1
|
Joshna CR, Atugala D, Espinoza DNDLT, Muench DG. Analysis of the root mRNA interactome from canola and rice: crop species that span the eudicot-monocot boundary. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025:112525. [PMID: 40274193 DOI: 10.1016/j.plantsci.2025.112525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 04/19/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
The advent of RNA interactome capture (RIC) has been important in characterizing the mRNA-binding proteomes (mRBPomes) of several eukaryotic taxa. To date, published plant poly(A)+ RIC studies have been restricted to Arabidopsis thaliana and specific to seedlings, suspension cell cultures, mesophyll protoplasts, leaves and embryos. The focus of this study was to expand RIC to root tissue in two crop species, the oilseed eudicot Brassica napus (canola) and the cereal monocot Oryza sativa (rice). The optimization and application of root RIC in these species resulted in the identification of 499 proteins and 334 proteins comprising the root mRBPomes of canola and rice, respectively, with 182 shared orthologous proteins between these two species. In both mRBPomes, approximately 80% of captured proteins were linked to RNA biology, with RRM-containing proteins and ribosomal proteins among the most overrepresented protein groups. Consistent with trends observed in other RIC studies, novel RNA-binding proteins were captured that lacked known RNA-binding domains and included numerous metabolic enzymes. The root mRBPomes from canola and rice shared a high degree of similarity at the compositional level, as shown by a comparative analysis of orthologs predicted for captured proteins to the published Arabidopsis RIC-derived mRBPomes, as well as our Arabidopsis root mRBPome data presented here. This analysis also revealed that 46 proteins in the canola and rice root mRBPomes were unique when orthologs were compared to the published Arabidopsis RBPomes, including those identified recently using phase separation approach that identified proteins bound to all RNA types. The results from this research expands the plant mRBPome into root tissue using two crop species that span the eudicot-monocot clade boundary, and provides fundamental knowledge on RNA-binding protein function in post-transcriptional control of genes in crop species for possible future development of beneficial traits.
Collapse
Affiliation(s)
- Chris R Joshna
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada, T2N1N4
| | - Dilini Atugala
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada, T2N1N4
| | | | - Douglas G Muench
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada, T2N1N4.
| |
Collapse
|
2
|
Wang Z, Li S, Wu H, Huang L, Fu L, Zhan C, Lu X, Yang L, Dai L, Zeng D. Identification and Expression Analysis of CCCH Zinc Finger Family Genes in Oryza sativa. Genes (Basel) 2025; 16:429. [PMID: 40282389 PMCID: PMC12026475 DOI: 10.3390/genes16040429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND CCCH zinc finger proteins (OsC3Hs) are a class of transcriptional regulators that play important roles in plant development and stress responses. Although their functional significance has been widely studied in model species, comprehensive genome-wide characterization of CCCH proteins in rice (Oryza sativa) remains limited. METHODS Using Arabidopsis CCCH proteins as references, we identified the CCCH gene family in rice and analyzed the physicochemical properties, subcellular localization, conserved structures, phylogeny, cis-regulatory elements, synteny analysis, spatiotemporal expression patterns, and expression patterns under drought, ABA, and MeJA treatments for the identified CCCH family members. RESULTS The results showed that the rice CCCH family comprises 73 members, which are unevenly distributed across the 12 chromosomes. Phylogenetic analysis classified them into 11 subfamilies. Subcellular localization indicated that most members are localized in the nucleus. The upstream regions of CCCH promoters contain a large number of cis-regulatory elements related to plant hormones and biotic stress responses. Most genes respond to drought, abscisic acid (ABA), and methyl jasmonate (MeJA) treatments. OsC3H36 was highly expressed under drought, ABA, and MeJA treatments. Haplotype analysis of this gene revealed two major allelic variants (H1 and H2), with H1 predominantly found in japonica rice and associated with increased grain width and 1000-grain weight. Functional validation using a chromosome segment substitution line (CSSL1) confirmed these findings. CONCLUSIONS CCCH genes play important roles in rice growth, development, and stress responses. Additionally, we validated that OsC3H36 is associated with rice grain width and 1000-grain weight.
Collapse
Affiliation(s)
- Zhihan Wang
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Shunyuan Li
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Hongkai Wu
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Linzhou Huang
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Liangbo Fu
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Chengfang Zhan
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Xueli Lu
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311400, China
| | - Long Yang
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311400, China
| | - Liping Dai
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Dali Zeng
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
3
|
Jang JH, Bayaraa U, Lee JH, Lee OR. Overexpression of the patatin-related phospholipase A gene, PgpPLAIIIβ, in ginseng adventitious roots reduces lignin and ginsenoside content while increasing fatty acid content. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109602. [PMID: 39922022 DOI: 10.1016/j.plaphy.2025.109602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/10/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
The patatin-related phospholipase AIII (pPLAIII) gene family plays a crucial role in regulating cell elongation, cell wall composition, and lipid metabolism in plants, making it a promising target for agricultural and commercial innovations. This study provides a comprehensive functional analysis of PgpPLAIIIβ in Panax ginseng, a medicinal plant of substantial economic importance. Overexpression of PgpPLAIIIβ led to significant morphological changes, including shorter, thicker roots, and an 8% reduction in lignin content, while cellulose levels remained unaffected. The reduced lignification was attributed to the downregulation of key lignin biosynthetic genes and decreased hydrogen peroxide accumulation. A yeast two-hybrid assay identified a CCCH-type zinc finger protein as a potential PgpPLAIIIβ interactor, pointing to a mechanism that may underlie the changes in root structure and lignin deposition. Metabolite analysis revealed a 7.6% increase in total free fatty acid content, with notable increases in palmitic and linoleic acids, alongside a 28% reduction in ginsenoside levels, linked to the downregulation of triterpenoid biosynthetic genes. These findings demonstrate that PgpPLAIIIβ is a key regulator of root architecture, lignin composition, and secondary metabolite balance in ginseng. The metabolic engineering of PgpPLAIIIβ could be a powerful strategy to improve root traits, optimize lignin deposition, and enhance metabolite profiles, ultimately boosting the commercial and medicinal value of ginseng.
Collapse
Affiliation(s)
- Jin Hoon Jang
- Department of Applied Plant Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Unenzaya Bayaraa
- Department of Applied Plant Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jae Hyun Lee
- Department of Applied Plant Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ok Ran Lee
- Department of Applied Plant Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea; Institute of Synthetic Biology for Carbon Neutralization, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
4
|
Zheng L, Dai H, Mu Y, Li J, Cheng Y, Han J. Genome-wide identification and expression analysis of C3H gene family in melon. FRONTIERS IN PLANT SCIENCE 2025; 16:1500429. [PMID: 40182554 PMCID: PMC11966401 DOI: 10.3389/fpls.2025.1500429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/18/2025] [Indexed: 04/05/2025]
Abstract
Zinc finger protein (ZFP) represent a significant class of transcription factors in plants, involved in various functions, including tissue development, signal transduction, and responses to both biotic and abiotic stresses. ZFPs are categorized into 10 distinct subfamilies, among which the C3H gene family is recognized as a functionally significant group of transcription factors.To date, no studies have been reported regarding the C3H gene family in melon (Cucumis melo). In this study, 38 CmC3H genes were identified in the melon genome, and these genes are unevenly distributed across the 12 chromosomes. Phylogenetic analysis classified the C3H family members into four groups, with significant differences observed in sequence, protein motifs, and gene structure among CmC3H genes within the same group. The CmC3H family contains one pair of segmentally duplicated genes and shares 20, 7, 39, and 38 pairs of homologous C3H genes with Arabidopsis thaliana, rice (Oryza sativa), cucumber (Cucumis sativus), and watermelon (Citrullus lanatus), respectively. Promoter region analysis revealed a high abundance of cis-elements associated with growth and development, hormone regulation, and stress responses. Expression profiling revealed that CmC3H family members exhibit significant tissue-specific expression patterns. Quantitative PCR analysis indicated that six genes (CmC3H4, CmC3H7, CmC3H13, CmC3H24, CmC3H33, and CmC3H38) may play roles in melon's drought stress resistance. Heavy metal lead stress appears to suppress the expression of CmC3H genes. The genes CmC3H24 and CmC3H33 may be involved in regulating melon's resistance to Fusarium wilt infection. CmC3H11 and CmC3H21 can be considered as the key candidate genes for improving the melon's ability to resist both biotic and abiotic stresses.This study provides preliminary insights into the expression profiles of CmC3H genes under drought stress, heavy metal lead stress, and Fusarium wilt infection, offering a theoretical foundation for the molecular mechanisms underlying melon improvement and stress resistance.
Collapse
Affiliation(s)
- Ling Zheng
- Department of Biology, Luoyang Normal University, Henan, Luoyang, China
| | - Haifang Dai
- School of Biological Sciences, Henan University of Science and Technology, Henan, Xinxiang, China
| | - Yuanfang Mu
- Department of Biology, Luoyang Normal University, Henan, Luoyang, China
| | - Jinbo Li
- Department of Biology, Luoyang Normal University, Henan, Luoyang, China
| | - Yanwei Cheng
- Department of Biology, Luoyang Normal University, Henan, Luoyang, China
| | - Jianming Han
- Department of Biology, Luoyang Normal University, Henan, Luoyang, China
| |
Collapse
|
5
|
Yang J, Wang T, Huang Y, Long Z, Li X, Zhang S, Zhang L, Liu Z, Zhang Q, Sun H, Zhang M, Yin H, Liu Z, Zhang H. Insights into the compact CRISPR-Cas9d system. Nat Commun 2025; 16:2462. [PMID: 40075056 PMCID: PMC11903963 DOI: 10.1038/s41467-025-57455-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/22/2025] [Indexed: 03/14/2025] Open
Abstract
Cas9d, the smallest known member of the Cas9 family, employs a compact domain architecture for effective target cleavage. However, the underlying mechanism remains unclear. Here, we present the cryo-EM structures of the Cas9d-sgRNA complex in both target-free and target-bound states. Biochemical assays elucidated the PAM recognition and DNA cleavage mechanisms of Cas9d. Structural comparisons revealed that at least 17 base pairs in the guide-target heteroduplex is required for nuclease activity. Beyond its typical role as an adaptor between Cas9 enzymes and targets, the sgRNA also provides structural support and functional regulation for Cas9d. A segment of the sgRNA scaffold interacts with the REC domain to form a functional target recognition module. Upon target binding, this module undergoes a coordinated conformational rearrangement, enabling heteroduplex propagation and facilitating nuclease activity. This hybrid functional module precisely monitors heteroduplex complementarity, resulting in a lower mismatch tolerance compared to SpyCas9. Moreover, structure-guided engineering in both the sgRNA and Cas9d protein led to a more compact Cas9 system with well-maintained nuclease activity. Altogether, our findings provide insights into the target recognition and cleavage mechanisms of Cas9d and shed light on the development of high-fidelity mini-CRISPR tools.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Experimental Hematology, Tianjin Institute of Immunology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Biochemistry and Molecular Biology, Tianjin Key Laboratory of Cellular Homeostasis and Disease, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Tongyao Wang
- State Key Laboratory of Experimental Hematology, Tianjin Institute of Immunology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Biochemistry and Molecular Biology, Tianjin Key Laboratory of Cellular Homeostasis and Disease, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ying Huang
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Zhaoyi Long
- State Key Laboratory of Experimental Hematology, Tianjin Institute of Immunology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xuzichao Li
- State Key Laboratory of Experimental Hematology, Tianjin Institute of Immunology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shuqin Zhang
- State Key Laboratory of Experimental Hematology, Tianjin Institute of Immunology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lingling Zhang
- State Key Laboratory of Experimental Hematology, Tianjin Institute of Immunology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhikun Liu
- State Key Laboratory of Experimental Hematology, Tianjin Institute of Immunology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qian Zhang
- State Key Laboratory of Experimental Hematology, Tianjin Institute of Immunology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Huabing Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Department of Chemical Biology, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Minjie Zhang
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hang Yin
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhongmin Liu
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China.
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, China.
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Heng Zhang
- State Key Laboratory of Experimental Hematology, Tianjin Institute of Immunology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
- Department of Biochemistry and Molecular Biology, Tianjin Key Laboratory of Cellular Homeostasis and Disease, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
6
|
Cao Y, Feng X, Ding B, Huo H, Abdullah M, Hong J, Jiang L, Wang H, Li R, Cai Y, Li X, Xia Z, Varshney RK, Hu H, Lin M, Shen F. Gap-free genome assemblies of two Pyrus bretschneideri cultivars and GWAS analyses identify a CCCH zinc finger protein as a key regulator of stone cell formation in pear fruit. PLANT COMMUNICATIONS 2025; 6:101238. [PMID: 40071379 PMCID: PMC11956113 DOI: 10.1016/j.xplc.2024.101238] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/01/2024] [Accepted: 12/30/2024] [Indexed: 04/04/2025]
Abstract
The Chinese white pear (Pyrus bretschneideri) is an economically significant fruit crop worldwide. Previous versions of the P. bretschneideri genome assembly contain numerous gaps and unanchored genetic regions. Here, we generated two high-quality, gap-free genome assemblies for 'Dangshansu' (DS; 503.92 Mb) and 'Lianglizaosu' (ZS; 509.01 Mb), each anchored to 17 chromosomes, achieving a benchmarking universal single-copy ortholog completeness score of nearly 99.0%. Our genome-wide association studies explored the associations between genetic variations and stone cell traits, revealing a significant association peak on DS chromosome 3 and identifying a novel non-tandem CCCH-type zinc finger gene, designated PbdsZF. Through genetic transformation, we verified the pivotal role of PbdsZF in regulation of both lignin biosynthesis and stone cell formation, as it transcriptionally activates multiple genes involved in these processes. By binding to the CT-rich motifs CT1 (CTTTTTTCT) and CT2 (CTCTTTTT), PbdsZF significantly influences the transcription of genes essential for lignin production, underscoring its regulatory importance in plant lignin metabolism. Our study illuminates the complex biology of fruit development and delineates the gene regulatory networks that influence stone cell and lignocellulose formation, thereby enriching genetic resources and laying the groundwork for the molecular breeding of perennial trees.
Collapse
Affiliation(s)
- Yunpeng Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Xiaofeng Feng
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Baopeng Ding
- Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education and Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Shanxi Datong University, Datong 037009, China
| | - Heqiang Huo
- Department of Environmental Horticulture, Mid-Florida Research and Education Center, University of Florida, Apopka, FL 32703, USA
| | - Muhammad Abdullah
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, 7 Brisbane, Brisbane, QLD, Australia
| | - Jiayi Hong
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Lan Jiang
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Yijishan Hospital of Wannan Medical College, Wuhu 241000, China
| | - Han Wang
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230000, China
| | - Risheng Li
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High-Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Yongping Cai
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoxu Li
- Beijing Life Science Academy, Beijing 102209, China
| | - Zhichao Xia
- School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| | - Rajeev K Varshney
- Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, WA, Australia.
| | - Haifei Hu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High-Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou 510640, China.
| | - Mengfei Lin
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China.
| | - Fei Shen
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
7
|
Ye Y, Lu X, Kong E, Wang Q, Shen L, Zhong S, Wang Y, Xiao Z, Deng J, Zhao H, Dong B. OfWRKY17-OfC3H49 module responding to high ambient temperature delays flowering via inhibiting OfSOC1B expression in Osmanthus fragrans. HORTICULTURE RESEARCH 2025; 12:uhae273. [PMID: 39897730 PMCID: PMC11725642 DOI: 10.1093/hr/uhae273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/13/2024] [Indexed: 02/04/2025]
Abstract
Ambient temperature is a pivotal factor in the regulation of the flowering process in plants. In this study, we found that high ambient temperature exerts an inhibitory effect on the flowering of Osmanthus fragrans "Sjigui". However, the underlying molecular mechanisms remain not fully understood. Through transcriptome analysis, a differently expressed C3H gene OfC3H49 was identified, which is induced by high ambient temperature. OfC3H49 was demonstrated to delay the flowering process of Arabidopsis and downregulate the expression of flowering-related genes in O. fragrans calli. Further investigation indicates that OfC3H49 as a transcriptional repressor directly suppresses the expression of the OfSOC1B thereby causing a delay in flowering time. Furthermore, a WRKY transcription factor, OfWRKY17, was identified to be responsive to high ambient temperature, directly binding to the OfC3H49 promoter and enhance OfC3H49 expression. Overexpression of OfWRKY17 in Arabidopsis resulted in a significant delay in flowering and induced the expression of OfC3H49 in O. fragrans calli. Collectively, our findings delineate a regulatory module, OfWRKY17-OfC3H49, which is activated by high ambient temperature and functions as a negative regulator of flowering by suppressing the expression of OfSOC1B in O. fragrans. This study provides novel insights into the molecular mechanisms involved in ambient temperature-mediated flowering control and contributes to the development of molecular breeding strategies for O. fragrans.
Collapse
Affiliation(s)
- Yong Ye
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, No. 666 Wusu Street, Lin'an District, Hangzhou 311300, Zhejiang, China
| | - Xinke Lu
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, No. 666 Wusu Street, Lin'an District, Hangzhou 311300, Zhejiang, China
| | - En Kong
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, No. 666 Wusu Street, Lin'an District, Hangzhou 311300, Zhejiang, China
| | - Qianqian Wang
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, No. 666 Wusu Street, Lin'an District, Hangzhou 311300, Zhejiang, China
| | - Lixiao Shen
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, No. 666 Wusu Street, Lin'an District, Hangzhou 311300, Zhejiang, China
| | - Shiwei Zhong
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, No. 666 Wusu Street, Lin'an District, Hangzhou 311300, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture and Forestry University, No. 666 Wusu Street, Lin'an District, Hangzhou 311300, Zhejiang, China
| | - Yiguang Wang
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, No. 666 Wusu Street, Lin'an District, Hangzhou 311300, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture and Forestry University, No. 666 Wusu Street, Lin'an District, Hangzhou 311300, Zhejiang, China
| | - Zheng Xiao
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, No. 666 Wusu Street, Lin'an District, Hangzhou 311300, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture and Forestry University, No. 666 Wusu Street, Lin'an District, Hangzhou 311300, Zhejiang, China
| | - Jinping Deng
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, No. 666 Wusu Street, Lin'an District, Hangzhou 311300, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture and Forestry University, No. 666 Wusu Street, Lin'an District, Hangzhou 311300, Zhejiang, China
| | - Hongbo Zhao
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, No. 666 Wusu Street, Lin'an District, Hangzhou 311300, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture and Forestry University, No. 666 Wusu Street, Lin'an District, Hangzhou 311300, Zhejiang, China
| | - Bin Dong
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, No. 666 Wusu Street, Lin'an District, Hangzhou 311300, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture and Forestry University, No. 666 Wusu Street, Lin'an District, Hangzhou 311300, Zhejiang, China
| |
Collapse
|
8
|
Luo M, Li X, Zhang J, Miao Y, Liu D. The C3H gene PtZFP2-like in Pinellia ternata acts as a positive regulator of the resistance to soft rot caused by Pectobacterium carotovorum. PHYSIOLOGIA PLANTARUM 2025; 177:e70121. [PMID: 39968839 PMCID: PMC11837237 DOI: 10.1111/ppl.70121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 01/21/2025] [Accepted: 02/02/2025] [Indexed: 02/20/2025]
Abstract
Pinellia ternata (Thunb.) Breit is a member of the Araceae family and is globally distributed. The dry tuber has been used as a traditional Chinese medicine for over 2,000 years. With agricultural development, the harm of soft rot to P. ternata is an increasing problem. The lack of germplasm resources resistant to soft rot leads to less research on resistance mechanisms. In our study, we screened disease-resistant P. ternata P-1 and disease-susceptible P. ternata P-4 for the first time. Then, the infection of soft rot for 0, 24, and 48 hours was performed, and a de novo transcriptome analysis explored key genes associated with soft rot resistance. A total of 260,169 unigenes were identified and differentially expressed gene analysis was conducted. In total, 33 C3H-type ZFP genes were differentially expressed under Pectobacterium carotovorum infection. Transient expression of ZFP2-like (Cluster-5189.85444) resulted in a twofold increase at 24 hour post infection (hpi) and a threefold increase at 48 hpi in P-1 with soft rot infection, but no significant difference at P-4 enhanced the resistance of Nicotiana benthamiana to soft rot. Stable overexpression in P. ternata with a 2 ~ 11-fold increase in gene expression and reduced the lesion size from 6 mm to 2 ~ 4 mm at 24 hpi, demonstrating increased resistance to P. carotovorum. These findings indicated the ZFP2-like gene plays a pivotal role in soft rot resistance, enriches genetic data on disease resistance in P. ternata, and contributes to breed selection and improvement.
Collapse
Affiliation(s)
- Ming Luo
- School of PharmacyHubei University of Chinese MedicineWuhanChina
- Hubei Shizhen LaboratoryHubei University of Chinese MedicineWuhanChina
| | - Xinyao Li
- School of PharmacyHubei University of Chinese MedicineWuhanChina
| | - Jingyi Zhang
- School of PharmacyHubei University of Chinese MedicineWuhanChina
| | - Yuhuan Miao
- School of PharmacyHubei University of Chinese MedicineWuhanChina
- Hubei Shizhen LaboratoryHubei University of Chinese MedicineWuhanChina
| | - Dahui Liu
- School of PharmacyHubei University of Chinese MedicineWuhanChina
- Hubei Shizhen LaboratoryHubei University of Chinese MedicineWuhanChina
| |
Collapse
|
9
|
He SL, Wang X, Kim SI, Kong L, Liu A, Wang L, Wang Y, Shan L, He P, Jang JC. Modulation of stress granule dynamics by phosphorylation and ubiquitination in plants. iScience 2024; 27:111162. [PMID: 39569378 PMCID: PMC11576400 DOI: 10.1016/j.isci.2024.111162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 11/22/2024] Open
Abstract
The Arabidopsis tandem CCCH zinc finger 1 (TZF1) is an RNA-binding protein that plays a pivotal role in plant growth and stress response. In this report, we show that TZF1 contains two intrinsically disordered regions necessary for its localization to stress granules (SGs). TZF1 recruits mitogen-activated protein kinase (MAPK) signaling components and an E3 ubiquitin ligase KEEP-ON-GOING (KEG) to SGs. TZF1 is phosphorylated by MPKs and ubiquitinated by KEG. Using a high throughput Arabidopsis protoplasts transient expression system, mutant studies reveal that the phosphorylation of specific residues plays differential roles in enhancing or reducing TZF1 SG assembly and protein-protein interaction with mitogen-activated kinase kinase 5 in SGs. Ubiquitination appears to play a positive role in TZF1 SG assembly, because mutations cause a reduction of typical SGs, while enhancing the assembly of large SGs encompassing the nucleus. Together, our results demonstrate that plant SG assembly is distinctively regulated by phosphorylation and ubiquitination.
Collapse
Affiliation(s)
- Siou-Luan He
- Department of Horticulture and Crop Science, Center for Applied Plant Sciences, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Xiling Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing 10093, China
| | - Sung-Il Kim
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085, USA
| | - Liang Kong
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085, USA
| | - Ailing Liu
- Department of Horticulture and Crop Science, Center for Applied Plant Sciences, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing 10093, China
| | - Ying Wang
- Plant Pathology Department and Plant Molecular Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA
| | - Libo Shan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085, USA
| | - Ping He
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085, USA
| | - Jyan-Chyun Jang
- Department of Horticulture and Crop Science, Center for Applied Plant Sciences, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
10
|
Andrés-Bordería A, Mazuque-Pons L, Romeu-Perales M, Garcia-Molina A, Andrés-Colás N, Martínez-Pastor MT, Sanz A, Puig S, Peñarrubia L, Perea-García A. The role of the Arabidopsis tandem zinc-finger C3H15 protein in metal homeostasis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109123. [PMID: 39276674 DOI: 10.1016/j.plaphy.2024.109123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Living organisms have developed finely regulated homeostatic networks to mitigate the effects of environmental fluctuations in transition metal micronutrients, including iron, zinc, and copper. In Saccharomyces cerevisiae, the tandem zinc-finger protein Cth2 post-transcriptionally regulates gene expression under conditions of iron deficiency by controlling the levels of mRNAs that code for non-essential ferroproteins. The molecular mechanism involves Cth2 binding to AU-rich elements present in the 3' untranslated region of target mRNAs, negatively affecting their stability and translation. Arabidopsis thaliana has two TZF proteins homologous to yeast Cth2, C3H14 and C3H15, which participate in cell wall remodelling. The present work examines the expression of representative metal homeostasis genes with putative AREs in plants with altered levels of C3H14 and C3H15 grown under varying metal availabilities. The results suggest that C3H15 may act as a post-transcriptional plant modulator of metal adequacy, as evidenced by the expression of SPL7, the main transcriptional regulator under copper deficiency, and PETE2, which encodes plastocyanin. In contrast to S. cerevisiae, the plant C3H15 affects copper and zinc homeostasis rather than iron. When grown under copper-deficient conditions, adult C3H15OE plants exhibit lower chlorophyll content and photosynthetic efficiency compared to control plants, suggesting accelerated senescence. Likewise, metal content in C3H15OE plants under copper deficiency shows altered mobilization of copper and zinc to seeds. These data suggest that the C3H15 protein plays a role in modulating both cell wall remodelling and metal homeostasis. The interaction between these processes may be the cause of altered metal translocation.
Collapse
Affiliation(s)
- Amparo Andrés-Bordería
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Laia Mazuque-Pons
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, Valencia, Spain
| | - Marta Romeu-Perales
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, Valencia, Spain
| | - Antoni Garcia-Molina
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, Valencia, Spain
| | - Nuria Andrés-Colás
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, Valencia, Spain
| | - María Teresa Martínez-Pastor
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain; Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, Valencia, Spain
| | - Amparo Sanz
- Departament de Biologia Vegetal, Universitat de València, Burjassot, Valencia, Spain
| | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Lola Peñarrubia
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, Valencia, Spain
| | - Ana Perea-García
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, Valencia, Spain.
| |
Collapse
|
11
|
Wang L, Wang R, Cai X, Zheng H, Huang Y, Li Y, Cui M, Lin M, Tang H. A loss-of-function mutation in OsTZF5 confers sensitivity to low temperature and effects the growth and development in rice. PLANT MOLECULAR BIOLOGY 2024; 114:116. [PMID: 39438338 DOI: 10.1007/s11103-024-01513-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/21/2024] [Indexed: 10/25/2024]
Abstract
Rice (Oryza sativa L.) is highly sensitive to low temperatures, which can significantly reduce its production. Cold tolerance in rice is a complex trait regulated by multiple mechanisms. OsTZF5, a member of the CCCH-type zinc finger gene family in rice, has been previously reported that overexpressing OsTZF5 under the stress-responsive promoter can confer drought resistance. In this study, we showed that the loss of function mutants of OsTZF5 decreased seed germination rate and chilling tolerance in rice, and influencing normal growth and development. OsTZF5 is expressed in various parts of the rice plant, including roots, stems, leaves and inflorescences, with the highest expression levels observed in leaves. Additionally, the expression of OsTZF5 gene was influenced by various stress conditions and hormone treatments. OsTZF5 knock-out mutants exhibited significantly lower survival rates compared to the wild type (Zhonghua11, ZH11) after cold stress, as well as fewer tillers, lower thousand-grain weight, and reduced grain yield under normal conditions. Transcriptomic analyses revealed that the expression of cold stress-related genes was significantly down-regulated in OsTZF5 knock-out mutants compared to ZH11 after cold stress. This down-regulation likely contributes to the reduced cold stress tolerance observed in OsTZF5 knock-out mutants. Our findings suggest that OsTZF5 is a multifunctional gene that plays a crucial role in regulating cold stress in rice.
Collapse
Affiliation(s)
- Limin Wang
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Ru Wang
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xin Cai
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Huiqi Zheng
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471000, China
| | - Yuxing Huang
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Yuechen Li
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Mingyue Cui
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Mingli Lin
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Huiwu Tang
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| |
Collapse
|
12
|
Seok HY, Lee SY, Nguyen LV, Bayzid M, Jang Y, Moon YH. AtC3H3, an Arabidopsis Non-TZF Gene, Enhances Salt Tolerance by Increasing the Expression of Both ABA-Dependent and -Independent Stress-Responsive Genes. Int J Mol Sci 2024; 25:10943. [PMID: 39456724 PMCID: PMC11507560 DOI: 10.3390/ijms252010943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Salinity causes widespread crop loss and prompts plants to adapt through changes in gene expression. In this study, we aimed to investigate the function of the non-tandem CCCH zinc-finger (non-TZF) protein gene AtC3H3 in response to salt stress in Arabidopsis. AtC3H3, a gene from the non-TZF gene family known for its RNA-binding and RNase activities, was up-regulated under osmotic stress, such as high salt and drought. When overexpressed in Arabidopsis, AtC3H3 improved tolerance to salt stress, but not drought stress. The expression of well-known abscisic acid (ABA)-dependent salt stress-responsive genes, namely Responsive to Desiccation 29B (RD29B), RD22, and Responsive to ABA 18 (RAB18), and representative ABA-independent salt stress-responsive genes, namely Dehydration-Responsive Element Binding protein 2A (DREB2A) and DREB2B, was significantly higher in AtC3H3-overexpressing transgenic plants (AtC3H3 OXs) than in wild-type plants (WT) under NaCl treatment, indicating its significance in both ABA-dependent and -independent signal transduction pathways. mRNA-sequencing (mRNA-Seq) analysis using NaCl-treated WT and AtC3H3 OXs revealed no potential target mRNAs for the RNase function of AtC3H3, suggesting that the potential targets of AtC3H3 might be noncoding RNAs and not mRNAs. Through this study, we conclusively demonstrated that AtC3H3 plays a crucial role in salt stress tolerance by influencing the expression of salt stress-responsive genes. These findings offer new insights into plant stress response mechanisms and suggest potential strategies for improving crop resilience to salinity stress.
Collapse
Affiliation(s)
- Hye-Yeon Seok
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea; (H.-Y.S.); (S.-Y.L.)
| | - Sun-Young Lee
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea; (H.-Y.S.); (S.-Y.L.)
| | - Linh Vu Nguyen
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Md Bayzid
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea; (M.B.); (Y.J.)
| | - Yunseong Jang
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea; (M.B.); (Y.J.)
| | - Yong-Hwan Moon
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea; (H.-Y.S.); (S.-Y.L.)
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea; (M.B.); (Y.J.)
- Department of Molecular Biology, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
13
|
Bao P, Sun J, Qu G, Yan M, Cheng S, Ma W, Wang J, Hu R. Identification and expression analysis of CCCH gene family and screening of key low temperature stress response gene CbuC3H24 and CbuC3H58 in Catalpa bungei. BMC Genomics 2024; 25:779. [PMID: 39128988 PMCID: PMC11318309 DOI: 10.1186/s12864-024-10690-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024] Open
Abstract
Catalpa bungei, a tree indigenous to China, is renowned for its superior timber quality and as an ornamental in horticulture. To promote the cultivation of C. bungei in cold regions and expand its distribution, enhancing its cold tolerance is essential. The CCCH gene family is widely involved in plant growth, development, and expression under stress conditions, including low-temperature stress. However, a comprehensive identification and analysis of these genes have not yet been conducted. This study aims to identify key cold-tolerance-related genes within the CCCH gene family of C. bungei, providing the necessary theoretical support for its expansion in cold regions. In this study, 61 CCCH genes within C. bungei were identified and characterized. Phylogenetic assessment divided these genes into 9 subfamilies, with 55 members mapped across 16 chromosomes. The analysis of gene structures and protein motifs indicated that members within the same subfamily shared similar exon/intron distribution and motif patterns, supporting the phylogenetic classification. Collinearity analysis suggested that segmental duplications have played a significant role in the expansion of the C. bungei CCCH gene family. Notably, RNA sequencing analysis under 4 °C cold stress conditions identified CbuC3H24 and CbuC3H58 as exhibiting the most significant responses, highlighting their importance within the CCCH zinc finger family in response to cold stress. The findings of this study lay a theoretical foundation for further exploring the mechanisms of cold tolerance in C. bungei, providing crucial insights for its cultivation in cold regions.
Collapse
Affiliation(s)
- Pingan Bao
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, Chinese Academy of Forestry, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Beijing, 102300, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Jingshuang Sun
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, Chinese Academy of Forestry, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Beijing, 102300, China
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Maolin Yan
- Inner Mongolia Academy of Forestry, Hohhot, 010010, China
| | - Shiping Cheng
- Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan University, Henan, 467000, China
| | - Wenjun Ma
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Ruiyang Hu
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, Chinese Academy of Forestry, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Beijing, 102300, China.
| |
Collapse
|
14
|
Kamolsukyeunyong W, Dabbhadatta Y, Jaiprasert A, Thunnom B, Poncheewin W, Wanchana S, Ruanjaichon V, Toojinda T, Burns P. Genome-Wide Association Analysis Identifies Candidate Loci for Callus Induction in Rice ( Oryza sativa L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:2112. [PMID: 39124230 PMCID: PMC11314294 DOI: 10.3390/plants13152112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
Callus induction (CI) is a critical trait for transforming desirable genes in plants. A genome-wide association study (GWAS) analysis was conducted on the rice germplasms of 110 Indica rice accessions, in which three tissue culture media, B5, MS, and N6, were used for the CI of those rice panels' mature seeds. Seven quantitative trait loci (QTLs) on rice chromosomes 2, 6, 7, and 11 affected the CI percentage in the three media. For the B5 medium, one QTL (qCI-B5-Chr6) was identified on rice chromosome 6; for the MS medium, two QTLs were identified on rice chromosomes 2 and 6 (qCI-MS-Chr2 and qCI-MS-Chr6, respectively); for the N6 medium, four QTLs were identified on rice chromosomes 6, 7, and 11 (qCI-N6-Chr6.1 and qCI-N6-Chr6.2, qCI-N6-Chr7, and qCI-N6-Chr11, respectively). Fifty-five genes were identified within the haplotype blocks corresponding to these QTLs, thirty-one of which showed haplotypes associated with different CI percentages in those media. qCI-B5-Chr6 was located in the same region as qCI-N6-Chr6.2, and the Caleosin-related family protein was also identified in this region. Analysis of the gene-based haplotype revealed the association of this gene with different CI percentages in both B5 and N6 media, suggesting that the gene may play a critical role in the CI mechanism. Moreover, several genes, including those that encode the beta-tubulin protein, zinc finger protein, RNP-1 domain-containing protein, and lysophosphatidic acid acyltransferase, were associated with different CI percentages in the N6 medium. The results of this study provide insights into the potential QTLs and candidate genes for callus induction in rice that contribute to our understanding of the physiological and biochemical processes involved in callus formation, which is an essential tool in the molecular breeding of rice.
Collapse
Affiliation(s)
- Wintai Kamolsukyeunyong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (Y.D.); (A.J.); (B.T.); (W.P.); (S.W.); (V.R.); (T.T.)
| | | | | | | | | | | | | | | | - Parichart Burns
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (Y.D.); (A.J.); (B.T.); (W.P.); (S.W.); (V.R.); (T.T.)
| |
Collapse
|
15
|
Liu X, Cao X, Chen M, Li D, Zhang Z. Two transcription factors, RhERF005 and RhCCCH12, regulate rose resistance to Botrytis cinerea by modulating cytokinin levels. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2584-2597. [PMID: 38314882 DOI: 10.1093/jxb/erae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
Gray mold caused by the necrotrophic fungal pathogen Botrytis cinerea is one of the most destructive diseases in rose (Rosa spp.). Rose infection by B. cinerea leads to severe economic losses due to necrosis, tissue collapse, and rot. In rose, cytokinins (CKs) positively regulate a defense response to B. cinerea, but little is known about the underlying molecular mechanisms. Here, we characterized two ethylene/jasmonic acid-regulated transcription factors, RhEFR005 and RhCCCH12, that bind to the promoter region of PATHOGENESIS-RELATED 10.1 (RhPR10.1) and promote its transcription, leading to decreased susceptibility to B. cinerea. The RhEFR005/RhCCCH12-RhPR10.1 module regulated cytokinin content in rose, and the susceptibility of RhEFR005-, RhCCCH12-, and RhPR10.1-silenced rose petals can be rescued by exogenous CK. In summary, our results reveal that the RhERF005/RhCCCH12-RhPR10.1 module regulates the CK-induced defense response of rose to B. cinerea.
Collapse
Affiliation(s)
- Xintong Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Xiaoqian Cao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Meng Chen
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Dandan Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Zhao Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
Grondin A, Natividad MA, Ogata T, Jan A, Gaudin ACM, Trijatmiko KR, Liwanag E, Maruyama K, Fujita Y, Yamaguchi-Shinozaki K, Nakashima K, Slamet-Loedin IH, Henry A. A Case Study from the Overexpression of OsTZF5, Encoding a CCCH Tandem Zinc Finger Protein, in Rice Plants Across Nineteen Yield Trials. RICE (NEW YORK, N.Y.) 2024; 17:25. [PMID: 38592643 PMCID: PMC11003944 DOI: 10.1186/s12284-024-00705-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/29/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND Development of transgenic rice overexpressing transcription factors involved in drought response has been previously reported to confer drought tolerance and therefore represents a means of crop improvement. We transformed lowland rice IR64 with OsTZF5, encoding a CCCH-tandem zinc finger protein, under the control of the rice LIP9 stress-inducible promoter and compared the drought response of transgenic lines and nulls to IR64 in successive screenhouse paddy and field trials up to the T6 generation. RESULTS Compared to the well-watered conditions, the level of drought stress across experiments varied from a minimum of - 25 to - 75 kPa at a soil depth of 30 cm which reduced biomass by 30-55% and grain yield by 1-92%, presenting a range of drought severities. OsTZF5 transgenic lines showed high yield advantage under drought over IR64 in early generations, which was related to shorter time to flowering, lower shoot biomass and higher harvest index. However, the increases in values for yield and related traits in the transgenics became smaller over successive generations despite continued detection of drought-induced transgene expression as conferred by the LIP9 promoter. The decreased advantage of the transgenics over generations tended to coincide with increased levels of homozygosity. Background cleaning of the transgenic lines as well as introgression of the transgene into an IR64 line containing major-effect drought yield QTLs, which were evaluated starting at the BC3F1 and BC2F3 generation, respectively, did not result in consistently increased yield under drought as compared to the respective checks. CONCLUSIONS Although we cannot conclusively explain the genetic factors behind the loss of yield advantage of the transgenics under drought across generations, our results help in distinguishing among potential drought tolerance mechanisms related to effectiveness of the transgenics, since early flowering and harvest index most closely reflected the levels of yield advantage in the transgenics across generations while reduced biomass did not.
Collapse
Affiliation(s)
- Alexandre Grondin
- Rice Breeding Innovations Department, International Rice Research Institute, Pili Drive, Los Baños, Laguna, Philippines
- Institut de Recherche Pour Le Développement, Université de Montpellier, UMR DIADE, 911 Avenue Agropolis, 34394, Montpellier, France
| | - Mignon A Natividad
- Rice Breeding Innovations Department, International Rice Research Institute, Pili Drive, Los Baños, Laguna, Philippines
| | - Takuya Ogata
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan
| | - Asad Jan
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan
- Institute of Biotechnology and Genetics Engineering, The University of Agriculture, Peshawar, 25130, Khyber Pakhtunkhwa, Pakistan
| | - Amélie C M Gaudin
- Rice Breeding Innovations Department, International Rice Research Institute, Pili Drive, Los Baños, Laguna, Philippines
- Department of Plant Sciences, University of California Davis, Davis, CA, 95616, USA
| | - Kurniawan R Trijatmiko
- Rice Breeding Innovations Department, International Rice Research Institute, Pili Drive, Los Baños, Laguna, Philippines
| | - Evelyn Liwanag
- Rice Breeding Innovations Department, International Rice Research Institute, Pili Drive, Los Baños, Laguna, Philippines
| | - Kyonoshin Maruyama
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan
| | - Yasunari Fujita
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan
| | - Kazuko Yamaguchi-Shinozaki
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan
- Laboratory of Plant Molecular Physiology, The University of Tokyo, Tokyo, 113-8657, Japan
- Tokyo University of Agriculture, Research Institute for Agricultural and Life Sciences, Tokyo, Japan
| | - Kazuo Nakashima
- Food Program, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan
| | - Inez H Slamet-Loedin
- Rice Breeding Innovations Department, International Rice Research Institute, Pili Drive, Los Baños, Laguna, Philippines
| | - Amelia Henry
- Rice Breeding Innovations Department, International Rice Research Institute, Pili Drive, Los Baños, Laguna, Philippines.
| |
Collapse
|
17
|
Simoni S, Vangelisti A, Clemente C, Usai G, Santin M, Ventimiglia M, Mascagni F, Natali L, Angelini LG, Cavallini A, Tavarini S, Giordani T. Transcriptomic Analyses Reveal Insights into the Shared Regulatory Network of Phenolic Compounds and Steviol Glycosides in Stevia rebaudiana. Int J Mol Sci 2024; 25:2136. [PMID: 38396813 PMCID: PMC10889303 DOI: 10.3390/ijms25042136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Stevia rebaudiana (Bertoni) is a highly valuable crop for the steviol glycoside content in its leaves, which are no-calorie sweeteners hundreds of times more potent than sucrose. The presence of health-promoting phenolic compounds, particularly flavonoids, in the leaf of S. rebaudiana adds further nutritional value to this crop. Although all these secondary metabolites are highly desirable in S. rebaudiana leaves, the genes regulating the biosynthesis of phenolic compounds and the shared gene network between the regulation of biosynthesis of steviol glycosides and phenolic compounds still need to be investigated in this species. To identify putative candidate genes involved in the synergistic regulation of steviol glycosides and phenolic compounds, four genotypes with different contents of these compounds were selected for a pairwise comparison RNA-seq analysis, yielding 1136 differentially expressed genes. Genes that highly correlate with both steviol glycosides and phenolic compound accumulation in the four genotypes of S. rebaudiana were identified using the weighted gene co-expression network analysis. The presence of UDP-glycosyltransferases 76G1, 76H1, 85C1, and 91A1, and several genes associated with the phenylpropanoid pathway, including peroxidase, caffeoyl-CoA O-methyltransferase, and malonyl-coenzyme A:anthocyanin 3-O-glucoside-6″-O-malonyltransferase, along with 21 transcription factors like SCL3, WRK11, and MYB111, implied an extensive and synergistic regulatory network involved in enhancing the production of such compounds in S. rebaudiana leaves. In conclusion, this work identified a variety of putative candidate genes involved in the biosynthesis and regulation of particular steviol glycosides and phenolic compounds that will be useful in gene editing strategies for increasing and steering the production of such compounds in S. rebaudiana as well as in other species.
Collapse
Affiliation(s)
- Samuel Simoni
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy (C.C.); (M.S.); (M.V.); (S.T.)
| | - Alberto Vangelisti
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy (C.C.); (M.S.); (M.V.); (S.T.)
| | - Clarissa Clemente
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy (C.C.); (M.S.); (M.V.); (S.T.)
| | - Gabriele Usai
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy (C.C.); (M.S.); (M.V.); (S.T.)
| | - Marco Santin
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy (C.C.); (M.S.); (M.V.); (S.T.)
| | - Maria Ventimiglia
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy (C.C.); (M.S.); (M.V.); (S.T.)
| | - Flavia Mascagni
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy (C.C.); (M.S.); (M.V.); (S.T.)
| | - Lucia Natali
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy (C.C.); (M.S.); (M.V.); (S.T.)
| | - Luciana G. Angelini
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy (C.C.); (M.S.); (M.V.); (S.T.)
- Interdepartmental Research Centre “Nutraceuticals and Food for Health—NUTRAFOOD”, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy
| | - Andrea Cavallini
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy (C.C.); (M.S.); (M.V.); (S.T.)
| | - Silvia Tavarini
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy (C.C.); (M.S.); (M.V.); (S.T.)
- Interdepartmental Research Centre “Nutraceuticals and Food for Health—NUTRAFOOD”, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy
| | - Tommaso Giordani
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy (C.C.); (M.S.); (M.V.); (S.T.)
| |
Collapse
|
18
|
Xu L, Xiong X, Liu T, Cao J, Yu Y. Heterologous Expression of Two Brassica campestris CCCH Zinc-Finger Proteins in Arabidopsis Induces Cytoplasmic Foci and Causes Pollen Abortion. Int J Mol Sci 2023; 24:16862. [PMID: 38069184 PMCID: PMC10706035 DOI: 10.3390/ijms242316862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
The membrane-less organelles in cytoplasm that are presented as cytoplasmic foci were successively identified. Although multiple CCCH zinc-finger proteins have been found to be localized in cytoplasmic foci, the relationship between their specific localization and functions still needs further clarification. Here, we report that the heterologous expression of two Brassica campestris CCCH zinc-finger protein genes (BcMF30a and BcMF30c) in Arabidopsis thaliana can affect microgametogenesis by involving the formation of cytoplasmic foci. By monitoring the distribution of proteins and observing pollen phenotypes, we found that, when these two proteins were moderately expressed in pollen, they were mainly dispersed in the cytoplasm, and the pollen developed normally. However, high expression induced the assembly of cytoplasmic foci, leading to pollen abortion. These findings suggested that the continuous formation of BcMF30a/BcMF30c-associated cytoplasmic foci due to high expression was the inducement of male sterility. A co-localization analysis further showed that these two proteins can be recruited into two well-studied cytoplasmic foci, processing bodies (PBs), and stress granules (SGs), which were confirmed to function in mRNA metabolism. Together, our data suggested that BcMF30a and BcMF30c play component roles in the assembly of pollen cytoplasmic foci. Combined with our previous study on the homologous gene of BcMF30a/c in Arabidopsis, we concluded that the function of these homologous genes is conserved and that cytoplasmic foci containing BcMF30a/c may participate in the regulation of gene expression in pollen by regulating mRNA metabolism.
Collapse
Affiliation(s)
- Liai Xu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China;
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (X.X.); (T.L.)
| | - Xingpeng Xiong
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (X.X.); (T.L.)
| | - Tingting Liu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (X.X.); (T.L.)
| | - Jiashu Cao
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (X.X.); (T.L.)
| | - Youjian Yu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China;
| |
Collapse
|
19
|
Angulo J, Astin CP, Bauer O, Blash KJ, Bowen NM, Chukwudinma NJ, DiNofrio AS, Faletti DO, Ghulam AM, Gusinde-Duffy CM, Horace KJ, Ingram AM, Isaack KE, Jeong G, Kiser RJ, Kobylanski JS, Long MR, Manning GA, Morales JM, Nguyen KH, Pham RT, Phillips MH, Reel TW, Seo JE, Vo HD, Wukoson AM, Yeary KA, Zheng GY, Lukowitz W. CRISPR/Cas9 mutagenesis of the Arabidopsis GROWTH-REGULATING FACTOR (GRF) gene family. Front Genome Ed 2023; 5:1251557. [PMID: 37908969 PMCID: PMC10613670 DOI: 10.3389/fgeed.2023.1251557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/29/2023] [Indexed: 11/02/2023] Open
Abstract
Genome editing in plants typically relies on T-DNA plasmids that are mobilized by Agrobacterium-mediated transformation to deliver the CRISPR/Cas machinery. Here, we introduce a series of CRISPR/Cas9 T-DNA vectors for minimal settings, such as teaching labs. Gene-specific targeting sequences can be inserted as annealed short oligonucleotides in a single straightforward cloning step. Fluorescent markers expressed in mature seeds enable reliable selection of transgenic or transgene-free individuals using a combination of inexpensive LED lamps and colored-glass alternative filters. Testing these tools on the Arabidopsis GROWTH-REGULATING FACTOR (GRF) genes, we were able to create a collection of predicted null mutations in all nine family members with little effort. We then explored the effects of simultaneously targeting two, four and eight GRF genes on the rate of induced mutations at each target locus. In our hands, multiplexing was associated with pronounced disparities: while mutation rates at some loci remained consistently high, mutation rates at other loci dropped dramatically with increasing number of single guide RNA species, thereby preventing a systematic mutagenesis of the family.
Collapse
Affiliation(s)
- Juan Angulo
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | | | - Olivia Bauer
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | - Kelan J. Blash
- Division of Biology, University of Georgia, Athens, GA, United States
| | - Natalee M. Bowen
- Division of Biology, University of Georgia, Athens, GA, United States
| | | | | | - Donald O. Faletti
- Division of Biology, University of Georgia, Athens, GA, United States
| | - Alexa M. Ghulam
- Division of Biology, University of Georgia, Athens, GA, United States
| | | | - Kamaria J. Horace
- Division of Biology, University of Georgia, Athens, GA, United States
| | - Andrew M. Ingram
- Division of Biology, University of Georgia, Athens, GA, United States
| | - Kylie E. Isaack
- Division of Biology, University of Georgia, Athens, GA, United States
| | - Geon Jeong
- Division of Biology, University of Georgia, Athens, GA, United States
| | - Randolph J. Kiser
- Division of Biology, University of Georgia, Athens, GA, United States
| | - Jason S. Kobylanski
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | - Madeline R. Long
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | - Grace A. Manning
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | - Julie M. Morales
- Division of Biology, University of Georgia, Athens, GA, United States
| | - Kevin H. Nguyen
- Division of Biology, University of Georgia, Athens, GA, United States
| | - Robin T. Pham
- Division of Biology, University of Georgia, Athens, GA, United States
| | - Monthip H. Phillips
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | - Tanner W. Reel
- Division of Biology, University of Georgia, Athens, GA, United States
| | - Jenny E. Seo
- Division of Biology, University of Georgia, Athens, GA, United States
| | - Hiep D. Vo
- Division of Biology, University of Georgia, Athens, GA, United States
| | | | - Kathryn A. Yeary
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | - Grace Y. Zheng
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | - Wolfgang Lukowitz
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| |
Collapse
|
20
|
Saavedra Núñez G, González-Villanueva E, Ramos P. Floral Development on Vitis vinifera Is Associated with MADS-Box Transcription Factors through the Transcriptional Regulation of VviZIP3. PLANTS (BASEL, SWITZERLAND) 2023; 12:3322. [PMID: 37765487 PMCID: PMC10535425 DOI: 10.3390/plants12183322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Several grapevine (Vitis vinifera L.) cultivars show a tendency to develop parthenocarpic seedless grapes, affecting fruit yield and quality. This reproductive disorder originates in defective ovule fertilization due to a failure in pollen tube growth. Zinc (Zn) is a crucial trace element, playing a vital role in various physiological and metabolic processes. It is particularly essential for the healthy growth of flowers and fruits. Insufficient zinc has been suggested as a potential reason for issues in this development process. This microelement is taken up through a mechanism that involves transporters, including the ZRT-IRT-like protein (ZIP) gene family, associated with the influx of Zn into the cell. In grapevines, 20 genes for ZIP-type transporters have been described. In this study, we analyzed the expression pattern of VviZIP3 during flower development and employ transgenic methods to assess its transcriptional regulation. Furthermore, through computational examination of the promoter region, we identified two CArG boxes, recognized as responsive elements to MADS transcription factors. These factors play a key role in shaping various components of a flower, such as pollen. Our investigation of the VviZIP3 promoter confirms the functionality of these CArG boxes. Overall, our results suggest that the increased expression of VviZIP3 during flowering is likely under the influence of MADS transcription factors.
Collapse
Affiliation(s)
- Germán Saavedra Núñez
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460787, Chile; (G.S.N.); (E.G.-V.)
| | | | - Patricio Ramos
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460787, Chile; (G.S.N.); (E.G.-V.)
- Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3480112, Chile
| |
Collapse
|
21
|
Zhang Y, Xu J, Yu J, Si L, Chang L, Li T, Yan D. Identification of CCCH-type zinc finger antiviral protein 1 (ZAP) gene from Pacific white shrimp (Penaeus vannamei): Characterization and expression analysis in response to viral infection. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108948. [PMID: 37453491 DOI: 10.1016/j.fsi.2023.108948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Zinc-finger proteins (ZFPs) are a huge family that exert multiple roles in the cells. ZFPs could be divided into nine types based on the numbers and positions of conserved Cys and His residues, in which CCCH-type ZFP was one of the most widely studied types. CCCH-type zinc finger antiviral protein 1 (ZAP), a CCCH-type ZFP that can inhibit the replication of certain RNA viruses and DNA viruses by mediating degradation of viral RNA and repressing mRNA translation, plays significant roles in the host innate immune defenses against viral infections. Presently, there have been numerous reports investigating the antiviral ability of ZAP, while no data is available about ZAP gene in the species of shrimps or even crustaceans. In this study, a novel protein containing CCCH-type zinc finger motifs (ZnF-CCCH), CCCH-type zinc finger antiviral protein 1 (ZAP) gene, was identified from Pacific white shrimp (Penaeus vannamei) and its role in antiviral immunity was further investigated. Similar to mammalian ZAPs, in addition to ZnF-CCCH, PvZAP also possesses central WWE domains and C-terminal PARP domain. Phylogenetic analysis showed that PvZAP was close to that of the crustacean Pacific oyster, separating from the cluster of vertebrate ZAP proteins. Upon in vivo infection by IHHNV, gene expression of PvZAP was strongly up-regulated in the hepatopancreas and gills of both adult and juvenile shrimps, where adult individuals showed higher fold changes of up-regulation than in juvenile individuals. These results suggested that PvZAP might play an important role in the innate immune defense of Pacific white shrimp against IHHNV infection. This allows us to gain new insights into the immunological function of ZAP in the innate immunity of shrimp species and even crustaceans.
Collapse
Affiliation(s)
- Yingying Zhang
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Jiahui Xu
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Jiyue Yu
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Lingjun Si
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Linrui Chang
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Ting Li
- School of Agriculture, Ludong University, Yantai, 264025, PR China.
| | - Dongchun Yan
- School of Agriculture, Ludong University, Yantai, 264025, PR China.
| |
Collapse
|
22
|
Deng Z, Yang Z, Liu X, Dai X, Zhang J, Deng K. Genome-Wide Identification and Expression Analysis of C3H Zinc Finger Family in Potato ( Solanum tuberosum L.). Int J Mol Sci 2023; 24:12888. [PMID: 37629069 PMCID: PMC10454627 DOI: 10.3390/ijms241612888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Transcription factors containing a CCCH structure (C3H) play important roles in plant growth and development, and their stress response, but research on the C3H gene family in potato has not been reported yet. In this study, we used bioinformatics to identify 50 C3H genes in potato and named them StC3H-1 to StC3H-50 according to their location on chromosomes, and we analyzed their physical and chemical properties, chromosome location, phylogenetic relationship, gene structure, collinearity relationship, and cis-regulatory element. The gene expression pattern analysis showed that many StC3H genes are involved in potato growth and development, and their response to diverse environmental stresses. Furthermore, RT-qPCR data showed that the expression of many StC3H genes was induced by high temperatures, indicating that StC3H genes may play important roles in potato response to heat stress. In addition, Some StC3H genes were predominantly expressed in the stolon and developing tubers, suggesting that these StC3H genes may be involved in the regulation of tuber development. Together, these results provide new information on StC3H genes and will be helpful for further revealing the function of StC3H genes in the heat stress response and tuber development in potato.
Collapse
Affiliation(s)
- Zeyi Deng
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Z.D.); (Z.Y.); (X.L.); (X.D.); (J.Z.)
| | - Zhijiang Yang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Z.D.); (Z.Y.); (X.L.); (X.D.); (J.Z.)
| | - Xinyan Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Z.D.); (Z.Y.); (X.L.); (X.D.); (J.Z.)
| | - Xiumei Dai
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Z.D.); (Z.Y.); (X.L.); (X.D.); (J.Z.)
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Jiankui Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Z.D.); (Z.Y.); (X.L.); (X.D.); (J.Z.)
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Kexuan Deng
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Z.D.); (Z.Y.); (X.L.); (X.D.); (J.Z.)
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| |
Collapse
|
23
|
Wu Z, Liang J, Li T, Zhang D, Teng N. A LlMYB305-LlC3H18-LlWRKY33 module regulates thermotolerance in lily. MOLECULAR HORTICULTURE 2023; 3:15. [PMID: 37789438 PMCID: PMC10514960 DOI: 10.1186/s43897-023-00064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/31/2023] [Indexed: 10/05/2023]
Abstract
The CCCH proteins play important roles in plant growth and development, hormone response, pathogen defense and abiotic stress tolerance. However, the knowledge of their roles in thermotolerance are scarce. Here, we identified a heat-inducible CCCH gene LlC3H18 from lily. LlC3H18 was localized in the cytoplasm and nucleus under normal conditions, while it translocated in the cytoplasmic foci and co-located with the markers of two messenger ribonucleoprotein (mRNP) granules, processing bodies (PBs) and stress granules (SGs) under heat stress conditions, and it also exhibited RNA-binding ability. In addition, LlC3H18 exhibited transactivation activity in both yeast and plant cells. In lily and Arabidopsis, overexpression of LlC3H18 damaged their thermotolerances, and silencing of LlC3H18 in lily also impaired its thermotolerance. Similarly, Arabidopsis atc3h18 mutant also showed decreased thermotolerance. These results indicated that the appropriate expression of C3H18 was crucial for establishing thermotolerance. Further analysis found that LlC3H18 directly bound to the promoter of LlWRKY33 and activated its expression. Besides, it was found that LlMYB305 acted as an upstream factor of LlC3H18 and activated its expression. In conclusion, we demonstrated that there may be a LlMYB305-LlC3H18-LlWRKY33 regulatory module in lily that is involved in the establishment of thermotolerance and finely regulates heat stress response.
Collapse
Affiliation(s)
- Ze Wu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Graduate Workstation of Nanjing Agricultural University and Nanjing Oriole Island Modern Agricultural Development Co., Ltd, Nanjing, 210043, China
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiahui Liang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Ting Li
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Graduate Workstation of Nanjing Agricultural University and Nanjing Oriole Island Modern Agricultural Development Co., Ltd, Nanjing, 210043, China
| | - Dehua Zhang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Graduate Workstation of Nanjing Agricultural University and Nanjing Oriole Island Modern Agricultural Development Co., Ltd, Nanjing, 210043, China
| | - Nianjun Teng
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
- Jiangsu Graduate Workstation of Nanjing Agricultural University and Nanjing Oriole Island Modern Agricultural Development Co., Ltd, Nanjing, 210043, China.
| |
Collapse
|
24
|
Liang JH, Li JR, Liu C, Pan WQ, Wu WJ, Shi WJ, Wang LJ, Yi MF, Wu J. GhbZIP30-GhCCCH17 module accelerates corm dormancy release by reducing endogenous ABA under cold storage in Gladiolus. PLANT, CELL & ENVIRONMENT 2023. [PMID: 37128741 DOI: 10.1111/pce.14595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/07/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Gladiolus hybridus is one of the most popular flowers worldwide. However, its corm dormancy characteristic largely limits its off-season production. Long-term cold treatment (LT), which increases sugar content and reduces abscisic acid (ABA), is an efficient approach to accelerate corm dormancy release (CDR). Here, we identified a GhbZIP30-GhCCCH17 module that mediates the antagonism between sugars and ABA during CDR. We showed that sugars promoted CDR by reducing ABA levels in Gladiolus. Our data demonstrated that GhbZIP30 transcription factor directly binds the GhCCCH17 zinc finger promoter and activates its transcription, confirmed by yeast one-hybrid, dual-luciferase (Dual-LUC), chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) and electrophoretic mobility shift assay (EMSA). GhCCCH17 is a transcriptional activator, and its nuclear localisation is altered by glucose and cytokinin treatments. Both GhbZIP30 and GhCCCH17 positively respond to LT, sugars, and cytokinin treatments. Silencing GhbZIP30 or GhCCCH17 resulted in delayed CDR by regulating ABA metabolic genes, while their overexpression promoted CDR. Taken together, we propose that the GhbZIP30-GhCCCH17 module is involved in cold- and glucose-induced CDR by regulating ABA metabolic genes.
Collapse
Affiliation(s)
- Jia-Hui Liang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jing-Ru Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Chang Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Wen-Qiang Pan
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Wen-Jing Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Wen-Jing Shi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Lu-Jia Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Ming-Fang Yi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Jian Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
25
|
Kabir N, Wang X, Lu L, Qanmber G, Liu L, Si A, Zhang L, Cao W, Yang Z, Yu Y, Liu Z. Functional characterization of TBL genes revealed the role of GhTBL7 and GhTBL58 in cotton fiber elongation. Int J Biol Macromol 2023; 241:124571. [PMID: 37100328 DOI: 10.1016/j.ijbiomac.2023.124571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/01/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023]
Abstract
TBL (Trichome Birefringence Like) gene family members are involved in trichome initiation and xylan acetylation in several plant species. In our research, we identified 102 TBLs from G. hirsutum. The phylogenetic tree classified TBL genes into five groups. Collinearity analysis of TBL genes indicated 136 paralogous gene pairs in G. hirsutum. Gene duplication indicated that WGD or segmental duplication contributed to the GhTBL gene family expansion. Promoter cis-elements of GhTBLs were related to growth and development, seed-specific regulation, light, and stress responses. GhTBL genes (GhTBL7, GhTBL15, GhTBL21, GhTBL25, GhTBL45, GhTBL54, GhTBL67, GhTBL72, and GhTBL77) exhibited upregulated response under exposure to cold, heat, NaCl, and PEG. GhTBL genes exhibited high expression during fiber development stages. Two GhTBL genes (GhTBL7 and GhTBL58) showed differential expression at 10 DPA fiber, as 10 DPA is a fast fiber elongation stage and fiber elongation is a very important stage of cotton fiber development. Subcellular localization of GhTBL7 and GhTBL58 revealed that these genes reside inside the cell membrane. Promoter GUS activity of GhTBL7 and GhTBL58 exhibited deep staining in roots. To further validate the role of these genes in cotton fiber elongation, we silenced these genes and observed a significant reduction in the fiber length at 10 DPA. In conclusion, the functional study of cell membrane-associated genes (GhTBL7 and GhTBL58) showed deep staining in root tissues and potential function during cotton fiber elongation at 10 DPA fiber.
Collapse
Affiliation(s)
- Nosheen Kabir
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Xuwen Wang
- Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture and Rural Affairs, Cotton Research Institute, Xinjiang Academy Agricultural and Reclamation Science, Shihezi 832003, China
| | - Lili Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Ghulam Qanmber
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Le Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Aijun Si
- Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture and Rural Affairs, Cotton Research Institute, Xinjiang Academy Agricultural and Reclamation Science, Shihezi 832003, China
| | - Lian Zhang
- Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture and Rural Affairs, Cotton Research Institute, Xinjiang Academy Agricultural and Reclamation Science, Shihezi 832003, China
| | - Wei Cao
- Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture and Rural Affairs, Cotton Research Institute, Xinjiang Academy Agricultural and Reclamation Science, Shihezi 832003, China
| | - Zuoren Yang
- Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture and Rural Affairs, Cotton Research Institute, Xinjiang Academy Agricultural and Reclamation Science, Shihezi 832003, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Yu Yu
- Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture and Rural Affairs, Cotton Research Institute, Xinjiang Academy Agricultural and Reclamation Science, Shihezi 832003, China.
| | - Zhao Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
26
|
Fan H, Quan S, Ye Q, Zhang L, Liu W, Zhu N, Zhang X, Ruan W, Yi K, Crawford NM, Wang Y. A molecular framework underlying low-nitrogen-induced early leaf senescence in Arabidopsis thaliana. MOLECULAR PLANT 2023; 16:756-774. [PMID: 36906802 DOI: 10.1016/j.molp.2023.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/09/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Nitrogen (N) deficiency causes early leaf senescence, resulting in accelerated whole-plant maturation and severely reduced crop yield. However, the molecular mechanisms underlying N-deficiency-induced early leaf senescence remain unclear, even in the model species Arabidopsis thaliana. In this study, we identified Growth, Development and Splicing 1 (GDS1), a previously reported transcription factor, as a new regulator of nitrate (NO3-) signaling by a yeast-one-hybrid screen using a NO3- enhancer fragment from the promoter of NRT2.1. We showed that GDS1 promotes NO3- signaling, absorption and assimilation by affecting the expression of multiple NO3- regulatory genes, including Nitrate Regulatory Gene2 (NRG2). Interestingly, we observed that gds1 mutants show early leaf senescence as well as reduced NO3- content and N uptake under N-deficient conditions. Further analyses indicated that GDS1 binds to the promoters of several senescence-related genes, including Phytochrome-Interacting Transcription Factors 4 and 5 (PIF4 and PIF5) and represses their expression. Interestingly, we found that N deficiency decreases GDS1 protein accumulation, and GDS1 could interact with Anaphase Promoting Complex Subunit 10 (APC10). Genetic and biochemical experiments demonstrated that Anaphase Promoting Complex or Cyclosome (APC/C) promotes the ubiquitination and degradation of GDS1 under N deficiency, resulting in loss of PIF4 and PIF5 repression and consequent early leaf senescence. Furthermore, we discovered that overexpression of GDS1 could delay leaf senescence and improve seed yield and N-use efficiency (NUE) in Arabidopsis. In summary, our study uncovers a molecular framework illustrating a new mechanism underlying low-N-induced early leaf senescence and provides potential targets for genetic improvement of crop varieties with increased yield and NUE.
Collapse
Affiliation(s)
- Hongmei Fan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Shuxuan Quan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Qing Ye
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Lei Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Wei Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Ning Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Xiaoqi Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Wenyuan Ruan
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Keke Yi
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Nigel M Crawford
- Section of Cell and Developmental Biology, Division of Biological Science, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Yong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
27
|
Xu W, Jian S, Li J, Wang Y, Zhang M, Xia K. Genomic Identification of CCCH-Type Zinc Finger Protein Genes Reveals the Role of HuTZF3 in Tolerance of Heat and Salt Stress of Pitaya (Hylocereus polyrhizus). Int J Mol Sci 2023; 24:ijms24076359. [PMID: 37047333 PMCID: PMC10094633 DOI: 10.3390/ijms24076359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Pitaya (Hylocereus polyrhizus) is cultivated in a broad ecological range, due to its tolerance to drought, heat, and poor soil. The zinc finger proteins regulate gene expression at the transcriptional and post-transcriptional levels, by interacting with DNA, RNA, and proteins, to play roles in plant growth and development, and stress response. Here, a total of 81 CCCH-type zinc finger protein genes were identified from the pitaya genome. Transcriptomic analysis showed that nine of them, including HuTZF3, responded to both salt and heat stress. RT-qPCR results showed that HuTZF3 is expressed in all tested organs of pitaya, with a high level in the roots and stems, and confirmed that expression of HuTZF3 is induced by salt and heat stress. Subcellular localization showed that HuTZF3 is targeted in the processing bodies (PBs) and stress granules (SGs). Heterologous expression of HuTZF3 could improve both salt and heat tolerance in Arabidopsis, reduce oxidative stress, and improve the activity of catalase and peroxidase. Therefore, HuTZF3 may be involved in post-transcriptional regulation via localizing to PBs and SGs, contributing to both salt and heat tolerance in pitaya.
Collapse
Affiliation(s)
- Weijuan Xu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuguang Jian
- South China National Botanical Garden, Guangzhou 510650, China
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Jianyi Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yusang Wang
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mingyong Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- Correspondence: (M.Z.); (K.X.); Tel./Fax: +86-20-37252891 (M.Z.)
| | - Kuaifei Xia
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- Correspondence: (M.Z.); (K.X.); Tel./Fax: +86-20-37252891 (M.Z.)
| |
Collapse
|
28
|
Zentella R, Wang Y, Zahn E, Hu J, Jiang L, Shabanowitz J, Hunt DF, Sun TP. SPINDLY O-fucosylates nuclear and cytoplasmic proteins involved in diverse cellular processes in plants. PLANT PHYSIOLOGY 2023; 191:1546-1560. [PMID: 36740243 PMCID: PMC10022643 DOI: 10.1093/plphys/kiad011] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/12/2022] [Indexed: 05/28/2023]
Abstract
SPINDLY (SPY) is a novel nucleocytoplasmic protein O-fucosyltransferase that regulates target protein activity or stability via O-fucosylation of specific Ser/Thr residues. Previous genetic studies indicate that AtSPY regulates plant development during vegetative and reproductive growth by modulating gibberellin and cytokinin responses. AtSPY also regulates the circadian clock and plant responses to biotic and abiotic stresses. The pleiotropic phenotypes of spy mutants point to the likely role of AtSPY in regulating key proteins functioning in diverse cellular pathways. However, very few AtSPY targets are known. Here, we identified 88 SPY targets from Arabidopsis (Arabidopsis thaliana) and Nicotiana benthamiana via the purification of O-fucosylated peptides using Aleuria aurantia lectin followed by electron transfer dissociation-MS/MS analysis. Most AtSPY targets were nuclear proteins that function in DNA repair, transcription, RNA splicing, and nucleocytoplasmic transport. Cytoplasmic AtSPY targets were involved in microtubule-mediated cell division/growth and protein folding. A comparison with the published O-linked-N-acetylglucosamine (O-GlcNAc) proteome revealed that 30% of AtSPY targets were also O-GlcNAcylated, indicating that these distinct glycosylations could co-regulate many protein functions. This study unveiled the roles of O-fucosylation in modulating many key nuclear and cytoplasmic proteins and provided a valuable resource for elucidating the regulatory mechanisms involved.
Collapse
Affiliation(s)
- Rodolfo Zentella
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | - Yan Wang
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | - Emily Zahn
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Jianhong Hu
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | - Liang Jiang
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Donald F Hunt
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
- Department of Pathology, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Tai-ping Sun
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
29
|
Zhang Q, Zhang J, Wei F, Fu X, Wei H, Lu J, Ma L, Wang H. The CCCH-Type Zinc-Finger Protein GhC3H20 Enhances Salt Stress Tolerance in Arabidopsis thaliana and Cotton through ABA Signal Transduction Pathway. Int J Mol Sci 2023; 24:ijms24055057. [PMID: 36902489 PMCID: PMC10002529 DOI: 10.3390/ijms24055057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
The CCCH zinc-finger protein contains a typical C3H-type motif widely existing in plants, and it plays an important role in plant growth, development, and stress responses. In this study, a CCCH zinc-finger gene, GhC3H20, was isolated and thoroughly characterized to regulate salt stress in cotton and Arabidopsis. The expression of GhC3H20 was up-regulated under salt, drought, and ABA treatments. GUS activity was detected in the root, stem, leaves, and flowers of ProGhC3H20::GUS transgenic Arabidopsis. Compared with the control, the GUS activity of ProGhC3H20::GUS transgenic Arabidopsis seedlings under NaCl treatment was stronger. Through the genetic transformation of Arabidopsis, three transgenic lines of 35S-GhC3H20 were obtained. Under NaCl and mannitol treatments, the roots of the transgenic lines were significantly longer than those of the wild-type (WT) Arabidopsis. The leaves of the WT turned yellow and wilted under high-concentration salt treatment at the seedling stage, while the leaves of the transgenic Arabidopsis lines did not. Further investigation showed that compared with the WT, the content of catalase (CAT) in the leaves of the transgenic lines was significantly higher. Therefore, compared with the WT, overexpression of GhC3H20 enhanced the salt stress tolerance of transgenic Arabidopsis. A virus-induced gene silencing (VIGS) experiment showed that compared with the control, the leaves of pYL156-GhC3H20 plants were wilted and dehydrated. The content of chlorophyll in pYL156-GhC3H20 leaves was significantly lower than those of the control. Therefore, silencing of GhC3H20 reduced salt stress tolerance in cotton. Two interacting proteins (GhPP2CA and GhHAB1) of GhC3H20 have been identified through a yeast two-hybrid assay. The expression levels of PP2CA and HAB1 in transgenic Arabidopsis were higher than those in the WT, and pYL156-GhC3H20 had expression levels lower than those in the control. GhPP2CA and GhHAB1 are the key genes involved in the ABA signaling pathway. Taken together, our findings demonstrate that GhC3H20 may interact with GhPP2CA and GhHAB1 to participate in the ABA signaling pathway to enhance salt stress tolerance in cotton.
Collapse
|
30
|
Wei W, Lu L, Bian XH, Li QT, Han JQ, Tao JJ, Yin CC, Lai YC, Li W, Bi YD, Man WQ, Chen SY, Zhang JS, Zhang WK. Zinc-finger protein GmZF351 improves both salt and drought stress tolerance in soybean. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36866859 DOI: 10.1111/jipb.13474] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Abiotic stress is one of the most important factors reducing soybean yield. It is essential to identify regulatory factors contributing to stress responses. A previous study found that the tandem CCCH zinc-finger protein GmZF351 is an oil level regulator. In this study, we discovered that the GmZF351 gene is induced by stress and that the overexpression of GmZF351 confers stress tolerance to transgenic soybean. GmZF351 directly regulates the expression of GmCIPK9 and GmSnRK, leading to stomata closing, by binding to their promoter regions, which carry two CT(G/C)(T/A)AA elements. Stress induction of GmZF351 is mediated through reduction in the H3K27me3 level at the GmZF351 locus. Two JMJ30-demethylase-like genes, GmJMJ30-1 and GmJMJ30-2, are involved in this demethylation process. Overexpression of GmJMJ30-1/2 in transgenic hairy roots enhances GmZF351 expression mediated by histone demethylation and confers stress tolerance to soybean. Yield-related agronomic traits were evaluated in stable GmZF351-transgenic plants under mild drought stress conditions. Our study reveals a new mode of GmJMJ30-GmZF351 action in stress tolerance, in addition to that of GmZF351 in oil accumulation. Manipulation of the components in this pathway is expected to improve soybean traits and adaptation under unfavorable environments.
Collapse
Affiliation(s)
- Wei Wei
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Long Lu
- Key Lab of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiao-Hua Bian
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qing-Tian Li
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jia-Qi Han
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Jun Tao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cui-Cui Yin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yong-Cai Lai
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Wei Li
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Ying-Dong Bi
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Wei-Qun Man
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
31
|
Boulanger HG, Guo W, Monteiro LDFR, Calixto CPG. Co-expression network of heat-response transcripts: A glimpse into how splicing factors impact rice basal thermotolerance. Front Mol Biosci 2023; 10:1122201. [PMID: 36818043 PMCID: PMC9932781 DOI: 10.3389/fmolb.2023.1122201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
To identify novel solutions to improve rice yield under rising temperatures, molecular components of thermotolerance must be better understood. Alternative splicing (AS) is a major post-transcriptional mechanism impacting plant tolerance against stresses, including heat stress (HS). AS is largely regulated by splicing factors (SFs) and recent studies have shown their involvement in temperature response. However, little is known about the splicing networks between SFs and AS transcripts in the HS response. To expand this knowledge, we constructed a co-expression network based on a publicly available RNA-seq dataset that explored rice basal thermotolerance over a time-course. Our analyses suggest that the HS-dependent control of the abundance of specific transcripts coding for SFs might explain the widespread, coordinated, complex, and delicate AS regulation of critical genes during a plant's inherent response to extreme temperatures. AS changes in these critical genes might affect many aspects of plant biology, from organellar functions to cell death, providing relevant regulatory candidates for future functional studies of basal thermotolerance.
Collapse
Affiliation(s)
- Hadrien Georges Boulanger
- Université Paris-Saclay, Gif-sur-Yvette, France,École Nationale Supérieure d'Informatique pour l'Industrie et l’Entreprise, Evry-Courcouronnes, France,Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Wenbin Guo
- Information and Computational Sciences, The James Hutton Institute, Dundee, United Kingdom
| | | | - Cristiane Paula Gomes Calixto
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil,*Correspondence: Cristiane Paula Gomes Calixto,
| |
Collapse
|
32
|
Ilyas M, Hussain Shah S, Fujita Y, Maruyama K, Nakashima K, Yamaguchi-Shinozaki K, Jan A. OsTZF1, a CCCH-tandem zinc finger protein gene, driven under own promoter produces no pleiotropic effects and confers salt and drought tolerance in rice. PLANT SIGNALING & BEHAVIOR 2022; 17:2142725. [PMID: 36398733 PMCID: PMC9677997 DOI: 10.1080/15592324.2022.2142725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Different abiotic stresses induce OsTZF1, a tandem CCCH-type zinc finger domain gene, in rice. Here, we report that transgenic rice plants overexpressing OsTZF1 under own promoter (POsTZF1:OsTZF1-OX [for overexpression]) transferred to soil showed normal growth similar to vector control plants. The POsTZF1:OsTZF1-OX produced normal leaves without any lesion mimic phenotype and exhibited normal seed setting. The POsTZF1:OsTZF1-OX plants showed significantly increased tolerance to salt and drought stresses and enhanced post stress recovery. Microarray analysis revealed a total of 846 genes up-regulated and 360 genes down-regulated in POsTZF1:OsTZF1-OX salt-treated plants. Microarray analysis of POsTZF1:OsTZF1-OX plants showed the regulation of many abiotic stress tolerance genes. These results suggest that OsTZF1-OX under own promoter show abiotic stress tolerance and produces no pleiotropic effect on phenotype of transgenic rice plant.
Collapse
Affiliation(s)
- Muhammad Ilyas
- Institute of Biotechnology and Genetic Engineering, the University of Agriculture Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Safdar Hussain Shah
- Institute of Biotechnology and Genetic Engineering, the University of Agriculture Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Yasunari Fujita
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, Japan
| | - Kyonoshin Maruyama
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, Japan
| | - Kazuo Nakashima
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, Japan
| | - Kazuko Yamaguchi-Shinozaki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Research Institute for Agricultural and Life Sciences, Tokyo University of Agriculture, Tokyo, Japan
| | - Asad Jan
- Institute of Biotechnology and Genetic Engineering, the University of Agriculture Peshawar, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
33
|
Comparative Transcriptome Analysis of CCCH Family in Roles of Flower Opening and Abiotic Stress in Osmanthus fragrans. Int J Mol Sci 2022; 23:ijms232315363. [PMID: 36499688 PMCID: PMC9735588 DOI: 10.3390/ijms232315363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
CCCH is a zinc finger family with a typical CCCH-type motif which performs a variety of roles in plant growth and development and responses to environmental stressors. However, the information about this family has not been reported for Osmanthus fragrans. In this study, a total of 66 CCCH predicted genes were identified from the O. fragrans genome, the majority of which had multiple CCCH motifs. The 66 OfCCCHs were found to be unevenly distributed on 21 chromosomes and were clustered into nine groups based on their phylogenetic analysis. In each group, the gene structure and domain makeup were comparatively conserved. The expression profiles of the OfCCCH genes were examined in various tissues, the flower-opening processes, and under various abiotic stresses using transcriptome sequencing and qRT-PCR (quantitative real-time PCR). The results demonstrated the widespread expression of OfCCCHs in various tissues, the differential expression of 22 OfCCCHs during flower-opening stages, and the identification of 4, 5, and 13 OfCCCHs after ABA, salt, and drought stress treatment, respectively. Furthermore, characterization of the representative OfCCCHs (OfCCCH8, 23, 27, and 36) revealed that they were all localized in the nucleus and that the majority of them had transcriptional activation in the yeast system. Our research offers the first thorough examination of the OfCCCH family and lays the groundwork for future investigations regarding the functions of CCCH genes in O. fragrans.
Collapse
|
34
|
Hormone Regulation of CCCH Zinc Finger Proteins in Plants. Int J Mol Sci 2022; 23:ijms232214288. [PMID: 36430765 PMCID: PMC9698766 DOI: 10.3390/ijms232214288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
CCCH zinc finger proteins contain one to six tandem CCCH motifs composed of three cysteine and one histidine residues and have been widely found in eukaryotes. Plant CCCH proteins control a wide range of developmental and adaptive processes through DNA-protein, RNA-protein and/or protein-protein interactions. The complex networks underlying these processes regulated by plant CCCH proteins are often involved in phytohormones as signal molecules. In this review, we described the evolution of CCCH proteins from green algae to vascular plants and summarized the functions of plant CCCH proteins that are influenced by six major hormones, including abscisic acid, gibberellic acid, brassinosteroid, jasmonate, ethylene and auxin. We further compared the regulatory mechanisms of plant and animal CCCH proteins via hormone signaling. Among them, Arabidopsis AtC3H14, 15 and human hTTP, three typical CCCH proteins, are able to integrate multiple hormones to participate in various biological processes.
Collapse
|
35
|
Liu H, Xiao S, Sui S, Huang R, Wang X, Wu H, Liu X. A tandem CCCH type zinc finger protein gene CpC3H3 from Chimonanthus praecox promotes flowering and enhances drought tolerance in Arabidopsis. BMC PLANT BIOLOGY 2022; 22:506. [PMID: 36309643 PMCID: PMC9617390 DOI: 10.1186/s12870-022-03877-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND CCCH-type zinc finger proteins play important roles in plant development and biotic/abiotic stress responses. Wintersweet (Chimonanthus praecox) is a popular ornamental plant with strong resistance to various stresses, which is a good material for exploring gene resource for stress response. In this study, we isolated a CCCH type zinc finger protein gene CpC3H3 (MZ964860) from flower of wintersweet and performed functional analysis with a purpose of identifying gene resource for floral transition and stress tolerance. RESULTS CpC3H3 was predicted a CCCH type zinc finger protein gene encoding a protein containing 446 amino acids with five conserved C-X8-C-X5-C-X3-H motifs. CpC3H3 was localized in the cell membrane but with a nuclear export signal at the N-terminal. Transcripts of CpC3H3 were significantly accumulated in flower buds at floral meristem formation stage, and were induced by polyethylene glycol. Overexpression of CpC3H3 promoted flowering, and enhanced drought tolerance in transgenic A. thaliana. CpC3H3 overexpression affects the expression level of genes involved in flower inducement and stress responses. Further comparative studies on physiological indices showed the contents of proline and soluble sugar, activity of peroxidase and the rates of electrolyte leakage were significantly increased and the content of malondialdehyde and osmotic potential was significantly reduced in transgenic A. thaliana under PEG stress. CONCLUSION Overall, CpC3H3 plays a role in flowering inducement and drought tolerance in transgenic A. thaliana. The CpC3H3 gene has the potential to be used to promote flowering and enhance drought tolerance in plants.
Collapse
Affiliation(s)
- Huamin Liu
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, 402160, China
| | - Shiqi Xiao
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Shunzhao Sui
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Renwei Huang
- College of Chemistry and Life Sciences, Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, 611130, China
| | - Xia Wang
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Huafeng Wu
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Xia Liu
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, 402160, China.
| |
Collapse
|
36
|
Neyhart JL, Kantar MB, Zalapa J, Vorsa N. Genomic-environmental associations in wild cranberry (Vaccinium macrocarpon Ait.). G3 (BETHESDA, MD.) 2022; 12:jkac203. [PMID: 35944211 PMCID: PMC9526045 DOI: 10.1093/g3journal/jkac203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/01/2022] [Indexed: 06/01/2023]
Abstract
Understanding the genetic basis of local adaptation in natural plant populations, particularly crop wild relatives, may be highly useful for plant breeding. By characterizing genetic variation for adaptation to potentially stressful environmental conditions, breeders can make targeted use of crop wild relatives to develop cultivars for novel or changing environments. This is especially appealing for improving long-lived woody perennial crops such as the American cranberry (Vaccinium macrocarpon Ait.), the cultivation of which is challenged by biotic and abiotic stresses. In this study, we used environmental association analyses in a collection of 111 wild cranberry accessions to identify potentially adaptive genomic regions for a range of bioclimatic and soil conditions. We detected 126 significant associations between SNP marker loci and environmental variables describing temperature, precipitation, and soil attributes. Many of these markers tagged genes with functional annotations strongly suggesting a role in adaptation to biotic or abiotic conditions. Despite relatively low genetic variation in cranberry, our results suggest that local adaptation to divergent environments is indeed present, and the identification of potentially adaptive genetic variation may enable a selective use of this germplasm for breeding more stress-tolerant cultivars.
Collapse
Affiliation(s)
- Jeffrey L Neyhart
- USDA, Agricultural Research Service, Genetic Improvement for Fruits & Vegetables Laboratory, Chatsworth, NJ 08019, USA
| | - Michael B Kantar
- Department of Tropical Plant and Soil Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Juan Zalapa
- USDA, Agricultural Research Service, Vegetable Crops Research Unit, Madison, WI 53706, USA
- Department of Horticulture, University of Wisconsin—Madison, Madison, WI 53706, USA
| | - Nicholi Vorsa
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
37
|
Genome-Wide Identification and Expression Analysis of the Zinc Finger Protein Gene Subfamilies under Drought Stress in Triticum aestivum. PLANTS 2022; 11:plants11192511. [PMID: 36235376 PMCID: PMC9572532 DOI: 10.3390/plants11192511] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 12/05/2022]
Abstract
The zinc finger protein (ZFP) family is one of plants’ most diverse family of transcription factors. These proteins with finger-like structural domains have been shown to play a critical role in plant responses to abiotic stresses such as drought. This study aimed to systematically characterize Triticum aestivum ZFPs (TaZFPs) and understand their roles under drought stress. A total of 9 TaC2H2, 38 TaC3HC4, 79 TaCCCH, and 143 TaPHD were identified, which were divided into 4, 7, 12, and 14 distinct subgroups based on their phylogenetic relationships, respectively. Segmental duplication dominated the evolution of four subfamilies and made important contributions to the large-scale amplification of gene families. Syntenic relationships, gene duplications, and Ka/Ks result consistently indicate a potential strong purifying selection on TaZFPs. Additionally, TaZFPs have various abiotic stress-associated cis-acting regulatory elements and have tissue-specific expression patterns showing different responses to drought and heat stress. Therefore, these genes may play multiple functions in plant growth and stress resistance responses. This is the first comprehensive genome-wide analysis of ZFP gene families in T. aestivum to elucidate the basis of their function and resistance mechanisms, providing a reference for precise manipulation of genetic engineering for drought resistance in T. aestivum.
Collapse
|
38
|
Nisar T, Tahir MHN, Iqbal S, Sajjad M, Nadeem MA, Qanmber G, Baig A, Khan Z, Zhao Z, Geng Z, Ur Rehman S. Genome-wide characterization and sequence polymorphism analyses of cysteine-rich poly comb-like protein in Glycine max. FRONTIERS IN PLANT SCIENCE 2022; 13:996265. [PMID: 36204049 PMCID: PMC9531024 DOI: 10.3389/fpls.2022.996265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Cysteine-rich poly comb-like protein (CPP) is a member of cysteine-rich transcription factors that regulates plant growth and development. In the present work, we characterized twelve CPP transcription factors encoding genes in soybean (Glycine max). Phylogenetic analyses classified CPP genes into six clades. Sequence logos analyses between G. max and G. soja amino acid residues exhibited high conservation. The presence of growth and stress-related cis-acting elements in the upstream regions of GmCPPs highlight their role in plant development and tolerance against abiotic stress. Ka/Ks levels showed that GmCPPs experienced limited selection pressure with limited functional divergence arising from segmental or whole genome duplication events. By using the PAN-genome of soybean, a single nucleotide polymorphism was identified in GmCPP-6. To perform high throughput genotyping, a kompetitive allele-specific PCR (KASP) marker was developed. Association analyses indicated that GmCPP-6-T allele of GmCPP-6 (in exon region) was associated with higher thousand seed weight under both water regimes (well-water and water-limited). Taken together, these results provide vital information to further decipher the biological functions of CPP genes in soybean molecular breeding.
Collapse
Affiliation(s)
- Tayyaba Nisar
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef (MNS) University of Agriculture, Multan, Pakistan
| | - Muhammad Hammad Nadeem Tahir
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef (MNS) University of Agriculture, Multan, Pakistan
| | - Shahid Iqbal
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef (MNS) University of Agriculture, Multan, Pakistan
| | - Muhammad Sajjad
- Department of Biosciences, Commission on Science and Technology for Sustainable Development in the South (COMSATS) University Islamabad, Islamabad, Pakistan
| | - Muhammad Azhar Nadeem
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Ghulam Qanmber
- State Key Laboratory of Cotton Biology, Cotton Research Institute of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Ayesha Baig
- Department of Biotechnology, Commission on Science and Technology for Sustainable Development in the South (COMSATS), University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Zulqurnain Khan
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef (MNS) University of Agriculture, Multan, Pakistan
| | - Zhengyun Zhao
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Zhide Geng
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Shoaib Ur Rehman
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef (MNS) University of Agriculture, Multan, Pakistan
| |
Collapse
|
39
|
Transcriptome-Wide Identification of CCCH-Type Zinc Finger Proteins Family in Pinus massoniana and RR-TZF Proteins in Stress Response. Genes (Basel) 2022; 13:genes13091639. [PMID: 36140811 PMCID: PMC9498899 DOI: 10.3390/genes13091639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
CCCH-type zinc finger proteins play an important role in multiple biotic and abiotic stresses. More and more reports about CCCH functions in plant development and stress responses have appeared over the past few years, focusing especially on tandem CCCH zinc finger proteins (TZFs). However, this has not been reported in Pinaceae. In this study, we identified 46 CCCH proteins, including 6 plant TZF members in Pinus massoniana, and performed bioinformatic analysis. According to RT-PCR analysis, we revealed the expression patterns of five RR-TZF genes under different abiotic stresses and hormone treatments. Meanwhile, tissue-specific expression analysis suggested that all genes were mainly expressed in needles. Additionally, RR-TZF genes showed transcriptional activation activity in yeast. The results in this study will be beneficial in improving the stress resistance of P. massoniana and facilitating further studies on the biological and molecular functions of CCCH zinc finger proteins.
Collapse
|
40
|
Wang M, Zhang H, Dai S, Feng S, Gong S, Wang J, Zhou A. AaZFP3, a Novel CCCH-Type Zinc Finger Protein from Adonis amurensis, Promotes Early Flowering in Arabidopsis by Regulating the Expression of Flowering-Related Genes. Int J Mol Sci 2022; 23:ijms23158166. [PMID: 35897742 PMCID: PMC9332444 DOI: 10.3390/ijms23158166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 02/05/2023] Open
Abstract
CCCH-type zinc finger proteins (ZFP) are a large family of proteins that play various important roles in plant growth and development; however, the functions of most proteins in this family are uncharacterized. In this study, a CCCH-type ZFP, AaZFP3, was identified in the floral organ of Adonis amurensis. Quantitative real-time PCR (qPCR) analysis revealed that AaZFP3 was widely expressed in the flowers of A.amurensis. Subcellular localization analysis showed that the AaZFP3 protein was mainly localized to the cytoplasm in tobacco and Arabidopsis. Furthermore, the overexpression of AaZFP3 promoted early flowering in Arabidopsis under both normal and relatively low-temperature conditions. RNA-sequencing and qPCR analyses revealed that the expression of multiple key flowering-time genes was altered in transgenic Arabidopsis overexpressing AaZFP3 compared to wild-type. Of these genes, FLOWERING LOCUS T (AtFT) expression was most significantly up-regulated, whereas FLOWERING LOCUS C (AtFLC) was significantly down-regulated. These results suggest that the overexpression of AaZFP3 promotes early flowering in Arabidopsis by affecting the expression of flowering-time genes. Overall, our study indicates that AaZFP3 may be involved in flowering regulation in A.amurensis and may represent an important genetic resource for improving flowering-time control in other ornamental plants or crops.
Collapse
|
41
|
Huang Y, Du L, Wang M, Ren M, Yu S, Yang Q. Multifaceted roles of zinc finger proteins in regulating various agronomic traits in rice. FRONTIERS IN PLANT SCIENCE 2022; 13:974396. [PMID: 35958192 PMCID: PMC9359907 DOI: 10.3389/fpls.2022.974396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Rice is an important cereal crop, which provides staple food for more than half of the world's population. To meet the demand of the ever-growing population in the next few decades, an extra increase in rice yield is an urgent need. Given that various agronomic traits contribute to the yield of rice, deciphering the key regulators involved in multiple agronomic trait formation is particularly important. As a superfamily of transcription factors, zinc finger proteins participate in regulating multiple genes in almost every stage of rice growth and development. Therefore, understanding zinc finger proteins underlying regulatory network would provide insights into the regulation of agronomic traits in rice. To this end, we intend to summarize the current advances in zinc finger proteins, with emphasis on C2H2 and CCCH proteins, and then discuss their potential in improving rice yield.
Collapse
Affiliation(s)
- Yifeng Huang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
- Guangdong Province Key Laboratory of Plant Molecular Breeding, Guangzhou, China
| | - Longgang Du
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Meixi Wang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Mengyun Ren
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Shouwu Yu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Qianying Yang
- Division of Integrative Bioscience and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang-si, South Korea
| |
Collapse
|
42
|
Tian Y, Zhao Y, Sun Y, El-Kassaby YA, Song G, Mi Y, Han J, Li Y. PagGRF11 Overexpression Promotes Stem Development and Dwarfing in Populus. Int J Mol Sci 2022; 23:ijms23147858. [PMID: 35887208 PMCID: PMC9323871 DOI: 10.3390/ijms23147858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 02/06/2023] Open
Abstract
Poplar is not only an important woody plant, but also a model species for molecular plant studies. We identified PagGRF11 (pAxG07Gg0005700), a homolog of the Arabidopsis AtGRF1 (AT4G37740) and AtGRF2 (AT2G22840) gene. We transformed the poplar clone "84K" with PagGRF11, and the transgenic overexpressed plants (PagGRF11-OE) showed plant height reduction (dwarfing), stem diameter increase, internode shortening, and larger leaf area. The Arabidopsis overexpression line grf-oe (Overexpression of PagGRF11 in Arabidopsis), mutant line atgrf (a loss-of-function mutant of the AtGRF1 gene of Arabidopsis thaliana), and mutant trans-complementary line atgrf+oe (overexpression of PagGRF11 in mutant plants (atgrf)) also showed different leaf size phenotypes. Further, tissue sections revealed that increased xylem production was the main cause of stem thickening. Transcriptome differential expression analysis of PagGRF11 overexpressed and control plants showed that PagGRF11 promoted CCCH39(C3H39) expression. The expression profile of CCCH39 in different tissues showed that it was highly expressed in xylem. Yeast single hybrid and instantaneous double luciferase assay results showed that PagGRF11 directly transcribed and activated CCCH39 expression through interaction with cis-acting element GARE (TCTGTTG), thus promoting xylem development. This is the first finding that GRF positively regulates xylem development through CCCH39 expression activation and further suggests that PagGRF11 is a potential target for increasing wood yield.
Collapse
Affiliation(s)
- Yanting Tian
- Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Y.T.); (Y.Z.); (Y.S.); (Y.M.); (J.H.)
| | - Ye Zhao
- Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Y.T.); (Y.Z.); (Y.S.); (Y.M.); (J.H.)
| | - Yuhan Sun
- Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Y.T.); (Y.Z.); (Y.S.); (Y.M.); (J.H.)
| | - Yousry A. El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada;
| | - Guoyong Song
- College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China;
| | - Yueqi Mi
- Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Y.T.); (Y.Z.); (Y.S.); (Y.M.); (J.H.)
| | - Juan Han
- Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Y.T.); (Y.Z.); (Y.S.); (Y.M.); (J.H.)
| | - Yun Li
- Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Y.T.); (Y.Z.); (Y.S.); (Y.M.); (J.H.)
- Correspondence:
| |
Collapse
|
43
|
Xu L, Liu T, Xiong X, Shen X, Huang L, Yu Y, Cao J. Highly Overexpressed AtC3H18 Impairs Microgametogenesis via Promoting the Continuous Assembly of mRNP Granules. FRONTIERS IN PLANT SCIENCE 2022; 13:932793. [PMID: 35909782 PMCID: PMC9335048 DOI: 10.3389/fpls.2022.932793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Plant CCCH zinc-finger proteins form a large family of regulatory proteins function in many aspects of plant growth, development and environmental responses. Despite increasing reports indicate that many CCCH zinc-finger proteins exhibit similar subcellular localization of being localized in cytoplasmic foci, the underlying molecular mechanism and the connection between this specific localization pattern and protein functions remain largely elusive. Here, we identified another cytoplasmic foci-localized CCCH zinc-finger protein, AtC3H18, in Arabidopsis thaliana. AtC3H18 is predominantly expressed in developing pollen during microgametogenesis. Although atc3h18 mutants did not show any abnormal phenotype, possibly due to redundant gene(s), aberrant AtC3H18 expression levels caused by overexpression resulted in the assembly of AtC3H18-positive granules in a dose-dependent manner, which in turn led to male sterility phenotype, highlighting the importance of fine-tuned AtC3H18 expression. Further analyzes demonstrated that AtC3H18-positive granules are messenger ribonucleoprotein (mRNP) granules, since they can exhibit liquid-like physical properties, and are associated with another two mRNP granules known as processing bodies (PBs) and stress granules (SGs), reservoirs of translationally inhibited mRNAs. Moreover, the assembly of AtC3H18-positive granules depends on mRNA availability. Combined with our previous findings on the AtC3H18 homologous genes in Brassica campestris, we concluded that appropriate expression level of AtC3H18 during microgametogenesis is essential for normal pollen development, and we also speculated that AtC3H18 may act as a key component of mRNP granules to modulate pollen mRNAs by regulating the assembly/disassembly of mRNP granules, thereby affecting pollen development.
Collapse
Affiliation(s)
- Liai Xu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Tingting Liu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Xingpeng Xiong
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Xiuping Shen
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Youjian Yu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Jiashu Cao
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
44
|
Ji X, Li J, Niu J, Mao R, Cao F, Li M. DiZF-C3H1, a zinc finger transcription factor from the dove tree (Davidia involucrata Baill.), plays a negative role in seed development and plant growth in Arabidopsis and tobacco. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 319:111248. [PMID: 35487657 DOI: 10.1016/j.plantsci.2022.111248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 05/15/2023]
Abstract
Low seed fertility seriously limits the survival and adaption of rare plant species. Here, we identified a seed-specific gene, DiZF-C3H1, from the dove tree and verified its function. Overexpression of DiZF-C3H1 caused retarded root development, delayed anthesis, abnormal floral organs, and deformed siliques in transgenic Arabidopsis lines. No offspring were obtained in transgenic Arabidopsis lines due to serious seed abortion. Therefore, we performed further verification in tobacco. Similarly, overexpression of DiZF-C3H1 retarded root development and reduced berry size and seed yield in transgenic tobacco lines. Moreover, although transgenic tobacco offspring were obtained, the viability of transgenic seeds was reduced and their germination was delayed. In addition, faded flowers were observed in transgenic tobacco lines. Taken together, DiZF-C3H1 was verified to play a negative role in root growth, floral organ development, and especially seed development in Arabidopsis and tobacco. This appears to be a deleterious gene for these model plants with high seed fertility. However, this function might be of special significance for Davidia, whose seed dormancy period is extremely long; DiZF-C3H1 might play a critical role in the distinctive reproduction strategy adopted by this rare and endangered species.
Collapse
Affiliation(s)
- Xiaomin Ji
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jian Li
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jie Niu
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Rongjie Mao
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Fuxiang Cao
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha 410004, China
| | - Meng Li
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China.
| |
Collapse
|
45
|
Genetic Mapping to Detect Stringent QTLs Using 1k-RiCA SNP Genotyping Platform from the New Landrace Associated with Salt Tolerance at the Seedling Stage in Rice. PLANTS 2022; 11:plants11111409. [PMID: 35684182 PMCID: PMC9183132 DOI: 10.3390/plants11111409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 12/02/2022]
Abstract
Rice is the world’s most important food crop, providing the daily calorie intake for more than half of the world’s population. Rice breeding has always been preoccupied with maximizing yield potential. However, numerous abiotic factors, such as salt, cold, drought, and heat, significantly reduce rice productivity. Salinity, one of the major abiotic stresses, reduces rice yield worldwide. This study was conducted to determine new quantitative trait loci (QTLs) that regulate salt tolerance in rice seedlings. One F2:3 mapping population was derived from a cross between BRRI dhan49 (a popular but sensitive rainfed rice variety) and Akundi (a salt-tolerant rice landrace in Bangladesh used as a donor parent). The 1k-Rice Custom Amplicon (1k-RiCA) single-nucleotide polymorphism (SNP) markers were used to genotype this mapping population. After removing segregation distortion and monomorphic markers, 884 SNPs generated a 1526.8 cM-long genetic linkage map with a mean marker density of 1.7 cM for the 12 linkage groups. By exploiting QGene and ICIM-ADD, a sum of 15 QTLs for nine traits was identified in salt stress on seven chromosomes. Four important genomic loci were identified (qSES1, qSL1, qSUR1 and qRL1) on chromosome 1. Out of these 15 QTLs, 14 QTLs are unique, as no other study has mapped in the same chromosomal location. We also detected 15 putative candidate genes and their functions. The ICIM-EPI approach identified 43 significant pairwise epistasis interactions between regions associated with and unassociated with QTLs. Apart from more well-known donors, Akundi serves as an important new donor source for global salt tolerance breeding initiatives, including Bangladesh. The introgression of the novel QTLs identified in this study will accelerate the development of new salt-tolerant varieties that are highly resistant to salt stress using marker-enabled breeding.
Collapse
|
46
|
Bai H, Liao X, Li X, Wang B, Luo Y, Yang X, Tian Y, Zhang L, Zhang F, Pan Y, Jiang B, Jia Y, Liu Q. DgbZIP3 interacts with DgbZIP2 to increase the expression of DgPOD for cold stress tolerance in chrysanthemum. HORTICULTURE RESEARCH 2022; 9:uhac105. [PMID: 35821702 PMCID: PMC9271009 DOI: 10.1093/hr/uhac105] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 04/23/2022] [Indexed: 06/15/2023]
Abstract
The bZIP transcription factor plays a very important role in abiotic stresses, e.g. drought, salt, and low-temperature stress, but the mechanism of action at low temperature is still unclear. In this study, overexpression of DgbZIP3 led to increased tolerance of chrysanthemum (Chrysanthemum morifolium Ramat.) to cold stress, whereas antisense suppression of DgbZIP3 resulted in decreased tolerance. Electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation (ChIP), luciferase complementary imaging analysis (LCI), and dual-luciferase reporter gene detection (DLA) experiments indicated that DgbZIP3 directly bound to the promoter of DgPOD and activated its expression. DgbZIP2 was identified as a DgbZIP3-interacting protein using yeast two-hybrid, co-immunoprecipitation, LCI, and bimolecular fluorescence complementation assays. Overexpression of DgbZIP2 led to increased tolerance of chrysanthemum to cold stress, whereas antisense suppression of DgbZIP2 resulted in decreased tolerance. A ChIP-qPCR experiment showed that DgbZIP2 was highly enriched in the promoter of DgPOD, while DLA, EMSA, and LCI experiments further showed that DgbZIP2 could not directly regulate the expression of DgPOD. The above results show that DgbZIP3 interacts with DgbZIP2 to regulate the expression of DgPOD to promote an increase in peroxidase activity, thereby regulating the balance of reactive oxygen species and improving the tolerance of chrysanthemum to low-temperature stress.
Collapse
Affiliation(s)
- Huiru Bai
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, China
| | - Xiaoqin Liao
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, China
| | - Xin Li
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, China
| | - Bei Wang
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, China
| | - Yunchen Luo
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, China
| | - Xiaohan Yang
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, China
| | - Yuchen Tian
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, China
| | - Lei Zhang
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, China
| | - Fan Zhang
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, China
| | - Yuanzhi Pan
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, China
| | - Beibei Jiang
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, China
| | - Yin Jia
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, China
| | - Qinglin Liu
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, China
| |
Collapse
|
47
|
Chai G, Qi G, Wang D, Zhuang Y, Xu H, Bai Z, Bai MY, Hu R, Wang ZY, Zhou G, Kong Y. The CCCH zinc finger protein C3H15 negatively regulates cell elongation by inhibiting brassinosteroid signaling. PLANT PHYSIOLOGY 2022; 189:285-300. [PMID: 35139225 PMCID: PMC9070797 DOI: 10.1093/plphys/kiac046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/10/2022] [Indexed: 05/20/2023]
Abstract
Plant CCCH proteins participate in the control of multiple developmental and adaptive processes, but the regulatory mechanisms underlying these processes are not well known. In this study, we showed that the Arabidopsis (Arabidopsis thaliana) CCCH protein C3H15 negatively regulates cell elongation by inhibiting brassinosteroid (BR) signaling. Genetic and biochemical evidence showed that C3H15 functions downstream of the receptor BR INSENSITIVE 1 (BRI1) as a negative regulator in the BR pathway. C3H15 is phosphorylated by the GLYCOGEN SYNTHASE KINASE 3 -like kinase BR-INSENSITIVE 2 (BIN2) at Ser111 in the cytoplasm in the absence of BRs. Upon BR perception, C3H15 transcription is enhanced, and the phosphorylation of C3H15 by BIN2 is reduced. The dephosphorylated C3H15 protein accumulates in the nucleus, where C3H15 regulates transcription via G-rich elements (typically GGGAGA). C3H15 and BRASSINAZOLE RESISTANT 1 (BZR1)/BRI1-EMS-SUPPRESSOR 1 (BES1), two central transcriptional regulators of BR signaling, directly suppress each other and share a number of BR-responsive target genes. Moreover, C3H15 antagonizes BZR1 and BES1 to regulate the expression of their shared cell elongation-associated target gene, SMALL AUXIN-UP RNA 15 (SAUR15). This study demonstrates that C3H15-mediated BR signaling may be parallel to, or even attenuate, the dominant BZR1 and BES1 signaling pathways to control cell elongation. This finding expands our understanding of the regulatory mechanisms underlying BR-induced cell elongation in plants.
Collapse
Affiliation(s)
| | | | | | | | - Hua Xu
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Zetao Bai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Ming-Yi Bai
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Ruibo Hu
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Zeng-yu Wang
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | | | | |
Collapse
|
48
|
Wang L, Chen J, Zhao Y, Wang S, Yuan M. OsMAPK6 phosphorylates a zinc finger protein OsLIC to promote downstream OsWRKY30 for rice resistance to bacterial blight and leaf streak. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1116-1130. [PMID: 35293133 DOI: 10.1111/jipb.13249] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Rice OsLIC encoding a CCCH zinc finger transcription factor plays an important role in immunity. However, the immune signaling pathways that OsLIC-involved and the underlying mechanisms that OsLIC-conferred resistance against pathogens are largely unclear. Here, we show that OsLIC, as a substrate for OsMAPK6, negatively regulates resistance to Xanthomonas oryzae pv. oryzae (Xoo) and X. oryzae pv. oryzicola (Xoc) by directly suppressing OsWRKY30 transcription. Biochemical assays showed that OsLIC bound to OsWRKY30 promoter and suppressed its transcription. Genetic assays confirmed that the osilc knockout mutants and OsWRKY30-overexpressing plants exhibited enhanced resistance to Xoo and Xoc, knocking out OsWRKY30 in the oslic mutants attenuated the resistance against bacterial pathogens. OsMAPK6 physically interacted with and phosphorylated OsLIC leading to decreased OsLIC DNA-binding activity, therefore, overexpression of OsLIC partially suppressed OsMAPK6-mediated rice resistance. In addition, both OsMAPK6-phosphorylated activation of OsLIC and phosphorylation-mimic OsLIC5D had reduced DNA-binding activity towards OsWRKY30 promoter, thereby promoting OsWRKY30 transcription. Collectively, these results reveal that OsMAPK6-mediated phosphorylation of OsLIC positively regulates rice resistance to Xoo and Xoc by modulating OsWRKY30 transcription, suggesting that OsMAPK6-OsLIC-OsWRKY30 module is an immune signaling pathway in response to the bacterial pathogens.
Collapse
Affiliation(s)
- Lihan Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuqin Zhao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
49
|
Perea-García A, Puig S, Peñarrubia L. The role of post-transcriptional modulators of metalloproteins in response to metal deficiencies. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1735-1750. [PMID: 34849747 DOI: 10.1093/jxb/erab521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Copper and iron proteins have a wide range of functions in living organisms. Metal assembly into metalloproteins is a complex process, where mismetalation is detrimental and energy consuming to cells. Under metal deficiency, metal distribution is expected to reach a metalation ranking, prioritizing essential versus dispensable metalloproteins, while avoiding interference with other metals and protecting metal-sensitive processes. In this review, we propose that post-transcriptional modulators of metalloprotein mRNA (ModMeR) are good candidates in metal prioritization under metal-limited conditions. ModMeR target high quota or redundant metalloproteins and, by adjusting their synthesis, ModMeR act as internal metal distribution valves. Inappropriate metalation of ModMeR targets could compete with metal delivery to essential metalloproteins and interfere with metal-sensitive processes, such as chloroplastic photosynthesis and mitochondrial respiration. Regulation of ModMeR targets could increase or decrease the metal flow through interconnected pathways in cellular metal distribution, helping to achieve adequate differential metal requirements. Here, we describe and compare ModMeR that function in response to copper and iron deficiencies. Specifically, we describe copper-miRNAs from Arabidopsis thaliana and diverse iron ModMeR from yeast, mammals, and bacteria under copper and iron deficiencies, as well as the influence of oxidative stress. Putative functions derived from their role as ModMeR are also discussed.
Collapse
Affiliation(s)
- Ana Perea-García
- Departament de Bioquímica i Biologia Molecular and Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Burjassot, Valencia, Spain
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Lola Peñarrubia
- Departament de Bioquímica i Biologia Molecular and Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Burjassot, Valencia, Spain
| |
Collapse
|
50
|
Ai Q, Pan W, Zeng Y, Li Y, Cui L. CCCH Zinc finger genes in Barley: genome-wide identification, evolution, expression and haplotype analysis. BMC PLANT BIOLOGY 2022; 22:117. [PMID: 35291942 PMCID: PMC8922935 DOI: 10.1186/s12870-022-03500-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/01/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND CCCH transcription factors are important zinc finger transcription factors involved in the response to biotic and abiotic stress and physiological and developmental processes. Barley (Hordeum vulgare) is an agriculturally important cereal crop with multiple uses, such as brewing production, animal feed, and human food. The identification and assessment of new functional genes are important for the molecular breeding of barley. RESULTS In this study, a total of 53 protein-encoding CCCH genes unevenly dispersed on seven different chromosomes were identified in barley. Phylogenetic analysis categorized the barley CCCH genes (HvC3Hs) into eleven subfamilies according to their distinct features, and this classification was supported by intron-exon structure and conserved motif analysis. Both segmental and tandem duplication contributed to the expansion of CCCH gene family in barley. Genetic variation of HvC3Hs was characterized using publicly available exome-capture sequencing datasets. Clear genetic divergence was observed between wild and landrace barley populations in HvC3H genes. For most HvC3Hs, nucleotide diversity and the number of haplotype polymorphisms decreased during barley domestication. Furthermore, the HvC3H genes displayed distinct expression profiles for different developmental processes and in response to various types of stresses. The HvC3H1, HvC3H2 and HvC3H13 of arginine-rich tandem CCCH zinc finger (RR-TZF) genes were significantly induced by multiple types of abiotic stress and/or phytohormone treatment, which might make them as excellent targets for the molecular breeding of barley. CONCLUSIONS Overall, our study provides a comprehensive characterization of barley CCCH transcription factors, their diversity, and their biological functions.
Collapse
Affiliation(s)
- Qi Ai
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045 Jiangxi China
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Wenqiu Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yan Zeng
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045 Jiangxi China
| | - Yihan Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045 Jiangxi China
| | - Licao Cui
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045 Jiangxi China
- Key Laboratory for Crop Gene Resources and Germplasm Enhancement, MOA, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|