1
|
Liang X, Li J, Ye Y. A comprehensive study on the mitochondrial genome of Volva habei and exploring phylogenetic relationships in Littorinimorpha. Sci Rep 2024; 14:29212. [PMID: 39587317 PMCID: PMC11589880 DOI: 10.1038/s41598-024-80695-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024] Open
Abstract
In order to enrich our taxonomic and systematic comprehension of Ovulidae within the evolutionary framework of Littorinimorpha. we present a comprehensive analysis of the mitochondrial genome (mitogenome) sequence of Volva habei using next-generation sequencing technology (GenBank accession number OR492307). The mitogenome spans a total length of 16,519 bp, encompassing a complete set of 37 genes, including 13 protein-coding genes (PCGs), 22 tRNAs and two rRNAs, demonstrating a distinct AT bias. Notably, trnS2 lacks a dihydrouracil (DHU) arm, thus preventing the formation of a typical secondary structure. In contrast, the remaining tRNAs exhibit a characteristic cloverleaf-like secondary structure. Comparative analysis with ancestral gastropods reveals substantial differences in three gene clusters (or genes), incorporating fifteen tRNAs and eight PCGs. Of particular significance are the observed inversions and translocations, representing the predominant types of rearrangements in V. habei. Phylogenetic analysis strongly supports the monophyletic grouping of all Littorinimorpha species, with V. habei forming a distinct Ovulidae clade. It is noteworthy that V. habei forms a sister group with Cypraeidae, collectively belonging to the Cypraeoidea. In summary, this study not only advances our comprehension of the entire mitochondrial dataset for Calyptraeoidea but also provides novel insights into the phylogenetic relationships within Littorinimorpha.
Collapse
Affiliation(s)
- Xinjie Liang
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Jiji Li
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Yingying Ye
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, China.
| |
Collapse
|
2
|
Ruan X, Cheng H, Xuan Z, Li Z, Yu J, Zhao H. The complete mitochondrial genome of Allogalathea elegans (Adams & White, 1848) (Decapoda: Galatheidae). Mitochondrial DNA B Resour 2023; 8:857-861. [PMID: 37583939 PMCID: PMC10424596 DOI: 10.1080/23802359.2023.2242625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 07/25/2023] [Indexed: 08/17/2023] Open
Abstract
The genus Allogalathea belongs to the subfamily Galatheoidea of the family Galatheidae. Here, we report a mitogenome of Allogalathea elegans (Adams & White, 1848). In this study, we obtained the complete mitochondrial genome of Allogalathea elegans by sequencing, which was 16,263 bp in length. The mitogenome contained 37 genes, including the typical set of 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, and 2 Ribosomal RNA (rRNA) genes. The nucleotides A, C, G, and T distribution was 36.40%, 19.44%, 9.09%, and 35.07%, respectively. The length of the total protein-coding genes was 11,172 bp, which accounts for 68.69% of the whole mitochondrial genome. The phylogenetic result generated by IQ-Tree based on 13 PGCs showed that the infraorder Anomura is monophyletic, and the infraorder Anomura is a sister group of the infraorder Glypheidea. The discovery of the complete mitochondrial genome of A. elegans would help to conduct in-depth research on the infraorder Anomura.
Collapse
Affiliation(s)
- Xinhe Ruan
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Huitao Cheng
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Zijie Xuan
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Zongyang Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Jie Yu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Huihong Zhao
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
lü J, Dong X, Li J, Ye Y, Xu K. Novel gene re-arrangement in the mitochondrial genome of Pisidiaserratifrons (Anomura, Galatheoidea, Porcellanidae) and phylogenetic associations in Anomura. Biodivers Data J 2023; 11:e96231. [PMID: 38327357 PMCID: PMC10848379 DOI: 10.3897/bdj.11.e96231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/28/2022] [Indexed: 02/25/2023] Open
Abstract
To improve the taxonomy and systematics of Porcellanidae within the evolution of Anomura, we describe the complete mitochondrial genomes (mitogenomes) sequence of Pisidiaserratifrons, which is 15,344 bp in size, contains the entire set of 37 genes and has an AT-rich region. Compared with the pancrustacean ground pattern, at least five gene clusters (or genes) are significantly different with the typical genes, involving eleven tRNA genes and four PCGs and the tandem duplication/random loss and recombination models were used to explain the observed large-scale gene re-arrangements. The phylogenetic results showed that all Porcellanidae species clustered together as a group with well nodal support. Most Anomura superfamilies were found to be monophyletic, except Paguroidea. Divergence time estimation implies that the age of Anomura is over 225 MYA, dating back to at least the late Triassic. Most of the extant superfamilies and families arose during the late Cretaceous to early Tertiary. In general, the results obtained in this study will contribute to a better understanding of gene re-arrangements in Porcellanidae mitogenomes and provide new insights into the phylogeny of Anomura.
Collapse
Affiliation(s)
- Jiayin lü
- Zhejiang Ocean University, Zhoushan, ChinaZhejiang Ocean UniversityZhoushanChina
| | - Xiangli Dong
- Zhejiang Ocean University, Zhoushan, ChinaZhejiang Ocean UniversityZhoushanChina
| | - Jiji Li
- Zhejiang Ocean University, Zhoushan, ChinaZhejiang Ocean UniversityZhoushanChina
| | - Yingying Ye
- Zhejiang Ocean University, Zhoushan, ChinaZhejiang Ocean UniversityZhoushanChina
| | - Kaida Xu
- Zhejiang Ocean University, Zhoushan, ChinaZhejiang Ocean UniversityZhoushanChina
| |
Collapse
|
4
|
Pang X, Fu W, Feng J, Guo B, Lin X, Lu X. The Complete Mitochondrial Genome of the Hermit Crab Diogenes edwardsii (Anomura: Diogenidae) and Phylogenetic Relationships within Infraorder Anomura. Genes (Basel) 2023; 14:470. [PMID: 36833397 PMCID: PMC9956181 DOI: 10.3390/genes14020470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
A complete mitochondrial genome (mitogenome) can provide important information for gene rearrangement, molecular evolution and phylogenetic analysis. Currently, only a few mitogenomes of hermit crabs (superfamily Paguridae) in the infraorder Anomura have been reported. This study reports the first complete mitogenome of the hermit crab Diogenes edwardsii assembled using high-throughput sequencing. The mitogenome of Diogenes edwardsii is 19,858 bp in length and comprises 13 protein-coding genes, 2 ribosomal RNA genes, and 22 transfer RNA genes. There are 28 and six genes observed on the heavy and light strands, respectively. The genome composition was highly A + T biased (72.16%), and exhibited a negative AT-skew (-0.110) and positive GC-skew (0.233). Phylogenetic analyses based on the nucleotide dataset of 16 Anomura species indicated that D. edwardsii was closest related to Clibanarius infraspinatus in the same family, Diogenidae. Positive selection analysis showed that two residues located in cox1 and cox2 were identified as positively selected sites with high BEB value (>95%), indicating that these two genes are under positive selection pressure. This is the first complete mitogenome of the genus Diogenes, and this finding helps us to represent a new genomic resource for hermit crab species and provide data for further evolutionary status of Diogenidae in Anomura.
Collapse
Affiliation(s)
- Xiaoke Pang
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Wenjing Fu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jianfeng Feng
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Biao Guo
- Department of Fishery Resources, Tianjin Fisheries Research Institute, Tianjin 300457, China
| | - Xiaolong Lin
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai 201306, China
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China
| | - Xueqiang Lu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
5
|
Colín A, Galván-Tirado C, Carreón-Palau L, Bracken-Grissom HD, Baeza JA. Mitochondrial genomes of the land hermit crab Coenobita clypeatus (Anomura: Paguroidea) and the mole crab Emerita talpoida (Anomura: Hippoidea) with insights into phylogenetic relationships in the Anomura (Crustacea: Decapoda). Gene X 2023; 849:146896. [DOI: 10.1016/j.gene.2022.146896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/31/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022] Open
|
6
|
Liu MY, Shih HT. The Complete Mitogenome of Xeruca formosensis (Rathbun, 1921) (Crustacea: Brachyura: Ocypodidae), a Fiddler Crab Endemic to Taiwan, with its Phylogenetic Position in the Family. Zool Stud 2022; 61:e69. [PMID: 36568804 PMCID: PMC9755983 DOI: 10.6620/zs.2022.61-69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 07/27/2022] [Indexed: 12/27/2022]
Abstract
Xeruca formosensis is a species and genus of fiddler crab endemic to Taiwan, with limited distribution in western Taiwan and the offshore Penghu Islands. This study reports the complete mitochondrial genome (mitogenome) of this species using next-generation sequencing. The mitogenome contains 15,684 bp, comprising 13 protein-coding genes, 22 tRNAs, 2 ribosomal RNAs and a 750-bp intergenic space (control region). The nucleotide composition is biased toward A+T (69.4%). A phylogenetic analysis based on the concatenated protein-coding genes showed that the genera Xeruca Shih, 2015 and Tubuca Bott, 1973 are sister to each other. In addition, the phylogeny of the 16 available mitogenomes in the family Ocypodidae also supports the current systematics of this family based on one nuclear and two mitochondrial markers. As this species inhabits high intertidal mudflats with high temperature and high salinity, mitogenome analyses may help us understand the mechanisms of adaptation to extreme environments, as well as the connectivity of metapopulations based on mitogenomes from different populations.
Collapse
Affiliation(s)
- Min-Yun Liu
- Taiwan Ocean Research Institute, National Applied Research Laboratories, Kaohsiung 852, Taiwan. E-mail: (Liu)
| | - Hsi-Te Shih
- Department of Life Science and Research Center for Global Change Biology, National Chung Hsing University, Taichung 402, Taiwan. E-mail: (Shih)
| |
Collapse
|
7
|
Benito JB, Porter ML, Niemiller ML. The mitochondrial genomes of five spring and groundwater amphipods of the family Crangonyctidae (Crustacea: Amphipoda) from eastern North America. MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:1662-1667. [PMID: 34104729 PMCID: PMC8143621 DOI: 10.1080/23802359.2021.1926350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
We sequenced the mitochondrial genomes of one spring-dwelling (Crangonyx forbesi) and four groundwater amphipods (Bactrurus brachycaudus, Stygobromus allegheniensis, S. pizzinii, and S. t. potomacus) from eastern North America using a shotgun sequencing approach on an Illumina HiSeq 4000 (Illumina, San Diego, CA). All five mitochondrial genomes encoded 13 protein-coding genes, 22 transfer RNAs (tRNAs), and two ribosomal RNAs (rRNAs) representative of subphylum Crustacea. Although the four groundwater species exhibited gene orders nearly identical to the ancestral pancrustacean gene order, the spring-dwelling species, C. forbesi, possessed a transposition of the trnH–nad4–nad4l loci downstream after nad6–cytb–trnS2. Moreover, a long nad5 locus, longer rrnL, and rrnS loci, and unconventional start codons distinguished C. forbesi from the four groundwater amphipods. Overall, our five amphipod mitogenomes add to the increasing publicly available mitogenome resources for amphipods that are not only valuable for studying the evolutionary relationships of this diverse group of crustaceans but for exploring the evolution of mitochondrial genomes in general.
Collapse
Affiliation(s)
- Joseph B Benito
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL, USA
| | - Megan L Porter
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Matthew L Niemiller
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL, USA
| |
Collapse
|
8
|
Zapelloni F, Jurado-Rivera JA, Jaume D, Juan C, Pons J. Comparative Mitogenomics in Hyalella (Amphipoda: Crustacea). Genes (Basel) 2021; 12:genes12020292. [PMID: 33669879 PMCID: PMC7923271 DOI: 10.3390/genes12020292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 02/02/2023] Open
Abstract
We present the sequencing and comparative analysis of 17 mitochondrial genomes of Nearctic and Neotropical amphipods of the genus Hyalella, most from the Andean Altiplano. The mitogenomes obtained comprised the usual 37 gene-set of the metazoan mitochondrial genome showing a gene rearrangement (a reverse transposition and a reversal) between the North and South American Hyalella mitogenomes. Hyalella mitochondrial genomes show the typical AT-richness and strong nucleotide bias among codon sites and strands of pancrustaceans. Protein-coding sequences are biased towards AT-rich codons, with a preference for leucine and serine amino acids. Numerous base changes (539) were found in tRNA stems, with 103 classified as fully compensatory, 253 hemi-compensatory and the remaining base mismatches and indels. Most compensatory Watson–Crick switches were AU -> GC linked in the same haplotype, whereas most hemi-compensatory changes resulted in wobble GU and a few AC pairs. These results suggest a pairing fitness increase in tRNAs after crossing low fitness valleys. Branch-site level models detected positive selection for several amino acid positions in up to eight mitochondrial genes, with atp6 and nad5 as the genes displaying more sites under selection.
Collapse
Affiliation(s)
- Francesco Zapelloni
- Department of Biology, University of the Balearic Islands, Ctra. Valldemossa km 7,5, 07122 Palma, Spain; (F.Z.); (J.A.J.-R.); (C.J.)
| | - José A. Jurado-Rivera
- Department of Biology, University of the Balearic Islands, Ctra. Valldemossa km 7,5, 07122 Palma, Spain; (F.Z.); (J.A.J.-R.); (C.J.)
| | - Damià Jaume
- IMEDEA (CSIC-UIB), Mediterranean Institute for Advanced Studies, C/Miquel Marquès 21, 07190 Esporles, Spain;
| | - Carlos Juan
- Department of Biology, University of the Balearic Islands, Ctra. Valldemossa km 7,5, 07122 Palma, Spain; (F.Z.); (J.A.J.-R.); (C.J.)
- IMEDEA (CSIC-UIB), Mediterranean Institute for Advanced Studies, C/Miquel Marquès 21, 07190 Esporles, Spain;
| | - Joan Pons
- IMEDEA (CSIC-UIB), Mediterranean Institute for Advanced Studies, C/Miquel Marquès 21, 07190 Esporles, Spain;
- Correspondence: ; Tel.: +34-971-173-332
| |
Collapse
|
9
|
Du L, Cai S, Liu J, Liu R, Zhang H. The complete mitochondrial genome of a cold seep gastropod Phymorhynchus buccinoides (Neogastropoda: Conoidea: Raphitomidae). PLoS One 2020; 15:e0242541. [PMID: 33253261 PMCID: PMC7703994 DOI: 10.1371/journal.pone.0242541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 11/04/2020] [Indexed: 11/18/2022] Open
Abstract
Phymorhynchus is a genus of deep-sea snails that are most distributed in hydrothermal vent or cold seep environments. In this study, we presented the complete mitochondrial genome of P. buccinoides, a cold seep snail from the South China Sea. It is the first mitochondrial genome of a cold seep member of the superfamily Conoidea. The mitochondrial genome is 15,764 bp in length, and contains 13 protein-coding genes (PCGs), 2 rRNA genes, and 22 tRNA genes. These genes are encoded on the positive strand, except for 8 tRNA genes that are encoded on the negative strand. The start codon ATG and 3 types of stop codons, TAA, TAG and the truncated termination codon T, are used in the 13 PCGs. All 13 PCGs in the 26 species of Conoidea share the same gene order, while several tRNA genes have been translocated. Phylogenetic analysis revealed that P. buccinoides clustered with Typhlosyrinx sp., Eubela sp., and Phymorhynchus sp., forming the Raphitomidae clade, with high support values. Positive selection analysis showed that a residue located in atp6 (18 S) was identified as the positively selected site with high posterior probabilities, suggesting potential adaption to the cold seep environment. Overall, our data will provide a useful resource on the evolutionary adaptation of cold seep snails for future studies.
Collapse
Affiliation(s)
- Lvpei Du
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shanya Cai
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Jun Liu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Ruoyu Liu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haibin Zhang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| |
Collapse
|
10
|
Novel gene rearrangement pattern in Cynoglossus melampetalus mitochondrial genome: New gene order in genus Cynoglossus (Pleuronectiformes: Cynoglossidae). Int J Biol Macromol 2020; 149:1232-1240. [DOI: 10.1016/j.ijbiomac.2020.02.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/31/2019] [Accepted: 02/03/2020] [Indexed: 11/24/2022]
|
11
|
Sun S, Sha Z, Wang Y. The complete mitochondrial genomes of two vent squat lobsters, Munidopsis lauensis and M. verrilli: Novel gene arrangements and phylogenetic implications. Ecol Evol 2019; 9:12390-12407. [PMID: 31788185 PMCID: PMC6875667 DOI: 10.1002/ece3.5542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/31/2019] [Accepted: 07/19/2019] [Indexed: 12/14/2022] Open
Abstract
Hydrothermal vents are considered as one of the most extremely harsh environments on the Earth. In this study, the complete mitogenomes of hydrothermal vent squat lobsters, Munidopsis lauensis and M. verrilli, were determined through Illumina sequencing and compared with other available mitogenomes of anomurans. The mitogenomes of M. lauensis (17,483 bp) and M. verrilli (17,636 bp) are the largest among all Anomura mitogenomes, while the A+T contents of M. lauensis (62.40%) and M. verrilli (63.99%) are the lowest. The mitogenomes of M. lauensis and M. verrilli display novel gene arrangements, which might be the result of three tandem duplication-random loss (tdrl) events from the ancestral pancrustacean pattern. The mitochondrial gene orders of M. lauensis and M. verrilli shared the most similarities with S. crosnieri. The phylogenetic analyses based on both gene order data and nucleotide sequences (PCGs and rRNAs) revealed that the two species were closely related to Shinkaia crosnieri. Positive selection analysis revealed that eighteen residues in seven genes (atp8, Cytb, nad3, nad4, nad4l, nad5, and nad6) of the hydrothermal vent anomurans were positively selected sites.
Collapse
Affiliation(s)
- Shao'e Sun
- Deep Sea Research CenterInstitute of OceanologyChinese Academy of ScienceQingdaoChina
- Center for Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
| | - Zhongli Sha
- Deep Sea Research CenterInstitute of OceanologyChinese Academy of ScienceQingdaoChina
- Center for Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yanrong Wang
- Deep Sea Research CenterInstitute of OceanologyChinese Academy of ScienceQingdaoChina
- Center for Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
| |
Collapse
|
12
|
Novel gene rearrangement in the mitochondrial genome of Coenobita brevimanus (Anomura: Coenobitidae) and phylogenetic implications for Anomura. Genomics 2019; 112:1804-1812. [PMID: 31655177 DOI: 10.1016/j.ygeno.2019.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 11/24/2022]
Abstract
The complete mitochondrial genomes (mitogenomes) can indicate phylogenetic relationships among organisms, as well as useful information about the process of molecular evolution and gene rearrangement mechanisms. However, knowledge on the complete mitogenome of Coenobitidae (Decapoda: Anomura) is quite scarce. Here, we describe in detail the complete mitogenome of Coenobita brevimanus, which is 16,393 bp in length, and contains 13 protein-coding genes, two ribosomal RNA, 22 transfer RNA genes, as well as a putative control region. The genome composition shows a moderate A + T bias (65.0%), and exhibited a negative AT-skew (-0.148) and a positive GC-skew (0.183). Five gene clusters (or genes) involving eleven tRNAs and two PCGs were found to have rearranged with respect to the pancrustacean ground pattern gene order. Duplication-random loss and recombination models were determined as most likely to explain the observed large-scale gene rearrangements. Phylogenetic analysis placed all Coenobitidae species into one clade. The polyphyly of Paguroidea was well supported, whereas the non-monophyly of Galatheoidea was inconsistence with previous findings on Anomura. Taken together, our results help to better understand gene rearrangement process and the evolutionary status of C. brevimanus and lay a foundation for further phylogenetic studies of Anomura.
Collapse
|
13
|
Gong L, Jiang H, Zhu K, Lu X, Liu L, Liu B, Jiang L, Ye Y, Lü Z. Large-scale mitochondrial gene rearrangements in the hermit crab Pagurus nigrofascia and phylogenetic analysis of the Anomura. Gene 2019; 695:75-83. [PMID: 30738095 DOI: 10.1016/j.gene.2019.01.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 10/27/2022]
Abstract
Complete mitochondrial genome (mitogenome) provides important information for better understanding of gene rearrangement, molecular evolution and phylogenetic analysis. Currently, only a few Paguridae mitogenomes have been reported. Herein, we described the complete mitogenome of hermit crab Pagurus nigrofascia. The total length was 15,423 bp, containing 13 protein-coding genes (PCGs), two ribosomal RNA, 22 transfer RNA genes, as well as an AT-rich region. The genome composition was highly A + T biased (71.4%), and exhibited a negative AT-skew (-0.006) and GC-skew (-0.138). Eight tRNA genes, two PCGs and an AT-rich region found to be rearranged with respect to the pancrustacean ground pattern gene order. Duplication-random loss and recombination model were adopted to explain the large-scale gene rearrangement events. Two phylogenetic trees of Anomura involving 12 families were constructed. The results showed that all Paguridae species were clustered into one clade except Pagurus longicarpus, which for the first time imposed raises doubt about the morphological taxonomy of this species. Furthermore, the present study found that higher- level phylogenetic relationships within Anomura were controversial, compared with the previous studies. Our results help to better understand gene rearrangements and the evolutionary status of P. nigrofascia and lay foundation for further phylogenetic study of Anomura.
Collapse
Affiliation(s)
- Li Gong
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, 316022 Zhoushan, China; National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, 316022 Zhoushan, China.
| | - Hui Jiang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, 316022 Zhoushan, China; National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Kehua Zhu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, 316022 Zhoushan, China; National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Xinting Lu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, 316022 Zhoushan, China; National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Liqin Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, 316022 Zhoushan, China; National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Bingjian Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, 316022 Zhoushan, China; National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Lihua Jiang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, 316022 Zhoushan, China; National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Yingying Ye
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, 316022 Zhoushan, China; National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Zhenming Lü
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, 316022 Zhoushan, China; National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, 316022 Zhoushan, China
| |
Collapse
|
14
|
Hua CJ, Li WX, Zhang D, Zou H, Li M, Jakovlić I, Wu SG, Wang GT. Basal position of two new complete mitochondrial genomes of parasitic Cymothoida (Crustacea: Isopoda) challenges the monophyly of the suborder and phylogeny of the entire order. Parasit Vectors 2018; 11:628. [PMID: 30526651 PMCID: PMC6287365 DOI: 10.1186/s13071-018-3162-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/22/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Isopoda is a highly diverse order of crustaceans with more than 10,300 species, many of which are parasitic. Taxonomy and phylogeny within the order, especially those of the suborder Cymothoida Wägele, 1989, are still debated. Mitochondrial (mt) genomes are a useful tool for phylogenetic studies, but their availability for isopods is very limited. To explore these phylogenetic controversies on the mt genomic level and study the mt genome evolution in Isopoda, we sequenced mt genomes of two parasitic isopods, Tachaea chinensis Thielemann, 1910 and Ichthyoxenos japonensis Richardson, 1913, belonging to the suborder Cymothoida, and conducted comparative and phylogenetic mt genomic analyses across Isopoda. RESULTS The complete mt genomes of T. chinensis and I. japonensis were 14,616 bp and 15,440 bp in size, respectively, with the A+T content higher than in other isopods (72.7 and 72.8%, respectively). Both genomes code for 13 protein-coding genes, 21 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs), and possess a control region (CR). Both are missing a gene from the complete tRNA set: T. chinensis lacks trnS1 and I. japonensis lacks trnI. Both possess unique gene orders among isopods. Within the CR of I. japonensis (284 bp), we identified a repetitive region with four tandem repeats. Phylogenetic analysis based on concatenated nucleotide sequences of 13 protein-coding genes showed that the two parasitic cymothoids clustered together and formed a basal clade within Isopoda. However, another parasitic cymothoid, Gyge ovalis Shiino, 1939, formed a sister group with the suborder Limnoriidea Brandt & Poore in Poore, 2002, whereas two free-living cymothoid species were located in the derived part of the phylogram: Bathynomus sp. formed a sister group with the suborder Sphaeromatidea Wägele, 1989, and Eurydice pulchra Leach, 1815 with a clade including Bathynomus sp., Sphaeromatidea and Valvifera G. O. Sars, 1883. CONCLUSIONS Our results did not recover the suborders Cymothoida and Oniscidea Latreille, 1802 as monophyletic, with parasitic and free-living cymothoidans forming separate clades. Furthermore, two parasitic cymothoidans formed the sister-clade to all other isopods, separated from Epicaridea Latreille, 1825, which challenges currently prevalent isopod phylogeny. Additional mt genomes of parasitic and free-living isopods might confer a sufficient phylogenetic resolution to enable us to resolve their relationships, and ultimately allow us to better understand the evolutionary history of the entire isopod order.
Collapse
Affiliation(s)
- Cong J. Hua
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Wen X. Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
| | - Dong Zhang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Hong Zou
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
| | - Ming Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
| | - Ivan Jakovlić
- Bio-Transduction Lab, Biolake, Wuhan, 430075 People’s Republic of China
| | - Shan G. Wu
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
| | - Gui T. Wang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| |
Collapse
|
15
|
Mu W, Liu J, Zhang H. The first complete mitochondrial genome of the Mariana Trench Freyastera benthophila (Asteroidea: Brisingida: Brisingidae) allows insights into the deep-sea adaptive evolution of Brisingida. Ecol Evol 2018; 8:10673-10686. [PMID: 30519397 PMCID: PMC6262923 DOI: 10.1002/ece3.4427] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/27/2018] [Accepted: 07/10/2018] [Indexed: 01/13/2023] Open
Abstract
Starfish (phylum Echinodermata) are ecologically important and diverse members of marine ecosystems in all of the world's oceans, from the shallow water to the hadal zone. The deep sea is recognized as an extremely harsh environment on earth. In this study, we present the mitochondrial genome sequence of Mariana Trench starfish Freyastera benthophila, and this study is the first to explore in detail the mitochondrial genome of a deep-sea member of the order Brisingida. Similar to other starfish, it contained 13 protein-coding genes, two ribosomal RNA genes, and 22 transfer RNA genes (duplication of two tRNAs: trnL and trnS). Twenty-two of these genes are encoded on the positive strand, while the other 15 are encoded on the negative strand. The gene arrangement was identical to those of sequenced starfish. Phylogenetic analysis showed the deep-sea Brisingida as a sister taxon to the traditional members of the Asteriidae. Positive selection analysis indicated that five residues (8 N and 16 I in atp8, 47 D and 196 V in nad2, 599 N in nad5) were positively selected sites with high posterior probabilities. Compared these features with shallow sea starfish, we predict that variation specifically in atp8, nad2, and nad5 may play an important role in F. benthophila's adaptation to deep-sea environment.
Collapse
Affiliation(s)
- Wendan Mu
- Institute of Deep‐Sea Science and EngineeringChinese Academy of SciencesSanyaChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jun Liu
- Institute of Deep‐Sea Science and EngineeringChinese Academy of SciencesSanyaChina
| | - Haibin Zhang
- Institute of Deep‐Sea Science and EngineeringChinese Academy of SciencesSanyaChina
| |
Collapse
|
16
|
Sun S, Hui M, Wang M, Sha Z. The complete mitochondrial genome of the alvinocaridid shrimp Shinkaicaris leurokolos (Decapoda, Caridea): Insight into the mitochondrial genetic basis of deep-sea hydrothermal vent adaptation in the shrimp. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 25:42-52. [PMID: 29145028 DOI: 10.1016/j.cbd.2017.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/02/2017] [Accepted: 11/06/2017] [Indexed: 01/02/2023]
Abstract
Deep-sea hydrothermal vent is one of the most extreme environments on Earth with low oxygen and high levels of toxins. Decapod species from the family Alvinocarididae have colonized and successfully adapted to this extremely harsh environment. Mitochondria plays a vital role in oxygen usage and energy metabolism, thus it may be under selection in the adaptive evolution of the hydrothermal vent shrimps. In this study, the mitochondrial genome (mitogenome) of alvinocaridid shrimp Shinkaicaris leurokolos (Kikuchi & Hashimoto, 2000) was determined through Illumina sequencing. The mitogenome of S. leurokolos was 15,903bp in length, containing 13 protein-coding genes, 2 rRNAs, and 22 tRNAs. The gene order and orientation were identical to those of sequenced alvinocaridids. It has the longest concatenated sequences of protein-coding genes, tRNAs and shortest pooled rRNAs among the alvinocaridids. The control regions (CRs) of alvinocaridid were significantly longer (p<0.01) than those of the other caridaen. The alignment of the alvinocaridid CRs revealed two conserved sequence blocks (CSBs), and each of the CSBs included a noncanonical open reading frame (ORF), which may be involved in adjusting mitochondrial energy metabolism to adapt to the hydrothermal environment. Phylogenetic analysis supported that the deep-sea hydrothermal vent shrimps may have originated from those living in shallow area. Positive selection analysis reveals the evidence of adaptive change in the mitogenome of Alvinocarididae. Thirty potentially important adaptive residues were identified, which were located in atp6, cox1, cox3, cytb and nad1-5. This study explores the mitochondrial genetic basis of hydrothermal vent adaptation in alvinocaridid for the first time, and provides valuable clues regarding the adaptation.
Collapse
Affiliation(s)
- Shao'e Sun
- Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Science, China
| | - Ming Hui
- Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Science, China
| | - Minxiao Wang
- Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Science, China
| | - Zhongli Sha
- Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Science, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
17
|
Yuhui X, Lijun Z, Yue H, Xiaoqi W, Chen Z, Zhang Huilun, Ruoran W, Da P, Hongying S. Complete mitochondrial genomes from two species of Chinese freshwater crabs of the genus Sinopotamon recovered using next-generation sequencing reveal a novel gene order (Brachyura, Potamidae). Zookeys 2017; 705:41-60. [PMID: 29118611 PMCID: PMC5674035 DOI: 10.3897/zookeys.705.11852] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/04/2017] [Indexed: 01/26/2023] Open
Abstract
Recent morphological and molecular evidence has challenged classical interpretations of eubrachyuran phylogeny and evolution. Complete mitochondrial genomes of two species of potamid freshwater crabs, Sinopotamon yaanense and Sinopotamon yangtsekiense were obtained using next-generation sequencing. The results revealed a novel gene order with translocations of a five-gene block and a tRNA gene in comparison to available brachyuran mitochondrial genomes. DNA sequence comparisons position the Potamidae, a primary freshwater crab family, outside of the clade for the traditional heterotreme families, and closer to the clade that includes the thoracotreme families of grapsoid and ocypodoid crabs. Mitogenomic comparisons using rapid next-generation sequencing and a much wider taxonomic sample are required for a high-resolution examination of the phylogenetic relationships within the Eubrachyura.
Collapse
Affiliation(s)
- Xing Yuhui
- Jiangsu Key Laboratory for Biodiversity and Biotechnology,
| | - Zhou Lijun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology,
| | - Hou Yue
- Jiangsu Key Laboratory for Biodiversity and Biotechnology,
| | - Wang Xiaoqi
- Jiangsu Key Laboratory for Biodiversity and Biotechnology,
| | - Zhang Chen
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Zhang Huilun
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Wang Ruoran
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Pan Da
- Jiangsu Key Laboratory for Biodiversity and Biotechnology,
| | - Sun Hongying
- Jiangsu Key Laboratory for Biodiversity and Biotechnology,
| |
Collapse
|
18
|
Exploring the molecular basis of adaptive evolution in hydrothermal vent crab Austinograea alayseae by transcriptome analysis. PLoS One 2017; 12:e0178417. [PMID: 28552991 PMCID: PMC5446156 DOI: 10.1371/journal.pone.0178417] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/12/2017] [Indexed: 12/12/2022] Open
Abstract
Elucidating the genetic mechanisms of adaptation to the hydrothermal vent in organisms at genomic level is significant for understanding the adaptive evolution process in the extreme environment. We performed RNA-seq on four different tissues of a vent crab species, Austinograea alayseae, producing 725,461 unigenes and 134,489 annotated genes. Genes related to sensory, circadian rhythm, hormone, hypoxia stress, metal detoxification and immunity were identified. It was noted that in the degenerated eyestalk, transcription of phototransduction related genes which are important for retinal function was greatly reduced; three crucial neuropeptide hormones, one molt-inhibiting and two crustacean hyperglycemic hormone precursors were characterized with conserved domains; hypoxia-inducible factor 1 and two novel isoforms of metallothioneins in the vent crabs were discovered. An analysis of 6,932 orthologs among three crabs A. alayseae, Portunus trituberculutus and Eriocheir sinensis revealed 19 positive selected genes (PSGs). Most of the PSGs were involved in immune responses, such as crustins and anti-lipopolysaccharide factor, suggesting their function in the adaptation to environment. The characterization of the first vent crab transcriptome provides abundant resources for genetic and evolutionary studies of this species, and paves the way for further investigation of vent adaptation process in crabs.
Collapse
|
19
|
Shen Y, Kou Q, Zhong Z, Li X, He L, He S, Gan X. The first complete mitogenome of the South China deep-sea giant isopod Bathynomus sp. (Crustacea: Isopoda: Cirolanidae) allows insights into the early mitogenomic evolution of isopods. Ecol Evol 2017; 7:1869-1881. [PMID: 28331594 PMCID: PMC5355201 DOI: 10.1002/ece3.2737] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/07/2016] [Accepted: 12/21/2016] [Indexed: 12/02/2022] Open
Abstract
In this study, the complete mitochondrial (mt) genome sequence of the South China deep‐sea giant isopod Bathynomus sp. was determined, and this study is the first to explore in detail the mt genome of a deep‐sea member of the order Isopoda. This species belongs to the genus Bathynomus, the members of which are saprophagous residents of the deep‐sea benthic environment; based on their large size, Bathynomus is included in the “supergiant group” of isopods. The mt genome of Bathynomus sp. is 14,965 bp in length and consists of 13 protein‐coding genes, two ribosomal RNA genes, only 18 transfer RNA genes, and a noncoding control region 362 bp in length, which is the smallest control region discovered in Isopoda to date. Although the overall genome organization is typical for metazoans, the mt genome of Bathynomus sp. shows a number of derived characters, such as an inversion of 10 genes when compared to the pancrustacean ground pattern. Rearrangements in some genes (e.g., cob, trnT, nad5, and trnF) are shared by nearly all isopod mt genomes analyzed thus far, and when compared to the putative isopod ground pattern, five rearrangements were found in Bathynomus sp. Two tRNAs exhibit modified secondary structures: The TΨC arm is absent from trnQ, and trnC lacks the DHU. Within the class Malacostraca, trnC arm loss is only found in other isopods. Phylogenetic analysis revealed that Bathynomus sp. (Cymothoida) and Sphaeroma serratum (Sphaeromatidea) form a single clade, although it is unclear whether Cymothoida is monophyletic or paraphyletic. Moreover, the evolutionary rate of Bathynomus sp. (dN/dS [nonsynonymous mutational rate/synonymous mutational rate] = 0.0705) is the slowest measured to date among Cymothoida, which may be associated with its relatively constant deep‐sea environment. Overall, our results may provide useful information for understanding the evolution of deep‐sea Isopoda species.
Collapse
Affiliation(s)
- Yanjun Shen
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences Institute of Hydrobiology Chinese Academy of Sciences Wuhan Hubei China; University of Chinese Academy of Sciences Beijing China
| | - Qi Kou
- Institute of Oceanology Chinese Academy of Sciences Qingdao China
| | - Zaixuan Zhong
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences Institute of Hydrobiology Chinese Academy of Sciences Wuhan Hubei China; University of Chinese Academy of Sciences Beijing China
| | - Xinzheng Li
- Institute of Oceanology Chinese Academy of Sciences Qingdao China
| | - Lisheng He
- Institute of Deep-sea Science and Engineering Chinese Academy of Sciences Sanya China
| | - Shunping He
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences Institute of Hydrobiology Chinese Academy of Sciences Wuhan Hubei China
| | - Xiaoni Gan
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences Institute of Hydrobiology Chinese Academy of Sciences Wuhan Hubei China
| |
Collapse
|
20
|
Nakajima Y, Shinzato C, Khalturina M, Nakamura M, Watanabe H, Satoh N, Mitarai S. The mitochondrial genome sequence of a deep-sea, hydrothermal vent limpet, Lepetodrilus nux, presents a novel vetigastropod gene arrangement. Mar Genomics 2016; 28:121-126. [PMID: 27102631 DOI: 10.1016/j.margen.2016.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/08/2016] [Accepted: 04/08/2016] [Indexed: 01/27/2023]
Abstract
While mitochondrial (mt) genomes are used extensively for comparative and evolutionary genomics, few mt genomes of deep-sea species, including hydrothermal vent species, have been determined. The Genus Lepetodrilus is a major deep-sea gastropod taxon that occurs in various deep-sea ecosystems. Using next-generation sequencing, we determined nearly the complete mitochondrial genome sequence of Lepetodrilus nux, which inhabits hydrothermal vents in the Okinawa Trough. The total length of the mitochondrial genome is 16,353bp, excluding the repeat region. It contains 13 protein-coding genes, 22 tRNA genes, two rRNA genes, and a control region, typical of most metazoan genomes. Compared with other vetigastropod mt genome sequences, L. nux employs a novel mt gene arrangement. Other novel arrangements have been identified in the vetigastropod, Fissurella volcano, and in Chrysomallon squamiferum, a neomphaline gastropod; however, all three gene arrangements are different, and Bayesian inference suggests that each lineage diverged independently. Our findings suggest that vetigastropod mt gene arrangements are more diverse than previously realized.
Collapse
Affiliation(s)
- Yuichi Nakajima
- Marine Biophysics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan.
| | - Chuya Shinzato
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Mariia Khalturina
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Masako Nakamura
- School of Marine Science and Technology, Tokai University, Shimizu, Shizuoka 424-8610, Japan
| | - Hiromi Watanabe
- Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa 237-0061, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Satoshi Mitarai
- Marine Biophysics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
21
|
Lee CW, Song JH, Min GS, Kim S. The complete mitochondrial genome of squat lobster, Munida gregaria (Anomura, Galatheoidea, Munididae). MITOCHONDRIAL DNA PART B-RESOURCES 2016; 1:204-206. [PMID: 33644345 PMCID: PMC7871840 DOI: 10.1080/23802359.2016.1155087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We determined the mitogenome sequence of Munida gregaria (Fabricius 1793) (Anomura, Galatheoidea, Munididae), which is the first complete mitogenome sequence in the family Munididae Ahyong et al., 2010. The mitogenome of M. gregaria is 16 326 bp in length and contains 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), two ribosomal RNAs (rRNAs) and two control regions (CRs). Mitogenome analysis of M. gregaria showed an extra copy of the CR and rearrangements of two PCGs (nad2 and nad3) compared to the arthropod ground pattern. Additionally, it contains a tRNA (trnY) inversion and rearrangements of two PCGs (nad1 and nad3) when compared with that of Neopetrolisthes maculatus and Shinkaia crosnieri, respectively. The phylogenetic tree confirmed that M. gregaria belongs to the superfamily Galatheoidea within Anomura. Our results will be useful for the detailed study of mitogenome evolution and the phylogenetic relationships among the superfamily in the infraorder Anomura.
Collapse
Affiliation(s)
- Chi Woo Lee
- Animal Resources Division, National Institute of Biological Resources, Incheon, South Korea
| | - Ji-Hun Song
- Department of Biological Sciences, Inha University, Incheon, South Korea
| | - Gi-Sik Min
- Department of Biological Sciences, Inha University, Incheon, South Korea
| | - Sanghee Kim
- Division of Life Sciences, Korea Polar Research Institute, KIOST, Incheon, South Korea
| |
Collapse
|
22
|
Stokkan M, Jurado-Rivera JA, Juan C, Jaume D, Pons J. Mitochondrial genome rearrangements at low taxonomic levels: three distinct mitogenome gene orders in the genus Pseudoniphargus (Crustacea: Amphipoda). Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:3579-89. [PMID: 26329687 DOI: 10.3109/19401736.2015.1079821] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A comparison of mitochondrial genomes of three species of the amphipod Pseudoniphargus revealed the occurrence of a surprisingly high level of gene rearrangement involving protein-coding genes that is a rare phenomenon at low taxonomic levels. The three Pseudoniphargus mitogenomes also display a unique gene arrangement with respect to either the presumed Pancrustacean order or those known for other amphipods. Relative long non-coding sequences appear adjacent to the putative breakage points involved in gene rearrangements of protein coding genes. Other details of the newly obtained mitochondrial genomes - e.g., gene content, nucleotide composition and codon usage - are similar to those found in the mitogenomes of other amphipod species studied. They all contain the typical mitochondrial genome set consisting of 13 protein-coding genes, 22 tRNAs, and two rRNAS, as well as a large control region. The secondary structures and characteristics of tRNA and ribosomal mitochondrial genes of these three species are also discussed.
Collapse
Affiliation(s)
- Morten Stokkan
- a Department of Biodiversity and Conservation , Instituto Mediterraneo de Estudios Avanzados (IMEDEA, CSIC-UIB) , Esporles , Spain and
| | - Jose A Jurado-Rivera
- a Department of Biodiversity and Conservation , Instituto Mediterraneo de Estudios Avanzados (IMEDEA, CSIC-UIB) , Esporles , Spain and.,b Departament de Biologia , Universitat de les Illes Balears , Palma , Spain
| | - Carlos Juan
- a Department of Biodiversity and Conservation , Instituto Mediterraneo de Estudios Avanzados (IMEDEA, CSIC-UIB) , Esporles , Spain and.,b Departament de Biologia , Universitat de les Illes Balears , Palma , Spain
| | - Damià Jaume
- a Department of Biodiversity and Conservation , Instituto Mediterraneo de Estudios Avanzados (IMEDEA, CSIC-UIB) , Esporles , Spain and
| | - Joan Pons
- a Department of Biodiversity and Conservation , Instituto Mediterraneo de Estudios Avanzados (IMEDEA, CSIC-UIB) , Esporles , Spain and
| |
Collapse
|
23
|
Thatje S, Marsh L, Roterman CN, Mavrogordato MN, Linse K. Adaptations to Hydrothermal Vent Life in Kiwa tyleri, a New Species of Yeti Crab from the East Scotia Ridge, Antarctica. PLoS One 2015; 10:e0127621. [PMID: 26107940 PMCID: PMC4480985 DOI: 10.1371/journal.pone.0127621] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/15/2015] [Indexed: 11/18/2022] Open
Abstract
Hydrothermal vents in the Southern Ocean are the physiologically most isolated chemosynthetic environments known. Here, we describe Kiwa tyleri sp. nov., the first species of yeti crab known from the Southern Ocean. Kiwa tyleri belongs to the family Kiwaidae and is the visually dominant macrofauna of two known vent sites situated on the northern and southern segments of the East Scotia Ridge (ESR). The species is known to depend on primary productivity by chemosynthetic bacteria and resides at the warm-eurythermal vent environment for most of its life; its short-range distribution away from vents (few metres) is physiologically constrained by the stable, cold waters of the surrounding Southern Ocean. Kiwa tylerihas been shown to present differential life history adaptations in response to this contrasting thermal environment. Morphological adaptations specific to life in warm-eurythermal waters, as found on – or in close proximity of – vent chimneys, are discussed in comparison with adaptations seen in the other two known members of the family (K. hirsuta, K. puravida), which show a preference for low temperature chemosynthetic environments.
Collapse
Affiliation(s)
- Sven Thatje
- Ocean and Earth Science, University of Southampton, European Way, Southampton, SO14 3ZH, United Kingdom
- * E-mail:
| | - Leigh Marsh
- Ocean and Earth Science, University of Southampton, European Way, Southampton, SO14 3ZH, United Kingdom
| | | | - Mark N. Mavrogordato
- Engineering Sciences, μ-VIS CT Imaging Centre, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Katrin Linse
- British Antarctic Survey, High Cross Madingley Road, CB3 0ET, Cambridge, United Kingdom
| |
Collapse
|
24
|
MitoPhAST, a new automated mitogenomic phylogeny tool in the post-genomic era with a case study of 89 decapod mitogenomes including eight new freshwater crayfish mitogenomes. Mol Phylogenet Evol 2015; 85:180-8. [DOI: 10.1016/j.ympev.2015.02.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/20/2014] [Accepted: 02/13/2015] [Indexed: 11/22/2022]
|
25
|
Gan HM, Tan MH, Gan HY, Lee YP, Austin CM. The complete mitogenome of the Norway lobster Nephrops norvegicus (Linnaeus, 1758) (Crustacea: Decapoda: Nephropidae). Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:3179-80. [PMID: 25648918 DOI: 10.3109/19401736.2015.1007325] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The clawed lobster Nephrops norvegicus is an important commercial species in European waters. We have sequenced the complete mitochondrial genome of the species from a partial genome scan using Next-Gen sequencing. The N. norvegicus has a mitogenome of 16,132 base pairs (71.22% A+ T content) comprising 13 protein-coding genes, 2 ribosomal subunit genes, 21 transfer RNAs, and a putative 1259 bp non-coding AT-rich region. This mitogenome is the second fully characterized for the family Nephropidae and the first for the genus Nephrops. The mitogenome gene order is identical to the Maine lobster, Homarus americanus with the exception of the possible loss of the trnI gene.
Collapse
Affiliation(s)
- Han Ming Gan
- a School of Science, Monash University Malaysia, Jalan Lagoon Selatan , Selangor , Malaysia and.,b Monash University Malaysia Genomics Facility, Jalan Lagoon Selatan , Selangor , Malaysia
| | - Mun Hua Tan
- a School of Science, Monash University Malaysia, Jalan Lagoon Selatan , Selangor , Malaysia and.,b Monash University Malaysia Genomics Facility, Jalan Lagoon Selatan , Selangor , Malaysia
| | - Huan You Gan
- a School of Science, Monash University Malaysia, Jalan Lagoon Selatan , Selangor , Malaysia and.,b Monash University Malaysia Genomics Facility, Jalan Lagoon Selatan , Selangor , Malaysia
| | - Yin Peng Lee
- a School of Science, Monash University Malaysia, Jalan Lagoon Selatan , Selangor , Malaysia and.,b Monash University Malaysia Genomics Facility, Jalan Lagoon Selatan , Selangor , Malaysia
| | - Christopher M Austin
- a School of Science, Monash University Malaysia, Jalan Lagoon Selatan , Selangor , Malaysia and.,b Monash University Malaysia Genomics Facility, Jalan Lagoon Selatan , Selangor , Malaysia
| |
Collapse
|
26
|
Gan HY, Gan HM, Tan MH, Lee YP, Austin CM. The complete mitogenome of the hermit crab Clibanarius infraspinatus (Hilgendorf, 1869), (Crustacea; Decapoda; Diogenidae) – a new gene order for the Decapoda. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:4099-4100. [DOI: 10.3109/19401736.2014.1003862] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Huan You Gan
- School of Science, Monash University Malaysia, Petaling Jaya, Selangor, Malaysia and
- Monash University Malaysia Genomics Facility, Petaling Jaya, Selangor, Malaysia
| | - Han Ming Gan
- School of Science, Monash University Malaysia, Petaling Jaya, Selangor, Malaysia and
- Monash University Malaysia Genomics Facility, Petaling Jaya, Selangor, Malaysia
| | - Mun Hua Tan
- School of Science, Monash University Malaysia, Petaling Jaya, Selangor, Malaysia and
- Monash University Malaysia Genomics Facility, Petaling Jaya, Selangor, Malaysia
| | - Yin Peng Lee
- School of Science, Monash University Malaysia, Petaling Jaya, Selangor, Malaysia and
- Monash University Malaysia Genomics Facility, Petaling Jaya, Selangor, Malaysia
| | - Christopher M. Austin
- School of Science, Monash University Malaysia, Petaling Jaya, Selangor, Malaysia and
- Monash University Malaysia Genomics Facility, Petaling Jaya, Selangor, Malaysia
| |
Collapse
|
27
|
Abstract
Since the unexpected discovery that mitochondria contain their own distinct DNA molecules, studies of the mitochondrial DNA (mtDNA) have yielded many surprises. In animals, transmission of the mtDNA genome is explicitly non-Mendelian, with a very high number of genome copies being inherited from the mother after a drastic bottleneck. Recent work has begun to uncover the molecular details of this unusual mode of transmission. Many surprising variations in animal mitochondrial biology are known; however, a series of recent studies have identified a core of evolutionarily conserved mechanisms relating to mtDNA inheritance, e.g., mtDNA bottlenecks during germ cell development, selection against specific mtDNA mutation types during maternal transmission, and targeted destruction of sperm mitochondria. In this review, we outline recent literature on the transmission of mtDNA in animals and highlight the implications for human health and ageing.
Collapse
|
28
|
Xu G, Du F, Nie Z, Xu P, Gu R. Complete mitochondrial genome of Caridina nilotica gracilipes. Mitochondrial DNA A DNA Mapp Seq Anal 2014; 27:1249-50. [PMID: 25090393 DOI: 10.3109/19401736.2014.945541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this study, we sequenced the complete mitochondrial genome of Caridina nilotica gracilipes. This mitochondrial genome, consisting of 15,550 base pairs, encoded 13 protein-coding genes, 2 ribosomal RNAs, 22 transfer RNAs, and a non-coding control region as those found in other Decapoda, with the gene synteny identical to that of typical invertebrates. Control region (D-Loop), of 673 bp in length, is located between 12S rRNA and tRNA(Ile). The overall base composition of the heavy strand shows T 30.4%, C 22.0%, A 33.0% and G 14.6%, with an AT bias of 63.4%.
Collapse
Affiliation(s)
- Gangchun Xu
- a Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization , Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences , Wuxi , People's Republic of China
| | - Fukuan Du
- a Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization , Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences , Wuxi , People's Republic of China
| | - Zhijuan Nie
- a Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization , Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences , Wuxi , People's Republic of China
| | - Pao Xu
- a Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization , Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences , Wuxi , People's Republic of China
| | - Ruobo Gu
- a Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization , Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences , Wuxi , People's Republic of China
| |
Collapse
|
29
|
Pons J, Bauzà-Ribot MM, Jaume D, Juan C. Next-generation sequencing, phylogenetic signal and comparative mitogenomic analyses in Metacrangonyctidae (Amphipoda: Crustacea). BMC Genomics 2014; 15:566. [PMID: 24997985 PMCID: PMC4112215 DOI: 10.1186/1471-2164-15-566] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 06/26/2014] [Indexed: 11/16/2022] Open
Abstract
Background Comparative mitochondrial genomic analyses are rare among crustaceans below the family or genus level. The obliged subterranean crustacean amphipods of the family Metacrangonyctidae, found from the Hispaniola (Antilles) to the Middle East, including the Canary Islands and the peri-Mediterranean region, have an evolutionary history and peculiar biogeography that can respond to Tethyan vicariance. Indeed, recent phylogenetic analysis using all protein-coding mitochondrial sequences and one nuclear ribosomal gene have lent support to this hypothesis (Bauzà-Ribot et al. 2012). Results We present the analyses of mitochondrial genome sequences of 21 metacrangonyctids in the genera Metacrangonyx and Longipodacrangonyx, covering the entire geographical range of the family. Most mitogenomes were attained by next-generation sequencing techniques using long-PCR fragments sequenced by Roche FLX/454 or GS Junior pyro-sequencing, obtaining a coverage depth per nucleotide of up to 281×. All mitogenomes were AT-rich and included the usual 37 genes of the metazoan mitochondrial genome, but showed a unique derived gene order not matched in any other amphipod mitogenome. We compare and discuss features such as strand bias, phylogenetic informativeness, non-synonymous/synonymous substitution rates and other mitogenomic characteristics, including ribosomal and transfer RNAs annotation and structure. Conclusions Next-generation sequencing of pooled long-PCR amplicons can help to rapidly generate mitogenomic information of a high number of related species to be used in phylogenetic and genomic evolutionary studies. The mitogenomes of the Metacrangonyctidae have the usual characteristics of the metazoan mitogenomes (circular molecules of 15,000-16,000 bp, coding for 13 protein genes, 22 tRNAs and two ribosomal genes) and show a conserved gene order with several rearrangements with respect to the presumed Pancrustacean ground pattern. Strand nucleotide bias appears to be reversed with respect to the condition displayed in the majority of crustacean mitogenomes since metacrangonyctids show a GC-skew at the (+) and (-) strands; this feature has been reported also in the few mitogenomes of Isopoda (Peracarida) known thus far. The features of the rRNAs, tRNAs and sequence motifs of the control region of the Metacrangonyctidae are similar to those of the few crustaceans studied at present. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-566) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joan Pons
- IMEDEA (CSIC-UIB), Mediterranean Institute for Advanced Studies, c/Miquel Marquès 21, 07190 Esporles, Spain.
| | | | | | | |
Collapse
|
30
|
Evolution of the tRNA gene family in mitochondrial genomes of five Meretrix clams (Bivalvia, Veneridae). Gene 2014; 533:439-46. [DOI: 10.1016/j.gene.2013.09.077] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/14/2013] [Accepted: 09/23/2013] [Indexed: 11/21/2022]
|
31
|
Cheng R, Zheng X, Ma Y, Li Q. The complete mitochondrial genomes of two octopods Cistopus chinensis and Cistopus taiwanicus: revealing the phylogenetic position of the genus Cistopus within the order Octopoda. PLoS One 2013; 8:e84216. [PMID: 24358345 PMCID: PMC3866134 DOI: 10.1371/journal.pone.0084216] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 11/13/2013] [Indexed: 11/23/2022] Open
Abstract
In the present study, we determined the complete mitochondrial DNA (mtDNA) sequences of two species of Cistopus, namely C. chinensis and C. taiwanicus, and conducted a comparative mt genome analysis across the class Cephalopoda. The mtDNA length of C. chinensis and C. taiwanicus are 15706 and 15793 nucleotides with an AT content of 76.21% and 76.5%, respectively. The sequence identity of mtDNA between C. chinensis and C. taiwanicus was 88%, suggesting a close relationship. Compared with C. taiwanicus and other octopods, C. chinensis encoded two additional tRNA genes, showing a novel gene arrangement. In addition, an unusual 23 poly (A) signal structure is found in the ATP8 coding region of C. chinensis. The entire genome and each protein coding gene of the two Cistopus species displayed notable levels of AT and GC skews. Based on sliding window analysis among Octopodiformes, ND1 and DN5 were considered to be more reliable molecular beacons. Phylogenetic analyses based on the 13 protein-coding genes revealed that C. chinensis and C. taiwanicus form a monophyletic group with high statistical support, consistent with previous studies based on morphological characteristics. Our results also indicated that the phylogenetic position of the genus Cistopus is closer to Octopus than to Amphioctopus and Callistoctopus. The complete mtDNA sequence of C. chinensis and C. taiwanicus represent the first whole mt genomes in the genus Cistopus. These novel mtDNA data will be important in refining the phylogenetic relationships within Octopodiformes and enriching the resource of markers for systematic, population genetic and evolutionary biological studies of Cephalopoda.
Collapse
Affiliation(s)
- Rubin Cheng
- Fisheries College, Ocean University of China, Qingdao, China
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaodong Zheng
- Fisheries College, Ocean University of China, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- * E-mail:
| | - Yuanyuan Ma
- Fisheries College, Ocean University of China, Qingdao, China
| | - Qi Li
- Fisheries College, Ocean University of China, Qingdao, China
| |
Collapse
|
32
|
Xu T, Tang D, Jin X. A surprising arrangement pattern and phylogenetic consideration: the complete mitochondrial genome of Belanger's croaker Johnius belangerii (Percoidei: Sciaenidae). ACTA ACUST UNITED AC 2013; 26:655-7. [PMID: 24156716 DOI: 10.3109/19401736.2013.843077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The complete mitochondrial genome of Johnius belangerii has been determined for the first time in this article. It was 19,154 base pairs in length, and is composed of 37 genes (13 protein-coding genes, 22 tRNA genes and 2 ribosomal RNA genes). Totally, 5 notable non-coding regions were observed, and a non-coding of 1091 bp was identified as control region based on its location and AT richness. An 800 bp tandem repeat sequence was identified in the fifth non-coding region. We investigated the mitochondrial gene arrangement pattern and found that that the tRNA(Val), 12SrRNA, 16SrRNA and tRNA(Phe) genes of J. belangerii mitogenome were orderly placed at the beginning of heavy strand. This order is different from other croakers. Combine with the phylogenetic reconstruction and genes arrangement pattern of J. belangerii mitochondrial genome, we consider J. belangerii is the most ancient genus within family Sciaenidae.
Collapse
Affiliation(s)
- Tianjun Xu
- Laboratory for Marine Living Resources and Molecular Engineering, College of Marine Science, Zhejiang Ocean University , Zhoushan, Zhejiang Province , P.R. China
| | | | | |
Collapse
|
33
|
Wang Y, Huang XL, Qiao GX. Comparative analysis of mitochondrial genomes of five aphid species (Hemiptera: Aphididae) and phylogenetic implications. PLoS One 2013; 8:e77511. [PMID: 24147014 PMCID: PMC3798312 DOI: 10.1371/journal.pone.0077511] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 09/11/2013] [Indexed: 11/19/2022] Open
Abstract
Insect mitochondrial genomes (mitogenomes) are of great interest in exploring molecular evolution, phylogenetics and population genetics. Only two mitogenomes have been previously released in the insect group Aphididae, which consists of about 5,000 known species including some agricultural, forestry and horticultural pests. Here we report the complete 16,317 bp mitogenome of Cavariella salicicola and two nearly complete mitogenomes of Aphis glycines and Pterocomma pilosum. We also present a first comparative analysis of mitochondrial genomes of aphids. Results showed that aphid mitogenomes share conserved genomic organization, nucleotide and amino acid composition, and codon usage features. All 37 genes usually present in animal mitogenomes were sequenced and annotated. The analysis of gene evolutionary rate revealed the lowest and highest rates for COI and ATP8, respectively. A unique repeat region exclusively in aphid mitogenomes, which included variable numbers of tandem repeats in a lineage-specific manner, was highlighted for the first time. This region may have a function as another origin of replication. Phylogenetic reconstructions based on protein-coding genes and the stem-loop structures of control regions confirmed a sister relationship between Cavariella and pterocommatines. Current evidence suggest that pterocommatines could be formally transferred into Macrosiphini. Our paper also offers methodological instructions for obtaining other Aphididae mitochondrial genomes.
Collapse
Affiliation(s)
- Yuan Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Shijingshan District, Beijing, People's Republic of China
| | - Xiao-Lei Huang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, People's Republic of China
| | - Ge-Xia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, People's Republic of China
| |
Collapse
|
34
|
The complete mitochondrial genomes of Oesophagostomum asperum and Oesophagostomum columbianum in small ruminants. INFECTION GENETICS AND EVOLUTION 2013; 19:205-11. [DOI: 10.1016/j.meegid.2013.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 06/11/2013] [Accepted: 07/16/2013] [Indexed: 11/21/2022]
|
35
|
Wu X, Li X, Yu Z. The mitochondrial genome of the scallop Mimachlamys senatoria (Bivalvia, Pectinidae). ACTA ACUST UNITED AC 2013; 26:242-4. [PMID: 24020995 DOI: 10.3109/19401736.2013.823181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The mitochondrial (mt) genome of the scallop Mimachlamys senatoria (17,383 bp), an economically and ecologically important bivalve, was newly sequenced and annotated. Comparative analyses between M. senatoria and its congeneric sister species M. nobilis revealed three new findings: (1) M. senatoria is more prone to use G-rich start/stop codon, and variation in start/stop codon usage is species-correlated rather than gene-correlated, and in some extent, bears useful phylogenetic information; (2) The A + T content is unexpectedly low (54.1%) in MNR and that is unexpectedly high (65.4%) in atp8 in both congeneric scallops, which may represent a novel evolutionary pattern of mt genomic nucleotide composition; and (3) The tRNA gene cluster "NGV" locating upstream of the nad1 in M. senatoria is replaced by "NTGV" in M. nobilis, and a parsimonious explanation for the existence of trnT in M. nobilis is that this gene was derived from a recently duplicated trnG gene via an alloacceptor tRNA gene recruitment process.
Collapse
Affiliation(s)
- Xiangyun Wu
- Key Laboratory of Marine Bio-resource Sustainable Utilization, Chinese Academy of Sciences, Guangdong Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , Guangzhou , China
| | | | | |
Collapse
|
36
|
Yu YQ, Yang WJ, Yang JS. The complete mitogenome of the Chinese swamp shrimpNeocaridina denticulata sinensisKemp 1918 (Crustacea: Decapoda: Atyidae). ACTA ACUST UNITED AC 2013; 25:204-5. [DOI: 10.3109/19401736.2013.796465] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
37
|
Kim S, Choi HG, Park JK, Min GS. The complete mitochondrial genome of the subarctic red king crab,Paralithodes camtschaticus(Decapoda, Anomura). ACTA ACUST UNITED AC 2013; 24:350-2. [DOI: 10.3109/19401736.2012.760555] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
Evolution and phylogeny of the mud shrimps (Crustacea: Decapoda) revealed from complete mitochondrial genomes. BMC Genomics 2012; 13:631. [PMID: 23153176 PMCID: PMC3533576 DOI: 10.1186/1471-2164-13-631] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 11/12/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The evolutionary history and relationships of the mud shrimps (Crustacea: Decapoda: Gebiidea and Axiidea) are contentious, with previous attempts revealing mixed results. The mud shrimps were once classified in the infraorder Thalassinidea. Recent molecular phylogenetic analyses, however, suggest separation of the group into two individual infraorders, Gebiidea and Axiidea. Mitochondrial (mt) genome sequence and structure can be especially powerful in resolving higher systematic relationships that may offer new insights into the phylogeny of the mud shrimps and the other decapod infraorders, and test the hypothesis of dividing the mud shrimps into two infraorders. RESULTS We present the complete mitochondrial genome sequences of five mud shrimps, Austinogebia edulis, Upogebia major, Thalassina kelanang (Gebiidea), Nihonotrypaea thermophilus and Neaxius glyptocercus (Axiidea). All five genomes encode a standard set of 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes and a putative control region. Except for T. kelanang, mud shrimp mitochondrial genomes exhibited rearrangements and novel patterns compared to the pancrustacean ground pattern. Each of the two Gebiidea species (A. edulis and U. major) and two Axiidea species (N. glyptocercus and N. thermophiles) share unique gene order specific to their infraorders and analyses further suggest these two derived gene orders have evolved independently. Phylogenetic analyses based on the concatenated nucleotide and amino acid sequences of 13 protein-coding genes indicate the possible polyphyly of mud shrimps, supporting the division of the group into two infraorders. However, the infraordinal relationships among the Gebiidea and Axiidea, and other reptants are poorly resolved. The inclusion of mt genome from more taxa, in particular the reptant infraorders Polychelida and Glypheidea is required in further analysis. CONCLUSIONS Phylogenetic analyses on the mt genome sequences and the distinct gene orders provide further evidences for the divergence between the two mud shrimp infraorders, Gebiidea and Axiidea, corroborating previous molecular phylogeny and justifying their infraordinal status. Mitochondrial genome sequences appear to be promising markers for resolving phylogenetic issues concerning decapod crustaceans that warrant further investigations and our present study has also provided further information concerning the mt genome evolution of the Decapoda.
Collapse
|
39
|
Jondeung A, Karinthanyakit W, Kaewkhumsan J. The complete mitochondrial genome of the black mud crab, Scylla serrata (Crustacea: Brachyura: Portunidae) and its phylogenetic position among (pan)crustaceans. Mol Biol Rep 2012; 39:10921-37. [PMID: 23053985 DOI: 10.1007/s11033-012-1992-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 10/01/2012] [Indexed: 10/27/2022]
Abstract
The black mud crab, Scylla serrata (Forskål 1775), is the most economically important edible crab in South-East Asia. In the present study, the complete mitochondrial genome of black mud crab, S. serrata, was determined with the sequential polymerase chain reaction and primer walking sequencing. The complete mitochondrial genome was 15,721 bp in length with an A+T content of 69.2 % and contained 37 mitochondrial genes (13 protein coding genes (PCGs), 2 ribosomal RNA genes and 22 transfer RNA genes) and a control region (CR). The analysis of the CR sequence shows that it contains a multitude of repetitive fragments which can fold into hairpin-like or secondary structures and conserved elements as in other arthropods. The gene order of S. serrata mainly retains as the pancrustacean ground pattern, except for a single translocation of trnH. The gene arrangement of S. serrata appears to be a typical feature of portunid crabs. Phylogenetic analyses with concatenated amino acid sequences of 12 PCGs establishes that S. serrata in a well-supported monophyletic Portunidae and is consistent with previous morphological classification. Moreover, the phylogenomic results strongly support monophyletic Pancrustacea (Hexapoda plus "Crustaceans"). Within Pancrustacea, this study identifies Malacostraca + Entomostraca and Branchiopoda as the sister group to Hexapoda, which confirms that "Crustacea" is not monophyletic. Cirripedia + Remipedia appear to be a basal lineage of Pancrustacea. The present study also provides considerable data for the application of both population and phylogenetic studies of other crab species.
Collapse
Affiliation(s)
- Amnuay Jondeung
- Department of Genetics, Kasetsart University, Bangkok, 10900, Thailand.
| | | | | |
Collapse
|
40
|
Yang CH, Tsang LM, Chu KH, Chan TY. Complete mitogenome of the deep-sea hydrothermal vent shrimp Alvinocaris chelys Komai and Chan, 2010 (Decapoda: Caridea: Alvinocarididae). ACTA ACUST UNITED AC 2012; 23:417-9. [PMID: 22943309 DOI: 10.3109/19401736.2012.710212] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We reported the complete sequence of the mitochondrial (mt) genome of the deep-sea vent shrimp Alvinocaris chelys. This is the first complete mt genome obtained for the hydrothermal vent shrimp. The gene arrangement of the A. chelys mt genome is identical to the pancrustacean ground pattern as in most of the other caridean shrimp mt genomes available to date. However, there is an exceptionally long intergene spacer (86 bp in length) existed between the ND1 and tRNA(Leu)-CUN genes that is not previously reported. Our results provide further evidence that the mt gene order is highly conserved among caridean shrimp, in contrast to the other decapod infraorder such as Brachyura or Anomura which are of comparable or lower diversity.
Collapse
Affiliation(s)
- Chien-Hui Yang
- Institute of Marine Biology, National Taiwan Ocean University, 20224 Keelung, Taiwan
| | | | | | | |
Collapse
|
41
|
Liu GH, Wang SY, Huang WY, Zhao GH, Wei SJ, Song HQ, Xu MJ, Lin RQ, Zhou DH, Zhu XQ. The complete mitochondrial genome of Galba pervia (Gastropoda: Mollusca), an intermediate host snail of Fasciola spp. PLoS One 2012; 7:e42172. [PMID: 22844544 PMCID: PMC3406003 DOI: 10.1371/journal.pone.0042172] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 07/04/2012] [Indexed: 11/26/2022] Open
Abstract
Complete mitochondrial (mt) genomes and the gene rearrangements are increasingly used as molecular markers for investigating phylogenetic relationships. Contributing to the complete mt genomes of Gastropoda, especially Pulmonata, we determined the mt genome of the freshwater snail Galba pervia, which is an important intermediate host for Fasciola spp. in China. The complete mt genome of G. pervia is 13,768 bp in length. Its genome is circular, and consists of 37 genes, including 13 genes for proteins, 2 genes for rRNA, 22 genes for tRNA. The mt gene order of G. pervia showed novel arrangement (tRNA-His, tRNA-Gly and tRNA-Tyr change positions and directions) when compared with mt genomes of Pulmonata species sequenced to date, indicating divergence among different species within the Pulmonata. A total of 3655 amino acids were deduced to encode 13 protein genes. The most frequently used amino acid is Leu (15.05%), followed by Phe (11.24%), Ser (10.76%) and IIe (8.346%). Phylogenetic analyses using the concatenated amino acid sequences of the 13 protein-coding genes, with three different computational algorithms (maximum parsimony, maximum likelihood and Bayesian analysis), all revealed that the families Lymnaeidae and Planorbidae are closely related two snail families, consistent with previous classifications based on morphological and molecular studies. The complete mt genome sequence of G. pervia showed a novel gene arrangement and it represents the first sequenced high quality mt genome of the family Lymnaeidae. These novel mtDNA data provide additional genetic markers for studying the epidemiology, population genetics and phylogeographics of freshwater snails, as well as for understanding interplay between the intermediate snail hosts and the intra-mollusca stages of Fasciola spp..
Collapse
Affiliation(s)
- Guo-Hua Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, China
| | - Shu-Yan Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
- College of Animal Science and Technology, Guangxi Univesity, Nanning, Guangxi Zhuang Nationality Autonomous Region, China
| | - Wei-Yi Huang
- College of Animal Science and Technology, Guangxi Univesity, Nanning, Guangxi Zhuang Nationality Autonomous Region, China
| | - Guang-Hui Zhao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi Province, China
| | - Shu-Jun Wei
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hui-Qun Song
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Min-Jun Xu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Rui-Qing Lin
- Laboratory of Parasitology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Dong-Hui Zhou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, China
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan Province, China
- * E-mail:
| |
Collapse
|
42
|
Johansson ML, Sremba AL, Feinberg LR, Banks MA, Peterson WT. The mitochondrial genomes of Euphausia pacifica and Thysanoessa raschii sequenced using 454 next-generation sequencing, with a phylogenetic analysis of their position in the Malacostracan family tree. Mol Biol Rep 2012; 39:9009-21. [PMID: 22733485 DOI: 10.1007/s11033-012-1772-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 06/09/2012] [Indexed: 11/29/2022]
Abstract
Euphausiid krill play a critical role in coastal and oceanic food webs, linking primary producers to upper trophic levels. In addition, some species support commercial fisheries worldwide. Despite their ecological importance, the genetics of these important species remain poorly described. To improve our understanding of the genetics of these ecological links, we sequenced the mitochondrial genomes of two species of North Pacific krill, Euphausia pacifica and Thysanoessa raschii, using long-range PCR and 454 GS Junior next-generation sequencing technology. The E. pacifica mitogenome (14,692 + base pairs (bp)) encodes 13 protein-coding genes (PCGs), two ribosomal RNA (rRNA) genes, and at least 22 transfer RNA (tRNA) genes. The T. raschii mitogenome (14,240 + bp) encodes 13 PCGs, two rRNA genes, and at least 19 tRNA genes. The gene order in both species is similar to that of E. superba. Comparisons between Bering Sea and Yellow Sea E. pacifica revealed a total of 644 variable sites. The most variable protein-coding gene were atp8 (7.55 %, 12 of 159 sites variable), nad4 (6.35 %, 85 variable sites) and nad6 (6.32 %, 33 variable sites). Phylogenetic analyses to assess the phylogenetic position of the Euphausiacea, using the concatenated nucleic acid sequences of E. pacifica and T. raschii along with 46 previously published malacostracan mitogenomes, support the monophyly of the order Decapoda and indicate that the Euphausiacea share a common ancestor with the Decapoda. Future research should utilize this sequence data to explore the population genetics and molecular ecology of these species.
Collapse
Affiliation(s)
- Mattias L Johansson
- Cooperative Institute for Marine Resources Studies, Oregon State University, Newport, OR, USA.
| | | | | | | | | |
Collapse
|
43
|
Shi H, Liu R, Sha Z, Ma J. Complete mitochondrial DNA sequence of Stenopus hispidus (Crustacea: Decapoda: Stenopodidea) and a novel tRNA gene cluster. Mar Genomics 2011; 6:7-15. [PMID: 22578654 DOI: 10.1016/j.margen.2011.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/15/2011] [Accepted: 11/08/2011] [Indexed: 11/26/2022]
Abstract
As a phylogenetically valuable decapoda, a complete mitochondrial genome from Stenopodidea has not been reported to date. Here, we determined the complete mitochondrial DNA sequence of Stenopus hispidus (Olivier, 1811). The 15,528 bp genome is a circular molecule and consists of 13 protein-coding genes (PCGs) and two ribosomal RNA (rRNA) genes plus the putative control region (CR). This finding is similar to other metazoan animals but with the exception of 23 transfer RNA (tRNA) genes, which contain an additional tRNA-Gln compared with other crustaceans. With respect to the pancrustacean ground pattern mitochondria gene order, 5 tRNAs appear to be rearranged (tRNAs-Leu (CUN), Arg, Glu, Gln, and Met), one of which has also undergone inversion (tRNA-Leu (CUN)). Phylogenetic analyses reveal Stenopodidea and Reptantia form a clade sister to Caridea, which agrees with Abele and Felgenhauer's (1986) hypothesis. This topology contrasts with previous results based on morphological and some molecular data.
Collapse
Affiliation(s)
- HuaFeng Shi
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | | | | | | |
Collapse
|
44
|
Thurber AR, Jones WJ, Schnabel K. Dancing for food in the deep sea: bacterial farming by a new species of Yeti crab. PLoS One 2011; 6:e26243. [PMID: 22140426 PMCID: PMC3227565 DOI: 10.1371/journal.pone.0026243] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 09/23/2011] [Indexed: 11/24/2022] Open
Abstract
Vent and seep animals harness chemosynthetic energy to thrive far from the sun's energy. While symbiont-derived energy fuels many taxa, vent crustaceans have remained an enigma; these shrimps, crabs, and barnacles possess a phylogenetically distinct group of chemosynthetic bacterial epibionts, yet the role of these bacteria has remained unclear. We test whether a new species of Yeti crab, which we describe as Kiwa puravida n. sp, farms the epibiotic bacteria that it grows on its chelipeds (claws), chelipeds that the crab waves in fluid escaping from a deep-sea methane seep. Lipid and isotope analyses provide evidence that epibiotic bacteria are the crab's main food source and K. puravida n. sp. has highly-modified setae (hairs) on its 3(rd) maxilliped (a mouth appendage) which it uses to harvest these bacteria. The ε- and γ- proteobacteria that this methane-seep species farms are closely related to hydrothermal-vent decapod epibionts. We hypothesize that this species waves its arm in reducing fluid to increase the productivity of its epibionts by removing boundary layers which may otherwise limit carbon fixation. The discovery of this new species, only the second within a family described in 2005, stresses how much remains undiscovered on our continental margins.
Collapse
Affiliation(s)
- Andrew R Thurber
- Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, California, United States of America.
| | | | | |
Collapse
|
45
|
Shen X, Wang H, Wang M, Liu B. The complete mitochondrial genome sequence of Euphausia pacifica (Malacostraca: Euphausiacea) reveals a novel gene order and unusual tandem repeats. Genome 2011; 54:911-22. [DOI: 10.1139/g11-053] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Euphausiid krill are dominant organisms in the zooplankton population and play a central role in marine ecosystems. Euphausia pacifica (Malacostraca: Euphausiacea) is one of the most important and dominant crustaceans in the North Pacific Ocean. In this paper, we described the gene content, organization, and codon usage of the E. pacifica mitochondrial genome. The mitochondrial genome of E. pacifica is 16 898 bp in length and contains a standard set of 13 protein-coding genes, 2 ribosomal RNA genes, and 22 transfer RNA genes. Translocation of three transfer RNAs (trnL1, trnL2, and trnW) was found in the E. pacifica mitochondrial genome when comparing with the pancrustacean ground pattern. The rate of Ka/Ks in 13 protein-coding genes among three krill is much less than 1, which indicates a strong purifying selection within this group. The largest noncoding region in the E. pacifica mitochondrial genome contains one section with tandem repeats (4.7 × 154 bp), which are the largest tandem repeats found in malacostracan mitochondrial genomes so far. All analyses based on nucleotide and amino acid data strongly support the monophyly of Stomatopoda, Penaeidae, Caridea, Brachyura, and Euphausiacea. The Bayesian analysis of nucleotide and amino acid datasets strongly supports the close relationship between Euphausiacea and Decapoda, which confirms traditional findings. The maximum likelihood analysis based on amino acid data strongly supports the close relationship between Euphausiacea and Penaeidae, which destroys the monophyly of Decapoda.
Collapse
Affiliation(s)
- Xin Shen
- Jiangsu Key Laboratory of Marine Biotechnology, College of Marine Science, Huaihai Institute of Technology, Lianyungang 222005, China
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Haiqing Wang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Minxiao Wang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Bin Liu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| |
Collapse
|
46
|
The complete mitochondrial genome of the Asiatic cavity-nesting honeybee Apis cerana (Hymenoptera: Apidae). PLoS One 2011. [PMID: 21857981 DOI: 10.1371/journal.pone.0023008.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the present study, we determined the complete mitochondrial DNA (mtDNA) sequence of Apis cerana, the Asiatic cavity-nesting honeybee. We present here an analysis of features of its gene content and genome organization in comparison with Apis mellifera to assess the variation within the genus Apis and among main groups of Hymenoptera. The size of the entire mt genome of A. cerana is 15,895 bp, containing 2 ribosomal RNA genes, 13 protein-coding genes, 22 transfer RNA (tRNA) genes and one control region. These genes are transcribed from both strands and have a nucleotide composition high in A and T. The contents of A+T of the complete genomes are 83.96% for A. cerana. The AT bias had a significant effect on both the codon usage pattern and amino acid composition of proteins. There are a total of 3672 codons in all 13 protein-coding genes, excluding termination codons. The most frequently used amino acid is Leu (15.52%), followed by Ile (12.85%), Phe (10.10%), Ser (9.15%) and Met (8.96%). Intergenic regions in the mt genome of A. cerana are 705 bp in total. The order and orientation of the gene arrangement pattern is identical to that of A. mellifera, except for the position of the tRNA-Ser(AGN) gene. Phylogenetic analyses using concatenated amino acid sequences of 13 protein-coding genes, with three different computational algorithms (NJ, MP and ML), all revealed two distinct groups with high statistical support, indicating that A. cerana and A. mellifera are two separate species, consistent with results of previous morphological and molecular studies. The complete mtDNA sequence of A. cerana provides additional genetic markers for studying population genetics, systematics and phylogeographics of honeybees.
Collapse
|
47
|
Tan HW, Liu GH, Dong X, Lin RQ, Song HQ, Huang SY, Yuan ZG, Zhao GH, Zhu XQ. The complete mitochondrial genome of the Asiatic cavity-nesting honeybee Apis cerana (Hymenoptera: Apidae). PLoS One 2011; 6:e23008. [PMID: 21857981 PMCID: PMC3155526 DOI: 10.1371/journal.pone.0023008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Accepted: 07/11/2011] [Indexed: 11/26/2022] Open
Abstract
In the present study, we determined the complete mitochondrial DNA (mtDNA) sequence of Apis cerana, the Asiatic cavity-nesting honeybee. We present here an analysis of features of its gene content and genome organization in comparison with Apis mellifera to assess the variation within the genus Apis and among main groups of Hymenoptera. The size of the entire mt genome of A. cerana is 15,895 bp, containing 2 ribosomal RNA genes, 13 protein-coding genes, 22 transfer RNA (tRNA) genes and one control region. These genes are transcribed from both strands and have a nucleotide composition high in A and T. The contents of A+T of the complete genomes are 83.96% for A. cerana. The AT bias had a significant effect on both the codon usage pattern and amino acid composition of proteins. There are a total of 3672 codons in all 13 protein-coding genes, excluding termination codons. The most frequently used amino acid is Leu (15.52%), followed by Ile (12.85%), Phe (10.10%), Ser (9.15%) and Met (8.96%). Intergenic regions in the mt genome of A. cerana are 705 bp in total. The order and orientation of the gene arrangement pattern is identical to that of A. mellifera, except for the position of the tRNA-Ser(AGN) gene. Phylogenetic analyses using concatenated amino acid sequences of 13 protein-coding genes, with three different computational algorithms (NJ, MP and ML), all revealed two distinct groups with high statistical support, indicating that A. cerana and A. mellifera are two separate species, consistent with results of previous morphological and molecular studies. The complete mtDNA sequence of A. cerana provides additional genetic markers for studying population genetics, systematics and phylogeographics of honeybees.
Collapse
MESH Headings
- Animals
- Base Sequence
- Bees/genetics
- DNA, Circular/chemistry
- DNA, Circular/genetics
- DNA, Mitochondrial/chemistry
- DNA, Mitochondrial/classification
- DNA, Mitochondrial/genetics
- Gene Order
- Genes, Insect/genetics
- Genes, Mitochondrial/genetics
- Genome, Mitochondrial/genetics
- Insect Proteins/genetics
- Mitochondrial Proteins/genetics
- Molecular Sequence Data
- Phylogeny
- RNA, Ribosomal/genetics
- RNA, Transfer/genetics
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Hong-Wei Tan
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
- Eastern Bee Research Institute, Yunnan Agricultural University, Kunming, Yunnan Province, China
- Animal Husbandry Technology Promotion Station in Chongqing, Chongqing, China
| | - Guo-Hua Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, China
| | - Xia Dong
- Eastern Bee Research Institute, Yunnan Agricultural University, Kunming, Yunnan Province, China
| | - Rui-Qing Lin
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Hui-Qun Song
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Si-Yang Huang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Zi-Guo Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Guang-Hui Zhao
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi Province, China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, China
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, China
| |
Collapse
|
48
|
QIAN GUANGHUI, ZHAO QIANG, WANG AN, ZHU LIN, ZHOU KAIYA, SUN HONGYING. Two new decapod (Crustacea, Malacostraca) complete mitochondrial genomes: bearings on the phylogenetic relationships within the Decapoda. Zool J Linn Soc 2011. [DOI: 10.1111/j.1096-3642.2010.00686.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
49
|
Yang JS, Nagasawa H, Fujiwara Y, Tsuchida S, Yang WJ. The complete mitogenome of the hydrothermal vent crab Gandalfus yunohana (Crustacea: Decapoda: Brachyura): a link between the Bythograeoidea and Xanthoidea. ZOOL SCR 2010. [DOI: 10.1111/j.1463-6409.2010.00442.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Ki JS, Hop H, Kim SJ, Kim IC, Park HG, Lee JS. Complete mitochondrial genome sequence of the Arctic gammarid, Onisimus nanseni (Crustacea; Amphipoda): Novel gene structures and unusual control region features. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2010; 5:105-15. [DOI: 10.1016/j.cbd.2010.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 02/04/2010] [Accepted: 02/08/2010] [Indexed: 10/19/2022]
|