1
|
Onyeaghala GC, Sharma S, Oyenuga M, Staley CM, Milne GL, Demmer RT, Shaukat A, Thyagarajan B, Straka RJ, Church TR, Prizment AE. The Effects of Aspirin Intervention on Inflammation-Associated Lingual Bacteria: A Pilot Study from a Randomized Clinical Trial. Microorganisms 2024; 12:1609. [PMID: 39203451 PMCID: PMC11357305 DOI: 10.3390/microorganisms12081609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 09/03/2024] Open
Abstract
Several bacterial taxa enriched in inflammatory bowel diseases and colorectal cancer (CRC) are found in the oral cavity. We conducted a pilot study nested within a six-week aspirin intervention in a randomized placebo-controlled trial to test their response to aspirin intervention. Fifty healthy subjects, 50-75 years old, were randomized to receive 325 mg aspirin (n = 30) or placebo (n = 20) orally once daily for six weeks. Oral tongue swabs were collected at baseline and week six. We estimated the association between aspirin use and the temporal changes in the relative abundance of pre-specified genus level taxa from pre- to post-treatment. The temporal change in relative abundance differed for eight genus level taxa between the aspirin and placebo groups. In the aspirin group, there were significant increases in the relative abundances of Neisseria, Streptococcus, Actinomyces, and Rothia and significant decreases in Prevotella, Veillonella, Fusobacterium, and Porphyromonas relative to placebo. The log ratio of Neisseria to Fusobacterium declined more in the aspirin group than placebo, signaling a potential marker associated with aspirin intervention. These preliminary findings should be validated using metagenomic sequencing and may guide future studies on the role of aspirin on taxa in various oral ecological niches.
Collapse
Affiliation(s)
- Guillaume C. Onyeaghala
- Division of Nephrology, Hennepin Healthcare, University of Minnesota, Minneapolis, MN 55415, USA;
| | - Shweta Sharma
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN 55455, USA; (S.S.); (B.T.)
| | - Mosunmoluwa Oyenuga
- Department of Internal Medicine, SSM Health St. Mary’s Hospital—St. Louis, St. Louis, MO 63117, USA;
| | - Christopher M. Staley
- Department of Surgery, Medical School, University of Minnesota, Minneapolis, MN 55455, USA;
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Ginger L. Milne
- Department of Medicine, Vanderbilt School of Medicine, Nashville, TN 37232, USA;
| | - Ryan T. Demmer
- Mayo Clinic College of Medicine & Sciences, Rochester, MN 55905, USA;
| | - Aasma Shaukat
- Department of Population Health, New York University Grossman School of Medicine, New York University, New York, NY 10016, USA;
| | - Bharat Thyagarajan
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN 55455, USA; (S.S.); (B.T.)
- Department of Laboratory Medicine & Pathology, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Robert J. Straka
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Timothy R. Church
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Saint Paul, MN 55108, USA
| | - Anna E. Prizment
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN 55455, USA; (S.S.); (B.T.)
- Department of Laboratory Medicine & Pathology, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
2
|
Eriksson L, Johannesen TB, Stenmark B, Jacobsson S, Säll O, Hedberg ST, Fredlund H, Stegger M, Mölling P. Genetic variants linked to the phenotypic outcome of invasive disease and carriage of Neisseria meningitidis. Microb Genom 2023; 9:001124. [PMID: 37874326 PMCID: PMC10634450 DOI: 10.1099/mgen.0.001124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023] Open
Abstract
Neisseria meningitidis can be a human commensal in the upper respiratory tract but is also capable of causing invasive diseases such as meningococcal meningitis and septicaemia. No specific genetic markers have been detected to distinguish carriage from disease isolates. The aim here was to find genetic traits that could be linked to phenotypic outcomes associated with carriage versus invasive N. meningitidis disease through a bacterial genome-wide association study (GWAS). In this study, invasive N. meningitidis isolates collected in Sweden (n=103) and carriage isolates collected at Örebro University, Sweden (n=213) 2018-2019 were analysed. The GWAS analysis, treeWAS, was applied to single-nucleotide polymorphisms (SNPs), genes and k-mers. One gene and one non-synonymous SNP were associated with invasive disease and seven genes and one non-synonymous SNP were associated with carriage isolates. The gene associated with invasive disease encodes a phage transposase (NEIS1048), and the associated invasive SNP glmU S373C encodes the enzyme N-acetylglucosamine 1-phosphate (GlcNAC 1-P) uridyltransferase. Of the genes associated with carriage isolates, a gene variant of porB encoding PorB class 3, the genes pilE/pilS and tspB have known functions. The SNP associated with carriage was fkbp D33N, encoding a FK506-binding protein (FKBP). K-mers from PilS, tbpB and tspB were found to be associated with carriage, while k-mers from mtrD and tbpA were associated with invasiveness. In the genes fkbp, glmU, PilC and pilE, k-mers were found that were associated with both carriage and invasive isolates, indicating that specific variations within these genes could play a role in invasiveness. The data presented here highlight genetic traits that are significantly associated with invasive or carriage N. meningitidis across the species population. These traits could prove essential to our understanding of the pathogenicity of N. meningitidis and could help to identify future vaccine targets.
Collapse
Affiliation(s)
- Lorraine Eriksson
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Thor Bech Johannesen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Bianca Stenmark
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Susanne Jacobsson
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Olof Säll
- Department of Infectious Diseases, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Sara Thulin Hedberg
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Hans Fredlund
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Marc Stegger
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Paula Mölling
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
3
|
Cho W, York AG, Wang R, Wyche TP, Piizzi G, Flavell RA, Crawford JM. N-Acyl Amides from Neisseria meningitidis and Their Role in Sphingosine Receptor Signaling. Chembiochem 2022; 23:e202200490. [PMID: 36112057 PMCID: PMC9762135 DOI: 10.1002/cbic.202200490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Indexed: 02/03/2023]
Abstract
Neisseria meningitidis is a Gram-negative opportunistic pathogen that is responsible for causing human diseases with high mortality, such as septicemia and meningitis. The molecular mechanisms N. meningitidis employ to manipulate the immune system, translocate the mucosal and blood-brain barriers, and exert virulence are largely unknown. Human-associated bacteria encode a variety of bioactive small molecules with growing evidence for N-acyl amides as being important signaling molecules. However, only a small fraction of these metabolites has been identified from the human microbiota thus far. Here, we heterologously expressed an N-acyltransferase encoded in the obligate human pathogen N. meningitidis and identified 30 N-acyl amides with representative members serving as agonists of the G-protein coupled receptor (GPCR) S1PR4. During this process, we also characterized two mammalian N-acyl amides derived from the bovine medium. Both groups of metabolites suppress anti-inflammatory interleukin-10 signaling in human macrophage cell types, but they also suppress the pro-inflammatory interleukin-17A+ population in TH 17-differentiated CD4+ T cells.
Collapse
Affiliation(s)
- Wooyoung Cho
- Department of Chemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT, USA
| | - Autumn G. York
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Rurun Wang
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA
| | - Thomas P. Wyche
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA
| | - Grazia Piizzi
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA
| | - Richard A. Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Jason M. Crawford
- Department of Chemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
- correspondence,
| |
Collapse
|
4
|
Maynard-Smith L, Derrick JP, Borrow R, Lucidarme J, Maiden MCJ, Heyderman RS, Harrison OB. Genome-Wide Association Studies Identify an Association of Transferrin Binding Protein B Variation and Invasive Serogroup Y Meningococcal Disease in Older Adults. J Infect Dis 2022; 226:2204-2214. [PMID: 36322504 PMCID: PMC9748998 DOI: 10.1093/infdis/jiac430] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Neisseria meningitidis serogroup Y, especially ST-23 clonal complex (Y:cc23), represents a larger proportion of invasive meningococcal disease (IMD) in older adults compared to younger individuals. This study explored the meningococcal genetic variation underlying this association. METHODS Maximum-likelihood phylogenies and the pangenome were analyzed using whole-genome sequence (WGS) data from 200 Y:cc23 isolates in the Neisseria PubMLST database. Genome-wide association studies (GWAS) were performed on WGS data from 250 Y:cc23 isolates from individuals with IMD aged ≥65 years versus < 65 years. RESULTS Y:cc23 meningococcal variants did not cluster by age group or disease phenotype in phylogenetic analyses. Pangenome comparisons found no differences in presence or absence of genes in IMD isolates from the different age groups. GWAS identified differences in nucleotide polymorphisms within the transferrin-binding protein B (tbpB) gene in isolates from individuals ≥65 years of age. TbpB structure modelling suggests these may impact binding of human transferrin. CONCLUSIONS These data suggest differential iron scavenging capacity amongst Y:cc23 meningococci isolated from older compared to younger patients. Iron acquisition is essential for many bacterial pathogens including the meningococcus. These polymorphisms may facilitate colonization, thereby increasing the risk of disease in vulnerable older people with altered nasopharyngeal microbiomes and nutritional status.
Collapse
Affiliation(s)
- Laura Maynard-Smith
- Correspondence: Laura Maynard-Smith, MBBS, Division of Infection and Immunity, University College London, Gower Street, London WC1E 6BT, UK ()
| | - Jeremy P Derrick
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
| | - Ray Borrow
- Meningococcal Reference Unit, UK Health Security Agency, Manchester, United Kingdom
| | - Jay Lucidarme
- Meningococcal Reference Unit, UK Health Security Agency, Manchester, United Kingdom
| | | | - Robert S Heyderman
- Division of Infection and Immunity, University College London, London, United Kingdom
| | | |
Collapse
|
5
|
Stoudenmire JL, Greenawalt AN, Cornelissen CN. Stealthy microbes: How Neisseria gonorrhoeae hijacks bulwarked iron during infection. Front Cell Infect Microbiol 2022; 12:1017348. [PMID: 36189345 PMCID: PMC9519893 DOI: 10.3389/fcimb.2022.1017348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Transition metals are essential for metalloprotein function among all domains of life. Humans utilize nutritional immunity to limit bacterial infections, employing metalloproteins such as hemoglobin, transferrin, and lactoferrin across a variety of physiological niches to sequester iron from invading bacteria. Consequently, some bacteria have evolved mechanisms to pirate the sequestered metals and thrive in these metal-restricted environments. Neisseria gonorrhoeae, the causative agent of the sexually transmitted infection gonorrhea, causes devastating disease worldwide and is an example of a bacterium capable of circumventing human nutritional immunity. Via production of specific outer-membrane metallotransporters, N. gonorrhoeae is capable of extracting iron directly from human innate immunity metalloproteins. This review focuses on the function and expression of each metalloprotein at gonococcal infection sites, as well as what is known about how the gonococcus accesses bound iron.
Collapse
Affiliation(s)
| | | | - Cynthia Nau Cornelissen
- Center for Translational Immunology, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
6
|
Sarkar I, Dey P, Rathore SS, Singh GD, Singh RP. Global genomic and proteomic analysis indicates co-evolution of Neisseria species and with their human host. World J Microbiol Biotechnol 2022; 38:149. [PMID: 35773545 DOI: 10.1007/s11274-022-03338-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/11/2022] [Indexed: 11/30/2022]
Abstract
Neisseria, a genus from the beta-proteobacteria class, is of potential clinical importance. This genus contains both pathogenic and commensal strains. Gonorrhea and meningitis are two major diseases caused by pathogens belonging to this genus. With the increased use of antimicrobial agents against these pathogens they have evolved the antimicrobial resistance capacity making these diseases nearly untreatable. The set of anti-bacterial resistance genes (resistome) and genes associated with signal processing (secretomes) are crucial for the host-microbial interaction. With the virtue of whole-genome sequences and computational biology, it is now possible to study the genomic and proteomic riddles of Neisseria along with their comprehensive evolutionary and metabolic profiling. We have studied relative synonymous codon usage, amino acid usage, reverse ecology, comparative genomics, evolutionary analysis and pathogen-host (Neisseria-human) interaction through bioinformatics analysis. Our analysis revealed the co-evolution of Neisseria genomes with the human host. Moreover, the co-occurrence of Neisseria and humans has been supported through reverse ecology analysis. A differential pattern of the evolutionary rate of resistomes and secretomes was evident among the pathogenic and commensal strains. Comparative genomics supported the presence of virulent genes in both pathogenic and commensal strains of the select genus. Our analysis also indicated a transition from commensal to pathogenic Neisseria strains through the long run of evolution.
Collapse
Affiliation(s)
- Indrani Sarkar
- Salim Ali Centre for Ornithology and Natural History, Anaikatty, Coimbatore, Tamil Nadu, 641 108, India
| | - Prateek Dey
- Salim Ali Centre for Ornithology and Natural History, Anaikatty, Coimbatore, Tamil Nadu, 641 108, India
| | | | | | - Ram Pratap Singh
- Department of Life Science, Central University of South Bihar, Gaya, Bihar, 824236, India.
| |
Collapse
|
7
|
The source of carbon and nitrogen differentially affects the survival of Neisseria meningitidis in macrophages and epithelial cells. Arch Microbiol 2022; 204:404. [PMID: 35723778 DOI: 10.1007/s00203-022-03037-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022]
Abstract
Neisseria meningitidis is a commensal of human nasopharynx which under certain unidentified conditions could lead to fulminant meningitis or sepsis. Availability of nutrients is essential for bacterial growth and virulence. The metabolic adaptations allow N. meningitidis to utilize host resources, colonize and cause virulence functions which are a crucial for the invasive infection. During colonization meningococci encounters a range of microenvironments involving fluctuations in the availability of carbon and nitrogen source. Therefore, the characterization of virulence factors of N. meningitidis under different microenvironmental conditions is a prime requisite to understand pathogenesis; however, the role of nutrients is not well understood. Here, we explore the expression of virulence phenotype leading to symptomatic behaviour as affected by available carbon and nitrogen sources. We evaluate the effect of carbon or nitrogen source on growth, adhesion to epithelial cells, macrophage infectivity, capsule formation and virulence gene expression of N. meningitidis. It was found that lactate, pyruvate, and acetate facilitate survival of N. meningitidis in macrophages. While in epithelial cells, the survival of N. meningitidis is negatively affected by the presence of lactate and pyruvate.
Collapse
|
8
|
Rhodes KA, Ma MC, Rendón MA, So M. Neisseria genes required for persistence identified via in vivo screening of a transposon mutant library. PLoS Pathog 2022; 18:e1010497. [PMID: 35580146 PMCID: PMC9140248 DOI: 10.1371/journal.ppat.1010497] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/27/2022] [Accepted: 04/04/2022] [Indexed: 11/30/2022] Open
Abstract
The mechanisms used by human adapted commensal Neisseria to shape and maintain a niche in their host are poorly defined. These organisms are common members of the mucosal microbiota and share many putative host interaction factors with Neisseria meningitidis and Neisseria gonorrhoeae. Evaluating the role of these shared factors during host carriage may provide insight into bacterial mechanisms driving both commensalism and asymptomatic infection across the genus. We identified host interaction factors required for niche development and maintenance through in vivo screening of a transposon mutant library of Neisseria musculi, a commensal of wild-caught mice which persistently and asymptomatically colonizes the oral cavity and gut of CAST/EiJ and A/J mice. Approximately 500 candidate genes involved in long-term host interaction were identified. These included homologs of putative N. meningitidis and N. gonorrhoeae virulence factors which have been shown to modulate host interactions in vitro. Importantly, many candidate genes have no assigned function, illustrating how much remains to be learned about Neisseria persistence. Many genes of unknown function are conserved in human adapted Neisseria species; they are likely to provide a gateway for understanding the mechanisms allowing pathogenic and commensal Neisseria to establish and maintain a niche in their natural hosts. Validation of a subset of candidate genes confirmed a role for a polysaccharide capsule in N. musculi persistence but not colonization. Our findings highlight the potential utility of the Neisseria musculi-mouse model as a tool for studying the pathogenic Neisseria; our work represents a first step towards the identification of novel host interaction factors conserved across the genus. The Neisseria genus contains many genetically related commensals of animals and humans, and two human pathogens, Neisseria gonorrhoeae and Neisseria meningitidis. The mechanisms allowing commensal Neisseria to maintain a niche in their host is little understood. To identify genes required for persistence, we screened a library of transposon mutants of Neisseria musculi, a commensal of wild-caught mice, in CAST/EiJ mice, which persistently and asymptomatically colonizes. Approximately 500 candidate host interaction genes were identified. A subset of these are homologs of N. meningitidis and N. gonorrhoeae genes known to modulate pathogen-host interactions in vitro. Many candidate genes have no known function, demonstrating how much remains to be learned about N. musculi niche maintenance. As many genes of unknown function are conserved in human adapted Neisseria, they provide a gateway for understanding Neisseria persistence mechanisms in general.
Collapse
Affiliation(s)
- Katherine A. Rhodes
- Immunobiology Department, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| | - Man Cheong Ma
- Immunobiology Department, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - María A. Rendón
- Immunobiology Department, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Magdalene So
- Immunobiology Department, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
9
|
Mullally CA, Mikucki A, Wise MJ, Kahler CM. Modelling evolutionary pathways for commensalism and hypervirulence in Neisseria meningitidis. Microb Genom 2021; 7. [PMID: 34704920 PMCID: PMC8627216 DOI: 10.1099/mgen.0.000662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Neisseria meningitidis, the meningococcus, resides exclusively in humans and causes invasive meningococcal disease (IMD). The population of N. meningitidis is structured into stable clonal complexes by limited horizontal recombination in this naturally transformable species. N. meningitidis is an opportunistic pathogen, with some clonal complexes, such as cc53, effectively acting as commensal colonizers, while other genetic lineages, such as cc11, are rarely colonizers but are over-represented in IMD and are termed hypervirulent. This study examined theoretical evolutionary pathways for pathogenic and commensal lineages by examining the prevalence of horizontally acquired genomic islands (GIs) and loss-of-function (LOF) mutations. Using a collection of 4850 genomes from the BIGSdb database, we identified 82 GIs in the pan-genome of 11 lineages (10 hypervirulent and one commensal lineage). A new computational tool, Phaser, was used to identify frameshift mutations, which were examined for statistically significant association with genetic lineage. Phaser identified a total of 144 frameshift loci of which 105 were shown to have a statistically significant non-random distribution in phase status. The 82 GIs, but not the LOF loci, were associated with genetic lineage and invasiveness using the disease carriage ratio metric. These observations have been integrated into a new model that infers the early events of the evolution of the human adapted meningococcus. These pathways are enriched for GIs that are involved in modulating attachment to the host, growth rate, iron uptake and toxin expression which are proposed to increase competition within the meningococcal population for the limited environmental niche of the human nasopharynx. We surmise that competition for the host mucosal surface with the nasopharyngeal microbiome has led to the selection of isolates with traits that enable access to cell types (non-phagocytic and phagocytic) in the submucosal tissues leading to an increased risk for IMD.
Collapse
Affiliation(s)
- Christopher A. Mullally
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia
| | - August Mikucki
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia
| | - Michael J. Wise
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia
- School of Physics, Mathematics and Computing, University of Western Australia, Perth, Australia
| | - Charlene M. Kahler
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia
- Telethon Kids Institute, Perth Children’s Hospital, Perth, Australia
- *Correspondence: Charlene M. Kahler,
| |
Collapse
|
10
|
Earle SG, Lobanovska M, Lavender H, Tang C, Exley RM, Ramos-Sevillano E, Browning DF, Kostiou V, Harrison OB, Bratcher HB, Varani G, Tang CM, Wilson DJ, Maiden MCJ. Genome-wide association studies reveal the role of polymorphisms affecting factor H binding protein expression in host invasion by Neisseria meningitidis. PLoS Pathog 2021; 17:e1009992. [PMID: 34662348 PMCID: PMC8553145 DOI: 10.1371/journal.ppat.1009992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/28/2021] [Accepted: 09/29/2021] [Indexed: 11/18/2022] Open
Abstract
Many invasive bacterial diseases are caused by organisms that are ordinarily harmless components of the human microbiome. Effective interventions against these microbes require an understanding of the processes whereby symbiotic or commensal relationships transition into pathology. Here, we describe bacterial genome-wide association studies (GWAS) of Neisseria meningitidis, a common commensal of the human respiratory tract that is nevertheless a leading cause of meningitis and sepsis. An initial GWAS discovered bacterial genetic variants, including single nucleotide polymorphisms (SNPs), associated with invasive meningococcal disease (IMD) versus carriage in several loci across the meningococcal genome, encoding antigens and other extracellular components, confirming the polygenic nature of the invasive phenotype. In particular, there was a significant peak of association around the fHbp locus, encoding factor H binding protein (fHbp), which promotes bacterial immune evasion of human complement by recruiting complement factor H (CFH) to the meningococcal surface. The association around fHbp with IMD was confirmed by a validation GWAS, and we found that the SNPs identified in the validation affected the 5' region of fHbp mRNA, altering secondary RNA structures, thereby increasing fHbp expression and enhancing bacterial escape from complement-mediated killing. This finding is consistent with the known link between complement deficiencies and CFH variation with human susceptibility to IMD. These observations demonstrate the importance of human and bacterial genetic variation across the fHbp:CFH interface in determining IMD susceptibility, the transition from carriage to disease.
Collapse
Affiliation(s)
- Sarah G. Earle
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom
| | - Mariya Lobanovska
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Hayley Lavender
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Changyan Tang
- Department of Chemistry, University of Washington, Seattle, Washington United States of America
| | - Rachel M. Exley
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | - Douglas F. Browning
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Vasiliki Kostiou
- Nuffield Department of Clinical Medicine, Experimental Medicine Division, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, Washington United States of America
- * E-mail: (GV); (CMT); (DJW); (MCJM)
| | - Christoph M. Tang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail: (GV); (CMT); (DJW); (MCJM)
| | - Daniel J. Wilson
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom
- Department for Continuing Education, University of Oxford, Oxford, United Kingdom
- * E-mail: (GV); (CMT); (DJW); (MCJM)
| | - Martin C. J. Maiden
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- * E-mail: (GV); (CMT); (DJW); (MCJM)
| |
Collapse
|
11
|
Rollins-Smith LA, Smith PB, Ledeczi AM, Rowe JM, Reinert LK. Caerin 1 Antimicrobial Peptides That Inhibit HIV and Neisseria May Spare Protective Lactobacilli. Antibiotics (Basel) 2020; 9:E661. [PMID: 33008028 PMCID: PMC7600266 DOI: 10.3390/antibiotics9100661] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/22/2020] [Accepted: 09/27/2020] [Indexed: 12/15/2022] Open
Abstract
Although acquired immunodeficiency syndrome (AIDS) caused by the human immunodeficiency virus (HIV) is a manageable disease for many, it is still a source of significant morbidity and economic hardship for many others. The predominant mode of transmission of HIV/AIDS is sexual intercourse, and measures to reduce transmission are needed. Previously, we showed that caerin 1 antimicrobial peptides (AMPs) originally derived from Australian amphibians inhibited in vitro transmission of HIV at relatively low concentrations and had low toxicity for T cells and an endocervical cell line. The use of AMPs as part of microbicidal formulations would expose the vaginal microbiome to these agents and cause potential harm to protective lactobacilli. Here, we tested the effects of caerin 1 peptides and their analogs on the viability of two species of common vaginal lactobacilli (Lactobacillus rhamnosus and Lactobacillus crispatus). Several candidate peptides had limited toxicity for the lactobacilli at a range of concentrations that would inhibit HIV. Three AMPs were also tested for their ability to inhibit growth of Neisseria lactamica, a close relative of the sexually transmissible Neisseria gonorrhoeae. Neisseria lactamica was significantly more sensitive to the AMPs than the lactobacilli. Thus, several candidate AMPs have the capacity to inhibit HIV and possible N. gonorrhoeae transmission at concentrations that are significantly less harmful to the resident lactobacilli.
Collapse
Affiliation(s)
- Louise A. Rollins-Smith
- Departments of Pathology, Microbiology and Immunology and of Pediatrics, Vanderbilt University School of Medicine and Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA; (P.B.S.); (A.M.L.); (J.M.R.); (L.K.R.)
| | | | | | | | | |
Collapse
|
12
|
Calder A, Menkiti CJ, Çağdaş A, Lisboa Santos J, Streich R, Wong A, Avini AH, Bojang E, Yogamanoharan K, Sivanesan N, Ali B, Ashrafi M, Issa A, Kaur T, Latif A, Mohamed HAS, Maqsood A, Tamang L, Swager E, Stringer AJ, Snyder LAS. Virulence genes and previously unexplored gene clusters in four commensal Neisseria spp. isolated from the human throat expand the neisserial gene repertoire. Microb Genom 2020; 6. [PMID: 32845827 PMCID: PMC7643975 DOI: 10.1099/mgen.0.000423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Commensal non-pathogenic Neisseria spp. live within the human host alongside the pathogenic Neisseria meningitidis and Neisseria gonorrhoeae and due to natural competence, horizontal gene transfer within the genus is possible and has been observed. Four distinct Neisseria spp. isolates taken from the throats of two human volunteers have been assessed here using a combination of microbiological and bioinformatics techniques. Three of the isolates have been identified as Neisseria subflava biovar perflava and one as Neisseria cinerea. Specific gene clusters have been identified within these commensal isolate genome sequences that are believed to encode a Type VI Secretion System, a newly identified CRISPR system, a Type IV Secretion System unlike that in other Neisseria spp., a hemin transporter, and a haem acquisition and utilization system. This investigation is the first to investigate these systems in either the non-pathogenic or pathogenic Neisseria spp. In addition, the N. subflava biovar perflava possess previously unreported capsule loci and sequences have been identified in all four isolates that are similar to genes seen within the pathogens that are associated with virulence. These data from the four commensal isolates provide further evidence for a Neisseria spp. gene pool and highlight the presence of systems within the commensals with functions still to be explored.
Collapse
Affiliation(s)
- Alan Calder
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Chukwuma Jude Menkiti
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Aylin Çağdaş
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Jefferson Lisboa Santos
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Ricarda Streich
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Alice Wong
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Amir H Avini
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Ebrima Bojang
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Karththeepan Yogamanoharan
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Nivetha Sivanesan
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Besma Ali
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Mariam Ashrafi
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Abdirizak Issa
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Tajinder Kaur
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Aisha Latif
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Hani A Sheik Mohamed
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Atifa Maqsood
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Laxmi Tamang
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Emily Swager
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Alex J Stringer
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Lori A S Snyder
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| |
Collapse
|
13
|
Zha H, Lu H, Wu J, Chang K, Wang Q, Zhang H, Li J, Luo Q, Lu Y, Li L. Vital Members in the More Dysbiotic Oropharyngeal Microbiotas in H7N9-Infected Patients. Front Med (Lausanne) 2020; 7:396. [PMID: 32850904 PMCID: PMC7433009 DOI: 10.3389/fmed.2020.00396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/24/2020] [Indexed: 01/09/2023] Open
Abstract
The dysbiosis of oropharyngeal (OP) microbiota is associated with multiple diseases, including H7N9 infection. Different OP microbial colonization states may reflect different severities or stages of disease and affect the effectiveness of the treatments. Current study aims to determine the vital bacteria that could possibly drive the OP microbiota in the H7N9 patients to more severe microbial dysbiosis state. The OP microbiotas of 42 H7N9 patients and 30 healthy subjects were analyzed by a series of bioinformatics and statistical analyses. Two clusters of OP microbiotas in H7N9 patients, i.e., Cluster_1_Diseased and Cluster_2_Diseased, were determined at two microbial colonization states by Partition Around Medoids (PAM) clustering analysis, each characterized by distinct operational taxonomic units (OTUs) and functional metabolites. Cluster_1_Diseased was determined at more severe dysbiosis status compared with Cluster_2_Diseased, while OTU143_Capnocytophaga and OTU269_Treponema acted as gatekeepers for both of the two clustered microbiotas. Nine OTUs assigned to seven taxa, i.e., Alloprevotella, Atopobium, Megasphaera, Oribacterium, Prevotella, Stomatobaculum, and Veillonella, were associated with both H7N9 patients with and without secondary bacterial lung infection in Cluster_1. In addition, two groups of healthy cohorts may have potential different susceptibilities to H7N9 infection. These findings suggest that two OP microbial colonization states of H7N9 patients were at different dysbiosis states, which may help determine the health status of H7N9 patients, as well as the susceptibility of healthy subjects to H7N9 infection.
Collapse
Affiliation(s)
- Hua Zha
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,School of Biological Sciences, The University of Auckland, Auckland, New Zealand.,Institute of Marine Science, The University of Auckland, Auckland, New Zealand
| | - Haifeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jieyun Wu
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.,Plant Health and Environment Laboratory, Ministry for Primary Industries, Auckland, New Zealand
| | - Kevin Chang
- Department of Statistics, The University of Auckland, Auckland, New Zealand
| | - Qiangqiang Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hua Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jinyou Li
- Department of Geriatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qixia Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yanmeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Stenmark B, Harrison OB, Eriksson L, Anton BP, Fomenkov A, Roberts RJ, Tooming-Klunderud A, Bratcher HB, Bray JE, Thulin-Hedberg S, Maiden MCJ, Mölling P. Complete genome and methylome analysis of Neisseria meningitidis associated with increased serogroup Y disease. Sci Rep 2020; 10:3644. [PMID: 32108139 PMCID: PMC7046676 DOI: 10.1038/s41598-020-59509-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/22/2020] [Indexed: 12/22/2022] Open
Abstract
Invasive meningococcal disease (IMD) due to serogroup Y Neisseria meningitidis emerged in Europe during the 2000s. Draft genomes of serogroup Y isolates in Sweden revealed that although the population structure of these isolates was similar to other serogroup Y isolates internationally, a distinct strain (YI) and more specifically a sublineage (1) of this strain was responsible for the increase of serogroup Y IMD in Sweden. We performed single molecule real-time (SMRT) sequencing on eight serogroup Y isolates from different sublineages to unravel the genetic and epigenetic factors delineating them, in order to understand the serogroup Y emergence. Extensive comparisons between the serogroup Y sublineages of all coding sequences, complex genomic regions, intergenic regions, and methylation motifs revealed small point mutations in genes mainly encoding hypothetical and metabolic proteins, and non-synonymous variants in genes involved in adhesion, iron acquisition, and endotoxin production. The methylation motif CACNNNNNTAC was only found in isolates of sublineage 2. Only seven genes were putatively differentially expressed, and another two genes encoding hypothetical proteins were only present in sublineage 2. These data suggest that the serogroup Y IMD increase in Sweden was most probably due to small changes in genes important for colonization and transmission.
Collapse
Affiliation(s)
- Bianca Stenmark
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| | - Odile B Harrison
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Lorraine Eriksson
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | | | | | | - Ave Tooming-Klunderud
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Holly B Bratcher
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - James E Bray
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Sara Thulin-Hedberg
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | | - Paula Mölling
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
15
|
Genetic determinants of genus-level glycan diversity in a bacterial protein glycosylation system. PLoS Genet 2019; 15:e1008532. [PMID: 31869330 PMCID: PMC6959607 DOI: 10.1371/journal.pgen.1008532] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/14/2020] [Accepted: 11/22/2019] [Indexed: 12/27/2022] Open
Abstract
The human pathogens N. gonorrhoeae and N. meningitidis display robust intra- and interstrain glycan diversity associated with their O-linked protein glycosylation (pgl) systems. In an effort to better understand the evolution and function of protein glycosylation operating there, we aimed to determine if other human-restricted, Neisseria species similarly glycosylate proteins and if so, to assess the levels of glycoform diversity. Comparative genomics revealed the conservation of a subset of genes minimally required for O-linked protein glycosylation glycan and established those pgl genes as core genome constituents of the genus. In conjunction with mass spectrometric–based glycan phenotyping, we found that extant glycoform repertoires in N. gonorrhoeae, N. meningitidis and the closely related species N. polysaccharea and N. lactamica reflect the functional replacement of a progenitor glycan biosynthetic pathway. This replacement involved loss of pgl gene components of the primordial pathway coincident with the acquisition of two exogenous glycosyltransferase genes. Critical to this discovery was the identification of a ubiquitous but previously unrecognized glycosyltransferase gene (pglP) that has uniquely undergone parallel but independent pseudogenization in N. gonorrhoeae and N. meningitidis. We suggest that the pseudogenization events are driven by processes of compositional epistasis leading to gene decay. Additionally, we documented instances where inter-species recombination influences pgl gene status and creates discordant genetic interactions due ostensibly to the multi-locus nature of pgl gene networks. In summary, these findings provide a novel perspective on the evolution of protein glycosylation systems and identify phylogenetically informative, genetic differences associated with Neisseria species. Bacteria express a remarkable diversity of sugars and oligosaccharides in conjunction with protein glycosylation systems. Currently however, little is known about the evolutionary processes and selective forces shaping glycan biosynthetic pathways. The closely related bacterial pathogens Neisseria gonorrhoeae and Neisseria meningitidis remain serious sources of human disease and these species express antigenically variable oligosaccharides as components of their broad-spectrum, O‐linked protein glycosylation (pgl) systems. With the exception of isolates of Neisseria elongata subspecies glycolytica, the status of such post-translational modifications in related commensal species colonizing humans remains largely undefined. Here, we exploit new data from further studies of protein glycosylation in Neisseria elongata subspecies glycolytica to address these concerns. Employing comparative genomics and glycan phenotyping, we show that related pgl systems are indeed expressed by all human-restricted Neisseria species but identify unique gene gain and loss events as well as loss-of-function polymorphisms that accommodate a dramatic shift in glycoform structure occurring across the genus. These findings constitute novel perspectives on both the evolution of protein glycosylation systems in general and the macroevolutionary processes occurring in related bacterial species residing within a single host.
Collapse
|
16
|
Humbert MV, Christodoulides M. Atypical, Yet Not Infrequent, Infections with Neisseria Species. Pathogens 2019; 9:E10. [PMID: 31861867 PMCID: PMC7168603 DOI: 10.3390/pathogens9010010] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/24/2022] Open
Abstract
Neisseria species are extremely well-adapted to their mammalian hosts and they display unique phenotypes that account for their ability to thrive within niche-specific conditions. The closely related species N. gonorrhoeae and N. meningitidis are the only two species of the genus recognized as strict human pathogens, causing the sexually transmitted disease gonorrhea and meningitis and sepsis, respectively. Gonococci colonize the mucosal epithelium of the male urethra and female endo/ectocervix, whereas meningococci colonize the mucosal epithelium of the human nasopharynx. The pathophysiological host responses to gonococcal and meningococcal infection are distinct. However, medical evidence dating back to the early 1900s demonstrates that these two species can cross-colonize anatomical niches, with patients often presenting with clinically-indistinguishable infections. The remaining Neisseria species are not commonly associated with disease and are considered as commensals within the normal microbiota of the human and animal nasopharynx. Nonetheless, clinical case reports suggest that they can behave as opportunistic pathogens. In this review, we describe the diversity of the genus Neisseria in the clinical context and raise the attention of microbiologists and clinicians for more cautious approaches in the diagnosis and treatment of the many pathologies these species may cause.
Collapse
Affiliation(s)
- Maria Victoria Humbert
- Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine, Southampton General Hospital, Southampton SO16 6YD, UK;
| | | |
Collapse
|
17
|
Gbesemete D, Laver JR, de Graaf H, Ibrahim M, Vaughan A, Faust S, Gorringe A, Read RC. Protocol for a controlled human infection with genetically modified Neisseria lactamica expressing the meningococcal vaccine antigen NadA: a potent new technique for experimental medicine. BMJ Open 2019; 9:e026544. [PMID: 31048443 PMCID: PMC6501966 DOI: 10.1136/bmjopen-2018-026544] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Neisseria lactamica is a commensal organism found in the human nasopharynx and is closely related to the pathogen N. meningitidis (meningococcus). Carriage of N. lactamica is associated with reduced meningococcal carriage and disease. We summarise an ethically approved protocol for an experimental human challenge study using a genetically modified strain of N. lactamica that expresses the meningococcal antigen NadA. We aim to develop a model to study the role of specific bacterial antigens in nasopharyngeal carriage and immunity, to evaluate vaccines for their efficacy in preventing colonisation and to provide a proof of principle for the development of bacterial medicines. METHODS AND ANALYSIS Healthy adult volunteers aged 18-45 years will receive an intranasal inoculation of either the NadA containing strain of N. lactamica or a genetically modified, but wild-type equivalent control strain. These challenge volunteers will be admitted for 4.5 days observation following inoculation and will then be discharged with strict infection control rules. Bedroom contacts of the challenge volunteers will also be enrolled as contact volunteers. Safety, colonisation, shedding, transmission and immunogenicity will be assessed over 90 days after which carriage will be terminated with antibiotic eradication therapy. ETHICS AND DISSEMINATION This study has been approved by the Department for Environment, Food and Rural Affairs and South Central Oxford A Research Ethics Committee (reference: 18/SC/0133). Findings will be published in peer-reviewed open-access journals as soon as possible. TRIAL REGISTRATION NUMBER NCT03630250; Pre-results.
Collapse
Affiliation(s)
- Diane Gbesemete
- NIHR Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jay Robert Laver
- Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| | - Hans de Graaf
- NIHR Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Muktar Ibrahim
- Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| | - Andrew Vaughan
- Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| | - Saul Faust
- NIHR Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Andrew Gorringe
- Research, Public Health England Porton, Salisbury, Wiltshire, UK
| | - Robert Charles Read
- Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, Southampton, UK
| |
Collapse
|
18
|
Bannister SA, Kidd SP, Kirby E, Shah S, Thomas A, Vipond R, Elmore MJ, Telfer Brunton A, Marsh P, Green S, Silman NJ, Kempsell KE. Development and Assessment of a Diagnostic DNA Oligonucleotide Microarray for Detection and Typing of Meningitis-Associated Bacterial Species. High Throughput 2018; 7:ht7040032. [PMID: 30332776 PMCID: PMC6306750 DOI: 10.3390/ht7040032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/11/2018] [Accepted: 09/21/2018] [Indexed: 02/03/2023] Open
Abstract
Meningitis is commonly caused by infection with a variety of bacterial or viral pathogens. Acute bacterial meningitis (ABM) can cause severe disease, which can progress rapidly to a critical life-threatening condition. Rapid diagnosis of ABM is critical, as this is most commonly associated with severe sequelae with associated high mortality and morbidity rates compared to viral meningitis, which is less severe and self-limiting. We have designed a microarray for detection and diagnosis of ABM. This has been validated using randomly amplified DNA targets (RADT), comparing buffers with or without formamide, in glass slide format or on the Alere ArrayTubeTM (Alere Technologies GmbH) microarray platform. Pathogen-specific signals were observed using purified bacterial nucleic acids and to a lesser extent using patient cerebral spinal fluid (CSF) samples, with some technical issues observed using RADT and glass slides. Repurposing the array onto the Alere ArrayTubeTM platform and using a targeted amplification system increased specific and reduced nonspecific hybridization signals using both pathogen nucleic and patient CSF DNA targets, better revealing pathogen-specific signals although sensitivity was still reduced in the latter. This diagnostic microarray is useful as a laboratory diagnostic tool for species and strain designation for ABM, rather than for primary diagnosis.
Collapse
Affiliation(s)
| | - Stephen P Kidd
- Public Health England, Porton Down, Salisbury SP4 0JG, UK.
| | | | - Sonal Shah
- Public Health England, Porton Down, Salisbury SP4 0JG, UK.
| | - Anvy Thomas
- Public Health England, Porton Down, Salisbury SP4 0JG, UK.
| | - Richard Vipond
- Public Health England, Porton Down, Salisbury SP4 0JG, UK.
| | | | - Andrew Telfer Brunton
- Department of Clinical Microbiology, Royal Cornwall Hospitals NHS Trust, Penventinnie Lane, Treliske, Truro, Cornwall TR1 3LQ, UK.
| | - Peter Marsh
- Public Health England Laboratory Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK.
| | - Steve Green
- Public Health England Laboratory Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK.
| | - Nigel J Silman
- Public Health England, Porton Down, Salisbury SP4 0JG, UK.
| | | |
Collapse
|
19
|
Clemence MEA, Maiden MCJ, Harrison OB. Characterization of capsule genes in non-pathogenic Neisseria species. Microb Genom 2018; 4. [PMID: 30074474 PMCID: PMC6202450 DOI: 10.1099/mgen.0.000208] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The genus Neisseria comprises a diverse group of commensal bacteria, which typically colonize the mucosal surfaces of humans and other animals. Neisseria meningitidis, the meningococcus, is notable for its potential to cause invasive meningococcal disease (IMD) in humans; however, IMD is comparatively rare, and meningococci normally colonize the nasopharynx asymptomatically. Possession of a polysaccharide capsule has been shown to be a prerequisite for disease in almost all IMD cases, and was previously considered unique to N. meningitidis, and potentially acquired by horizontal genetic transfer (HGT). Nevertheless, the capsule must also have some role in asymptomatic colonization and/or transmission, consistent with the existence of six non-disease-associated meningococcal capsule serogroups. In this study, full complements of putative capsule genes were identified in non-pathogenic Neisseria species, including Neisseria subflava and Neisseria elongata. These species contained genes for capsule transport and translocation homologous to those of N. meningitidis, as well as novel putative capsule synthesis genes. Phylogenetic analyses were consistent with the proposal that these genes were acquired by the meningococcus through HGT. In contrast with previous evolutionary models, however, the most parsimonious explanation of these data was that capsule transport genes had been lost in the common ancestor of the meningococcus, gonococcus, and their close relatives, and then reacquired by some meningococci. The most likely donor of the meningococcal transport genes was another Neisseria species.
Collapse
|
20
|
Siena E, Bodini M, Medini D. Interplay Between Virulence and Variability Factors as a Potential Driver of Invasive Meningococcal Disease. Comput Struct Biotechnol J 2018; 16:61-69. [PMID: 29686800 PMCID: PMC5910500 DOI: 10.1016/j.csbj.2018.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/29/2018] [Accepted: 02/11/2018] [Indexed: 01/09/2023] Open
Abstract
Neisseria meningitidis (Nm) is frequently found in the upper respiratory tract of the human population. Despite its prevalence as a commensal organism, Nm can occasionally invade the pharyngeal mucosal epithelium causing septicemia and life-threatening disease. A number of studies have tried to identify factors that are responsible for the onset of a virulent phenotype. Despite this however, we still miss clear causative elements. Several factors have been identified to be associated to an increased susceptibility to meningococcal disease in humans. None of them, however, could unambiguously discriminate healthy carrier from infected individuals. Similarly, comparative studies of virulent and apathogenic strains failed to identify virulence factors that could explain the emergence of the pathogenic phenotype. In line with this, a recent study of within host evolution found that Nm accumulates genomic changes during the asymptomatic carriage phase and that these are likely to contribute to the shift to a pathogenic phenotype. These results suggest that the presence of virulence factors in the meningococcal genome is not a sufficient condition for developing virulent traits, but is rather the ability to promote phenotypic variation, through the stochastic assortment of the repertoire of such factors, which could explain the occasional and unpredictable onset of IMD. Here, we present a series of argumentations supporting the hypothesis that invasive meningococcal disease comes as a result of the coexistence of bacterial virulence and variability factors in a plot that can be further complicated by additional latent factors, like host pre-existing immune status and genetic predisposition.
Collapse
|
21
|
Masforrol Y, Gil J, García D, Noda J, Ramos Y, Betancourt L, Guirola O, González S, Acevedo B, Besada V, Reyes O, González LJ. A deeper mining on the protein composition of VA-MENGOC-BC®: An OMV-based vaccine against N. meningitidis serogroup B and C. Hum Vaccin Immunother 2017; 13:2548-2560. [PMID: 29083947 DOI: 10.1080/21645515.2017.1356961] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The protein composition of an Outer Membrane Vesicle (OMV) preparation that constitutes the active pharmaceutical ingredient of VA-MENGOC-BC®, an effective vaccine against Neisseria meningitidis serogroups B, and C is presented. This preparation has a high lipid content and five abundant membrane proteins (FetA, PorA, PorB, RmpM, and Opc), constituting approximately 70% of the total protein mass. The protein composition was determined by combining the use of the Hexapeptide Ligand Library and an orthogonal tandem fractionation of tryptic peptides by reverse-phase chromatography at alkaline and acid pH. This approach equalizes the concentration of tryptic peptides derived from low- and high-abundance proteins as well as considerably simplifying the number of peptides analyzed by LC-MS/MS, enhancing the possibility of identifying low-abundance species. Fifty-one percent of the proteins originally annotated as membrane proteins in the genome of the MC58 strain were identified. One hundred and sixty-eight low-abundance cytosolic proteins presumably occluded within OMV were also identified. Four (NadA, NUbp, GNA2091, and fHbp), out of the five antigens constituting the Bexsero® vaccine, were detected in this OMV preparation. In particular, fHbp is also the active principle of the Trumenba® vaccine developed by Pfizer. The HpuA and HpuB gene products (not annotated in the MC58 genome) were identified in the CU385 strain, a clinical isolate that is used to produce this OMV. Considering the proteins identified here and previous work done by our group, the protein catalogue of this OMV preparation was extended to 266 different protein species.
Collapse
Affiliation(s)
- Yordanka Masforrol
- a Peptide Synthesis Group, Center for Genetic Engineering and Biotechnology , Havana , Cuba
| | - Jeovanis Gil
- b Mass Spectrometry Laboratory and Department of Proteomics , Center for Genetic Engineering and Biotechnology , Havana , Cuba
| | - Darien García
- d Vaccine Department, Center for Genetic Engineering and Biotechnology , Havana , Cuba
| | - Jesús Noda
- b Mass Spectrometry Laboratory and Department of Proteomics , Center for Genetic Engineering and Biotechnology , Havana , Cuba
| | - Yassel Ramos
- b Mass Spectrometry Laboratory and Department of Proteomics , Center for Genetic Engineering and Biotechnology , Havana , Cuba
| | - Lázaro Betancourt
- b Mass Spectrometry Laboratory and Department of Proteomics , Center for Genetic Engineering and Biotechnology , Havana , Cuba
| | - Osmany Guirola
- c Bioinformatics Department, Center for Genetic Engineering and Biotechnology , Havana , Cuba
| | - Sonia González
- d Vaccine Department, Center for Genetic Engineering and Biotechnology , Havana , Cuba
| | - Boris Acevedo
- e Quality Assurance Departments, Center for Genetic Engineering and Biotechnology, Havana , Cuba
| | - Vladimir Besada
- b Mass Spectrometry Laboratory and Department of Proteomics , Center for Genetic Engineering and Biotechnology , Havana , Cuba
| | - Osvaldo Reyes
- a Peptide Synthesis Group, Center for Genetic Engineering and Biotechnology , Havana , Cuba
| | - Luis Javier González
- b Mass Spectrometry Laboratory and Department of Proteomics , Center for Genetic Engineering and Biotechnology , Havana , Cuba
| |
Collapse
|
22
|
Heidrich N, Bauriedl S, Barquist L, Li L, Schoen C, Vogel J. The primary transcriptome of Neisseria meningitidis and its interaction with the RNA chaperone Hfq. Nucleic Acids Res 2017; 45:6147-6167. [PMID: 28334889 PMCID: PMC5449619 DOI: 10.1093/nar/gkx168] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/02/2017] [Indexed: 12/15/2022] Open
Abstract
Neisseria meningitidis is a human commensal that can also cause life-threatening meningitis and septicemia. Despite growing evidence for RNA-based regulation in meningococci, their transcriptome structure and output of regulatory small RNAs (sRNAs) are incompletely understood. Using dRNA-seq, we have mapped at single-nucleotide resolution the primary transcriptome of N. meningitidis strain 8013. Annotation of 1625 transcriptional start sites defines transcription units for most protein-coding genes but also reveals a paucity of classical σ70-type promoters, suggesting the existence of activators that compensate for the lack of −35 consensus sequences in N. meningitidis. The transcriptome maps also reveal 65 candidate sRNAs, a third of which were validated by northern blot analysis. Immunoprecipitation with the RNA chaperone Hfq drafts an unexpectedly large post-transcriptional regulatory network in this organism, comprising 23 sRNAs and hundreds of potential mRNA targets. Based on this data, using a newly developed gfp reporter system we validate an Hfq-dependent mRNA repression of the putative colonization factor PrpB by the two trans-acting sRNAs RcoF1/2. Our genome-wide RNA compendium will allow for a better understanding of meningococcal transcriptome organization and riboregulation with implications for colonization of the human nasopharynx.
Collapse
Affiliation(s)
- Nadja Heidrich
- RNA Biology Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany
| | - Saskia Bauriedl
- Institute for Hygiene and Microbiology (IHM), University of Würzburg, D-97080 Würzburg, Germany
| | - Lars Barquist
- RNA Biology Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany
| | - Lei Li
- Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christoph Schoen
- Institute for Hygiene and Microbiology (IHM), University of Würzburg, D-97080 Würzburg, Germany
| | - Jörg Vogel
- RNA Biology Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany.,Helmholtz Institute for RNA-based Infection Research (HIRI), D-97080 Würzburg, Germany
| |
Collapse
|
23
|
Neisseria cinerea Expresses a Functional Factor H Binding Protein Which Is Recognized by Immune Responses Elicited by Meningococcal Vaccines. Infect Immun 2017; 85:IAI.00305-17. [PMID: 28739825 PMCID: PMC5607398 DOI: 10.1128/iai.00305-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/07/2017] [Indexed: 12/12/2022] Open
Abstract
Neisseria meningitidis is a major cause of bacterial meningitis and sepsis worldwide. Capsular polysaccharide vaccines are available against meningococcal serogroups A, C, W, and Y. More recently two protein-based vaccines, Bexsero and Trumenba, against meningococcal serogroup B strains have been licensed; both vaccines contain meningococcal factor H binding protein (fHbp). fHbp is a surface-exposed lipoprotein that binds the negative complement regulator complement factor H (CFH), thereby inhibiting the alternative pathway of complement activation. Recent analysis of available genomes has indicated that some commensal Neisseria species also contain genes that potentially encode fHbp, although the functions of these genes and how immunization with fHbp-containing vaccines could affect the commensal flora have yet to be established. Here, we show that the commensal species Neisseria cinerea expresses functional fHbp on its surface and that it is responsible for recruitment of CFH by the bacterium. N. cinerea fHbp binds CFH with affinity similar to that of meningococcal fHbp and promotes survival of N. cinerea in human serum. We examined the potential impact of fHbp-containing vaccines on N. cinerea We found that immunization with Bexsero elicits serum bactericidal activity against N. cinerea, which is primarily directed against fHbp. The shared function of fHbp in N. cinerea and N. meningitidis and cross-reactive responses elicited by Bexsero suggest that the introduction of fHbp-containing vaccines has the potential to affect carriage of N. cinerea and other commensal species.
Collapse
|
24
|
John CM, Phillips NJ, Stein DC, Jarvis GA. Innate immune response to lipooligosaccharide: pivotal regulator of the pathobiology of invasive Neisseria meningitidis infections. Pathog Dis 2017; 75:3569603. [PMID: 28423169 DOI: 10.1093/femspd/ftx030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/11/2017] [Indexed: 01/05/2023] Open
Abstract
Infections due to Neisseria meningitidis afflict more than one million people worldwide annually and cause death or disability in many survivors. The clinical course of invasive infections has been well studied, but our understanding of the cause of differences in patient outcomes has been limited because these are dependent on multiple factors including the response of the host, characteristics of the bacteria and interactions between the host and the bacteria. The meningococcus is a highly inflammatory organism, and the lipooligosaccharide (LOS) on the outer membrane is the most potent inflammatory molecule it expresses due to the interactions of the lipid A moiety of LOS with receptors of the innate immune system. We previously reported that increased phosphorylation of hexaacylated neisserial lipid A is correlated with greater inflammatory potential. Here we postulate that variability in lipid A phosphorylation can tip the balance of innate immune responses towards homeostatic tolerance or proinflammatory signaling that affects adaptive immune responses, causing disease with meningitis only, or septicemia with or without meningitis, respectively. Furthermore, we propose that studies of the relationship between bacterial virulence and gene expression should consider whether genetic variation could affect properties of biosynthetic enzymes resulting in LOS structural differences that alter disease pathobiology.
Collapse
Affiliation(s)
- Constance M John
- Center for Immunochemistry, Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA.,Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA
| | - Nancy J Phillips
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | - Daniel C Stein
- University of Maryland, Department of Cell Biology and Molecular Genetics, College Park, MD 20742 USA
| | - Gary A Jarvis
- Center for Immunochemistry, Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA.,Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
25
|
Ampattu BJ, Hagmann L, Liang C, Dittrich M, Schlüter A, Blom J, Krol E, Goesmann A, Becker A, Dandekar T, Müller T, Schoen C. Transcriptomic buffering of cryptic genetic variation contributes to meningococcal virulence. BMC Genomics 2017; 18:282. [PMID: 28388876 PMCID: PMC5383966 DOI: 10.1186/s12864-017-3616-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 03/10/2017] [Indexed: 01/06/2023] Open
Abstract
Background Commensal bacteria like Neisseria meningitidis sometimes cause serious disease. However, genomic comparison of hyperinvasive and apathogenic lineages did not reveal unambiguous hints towards indispensable virulence factors. Here, in a systems biological approach we compared gene expression of the invasive strain MC58 and the carriage strain α522 under different ex vivo conditions mimicking commensal and virulence compartments to assess the strain-specific impact of gene regulation on meningococcal virulence. Results Despite indistinguishable ex vivo phenotypes, both strains differed in the expression of over 500 genes under infection mimicking conditions. These differences comprised in particular metabolic and information processing genes as well as genes known to be involved in host-damage such as the nitrite reductase and numerous LOS biosynthesis genes. A model based analysis of the transcriptomic differences in human blood suggested ensuing metabolic flux differences in energy, glutamine and cysteine metabolic pathways along with differences in the activation of the stringent response in both strains. In support of the computational findings, experimental analyses revealed differences in cysteine and glutamine auxotrophy in both strains as well as a strain and condition dependent essentiality of the (p)ppGpp synthetase gene relA and of a short non-coding AT-rich repeat element in its promoter region. Conclusions Our data suggest that meningococcal virulence is linked to transcriptional buffering of cryptic genetic variation in metabolic genes including global stress responses. They further highlight the role of regulatory elements for bacterial virulence and the limitations of model strain approaches when studying such genetically diverse species as N. meningitidis. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3616-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Biju Joseph Ampattu
- Institute for Hygiene and Microbiology, Joseph-Schneider-Straße 2, University of Würzburg, 97080, Würzburg, Germany
| | - Laura Hagmann
- Institute for Hygiene and Microbiology, Joseph-Schneider-Straße 2, University of Würzburg, 97080, Würzburg, Germany
| | - Chunguang Liang
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Marcus Dittrich
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.,Department of Human Genetics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Andreas Schlüter
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstr. 27, 33615, Bielefeld, Germany
| | - Jochen Blom
- Institute for Bioinformatics and Systems Biology, Justus Liebig University Gießen, Heinrich-Buff-Ring 58, 35392, Gießen, Germany
| | - Elizaveta Krol
- LOEWE-Center for Synthetic Microbiology, Hans-Meerwein-Straße, 35032, Marburg, Germany
| | - Alexander Goesmann
- Institute for Bioinformatics and Systems Biology, Justus Liebig University Gießen, Heinrich-Buff-Ring 58, 35392, Gießen, Germany
| | - Anke Becker
- LOEWE-Center for Synthetic Microbiology, Hans-Meerwein-Straße, 35032, Marburg, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Tobias Müller
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Christoph Schoen
- Institute for Hygiene and Microbiology, Joseph-Schneider-Straße 2, University of Würzburg, 97080, Würzburg, Germany.
| |
Collapse
|
26
|
Ganesh K, Allam M, Wolter N, Bratcher HB, Harrison OB, Lucidarme J, Borrow R, de Gouveia L, Meiring S, Birkhead M, Maiden MCJ, von Gottberg A, du Plessis M. Molecular characterization of invasive capsule null Neisseria meningitidis in South Africa. BMC Microbiol 2017; 17:40. [PMID: 28222677 PMCID: PMC5320719 DOI: 10.1186/s12866-017-0942-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 01/31/2017] [Indexed: 12/15/2022] Open
Abstract
Background The meningococcal capsule is an important virulence determinant. Unencapsulated meningococci lacking capsule biosynthesis genes and containing the capsule null locus (cnl) are predominantly non-pathogenic. Rare cases of invasive meningococcal disease caused by cnl isolates belonging to sequence types (ST) and clonal complexes (cc) ST-845 (cc845), ST-198 (cc198), ST-192 (cc192) and ST-53 (cc53) have been documented. The clinical significance of these isolates however remains unclear. We identified four invasive cnl meningococci through laboratory-based surveillance in South Africa from 2003 through 2013, which we aimed to characterize using whole genome data. Results One isolate [NG: P1.7-2,30: F1-2: ST-53 (cc53)] contained cnl allele 12, and caused empyema in an adult male with bronchiectasis from tuberculosis, diabetes mellitus and a smoking history. Three isolates were NG: P1.18-11,42-2: FΔ: ST-192 (cc192) and contained cnl allele 2. One patient was an adolescent male with meningitis. The remaining two isolates were from recurrent disease episodes (8 months apart) in a male child with deficiency of the sixth complement component, and with the exception of two single nucleotide polymorphisms, contained identical core genomes. The ST-53 (cc53) isolate possessed alleles for NHBA peptide 191 and fHbp variant 2; whilst the ST-192 (cc192) isolates contained NHBA peptide 704 and fHbp variant 3. All four isolates lacked nadA. Comparison of the South African genomes to 61 additional cnl genomes on the PubMLST Neisseria database (http://pubmlst.org/neisseria/), determined that most putative virulence genes could be found in both invasive and carriage phenotypes. Conclusions Although rare, invasive disease by cnl meningococci may be associated with host immunodeficiency and such patients may benefit from protein-based meningococcal vaccines. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-0942-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karistha Ganesh
- National Institute for Communicable Diseases (NICD), A division of the National Health Laboratory Service (NHLS), Johannesburg, South Africa. .,School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Mushal Allam
- National Institute for Communicable Diseases (NICD), A division of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Nicole Wolter
- National Institute for Communicable Diseases (NICD), A division of the National Health Laboratory Service (NHLS), Johannesburg, South Africa.,School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | - Jay Lucidarme
- Meningococcal Reference Unit, Public Health England, Manchester Medical Microbiology Partnership, Manchester Royal Infirmary, Manchester, UK
| | - Ray Borrow
- Meningococcal Reference Unit, Public Health England, Manchester Medical Microbiology Partnership, Manchester Royal Infirmary, Manchester, UK
| | - Linda de Gouveia
- National Institute for Communicable Diseases (NICD), A division of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Susan Meiring
- National Institute for Communicable Diseases (NICD), A division of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Monica Birkhead
- National Institute for Communicable Diseases (NICD), A division of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | | | - Anne von Gottberg
- National Institute for Communicable Diseases (NICD), A division of the National Health Laboratory Service (NHLS), Johannesburg, South Africa.,School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mignon du Plessis
- National Institute for Communicable Diseases (NICD), A division of the National Health Laboratory Service (NHLS), Johannesburg, South Africa.,School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
27
|
Klughammer J, Dittrich M, Blom J, Mitesser V, Vogel U, Frosch M, Goesmann A, Müller T, Schoen C. Comparative Genome Sequencing Reveals Within-Host Genetic Changes in Neisseria meningitidis during Invasive Disease. PLoS One 2017; 12:e0169892. [PMID: 28081260 PMCID: PMC5231331 DOI: 10.1371/journal.pone.0169892] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/22/2016] [Indexed: 11/29/2022] Open
Abstract
Some members of the physiological human microbiome occasionally cause life-threatening disease even in immunocompetent individuals. A prime example of such a commensal pathogen is Neisseria meningitidis, which normally resides in the human nasopharynx but is also a leading cause of sepsis and epidemic meningitis. Using N. meningitidis as model organism, we tested the hypothesis that virulence of commensal pathogens is a consequence of within host evolution and selection of invasive variants due to mutations at contingency genes, a mechanism called phase variation. In line with the hypothesis that phase variation evolved as an adaptation to colonize diverse hosts, computational comparisons of all 27 to date completely sequenced and annotated meningococcal genomes retrieved from public databases showed that contingency genes are indeed enriched for genes involved in host interactions. To assess within-host genetic changes in meningococci, we further used ultra-deep whole-genome sequencing of throat-blood strain pairs isolated from four patients suffering from invasive meningococcal disease. We detected up to three mutations per strain pair, affecting predominantly contingency genes involved in type IV pilus biogenesis. However, there was not a single (set) of mutation(s) that could invariably be found in all four pairs of strains. Phenotypic assays further showed that these genetic changes were generally not associated with increased serum resistance, higher fitness in human blood ex vivo or differences in the interaction with human epithelial and endothelial cells in vitro. In conclusion, we hypothesize that virulence of meningococci results from accidental emergence of invasive variants during carriage and without within host evolution of invasive phenotypes during disease progression in vivo.
Collapse
Affiliation(s)
- Johanna Klughammer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Marcus Dittrich
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
- Institute of Human Genetics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jochen Blom
- Institute for Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Vera Mitesser
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Ulrich Vogel
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
- Research Center for Infectious Diseases, University of Würzburg, Würzburg, Germany
- German Reference Laboratory for Meningococci and Haemophilus influenzae, Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Matthias Frosch
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
- Research Center for Infectious Diseases, University of Würzburg, Würzburg, Germany
- German Reference Laboratory for Meningococci and Haemophilus influenzae, Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Alexander Goesmann
- Institute for Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Tobias Müller
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Christoph Schoen
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
- Research Center for Infectious Diseases, University of Würzburg, Würzburg, Germany
- * E-mail:
| |
Collapse
|
28
|
Abstract
Antigenic variation is a strategy used by a broad diversity of microbial pathogens to persist within the mammalian host. Whereas viruses make use of a minimal proofreading capacity combined with large amounts of progeny to use random mutation for variant generation, antigenically variant bacteria have evolved mechanisms which use a stable genome, which aids in protecting the fitness of the progeny. Here, three well-characterized and highly antigenically variant bacterial pathogens are discussed: Anaplasma, Borrelia, and Neisseria. These three pathogens display a variety of mechanisms used to create the structural and antigenic variation needed for immune escape and long-term persistence. Intrahost antigenic variation is the focus; however, the role of these immune escape mechanisms at the population level is also presented.
Collapse
|
29
|
Prediction and Prevention of Parasitic Diseases Using a Landscape Genomics Framework. Trends Parasitol 2016; 33:264-275. [PMID: 27863902 DOI: 10.1016/j.pt.2016.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 09/10/2016] [Accepted: 10/19/2016] [Indexed: 12/15/2022]
Abstract
Substantial heterogeneity exists in the dispersal, distribution and transmission of parasitic species. Understanding and predicting how such features are governed by the ecological variation of landscape they inhabit is the central goal of spatial epidemiology. Genetic data can further inform functional connectivity among parasite, host and vector populations in a landscape. Gene flow correlates with the spread of epidemiologically relevant phenotypes among parasite and vector populations (e.g., virulence, drug and pesticide resistance), as well as invasion and re-invasion risk where parasite transmission is absent due to current or past intervention measures. However, the formal integration of spatial and genetic data ('landscape genetics') is scarcely ever applied to parasites. Here, we discuss the specific challenges and practical prospects for the use of landscape genetics and genomics to understand the biology and control of parasitic disease and present a practical framework for doing so.
Collapse
|
30
|
Saw SH, Tan JL, Chan XY, Chan KG, Ngeow YF. Chromosomal rearrangements and protein globularity changes in Mycobacterium tuberculosis isolates from cerebrospinal fluid. PeerJ 2016; 4:e2484. [PMID: 27688977 PMCID: PMC5036109 DOI: 10.7717/peerj.2484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 08/24/2016] [Indexed: 01/07/2023] Open
Abstract
Background Meningitis is a major cause of mortality in tuberculosis (TB). It is not clear what factors promote central nervous system invasion and pathology but it has been reported that certain strains of Mycobacterium tuberculosis (Mtb) might have genetic traits associated with neurotropism. Methods In this study, we generated whole genome sequences of eight clinical strains of Mtb that were isolated from the cerebrospinal fluid (CSF) of patients presenting with tuberculous meningitis (TBM) in Malaysia, and compared them to the genomes of H37Rv and other respiratory Mtb genomes either downloaded from public databases or extracted from local sputum isolates. We aimed to find genomic features that might be distinctly different between CSF-derived and respiratory Mtb. Results Genome-wide comparisons revealed rearrangements (translocations, inversions, insertions and deletions) and non-synonymous SNPs in our CSF-derived strains that were not observed in the respiratory Mtb genomes used for comparison. These rearranged segments were rich in genes for PE (proline-glutamate)/PPE (proline-proline-glutamate), transcriptional and membrane proteins. Similarly, most of the ns SNPs common in CSF strains were noted in genes encoding PE/PPE proteins. Protein globularity differences were observed among mycobacteria from CSF and respiratory sources and in proteins previously reported to be associated with TB meningitis. Transcription factors and other transcription regulators featured prominently in these proteins. Homologs of proteins associated with Streptococcus pneumoniae meningitis and Neisseria meningitidis virulence were identified in neuropathogenic as well as respiratory mycobacterial spp. examined in this study. Discussion The occurrence of in silico genetic differences in CSF-derived but not respiratory Mtb suggests their possible involvement in the pathogenesis of TBM. However, overall findings in this comparative analysis support the postulation that TB meningeal infection is more likely to be related to the expression of multiple virulence factors on interaction with host defences than to CNS tropism associated with specific genetic traits.
Collapse
Affiliation(s)
- Seow Hoon Saw
- Department of Pre-Clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Malaysia.,Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar, Perak, Malaysia
| | - Joon Liang Tan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Faculty of Information Science and Technology, Multimedia University, Melaka, Malaysia
| | - Xin Yue Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Kok Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Yun Fong Ngeow
- Department of Pre-Clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Malaysia.,Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
31
|
Donati C, Zolfo M, Albanese D, Tin Truong D, Asnicar F, Iebba V, Cavalieri D, Jousson O, De Filippo C, Huttenhower C, Segata N. Uncovering oral Neisseria tropism and persistence using metagenomic sequencing. Nat Microbiol 2016; 1:16070. [PMID: 27572971 DOI: 10.1038/nmicrobiol.2016.70] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 04/19/2016] [Indexed: 12/18/2022]
Abstract
Microbial epidemiology and population genomics have previously been carried out near-exclusively for organisms grown in vitro. Metagenomics helps to overcome this limitation, but it is still challenging to achieve strain-level characterization of microorganisms from culture-independent data with sufficient resolution for epidemiological modelling. Here, we have developed multiple complementary approaches that can be combined to profile and track individual microbial strains. To specifically profile highly recombinant neisseriae from oral metagenomes, we integrated four metagenomic analysis techniques: single nucleotide polymorphisms in the clade's core genome, DNA uptake sequence signatures, metagenomic multilocus sequence typing and strain-specific marker genes. We applied these tools to 520 oral metagenomes from the Human Microbiome Project, finding evidence of site tropism and temporal intra-subject strain retention. Although the opportunistic pathogen Neisseria meningitidis is enriched for colonization in the throat, N. flavescens and N. subflava populate the tongue dorsum, and N. sicca, N. mucosa and N. elongata the gingival plaque. The buccal mucosa appeared as an intermediate ecological niche between the plaque and the tongue. The resulting approaches to metagenomic strain profiling are generalizable and can be extended to other organisms and microbiomes across environments.
Collapse
Affiliation(s)
- Claudio Donati
- Computational Biology Unit, Research and Innovation Centre, Fondazione Edmund Mach, Via Edmund Mach 1, 38010 San Michele All'adige, Italy
| | - Moreno Zolfo
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Davide Albanese
- Computational Biology Unit, Research and Innovation Centre, Fondazione Edmund Mach, Via Edmund Mach 1, 38010 San Michele All'adige, Italy
| | - Duy Tin Truong
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Francesco Asnicar
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Valerio Iebba
- Department of Public Health and Infectious Diseases, Institute Pasteur Cenci Bolognetti Foundation, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Duccio Cavalieri
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Firenze, Italy.,Institute of Biometeorology, National Research Council (IBIMET-CNR), Via Caproni 8, 50145 Firenze, Italy
| | - Olivier Jousson
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Carlotta De Filippo
- Institute of Biometeorology, National Research Council (IBIMET-CNR), Via Caproni 8, 50145 Firenze, Italy
| | - Curtis Huttenhower
- Biostatistics Department, Harvard School of Public Health, Boston, Massachusetts 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Nicola Segata
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| |
Collapse
|
32
|
Abstract
Rapid low-cost whole-genome sequencing (WGS) is revolutionizing microbiology; however, complementary advances in accessible, reproducible, and rapid analysis techniques are required to realize the potential of these data. Here, investigations of the genus Neisseria illustrated the gene-by-gene conceptual approach to the organization and analysis of WGS data. Using the gene and its link to phenotype as a starting point, the BIGSdb database, which powers the PubMLST databases, enables the assembly of large open-access collections of annotated genomes that provide insight into the evolution of the Neisseria, the epidemiology of meningococcal and gonococcal disease, and mechanisms of Neisseria pathogenicity.
Collapse
|
33
|
Han JX, Ng GZ, Cecchini P, Chionh YT, Saeed MA, Næss LM, Joachim M, Blandford LE, Strugnell RA, Colaco CA, Sutton P. Heat shock protein complex vaccines induce antibodies against Neisseria meningitidis via a MyD88-independent mechanism. Vaccine 2016; 34:1704-11. [DOI: 10.1016/j.vaccine.2016.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 01/14/2016] [Accepted: 02/02/2016] [Indexed: 12/17/2022]
|
34
|
Distribution of the type III DNA methyltransferases modA, modB and modD among Neisseria meningitidis genotypes: implications for gene regulation and virulence. Sci Rep 2016; 6:21015. [PMID: 26867950 PMCID: PMC4751487 DOI: 10.1038/srep21015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/14/2016] [Indexed: 12/03/2022] Open
Abstract
Neisseria meningitidis is a human-specific bacterium that varies in invasive potential. All meningococci are carried in the nasopharynx, and most genotypes are very infrequently associated with invasive meningococcal disease; however, those belonging to the ‘hyperinvasive lineages’ are more frequently associated with sepsis or meningitis. Genome content is highly conserved between carriage and disease isolates, and differential gene expression has been proposed as a major determinant of the hyperinvasive phenotype. Three phase variable DNA methyltransferases (ModA, ModB and ModD), which mediate epigenetic regulation of distinct phase variable regulons (phasevarions), have been identified in N. meningitidis. Each mod gene has distinct alleles, defined by their Mod DNA recognition domain, and these target and methylate different DNA sequences, thereby regulating distinct gene sets. Here 211 meningococcal carriage and >1,400 disease isolates were surveyed for the distribution of meningococcal mod alleles. While modA11-12 and modB1-2 were found in most isolates, rarer alleles (e.g., modA15, modB4, modD1-6) were specific to particular genotypes as defined by clonal complex. This suggests that phase variable Mod proteins may be associated with distinct phenotypes and hence invasive potential of N. meningitidis strains.
Collapse
|
35
|
Wörmann ME, Horien CL, Johnson E, Liu G, Aho E, Tang CM, Exley RM. Neisseria cinerea isolates can adhere to human epithelial cells by type IV pilus-independent mechanisms. MICROBIOLOGY-SGM 2016; 162:487-502. [PMID: 26813911 DOI: 10.1099/mic.0.000248] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In pathogenic Neisseria species the type IV pili (Tfp) are of primary importance in host-pathogen interactions. Tfp mediate initial bacterial attachment to cell surfaces and formation of microcolonies via pilus-pilus interactions. Based on genome analysis, many non-pathogenic Neisseria species are predicted to express Tfp, but aside from studies on Neisseria elongata, relatively little is known about the formation and function of pili in these organisms. Here, we have analysed pilin expression and the role of Tfp in Neisseria cinerea. This non-pathogenic species shares a close taxonomic relationship to the pathogen Neisseria meningitidis and also colonizes the human oropharyngeal cavity. Through analysis of non-pathogenic Neisseria genomes we identified two genes with homology to pilE, which encodes the major pilin of N. meningitidis. We show which of the two genes is required for Tfp expression in N. cinerea and that Tfp in this species are required for DNA competence, similar to other Neisseria. However, in contrast to the meningococcus, deletion of the pilin gene did not impact the association of N. cinerea to human epithelial cells, demonstrating that N. cinerea isolates can adhere to human epithelial cells by Tfp-independent mechanisms.
Collapse
Affiliation(s)
- Mirka E Wörmann
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Corey L Horien
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Errin Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Guangyu Liu
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Ellen Aho
- Department of Biology, Concordia College, Moorhead, MN, USA
| | - Christoph M Tang
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Rachel M Exley
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| |
Collapse
|
36
|
Multiple Functions of Glutamate Uptake via Meningococcal GltT-GltM L-Glutamate ABC Transporter in Neisseria meningitidis Internalization into Human Brain Microvascular Endothelial Cells. Infect Immun 2015; 83:3555-67. [PMID: 26099588 DOI: 10.1128/iai.00654-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/17/2015] [Indexed: 12/30/2022] Open
Abstract
We previously reported that Neisseria meningitidis internalization into human brain microvasocular endothelial cells (HBMEC) was triggered by the influx of extracellular L-glutamate via the GltT-GltM L-glutamate ABC transporter, but the underlying mechanism remained unclear. We found that the ΔgltT ΔgltM invasion defect in assay medium (AM) was alleviated in AM without 10% fetal bovine serum (FBS) [AM(-S)]. The alleviation disappeared again in AM(-S) supplemented with 500 μM glutamate. Glutamate uptake by the ΔgltT ΔgltM mutant was less efficient than that by the wild-type strain, but only upon HBMEC infection. We also observed that both GltT-GltM-dependent invasion and accumulation of ezrin, a key membrane-cytoskeleton linker, were more pronounced when N. meningitidis formed larger colonies on HBMEC under physiological glutamate conditions. These results suggested that GltT-GltM-dependent meningococcal internalization into HBMEC might be induced by the reduced environmental glutamate concentration upon infection. Furthermore, we found that the amount of glutathione within the ΔgltT ΔgltM mutant was much lower than that within the wild-type N. meningitidis strain only upon HBMEC infection and was correlated with intracellular survival. Considering that the L-glutamate obtained via GltT-GltM is utilized as a nutrient in host cells, l-glutamate uptake via GltT-GltM plays multiple roles in N. meningitidis internalization into HBMEC.
Collapse
|
37
|
Genome-Based Characterization of Emergent Invasive Neisseria meningitidis Serogroup Y Isolates in Sweden from 1995 to 2012. J Clin Microbiol 2015; 53:2154-62. [PMID: 25926489 PMCID: PMC4473204 DOI: 10.1128/jcm.03524-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/18/2015] [Indexed: 11/20/2022] Open
Abstract
Invasive meningococcal disease (IMD) caused by Neisseria meningitidis serogroup Y has increased in Europe, especially in Scandinavia. In Sweden, serogroup Y is now the dominating serogroup, and in 2012, the serogroup Y disease incidence was 0.46/100,000 population. We previously showed that a strain type belonging to sequence type 23 was responsible for the increased prevalence of this serogroup in Sweden. The objective of this study was to investigate the serogroup Y emergence by whole-genome sequencing and compare the meningococcal population structure of Swedish invasive serogroup Y strains to those of other countries with different IMD incidence. Whole-genome sequencing was performed on invasive serogroup Y isolates from 1995 to 2012 in Sweden (n = 186). These isolates were compared to a collection of serogroup Y isolates from England, Wales, and Northern Ireland from 2010 to 2012 (n = 143), which had relatively low serogroup Y incidence, and two isolates obtained in 1999 in the United States, where serogroup Y remains one of the major causes of IMD. The meningococcal population structures were similar in the investigated regions; however, different strain types were prevalent in each geographic region. A number of genes known or hypothesized to have an impact on meningococcal virulence were shown to be associated with different strain types and subtypes. The reasons for the IMD increase are multifactorial and are influenced by increased virulence, host adaptive immunity, and transmission. Future genome-wide association studies are needed to reveal additional genes associated with serogroup Y meningococcal disease, and this work would benefit from a complete serogroup Y meningococcal reference genome.
Collapse
|
38
|
A new family of secreted toxins in pathogenic Neisseria species. PLoS Pathog 2015; 11:e1004592. [PMID: 25569427 PMCID: PMC4287609 DOI: 10.1371/journal.ppat.1004592] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 11/26/2014] [Indexed: 11/23/2022] Open
Abstract
The genus Neisseria includes both commensal and pathogenic species which are genetically closely related. However, only meningococcus and gonococcus are important human pathogens. Very few toxins are known to be secreted by pathogenic Neisseria species. Recently, toxins secreted via type V secretion system and belonging to the widespread family of contact-dependent inhibition (CDI) toxins have been described in numerous species including meningococcus. In this study, we analyzed loci containing the maf genes in N. meningitidis and N. gonorrhoeae and proposed a novel uniform nomenclature for maf genomic islands (MGIs). We demonstrated that mafB genes encode secreted polymorphic toxins and that genes immediately downstream of mafB encode a specific immunity protein (MafI). We focused on a MafB toxin found in meningococcal strain NEM8013 and characterized its EndoU ribonuclease activity. maf genes represent 2% of the genome of pathogenic Neisseria, and are virtually absent from non-pathogenic species, thus arguing for an important biological role. Indeed, we showed that overexpression of one of the four MafB toxins of strain NEM8013 provides an advantage in competition assays, suggesting a role of maf loci in niche adaptation. Many bacteria are able to secrete toxins targeted against neighboring cells. In order to protect themselves against their own toxin, they also express an “immunity” protein. In silico analysis of bacterial genomes predicts that numerous genes could encode potential new toxin-immunity systems. The recently described CDI system is involved in contact-dependent inhibition of growth and confers to its host strain a significant advantage in competitive ecosystems such as the gastro-intestinal tract. Indeed, an Escherichia coli CDI+ strain is able to outcompete CDI- strains and to become predominant. Here, we show that a large family of genes called “maf”, found in pathogenic Neisseria species, encodes a toxin-immunity system. We demonstrate that a toxin named MafBMGI-1NEM8013 inhibits the growth of E. coli by degrading RNA and show that the immunity protein MafIMGI-1NEM8013 is able to abolish the toxicity. MafB toxins exhibit highly variable toxic domains. This variability of secreted toxins could be important to compete against bacteria of different species sharing the same reservoir. Since a strain may contain numerous toxin-immunity systems that can all play a role in interbacterial competition, deciphering interactions between these systems will allow a better understanding of complex bacterial communities.
Collapse
|
39
|
Ren X, MacKichan JK. Disease-associated Neisseria meningitidis isolates inhibit wound repair in respiratory epithelial cells in a type IV pilus-independent manner. Infect Immun 2014; 82:5023-34. [PMID: 25225250 PMCID: PMC4249276 DOI: 10.1128/iai.02001-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 09/12/2014] [Indexed: 12/28/2022] Open
Abstract
Neisseria meningitidis is the causative agent of meningococcal disease. Onset of meningococcal disease can be extremely rapid and can kill within a matter of hours. However, although a much-feared pathogen, Neisseria meningitidis is frequently found in the nasopharyngeal mucosae of healthy carriers. The bacterial factors that distinguish disease- from carriage-associated meningococci are incompletely understood. Evidence suggesting that disruptions to the nasopharynx may increase the risk of acquiring meningococcal disease led us to evaluate the ability of disease- and carriage-associated meningococcal isolates to inhibit cell migration, using an in vitro assay for wound repair. We found that disease-associated isolates in our collection inhibited wound closure, while carriage-associated isolates were more variable, with many isolates not inhibiting wound repair at all. For isolates selected for further study, we found that actin morphology, such as presence of lamellipodia, correlated with cell migration. We demonstrated that multiple meningococcal virulence factors, including the type IV pili, are dispensable for inhibition of wound repair. Inhibition of wound repair was also shown to be an active process, i.e., requiring live bacteria undergoing active protein synthesis.
Collapse
Affiliation(s)
- Xiaoyun Ren
- Institute of Environmental Science and Research, Kenepuru Science Centre, Porirua, New Zealand School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Joanna K MacKichan
- Institute of Environmental Science and Research, Kenepuru Science Centre, Porirua, New Zealand School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
40
|
Yoon SH, Park YK, Kim JF. PAIDB v2.0: exploration and analysis of pathogenicity and resistance islands. Nucleic Acids Res 2014; 43:D624-30. [PMID: 25336619 PMCID: PMC4384037 DOI: 10.1093/nar/gku985] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Pathogenicity is a complex multifactorial process confounded by the concerted activity of genetic regions associated with virulence and/or resistance determinants. Pathogenicity islands (PAIs) and resistance islands (REIs) are key to the evolution of pathogens and appear to play complimentary roles in the process of bacterial infection. While PAIs promote disease development, REIs give a fitness advantage to the host against multiple antimicrobial agents. The Pathogenicity Island Database (PAIDB, http://www.paidb.re.kr) has been the only database dedicated to providing comprehensive information on all reported PAIs and candidate PAIs in prokaryotic genomes. In this study, we present PAIDB v2.0, whose functionality is extended to incorporate REIs. PAIDB v2.0 contains 223 types of PAIs with 1331 accessions, and 88 types of REIs with 108 accessions. With an improved detection scheme, 2673 prokaryotic genomes were analyzed to locate candidate PAIs and REIs. With additional quantitative and qualitative advancements in database content and detection accuracy, PAIDB will continue to facilitate pathogenomic studies of both pathogenic and non-pathogenic organisms.
Collapse
Affiliation(s)
- Sung Ho Yoon
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Republic of Korea Bio-Medical Science Co., Ltd., Daejeon 305-301, Republic of Korea
| | - Young-Kyu Park
- Department of Systems Biology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Jihyun F Kim
- Biosystems and Bioengineering Program, Korea University of Science and Technology, Daejeon 305-350, Republic of Korea
| |
Collapse
|
41
|
Abstract
Neisseria gonorrhoeae and Neisseria meningitidis are closely related organisms that cause the sexually transmitted infection gonorrhea and serious bacterial meningitis and septicemia, respectively. Both species possess multiple mechanisms to alter the expression of surface-exposed proteins through the processes of phase and antigenic variation. This potential for wide variability in surface-exposed structures allows the organisms to always have subpopulations of divergent antigenic types to avoid immune surveillance and to contribute to functional variation. Additionally, the Neisseria are naturally competent for DNA transformation, which is their main means of genetic exchange. Although bacteriophages and plasmids are present in this genus, they are not as effective as DNA transformation for horizontal genetic exchange. There are barriers to genetic transfer, such as restriction-modification systems and CRISPR loci, that limit particular types of exchange. These host-restricted pathogens illustrate the rich complexity of genetics that can help define the similarities and differences of closely related organisms.
Collapse
Affiliation(s)
- Ella Rotman
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611; ,
| | | |
Collapse
|
42
|
Schoen C, Kischkies L, Elias J, Ampattu BJ. Metabolism and virulence in Neisseria meningitidis. Front Cell Infect Microbiol 2014; 4:114. [PMID: 25191646 PMCID: PMC4138514 DOI: 10.3389/fcimb.2014.00114] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/31/2014] [Indexed: 01/14/2023] Open
Abstract
A longstanding question in infection biology addresses the genetic basis for invasive behavior in commensal pathogens. A prime example for such a pathogen is Neisseria meningitidis. On the one hand it is a harmless commensal bacterium exquisitely adapted to humans, and on the other hand it sometimes behaves like a ferocious pathogen causing potentially lethal disease such as sepsis and acute bacterial meningitis. Despite the lack of a classical repertoire of virulence genes in N. meningitidis separating commensal from invasive strains, molecular epidemiology suggests that carriage and invasive strains belong to genetically distinct populations. In recent years, it has become increasingly clear that metabolic adaptation enables meningococci to exploit host resources, supporting the concept of nutritional virulence as a crucial determinant of invasive capability. Here, we discuss the contribution of core metabolic pathways in the context of colonization and invasion with special emphasis on results from genome-wide surveys. The metabolism of lactate, the oxidative stress response, and, in particular, glutathione metabolism as well as the denitrification pathway provide examples of how meningococcal metabolism is intimately linked to pathogenesis. We further discuss evidence from genome-wide approaches regarding potential metabolic differences between strains from hyperinvasive and carriage lineages and present new data assessing in vitro growth differences of strains from these two populations. We hypothesize that strains from carriage and hyperinvasive lineages differ in the expression of regulatory genes involved particularly in stress responses and amino acid metabolism under infection conditions.
Collapse
Affiliation(s)
- Christoph Schoen
- Institute for Hygiene and Microbiology, University of Würzburg Würzburg, Germany ; Research Center for Infectious Diseases (ZINF), University of Würzburg Würzburg, Germany
| | - Laura Kischkies
- Institute for Hygiene and Microbiology, University of Würzburg Würzburg, Germany
| | - Johannes Elias
- Institute for Hygiene and Microbiology, University of Würzburg Würzburg, Germany ; National Reference Centre for Meningococci and Haemophilus influenzae (NRZMHi), University of Würzburg Würzburg, Germany
| | - Biju Joseph Ampattu
- Institute for Hygiene and Microbiology, University of Würzburg Würzburg, Germany
| |
Collapse
|
43
|
Salem, WM, Sayed, WF, Haridy, M, Hassan, NH. Antibacterial activity of Calotropis procera and Ficus sycomorus extracts on some pathogenic microorganisms. ACTA ACUST UNITED AC 2014. [DOI: 10.5897/ajb2014.13981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
44
|
Bai X, Borrow R. Genetic shifts ofNeisseria meningitidisserogroup B antigens and the quest for a broadly cross-protective vaccine. Expert Rev Vaccines 2014; 9:1203-17. [DOI: 10.1586/erv.10.116] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Hung MC, Christodoulides M. The biology of Neisseria adhesins. BIOLOGY 2013; 2:1054-109. [PMID: 24833056 PMCID: PMC3960869 DOI: 10.3390/biology2031054] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/01/2013] [Accepted: 07/03/2013] [Indexed: 01/15/2023]
Abstract
Members of the genus Neisseria include pathogens causing important human diseases such as meningitis, septicaemia, gonorrhoea and pelvic inflammatory disease syndrome. Neisseriae are found on the exposed epithelia of the upper respiratory tract and the urogenital tract. Colonisation of these exposed epithelia is dependent on a repertoire of diverse bacterial molecules, extending not only from the surface of the bacteria but also found within the outer membrane. During invasive disease, pathogenic Neisseriae also interact with immune effector cells, vascular endothelia and the meninges. Neisseria adhesion involves the interplay of these multiple surface factors and in this review we discuss the structure and function of these important molecules and the nature of the host cell receptors and mechanisms involved in their recognition. We also describe the current status for recently identified Neisseria adhesins. Understanding the biology of Neisseria adhesins has an impact not only on the development of new vaccines but also in revealing fundamental knowledge about human biology.
Collapse
Affiliation(s)
- Miao-Chiu Hung
- Neisseria Research, Molecular Microbiology, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| | - Myron Christodoulides
- Neisseria Research, Molecular Microbiology, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| |
Collapse
|
46
|
Niu C, Yu D, Wang Y, Ren H, Jin Y, Zhou W, Li B, Cheng Y, Yue J, Gao Z, Liang L. Common and pathogen-specific virulence factors are different in function and structure. Virulence 2013; 4:473-82. [PMID: 23863604 PMCID: PMC5359729 DOI: 10.4161/viru.25730] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In the process of host–pathogen interactions, bacterial pathogens always employ some special genes, e.g., virulence factors (VFs) to interact with host and cause damage or diseases to host. A number of VFs have been identified in bacterial pathogens that confer upon bacterial pathogens the ability to cause various types of damage or diseases. However, it has been clarified that some of the identified VFs are also encoded in the genomes of nonpathogenic bacteria, and this finding gives rise to considerable controversy about the definition of virulence factor.
Here 1988 virulence factors of 51 sequenced pathogenic bacterial genomes from the virulence factor database (VFDB) were collected, and an orthologous comparison to a non-pathogenic bacteria protein database was conducted using the reciprocal-best-BLAST-hits approach. Six hundred and twenty pathogen-specific VFs and 1368 common VFs (present in both pathogens and nonpathogens) were identified, which account for 31.19% and 68.81% of the total VFs, respectively. The distribution of pathogen-specific VFs and common VFs in pathogenicity islands (PAIs) was systematically investigated, and pathogen-specific VFs were more likely to be located in PAIs than common VFs. The function of the two classes of VFs were also analyzed and compared in depth. Our results indicated that most but not all T3SS proteins are pathogen-specific. T3SS effector proteins tended to be distributed in pathogen-specific VFs, whereas T3SS translocation proteins, apparatus proteins, and chaperones were inclined to be distributed in common VFs. We also observed that exotoxins were located in both pathogen-specific and common VFs. In addition, the architecture of the two classes of VFs was compared, and the results indicated that common VFs had a higher domain number and lower domain coverage value, revealed that common VFs tend to be more complex and less compact proteins.
Collapse
Affiliation(s)
- Chao Niu
- Tianjin Institute of Health & Environmental Medicine, Tianjin, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Bratcher HB, Bennett JS, Maiden MCJ. Evolutionary and genomic insights into meningococcal biology. Future Microbiol 2012; 7:873-85. [PMID: 22827308 PMCID: PMC3492750 DOI: 10.2217/fmb.12.62] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epidemic disease caused by Neisseria meningitidis, the meningococcus, has been recognized for two centuries, but remains incompletely controlled and understood. There have been dramatic reductions in serogroup A and C meningococcal disease following the introduction of protein-polysaccharide conjugate vaccines, but there is currently no comprehensive vaccine against serogroup B meningococci. Genetic analyses of meningococcal populations have provided many insights into the biology, evolution and pathogenesis of this important pathogen. The meningococcus, and its close relative the gonococcus, are the only pathogenic members of the genus Neisseria, and the invasive propensity of meningococci varies widely, with approximately a dozen 'hyperinvasive lineages' responsible for most disease. Despite this, attempts to identify a 'pathogenome', a subset of genes associated with the invasive phenotypes, have failed; however, genome-wide studies of representative meningococcal isolates using high-throughput sequencing are beginning to provide details on the relationship of invasive phenotype and genotype in this fascinating organism and how this relationship has evolved.
Collapse
|
48
|
|
49
|
Solomka VS, Chuprov-Netochin RN, Frigo NV, Kubanov AA. Experience of molecular typing and phylogenetic analysis of N. gonorrhoeae strains in the Russian Federation. VESTNIK DERMATOLOGII I VENEROLOGII 2012. [DOI: 10.25208/vdv661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The article presents results of the molecular typing and phylogenetic analysis of N. Gonorrhoeae strains in the Russian Federation conducted based on a large sample of N. Gonorrhoeae strains. A considerable genetic variety of N. Gonorrhoeae strains circulating in the territory of the Russian Federation was revealed, which can serve as an evidence of a high rate of accumulation of por and tbp gene mutations among the Russian population of N. Gonorrhoeae strains. The authors established the genetic relationship between individual sequence types of N. Gonorrhoeae strains, and revealed total and dominating sequence types of N. Gonorrhoeae strains found both in different territories of the Russian Federation and abroad, which confirms that such strains can be transferred between different territories of the Russian Federation and from abroad due to active migration of population.
Collapse
|
50
|
Yi H, Cho YJ, Yoon SH, Park SC, Chun J. Comparative genomics of Neisseria weaveri clarifies the taxonomy of this species and identifies genetic determinants that may be associated with virulence. FEMS Microbiol Lett 2012; 328:100-5. [PMID: 22188430 DOI: 10.1111/j.1574-6968.2011.02485.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 12/09/2011] [Accepted: 12/09/2011] [Indexed: 11/29/2022] Open
Abstract
A group of bacterial strains formerly known as CDC group M-5 are opportunistic pathogens to humans. In 1993, a name, Neisseria weaveri, was proposed by two independent studies to harbor CDC group M-5 strains, namely N. weaveri Holmes et al. 1993 and N. weaveri Andersen et al. 1993, with two different 'type' strains. However, no study has been conducted on to the relatedness of the two 'type' strains, although the close relationship of the two taxa has long been accepted unofficially. Formally, the status of the name N. weaveri Andersen et al. 1993 is illegitimate because it is a later homonym of N. weaveri Holmes et al., 1993; but the name of the strain is still validly published. In this study, we attempt to resolve the confusion caused by the apparent duplication of the species N. weaveri (with different type strains) using whole genome shotgun sequencing. We also sought to gain insight into the genetic characteristics of N. weaveri by conducting comparative genomics. On the basis of genomic similarities revealed through a comparative genomic study, we propose that N. weaveri Andersen et al. 1993 should be re-classified as a later heterotypic synonym of N. weaveri Holmes et al., 1993.
Collapse
Affiliation(s)
- Hana Yi
- Institute of Molecular Biology and Genetics, Seoul, Korea
| | | | | | | | | |
Collapse
|