could account for its high phenotypic diversity. TEs are (i) highly enriched in C. rubella compared with its outcrossing sister species Capsella grandiflora, and (ii) 4.2% of polymorphic TEs in C. rubella are associated with variation in the expression levels of their adjacent genes. Furthermore, we show that frequent TE insertions at FLOWERING LOCUS C (FLC) in natural populations of C. rubella could explain 12.5% of the natural variation in flowering time, a key life history trait correlated with fitness and adaptation. In particular, we show that a recent TE insertion at the 3′ UTR of FLC affects mRNA stability, which results in reducing its steady-state expression levels, to promote the onset of flowering. Our results highlight that TE insertions can drive rapid phenotypic variation, which could potentially help with adaptation to changing environments in a species with limited standing genetic variation.
Collapse
|
20
|
Koenig D, Hagmann J, Li R, Bemm F, Slotte T, Neuffer B, Wright SI, Weigel D. Long-term balancing selection drives evolution of immunity genes in Capsella. eLife 2019; 8:e43606. [PMID: 30806624 PMCID: PMC6426441 DOI: 10.7554/elife.43606] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/26/2019] [Indexed: 12/14/2022] Open
Abstract
Genetic drift is expected to remove polymorphism from populations over long periods of time, with the rate of polymorphism loss being accelerated when species experience strong reductions in population size. Adaptive forces that maintain genetic variation in populations, or balancing selection, might counteract this process. To understand the extent to which natural selection can drive the retention of genetic diversity, we document genomic variability after two parallel species-wide bottlenecks in the genus Capsella. We find that ancestral variation preferentially persists at immunity related loci, and that the same collection of alleles has been maintained in different lineages that have been separated for several million years. By reconstructing the evolution of the disease-related locus MLO2b, we find that divergence between ancient haplotypes can be obscured by referenced based re-sequencing methods, and that trans-specific alleles can encode substantially diverged protein sequences. Our data point to long-term balancing selection as an important factor shaping the genetics of immune systems in plants and as the predominant driver of genomic variability after a population bottleneck.
Collapse
Affiliation(s)
- Daniel Koenig
- Department of Molecular BiologyMax Planck Institute for Developmental BiologyTübingenGermany
| | - Jörg Hagmann
- Department of Molecular BiologyMax Planck Institute for Developmental BiologyTübingenGermany
| | - Rachel Li
- Department of Molecular BiologyMax Planck Institute for Developmental BiologyTübingenGermany
| | - Felix Bemm
- Department of Molecular BiologyMax Planck Institute for Developmental BiologyTübingenGermany
| | - Tanja Slotte
- Department of Ecology,Environment, and Plant SciencesStockholm UniversityStockholmSweden
| | - Barbara Neuffer
- Department of BiologyUniversity of OsnabrückOsnabrückGermany
| | - Stephen I Wright
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoCanada
| | - Detlef Weigel
- Department of Molecular BiologyMax Planck Institute for Developmental BiologyTübingenGermany
| |
Collapse
|
21
|
Abstract
A major current molecular evolution challenge is to link comparative genomic patterns to species' biology and ecology. Breeding systems are pivotal because they affect many population genetic processes and thus genome evolution. We review theoretical predictions and empirical evidence about molecular evolutionary processes under three distinct breeding systems-outcrossing, selfing, and asexuality. Breeding systems may have a profound impact on genome evolution, including molecular evolutionary rates, base composition, genomic conflict, and possibly genome size. We present and discuss the similarities and differences between the effects of selfing and clonality. In reverse, comparative and population genomic data and approaches help revisiting old questions on the long-term evolution of breeding systems.
Collapse
Affiliation(s)
- Sylvain Glémin
- Institut des Sciences de l'Evolution, UMR5554, Université Montpellier II, Montpellier, France
| | - Clémentine M François
- Institut des Sciences de l'Evolution, UMR5554, Université Montpellier II, Montpellier, France
| | - Nicolas Galtier
- Institut des Sciences de l'Evolution, UMR5554, Université Montpellier II, Montpellier, France.
| |
Collapse
|
22
|
Abstract
Selfish genetic elements (historically also referred to as selfish genes, ultra-selfish genes, selfish DNA, parasitic DNA, genomic outlaws) are genetic segments that can enhance their own transmission at the expense of other genes in the genome, even if this has no or a negative effect on organismal fitness. [1-6] Genomes have traditionally been viewed as cohesive units, with genes acting together to improve the fitness of the organism. However, when genes have some control over their own transmission, the rules can change, and so just like all social groups, genomes are vulnerable to selfish behaviour by their parts. Early observations of selfish genetic elements were made almost a century ago, but the topic did not get widespread attention until several decades later. Inspired by the gene-centred views of evolution popularized by George Williams[7] and Richard Dawkins,[8] two papers were published back-to-back in Nature in 1980-by Leslie Orgel and Francis Crick[9] and Ford Doolittle and Carmen Sapienza[10] respectively-introducing the concept of selfish genetic elements (at the time called "selfish DNA") to the wider scientific community. Both papers emphasized that genes can spread in a population regardless of their effect on organismal fitness as long as they have a transmission advantage. Selfish genetic elements have now been described in most groups of organisms, and they demonstrate a remarkable diversity in the ways by which they promote their own transmission.[11] Though long dismissed as genetic curiosities, with little relevance for evolution, they are now recognized to affect a wide swath of biological processes, ranging from genome size and architecture to speciation.[12].
Collapse
Affiliation(s)
- J. Arvid Ågren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY
- * E-mail: (JAÅ); (AGC)
| | - Andrew G. Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY
- * E-mail: (JAÅ); (AGC)
| |
Collapse
|
23
|
|
24
|
Li ZW, Hou XH, Chen JF, Xu YC, Wu Q, González J, Guo YL. Transposable Elements Contribute to the Adaptation of Arabidopsis thaliana. Genome Biol Evol 2018; 10:2140-2150. [PMID: 30102348 PMCID: PMC6117151 DOI: 10.1093/gbe/evy171] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2018] [Indexed: 12/30/2022] Open
Abstract
Transposable elements (TEs) are mobile genetic elements with very high mutation rates that play important roles in shaping genome architecture and regulating phenotypic variation. However, the extent to which TEs influence the adaptation of organisms in their natural habitats is largely unknown. Here, we scanned 201 representative resequenced genomes from the model plant Arabidopsis thaliana and identified 2,311 polymorphic TEs from noncentromeric regions. We found expansion and contraction of different types of TEs in different A. thaliana populations. More importantly, we identified two TE insertions that are likely candidates to play a role in adaptive evolution. Our results highlight the importance of variations in TEs for the adaptation of plants in general in the context of rapid global climate change.
Collapse
Affiliation(s)
- Zi-Wen Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xing-Hui Hou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jia-Fu Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yong-Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qiong Wu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Josefa González
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Ya-Long Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Bonchev G, Willi Y. Accumulation of transposable elements in selfing populations of Arabidopsis lyrata supports the ectopic recombination model of transposon evolution. THE NEW PHYTOLOGIST 2018; 219:767-778. [PMID: 29757461 DOI: 10.1111/nph.15201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/01/2018] [Indexed: 06/08/2023]
Abstract
Transposable elements (TE) can constitute a large fraction of plant genomes, yet our understanding of their evolution and fitness effect is still limited. Here we tested several models of evolution that make specific predictions about differences in TE abundance between selfing and outcrossing taxa, and between small and large populations. We estimated TE abundance in multiple populations of North American Arabidopsis lyrata differing in mating system and long-term size, using transposon insertion display on several TE families. Selfing populations had higher TE copy numbers per individual and higher TE allele frequencies, supporting models which assume that selection against TEs acts predominantly against heterozygotes via the process of ectopic recombination. In outcrossing populations differing in long-term size, the data supported neither a model of density-regulated transposition nor a model of direct deleterious effect. Instead, the population structure of TEs revealed that outcrossing populations tended to split into western and eastern groups - as previously detected using microsatellite markers - whereas selfing populations from west and east were less differentiated. This, too, agrees with the model of ectopic recombination. Overall, our results suggest that TE elements are nearly neutral except for their deleterious potential to disturb meiosis in the heterozygous state.
Collapse
Affiliation(s)
- Georgi Bonchev
- Institute of Biology, Evolutionary Botany, University of Neuchâtel, Neuchâtel, 2000, Switzerland
- Institute of Plant Physiology and Genetics, Laboratory of Genome Dynamics and Stability, Bulgarian Academy of Sciences, Sofia, 1113, Bulgaria
| | - Yvonne Willi
- Institute of Biology, Evolutionary Botany, University of Neuchâtel, Neuchâtel, 2000, Switzerland
- Department of Environmental Sciences, University of Basel, Basel, 4056, Switzerland
| |
Collapse
|
26
|
Yang L, Wang HN, Hou XH, Zou YP, Han TS, Niu XM, Zhang J, Zhao Z, Todesco M, Balasubramanian S, Guo YL. Parallel Evolution of Common Allelic Variants Confers Flowering Diversity in Capsella rubella. THE PLANT CELL 2018; 30:1322-1336. [PMID: 29764984 PMCID: PMC6048796 DOI: 10.1105/tpc.18.00124] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/13/2018] [Accepted: 05/13/2018] [Indexed: 05/04/2023]
Abstract
Flowering time is an adaptive life history trait. Capsella rubella, a close relative of Arabidopsis thaliana and a young species, displays extensive variation for flowering time but low standing genetic variation due to an extreme bottleneck event, providing an excellent opportunity to understand how phenotypic diversity can occur with a limited initial gene pool. Here, we demonstrate that common allelic variation and parallel evolution at the FLC locus confer variation in flowering time in C. rubella. We show that two overlapping deletions in the 5' untranslated region (UTR) of C. rubella FLC, which are associated with local changes in chromatin conformation and histone modifications, reduce its expression levels and promote flowering. We further show that these two pervasive variants originated independently in natural C. rubella populations after speciation and spread to an intermediate frequency, suggesting a role of this parallel cis-regulatory change in adaptive evolution. Our results provide an example of how parallel mutations in the same 5' UTR region can shape phenotypic evolution in plants.
Collapse
Affiliation(s)
- Li Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Hui-Na Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xing-Hui Hou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Pan Zou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting-Shen Han
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Min Niu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong Zhao
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Marco Todesco
- Department of Botany, University of British Columbia, Vancouver BC V6T 1Z4, Canada
| | | | - Ya-Long Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Lafon-Placette C, Hatorangan MR, Steige KA, Cornille A, Lascoux M, Slotte T, Köhler C. Paternally expressed imprinted genes associate with hybridization barriers in Capsella. NATURE PLANTS 2018; 4:352-357. [PMID: 29808019 DOI: 10.1038/s41477-018-0161-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 04/27/2018] [Indexed: 05/22/2023]
Abstract
Hybrid seed lethality is a widespread type of reproductive barrier among angiosperm taxa1,2 that contributes to species divergence by preventing gene flow between natural populations3,4. Besides its ecological importance, it is an important obstacle to plant breeding strategies 5 . Hybrid seed lethality is mostly due to a failure of the nourishing endosperm tissue, resulting in embryo arrest3,6,7. The cause of this failure is a parental dosage imbalance in the endosperm that can be a consequence of either differences in parental ploidy levels or differences in the 'effective ploidy', also known as the endosperm balance number (EBN)8,9. Hybrid seed defects exhibit a parent-of-origin pattern3,6,7, suggesting that differences in number or expression strength of parent-of-origin-specific imprinted genes underpin, as the primary or the secondary cause, the molecular basis of the EBN7,10. Here, we have tested this concept in the genus Capsella and show that the effective ploidy of three Capsella species correlates with the number and expression level of paternally expressed genes (PEGs). Importantly, the number of PEGs and the effective ploidy decrease with the selfing history of a species: the obligate outbreeder Capsella grandiflora had the highest effective ploidy, followed by the recent selfer Capsella rubella and the ancient selfer Capsella orientalis. PEGs were associated with the presence of transposable elements and their silencing mark, DNA methylation in CHH context (where H denotes any base except C). This suggests that transposable elements have driven the imprintome divergence between Capsella species. Together, we propose that variation in transposable element insertions, the resulting differences in PEG number and divergence in their expression level form one component of the effective ploidy variation between species of different breeding system histories, and, as a consequence, allow the establishment of endosperm-based hybridization barriers.
Collapse
Affiliation(s)
- Clément Lafon-Placette
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
- Department of Botany, Charles University, Prague, Czech Republic
| | - Marcelinus R Hatorangan
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Kim A Steige
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
- Institute of Botany, Biocenter, University of Cologne, Cologne, Germany
| | - Amandine Cornille
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Martin Lascoux
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Tanja Slotte
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Claudia Köhler
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden.
| |
Collapse
|
28
|
Dubin MJ, Mittelsten Scheid O, Becker C. Transposons: a blessing curse. CURRENT OPINION IN PLANT BIOLOGY 2018; 42:23-29. [PMID: 29453028 DOI: 10.1016/j.pbi.2018.01.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 05/18/2023]
Abstract
The genomes of most plant species are dominated by transposable elements (TEs). Once considered as 'junk DNA', TEs are now known to have a major role in driving genome evolution. Over the last decade, it has become apparent that some stress conditions and other environmental stimuli can drive bursts of activity of certain TE families and consequently new TE insertions. These can give rise to altered gene expression patterns and phenotypes, with new TE insertions sometimes causing flanking genes to become transcriptionally responsive to the same stress conditions that activated the TE in the first place. Such connections between TE-mediated increases in diversity and an accelerated rate of genome evolution provide powerful mechanisms for plants to adapt more rapidly to new environmental conditions. This review will focus on environmentally induced transposition, the mechanisms by which it alters gene expression, and the consequences for plant genome evolution and breeding.
Collapse
Affiliation(s)
- Manu J Dubin
- Université de Lille CNRS, UMR 8198-Evo-Eco-Paleo, Lille, France.
| | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Claude Becker
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria.
| |
Collapse
|
29
|
Abstract
Balancing selection maintains variation for evolution. A recent study investigated the extent of balancing selection in two Brassicaceae species and highlighted its importance for adaptation.
Collapse
Affiliation(s)
- Baosheng Wang
- Center for Genomic and Computational Biology, Department of Biology, Duke University, Box 90338, Durham, NC, 27708, USA
| | - Thomas Mitchell-Olds
- Center for Genomic and Computational Biology, Department of Biology, Duke University, Box 90338, Durham, NC, 27708, USA.
| |
Collapse
|
30
|
Wu Q, Han TS, Chen X, Chen JF, Zou YP, Li ZW, Xu YC, Guo YL. Long-term balancing selection contributes to adaptation in Arabidopsis and its relatives. Genome Biol 2017; 18:217. [PMID: 29141655 PMCID: PMC5686891 DOI: 10.1186/s13059-017-1342-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/16/2017] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND In contrast to positive selection, which reduces genetic variation by fixing beneficial alleles, balancing selection maintains genetic variation within a population or species and plays crucial roles in adaptation in diverse organisms. However, which genes, genome-wide, are under balancing selection and the extent to which these genes are involved in adaptation are largely unknown. RESULTS We performed a genome-wide scan for genes under balancing selection across two plant species, Arabidopsis thaliana and its relative Capsella rubella, which diverged about 8 million generations ago. Among hundreds of genes with shared coding-region polymorphisms, we find evidence for long-term balancing selection in five genes: AT1G35220, AT2G16570, AT4G29360, AT5G38460, and AT5G44000. These genes are involved in the response to biotic and abiotic stress and other fundamental biochemical processes. More intriguingly, for these genes, we detected significant ecological diversification between the two haplotype groups, suggesting that balancing selection has been very important for adaptation. CONCLUSIONS Our results indicate that beyond the well-known S-locus genes and resistance genes, many loci are under balancing selection. These genes are mostly correlated with resistance to stress or other fundamental functions and likely play a more important role in adaptation to diverse habitats than previously thought.
Collapse
Affiliation(s)
- Qiong Wu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Ting-Shen Han
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia-Fu Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Pan Zou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zi-Wen Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yong-Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ya-Long Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
31
|
Lee YCG, Karpen GH. Pervasive epigenetic effects of Drosophila euchromatic transposable elements impact their evolution. eLife 2017; 6. [PMID: 28695823 PMCID: PMC5505702 DOI: 10.7554/elife.25762] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/09/2017] [Indexed: 12/21/2022] Open
Abstract
Transposable elements (TEs) are widespread genomic parasites, and their evolution has remained a critical question in evolutionary genomics. Here, we study the relatively unexplored epigenetic impacts of TEs and provide the first genome-wide quantification of such effects in D. melanogaster and D. simulans. Surprisingly, the spread of repressive epigenetic marks (histone H3K9me2) to nearby DNA occurs at >50% of euchromatic TEs, and can extend up to 20 kb. This results in differential epigenetic states of genic alleles and, in turn, selection against TEs. Interestingly, the lower TE content in D. simulans compared to D. melanogaster correlates with stronger epigenetic effects of TEs and higher levels of host genetic factors known to promote epigenetic silencing. Our study demonstrates that the epigenetic effects of euchromatic TEs, and host genetic factors modulating such effects, play a critical role in the evolution of TEs both within and between species. DOI:http://dx.doi.org/10.7554/eLife.25762.001 The DNA inside an organism encodes all the instructions needed for the organism to develop and work properly. Organisms carefully organize and maintain their DNA (collectively known as the genome) so that the genetic information remains intact and the cell can understand the instructions. However, there are some pieces of DNA that are capable of moving around the genome. For example, pieces known as transposable elements can make new copies of themselves and jump into new locations in the genome. Most transposons do not appear to have any important roles, and in fact they are usually harmful to organisms. Despite this, transposons are present in the genomes of almost all species. The number of transposons in a genome varies greatly between individuals and species, but it is not clear why this is the case. Organisms have evolved ways to limit the damage caused by transposons. For example, many cells package regions of DNA containing transposons into a tightly packed structure known as heterochromatin. However, this type of DNA packaging sometimes spreads to neighboring sections of DNA. This is a problem because cells are not usually able to read the information contained within heterochromatin. This means that transposons can prevent some instructions from being produced when they should be. Lee and Karpen used fruit flies to investigate to what extent transposons harm organisms by changing the way DNA is packaged, and whether this influences how transposons evolve. The experiments show that that more than half of the transposons in fruit flies cause neighboring sections of DNA to be packaged into heterochromatin. This can negatively impact up to 20% of genes in the genome. As a result, transposons that have harmful effects on DNA packaging are more likely to be lost from the fly population during evolution than transposons that do not have harmful effects. Fruit fly species containing transposons that tend to package more neighboring sections of DNA into heterochromatin generally have fewer transposons than genomes containing less harmful transposons. The findings of Lee and Karpen provide new insight as to why the numbers of transposons vary among organisms. The next challenge is to find out whether transposons that alter how DNA is packaged are also common in primates and other animals. DOI:http://dx.doi.org/10.7554/eLife.25762.002
Collapse
Affiliation(s)
- Yuh Chwen G Lee
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States.,Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, United States
| | - Gary H Karpen
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States.,Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, United States
| |
Collapse
|
32
|
Kasianov AS, Klepikova AV, Kulakovskiy IV, Gerasimov ES, Fedotova AV, Besedina EG, Kondrashov AS, Logacheva MD, Penin AA. High-quality genome assembly of Capsella bursa-pastoris reveals asymmetry of regulatory elements at early stages of polyploid genome evolution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:278-291. [PMID: 28387959 DOI: 10.1111/tpj.13563] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/01/2017] [Accepted: 03/31/2017] [Indexed: 05/22/2023]
Abstract
Polyploidization and subsequent sub- and neofunctionalization of duplicated genes represent a major mechanism of plant genome evolution. Capsella bursa-pastoris, a widespread ruderal plant, is a recent allotetraploid and, thus, is an ideal model organism for studying early changes following polyploidization. We constructed a high-quality assembly of C. bursa-pastoris genome and a transcriptome atlas covering a broad sample of organs and developmental stages (available online at http://travadb.org/browse/Species=Cbp). We demonstrate that expression of homeologs is mostly symmetric between subgenomes, and identify a set of homeolog pairs with discordant expression. Comparison of promoters within such pairs revealed emerging asymmetry of regulatory elements. Among them there are multiple binding sites for transcription factors controlling the regulation of photosynthesis and plant development by light (PIF3, HY5) and cold stress response (CBF). These results suggest that polyploidization in C. bursa-pastoris enhanced its plasticity of response to light and temperature, and allowed substantial expansion of its distribution range.
Collapse
Affiliation(s)
- Artem S Kasianov
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina str, Moscow, 119333, Russia
| | - Anna V Klepikova
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, 127051, Russia
| | - Ivan V Kulakovskiy
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina str, Moscow, 119333, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, Moscow, 119991, Russia
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Building 3, Moscow, 143026, Russia
| | - Evgeny S Gerasimov
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, 127051, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Anna V Fedotova
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Elizaveta G Besedina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alexey S Kondrashov
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Department of Ecology and Evolution, University of Michigan, 830 North University, Ann Arbor, MI 48109-1048, MI, USA
| | - Maria D Logacheva
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, 127051, Russia
- Extreme Biology Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya str, Kazan, 420008, Russia
| | - Aleksey A Penin
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, 127051, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
33
|
Standing genetic variation in a tissue-specific enhancer underlies selfing-syndrome evolution in Capsella. Proc Natl Acad Sci U S A 2016; 113:13911-13916. [PMID: 27849572 DOI: 10.1073/pnas.1613394113] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mating system shifts recurrently drive specific changes in organ dimensions. The shift in mating system from out-breeding to selfing is one of the most frequent evolutionary transitions in flowering plants and is often associated with an organ-specific reduction in flower size. However, the evolutionary paths along which polygenic traits, such as size, evolve are poorly understood. In particular, it is unclear how natural selection can specifically modulate the size of one organ despite the pleiotropic action of most known growth regulators. Here, we demonstrate that allelic variation in the intron of a general growth regulator contributed to the specific reduction of petal size after the transition to selfing in the genus Capsella Variation within this intron affects an organ-specific enhancer that regulates the level of STERILE APETALA (SAP) protein in the developing petals. The resulting decrease in SAP activity leads to a shortening of the cell proliferation period and reduced number of petal cells. The absence of private polymorphisms at the causal region in the selfing species suggests that the small-petal allele was captured from standing genetic variation in the ancestral out-crossing population. Petal-size variation in the current out-crossing population indicates that several small-effect mutations have contributed to reduce petal-size. These data demonstrate how tissue-specific regulatory elements in pleiotropic genes contribute to organ-specific evolution. In addition, they provide a plausible evolutionary explanation for the rapid evolution of flower size after the out-breeding-to-selfing transition based on additive effects of segregating alleles.
Collapse
|
34
|
Szitenberg A, Cha S, Opperman CH, Bird DM, Blaxter ML, Lunt DH. Genetic Drift, Not Life History or RNAi, Determine Long-Term Evolution of Transposable Elements. Genome Biol Evol 2016; 8:2964-2978. [PMID: 27566762 PMCID: PMC5635653 DOI: 10.1093/gbe/evw208] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2016] [Indexed: 12/11/2022] Open
Abstract
Transposable elements (TEs) are a major source of genome variation across the branches of life. Although TEs may play an adaptive role in their host's genome, they are more often deleterious, and purifying selection is an important factor controlling their genomic loads. In contrast, life history, mating system, GC content, and RNAi pathways have been suggested to account for the disparity of TE loads in different species. Previous studies of fungal, plant, and animal genomes have reported conflicting results regarding the direction in which these genomic features drive TE evolution. Many of these studies have had limited power, however, because they studied taxonomically narrow systems, comparing only a limited number of phylogenetically independent contrasts, and did not address long-term effects on TE evolution. Here, we test the long-term determinants of TE evolution by comparing 42 nematode genomes spanning over 500 million years of diversification. This analysis includes numerous transitions between life history states, and RNAi pathways, and evaluates if these forces are sufficiently persistent to affect the long-term evolution of TE loads in eukaryotic genomes. Although we demonstrate statistical power to detect selection, we find no evidence that variation in these factors influence genomic TE loads across extended periods of time. In contrast, the effects of genetic drift appear to persist and control TE variation among species. We suggest that variation in the tested factors are largely inconsequential to the large differences in TE content observed between genomes, and only by these large-scale comparisons can we distinguish long-term and persistent effects from transient or random changes.
Collapse
Affiliation(s)
- Amir Szitenberg
- Evolutionary Biology Group, School of Environmental Sciences, University of Hull, England, United Kingdom The Dead Sea and Arava Science Center, Israel
| | - Soyeon Cha
- Department of Plant Pathology, North Carolina State University
| | | | - David M Bird
- Department of Plant Pathology, North Carolina State University
| | - Mark L Blaxter
- School of Biological Sciences, Institute of Evolutionary Biology, University of Edinburgh, Scotland
| | - David H Lunt
- Evolutionary Biology Group, School of Environmental Sciences, University of Hull, England, United Kingdom
| |
Collapse
|
35
|
Groth SB, Blumenstiel JP. Horizontal Transfer Can Drive a Greater Transposable Element Load in Large Populations. J Hered 2016; 108:36-44. [PMID: 27558983 DOI: 10.1093/jhered/esw050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 08/11/2016] [Indexed: 11/13/2022] Open
Abstract
Genomes are comprised of contrasting domains of euchromatin and heterochromatin, and transposable elements (TEs) play an important role in defining these genomic regions. Therefore, understanding the forces that control TE abundance can help us understand the chromatin landscape of the genome. What determines the burden of TEs in populations? Some have proposed that drift plays a determining role. In small populations, mildly deleterious TE insertion alleles are allowed to fix, leading to increased copy number. However, it is not clear how the rate of exposure to new TE families, via horizontal transfer (HT), can contribute to broader patterns of genomic TE abundance. Here, using simulation and analytical approaches, we show that when the effects of drift are weak, exposure rate to new TE families via HT can be an important determinant of genomic copy number. If population exposure rate is proportional to population size, larger populations are expected to have a higher rate of exposure to rare HT events. This leads to the counterintuitive prediction that larger populations may carry a higher TE load. We also find that increased rates of recombination can lead to greater probabilities of TE establishment. This work has implications for our understanding of the evolution of chromatin landscapes, genome defense by RNA silencing, and recombination rates.
Collapse
Affiliation(s)
- Sam B Groth
- From the Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66049 (Groth and Blumenstiel)
| | - Justin P Blumenstiel
- From the Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66049 (Groth and Blumenstiel).
| |
Collapse
|
36
|
Arunkumar R, Maddison TI, Barrett SCH, Wright SI. Recent mating-system evolution in Eichhornia is accompanied by cis-regulatory divergence. THE NEW PHYTOLOGIST 2016; 211:697-707. [PMID: 26990568 DOI: 10.1111/nph.13918] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/30/2016] [Indexed: 06/05/2023]
Abstract
The evolution of predominant self-fertilization from cross-fertilization in plants is accompanied by diverse changes to morphology, ecology and genetics, some of which likely result from regulatory changes in gene expression. We examined changes in gene expression during early stages in the transition to selfing in populations of animal-pollinated Eichhornia paniculata with contrasting mating patterns. We crossed plants from outcrossing and selfing populations and tested for the presence of allele-specific expression (ASE) in floral buds and leaf tissue of F1 offspring, indicative of cis-regulatory changes. We identified 1365 genes exhibiting ASE in floral buds and leaf tissue. These genes preferentially expressed alleles from outcrossing parents. Moreover, we found evidence that genes exhibiting ASE had a greater nonsynonymous diversity compared to synonymous diversity in the selfing parents. Our results suggest that the transition from outcrossing to high rates of self-fertilization may have the potential to shape the cis-regulatory genomic landscape of angiosperm species, but that the changes in ASE may be moderate, particularly during the early stages of this transition.
Collapse
Affiliation(s)
- Ramesh Arunkumar
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Teresa I Maddison
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
37
|
Ågren JA, Huang HR, Wright SI. Transposable element evolution in the allotetraploid Capsella bursa-pastoris. AMERICAN JOURNAL OF BOTANY 2016; 103:1197-1202. [PMID: 27440791 DOI: 10.3732/ajb.1600103] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/20/2016] [Indexed: 06/06/2023]
Abstract
PREMISE OF THE STUDY Shifts in ploidy affect the evolutionary dynamics of genomes in a myriad of ways. Population genetic theory predicts that transposable element (TE) proliferation may follow because the genomewide efficacy of selection should be reduced and the increase in gene copies may mask the deleterious effects of TE insertions. Moreover, in allopolyploids, TEs may further accumulate because of hybrid breakdown of TE silencing. However, to date the evidence of TE proliferation following an increase in ploidy is mixed, and the relative importance of relaxed selection vs. silencing breakdown remains unclear. METHODS We used high-coverage whole-genome sequence data to evaluate the abundance, genomic distribution, and population frequencies of TEs in the self-fertilizing recent allotetraploid Capsella bursa-pastoris (Brassicaceae). We then compared the C. bursa-pastoris TE profile with that of its two parental diploid species, outcrossing C. grandiflora and self-fertilizing C. orientalis. KEY RESULTS We found no evidence that C. bursa-pastoris has experienced a large genomewide proliferation of TEs relative to its parental species. However, when centromeric regions are excluded, we found evidence of significantly higher abundance of retrotransposons in C. bursa-pastoris along the gene-rich chromosome arms compared with C. grandiflora and C. orientalis. CONCLUSIONS The lack of a genomewide effect of allopolyploidy on TE abundance, combined with the increases TE abundance in gene-rich regions, suggests that relaxed selection rather than hybrid breakdown of host silencing explains the TE accumulation in C. bursa-pastoris.
Collapse
Affiliation(s)
- J Arvid Ågren
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Hui-Run Huang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, the Chinese Academy of Sciences, China
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
38
|
Shimizu KK, Tsuchimatsu T. Evolution of Selfing: Recurrent Patterns in Molecular Adaptation. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2015. [DOI: 10.1146/annurev-ecolsys-112414-054249] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Selfing has evolved in animals, fungi, and plants, and since Darwin's pioneering study, it is considered one of the most frequent evolutionary trends in flowering plants. Generally, the evolution of selfing is characterized by a loss of self-incompatibility, the selfing syndrome, and changes in genome-wide polymorphism patterns. Recent interdisciplinary studies involving molecular functional experiments, genome-wide data, experimental evolution, and evolutionary ecology using Arabidopsis thaliana, Caenorhabditis elegans, and other species show that the evolution of selfing is not merely a degradation of outcrossing traits but a model for studying the recurrent patterns underlying adaptive molecular evolution. For example, in wild Arabidopsis relatives, self-compatibility evolved from mutations in the male specificity gene, S-LOCUS CYSTEINE-RICH PROTEIN/S-LOCUS PROTEIN 11 (SCR/SP11), rather than the female specificity gene, S-LOCUS RECEPTOR KINASE (SRK), supporting the theoretical prediction of sexual asymmetry. Prevalence of dominant self-compatible mutations is consistent with Haldane's sieve, which acts against recessive adaptive mutations. Time estimates based on genome-wide polymorphisms and self-incompatibility genes generally support the recent origin of selfing.
Collapse
Affiliation(s)
- Kentaro K. Shimizu
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057 Zurich, Switzerland
| | - Takashi Tsuchimatsu
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
39
|
Macas J, Novák P, Pellicer J, Čížková J, Koblížková A, Neumann P, Fuková I, Doležel J, Kelly LJ, Leitch IJ. In Depth Characterization of Repetitive DNA in 23 Plant Genomes Reveals Sources of Genome Size Variation in the Legume Tribe Fabeae. PLoS One 2015; 10:e0143424. [PMID: 26606051 PMCID: PMC4659654 DOI: 10.1371/journal.pone.0143424] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/04/2015] [Indexed: 01/30/2023] Open
Abstract
The differential accumulation and elimination of repetitive DNA are key drivers of genome size variation in flowering plants, yet there have been few studies which have analysed how different types of repeats in related species contribute to genome size evolution within a phylogenetic context. This question is addressed here by conducting large-scale comparative analysis of repeats in 23 species from four genera of the monophyletic legume tribe Fabeae, representing a 7.6-fold variation in genome size. Phylogenetic analysis and genome size reconstruction revealed that this diversity arose from genome size expansions and contractions in different lineages during the evolution of Fabeae. Employing a combination of low-pass genome sequencing with novel bioinformatic approaches resulted in identification and quantification of repeats making up 55–83% of the investigated genomes. In turn, this enabled an analysis of how each major repeat type contributed to the genome size variation encountered. Differential accumulation of repetitive DNA was found to account for 85% of the genome size differences between the species, and most (57%) of this variation was found to be driven by a single lineage of Ty3/gypsy LTR-retrotransposons, the Ogre elements. Although the amounts of several other lineages of LTR-retrotransposons and the total amount of satellite DNA were also positively correlated with genome size, their contributions to genome size variation were much smaller (up to 6%). Repeat analysis within a phylogenetic framework also revealed profound differences in the extent of sequence conservation between different repeat types across Fabeae. In addition to these findings, the study has provided a proof of concept for the approach combining recent developments in sequencing and bioinformatics to perform comparative analyses of repetitive DNAs in a large number of non-model species without the need to assemble their genomes.
Collapse
Affiliation(s)
- Jiří Macas
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
- * E-mail:
| | - Petr Novák
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Jaume Pellicer
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom
| | - Jana Čížková
- Institute of Experimental Botany, Olomouc, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Andrea Koblížková
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Pavel Neumann
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Iva Fuková
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany, Olomouc, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Laura J. Kelly
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Ilia J. Leitch
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom
| |
Collapse
|
40
|
ReproPhylo: An Environment for Reproducible Phylogenomics. PLoS Comput Biol 2015; 11:e1004447. [PMID: 26335558 PMCID: PMC4559436 DOI: 10.1371/journal.pcbi.1004447] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/13/2015] [Indexed: 11/19/2022] Open
Abstract
The reproducibility of experiments is key to the scientific process, and particularly necessary for accurate reporting of analyses in data-rich fields such as phylogenomics. We present ReproPhylo, a phylogenomic analysis environment developed to ensure experimental reproducibility, to facilitate the handling of large-scale data, and to assist methodological experimentation. Reproducibility, and instantaneous repeatability, is built in to the ReproPhylo system and does not require user intervention or configuration because it stores the experimental workflow as a single, serialized Python object containing explicit provenance and environment information. This ‘single file’ approach ensures the persistence of provenance across iterations of the analysis, with changes automatically managed by the version control program Git. This file, along with a Git repository, are the primary reproducibility outputs of the program. In addition, ReproPhylo produces an extensive human-readable report and generates a comprehensive experimental archive file, both of which are suitable for submission with publications. The system facilitates thorough experimental exploration of both parameters and data. ReproPhylo is a platform independent CC0 Python module and is easily installed as a Docker image or a WinPython self-sufficient package, with a Jupyter Notebook GUI, or as a slimmer version in a Galaxy distribution.
Collapse
|
41
|
Steige KA, Reimegård J, Koenig D, Scofield DG, Slotte T. Cis-Regulatory Changes Associated with a Recent Mating System Shift and Floral Adaptation in Capsella. Mol Biol Evol 2015; 32:2501-14. [PMID: 26318184 PMCID: PMC4576713 DOI: 10.1093/molbev/msv169] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The selfing syndrome constitutes a suite of floral and reproductive trait changes that have evolved repeatedly across many evolutionary lineages in response to the shift to selfing. Convergent evolution of the selfing syndrome suggests that these changes are adaptive, yet our understanding of the detailed molecular genetic basis of the selfing syndrome remains limited. Here, we investigate the role of cis-regulatory changes during the recent evolution of the selfing syndrome in Capsella rubella, which split from the outcrosser Capsella grandiflora less than 200 ka. We assess allele-specific expression (ASE) in leaves and flower buds at a total of 18,452 genes in three interspecific F1 C. grandiflora x C. rubella hybrids. Using a hierarchical Bayesian approach that accounts for technical variation using genomic reads, we find evidence for extensive cis-regulatory changes. On average, 44% of the assayed genes show evidence of ASE; however, only 6% show strong allelic expression biases. Flower buds, but not leaves, show an enrichment of cis-regulatory changes in genomic regions responsible for floral and reproductive trait divergence between C. rubella and C. grandiflora. We further detected an excess of heterozygous transposable element (TE) insertions near genes with ASE, and TE insertions targeted by uniquely mapping 24-nt small RNAs were associated with reduced expression of nearby genes. Our results suggest that cis-regulatory changes have been important during the recent adaptive floral evolution in Capsella and that differences in TE dynamics between selfing and outcrossing species could be important for rapid regulatory divergence in association with mating system shifts.
Collapse
Affiliation(s)
- Kim A Steige
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Johan Reimegård
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Daniel Koenig
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Douglas G Scofield
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden Uppsala Multidisciplinary Center for Advanced Computational Science, Uppsala University, Uppsala Sweden
| | - Tanja Slotte
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| |
Collapse
|
42
|
Divergent sorting of a balanced ancestral polymorphism underlies the establishment of gene-flow barriers in Capsella. Nat Commun 2015; 6:7960. [PMID: 26268845 PMCID: PMC4539569 DOI: 10.1038/ncomms8960] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 07/01/2015] [Indexed: 11/13/2022] Open
Abstract
In the Bateson–Dobzhansky–Muller model of genetic incompatibilities post-zygotic gene-flow barriers arise by fixation of novel alleles at interacting loci in separated populations. Many such incompatibilities are polymorphic in plants, implying an important role for genetic drift or balancing selection in their origin and evolution. Here we show that NPR1 and RPP5 loci cause a genetic incompatibility between the incipient species Capsella grandiflora and C. rubella, and the more distantly related C. rubella and C. orientalis. The incompatible RPP5 allele results from a mutation in C. rubella, while the incompatible NPR1 allele is frequent in the ancestral C. grandiflora. Compatible and incompatible NPR1 haplotypes are maintained by balancing selection in C. grandiflora, and were divergently sorted into the derived C. rubella and C. orientalis. Thus, by maintaining differentiated alleles at high frequencies, balancing selection on ancestral polymorphisms can facilitate establishing gene-flow barriers between derived populations through lineage sorting of the alternative alleles. A hybrid incompatibility between Capsella plant species is due to an interaction between two immune regulators. Here, the authors show that highly divergent haplotypes result from balancing selection in the ancestral lineage and their sorting into derived lineages facilitated the evolution of the incompatibility.
Collapse
|
43
|
Ågren JA, Greiner S, Johnson MTJ, Wright SI. No evidence that sex and transposable elements drive genome size variation in evening primroses. Evolution 2015; 69:1053-62. [PMID: 25690700 DOI: 10.1111/evo.12627] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 01/13/2015] [Indexed: 01/05/2023]
Abstract
Genome size varies dramatically across species, but despite an abundance of attention there is little agreement on the relative contributions of selective and neutral processes in governing this variation. The rate of sex can potentially play an important role in genome size evolution because of its effect on the efficacy of selection and transmission of transposable elements (TEs). Here, we used a phylogenetic comparative approach and whole genome sequencing to investigate the contribution of sex and TE content to genome size variation in the evening primrose (Oenothera) genus. We determined genome size using flow cytometry for 30 species that vary in genetic system and find that variation in sexual/asexual reproduction cannot explain the almost twofold variation in genome size. Moreover, using whole genome sequences of three species of varying genome sizes and reproductive system, we found that genome size was not associated with TE abundance; instead the larger genomes had a higher abundance of simple sequence repeats. Although it has long been clear that sexual reproduction may affect various aspects of genome evolution in general and TE evolution in particular, it does not appear to have played a major role in genome size evolution in the evening primroses.
Collapse
Affiliation(s)
- J Arvid Ågren
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada.
| | | | | | | |
Collapse
|
44
|
Hybrid origins and the earliest stages of diploidization in the highly successful recent polyploid Capsella bursa-pastoris. Proc Natl Acad Sci U S A 2015; 112:2806-11. [PMID: 25691747 DOI: 10.1073/pnas.1412277112] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Whole-genome duplication (WGD) events have occurred repeatedly during flowering plant evolution, and there is growing evidence for predictable patterns of gene retention and loss following polyploidization. Despite these important insights, the rate and processes governing the earliest stages of diploidization remain poorly understood, and the relative importance of genetic drift, positive selection, and relaxed purifying selection in the process of gene degeneration and loss is unclear. Here, we conduct whole-genome resequencing in Capsella bursa-pastoris, a recently formed tetraploid with one of the most widespread species distributions of any angiosperm. Whole-genome data provide strong support for recent hybrid origins of the tetraploid species within the past 100,000-300,000 y from two diploid progenitors in the Capsella genus. Major-effect inactivating mutations are frequent, but many were inherited from the parental species and show no evidence of being fixed by positive selection. Despite a lack of large-scale gene loss, we observe a decrease in the efficacy of natural selection genome-wide due to the combined effects of demography, selfing, and genome redundancy from WGD. Our results suggest that the earliest stages of diploidization are associated with quantitative genome-wide decreases in the strength and efficacy of selection rather than rapid gene loss, and that nonfunctionalization can receive a "head start" through a legacy of deleterious variants and differential expression originating in parental diploid populations.
Collapse
|