1
|
Bartra C, Vuraić K, Yuan Y, Codony S, Valdés-Quiroz H, Casal C, Slevin M, Máquez-Kisinousky L, Planas AM, Griñán-Ferré C, Pallàs M, Morisseau C, Hammock BD, Vázquez S, Suñol C, Sanfeliu C. Microglial pro-inflammatory mechanisms induced by monomeric C-reactive protein are counteracted by soluble epoxide hydrolase inhibitors. Int Immunopharmacol 2025; 155:114644. [PMID: 40215773 DOI: 10.1016/j.intimp.2025.114644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
Monomeric C-reactive protein (mCRP) is a pro-inflammatory molecule generated by the dissociation of native CRP. Clinical and experimental studies suggest that mCRP deposition in the brain induces Alzheimer's disease (AD) pathology and cognitive loss. Pathological neuroinflammation is increasingly suggested as relevant in AD. Innovative therapies against neuroinflammation are desperately needed, and inhibitors of the enzyme soluble epoxide hydrolase (sEH) are a promising new generation of anti-inflammatory drugs. Mouse primary microglia and BV2 cell line cultures were exposed to mCRP to analyze its pro-inflammatory mechanisms. sEH inhibitors, both newly synthesized UB-SCG-55 and UB-SCG-65, and the reference agent TPPU, were tested for their anti-inflammatory action against mCRP. Phenotypic changes were analyzed through cell imaging techniques, as well as molecular analysis of inflammatory mediators and gene activation pathways. Results show that mCRP triggers a pro-inflammatory response through three main inflammatory pathways: iNOS, NLRP3, and COX-2, followed by increased cytokine generation. Polarization of microglia toward a M1-like phenotype was confirmed by morphological analysis. Also, mCRP can bind to and cross the cell membrane, providing further insight into its mechanisms of action. sEH inhibitors were effective against mCRP induction of a reactive microglial phenotype. The first-line compound UB-SCG-55 emerged as the most potent anti-inflammatory against mCRP injury. Therefore, the direct activation of microglia by mCRP provides evidence of its role in triggering and exacerbating neurodegenerative diseases with a neuroinflammatory component, such as AD. Furthermore, the protection given by inhibitors of sEH confirms its potential as innovative drugs against deleterious effects of neuroinflammation.
Collapse
Affiliation(s)
- Clara Bartra
- Department of Neuroscience and Experimental Therapeutics, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain; PhD Program in Biotechnology, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, 08034 Barcelona, Spain.
| | - Kristijan Vuraić
- Department of Neuroscience and Experimental Therapeutics, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain
| | - Yi Yuan
- Department of Neuroscience and Experimental Therapeutics, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain
| | - Sandra Codony
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Haydeé Valdés-Quiroz
- Department of Neuroscience and Experimental Therapeutics, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain
| | - Carme Casal
- Microscopy Service, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain
| | - Mark Slevin
- CCAMF, George Emil Palade Universitatea de Medicina, Farmacie, Stiinte se Technologie, "George Emil Palade" din Targu-Mures, 540142, Tirgu Mures, Romania
| | - Leonardo Máquez-Kisinousky
- Department of Neuroscience and Experimental Therapeutics, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain
| | - Anna M Planas
- Department of Neuroscience and Experimental Therapeutics, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain
| | - Christian Griñán-Ferré
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Barcelona, Spain; Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Barcelona, Spain; Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Christophe Morisseau
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, CA 95616, United States
| | - Bruce D Hammock
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, CA 95616, United States
| | - Santiago Vázquez
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Cristina Suñol
- Department of Neuroscience and Experimental Therapeutics, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain
| | - Coral Sanfeliu
- Department of Neuroscience and Experimental Therapeutics, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain.
| |
Collapse
|
2
|
Motta MA, Martin-Saldaña S, Beloqui A, Calderón M, Larrañaga A. Polypeptide-based multilayer capsules with anti-inflammatory properties: exploring different strategies to incorporate hydrophobic drugs. J Mater Chem B 2025; 13:5297-5314. [PMID: 40207430 DOI: 10.1039/d4tb01906g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
More than 90% of drug candidates used in the drug development pipeline and about 40% of drugs on the market are poorly soluble in water based on the definition of the biopharmaceutical classification system. The advent of drug delivery approaches has represented a striking tool to overcome the challenges associated with the use of hydrophobic drugs, such as their low bioavailability and off-target effects. Drug carrier formulations composed of biodegradable and biocompatible polymers, such as polypeptides, have been explored as platforms to host poorly water-soluble drugs to prolong drug circulation, enhance their safety, reduce their immunogenicity, and promote their controlled release. In this work, we evaluated three strategies-co-precipitation, post-encapsulation, and conjugation-to incorporate a hydrophobic model drug, i.e., curcumin (CUR), into biodegradable multilayer capsules fabricated via a layer-by-layer (LbL) approach. Poly(L-lysine) (PLys) and poly(L-glutamic acid) (PGlu) were adopted as building blocks and alternately assembled onto calcium carbonate (CaCO3) microparticles to build a polypeptide-multilayer membrane, which acted as a barrier to control the release of the drug. The application of our three formulations in in vitro inflammatory models of THP-1 derived human macrophages and murine microglia showed a reduction of the inflammation with the suppression of three pivotal pro-inflammatory cytokines (i.e., interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α). Moreover, the intracellular release of CUR detected upon uptake studies on activated microglia suggested that our systems could represent a potential therapeutic approach to reduce acute neuroinflammation and modulate microglia phenotype.
Collapse
Affiliation(s)
- Maria Angela Motta
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain.
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Bilbao School of Engineering, University of the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, 48013 Bilbao, Spain.
| | - Sergio Martin-Saldaña
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain.
| | - Ana Beloqui
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain.
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Marcelo Calderón
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain.
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Aitor Larrañaga
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Bilbao School of Engineering, University of the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, 48013 Bilbao, Spain.
| |
Collapse
|
3
|
Frusciante L, Nyong’a CN, Trezza A, Shabab B, Olmastroni T, Barletta R, Mastroeni P, Visibelli A, Orlandini M, Raucci L, Geminiani M, Santucci A. Bioactive Potential of Sweet Cherry ( Prunus avium L.) Waste: Antioxidant and Anti-Inflammatory Properties for Sustainable Applications. Foods 2025; 14:1523. [PMID: 40361606 PMCID: PMC12071293 DOI: 10.3390/foods14091523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
This study presents an innovative approach to the sustainable valorization of industrial sweet cherry (Prunus avium L.) waste from the Vignola Region, Italy, transforming what is typically discarded into a high-value bioactive resource. Unlike conventional extractions, our hydroethanolic extract (VCE) was obtained from the entire cherry waste, including the pericarp, pulp, and stone, as generated by industrial processing. This full-fruit extraction strategy represents a novel and efficient use of agricultural by-products, aligning with circular bioeconomy principles. Sweet cherries are known for their phenolic richness, and spectrophotometric assays (TPC, TFC, reducing power, DPPH, and ABTS) confirmed the extract's antioxidant capacity. In vitro studies using RAW 264.7 macrophages revealed no cytotoxic effects (MTT assay), along with significant anti-inflammatory activity, evidenced by reduced ROS and NO production and downregulation of iNOS and COX-2. Western blotting showed inhibition of NF-κB nuclear translocation and MAPK pathway signaling. Additionally, agarose gel electrophoresis showed protection against oxidative DNA damage. UPLC-MS/MS analysis identified sakuranetin, aequinetin, and dihydrowogonin as the most representative compounds in VCE. Molecular docking simulations revealed strong and specific binding affinities of these compounds to NF-κB p65 and key MAPK targets. These findings highlight whole sweet cherry waste-including the pit-as a potent and sustainable source of bioactive compounds with promising nutraceutical and pharmaceutical applications.
Collapse
Affiliation(s)
- Luisa Frusciante
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (C.N.N.); (A.T.); (B.S.); (T.O.); (R.B.); (P.M.); (A.V.); (M.O.); (L.R.); (A.S.)
| | - Collins Nyaberi Nyong’a
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (C.N.N.); (A.T.); (B.S.); (T.O.); (R.B.); (P.M.); (A.V.); (M.O.); (L.R.); (A.S.)
| | - Alfonso Trezza
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (C.N.N.); (A.T.); (B.S.); (T.O.); (R.B.); (P.M.); (A.V.); (M.O.); (L.R.); (A.S.)
| | - Behnaz Shabab
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (C.N.N.); (A.T.); (B.S.); (T.O.); (R.B.); (P.M.); (A.V.); (M.O.); (L.R.); (A.S.)
| | - Tommaso Olmastroni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (C.N.N.); (A.T.); (B.S.); (T.O.); (R.B.); (P.M.); (A.V.); (M.O.); (L.R.); (A.S.)
| | - Roberta Barletta
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (C.N.N.); (A.T.); (B.S.); (T.O.); (R.B.); (P.M.); (A.V.); (M.O.); (L.R.); (A.S.)
| | - Pierfrancesco Mastroeni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (C.N.N.); (A.T.); (B.S.); (T.O.); (R.B.); (P.M.); (A.V.); (M.O.); (L.R.); (A.S.)
| | - Anna Visibelli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (C.N.N.); (A.T.); (B.S.); (T.O.); (R.B.); (P.M.); (A.V.); (M.O.); (L.R.); (A.S.)
| | - Maurizio Orlandini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (C.N.N.); (A.T.); (B.S.); (T.O.); (R.B.); (P.M.); (A.V.); (M.O.); (L.R.); (A.S.)
| | - Luisa Raucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (C.N.N.); (A.T.); (B.S.); (T.O.); (R.B.); (P.M.); (A.V.); (M.O.); (L.R.); (A.S.)
| | - Michela Geminiani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (C.N.N.); (A.T.); (B.S.); (T.O.); (R.B.); (P.M.); (A.V.); (M.O.); (L.R.); (A.S.)
- SienabioACTIVE, University of Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (C.N.N.); (A.T.); (B.S.); (T.O.); (R.B.); (P.M.); (A.V.); (M.O.); (L.R.); (A.S.)
- SienabioACTIVE, University of Siena, Via Aldo Moro, 53100 Siena, Italy
- ARTES 4.0, Viale Rinaldo Piaggio, 34, 56025 Pontedera, Italy
| |
Collapse
|
4
|
Velmurugan Y, Chakkarapani N, Natarajan SR, Jayaraman S, Madhukar H, Venkatachalam R. PPI networking, in-vitro expression analysis, virtual screening, DFT, and molecular dynamics for identifying natural TNF-α inhibitors for rheumatoid arthritis. Mol Divers 2025:10.1007/s11030-025-11158-x. [PMID: 40252143 DOI: 10.1007/s11030-025-11158-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 03/04/2025] [Indexed: 04/21/2025]
Abstract
In humans, rheumatoid arthritis (RA) is a deadly autoimmune disease that affects bone health. Although the specific etiology of RA is unknown, scientific evidence suggests that smoking, genetic abnormalities, and environmental factors may all contribute to the disease's progression. We employed protein-protein interaction (PPI) networking analysis to identify a possible therapeutic target for RA. The lead-like molecule for the selected target was then found via virtual screening in the Indian medicinal plants phytochemistry and therapeutics database. Molecular dynamics has confirmed the stability of drug target-lead-like molecule complexes. The networking analysis identifies TNF-α as a potential therapeutic target for RA. TNF-α expression was verified using in vitro studies. Cassamedine was identified as a possible lead molecule among 17,967 chemicals in the Indian Medicinal Plants Phytochemistry and Therapeutics database using virtual screening experiments. The molecular docking results of the lead compound interaction with TNF-α were clarified by the quantum mechanism (QM) technique, namely, density functional theory (DFT). The stability of the lead-like compound with TNF-α was confirmed using 200 ns of molecular dynamics simulations. Energy calculations using molecular mechanics Poisson-Boltzmann surface area (MMPBSA) confirm the free energy between TNF-α and lead-like molecules.
Collapse
Affiliation(s)
- Yogaswaran Velmurugan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, Tamil Nadu, 600025, India
| | - Nandhini Chakkarapani
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, Tamil Nadu, 600025, India
| | - Sathan Raj Natarajan
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Chennai, Tamil Nadu, 600 077, India
| | - Selvaraj Jayaraman
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Chennai, Tamil Nadu, 600 077, India
| | - Hemamalini Madhukar
- Department of Chemistry, Mother Teresa Women's University, Kodaikanal, Tamil Nadu, 624102, India
| | - Rajakannan Venkatachalam
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, Tamil Nadu, 600025, India.
| |
Collapse
|
5
|
Manikandan C, Jaiswal AK. Therapeutic Potential of NF-κB Inhibition in Glioblastoma: Gene Therapy Approach with rAAV-5 Mediated IκBαM Overexpression. Mol Biotechnol 2025:10.1007/s12033-025-01418-4. [PMID: 40140181 DOI: 10.1007/s12033-025-01418-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/21/2025] [Indexed: 03/28/2025]
Abstract
Current treatment strategies for glioblastoma, including resection followed by concurrent chemotherapy/radiotherapy are not curative. Angiogenesis and hypoxia are two major factors responsible for GBM growth and resistance to existing therapies, leading to poor clinical outcomes. The transcription factor NF-κB induces tumour progression by activating genes associated with cell proliferation and angiogenesis. It is expressed constitutively in gliomas and is known to regulate the expression of HIF-1α and VEGF in GBM. As a result, NF-κB can be a potent target that can inhibit tumour growth/invasiveness by reducing hypoxia and angiogenesis, as well as preventing macrophage and microglia infiltration and generating inflammatory cytokines that cause gliomagenesis. AAV vectors are the typical transducing agents for gene therapy because they can infect a broad range of dividing and non-dividing cell types. AAVs have emerged as one of the most widely used methods for delivering genes into the central nervous system because of their broad range of infectivity, ability to induce long-term transgenic expression, and lack of toxicity. The present study aims to inhibit NF-κB activity by blocking its nuclear translocation via overexpression of IκBα utilising recombinant adeno-associated virus-5 plasmid as a gene therapy vector.
Collapse
Affiliation(s)
- Ceera Manikandan
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore, 632014, India
| | - Amit Kumar Jaiswal
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
6
|
Gao S, Li H, Li Z, Wang H, Li X, Yang S, Huang L, Zhang B, Zhang K, Tsoi JKH, He J, Dissanayaka WL. Multifunctional Injectable Bioadhesive with Toll-like Receptor 4 and Myeloid Differentiation Factor 2 Antagonistic Anti-inflammatory Potential for Periodontal Regeneration. ACS NANO 2025; 19:7098-7116. [PMID: 39951685 PMCID: PMC11867008 DOI: 10.1021/acsnano.4c15922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025]
Abstract
Effectively addressing inflammation in periodontitis is challenging as conventional injectable hydrogels typically require the addition of drugs to provide sufficient anti-inflammatory effects. To overcome this limitation, we developed a multifunctional injectable hydrogel with inherent properties that antagonize the Toll-like receptor 4 and myeloid differentiation factor 2 complex (TLR4-MD2). This hydrogel allows for direct inhibition of inflammatory pathways without the need for additional drugs. We identified xylitol, caffeic acid, and citric acid as natural materials that effectively meet biological needs for anti-inflammatory and antibacterial effects as well as support bone regeneration. With this in mind, we developed a caffeic-acid-modified poly(xylitol succinate) (PXS)-based iCPC@MgO composite hydrogel and tested its potential application for periodontal regeneration. The iCPC@MgO hydrogel demonstrated rapid wet tissue adhesion and injectability, which are ascribed to incorporating catechol groups derived from caffeic acid. Intriguingly, the PXS polymer used for synthesizing the hydrogel was found to possess anti-inflammatory properties and act as an antagonist for the TLR4-MD2 complex. This hydrogel also exhibited outstanding antibacterial efficiency against Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans by stimulating antibiotic synthesis within bacteria and disrupting bacterial cell walls. In a periodontitis mouse model, the iCPC@MgO hydrogel demonstrated the therapeutic potential of reducing inflammatory factors, inhibiting dominant periodontitis-associated bacteria, and maintaining subgingival microbiota balance in addition to the regenerative effects. These properties, combined with their ecofriendly nature, firmly established the iCPC@MgO hydrogel as a highly promising option for use in periodontitis therapy as well as in tissue healing, repair, and regeneration in various other inflammatory conditions.
Collapse
Affiliation(s)
- Shuting Gao
- Applied
Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Huihua Li
- Applied
Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Zekun Li
- Department
of Chemistry, Faculty of Science, The University
of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Hong Wang
- Applied
Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Xinyue Li
- State
Key Laboratory of Applied Organic Chemistry and Key Laboratory of
Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Shengyan Yang
- Applied
Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Lin Huang
- Applied
Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Baoping Zhang
- Department
of Stomatology Lanzhou University, Lanzhou University, Lanzhou 730000, China
| | - Kailiang Zhang
- Department
of Stomatology Lanzhou University, Lanzhou University, Lanzhou 730000, China
| | - James Kit Hon Tsoi
- Applied
Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Jian He
- Department
of Chemistry, Faculty of Science, The University
of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Waruna Lakmal Dissanayaka
- Applied
Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
7
|
Akinduro O, Kumar S, Chen Y, Thomas B, Hassan Q, Sims B. Human breast milk-derived exosomes attenuate lipopolysaccharide-induced activation in microglia. J Neuroinflammation 2025; 22:41. [PMID: 39955566 PMCID: PMC11830176 DOI: 10.1186/s12974-025-03345-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/13/2025] [Indexed: 02/17/2025] Open
Abstract
Microglia mediate the immune response in the central nervous system to many insults, including lipopolysaccharide (LPS), a bacterial endotoxin that initiates neuroinflammation in the neonatal population, especially preterm infants. The synthesis of the proinflammatory proteins CD40 and NLRP3 depends on the canonical NF-κB cascade as the genes encoding CD40 and NLRP3 are transcribed by the phosphorylated NF-κB p50/p65 heterodimer in LPS-induced microglia. Exosomes, which are nanosized vesicles (40-150 nm) involved in intercellular communication, are implicated in many pathophysiological processes. Human breast milk, which is rich in exosomes, plays a vital role in neonatal immune system maturation and adaptation. Activated microglia may cause brain-associated injuries or disorders; therefore, we hypothesize that human breast milk-derived exosomes (HBME) attenuate LPS-induced activation of CD40 and NLRP3 by decreasing p38 MAPK and NF-κB p50/p65 activation/phosphorylation downstream of TLR4 in murine microglia (BV2). Human microglia (HMC3) showed a significant decrease in p65 phosphorylation. We isolated purified HBME and characterized them using nanoparticle tracking analysis, transmission electron microscopy, fluorescence-activated cell sorting, and western blots. Analysis of microglia exposed to LPS and HBME indicated that HBME modulated the expression of signaling molecules in the canonical NF-κB pathway, including MyD88, IκBα, p38 MAPK, NF-κB p65, and their products CD40, NLRP3, and cytokines IL-1β and IL-10. Thus, HBMEs have great potential for attenuating the microglial response to LPS.
Collapse
Affiliation(s)
- Oluwatomi Akinduro
- Department of Pediatrics/Division of Neonatology and Center of Glial Biology in Medicine at the University of Alabama School of Medicine, UAB Women and Infant Center, University of Alabama at Birmingham, 1700 6th Ave South, Birmingham, AL, 35294, USA
| | - Sanjay Kumar
- Department of Pediatrics/Division of Neonatology and Center of Glial Biology in Medicine at the University of Alabama School of Medicine, UAB Women and Infant Center, University of Alabama at Birmingham, 1700 6th Ave South, Birmingham, AL, 35294, USA
| | - Yuechuan Chen
- RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, 1919 7th Avenue South, Birmingham, AL, 35294, USA
| | - Barbara Thomas
- Department of Pediatrics/Division of Neonatology and Center of Glial Biology in Medicine at the University of Alabama School of Medicine, UAB Women and Infant Center, University of Alabama at Birmingham, 1700 6th Ave South, Birmingham, AL, 35294, USA
| | - Quamarul Hassan
- RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, 1919 7th Avenue South, Birmingham, AL, 35294, USA.
| | - Brian Sims
- Department of Pediatrics/Division of Neonatology and Center of Glial Biology in Medicine at the University of Alabama School of Medicine, UAB Women and Infant Center, University of Alabama at Birmingham, 1700 6th Ave South, Birmingham, AL, 35294, USA.
| |
Collapse
|
8
|
Frusciante L, Geminiani M, Shabab B, Olmastroni T, Roncucci N, Mastroeni P, Salvini L, Lamponi S, Trezza A, Santucci A. Enhancing Industrial Hemp ( Cannabis sativa) Leaf By-Products: Bioactive Compounds, Anti-Inflammatory Properties, and Potential Health Applications. Int J Mol Sci 2025; 26:548. [PMID: 39859264 PMCID: PMC11765263 DOI: 10.3390/ijms26020548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/21/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
The sustainable utilization of biomass-derived bioactives addresses the growing demand for natural health products and supports sustainable development goals by reducing reliance on synthetic chemicals in healthcare. Cannabis sativa biomass, in particular, has emerged as a valuable resource within this context. This study focuses on the hydroethanolic extract of C. sativa leaves (CSE), which exhibited significant levels of phenolic compounds contributing to robust antioxidant activity. Evaluation using potassium ferricyanide, ABTS, and DPPH methods revealed potent radical scavenging activity comparable to the Trolox standard. UPLC-MS/MS profiling identified cannabinoids as the predominant secondary metabolites in CSE, with flavonoids also present in substantial quantities. This study investigated the anti-inflammatory potential of CSE on RAW 264.7 macrophages and IL-1β-stimulated C-20/A4 immortalized human chondrocytes, demonstrating protective effects without cytotoxic or mutagenic effects. Mechanistically, CSE reduced inflammation by inhibiting the MAPK and NF-κB signaling pathways. In silico approaches showed the ability of CSE's main metabolites to bind and influence MAPK and NF-κB activity, confirming in vitro evidence. Incorporating C. sativa leaf extract into a hyaluronic acid-based formulation showed biotechnological promise for treating joint inflammation. Future research should aim to elucidate the molecular mechanisms underlying these effects and explore the potential of CSE-derived compounds in mitigating osteoarthritis progression. This approach highlights the significance of utilizing annually increasing biomass waste for sustainable bioactivity and environmental impact reduction.
Collapse
Affiliation(s)
- Luisa Frusciante
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (B.S.); (T.O.); (P.M.); (S.L.); (A.T.); (A.S.)
| | - Michela Geminiani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (B.S.); (T.O.); (P.M.); (S.L.); (A.T.); (A.S.)
- SienabioACTIVE, University of Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Behnaz Shabab
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (B.S.); (T.O.); (P.M.); (S.L.); (A.T.); (A.S.)
| | - Tommaso Olmastroni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (B.S.); (T.O.); (P.M.); (S.L.); (A.T.); (A.S.)
| | - Neri Roncucci
- Tenuta di Mensanello, Località Mensanello, 34, 53034 Colle di Val d’Elsa, Italy;
| | - Pierfrancesco Mastroeni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (B.S.); (T.O.); (P.M.); (S.L.); (A.T.); (A.S.)
| | - Laura Salvini
- Fondazione Toscana Life Sciences, Strada del Petriccio e Belriguardo, 53100 Siena, Italy;
| | - Stefania Lamponi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (B.S.); (T.O.); (P.M.); (S.L.); (A.T.); (A.S.)
- SienabioACTIVE, University of Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Alfonso Trezza
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (B.S.); (T.O.); (P.M.); (S.L.); (A.T.); (A.S.)
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (B.S.); (T.O.); (P.M.); (S.L.); (A.T.); (A.S.)
- SienabioACTIVE, University of Siena, Via Aldo Moro, 53100 Siena, Italy
- ARTES 4.0, Viale Rinaldo Piaggio, 34, 56025 Pontedera, Italy
| |
Collapse
|
9
|
He JG, Wu XX, Li S, Yan D, Xiao GP, Mao FG. Exosomes derived from microRNA-540-3p overexpressing mesenchymal stem cells promote immune tolerance via the CD74/nuclear factor-kappaB pathway in cardiac allograft. World J Stem Cells 2024; 16:1022-1046. [PMID: 39734479 PMCID: PMC11669987 DOI: 10.4252/wjsc.v16.i12.1022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/16/2024] [Accepted: 11/12/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Heart transplantation is a crucial intervention for severe heart failure, yet the challenge of organ rejection is significant. Bone marrow mesenchymal stem cells (BMSCs) and their exosomes have demonstrated potential in modulating T cells, dendtitic cells (DCs), and cytokines to achieve immunomodulatory effects. DCs, as key antigen-presenting cells, play a critical role in shaping immune responses by influencing T-cell activation and cytokine production. Through this modulation, BMSCs and their exosomes enhance graft tolerance and prolonging survival. AIM To explore the immunomodulatory effects of exosomes derived from BMSCs overexpressing microRNA-540-3p (miR-540-3p) on cardiac allograft tolerance, focusing on how these exosomes modulating DCs and T cells activity through the CD74/nuclear factor-kappaB (NF-κB) pathway. METHODS Rat models were used to assess the impact of miR-540-3p-enhanced exosomes on immune tolerance in cardiac allografts. MiR-540-3p expression was manipulated in BMSCs, and derived exosomes were collected and administered to the rat models post-heart transplantation. The study monitored expression levels of major histocompatibility complex II, CD80, CD86, and CD274 in DCs, and quantified CD4+ and CD8+ T cells, T regulatory cells, and cytokine profiles. RESULTS Exosomes from miR-540-3p-overexpressing BMSCs lead to reduced expression of immune activation markers CD74 and NF-κB p65 in DCs and T cells. Rats treated with these exosomes showed decreased inflammation and improved cardiac function, indicated by lower levels of pro-inflammatory cytokines (interleukin-1β, interferon-γ) and higher levels of anti-inflammatory cytokines (interleukin-10, transforming growth factor β1). Additionally, miR-540-3p skewed the profiles of DCs and T cells towards immune tolerance, increasing the ratio of T regulatory cells and shifting cytokine secretion to favor graft acceptance. CONCLUSION Exosomes derived from BMSCs overexpressing miR-540-3p significantly enhance immune tolerance and prolong cardiac allograft survival by modulating the CD74/NF-κB pathway, which regulates activities of DCs and T cells. These findings highlight a promising therapeutic strategy to improve heart transplantation outcomes and potentially reduce the need for prolonged immunosuppression.
Collapse
Affiliation(s)
- Ji-Gang He
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan Province, China
| | - Xin-Xin Wu
- Yunnan University of Traditional Chinese Medicine, Kunming 650500, Yunnan Province, China
| | - Si Li
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan Province, China
| | - Dan Yan
- Department of Medical Intensive Care Unit, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan Province, China
| | - Gao-Peng Xiao
- Department of Anaesthesia, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan Province, China
| | - Fu-Gang Mao
- Department of Ultrasonic, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan Province, China.
| |
Collapse
|
10
|
Zhang L, Stamer UM, Moolan-Vadackumchery R, Stüber F. Nuclear Factor-κB Signaling Regulates the Nociceptin Receptor but Not Nociceptin Itself. Cells 2024; 13:2111. [PMID: 39768201 PMCID: PMC11674636 DOI: 10.3390/cells13242111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/08/2024] [Accepted: 12/18/2024] [Indexed: 01/30/2025] Open
Abstract
The nociceptin receptor (NOP) and nociceptin are involved in the pathways of pain and inflammation. The potent role of nuclear factor-κB (NFκB) in the modulation of tumor necrosis factor-α (TNF-α) and interleukin (IL)-1β on the nociceptin system in human THP-1 cells under inflammatory conditions were investigated. Cells were stimulated without/with phorbol-myristate-acetate (PMA), TNF-α, IL-1β, or PMA combined with individual cytokines. To examine NFκB's contribution to the regulation of the nociceptin system, PMA-stimulated cells were treated with NFκB inhibitor BAY 11-7082, JSH-23, or anacardic acid before culturing with TNF-α or IL-1β. NOP and prepronociceptin (ppNOC) mRNA were quantified by RT-qPCR; cell membrane NOP and intracellular nociceptin protein levels were measured by flow cytometry. Phosphorylation and localization of NFκB/p65 were determined using ImageStream. PMA + TNF-α decreased NOP mRNA compared to stimulation with PMA alone, while PMA + IL-1β did not. BAY 11-7082 and JSH-23 reversed the repression of NOP by PMA + TNF-α. TNF-α and IL-1β attenuated PMA's upregulating effects on ppNOC. None of the inhibitors preserved the upregulation of ppNOC in PMA + TNF-α and PMA + IL-1β cultures. TNF-α strongly mediated the nuclear translocation of NFκB/p65 in PMA-treated cells, while IL-1β did not. Proinflammatory cytokines suppressed NOP and ppNOC mRNA in PMA-induced human THP-1 cells. NFκB signaling seems to be an important regulator controlling the transcription of NOP. These findings suggest that the nociceptin system may play an anti-inflammatory role during immune responses.
Collapse
Affiliation(s)
- Lan Zhang
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (U.M.S.); (F.S.)
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Ulrike M. Stamer
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (U.M.S.); (F.S.)
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Robin Moolan-Vadackumchery
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (U.M.S.); (F.S.)
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Frank Stüber
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (U.M.S.); (F.S.)
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| |
Collapse
|
11
|
Chen Y, Zhang X, Huang S, Febbraio M. Hidden features: CD36/SR-B2, a master regulator of macrophage phenotype/function through metabolism. Front Immunol 2024; 15:1468957. [PMID: 39742252 PMCID: PMC11685046 DOI: 10.3389/fimmu.2024.1468957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/30/2024] [Indexed: 01/03/2025] Open
Abstract
Once thought to be in a terminally differentiated state, macrophages are now understood to be highly pliable, attuned and receptive to environmental cues that control and align responses. In development of purpose, the centrality of metabolic pathways has emerged. Thus, macrophage inflammatory or reparative phenotypes are tightly linked to catabolic and anabolic metabolism, with further fine tuning of specific gene expression patterns in specific settings. Single-cell transcriptome analyses have revealed a breadth of macrophage signatures, with some new influencers driving phenotype. CD36/Scavenger Receptor B2 has established roles in immunity and lipid metabolism. Macrophage CD36 is a key functional player in metabolic expression profiles that determine phenotype. Emerging data show that alterations in the microenvironment can recast metabolic pathways and modulate macrophage function, with the potential to be leveraged for therapeutic means. This review covers recent data on phenotypic characterization of homeostatic, atherosclerotic, lipid-, tumor- and metastatic-associated macrophages, with the integral role of CD36 highlighted.
Collapse
Affiliation(s)
- Yuge Chen
- Mike Petryk School of Dentistry, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB, Canada
| | - Xuejia Zhang
- Mike Petryk School of Dentistry, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB, Canada
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Shengbin Huang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Maria Febbraio
- Mike Petryk School of Dentistry, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
12
|
Simao JDJ, Bispo AFDS, Plata VTG, Abel ABM, Saran RJ, Barcella JF, Alonso JCC, Santana AV, Armelin-Correa LM, Alonso-Vale MIC. The Activation of the NF-κB Pathway in Human Adipose-Derived Stem Cells Alters the Deposition of Epigenetic Marks on H3K27 and Is Modulated by Fish Oil. Life (Basel) 2024; 14:1653. [PMID: 39768360 PMCID: PMC11678231 DOI: 10.3390/life14121653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/27/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Chronic low-grade inflammation in obesity is linked to white adipose tissue (WAT) dysfunction. Plasma lipopolysaccharide (LPS) activates Toll-like receptor 4 (TLR4), triggering NF-κB and worsening these disturbances. Previously, we showed that histone H3 lysine 27 (H3K27) epigenetic modifications affect WAT gene expression in high-fat-diet mice, identifying key pathways in adipose-derived stem cells (ASCs). This study explores whether NF-κB influences H3K27 modifiers in human ASCs and evaluates fish oil (FO) as a modulator. METHODS Human visceral WAT ASCs were stimulated with LPS and treated with FO enriched with eicosapentaenoic acid (EPA). Flow cytometry, PCR array, RT-PCR, and Western blot assays were used. RESULTS LPS increased NF-κB activity, elevating KDM6B demethylase levels and H3K27 acetylation. These epigenetic modifications in LPS-stimulated ASCs were associated with persistent changes in the expression of genes involved in adipogenesis, metabolic regulation, and inflammation, even after LPS removal and cell differentiation. FO mitigated these effects, reducing H3K27 acetylation and promoting methylation. CONCLUSIONS FO demonstrates potential in modulating inflammation-induced epigenetic changes and preserving adipocyte function.
Collapse
Affiliation(s)
- Jussara de Jesus Simao
- Post-Graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo—UNIFESP, Diadema 09913-030, Brazil; (J.d.J.S.); (A.F.d.S.B.); (V.T.G.P.); (L.M.A.-C.)
| | - Andressa França de Sousa Bispo
- Post-Graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo—UNIFESP, Diadema 09913-030, Brazil; (J.d.J.S.); (A.F.d.S.B.); (V.T.G.P.); (L.M.A.-C.)
| | - Victor Tadeu Gonçalves Plata
- Post-Graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo—UNIFESP, Diadema 09913-030, Brazil; (J.d.J.S.); (A.F.d.S.B.); (V.T.G.P.); (L.M.A.-C.)
| | - Ana Beatriz Marques Abel
- Post-Graduate Program in Nutrition, Paulista School of Medicine, Federal University of São Paulo—UNIFESP, Sao Paulo 04023-062, Brazil;
| | - Raphael Justa Saran
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo—UNIFESP, Diadema 09913-030, Brazil; (R.J.S.); (J.F.B.)
| | - Júlia Fernandes Barcella
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo—UNIFESP, Diadema 09913-030, Brazil; (R.J.S.); (J.F.B.)
| | | | - André Valente Santana
- Post-Graduate Program in Interdisciplinary Surgical Science, Paulista School of Medicine, Federal University of São Paulo—UNIFESP, Sao Paulo 04023-062, Brazil;
| | - Lucia Maria Armelin-Correa
- Post-Graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo—UNIFESP, Diadema 09913-030, Brazil; (J.d.J.S.); (A.F.d.S.B.); (V.T.G.P.); (L.M.A.-C.)
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo—UNIFESP, Diadema 09913-030, Brazil; (R.J.S.); (J.F.B.)
| | - Maria Isabel Cardoso Alonso-Vale
- Post-Graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo—UNIFESP, Diadema 09913-030, Brazil; (J.d.J.S.); (A.F.d.S.B.); (V.T.G.P.); (L.M.A.-C.)
- Post-Graduate Program in Nutrition, Paulista School of Medicine, Federal University of São Paulo—UNIFESP, Sao Paulo 04023-062, Brazil;
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo—UNIFESP, Diadema 09913-030, Brazil; (R.J.S.); (J.F.B.)
| |
Collapse
|
13
|
Wiejak J, Murphy FA, Barker G, Maffia P, Yarwood SJ. Non-cyclic nucleotide EPAC1 activators suppress lipopolysaccharide-regulated gene expression, signalling and intracellular communication in differentiated macrophage-like THP-1 cells. Cell Signal 2024; 124:111444. [PMID: 39368792 DOI: 10.1016/j.cellsig.2024.111444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
This study explores the anti-inflammatory effects of non-cyclic nucleotide EPAC1 activators, PW0577 and SY007, on lipopolysaccharide (LPS)-induced responses in differentiated THP-1 macrophage-like cells. Both activators were found to selectively activate EPAC1 in THP-1 macrophages, leading to the activation of the key down-stream effector, Rap1. RNA sequencing analysis of LPS-stimulated THP-1 macrophages, revealed that treatment with PW0577 or SY007 significantly modulates gene expression related to fibrosis and inflammation, including the suppression of NLRP3, IL-1β, and caspase 1 protein expression in LPS-stimulated cells. Notably, these effects were independent of p65 NFκB phosphorylation at Serine 536, indicating a distinct mechanism of action. The study further identified a shared influence of both activators on LPS signalling pathways, particularly impacting extracellular matrix (ECM) components and NFκB-regulated genes. Additionally, in a co-culture model involving THP-1 macrophages, vascular smooth muscle cells, and human coronary artery endothelial cells, EPAC1 activators modulated immune-vascular interactions, suggesting a broader role in regulating cellular communication between macrophages and endothelial cells. These findings enhance our understanding of EPAC1's role in inflammation and propose EPAC1 activators as potential therapeutic agents for treating inflammatory and fibrotic conditions through targeted modulation of Rap1 and associated signalling pathways.
Collapse
Affiliation(s)
- Jolanta Wiejak
- Heriot-Watt University, Institute of Biological Chemistry, Biophysics and Bioengineering, Edinburgh EH14 4AS, United Kingdom
| | - Fiona A Murphy
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - Graeme Barker
- Heriot-Watt University, Institute of Chemical Sciences, Edinburgh EH14 4AS, United Kingdom
| | - Pasquale Maffia
- University of Glasgow, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, Glasgow G12 8TA, United Kingdom; University of Naples Federico II, Department of Pharmacy, School of Medicine and Surgery, Naples, 80131, Italy; Africa-Europe Cluster of Research Excellence in Non-Communicable Diseases & Multimorbidity, African Research Universities Alliance (ARUA) & The Guild of European Research-intensive Universities, Glasgow G12 8TA, United Kingdom
| | - Stephen J Yarwood
- Heriot-Watt University, Institute of Biological Chemistry, Biophysics and Bioengineering, Edinburgh EH14 4AS, United Kingdom.
| |
Collapse
|
14
|
Hernández-Jiménez E, Plata-Menchaca EP, Berbel D, López de Egea G, Dastis-Arias M, García-Tejada L, Sbraga F, Malchair P, García Muñoz N, Larrad Blasco A, Molina Ramírez E, Pérez Fernández X, Sabater Riera J, Ulsamer A. Assessing sepsis-induced immunosuppression to predict positive blood cultures. Front Immunol 2024; 15:1447523. [PMID: 39559359 PMCID: PMC11570276 DOI: 10.3389/fimmu.2024.1447523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
Introduction Bacteremia is a life-threatening condition that can progress to sepsis and septic shock, leading to significant mortality in the emergency department (ED). The standard diagnostic method, blood culture, is time-consuming and prone to false positives and false negatives. Although not widely accepted, several clinical and artificial intelligence-based algorithms have been recently developed to predict bacteremia. However, these strategies require further identification of new variables to improve their diagnostic accuracy. This study proposes a novel strategy to predict positive blood cultures by assessing sepsis-induced immunosuppression status through endotoxin tolerance assessment. Methods Optimal assay conditions have been explored and tested in sepsis-suspected patients meeting the Sepsis-3 criteria. Blood samples were collected at ED admission, and endotoxin (lipopolysaccharide, LPS) challenge was performed to evaluate the innate immune response through cytokine profiling. Results Clinical variables, immune cell population biomarkers, and cytokine levels (tumor necrosis factor [TNFα], IL-1β, IL-6, IL-8, and IL-10) were measured. Patients with positive blood cultures exhibited significantly lower TNFα production after LPS challenge than did those with negative blood cultures. The study also included a validation cohort to confirm that the response was consistent. Discussion The results of this study highlight the innate immune system immunosuppression state as a critical parameter for sepsis diagnosis. Notably, the present study identified a reduction in monocyte populations and specific cytokine profiles as potential predictive markers. This study showed that the LPS challenge can be used to effectively distinguish between patients with bloodstream infection leading to sepsis and those whose blood cultures are negative, providinga rapid and reliable diagnostic tool to predict positive blood cultures. The potential applicability of these findings could enhance clinical practice in terms of the accuracy and promptness of sepsis diagnosis in the ED, improving patient outcomes through timely and appropriate treatment.
Collapse
Affiliation(s)
- Enrique Hernández-Jiménez
- R&D Department, Loop Diagnostics, Barcelona, Spain
- Servei de Medicina Intensiva, Hospital Universitari de Bellvitge, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Spain
| | - Erika P. Plata-Menchaca
- Servei de Medicina Intensiva, Hospital Universitari de Bellvitge, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Spain
- Vall d’Hebron Research Institute (VHIR), Vall d´Hebron Hospital Campus, Barcelona, Spain
| | - Damaris Berbel
- Departament de Microbiologia, Hospital Universitari de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Spain
- Research Network for Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Guillem López de Egea
- Departament de Microbiologia, Hospital Universitari de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Spain
- Research Network for Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Macarena Dastis-Arias
- Division of Emergency Laboratory, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, Spain
| | - Laura García-Tejada
- Biochemistry Core of the Clinical Laboratory, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, Spain
| | - Fabrizio Sbraga
- Servei de Cirurgia Cardíaca, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, Spain
| | - Pierre Malchair
- Departament d’urgències, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, Spain
| | - Nadia García Muñoz
- Banc de sang i teixits, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, Spain
| | - Alejandra Larrad Blasco
- Servei de Medicina Intensiva, Hospital Universitari de Bellvitge, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Spain
| | - Eva Molina Ramírez
- Servei de Medicina Intensiva, Hospital Universitari de Bellvitge, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Spain
| | - Xose Pérez Fernández
- Servei de Medicina Intensiva, Hospital Universitari de Bellvitge, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Spain
| | - Joan Sabater Riera
- Servei de Medicina Intensiva, Hospital Universitari de Bellvitge, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Spain
| | - Arnau Ulsamer
- Servei de Medicina Intensiva, Hospital Universitari de Bellvitge, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Spain
| |
Collapse
|
15
|
Chu FY, Clavijo AS, Lee S, Zidovska A. Transcription-dependent mobility of single genes and genome-wide motions in live human cells. Nat Commun 2024; 15:8879. [PMID: 39438437 PMCID: PMC11496510 DOI: 10.1038/s41467-024-51149-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/31/2024] [Indexed: 10/25/2024] Open
Abstract
The human genome is highly dynamic across all scales. At the gene level, chromatin is persistently remodeled and rearranged during active processes such as transcription, replication and DNA repair. At the genome level, chromatin moves in micron-scale domains that break up and re-form over seconds, but the origin of these coherent motions is unknown. Here, we investigate the connection between genomic motions and gene-level activity. Simultaneous mapping of single-gene and genome-wide motions shows that the coupling of gene transcriptional activity to flows of the nearby genome is modulated by chromatin compaction. A motion correlation analysis suggests that a single active gene drives larger-scale motions in low-compaction regions, but high-compaction chromatin drives gene motion regardless of its activity state. By revealing unexpected connections among gene activity, spatial heterogeneities of chromatin and its emergent genome-wide motions, these findings uncover aspects of the genome's spatiotemporal organization that directly impact gene regulation and expression.
Collapse
Affiliation(s)
- Fang-Yi Chu
- Center for Soft Matter Research, Department of Physics, New York University, New York, NY, 10003, USA
| | - Alexis S Clavijo
- Center for Soft Matter Research, Department of Physics, New York University, New York, NY, 10003, USA
| | - Suho Lee
- Center for Soft Matter Research, Department of Physics, New York University, New York, NY, 10003, USA
| | - Alexandra Zidovska
- Center for Soft Matter Research, Department of Physics, New York University, New York, NY, 10003, USA.
| |
Collapse
|
16
|
Gołąbek-Grenda A, Juzwa W, Kaczmarek M, Olejnik A. Resveratrol and Its Natural Analogs Mitigate Immune Dysregulation and Oxidative Imbalance in the Endometriosis Niche Simulated in a Co-Culture System of Endometriotic Cells and Macrophages. Nutrients 2024; 16:3483. [PMID: 39458478 PMCID: PMC11510005 DOI: 10.3390/nu16203483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Inflammation and immune cell dysfunction are critical facilitators of endometriosis pathophysiology. Macrophages are renowned for stimulating lesion growth, vascularization, innervation, and pain generation. By combining macrophages and endometriotic cells, we determined if resveratrol and its natural analogs can target the immune dysregulation and oxidative imbalance in endometriosis. Methods: After treatment with compounds (5, 10, 25 µM), we evaluated the expression of key inflammatory and oxidative stress markers, cytokines release, and ROS production by applying q-PCR, ELISA, Cytometric Beads Array, and multiplexed fluorogenic staining and flow cytometry analysis with bioimaging. Results: The results showed that endometriosis-related macrophages treated with stilbenes have impaired expression of pro-inflammatory markers (IL6, IL8, IL1B, TNF, CCL2, CXCL10, PTGS2). The effect of resveratrol, pterostilbene, and piceatannol was observed, especially in reducing IL1B, CCL2, and CXCL10 genes up to 3.5-, 5-, and 7.7-fold at 25 µM, respectively. Also, with piceatannol or polydatin exposure, the IL-6 decrease was noticeable. This study reported an antioxidant effect by reducing ROS-positive cells from 96% to 48% by pterostilbene. Results from flow cytometry correlated with the transcript activation of detoxification enzymes (SOD, GPX). Conclusions: Prospects for potential therapy based on regulating the immune microenvironment and reducing the accumulation of free radicals with stilbenes application were described in the article.
Collapse
Affiliation(s)
- Agata Gołąbek-Grenda
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego St., 60-627 Poznan, Poland; (A.G.-G.); (W.J.)
| | - Wojciech Juzwa
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego St., 60-627 Poznan, Poland; (A.G.-G.); (W.J.)
| | - Mariusz Kaczmarek
- Department of Cancer Immunology, Poznan University of Medical Sciences, Garbary 15 St., 61-866 Poznan, Poland;
- Gene Therapy Laboratory, Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, Garbary 15 St., 61-866 Poznan, Poland
| | - Anna Olejnik
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego St., 60-627 Poznan, Poland; (A.G.-G.); (W.J.)
| |
Collapse
|
17
|
Gnanaskandan S, Srikanth P. Nuclear Factor Kappa B p65: A Possible Biomarker for Persistent Inflammation in HIV-1 Infection? Cureus 2024; 16:e71308. [PMID: 39529759 PMCID: PMC11552464 DOI: 10.7759/cureus.71308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2024] [Indexed: 11/16/2024] Open
Abstract
Low-grade inflammation in people living with HIV (PWH) has become a significant contributor to the development of non-communicable diseases (NCDs) such as heart disease, stroke, and renal dysfunction. Though antiretroviral therapy (ART) has dramatically reduced mortality by limiting the emergence of opportunistic infections, it has not been successful in eliminating the remaining chronic, low-grade inflammation and activation that persists in the infected despite viral suppression and better CD4+ T cell count. Nonetheless, this relatively asymptomatic and subclinical chronic inflammation remains poorly understood and has become a major contributor to mortality in PWH. Another important component involved in this step is the Nuclear Factor kappa B (NF-κB) which is a central transcription factor in the immune system to respond to infection. Specifically, the p65/RELA subunit attaches to the HIV LTR (long terminal repeat) gene and consequently initiates the synthesis of genes related to inflammation and immune reactions. Persistent low-level chronic inflammation contributes to the pathophysiology of metabolic-inflammatory NCDs. Therefore, this review aims to assess the complex contextual function of NF-κB p65 during HIV-1 disease, particularly among individuals on ART who achieve viral suppression. As much as ART has helped to arrest the progression of the virus, immune function, and chronic inflammation have not been reversed in most PWH. It is, therefore, pertinent to know how the NF-κB p65 molecule remains involved in those with persistent immune inflammation concerns to enhance strategies on the same. This review will also discuss the possible variation in NF-κB p65 activity in particular population groups such as MSM (men who have sex with men) to acquire additional information that could potentially enhance the treatment.
Collapse
Affiliation(s)
- Sivasubramaniyan Gnanaskandan
- Microbiology, Sri Ramachandra Institute of Higher Education and Research, Sri Ramachandra Faculty of Allied Health Science, Chennai, IND
| | - Padma Srikanth
- Microbiology, Sri Ramachandra Institute of Higher Education and Research, Sri Ramachandra Faculty of Allied Health Science, Chennai, IND
| |
Collapse
|
18
|
Wei Z, Turak A, Li B, Aisa HA. Guaianolide sesquiterpene lactones from Cichorium glandulosum and their anti-neuroinflammation activities. PHYTOCHEMISTRY 2024; 226:114223. [PMID: 39032793 DOI: 10.1016/j.phytochem.2024.114223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Eight undescribed guaianolide sesquiterpene lactones cicholosumins A-H and twelve known ones were isolated from the aerial parts of Cichorium glandulosum Boiss et Huet. Their structures were established by 1D and 2D NMR spectroscopic data, electronic circular dichroism, quantum chemical calculations and single crystal X-ray diffraction analysis. Compounds 9α-hydroxy-3-deoxyzaluzanin C, epi-8α-angeloyloxycichoralexin, 8-O-methylsenecioylaustricin and lactucin showed strong anti-neuroinflammation activity with IC50 values of 1.69 ± 0.11, 1.08 ± 0.23, 1.67 ± 0.28 and 1.82 ± 0.27 μM, respectively. The mechanism research indicated that epi-8α-angeloyloxycichoralexin inhibited neuroinflammation through the NF-κB and MAPK pathways.
Collapse
Affiliation(s)
- Zheyang Wei
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and the Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ablajan Turak
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and the Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Bo Li
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and the Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and the Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China; College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China.
| |
Collapse
|
19
|
Frusciante L, Geminiani M, Shabab B, Olmastroni T, Scavello G, Rossi M, Mastroeni P, Nyong'a CN, Salvini L, Lamponi S, Parisi ML, Sinicropi A, Costa L, Spiga O, Trezza A, Santucci A. Exploring the Antioxidant and Anti-Inflammatory Potential of Saffron ( Crocus sativus) Tepals Extract within the Circular Bioeconomy. Antioxidants (Basel) 2024; 13:1082. [PMID: 39334741 PMCID: PMC11428576 DOI: 10.3390/antiox13091082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Repurposing saffron (Crocus sativus) waste presents a sustainable strategy for generating high-value products within the bioeconomy framework. Typically, flower components are discarded after stigma harvest, resulting in significant waste-350 kg of tepals per kilogram of stigmas. This research employed a comprehensive approach, integrating bioactivity studies (in vitro and in silico) with Life Cycle Assessment (LCA) evaluations, to extract and assess bioactive compounds from C. sativus tepals sourced in Tuscany, Italy. Phytochemical characterization using UPLC-MS/MS revealed a high abundance and variety of flavonoids in the hydro-ethanolic extract (CST). The antioxidant capacity was validated through various assays, and the ability to mitigate H2O2-induced oxidative stress and enhance fermentation was demonstrated in Saccharomyces cerevisiae. This study reports that C. sativus tepals extract reduces oxidative stress and boosts ethanol fermentation in yeast, paving the way for applications in the food and biofuels sectors. Further validation in RAW 264.7 macrophages confirmed CST's significant anti-inflammatory effects, indicating its potential for pharmaceutical, cosmeceutical, and nutraceutical applications. In silico studies identified potential targets involved in antioxidant and anti-inflammatory processes, shedding light on possible interaction mechanisms with Kaempferol 3-O-sophoroside (KOS-3), the predominant compound in the extract. The integration of LCA studies highlighted the environmental benefits of this approach. Overall, this research underscores the value of using waste-derived extracts through "green" methodologies, offering a model that may provide significant advantages for further evaluations compared to traditional methodologies and supporting the circular bioeconomy.
Collapse
Affiliation(s)
- Luisa Frusciante
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Michela Geminiani
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
- SienabioACTIVE, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Behnaz Shabab
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Tommaso Olmastroni
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Giorgia Scavello
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Martina Rossi
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Pierfrancesco Mastroeni
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Collins Nyaberi Nyong'a
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Laura Salvini
- Fondazione Toscana Life Sciences, Strada del Petriccio e Belriguardo, 53100 Siena, Italy
| | - Stefania Lamponi
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
- SienabioACTIVE, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Maria Laura Parisi
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
- LifeCARES, Via Emilio Vezzosi 15, 52100 Arezzo, Italy
| | - Adalgisa Sinicropi
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
- LifeCARES, Via Emilio Vezzosi 15, 52100 Arezzo, Italy
| | - Lorenzo Costa
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Ottavia Spiga
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
- ARTES 4.0, Viale Rinaldo Piaggio, 34, 56025 Pontedera, Italy
| | - Alfonso Trezza
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Annalisa Santucci
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
- SienabioACTIVE, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
- ARTES 4.0, Viale Rinaldo Piaggio, 34, 56025 Pontedera, Italy
| |
Collapse
|
20
|
Lossavaro PKDMB, Felipe JL, Lencina JDS, Bonfá IS, de Souza KFS, Machado LL, Fernandes MML, Ferreira JV, Souza MIL, Candeloro L, Kassuya CAL, Paredes-Gamero EJ, Parisotto EB, Toffoli-Kadri MC, Silva-Filho SE. Antiarthritic and Antinociceptive Properties of Ylang-Ylang ( Cananga odorata) Essential Oil in Experimental Models. Curr Issues Mol Biol 2024; 46:9033-9046. [PMID: 39194751 DOI: 10.3390/cimb46080534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
The aim of this study was to evaluate the effect of ylang-ylang (Cananga odorata) essential oil (YEO) on models of experimental arthritis, persistent inflammation, and nociception in mice. YEO treatment at doses of 100 and 200 mg/kg reduced the infiltration of leukocytes into the joint cavities of mice submitted to zymosan-induced arthritis 6 h and 7 days after arthritis induction. At these doses, YEO treatment reduced the formation of joint edema 4 and 6 h after arthritis induction, and at a dose of 200 mg/kg, YEO treatment reduced mechanical hyperalgesia 3 and 4 h after arthritis induction. At the dose of 200 mg/kg, YEO treatment reduced interleukin-6 (IL-6) levels and cartilage destruction in the zymosan-induced arthritis model, and reduced edema formation and mechanical hyperalgesia in the model of persistent inflammation (21 days) induced by complete Freund's adjuvant (CFA) in mice. YEO treatment at a dose of 200 mg/kg reduced the nociceptive response in experimental models of nociception induced by acetic acid and formalin. The YEO treatment reduced inflammatory parameters in the experimental arthritis model, and presented antiarthritic, anti-hyperalgesic, antinociceptive, and anti-inflammatory properties.
Collapse
Affiliation(s)
| | - Josyelen Lousada Felipe
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Joyce Dos Santos Lencina
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Iluska Senna Bonfá
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Kamylla Fernanda Souza de Souza
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Lucas Luiz Machado
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Mila Marluce Lima Fernandes
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - João Victor Ferreira
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Maria Inês Lenz Souza
- Biosciences Institute, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Luciane Candeloro
- Biosciences Institute, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | | | - Edgar Julian Paredes-Gamero
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Eduardo Benedetti Parisotto
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Mônica Cristina Toffoli-Kadri
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Saulo Euclides Silva-Filho
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| |
Collapse
|
21
|
Xie Z, Lu H, Zheng J, Song J, Sun K. Origin recognition complex subunit 6 (ORC6) is a key mediator of LPS-induced NFκB activation and the pro-inflammatory response. Cell Commun Signal 2024; 22:399. [PMID: 39143485 PMCID: PMC11323635 DOI: 10.1186/s12964-024-01768-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/27/2024] [Indexed: 08/16/2024] Open
Abstract
Lipopolysaccharide (LPS)-activated pro-inflammatory responses play a critical role in sepsis, a life-threatening condition. This study investigates the role of origin recognition complex subunit 6 (ORC6) in LPS responses in macrophages and monocytes. Silencing ORC6 using targeted shRNA significantly reduced LPS-induced expression and production of IL-1β (interleukin-1 beta), TNF-α (tumor necrosis factor alpha), and IL-6 (interleukin-6) in THP-1 human macrophages, peripheral blood mononuclear cells (PBMCs), and bone marrow-derived macrophages (BMDMs). Additionally, ORC6 knockout (KO) via the CRISPR/Cas9 method in THP-1 macrophages inhibited LPS-induced pro-inflammatory responses, while ectopic overexpression of ORC6 enhanced LPS-induced expression and production of pro-inflammatory cytokines. ORC6 is crucial for the activation of the nuclear factor kappa B (NFκB) signaling cascade in macrophages and monocytes. LPS-induced NFκB activation was largely inhibited by ORC6 silencing or KO, but potentiated following ORC6 overexpression. Mechanistically, ORC6 associated with nuclear p65 after LPS stimulation, an interaction necessary for NFκB activation. Overexpression of ORC6 did not recover the reduced pro-inflammatory response to LPS in THP-1 macrophages with silenced p65. Furthermore, the NFκB inhibitor BMS-345,541 nearly eliminated the pro-inflammatory response enhanced by ORC6 overexpression in response to LPS. Further studies revealed that ORC6 depletion inhibited NFκB activation induced by double-stranded RNA (dsRNA) and high mobility group box 1 (HMGB1) in THP-1 macrophages. In vivo experiments demonstrated that macrophage-specific knockdown of ORC6 protected mice from LPS-induced septic shock and inhibited LPS-stimulated production of IL-1β, TNF-α, and IL-6 in mouse serum. ORC6 silencing also inhibited LPS-induced NFκB activation in ex vivo cultured PBMCs following macrophage-specific knockdown of ORC6. These findings highlight ORC6 as a pivotal mediator in LPS-induced NFκB activation and the pro-inflammatory response in sepsis, suggesting that targeting ORC6 could be a novel therapeutic strategy for managing sepsis and related inflammatory conditions.
Collapse
Affiliation(s)
- Zichen Xie
- Emergency Department, Minhang Hospital, Fudan University, Shanghai, China
| | - Haisu Lu
- Emergency Department, Minhang Hospital, Fudan University, Shanghai, China
| | - Jiayi Zheng
- Emergency Department, Minhang Hospital, Fudan University, Shanghai, China
| | - Jianfeng Song
- Emergency Department, Minhang Hospital, Fudan University, Shanghai, China.
| | - Keyu Sun
- Emergency Department, Minhang Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
22
|
Hayderi A, Zegeye MM, Meydan S, Sirsjö A, Kumawat AK, Ljungberg LU. TNF Induces Laminin-332-Encoding Genes in Endothelial Cells and Laminin-332 Promotes an Atherogenic Endothelial Phenotype. Int J Mol Sci 2024; 25:8699. [PMID: 39201392 PMCID: PMC11354388 DOI: 10.3390/ijms25168699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Laminins are essential components of the basement membranes, expressed in a tissue- and cell-specific manner under physiological conditions. During inflammatory circumstances, such as atherosclerosis, alterations in laminin composition within vessels have been observed. Our study aimed to assess the influence of tumor necrosis factor-alpha (TNF), a proinflammatory cytokine abundantly found in atherosclerotic lesions, on endothelial laminin gene expression and the effects of laminin-332 (LN332) on endothelial cells' behavior. We also evaluated the expression of LN332-encoding genes in human carotid atherosclerotic plaques. Our findings demonstrate that TNF induces upregulation of LAMB3 and LAMC2, which, along with LAMA3, encode the LN332 isoform. Endothelial cells cultured on recombinant LN332 exhibit decreased claudin-5 expression and display a loosely connected phenotype, with an elevated expression of chemokines and leukocyte adhesion molecules, enhancing their attractiveness and adhesion to leukocytes in vitro. Furthermore, LAMB3 and LAMC2 are upregulated in human carotid plaques and show a positive correlation with TNF expression. In summary, TNF stimulates the expression of LN332-encoding genes in human endothelial cells and LN332 promotes an endothelial phenotype characterized by compromised junctional integrity and increased leukocyte interaction. These findings highlight the importance of basement membrane proteins for endothelial integrity and the potential role of LN332 in atherosclerosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Liza U. Ljungberg
- Cardiovascular Research Centre, Department of Medical Sciences, School of Medicine, Örebro University, 70362 Örebro, Sweden; (A.H.); (S.M.); (A.S.); (A.K.K.)
| |
Collapse
|
23
|
Angsusing J, Singh S, Samee W, Tadtong S, Stokes L, O’Connell M, Bielecka H, Toolmal N, Mangmool S, Chittasupho C. Anti-Inflammatory Activities of Yataprasen Thai Traditional Formulary and Its Active Compounds, Beta-Amyrin and Stigmasterol, in RAW264.7 and THP-1 Cells. Pharmaceuticals (Basel) 2024; 17:1018. [PMID: 39204123 PMCID: PMC11357128 DOI: 10.3390/ph17081018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
Yataprasen (YTPS) remedy formulary, a national Thai traditional medicine formulary, comprises 13 herbal plants. It has been extensively prescribed to relieve osteoarthritis and musculoskeletal pain in the Thai traditional medicine healthcare system. The aim of this study was to investigate the antioxidant and anti-inflammatory properties of the bioactive compounds (β-amyrin and stigmasterol) of YTPS remedy formulary ethanolic extract, along with its composition. The YTPS formulary extract contains 70.30 nM of β-amyrin and 605.76 nM of stigmasterol. The YTPS formulary extract exhibited ABTS and DPPH free radical scavenging activity, with IC50 values of 144.50 ± 2.82 and 31.85 ± 0.18 µg/mL, respectively. The ethanolic extract of YTPS at a concentration of 1000 µg/mL showed a significant (p < 0.01) anti-inflammatory effect, mainly by reducing IL-6 and TNF-α release in response to LPS. NO production was prominently lowered by 50% at 24.76 ± 1.48 µg/mL, 55.52 ± 24.40 µM, and more than 570 µM of YTPS formulary extract, β-amyrin, and stigmasterol, respectively. Major components of YTPS, β-amyrin, and stigmasterol exerted significant anti-inflammatory effects by inhibiting LPS-induced IL-1β, IL-6, TNF-α secretion in THP-1 cells. Our findings suggest that the ethanolic extract from YTPS holds promise as an alternative topical treatment for osteoarthritis and inflammatory disorders, potentially with fewer side effects than non-steroidal anti-inflammatory medications (NSAIDs).
Collapse
Affiliation(s)
- Jaenjira Angsusing
- Ph.D. Degree Program in Pharmacy, Faculty of Pharmacy, Chiang Mai University, CMU Presidential Scholarship, Chiang Mai 50200, Thailand;
- Thai Traditional Medicine Research Institute, Department of Thai Traditional and Alternative Medicine, Ministry of Public Health, Bangkok 10100, Thailand;
| | - Sudarshan Singh
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Weerasak Samee
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok 26120, Thailand;
| | - Sarin Tadtong
- Department of Pharmacognosy, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok 26120, Thailand;
| | - Leanne Stokes
- School of Pharmacy, University of East Anglia, Norwich, Norwich Research Park, Norfolk NR4 7TJ, UK; (L.S.); (M.O.); (H.B.)
| | - Maria O’Connell
- School of Pharmacy, University of East Anglia, Norwich, Norwich Research Park, Norfolk NR4 7TJ, UK; (L.S.); (M.O.); (H.B.)
| | - Hanna Bielecka
- School of Pharmacy, University of East Anglia, Norwich, Norwich Research Park, Norfolk NR4 7TJ, UK; (L.S.); (M.O.); (H.B.)
| | - Nopparut Toolmal
- Thai Traditional Medicine Research Institute, Department of Thai Traditional and Alternative Medicine, Ministry of Public Health, Bangkok 10100, Thailand;
| | - Supachoke Mangmool
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
24
|
Ota N, Endo S, Honma K, Iwayama K, Yamashita H, Tatsunami R, Sato K. Chloroquine regulates the lipopolysaccharide-induced inflammatory response in RAW264.7 cells. Allergol Immunopathol (Madr) 2024; 52:97-103. [PMID: 38970272 DOI: 10.15586/aei.v52i4.1083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/29/2024] [Indexed: 07/08/2024]
Abstract
INTRODUCTION AND OBJECTIVES Macrophage-induced inflammation plays a key role in defense against injury and harmful pathogens. Autophagy and the inflammatory response are associated; however, the relationship between the autophagy pathway and lipopolysaccharide (LPS)- induced inflammatory responses remains unknown. We aimed to determine the effect of autophagy on the LPS-induced myeloid differentiation factor 88 (MyD88)/nuclear transcription factor kB (NF-kB) pathway-mediated inflammatory response in RAW264.7 cells. MATERIALS AND METHODS To determine the effect of autophagy on the LPS-induced inflammatory response, using various in vitro assays, we determined the effect of autophagy inhibitors and inducers on the inflammatory response in RAW264.7 cells. RESULTS Chloroquine (CQ), an autophagy inhibitor, suppressed pro-inflammatory cytokines, including interleukin (IL)-1β, IL-6, and tumor necrosis factor α (TNFα) in LPS-stimulated RAW264.7 cells. CQ also affected inflammatory mediators such as myeloid differentiation factor 88 and NF-kB in LPS-stimulated RAW264.7 cells. CONCLUSION This study demonstrated that CQ regulates the LPS-induced inflammatory response in RAW264.7 cells. We propose that targeting the regulation of pro-inflammatory cytokine levels and inflammatory mediators using CQ is a promising therapeutic approach for preventing inflammatory injury. CQ serves as a potential therapeutic target for treating various inflammatory diseases.
Collapse
Affiliation(s)
- Natsuki Ota
- Department of Pharmacy, Hokkaido University of Science, 0068585 Sapporo, Japan
| | - Shoya Endo
- Department of Pharmacy, Hokkaido University of Science, 0068585 Sapporo, Japan
| | - Kouki Honma
- Department of Pharmacy, Hokkaido University of Science, 0068585 Sapporo, Japan
| | - Kuninori Iwayama
- Department of Pharmacy, Hokkaido University of Science, 0068585 Sapporo, Japan
| | - Hiroshi Yamashita
- Department of Pharmacy, Hokkaido University of Science, 0068585 Sapporo, Japan
| | - Ryosuke Tatsunami
- Department of Pharmacy, Hokkaido University of Science, 0068585 Sapporo, Japan
| | - Keisuke Sato
- Department of Pharmacy, Hokkaido University of Science, 0068585 Sapporo, Japan;
| |
Collapse
|
25
|
Mayakrishnan V, Lee DH, Kim KH, Kim CY. Role of Corn Peptide Powder in Lipopolysaccharide-Induced Inflammatory Responses in 3T3-L1 Adipocytes. Nutrients 2024; 16:1924. [PMID: 38931278 PMCID: PMC11207019 DOI: 10.3390/nu16121924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Corn peptide (CP) is a short, naturally occurring, and physiologically active peptide generated from corn-protease-catalyzed hydrolysis. CP plays a role in preventing obesity-related disorders, but its impact on reducing inflammation is unknown. Hence, this study examined the possible protective effects of corn peptide powder (CPP) against the harmful effects of lipopolysaccharide (LPS), with a particular emphasis on reducing oxidative damage and inflammation in adipocytes. Hence, mature 3T3-L1 adipocytes underwent exposure to 10 ng/mL LPS, with or without CPP (10 and 20 μg/mL). LPS stimulation increased reactive oxygen species and superoxide anion generation. However, this effect was reduced in a dose-dependent manner by pretreatment with CPP. CPP treatment elevated the mRNA expressions of the antioxidant enzymes manganese superoxide dismutase (mnSOD) and glutathione peroxidase 1 (Gpx1) while reducing the mRNA expressions of the cytosolic reactive oxygen species indicators p40 and p67 (NADPH oxidase 2). In addition, CPP inhibited the monocyte chemoattractant protein-1, tumor necrosis factor-alpha, Toll-like receptor 4, and nuclear factor kappa B mRNA expressions induced by LPS. These findings demonstrate that CPP may ameliorate adipocyte dysfunction by suppressing oxidative damage and inflammatory responses through a new mechanism known as Toll-like receptor 4/nuclear factor kappa B-mediated signaling.
Collapse
Affiliation(s)
| | - Dae-Hee Lee
- Sempio Foods Company, 183 Osongsaengmyeong 4ro, Osongeup, Cheongwongun 28156, Republic of Korea;
| | - Kee-Hong Kim
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Choon Young Kim
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
26
|
Frusciante L, Geminiani M, Olmastroni T, Mastroeni P, Trezza A, Salvini L, Lamponi S, Spiga O, Santucci A. Repurposing Castanea sativa Spiny Burr By-Products Extract as a Potentially Effective Anti-Inflammatory Agent for Novel Future Biotechnological Applications. Life (Basel) 2024; 14:763. [PMID: 38929746 PMCID: PMC11205080 DOI: 10.3390/life14060763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
The concept of a "circular bioeconomy" holds great promise for the health, cosmetic, and nutrition sectors by re-using Castanea sativa (Mill.) by-products. This sustainable resource is rich in bioactive secondary metabolites with antioxidant and anti-inflammatory properties. By transforming these by-products into high-value products for human health, we can promote sustainable economic growth and reduce the environmental impact of traditional waste disposal, adding value to previously underutilized resources. In the present study, we investigated the antioxidant capacity, phytochemical composition, and in vitro antioxidant and anti-inflammatory activity of C. sativa burr (CSB) aqueous extract. The spectrophotometric study revealed high total phenolic content (TPC) values with significant antioxidant and anti-radical properties. Using UPLC-MS/MS techniques, the phytochemical investigation identified 56 metabolites, confirming the presence of phenolic compounds in CSBs. In addition, CSBs significantly downregulated pro-inflammatory mediators in LPS-stimulated RAW 264.7 macrophage cells without significant cell toxicity. Lastly, in silico studies pinpointed three kinases from RAW 264.7 cells as binding partners with ellagic acid, the predominant compound found in our extract. These findings strongly advocate for the recycling and valorization of C. sativa by-products, challenging their conventional classification as mere "waste".
Collapse
Affiliation(s)
- Luisa Frusciante
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (T.O.); (P.M.); (A.T.); (S.L.); (O.S.); (A.S.)
| | - Michela Geminiani
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (T.O.); (P.M.); (A.T.); (S.L.); (O.S.); (A.S.)
- SienabioACTIVE, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Tommaso Olmastroni
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (T.O.); (P.M.); (A.T.); (S.L.); (O.S.); (A.S.)
| | - Pierfrancesco Mastroeni
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (T.O.); (P.M.); (A.T.); (S.L.); (O.S.); (A.S.)
| | - Alfonso Trezza
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (T.O.); (P.M.); (A.T.); (S.L.); (O.S.); (A.S.)
| | - Laura Salvini
- Fondazione Toscana Life Sciences, Strada del Petriccio e Belriguardo, 53100 Siena, Italy;
| | - Stefania Lamponi
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (T.O.); (P.M.); (A.T.); (S.L.); (O.S.); (A.S.)
- SienabioACTIVE, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Ottavia Spiga
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (T.O.); (P.M.); (A.T.); (S.L.); (O.S.); (A.S.)
- ARTES 4.0, Viale Rinaldo Piaggio, 34, 56025 Pontedera, Italy
| | - Annalisa Santucci
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (T.O.); (P.M.); (A.T.); (S.L.); (O.S.); (A.S.)
- SienabioACTIVE, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
- ARTES 4.0, Viale Rinaldo Piaggio, 34, 56025 Pontedera, Italy
| |
Collapse
|
27
|
Herring M, Persson A, Potter R, Karlsson R, Särndahl E, Ejdebäck M. Exposing kinetic disparities between inflammasome readouts using time-resolved analysis. Heliyon 2024; 10:e32023. [PMID: 38867997 PMCID: PMC11168392 DOI: 10.1016/j.heliyon.2024.e32023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024] Open
Abstract
The NLRP3 inflammasome is an intracellular multiprotein complex described to be involved in both an effective host response to infectious agents and various diseases. Investigation into the NLRP3 inflammasome has been extensive in the past two decades, and often revolves around the analysis of a few specific readouts, including ASC-speck formation, caspase-1 cleavage or activation, and cleavage and release of IL-1β and/or IL-18. Quantification of these readouts is commonly undertaken as an endpoint analysis, where the presence of each positive outcome is assessed independently of the others. In this study, we apply time-resolved analysis of a human macrophage model (differentiated THP-1-ASC-GFP cells) to commonly accessible methods. This approach yields the additional quantifiable metrics time-resolved absolute change and acceleration, allowing comparisons between readouts. Using this methodological approach, we reveal (potential) discrepancies between inflammasome-related readouts that otherwise might go undiscovered. The study highlights the importance of time-resolved data in general and may be further extended as well as incorporated into other areas of research.
Collapse
Affiliation(s)
- Matthew Herring
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
- School of Bioscience, Systems Biology Research Centre, University of Skövde, Skövde, Sweden
| | - Alexander Persson
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Ryan Potter
- School of Bioscience, Systems Biology Research Centre, University of Skövde, Skövde, Sweden
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Göteborg University, Göteborg, Sweden
| | - Roger Karlsson
- Nanoxis Consulting AB, Göteborg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, Göteborg University, Göteborg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, Göteborg, Sweden
| | - Eva Särndahl
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Mikael Ejdebäck
- School of Bioscience, Systems Biology Research Centre, University of Skövde, Skövde, Sweden
| |
Collapse
|
28
|
Hansen SSK, Krautz R, Rago D, Havelund J, Stigliani A, Færgeman NJ, Prézelin A, Rivière J, Couturier-Tarrade A, Akimov V, Blagoev B, Elfving B, Neess D, Vogel U, Khodosevich K, Hougaard KS, Sandelin A. Pulmonary maternal immune activation does not cross the placenta but leads to fetal metabolic adaptation. Nat Commun 2024; 15:4711. [PMID: 38830841 PMCID: PMC11148039 DOI: 10.1038/s41467-024-48492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
The fetal development of organs and functions is vulnerable to perturbation by maternal inflammation which may increase susceptibility to disorders after birth. Because it is not well understood how the placenta and fetus respond to acute lung- inflammation, we characterize the response to maternal pulmonary lipopolysaccharide exposure across 24 h in maternal and fetal organs using multi-omics, imaging and integrative analyses. Unlike maternal organs, which mount strong inflammatory immune responses, the placenta upregulates immuno-modulatory genes, in particular the IL-6 signaling suppressor Socs3. Similarly, we observe no immune response in the fetal liver, which instead displays metabolic changes, including increases in lipids containing docosahexaenoic acid, crucial for fetal brain development. The maternal liver and plasma display similar metabolic alterations, potentially increasing bioavailability of docosahexaenoic acid for the mother and fetus. Thus, our integrated temporal analysis shows that systemic inflammation in the mother leads to a metabolic perturbation in the fetus.
Collapse
Affiliation(s)
- Signe Schmidt Kjølner Hansen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
- National Research Centre for the Working Environment, Copenhagen, Denmark.
| | - Robert Krautz
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Daria Rago
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Jesper Havelund
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Arnaud Stigliani
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Nils J Færgeman
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Audrey Prézelin
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Julie Rivière
- Paris-Saclay University, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Anne Couturier-Tarrade
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Vyacheslav Akimov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
| | - Ditte Neess
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Konstantin Khodosevich
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Karin Sørig Hougaard
- National Research Centre for the Working Environment, Copenhagen, Denmark.
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | - Albin Sandelin
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
29
|
Becker L, Holtmann D. Anti-inflammatory effects of α-humulene on the release of pro-inflammatory cytokines in lipopolysaccharide-induced THP-1 cells. Cell Biochem Biophys 2024; 82:839-847. [PMID: 38388989 PMCID: PMC11344727 DOI: 10.1007/s12013-024-01235-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
While acute inflammation is an essential physical response to harmful external influences, the transition to chronic inflammation is problematic and associated with the development and worsening of many deadly diseases. Until now, established pharmaceutical agents have had many side effects when used for long periods. In this study, a possible anti-inflammatory effect of the sesquiterpene α-humulene on lipopolysaccharide (LPS) induction was tested. Herein, human THP-1-derived macrophages were used and their pro-inflammatory interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), and interleukin-1β (IL-1β) cytokine release was measured by means of enzyme-linked immunosorbent assay. A dose-dependent effect of α-humulene on IL-6 release was observed at 0.5 and 100 µM α-humulene, with a maximum IL-6 inhibition of 60% compared to the LPS reference value after the addition of 100 µM α-humulene. TNF-α as well as IL-1β cytokine concentrations were not reduced by the addition of 0.5 and 100 µM α-humulene. This study suggests that α-humulene has potential as a promising natural alternative to established pharmaceuticals for the treatment of elevated IL-6 levels and chronic inflammation in humans.
Collapse
Affiliation(s)
- Lucas Becker
- Bioprocess Intensification, Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390, Giessen, Germany
| | - Dirk Holtmann
- Bioprocess Intensification, Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390, Giessen, Germany.
- Institute of Process Engineering in Life Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.
| |
Collapse
|
30
|
Zabłocka A, Jakubczyk D, Leszczyńska K, Pacyga-Prus K, Macała J, Górska S. Studies of the Impact of the Bifidobacterium Species on Inducible Nitric Oxide Synthase Expression and Nitric Oxide Production in Murine Macrophages of the BMDM Cell Line. Probiotics Antimicrob Proteins 2024; 16:1012-1025. [PMID: 37227688 PMCID: PMC11126500 DOI: 10.1007/s12602-023-10093-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2023] [Indexed: 05/26/2023]
Abstract
Bifidobacterium species are one of the most important probiotic microorganisms which are present in both, infants and adults. Nowadays, growing data describing their healthy properties arise, indicating they could act at the cellular and molecular level. However, still little is known about the specific mechanisms promoting their beneficial effects. Nitric oxide (NO), produced by inducible nitric oxide synthase (iNOS), is involved in the protective mechanisms in the gastrointestinal tract, where it can be provided by epithelial cells, macrophages, or bacteria. The present study explored whether induction of iNOS-dependent NO synthesis in macrophages stems from the cellular action of Bifidobacterium species. The ability of ten Bifidobacterium strains belonging to 3 different species (Bifidobacterium longum, Bifidobacterium adolescentis, and Bifidobacterium animalis) to activate MAP kinases, NF-κB factor, and iNOS expression in a murine bone-marrow-derived macrophages cell line was determined by Western blotting. Changes in NO production were determined by the Griess reaction. It was performed that the Bifidobacterium strains were able to induce NF-қB-dependent iNOS expression and NO production; however, the efficacy depends on the strain. The highest stimulatory activity was observed for Bifidobacterium animalis subsp. animals CCDM 366, whereas the lowest was noted for strains Bifidobacterium adolescentis CCDM 371 and Bifidobacterium longum subsp. longum CCDM 372. Both TLR2 and TLR4 receptors are involved in Bifidobacterium-induced macrophage activation and NO production. We showed that the impact of Bifidobacterium on the regulation of iNOS expression is determined by MAPK kinase activity. Using pharmaceutical inhibitors of ERK 1/2 and JNK, we confirmed that Bifidobacterium strains can activate these kinases to control iNOS mRNA expression. Concluding, the induction of iNOS and NO production may be involved in the protective mechanism of action observed for Bifidobacterium in the intestine, and the efficacy is strain-dependent.
Collapse
Affiliation(s)
- Agnieszka Zabłocka
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.
| | - Dominika Jakubczyk
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Katarzyna Leszczyńska
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Katarzyna Pacyga-Prus
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Józefa Macała
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Sabina Górska
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.
| |
Collapse
|
31
|
Frusciante L, Geminiani M, Trezza A, Olmastroni T, Mastroeni P, Salvini L, Lamponi S, Bernini A, Grasso D, Dreassi E, Spiga O, Santucci A. Phytochemical Composition, Anti-Inflammatory Property, and Anti-Atopic Effect of Chaetomorpha linum Extract. Mar Drugs 2024; 22:226. [PMID: 38786617 PMCID: PMC11123029 DOI: 10.3390/md22050226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Utilizing plant-based resources, particularly their by-products, aligns with sustainability principles and circular bioeconomy, contributing to environmental preservation. The therapeutic potential of plant extracts is garnering increasing interest, and this study aimed to demonstrate promising outcomes from an extract obtained from an underutilized plant waste. Chaetomorpha linum, an invasive macroalga found in the Orbetello Lagoon, thrives in eutrophic conditions, forming persistent mats covering approximately 400 hectares since 2005. The biomass of C. linum undergoes mechanical harvesting and is treated as waste, requiring significant human efforts and economic resources-A critical concern for municipalities. Despite posing challenges to local ecosystems, the study identified C. linum as a natural source of bioactive metabolites. Phytochemical characterization revealed lipids, amino acids, and other compounds with potential anti-inflammatory activity in C. linum extract. In vitro assays with LPS-stimulated RAW 264.7 and TNF-α/IFN-γ-stimulated HaCaT cells showed the extract inhibited reactive oxygen species (ROS), nitric oxide (NO), and prostaglandin E2 (PGE2) productions, and reduced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expressions via NF-κB nuclear translocation, in RAW 264.7 cells. It also reduced chemokines (TARC/CCL17, RANTES/CCL5, MCP-1/CCL2, and IL-8) and the cytokine IL-1β production in HaCaT cells, suggesting potential as a therapeutic candidate for chronic diseases like atopic dermatitis. Finally, in silico studies indicated palmitic acid as a significant contributor to the observed effect. This research not only uncovered the untapped potential of C. linum but also laid the foundation for its integration into the circular bioeconomy, promoting sustainable practices, and innovative applications across various industries.
Collapse
Affiliation(s)
- Luisa Frusciante
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (A.T.); (T.O.); (P.M.); (S.L.); (A.B.); (D.G.); (E.D.); (O.S.); (A.S.)
| | - Michela Geminiani
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (A.T.); (T.O.); (P.M.); (S.L.); (A.B.); (D.G.); (E.D.); (O.S.); (A.S.)
- SienabioACTIVE, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Alfonso Trezza
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (A.T.); (T.O.); (P.M.); (S.L.); (A.B.); (D.G.); (E.D.); (O.S.); (A.S.)
| | - Tommaso Olmastroni
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (A.T.); (T.O.); (P.M.); (S.L.); (A.B.); (D.G.); (E.D.); (O.S.); (A.S.)
| | - Pierfrancesco Mastroeni
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (A.T.); (T.O.); (P.M.); (S.L.); (A.B.); (D.G.); (E.D.); (O.S.); (A.S.)
| | - Laura Salvini
- Fondazione Toscana Life Sciences, Strada del Petriccio e Belriguardo, 53100 Siena, Italy;
| | - Stefania Lamponi
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (A.T.); (T.O.); (P.M.); (S.L.); (A.B.); (D.G.); (E.D.); (O.S.); (A.S.)
- SienabioACTIVE, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Andrea Bernini
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (A.T.); (T.O.); (P.M.); (S.L.); (A.B.); (D.G.); (E.D.); (O.S.); (A.S.)
| | - Daniela Grasso
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (A.T.); (T.O.); (P.M.); (S.L.); (A.B.); (D.G.); (E.D.); (O.S.); (A.S.)
| | - Elena Dreassi
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (A.T.); (T.O.); (P.M.); (S.L.); (A.B.); (D.G.); (E.D.); (O.S.); (A.S.)
| | - Ottavia Spiga
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (A.T.); (T.O.); (P.M.); (S.L.); (A.B.); (D.G.); (E.D.); (O.S.); (A.S.)
- SienabioACTIVE, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
- Advanced Robotics and Enabling Digital TEchnologies & Systems 4.0 (ARTES 4.0), Viale Rinaldo Piaggio, 34, 56025 Pontedera, Italy
| | - Annalisa Santucci
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (A.T.); (T.O.); (P.M.); (S.L.); (A.B.); (D.G.); (E.D.); (O.S.); (A.S.)
- SienabioACTIVE, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
- Advanced Robotics and Enabling Digital TEchnologies & Systems 4.0 (ARTES 4.0), Viale Rinaldo Piaggio, 34, 56025 Pontedera, Italy
| |
Collapse
|
32
|
Persaud AT, Khela J, Fernandes C, Chaphekar D, Burnie J, Tang VA, Colpitts CC, Guzzo C. Virion-incorporated CD14 enables HIV-1 to bind LPS and initiate TLR4 signaling in immune cells. J Virol 2024; 98:e0036324. [PMID: 38661384 PMCID: PMC11092368 DOI: 10.1128/jvi.00363-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/01/2024] [Indexed: 04/26/2024] Open
Abstract
HIV-1 has a broad range of nuanced interactions with the immune system, and the incorporation of cellular proteins by nascent virions continues to redefine our understanding of the virus-host relationship. Proteins located at the sites of viral egress can be selectively incorporated into the HIV-1 envelope, imparting new functions and phenotypes onto virions, and impacting viral spread and disease. Using virion capture assays and western blot, we show that HIV-1 can incorporate the myeloid antigen CD14 into its viral envelope. Virion-incorporated CD14 remained biologically active and able to bind its natural ligand, bacterial lipopolysaccharide (LPS), as demonstrated by flow virometry and immunoprecipitation assays. Using a Toll-like receptor 4 (TLR4) reporter cell line, we also demonstrated that virions with bound LPS can trigger TLR4 signaling to activate transcription factors that regulate inflammatory gene expression. Complementary assays with THP-1 monocytes demonstrated enhanced secretion of inflammatory cytokines like tumor necrosis factor alpha (TNF-α) and the C-C chemokine ligand 5 (CCL5), when exposed to LPS-loaded virus. These data highlight a new type of interplay between HIV-1 and the myeloid cell compartment, a previously well-established cellular contributor to HIV-1 pathogenesis and inflammation. Persistent gut inflammation is a hallmark of chronic HIV-1 infection, and contributing to this effect is the translocation of microbes across the gut epithelium. Our data herein provide proof of principle that virion-incorporated CD14 could be a novel mechanism through which HIV-1 can drive chronic inflammation, facilitated by HIV-1 particles binding bacterial LPS and initiating inflammatory signaling in TLR4-expressing cells.IMPORTANCEHIV-1 establishes a lifelong infection accompanied by numerous immunological changes. Inflammation of the gut epithelia, exacerbated by the loss of mucosal T cells and cytokine dysregulation, persists during HIV-1 infection. Feeding back into this loop of inflammation is the translocation of intestinal microbes across the gut epithelia, resulting in the systemic dissemination of bacterial antigens, like lipopolysaccharide (LPS). Our group previously demonstrated that the LPS receptor, CD14, can be readily incorporated by HIV-1 particles, supporting previous clinical observations of viruses derived from patient plasma. We now show that CD14 can be incorporated by several primary HIV-1 isolates and that this virion-incorporated CD14 can remain functional, enabling HIV-1 to bind to LPS. This subsequently allowed CD14+ virions to transfer LPS to monocytic cells, eliciting pro-inflammatory signaling and cytokine secretion. We posit here that virion-incorporated CD14 is a potential contributor to the dysregulated immune responses present in the setting of HIV-1 infection.
Collapse
Affiliation(s)
- Arvin T. Persaud
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Jasmin Khela
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Claire Fernandes
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Deepa Chaphekar
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan Burnie
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Vera A. Tang
- Flow Cytometry and Virometry Core Facility, Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Che C. Colpitts
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Christina Guzzo
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Cai Z, Li W, Hager S, Wilson JL, Afjehi-Sadat L, Heiss EH, Weichhart T, Heffeter P, Weckwerth W. Targeting PHGDH reverses the immunosuppressive phenotype of tumor-associated macrophages through α-ketoglutarate and mTORC1 signaling. Cell Mol Immunol 2024; 21:448-465. [PMID: 38409249 PMCID: PMC11061172 DOI: 10.1038/s41423-024-01134-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/04/2024] [Indexed: 02/28/2024] Open
Abstract
Phosphoglycerate dehydrogenase (PHGDH) has emerged as a crucial factor in macromolecule synthesis, neutralizing oxidative stress, and regulating methylation reactions in cancer cells, lymphocytes, and endothelial cells. However, the role of PHGDH in tumor-associated macrophages (TAMs) is poorly understood. Here, we found that the T helper 2 (Th2) cytokine interleukin-4 and tumor-conditioned media upregulate the expression of PHGDH in macrophages and promote immunosuppressive M2 macrophage activation and proliferation. Loss of PHGDH disrupts cellular metabolism and mitochondrial respiration, which are essential for immunosuppressive macrophages. Mechanistically, PHGDH-mediated serine biosynthesis promotes α-ketoglutarate production, which activates mTORC1 signaling and contributes to the maintenance of an M2-like macrophage phenotype in the tumor microenvironment. Genetic ablation of PHGDH in macrophages from tumor-bearing mice results in attenuated tumor growth, reduced TAM infiltration, a phenotypic shift of M2-like TAMs toward an M1-like phenotype, downregulated PD-L1 expression and enhanced antitumor T-cell immunity. Our study provides a strong basis for further exploration of PHGDH as a potential target to counteract TAM-mediated immunosuppression and hinder tumor progression.
Collapse
Affiliation(s)
- Zhengnan Cai
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution, University of Vienna, Vienna, Austria
| | - Wan Li
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution, University of Vienna, Vienna, Austria
| | - Sonja Hager
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Jayne Louise Wilson
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Leila Afjehi-Sadat
- Research Support Facility, Mass Spectrometry Unit, Faculty of Life Science, University of Vienna, Vienna, Austria
| | - Elke H Heiss
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Thomas Weichhart
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria.
| |
Collapse
|
34
|
Kumar R, Kushawaha PK. Interferon inducible guanylate-binding protein 1 modulates the lipopolysaccharide-induced cytokines/chemokines and mitogen-activated protein kinases in macrophages. Microbiol Immunol 2024; 68:185-195. [PMID: 38462687 DOI: 10.1111/1348-0421.13123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 03/12/2024]
Abstract
Guanylate-binding proteins (GBPs) are a family of interferon (IFN)-inducible GTPases and play a pivotal role in the host immune response to microbial infections. These are upregulated in immune cells after recognizing the lipopolysaccharides (LPS), the major membrane component of Gram-negative bacteria. In the present study, the expression pattern of GBP1-7 was initially mapped in phorbol 12-myristate 13-acetate-differentiated human monocytes THP-1 and mouse macrophages RAW 264.7 cell lines stimulated with LPS. A time-dependent significant expression of GBP1-7 was observed in these cells. Moreover, among the various GBPs, GBP1 has emerged as a central player in regulating innate immunity and inflammation. Therefore, to study the specific role of GBP1 in LPS-induced inflammation, knockdown of the Gbp1 gene was carried out in both cells using small interfering RNA interference. Altered levels of different cytokines (interleukin [IL]-4, IL-10, IL-12β, IFN-γ, tumor necrosis factor-α), inducible nitric oxide synthase, histocompatibility 2, class II antigen A, protein kinase R, and chemokines (chemokine (C-X-C motif) ligand 9 [CXCL9], CXCL10, and CXCL11) in GBP1 knockdown cells were reported compared to control cells. Interestingly, the extracellular-signal-regulated kinase 1/2 mitogen-activated protein (MAP) kinases and signal transducer and activator of transcription 1 (STAT1) transcription factor levels were considerably induced in knockdown cells compared to the control cells. However, no change in the level of phosphorylated nuclear factor-kB, c-Jun, and p38 transcription factors was observed in GBP1 knockdown cells compared to the control cells. This study concludes that GBP1 may alter the expression of cytokines, chemokines, and effector molecules mediated by MAP kinases and STAT1 transcription factors.
Collapse
Affiliation(s)
- Ravindra Kumar
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Pramod Kumar Kushawaha
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
35
|
Padovani CM, Wilson RM, Rodriguez A, Spur BW, Yin K. Resolvin D2 attenuates LPS-induced macrophage exhaustion. FASEB J 2024; 38:e23569. [PMID: 38551610 DOI: 10.1096/fj.202302521r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/21/2024] [Accepted: 03/07/2024] [Indexed: 04/02/2024]
Abstract
Early in sepsis, a hyperinflammatory response is dominant, but later, an immunosuppressive phase dominates, and the host is susceptible to opportunistic infections. Anti-inflammatory agents may accelerate the host into immunosuppression, and few agents can reverse immunosuppression without causing inflammation. Specialized pro-resolving mediators (SPMs) such as resolvin D2 (RvD2) have been reported to resolve inflammation without being immunosuppressive, but little work has been conducted to examine their effects on immunosuppression. To assess the effects of RvD2 on immunosuppression, we established a model of macrophage exhaustion using two lipopolysaccharide (LPS) treatments or hits. THP-1 monocyte-derived macrophages were first treated with RvD2 or vehicle for 1 h. One LPS hit increased NF-κB activity 11-fold and TNF-α release 60-fold compared to unstimulated macrophages. RvD2 decreased LPS-induced NF-κB activity and TNF-α production but increased bacterial clearance. Two LPS hits reduced macrophage bacterial clearance and decreased macrophage NF-κB activity (45%) and TNF-α release (75%) compared to one LPS hit, demonstrating exhaustion. RvD2 increased NF-κB activity, TNF-α release, and bacterial clearance following two LPS hits compared to controls. TLR2 inhibition abolished RvD2-mediated changes. In a mouse sepsis model, splenic macrophage response to exogenous LPS was reduced compared to controls and was restored by in vivo administration of RvD2, supporting the in vitro results. If RvD2 was added to monocytes before differentiation into macrophages, however, RvD2 reduced LPS responses and increased bacterial clearance following both one and two LPS hits. The results show that RvD2 attenuated macrophage suppression in vitro and in vivo and that this effect was macrophage-specific.
Collapse
Affiliation(s)
- Cristina M Padovani
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Virtua Health College of Life Sciences of Rowan University, Stratford, New Jersey, USA
| | - Rachael M Wilson
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Virtua Health College of Life Sciences of Rowan University, Stratford, New Jersey, USA
| | - Ana Rodriguez
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Virtua Health College of Life Sciences of Rowan University, Stratford, New Jersey, USA
| | - Bernd W Spur
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Virtua Health College of Life Sciences of Rowan University, Stratford, New Jersey, USA
| | - Kingsley Yin
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Virtua Health College of Life Sciences of Rowan University, Stratford, New Jersey, USA
| |
Collapse
|
36
|
Jeffrey MP, Saleem L, MacPherson CW, Tompkins TA, Clarke ST, Green-Johnson JM. A Lacticaseibacillus rhamnosus secretome induces immunoregulatory transcriptional, functional and immunometabolic signatures in human THP-1 monocytes. Sci Rep 2024; 14:8379. [PMID: 38600116 PMCID: PMC11006683 DOI: 10.1038/s41598-024-56420-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/06/2024] [Indexed: 04/12/2024] Open
Abstract
Macrophage responses to activation are fluid and dynamic in their ability to respond appropriately to challenges, a role integral to host defence. While bacteria can influence macrophage differentiation and polarization into pro-inflammatory and alternatively activated phenotypes through direct interactions, many questions surround indirect communication mechanisms mediated through secretomes derived from gut bacteria, such as lactobacilli. We examined effects of secretome-mediated conditioning on THP-1 human monocytes, focusing on the ability of the Lacticaseibacillus rhamnosus R0011 secretome (LrS) to drive macrophage differentiation and polarization and prime immune responses to subsequent challenge with lipopolysaccharide (LPS). Genome-wide transcriptional profiling revealed increased M2-associated gene transcription in response to LrS conditioning in THP-1 cells. Cytokine and chemokine profiling confirmed these results, indicating increased M2-associated chemokine and cytokine production (IL-1Ra, IL-10). These cells had increased cell-surface marker expression of CD11b, CD86, and CX3CR1, coupled with reduced expression of the M1 macrophage-associated marker CD64. Mitochondrial substrate utilization assays indicated diminished reliance on glycolytic substrates, coupled with increased utilization of citric acid cycle intermediates, characteristics of functional M2 activity. LPS challenge of LrS-conditioned THP-1s revealed heightened responsiveness, indicative of innate immune priming. Resting stage THP-1 macrophages co-conditioned with LrS and retinoic acid also displayed an immunoregulatory phenotype with expression of CD83, CD11c and CD103 and production of regulatory cytokines. Secretome-mediated conditioning of macrophages into an immunoregulatory phenotype is an uncharacterized and potentially important route through which lactic acid bacteria and the gut microbiota may train and shape innate immunity at the gut-mucosal interface.
Collapse
Affiliation(s)
- Michael P Jeffrey
- Applied Bioscience Graduate Program and the Faculty of Science, Ontario Tech University, Oshawa, ON, L1G 0C5, Canada
| | - Lin Saleem
- Applied Bioscience Graduate Program and the Faculty of Science, Ontario Tech University, Oshawa, ON, L1G 0C5, Canada
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, N1G 5C9, Canada
| | - Chad W MacPherson
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, H3T 1E2, Canada
| | | | - Sandra T Clarke
- Applied Bioscience Graduate Program and the Faculty of Science, Ontario Tech University, Oshawa, ON, L1G 0C5, Canada
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, N1G 5C9, Canada
| | - Julia M Green-Johnson
- Applied Bioscience Graduate Program and the Faculty of Science, Ontario Tech University, Oshawa, ON, L1G 0C5, Canada.
| |
Collapse
|
37
|
Naz S, Mazhar MU, Yadav U, Ali HA, Khasawneh F, Ihsan-Ul-Haq, Tipu MK, Zhu L. Anti-inflammatory and anti-arthritic potential of Coagulansin-A: in vitro and in vivo studies. Inflammopharmacology 2024; 32:1225-1238. [PMID: 38411787 DOI: 10.1007/s10787-024-01432-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/06/2024] [Indexed: 02/28/2024]
Abstract
The current work was designed to evaluate the anti-inflammatory and anti-arthritic potential of Coagulansin-A (Coag-A) using mouse macrophages and arthritic mice. In the LPS-induced RAW 264.7 cells, the effects of Coag-A on the release of nitric oxide (NO), reactive oxygen species (ROS), and pro-inflammatory cytokines were analyzed. In addition, the mediators involved in the nuclear factor-kappa B (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways were evaluated by the RT-qPCR and western blotting. Coag-A did not show significant cytotoxicity in the RAW 264.7 cells in the tested concentration range (1-100 µM). Coag-A significantly inhibited the production of NO, ROS, and key pro-inflammatory cytokines. The anti-inflammatory effects of Coag-A might be through inhibiting the NF-κB pathway and activating the Nrf2 pathway. In the arthritic mouse models, behavioral studies and radiological and histological analyses were performed. We found that the i.p. injection of Coag-A dose-dependently (1-10 mg/kg) reduced the Carrageenan-induced acute inflammation in the mice. In Complete Freund's Reagent-induced arthritic mouse model, Coag-A (10 mg/kg) showed significant anti-inflammatory and anti-arthritic effects in terms of the arthritic index, hematological parameters, and synovium inflammation. After the Coag-A treatment, the bone and tissue damage was ameliorated significantly in the arthritic mice. Moreover, immunohistochemistry of mouse paw tissues revealed a significant reduction in the expression of pro-inflammatory cytokines in the NF-κB pathway, confirming Coag-A's therapeutic potential and mechanism.
Collapse
Affiliation(s)
- Sadaf Naz
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A and M University, College Station, Texas, 77843, USA
| | - Muhammad Usama Mazhar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Umakant Yadav
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A and M University, College Station, Texas, 77843, USA
| | - Hamdy Abouzeid Ali
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A and M University, College Station, Texas, 77843, USA
| | - Fadi Khasawneh
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A and M University, College Station, Texas, 77843, USA
| | - Ihsan-Ul-Haq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Muhammad Khalid Tipu
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan.
| | - Lin Zhu
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A and M University, College Station, Texas, 77843, USA.
| |
Collapse
|
38
|
Grushko OG, Cho S, Tate AM, Rosenson RS, Pinsky DJ, Haus JM, Hummel SL, Goonewardena SN. Glycocalyx Disruption Triggers Human Monocyte Activation in Acute Heart Failure Syndromes. Cardiovasc Drugs Ther 2024; 38:305-313. [PMID: 36260206 DOI: 10.1007/s10557-022-07390-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE Acute heart failure (AHF) syndromes manifest increased inflammation and vascular dysfunction; however, mechanisms that integrate the two in AHF remain largely unknown. The glycocalyx (GAC) is a sugar-based shell that envelops all mammalian cells. Much GAC research has focused on its role in vascular responses, with comparatively little known about how the GAC regulates immune cell function. METHODS In this study, we sought to determine if GAC degradation products are elevated in AHF patients, how these degradation products relate to circulating inflammatory mediators, and whether the monocyte GAC (mGAC) itself modulates monocyte activation. Inflammatory markers and GAC degradation products were profiled using ELISAs. Flow cytometry was used to assess the mGAC and RNA-seq was employed to understand the role of the mGAC in regulating inflammatory activation programs. RESULTS In a cohort of hospitalized AHF patients (n = 17), we found that (1) the GAC degradation product heparan sulfate (HS) was elevated compared with age-matched controls (4396 and 2903 ng/mL; p = 0.01) and that (2) HS and soluble CD14 (a marker of monocyte activation) levels were closely related (Pearson's r = 0.65; p = 0.002). Mechanistically, Toll-like receptor (TLR) activation of human monocytes results in GAC remodeling and a decrease in the mGAC (71% compared with no treatment; p = 0.0007). Additionally, we found that ex vivo enzymatic removal of HS and disruption of the mGAC triggers human monocyte activation and amplifies monocyte inflammatory responses. Specifically, using RNA-seq, we found that enzymatic degradation of the mGAC increases transcription of inflammatory (IL6, CCL3) and vascular (tissue factor/F3) mediators. CONCLUSION These studies indicate that the mGAC is dynamically remodeled during monocyte activation and that mGAC remodeling itself may contribute to the heightened inflammation associated with AHF.
Collapse
Affiliation(s)
- Olga G Grushko
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Frankel Cardiovascular Center, 1500 East Medical Center Drive, SPC 5853, Ann Arbor, MI, 48109-5853, USA
| | - Steven Cho
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Frankel Cardiovascular Center, 1500 East Medical Center Drive, SPC 5853, Ann Arbor, MI, 48109-5853, USA
| | - Ashley M Tate
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Frankel Cardiovascular Center, 1500 East Medical Center Drive, SPC 5853, Ann Arbor, MI, 48109-5853, USA
| | - Robert S Rosenson
- Metabolism and Lipids Unit, Icahn School of Medicine at Mount Sinai, Cardiovascular Institute, Marie-Josee and Henry R Kravis Center for Cardiovascular Health, Mount Sinai, NY, USA
| | - David J Pinsky
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Frankel Cardiovascular Center, 1500 East Medical Center Drive, SPC 5853, Ann Arbor, MI, 48109-5853, USA
| | - Jacob M Haus
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Scott L Hummel
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Frankel Cardiovascular Center, 1500 East Medical Center Drive, SPC 5853, Ann Arbor, MI, 48109-5853, USA
- VA Ann Arbor Health System, Ann Arbor, MI, USA
| | - Sascha N Goonewardena
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
- University of Michigan Frankel Cardiovascular Center, 1500 East Medical Center Drive, SPC 5853, Ann Arbor, MI, 48109-5853, USA.
- VA Ann Arbor Health System, Ann Arbor, MI, USA.
| |
Collapse
|
39
|
Liang ZL, Kodama N, Isobe N. Effect of mastitis during early-stage pregnancy on the immunity levels and pregnancy function of goats. Anim Reprod Sci 2024; 262:107430. [PMID: 38364503 DOI: 10.1016/j.anireprosci.2024.107430] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/08/2024] [Indexed: 02/18/2024]
Abstract
In this study, we investigated the effects of mammary inflammation induced by lipopolysaccharide (LPS) and Staphylococcus aureus (SA) infusions on pregnancy function during early pregnancy in goats. In Experiment 1, pregnant goats were subjected to an intramammary LPS infusion for 1 week from Days 60-66 after natural mating (n = 5), and in Experiment 2, they received intramammary infusions of either saline, LPS, or SA for 1 week from Days 45-51 after natural mating (n = 15). Blood was collected to determine the plasma cytokine, cortisol, 13,14-dihydro-15-keto-prostaglandin F2α (PGFM), and progesterone levels. Pregnancy length was significantly longer in the LPS-treated group than that for the saline-treated group of experiment 2. Cytokine levels (IL-1β, IL-8, Tumor necrosis factor-α: TNF-α) after LPS (in both Experiments 1 and 2) and SA (in Experiment 2) infusion were significantly higher compared with those before infusion. In Experiment 2, the SA-infused group showed significantly higher TNF-α concentrations than those in the saline group. Cortisol levels increased in both experiment 1 and 2 after LPS infusion, but not after saline and SA treatments. Furthermore, PGFM levels increased after LPS infusion in Experiment 1. In Experiment 2, LPS- and SA-infused goats showed significantly higher PGFM levels than those in the saline-infused goats. However, the progesterone levels decreased after LPS treatment in Experiment 1. Our results show that intramammary LPS infusion during the early stage of pregnancy in goats induces inflammatory cytokine and stress hormone production, which prolongs the pregnancy period.
Collapse
Affiliation(s)
- Zi-Long Liang
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Nozomi Kodama
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Naoki Isobe
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan.
| |
Collapse
|
40
|
Mohammadi F, Rahimi K, Ahmadi A, Hooshmandi Z, Amini S, Mohammadi A. Anti-inflammatory effects of Mentha pulegium L. extract on human peripheral blood mononuclear cells are mediated by TLR-4 and NF-κB suppression. Heliyon 2024; 10:e24040. [PMID: 38234883 PMCID: PMC10792569 DOI: 10.1016/j.heliyon.2024.e24040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
There is great interest in evaluating the anti-inflammatory properties of new herbal products. Thus, the effects of Mentha pulegium L. extract on gene and protein expressions of pro-inflammatory mediators and transcription factors were determined. The hydro-ethanolic extract of Mentha pulegium L. was obtained and optimal non-cytotoxic concentrations of the extract were determined by MTT assay. Then, three different concentrations of Mentha pulegium L. (10, 30, and 90 μg/mL) were used to pre-treat the lipopolysaccharide (LPS)-stimulated and non-stimulated peripheral blood mononuclear cells (PBMCs) of 10 healthy individuals. Finally, the tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, Toll-like receptor-4 (TLR-4), nuclear factor-kappa B (NF-κB) p65, activator protein-1 (AP-1), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) gene expressions and TNF-α, IL-1β, IL-6, TLR-4, prostaglandin E2 (PGE2), and COX-2 protein levels were measured. MTT results showed that there is no significant difference in cell viability among 10, 20, 40, and 80 μg/mL concentrations of Mentha pulegium L. extract at 24, 48, and 72 h (P > 0.05). The IC50 values were 236.1, 147.0, and 118.0 μg/mL after 24, 48, and 72 h respectively. TNF-α, IL-1β, IL-6, TLR-4, iNOS, and NF-κB p65 mRNA levels in the pre-treated LPS-stimulated PBMCs were concentration-dependently reduced (P < 0.01 for TNF-α, TLR-4, and NF-κB p65; P < 0.05 for IL-1β, IL-6, and iNOS). Also, the protein levels of pro-inflammatory mediators decreased and these differences were significant for TNF-α, IL-1β, and TLR-4 (P < 0.001, P < 0.01, and P < 0.001, respectively). Mentha pulegium L. extract decreased the expression and biosynthesis of pro-inflammatory mediators. These effects are mainly mediated by TLR-4 and NF-κB suppression. Thus, Mentha pulegium L. could be useful in treating or ameliorating chronic inflammatory diseases.
Collapse
Affiliation(s)
- Firouz Mohammadi
- Department of Biology, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Kaveh Rahimi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Abbas Ahmadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Zahra Hooshmandi
- Department of Biology, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Sabrieh Amini
- Department of Biology, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
41
|
Şen B, Balcı‐Peynircioğlu B. Cellular models in autoinflammatory disease research. Clin Transl Immunology 2024; 13:e1481. [PMID: 38213819 PMCID: PMC10784111 DOI: 10.1002/cti2.1481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024] Open
Abstract
Systemic autoinflammatory diseases are a heterogeneous group of rare genetic disorders caused by dysregulation of the innate immune system. Understanding the complex mechanisms underlying these conditions is critical for developing effective treatments. Cellular models are essential for identifying new conditions and studying their pathogenesis. Traditionally, these studies have used primary cells and cell lines of disease-relevant cell types, although newer induced pluripotent stem cell (iPSC)-based models might have unique advantages. In this review, we discuss the three cellular models used in autoinflammatory disease research, their strengths and weaknesses, and their applications to inform future research in the field.
Collapse
Affiliation(s)
- Başak Şen
- Department of Medical BiologyHacettepe University Faculty of Medicine, SıhhiyeAnkaraTurkey
| | | |
Collapse
|
42
|
Fornari Laurindo L, Aparecido Dias J, Cressoni Araújo A, Torres Pomini K, Machado Galhardi C, Rucco Penteado Detregiachi C, Santos de Argollo Haber L, Donizeti Roque D, Dib Bechara M, Vialogo Marques de Castro M, de Souza Bastos Mazuqueli Pereira E, José Tofano R, Jasmin Santos German Borgo I, Maria Barbalho S. Immunological dimensions of neuroinflammation and microglial activation: exploring innovative immunomodulatory approaches to mitigate neuroinflammatory progression. Front Immunol 2024; 14:1305933. [PMID: 38259497 PMCID: PMC10800801 DOI: 10.3389/fimmu.2023.1305933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
The increasing life expectancy has led to a higher incidence of age-related neurodegenerative conditions. Within this framework, neuroinflammation emerges as a significant contributing factor. It involves the activation of microglia and astrocytes, leading to the release of pro-inflammatory cytokines and chemokines and the infiltration of peripheral leukocytes into the central nervous system (CNS). These instances result in neuronal damage and neurodegeneration through activated nucleotide-binding domain and leucine-rich repeat containing (NLR) family pyrin domain containing protein 3 (NLRP3) and nuclear factor kappa B (NF-kB) pathways and decreased nuclear factor erythroid 2-related factor 2 (Nrf2) activity. Due to limited effectiveness regarding the inhibition of neuroinflammatory targets using conventional drugs, there is challenging growth in the search for innovative therapies for alleviating neuroinflammation in CNS diseases or even before their onset. Our results indicate that interventions focusing on Interleukin-Driven Immunomodulation, Chemokine (CXC) Receptor Signaling and Expression, Cold Exposure, and Fibrin-Targeted strategies significantly promise to mitigate neuroinflammatory processes. These approaches demonstrate potential anti-neuroinflammatory effects, addressing conditions such as Multiple Sclerosis, Experimental autoimmune encephalomyelitis, Parkinson's Disease, and Alzheimer's Disease. While the findings are promising, immunomodulatory therapies often face limitations due to Immune-Related Adverse Events. Therefore, the conduction of randomized clinical trials in this matter is mandatory, and will pave the way for a promising future in the development of new medicines with specific therapeutic targets.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Jefferson Aparecido Dias
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Karina Torres Pomini
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Anatomy, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Cristiano Machado Galhardi
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Claudia Rucco Penteado Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Luíza Santos de Argollo Haber
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Domingos Donizeti Roque
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Anatomy, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Marcela Vialogo Marques de Castro
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Eliana de Souza Bastos Mazuqueli Pereira
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Ricardo José Tofano
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Iris Jasmin Santos German Borgo
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, Universidade de São Paulo (FOB-USP), Bauru, São Paulo, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, São Paulo, Brazil
| |
Collapse
|
43
|
Xiong Y, Zhang Z, Liu S, Shen L, Zheng L, Ding L, Liu L, Wu L, Li L, Hu Z, Zhang Z, Zhou L, Yao Y. Lupeol alleviates autoimmune myocarditis by suppressing macrophage pyroptosis and polarization via PPARα/LACC1/NF-κB signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155193. [PMID: 37976692 DOI: 10.1016/j.phymed.2023.155193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/15/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Autoimmune myocarditis, with increasing incidence and limited therapeutic strategies, is in urgent need to explore its underlying mechanisms and effective drugs. Pyroptosis is a programmed cell death that may contribute to the pathogenesis of myocarditis. Nonetheless, no direct evidence validated the role of pyroptosis in autoimmune myocarditis. Lupeol (Lup), a pentacyclic triterpene, possesses various biological activities such as antidiabetic properties. However, the effects of Lup on autoimmune myocarditis and pyroptosis remain unelucidated. PURPOSE This study aimed to reveal the role of pyroptosis in autoimmune myocarditis and explore the protective effects of Lup, and its engaged mechanisms. METHODS The experimental autoimmune myocarditis (EAM) mouse model was established by immunization with a fragment of cardiac myosin in Balb/c mice. Lup and MCC950 were administered after EAM induction. The protective effects were assessed by inflammation score, cardiac injury, chronic fibrosis, and cardiac function. Mechanistically, the effects of Lup on the M1 polarization and pyroptosis of macrophages were evaluated. Transcriptome sequencing and molecular docking were subsequently employed, and the underlying mechanisms of Lup were further explored in vitro with small interfering RNA and adenovirus. RESULTS Administration of Lup and MCC950 alleviated EAM progression. Western blotting and immunofluorescence staining identified macrophages as the primary cells undergoing pyroptosis. Lup inhibited the expression of pyroptosis-associated proteins in macrophages during EAM in a dose-dependent manner. Furthermore, Lup suppressed pyroptosis in both bone marrow-derived macrophages (BMDMs) and THP-1-derived macrophages in vitro. In addition, Lup inhibited the M1 polarization of macrophages both in vivo and in vitro. Mechanistically, the protective effects of Lup were demonstrated via the suppression of the nuclear factor-κΒ (NF-κB) signaling pathway. Transcriptome sequencing and molecular docking revealed the potential involvement of peroxisome proliferator-associated receptor α (PPARα). Subsequently, we demonstrated that Lup activated PPARα to reduce the expression level of LACC1, thereby inhibiting the NF-κB pathway and pyroptosis. CONCLUSION Our findings indicated the crucial role of macrophage pyroptosis in the pathogenesis of EAM. Lup ameliorated EAM by inhibiting the M1 polarization and pyroptosis of macrophages through the PPARα/LACC1/NF-κB signaling pathway. Thus, our results provided a novel therapeutic target and agent for myocarditis.
Collapse
Affiliation(s)
- Yulong Xiong
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China
| | - Zhenhao Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China
| | - Shangyu Liu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China
| | - Lishui Shen
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China
| | - Lihui Zheng
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China
| | - Ligang Ding
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China
| | - Limin Liu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China
| | - Lingmin Wu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China
| | - Le Li
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China
| | - Zhao Hu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China
| | - Zhuxin Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China
| | - Likun Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China
| | - Yan Yao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China.
| |
Collapse
|
44
|
Gutierrez B, Aggarwal T, Erguven H, Stone MRL, Guo C, Bellomo A, Abramova E, Stevenson ER, Laskin DL, Gow AJ, Izgu EC. Direct assessment of nitrative stress in lipid environments: Applications of a designer lipid-based biosensor for peroxynitrite. iScience 2023; 26:108567. [PMID: 38144454 PMCID: PMC10746523 DOI: 10.1016/j.isci.2023.108567] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/12/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
Lipid membranes and lipid-rich organelles are targets of peroxynitrite (ONOO-), a highly reactive species generated under nitrative stress. We report a membrane-localized phospholipid (DPPC-TC-ONOO-) that allows the detection of ONOO- in diverse lipid environments: biomimetic vesicles, mammalian cell compartments, and within the lung lining. DPPC-TC-ONOO- and POPC self-assemble to membrane vesicles that fluorogenically and selectively respond to ONOO-. DPPC-TC-ONOO-, delivered through lipid nanoparticles, allowed for ONOO- detection in the endoplasmic reticulum upon cytokine-induced nitrative stress in live mammalian cells. It also responded to ONOO- within lung tissue murine models upon acute lung injury. We observed nitrative stress around bronchioles in precision cut lung slices exposed to nitrogen mustard and in pulmonary macrophages following intratracheal bleomycin challenge. Results showed that DPPC-TC-ONOO- functions specifically toward iNOS, a key enzyme modulating nitrative stress, and offers significant advantages over its hydrophilic analog in terms of localization and signal generation.
Collapse
Affiliation(s)
- Bryan Gutierrez
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA
| | - Tushar Aggarwal
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA
| | - Huseyin Erguven
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA
| | - M. Rhia L. Stone
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA
| | - Changjiang Guo
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Alyssa Bellomo
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Elena Abramova
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Emily R. Stevenson
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Debra L. Laskin
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Andrew J. Gow
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Enver Cagri Izgu
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA
- Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
45
|
Dogsom O, Hamza A, Mahmud S, Min JK, Lee YB, Park JB. The Complex of p-Tyr42 RhoA and p-p65/RelA in Response to LPS Regulates the Expression of Phosphoglycerate Kinase 1. Antioxidants (Basel) 2023; 12:2090. [PMID: 38136210 PMCID: PMC10740983 DOI: 10.3390/antiox12122090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/24/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Inflammation plays a crucial role in tumorigenesis, primarily mediated by NF-κB. RhoA GTPases are instrumental in regulating the activation of NF-κB. Specifically, the phosphorylation of Tyrosine 42 on RhoA ensures the activation of NF-κB by directly activating the IKKβ associated with IKKγ (NEMO). This study aimed to uncover the molecular mechanism through which p-Tyrosine 42 RhoA, in conjunction with NF-κB, promotes tumorigenesis. Notably, we observed that p-Tyrosine 42 RhoA co-immunoprecipitated with the p-Ser 536 p65/RelA subunit in NF-κB in response to LPS. Moreover, both p-Tyrosine 42 RhoA and p-p65/RelA translocated to the nucleus, where they formed a protein complex associated with the promoter of phosphoglycerate kinase 1 (PGK1) and regulated the expression of PGK1. In addition, p-p65/RelA and p-Tyr42 RhoA co-immunoprecipitated with p300 histone acetyltransferase. Intriguingly, PGK1 exhibited an interaction with β-catenin, PKM1 and PKM2. Of particular interest, si-PGK1 led to a reduction in the levels of β-catenin and phosphorylated pyruvate dehydrogenase A1 (p-PDHA1). We also found that PGK1 phosphorylated β-catenin at the Thr551 and Ser552 residues. These findings discovered that PGK1 may play a role in transcriptional regulation, alongside other transcription factors.
Collapse
Affiliation(s)
- Oyungerel Dogsom
- Department of Biochemistry, Hallym University College of Medicine, Hallymdaehag-Gil 1, Chuncheon 24252, Kangwon-do, Republic of Korea; (O.D.); (A.H.); (S.M.); (J.-K.M.); (Y.-B.L.)
- Department of Biology, School of Bio-Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia
| | - Amir Hamza
- Department of Biochemistry, Hallym University College of Medicine, Hallymdaehag-Gil 1, Chuncheon 24252, Kangwon-do, Republic of Korea; (O.D.); (A.H.); (S.M.); (J.-K.M.); (Y.-B.L.)
| | - Shohel Mahmud
- Department of Biochemistry, Hallym University College of Medicine, Hallymdaehag-Gil 1, Chuncheon 24252, Kangwon-do, Republic of Korea; (O.D.); (A.H.); (S.M.); (J.-K.M.); (Y.-B.L.)
- National Institute of Biotechnology, Ganakbari, Ashulia, Savar 1349, Dhaka, Bangladesh
| | - Jung-Ki Min
- Department of Biochemistry, Hallym University College of Medicine, Hallymdaehag-Gil 1, Chuncheon 24252, Kangwon-do, Republic of Korea; (O.D.); (A.H.); (S.M.); (J.-K.M.); (Y.-B.L.)
| | - Yoon-Beom Lee
- Department of Biochemistry, Hallym University College of Medicine, Hallymdaehag-Gil 1, Chuncheon 24252, Kangwon-do, Republic of Korea; (O.D.); (A.H.); (S.M.); (J.-K.M.); (Y.-B.L.)
| | - Jae-Bong Park
- Department of Biochemistry, Hallym University College of Medicine, Hallymdaehag-Gil 1, Chuncheon 24252, Kangwon-do, Republic of Korea; (O.D.); (A.H.); (S.M.); (J.-K.M.); (Y.-B.L.)
- Institute of Cell Differentiation and Aging, Hallym University College of Medicine, Hallymdaehag-Gil 1, Chuncheon 24252, Kangwon-do, Republic of Korea
| |
Collapse
|
46
|
Akhtar F, Ruiz JH, Liu YG, Resendez RG, Feliers D, Morales LD, Diaz-Badillo A, Lehman DM, Arya R, Lopez-Alvarenga JC, Blangero J, Duggirala R, Mummidi S. Functional characterization of the disease-associated CCL2 rs1024611G-rs13900T haplotype: The role of the RNA-binding protein HuR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.564937. [PMID: 37961304 PMCID: PMC10635030 DOI: 10.1101/2023.10.31.564937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
CC-chemokine ligand 2 (CCL2) is involved in the pathogenesis of several diseases associated with monocyte/macrophage recruitment, such as HIV-associated neurocognitive disorder (HAND), tuberculosis, and atherosclerosis. The rs1024611 (alleles:A>G; G is the risk allele) polymorphism in the CCL2 cis-regulatory region is associated with increased CCL2 expression in vitro and ex vivo, leukocyte mobilization in vivo, and deleterious disease outcomes. However, the molecular basis for the rs1024611-associated differential CCL2 expression remains poorly characterized. It is conceivable that genetic variant(s) in linkage disequilibrium (LD) with rs1024611 could mediate such effects. Previously, we used rs13900 (alleles:_C>T) in the CCL2 3' untranslated region (3' UTR) that is in perfect LD with rs1024611 to demonstrate allelic expression imbalance (AEI) of CCL2 in heterozygous individuals. Here we tested the hypothesis that the rs13900 could modulate CCL2 expression by altering mRNA turnover and/or translatability. The rs13900 T allele conferred greater stability to the CCL2 transcript when compared to the rs13900 C allele. The rs13900 T allele also had increased binding to Human Antigen R (HuR), an RNA-binding protein, in vitro and ex vivo. The rs13900 alleles imparted differential activity to reporter vectors and influenced the translatability of the reporter transcript. We further demonstrated a role for HuR in mediating allele-specific effects on CCL2 expression in overexpression and silencing studies. The presence of the rs1024611G-rs13900T conferred a distinct transcriptomic signature related to inflammation and immunity. Our studies suggest that the differential interactions of HuR with rs13900 could modulate CCL2 expression and explain the interindividual differences in CCL2-mediated disease susceptibility.
Collapse
Affiliation(s)
- Feroz Akhtar
- Department of Health and Behavioral Sciences, Texas A&M University- San Antonio, Texas, USA
| | - Joselin Hernandez Ruiz
- Utah Center for Genetic Discovery, Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| | - Ya-Guang Liu
- Department of Pathology, School of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Roy G. Resendez
- Department of Health and Behavioral Sciences, Texas A&M University- San Antonio, Texas, USA
| | - Denis Feliers
- Department of Medicine, School of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Liza D. Morales
- South Texas Diabetes and Obesity Institute, Department of Genetics, School of Medicine, University of Texas Rio Grane Valley, Brownsville, USA
| | - Alvaro Diaz-Badillo
- Department of Health and Behavioral Sciences, Texas A&M University- San Antonio, Texas, USA
| | - Donna M. Lehman
- Department of Health and Behavioral Sciences, Texas A&M University- San Antonio, Texas, USA
| | - Rector Arya
- Department of Health and Behavioral Sciences, Texas A&M University- San Antonio, Texas, USA
| | - Juan Carlos Lopez-Alvarenga
- Department of Population Health and Biostatistics, School of Medicine, University of Texas Rio Grande Valley, Harlingen, Texas, USA
| | - John Blangero
- South Texas Diabetes and Obesity Institute, Department of Genetics, School of Medicine, University of Texas Rio Grane Valley, Brownsville, USA
| | - Ravindranath Duggirala
- Department of Health and Behavioral Sciences, Texas A&M University- San Antonio, Texas, USA
| | - Srinivas Mummidi
- Department of Health and Behavioral Sciences, Texas A&M University- San Antonio, Texas, USA
| |
Collapse
|
47
|
Kang L, Pang J, Zhang X, Liu Y, Wu Y, Wang J, Han D. L-arabinose Attenuates LPS-Induced Intestinal Inflammation and Injury through Reduced M1 Macrophage Polarization. J Nutr 2023; 153:3327-3340. [PMID: 37717628 DOI: 10.1016/j.tjnut.2023.09.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND L-arabinose has anti-inflammatory and metabolism-promoting properties, and macrophages participate in the alleviation of inflammation; however, the mechanism by which they contribute to the anti-inflammatory effects of L-arabinose is unknown. OBJECTIVES To investigate the involvement of macrophages in the mitigation of L-arabinose in an intestinal inflammation model induced by lipopolysaccharide (LPS). METHODS Five-week-old male C57BL/6 mice were divided into 3 groups: a control and an LPS group that both received normal water supplementation, and an L-arabinose (ARA+LPS) group that received 5% L-arabinose supplementation. Mice in the LPS and ARA+LPS groups were intraperitoneally injected with LPS (10 mg/kg body weight), whereas the control group was intraperitoneally injected with the same volume of saline. Intestinal morphology, cytokines, tight junction proteins, macrophage phenotypes, and microbial communities were profiled at 6 h postinjection. RESULTS L-arabinose alleviated LPS-induced damage to intestinal morphology. L-arabinose down-regulated serum tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6, and messenger RNA (mRNA) levels of TNF-α, IL-1β, interferon-γ (IFN-γ), and toll-like receptor-4 in jejunum and colon compared with those of the LPS group (P < 0.05). The mRNA and protein levels of occludin and claudin-1 were significantly increased by L-arabinose (P < 0.05). Interferon regulatory factor-5 (IRF-5) and signal transducer and activator of transcription-1 (STAT-1), key genes characterized by M1 macrophages, were elevated in the jejunum and colon of LPS mice (P < 0.05) but decreased in the ARA+LPS mice (P < 0.05). In vitro, L-arabinose decreased the proportion of M1 macrophages and inhibited mRNA levels of TNF-α, IL-1β, IL-6, IFN-γ, as well as IRF-5 and STAT-1 (P < 0.01). Moreover, L-arabinose restored the abundance of norank_f__Muribaculaceae, Faecalibaculum, Dubosiella, Prevotellaceae_UCG-001, and Paraasutterella compared with those of LPS (P < 0.05) and increased the concentration of short-chain fatty acids (P < 0.05). CONCLUSION The anti-inflammatory effects of L-arabinose are achieved by reducing M1 macrophage polarization, suggesting that L-arabinose could be a candidate functional food or nutritional strategy for intestinal inflammation and injury.
Collapse
Affiliation(s)
- Luyuan Kang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiaman Pang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiangyu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yisi Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yujun Wu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
48
|
Antunes J, Sobral P, Martins M, Branco V. Nanoplastics activate a TLR4/p38-mediated pro-inflammatory response in human intestinal and mouse microglia cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104298. [PMID: 37865352 DOI: 10.1016/j.etap.2023.104298] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023]
Abstract
The crescent presence of nanoplastics in the environment raises concerns regarding their potential impact on health. This study exposed human colon adenocarcinoma cells (HT29) and microglia cells (N9) to nanoplastics (25 nm, 50 nm, and 100 nm Polystyrene) to investigate their inflammatory responses, which are vital for body's defence. Although cytotoxicity remained generally low, HT29 cells exhibited a notable upregulation of p50 and p38 expression, concomitant with elevated TLR4 expression, in contrast with N9 cells that showed a less pronounced upregulation of these proteins. Additionally, nanoplastic exposure increased IL-1ß levels, partially attenuated by pre-exposure to TLR4 or p38 inhibitors. Intriguingly, N9 cells exposed to nanoplastics exhibited substantial increases in iNOS mRNA. This effect was entirely prevented by pre-exposure to TLR4 or p38 inhibitors, while TNF-α mRNA levels remained relatively stable. These findings underscore the potential of nanoplastics to activate inflammatory pathways, with response kinetics varying depending on the cell type.
Collapse
Affiliation(s)
- Joana Antunes
- MARE, Marine and Environmental Sciences Centre & ARNET, Aquatic Research Network Associated Laboratory, Department of Science and Environmental Engineering, NOVA School of Science and Technology (FCT NOVA), University NOVA of Lisbon, Caparica 2829-516, Portugal.
| | - Paula Sobral
- MARE, Marine and Environmental Sciences Centre & ARNET, Aquatic Research Network Associated Laboratory, Department of Science and Environmental Engineering, NOVA School of Science and Technology (FCT NOVA), University NOVA of Lisbon, Caparica 2829-516, Portugal
| | - Marta Martins
- MARE, Marine and Environmental Sciences Centre & ARNET, Aquatic Research Network Associated Laboratory, Department of Science and Environmental Engineering, NOVA School of Science and Technology (FCT NOVA), University NOVA of Lisbon, Caparica 2829-516, Portugal.
| | - Vasco Branco
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal.
| |
Collapse
|
49
|
da Silva TB, Rendra E, David CAW, Bieback K, Cross MJ, Wilm B, Liptrott NJ, Murray P. Umbilical cord mesenchymal stromal cell-derived extracellular vesicles lack the potency to immunomodulate human monocyte-derived macrophages in vitro. Biomed Pharmacother 2023; 167:115624. [PMID: 37783151 DOI: 10.1016/j.biopha.2023.115624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have been reported to display efficacy in a variety of preclinical models, but without long-term engraftment, suggesting a role for secreted factors, such as MSC-derived extracellular vesicles (EVs). MSCs are known to elicit immunomodulatory effects, an important aspect of which is their ability to affect macrophage phenotype. However, it is not clear if these effects are mediated by MSC-derived EVs, or other factors secreted by the MSCs. Here, we use flow cytometry to assess the effects of human umbilical cord (hUC) MSC-derived EVs on the expression of pro-inflammatory (CD80) and anti-inflammatory (CD163) surface markers in human monocyte-derived macrophages (hMDMs). hUC-MSC-derived EVs did not change the surface marker expression of the hMDMs. In contrast, when hMDMs were co-incubated with hUC-MSCs in indirect co-cultures, changes were observed in the expression of CD14, CD80 and CD163, particularly in M1 macrophages, suggesting that soluble factors are necessary to elicit a shift in phenotype. However, even though EVs did not alter the surface marker expression of macrophages, they promoted angiogenesis and phagocytic capacity increased proportionally to increases in EV concentration. Taken together, these results suggest that hUC-MSC-derived EVs are not sufficient to alter macrophage phenotype and that additional MSC-derived factors are needed.
Collapse
Affiliation(s)
- Tamiris Borges da Silva
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, L69 3GE Liverpool, UK
| | - Erika Rendra
- Institute of Transfusion Medicine and Immunology, Mannheim Institute of Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Christopher A W David
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Mannheim Institute of Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany; Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Michael J Cross
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L69 3GL, UK
| | - Bettina Wilm
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, L69 3GE Liverpool, UK
| | - Neill J Liptrott
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Patricia Murray
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, L69 3GE Liverpool, UK.
| |
Collapse
|
50
|
Mourtada J, Lony C, Nicol A, De Azevedo J, Bour C, Macabre C, Roncarati P, Ledrappier S, Schultz P, Borel C, Burgy M, Wasylyk B, Mellitzer G, Herfs M, Gaiddon C, Jung AC. A novel ΔNp63-dependent immune mechanism improves prognosis of HPV-related head and neck cancer. Front Immunol 2023; 14:1264093. [PMID: 38022675 PMCID: PMC10630910 DOI: 10.3389/fimmu.2023.1264093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/29/2023] [Indexed: 12/01/2023] Open
Abstract
Background Deconvoluting the heterogenous prognosis of Human Papillomavirus (HPV)-related oropharyngeal squamous cell carcinoma (OSCC) is crucial for enhancing patient care, given its rapidly increasing incidence in western countries and the adverse side effects of OSCC treatments. Methods Transcriptomic data from HPV-positive OSCC samples were analyzed using unsupervised hierarchical clustering, and clinical relevance was evaluated using Kaplan-Meier analysis. HPV-positive OSCC cell line models were used in functional analyses and phenotypic assays to assess cell migration and invasion, response to cisplatin, and phagocytosis by macrophages in vitro. Results We found, by transcriptomic analysis of HPV-positive OSCC samples, a ΔNp63 dependent molecular signature that is associated with patient prognosis. ΔNp63 was found to act as a tumor suppressor in HPV-positive OSCC at multiple levels. It inhibits cell migration and invasion, and favors response to chemotherapy. RNA-Seq analysis uncovered an unexpected regulation of genes, such as DKK3, which are involved in immune response-signalling pathways. In agreement with these observations, we found that ΔNp63 expression levels correlate with an enhanced anti-tumor immune environment in OSCC, and ΔNp63 promotes cancer cell phagocytosis by macrophages through a DKK3/NF-κB-dependent pathway. Conclusion Our findings are the first comprehensive identification of molecular mechanisms involved in the heterogeneous prognosis of HPV-positive OSCC, paving the way for much-needed biomarkers and targeted treatment.
Collapse
Affiliation(s)
- Jana Mourtada
- Laboratoire de Biologie Tumorale, Institut de cancérologie Strasbourg Europe, Strasbourg, France
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, Laboratory « Streinth », Strasbourg, France
| | - Christelle Lony
- Laboratoire de Biologie Tumorale, Institut de cancérologie Strasbourg Europe, Strasbourg, France
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, Laboratory « Streinth », Strasbourg, France
| | - Anaïs Nicol
- Laboratoire de Radiobiologie, Institut de cancérologie Strasbourg Europe, Strasbourg, France
| | - Justine De Azevedo
- Laboratoire de Biologie Tumorale, Institut de cancérologie Strasbourg Europe, Strasbourg, France
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, Laboratory « Streinth », Strasbourg, France
| | - Cyril Bour
- Laboratoire de Biologie Tumorale, Institut de cancérologie Strasbourg Europe, Strasbourg, France
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, Laboratory « Streinth », Strasbourg, France
| | - Christine Macabre
- Laboratoire de Biologie Tumorale, Institut de cancérologie Strasbourg Europe, Strasbourg, France
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, Laboratory « Streinth », Strasbourg, France
- Tumorothèque du Centre Paul Strauss, Centre Paul Strauss, Strasbourg, France
| | - Patrick Roncarati
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Sonia Ledrappier
- Tumorothèque du Centre Paul Strauss, Centre Paul Strauss, Strasbourg, France
| | - Philippe Schultz
- Hôpitaux Universitaires de Strasbourg, Department of Otorhinolaryngology and Head and Neck Surgery, Strasbourg, France
| | - Christian Borel
- Department of Medical Oncology, Institut de cancérologie Strasbourg Europe, Strasbourg, France
| | - Mickaël Burgy
- Department of Medical Oncology, Institut de cancérologie Strasbourg Europe, Strasbourg, France
| | - Bohdan Wasylyk
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U 1258, Illkirch-Graffenstaden, France
- Centre Nationale de la Recherche Scientifique (CNRS) UMR 7104, Illkirch-Graffenstaden, France
- Université de Strasbourg, Strasbourg, France
| | - Georg Mellitzer
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, Laboratory « Streinth », Strasbourg, France
| | - Michaël Herfs
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Christian Gaiddon
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, Laboratory « Streinth », Strasbourg, France
| | - Alain C. Jung
- Laboratoire de Biologie Tumorale, Institut de cancérologie Strasbourg Europe, Strasbourg, France
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, Laboratory « Streinth », Strasbourg, France
- Tumorothèque du Centre Paul Strauss, Centre Paul Strauss, Strasbourg, France
| |
Collapse
|