1
|
Saghaug CS, Gamlem AL, Hauge KB, Vahokoski J, Klotz C, Aebischer T, Langeland N, Hanevik K. Genetic diversity in the metronidazole metabolism genes nitroreductases and pyruvate ferredoxin oxidoreductases in susceptible and refractory clinical samples of Giardia lamblia. Int J Parasitol Drugs Drug Resist 2022; 21:51-60. [PMID: 36682328 PMCID: PMC9871439 DOI: 10.1016/j.ijpddr.2022.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 11/30/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
The effectiveness of metronidazole against the tetraploid intestinal parasite Giardia lamblia is dependent on its activation/inactivation within the cytoplasm. There are several activating enzymes, including pyruvate ferredoxin reductase (PFOR) and nitroreductase (NR) 1 which metabolize metronidazole into toxic forms, while NR2 on the other hand inactivates it. Metronidazole treatment failures have been increasing rapidly over the last decade, indicating genetic resistance mechanisms. Analyzing genetic variation in the PFOR and NR genes in susceptible and refractory Giardia isolates may help identify potential markers of resistance. Full length PFOR1, PFOR2, NR1 and NR2 genes from clinical culturable isolates and non-cultured clinical Giardia assemblage B samples were cloned, sequenced and single nucleotide variants (SNVs) were analyzed to assess genetic diversity and alleles. A similar ratio of amino acid changing SNVs per gene length was found for the NRs; 4.2% for NR1 and 6.4% for NR2, while the PFOR1 and PFOR2 genes had less variability with a ratio of 1.1% and 1.6%, respectively. One of the samples from a refractory case had a nonsense mutation which caused a truncated NR1 gene in one out of six alleles. Further, we found three NR2 alleles with frameshift mutations, possibly causing a truncated protein in two susceptible isolates. One of these isolates was homozygous for the affected NR2 allele. Three nsSNVs with potential for affecting protein function were found in the ferredoxin domain of the PFOR2 gene. The considerable variation and discovery of mutations possibly causing dysfunctional NR proteins in clinical Giardia assemblage B isolates, reveal a potential for genetic link to metronidazole susceptibility and resistance.
Collapse
Affiliation(s)
- Christina S Saghaug
- Department of Clinical Science, University of Bergen, Bergen, Norway; Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway.
| | - Astrid L Gamlem
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kirsti B Hauge
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Juha Vahokoski
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Christian Klotz
- Department of Infectious Diseases, Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Toni Aebischer
- Department of Infectious Diseases, Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Nina Langeland
- Department of Clinical Science, University of Bergen, Bergen, Norway; Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Kurt Hanevik
- Department of Clinical Science, University of Bergen, Bergen, Norway; Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
2
|
Prevalence of intestinal parasites with molecular detection and identification of Giardia duodenalis in fecal samples of mammals, birds and zookeepers at Beni-Suef Zoo, Egypt. J Parasit Dis 2021; 45:695-705. [PMID: 34475651 DOI: 10.1007/s12639-020-01341-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/30/2020] [Indexed: 10/22/2022] Open
Abstract
The current study aimed to investigate the prevalence of intestinal parasites from various species of mammals and birds housed in a zoological garden in Beni-Suef province, Egypt. A total of 77 fecal samples were collected from various primates (16), carnivores (7) and herbivores (54). Meanwhile, 123 fecal samples were collected from two Ostrichs (Struthio camelus), five Numida meleagris (Numida meleagris), twoIndian Peafowls (Pavo cristatus), two Emu (Dromaius novaehollandiae) 101 Pigeons (Columba livia domestica) and 11 Swan Goose (Anser sygnoides). In addition, seven stool samples from zookeepers who had been in close contact with animals and birds were examined. Salt flotation and formol ether sedimentation techniques were applied for parasitological examination. Positive samples of Giardia cysts were preserved in alcohol and kept at 4 °C until DNA extraction. Parasitological findings revealed that 48.05% of zoo animals were infected with intestinal parasites; 11.69% were positive with helminths and 27.27% with protozoa, however 9.09% had mixed infection. It was found that 75%, 57.14% and 38.89% of primates, carnivores and herbivores respectively were infected with intestinal parasites. In Primates the most prevalent parasites were Giardia spp. (43.75%) then Entamoeba histolytica/dispar (12.5%), Entamoeba coli (12.5%) and Trichuris spp. (6.25%). For carnivores, Ancylostomatidae had the highest prevalence (42.86%) followed by Spirometra spp. (14.29%). Meanwhile, Eimeria spp. (20.37%) was the most prevalent parasite in herbivores, followed by Blantidium coli (7.41%) and Tricuris spp. (7.41%), then Toxocara spp. (3.70%). Furthermore, the prevalence of infection in zoo birds was 21.95%. The identified parasites were Eimeria spp., Giardia spp., Capillaria spp., Ascaridia spp., Isospora spp. and Sublura brumpti. Stool examination of zookeepers revealed the presence of G. doudenalis and E. histolytica/ dispar cysts. The gdh gene of G. duodenalis was successfully amplified from fecal samples of zoo mammalsand zookeepers. In conclusion, the application of preventive and control measures against the propagation of infectious intestinal parasites is essential to prevent the spread of these parasites among zoo animals or to humans. Supplementary Information The online version contains supplementary material available at 10.1007/s12639-020-01341-2.
Collapse
|
3
|
Sarzhanov F, Köster PC, Dogruman-Al F, Bailo B, Dashti A, Demirel-Kaya F, Carmena D. Detection of enteric parasites and molecular characterization of Giardia duodenalis and Blastocystis sp. in patients admitted to hospital in Ankara, Turkey. Parasitology 2021; 148:550-561. [PMID: 32981546 PMCID: PMC10950376 DOI: 10.1017/s0031182020001821] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/10/2020] [Accepted: 09/18/2020] [Indexed: 11/06/2022]
Abstract
This epidemiological study assesses the occurrence of enteric parasites in 4303 patients attended at two public hospitals in Ankara (Turkey) during 2018-2019. Microscopy was used as a screening test. Giardia duodenalis was also identified using a commercial ELISA for the detection of parasite-specific coproantigens. Giardia-positive samples by microscopy/ELISA were confirmed by real-time PCR and characterized using a multilocus genotyping scheme. Blastocystis sp. was genotyped in a sample subset. Blastocystis sp. (11.1%, 95% CI 11.4‒14.8%) and G. duodenalis (1.56%, 95% CI 1.22‒1.96) were the most prevalent pathogens found. Cryptosporidium spp., Entamoeba histolytica and intestinal helminths were only sporadically (<0.5%) found. For G. duodenalis, sequence (n = 30) analyses revealed the presence of sub-assemblages AII (23.3%), discordant AII/AIII (23.3%) and mixed AII + AIII (6.7%) within assemblage A, and BIII (10.0%), BIV (3.3%) and discordant BIII/BIV (23.3%) within assemblage B. Two additional sequences (6.7%) were assigned to the latter assemblage but sub-assemblage information was unknown. No associations between G. duodenalis assemblages/sub-assemblages and sociodemographic and clinical variables could be demonstrated. For Blastocystis sp., sequence (n = 6) analyses identified subtypes ST1, ST2 and ST3 at equal proportions. This is the first molecular characterization of G. duodenalis based on MLG conducted in Turkey to date.
Collapse
Affiliation(s)
- Fakhriddin Sarzhanov
- Department of Medical Microbiology, School of Medicine, Gazi University, 06490Ankara, Turkey
- Faculty of Medicine, Akhmet Yassawi International Kazakh-Turkish University, 161200Turkestan, Kazakhstan
| | - Pamela Carolina Köster
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Health Institute Carlos III, Ctra. Majadahonda-Pozuelo Km 2, 28220 Majadahonda, Madrid, Spain
| | - Funda Dogruman-Al
- Section of Medical Parasitology, Department of Medical Microbiology, School of Medicine, Gazi University, 06490Ankara, Turkey
| | - Begoña Bailo
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Health Institute Carlos III, Ctra. Majadahonda-Pozuelo Km 2, 28220 Majadahonda, Madrid, Spain
| | - Alejandro Dashti
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Health Institute Carlos III, Ctra. Majadahonda-Pozuelo Km 2, 28220 Majadahonda, Madrid, Spain
| | - Filiz Demirel-Kaya
- Medical Microbiology Laboratory, Ankara Education and Research Hospital, Health Science University, 06230Ankara, Turkey
| | - David Carmena
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Health Institute Carlos III, Ctra. Majadahonda-Pozuelo Km 2, 28220 Majadahonda, Madrid, Spain
| |
Collapse
|
4
|
Multilocus Genotyping of Giardia duodenalis in Mostly Asymptomatic Indigenous People from the Tapirapé Tribe, Brazilian Amazon. Pathogens 2021; 10:pathogens10020206. [PMID: 33672794 PMCID: PMC7917967 DOI: 10.3390/pathogens10020206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Little information is available on the occurrence and genetic variability of the diarrhoea-causing enteric protozoan parasite Giardia duodenalis in indigenous communities in Brazil. This cross-sectional epidemiological survey describes the frequency, genotypes, and risk associations for this pathogen in Tapirapé people (Brazilian Amazon) at four sampling campaigns during 2008–2009. Microscopy was used as a screening test, and molecular (PCR and Sanger sequencing) assays targeting the small subunit ribosomal RNA, the glutamate dehydrogenase, the beta-giardin, and the triosephosphate isomerase genes as confirmatory/genotyping methods. Associations between G. duodenalis and sociodemographic and clinical variables were investigated using Chi-squared test and univariable/multivariable logistic regression models. Overall, 574 individuals belonging to six tribes participated in the study, with G. duodenalis prevalence rates varying from 13.5–21.7%. The infection was positively linked to younger age and tribe. Infected children <15 years old reported more frequent gastrointestinal symptoms compared to adults. Assemblage B accounted for three out of four G. duodenalis infections and showed a high genetic diversity. No association between assemblage and age or occurrence of diarrhoea was demonstrated. These data indicate that the most likely source of infection was anthropic and that different pathways (e.g., drinking water) may be involved in the transmission of the parasite.
Collapse
|
5
|
Messa A, Köster PC, Garrine M, Gilchrist C, Bartelt LA, Nhampossa T, Massora S, Kotloff K, Levine MM, Alonso PL, Carmena D, Mandomando I. Molecular diversity of Giardia duodenalis in children under 5 years from the Manhiça district, Southern Mozambique enrolled in a matched case-control study on the aetiology of diarrhoea. PLoS Negl Trop Dis 2021; 15:e0008987. [PMID: 33465074 PMCID: PMC7846004 DOI: 10.1371/journal.pntd.0008987] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/29/2021] [Accepted: 11/18/2020] [Indexed: 12/23/2022] Open
Abstract
Giardia duodenalis is an enteric parasite commonly detected in children. Exposure to this organism may lead to asymptomatic or symptomatic infection. Additionally, early-life infections by this protozoan have been associated with impaired growth and cognitive function in poor resource settings. The Global Enteric Multicenter Study (GEMS) in Mozambique demonstrated that G. duodenalis was more frequent among controls than in diarrhoeal cases (≥3 loosing stools in the previous 24 hours). However, no molecular investigation was conducted to ascertain the molecular variability of the parasite. Therefore, we describe here the frequency and genetic diversity of G. duodenalis infections in children younger than five years of age with and without diarrhoea from the Manhiça district in southern Mozambique enrolled in the context of GEMS. Genomic DNA from 757 G. duodenalis-positive stool samples by immunoassay collected between 2007-2012, were reanalysed by multiplex PCR targeting the E1-HP and C1-P21 genes for the differentiation of assemblages A and B. Overall, 47% (353) of the samples were successfully amplified in at least one locus. Assemblage B accounted for 90% (319/353) of all positives, followed by assemblage A (8%, 29/353) and mixed A+B infections (1%, 5/353). No association between the presence of a given assemblage and the occurrence of diarrhoea could be demonstrated. A total of 351 samples were further analysed by a multi-locus sequence genotyping (MLSG) approach at the glutamate dehydrogenase (gdh), ß-giardin (bg) and triose phosphate isomerase (tpi) genes. Overall, 63% (222/351) of samples were genotyped and/or sub-genotyped in at least one of the three markers. Sequence analysis revealed the presence of assemblages A (10%; 23/222) and B (90%; 199/222) with high molecular diversity at the nucleotide level within the latter; no mixed infections were identified under the MLSG scheme. Assemblage A sequences were assigned to sub-assemblages AI (0.5%, 1/222), AII (7%, 15/222) or ambiguous AII/AIII (3%, 7/222). Within assemblage B, sequences were assigned to sub-assemblages BIII (13%, 28/222), BIV (14%, 31/222) and ambiguous BIII/BIV (59%, 132/222). BIII/BIV sequences accumulated the majority of the single nucleotide polymorphisms detected, particularly in the form of double peaks at chromatogram inspection. This study demonstrated that the occurrence of gastrointestinal illness (diarrhoea) was not associated to a given genotype of G. duodenalis in Mozambican children younger than five years of age. The assemblage B of the parasite was responsible for nine out of ten infections detected in this paediatric population. The extremely high genetic diversity observed within assemblage B isolates was compatible with an hyperendemic epidemiological scenario where infections and reinfections were common. The obtained molecular data may be indicative of high coinfection rates by different G. duodenalis assemblages/sub-assemblages and/or genetic recombination events, although the exact contribution of both mechanisms to the genetic diversity of the parasite remains unknown.
Collapse
Affiliation(s)
- Augusto Messa
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Pamela C. Köster
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Madrid, Spain
| | - Marcelino Garrine
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| | - Carol Gilchrist
- University of Virginia, Charlottesville, Virginia, United States of America
| | - Luther A. Bartelt
- Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Tacilta Nhampossa
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Instituto Nacional de Saúde (INS), Ministério da Saúde, Maputo, Mozambique
| | - Sérgio Massora
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Karen Kotloff
- Center for Vaccine Development (CVD), University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Myron M. Levine
- Center for Vaccine Development (CVD), University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Pedro L. Alonso
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - David Carmena
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Madrid, Spain
| | - Inácio Mandomando
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Instituto Nacional de Saúde (INS), Ministério da Saúde, Maputo, Mozambique
| |
Collapse
|
6
|
Saghaug CS, Klotz C, Kallio JP, Aebischer T, Langeland N, Hanevik K. Genetic Diversity of the Flavohemoprotein Gene of Giardia lamblia: Evidence for High Allelic Heterozygosity and Copy Number Variation. Infect Drug Resist 2020; 13:4531-4545. [PMID: 33376360 PMCID: PMC7755369 DOI: 10.2147/idr.s274543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose The flavohemoprotein (gFlHb) in Giardia plays an important role in managing nitrosative and oxidative stress, and potentially also in virulence and nitroimidazole drug tolerance. The aim of this study was to analyze the genetic diversity of gFlHb in Giardia assemblages A and B clinical isolates. Methods gFlHb genes from 20 cultured clinical Giardia isolates were subjected to PCR amplification and cloning, followed by Sanger sequencing. Sequences of all cloned PCR fragments from each isolate were analyzed for single nucleotide variants (SNVs) and compared to genomic Illumina sequence data. Identical clone sequences were sorted into alleles, and diversity was further analyzed. The number of gFlHb gene copies was assessed by mining PacBio de novo assembled genomes in eight isolates. Homology models for assessment of SNV's potential impact on protein function were created using Phyre2. Results A variable copy number of the gFlHb gene, between two and six copies, depending on isolate, was found. A total of 37 distinct sequences, representing different alleles of the gFlHb gene, were identified in AII isolates, and 41 were identified in B isolates. In some isolates, up to 12 different alleles were found. The total allelic diversity was high for both assemblages (>0.9) and was coupled with a nucleotide diversity of <0.01. The genetic variation (SNVs per CDS length) was 4.8% in sub-assemblage AII and 5.4% in assemblage B. The number of non-synonymous (ns) SNVs was high in gFIHb of both assemblages, 1.6% in A and 3.0% in B, respectively. Some of the identified nsSNV are predicted to alter protein structure and possibly function. Conclusion In this study, we present evidence that gFlHb, a putative protective enzyme against oxidative and nitrosative stress in Giardia, is a variable copy number gene with high allelic diversity. The genetic variability of gFlHb may contribute metabolic adaptability against metronidazole toxicity.
Collapse
Affiliation(s)
- Christina S Saghaug
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Christian Klotz
- Department of Infectious Diseases, Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Juha P Kallio
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Toni Aebischer
- Department of Infectious Diseases, Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Nina Langeland
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway.,Department of Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
| | - Kurt Hanevik
- Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
7
|
Rafiei A, Baghlaninezhad R, Köster PC, Bailo B, Hernández de Mingo M, Carmena D, Panabad E, Beiromvand M. Multilocus genotyping of Giardia duodenalis in Southwestern Iran. A community survey. PLoS One 2020; 15:e0228317. [PMID: 32027684 PMCID: PMC7004373 DOI: 10.1371/journal.pone.0228317] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/13/2020] [Indexed: 02/05/2023] Open
Abstract
Giardia duodenalis is one of the main enteric pathogens associated with diarrheal disease. In developing countries, giardiasis is a major public health concern, particularly in children under five years of age. This study aimed to evaluate the occurrence and genetic diversity of G. duodenalis causing human infections in Shushtar County, Southwestern Iran. Individual faecal specimens were collected from 1,163 individuals (male/female ratio: 0.9; age range 2-75 years) with (n = 258) and without (n = 905) gastrointestinal symptoms living in rural and urban settings during the period 2017-2018. Conventional (sucrose flotation and microscopy) methods were used for the initial detection of G. duodenalis cysts in faecal specimens. Microscopy-positive samples were confirmed by PCR amplification and sequencing of the small subunit rRNA (ssu rRNA) gene of the parasite. A multilocus genotyping (MLG) scheme targeting the triose phosphate isomerase (tpi), the glutamate dehydrogenase (gdh), and the beta-giardin (bg) genes was used for genotyping purposes. Giardia duodenalis cysts were detected in 7.7% (90/1,163) of samples by microscopy, of which 82 were confirmed by ssu-PCR. Successful amplification and sequencing results were obtained for 23.2% (19/82), 9.8% (8/82), and 8.5% (7/82) of the confirmed samples at the tpi, gdh, and bg loci, respectively. MLG data for the three loci were available for two samples only. Out of the 24 samples genotyped at any loci, 50% (12/24) were identified as assemblage A and the remaining half as assemblage B. Overall, AII was the most prevalent sub-assemblage detected (41.7%, 10/24), followed by BIII (25.0%, 6/24), discordant BIII/BIV (5/24) or AII/AIII (2/24) sequences, and BIV (1/24). No significant correlation was demonstrated between a given assemblage/sub-assemblage and the occurrence of clinical symptoms. No genotypes adapted to animal hosts other than humans (e.g. assemblages C-F) were found circulating in the investigated human population, suggesting that transmission of human giardiasis in this Iranian region is primarily of anthroponotic nature. Further molecular-based studies are needed to confirm and expand these results, and to ascertain the presence and public health relevance of the parasite in environmental (e.g. drinking water) samples.
Collapse
Affiliation(s)
- Abdollah Rafiei
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Khuzestan, Iran
- Department of Parasitology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Khuzestan, Iran
| | - Raheleh Baghlaninezhad
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Khuzestan, Iran
- Department of Parasitology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Khuzestan, Iran
| | - Pamela C. Köster
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Majadahonda, Madrid, Spain
| | - Begoña Bailo
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Majadahonda, Madrid, Spain
| | - Marta Hernández de Mingo
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Majadahonda, Madrid, Spain
| | - David Carmena
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Majadahonda, Madrid, Spain
| | - Esmat Panabad
- Department of Parasitology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Khuzestan, Iran
| | - Molouk Beiromvand
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Khuzestan, Iran
- Department of Parasitology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Khuzestan, Iran
| |
Collapse
|
8
|
Mizuno T, Matey EJ, Bi X, Songok EM, Ichimura H, Tokoro M. Extremely diversified haplotypes observed among assemblage B population of Giardia intestinalis in Kenya. Parasitol Int 2019; 75:102038. [PMID: 31837398 DOI: 10.1016/j.parint.2019.102038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022]
Abstract
In molecular epidemiological studies of Giardia intestinalis, an pathogenic intestinal flagellate, due to the presence of allelic sequence heterogeneity (ASH) on the tetraploid genome, the image of haplotype diversity in the field remains uncertain. Here we employed the nine assemblage B positive stool samples, which had previously reported from Kenyan children, for the clonal sequence analysis of multiple gene loci (glutamate dehydrogenase (GDH), triosephosphate isomerase (TPI), and beta-giardin (BG)). The diversified unique assemblage B haplotypes as GDH (n = 67), TPI (n = 84), and BG (n = 62), and the assemblage A haplotypes as GDH (n = 7), TPI (n = 14), and BG (n = 15), which were hidden in the previous direct-sequence results, were detected. Among the assemblage B haplotypes, Bayesian phylogeny revealed multiple statistically significant clusters (9, 7, and 7 clusters for GDH, TPI, and BG, respectively). A part of the clusters (2 for GDH and 1 for BG), which included >4 haplotypes from an individual sample, indicated the presence of co-transmission with multiple strains sharing a recent ancestor. Locus-dependent discrepancies, such as different compositions of derived samples in clusters and different genotyping results for the assemblages, were also observed and considered to be the traces of both intra- and inter-assemblage genetic recombination respectively. Our clonal sequence analysis for giardial population, which applied firstly in Kenya, could reveal the higher rates of ASH far beyond the levels reported in other areas and address the complex population structure. The clonal analysis is indispensable for the molecular field study of G. intestinalis.
Collapse
Affiliation(s)
- Tetsushi Mizuno
- Department of Parasitology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | | | - Xiuqiong Bi
- Department of Viral Infection and International Health, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | | | - Hiroshi Ichimura
- Department of Viral Infection and International Health, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Masaharu Tokoro
- Department of Parasitology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
9
|
Lecová L, Tůmová P, Nohýnková E. Clone-based haplotyping of Giardia intestinalis assemblage B human isolates. Parasitol Res 2018; 118:355-361. [PMID: 30488254 DOI: 10.1007/s00436-018-6161-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/22/2018] [Indexed: 01/19/2023]
Abstract
The level of genetic variability of Giardia intestinalis clinical isolates is an intensively studied and discussed issue within the scientific community. Our collection of G. intestinalis human isolates includes six in vitro-cultured isolates from assemblage B, with extensive genetic variability. Such variability prevents the precise genotype characterisation by the multi-locus genotyping (MLG) method commonly used for assemblage A. It was speculated that the intra-assemblage variations represent a reciprocal genetic exchange or true mixed infection. Thus, we analysed gene sequences of the molecular clones of the assemblage B isolates, each representing a single DNA molecule (haplotype) to determine whether the polymorphisms are present within individual haplotypes. Our results, which are based on the analysis of three standard genetic markers (bg, gdh, tpi), point to haplotype diversity and show numerous single nucleotide polymorphisms (SNPs) mostly in codon wobble positions. We do not support the recombinatory origin of the detected haplotypes. The point mutations tolerated by mismatch repair are the possible cause for the detected sequence divergence. The precise sub-genotyping of assemblage B will require finding more conservative genes, as the existing ones are hypervariable in most isolates and prevent their molecular and epidemiological characterisation.
Collapse
Affiliation(s)
- Lenka Lecová
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Studničkova 7, 128 00, Prague, Czech Republic.
| | - Pavla Tůmová
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Studničkova 7, 128 00, Prague, Czech Republic
| | - Eva Nohýnková
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Studničkova 7, 128 00, Prague, Czech Republic
| |
Collapse
|
10
|
Local and global genetic diversity of protozoan parasites: Spatial distribution of Cryptosporidium and Giardia genotypes. PLoS Negl Trop Dis 2017; 11:e0005736. [PMID: 28704362 PMCID: PMC5526614 DOI: 10.1371/journal.pntd.0005736] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 07/25/2017] [Accepted: 06/21/2017] [Indexed: 01/09/2023] Open
Abstract
Cryptosporidiosis and giardiasis are recognized as significant enteric diseases due to their long-term health effects in humans and their economic impact in agriculture and medical care. Molecular analysis is essential to identify species and genotypes causing these infectious diseases and provides a potential tool for monitoring. This study uses information on species and genetic variants to gain insights into the geographical distribution and spatial patterns of Cryptosporidium and Giardia parasites. Here, we describe the population heterogeneity of genotypic groups within Cryptosporidium and Giardia present in New Zealand using gp60 and gdh markers to compare the observed variation with other countries around the globe. Four species of Cryptosporidium (C. hominis, C. parvum, C. cuniculus and C. erinacei) and one species of Giardia (G. intestinalis) were identified. These species have been reported worldwide and there are not unique Cryptosporidium gp60 subtype families and Giardiagdh assemblages in New Zealand, most likely due to high gene flow of historical and current human activity (travel and trade) and persistence of large host population sizes. The global analysis revealed that genetic variants of these pathogens are widely distributed. However, genetic variation is underestimated by data biases (e.g. neglected submission of sequences to genetic databases) and low sampling. New genotypes are likely to be discovered as sampling efforts increase according to accumulation prediction analyses, especially for C. parvum. Our study highlights the need for greater sampling and archiving of genotypes globally to allow comparative analyses that help understand the population dynamics of these protozoan parasites. Overall our study represents a comprehensive overview for exploring local and global protozoan genotype diversity and advances our understanding of the importance for surveillance and potential risk associated with these infectious diseases. Infectious diseases threaten the health and well-being of wildlife, livestock and human populations and contribute to significant economic impact in agriculture and medical care. Cryptosporidium and Giardia are enteric protozoan pathogens that cause diarrhea and nutritional disorders on a global level. Using molecular analysis and a review framework we showed that species and genetic variants within genera Cryptosporidium and Giardia (including two species recently infecting humans) found in an island system are not different from other parts of the world. This similarity is likely due to high gene flow of historical and current human activity (travel and trade) and persistence of large host population sizes, such as cattle and people. We also show that, although species and genotypes are widely distributed, new variants will arise when sampling effort increase and their dispersal will be facilitated by human activity. These findings suggest that geographical distribution of species and genotypes within Cryptosporidium and Giardia parasites may yield important clues for designing effective surveillance strategies and identification of factors driving within and cross species transmission.
Collapse
|
11
|
Azcona-Gutiérrez JM, de Lucio A, Hernández-de-Mingo M, García-García C, Soria-Blanco LM, Morales L, Aguilera M, Fuentes I, Carmena D. Molecular diversity and frequency of the diarrheagenic enteric protozoan Giardia duodenalis and Cryptosporidium spp. in a hospital setting in Northern Spain. PLoS One 2017; 12:e0178575. [PMID: 28617836 PMCID: PMC5472271 DOI: 10.1371/journal.pone.0178575] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/15/2017] [Indexed: 11/18/2022] Open
Abstract
Background Human giardiosis and cryptosporidiosis are caused by the enteric protozoan parasites Giardia duodenalis and Cryptosporidium spp. Both pathogens are major contributors to the global burden of diarrhoeal disease, affecting primarily children and immunodebilitated individuals in resource-poor settings. Giardiosis and cryptosporidiosis also represent an important, often underestimate, public health threat in developed countries. In Spain only limited information is currently available on the epidemiology of these infections. Molecular data on the diversity, frequency, geographical distribution, and seasonality of G. duodenalis assemblages/sub-assemblages and Cryptosporidium species/sub-genotypes are particularly scarce. Methods A longitudinal molecular epidemiological survey was conducted between July 2015 to September 2016 in patients referred to or attended at the Hospital San Pedro (La Rioja, Northern Spain) that tested positive for G. duodenalis (N = 106) or Cryptosporidium spp. (N = 103) by direct microscopy and/or a rapid lateral flow immunochromatographic assay. G. duodenalis infections were subsequently confirmed by real-time PCR and positive isolates assessed by multi-locus sequence genotyping of the glutamate dehydrogenase and β-giardin genes of the parasite. Cryptosporidium species and sub-genotypes were investigated at the 60 kDa glycoprotein or the small subunit ribosomal RNA genes of the parasite. Sociodemographic and clinical parameters of infected patients were also gathered and analysed. Principal findings Out of 90 G. duodenalis-positive isolates by real-time PCR a total of 16 isolates were successfully typed. AII (44%, 7/16) was the most prevalent sub-assemblage found, followed by BIV (31%, 5/16) and BIII (19%, 3/16). A discordant genotype result AII/AIII was identified in an additional (6%, 1/16) isolate. No mixed infections A+B were detected. Similarly, a total of 81 Cryptosporidium spp. isolates were successfully typed, revealing the presence of C. hominis (81%, 66/81) and C. parvum (19%, 15/81). Obtained GP60 sequences were assigned to sub-type families Ib (73%, 59/81) within C. hominis, and IIa (7%, 6/81) and IId (2%, 2/81) within C. parvum. A marked inter-annual variation in Cryptosporidium cases was observed. Conclusions Human giardiasis and cryptosporidiosis are commonly identified in patients seeking medical care in Northern Spain and represent a more important health concern than initially thought. Assemblage A within G. duodenalis and sub-genotype IbA10G2 within C. hominis were the genetic variants of these parasite species more frequently found circulating in the population under study. Molecular data presented here seem to suggest that G. duodenalis and Cryptosporidium infections arise through anthroponotic rather than zoonotic transmission in this Spanish region.
Collapse
Affiliation(s)
| | - Aida de Lucio
- Parasitology Service, National Centre for Microbiology, Majadahonda, Madrid, Spain
| | | | | | | | - Lucía Morales
- Parasitology Service, National Centre for Microbiology, Majadahonda, Madrid, Spain
| | - María Aguilera
- Parasitology Service, National Centre for Microbiology, Majadahonda, Madrid, Spain
| | - Isabel Fuentes
- Parasitology Service, National Centre for Microbiology, Majadahonda, Madrid, Spain
| | - David Carmena
- Parasitology Service, National Centre for Microbiology, Majadahonda, Madrid, Spain
- * E-mail:
| |
Collapse
|
12
|
Gabín-García LB, Bartolomé C, Abal-Fabeiro JL, Méndez S, Llovo J, Maside X. Strong genetic structure revealed by multilocus patterns of variation in Giardia duodenalis isolates of patients from Galicia (NW-Iberian Peninsula). INFECTION GENETICS AND EVOLUTION 2016; 48:131-141. [PMID: 27993728 DOI: 10.1016/j.meegid.2016.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/28/2016] [Accepted: 12/13/2016] [Indexed: 10/20/2022]
Abstract
We report a survey of genetic variation at three coding loci in Giardia duodenalis of assemblages A and B obtained from stool samples of patients from Santiago de Compostela (Galicia, NW-Iberian Peninsula). The mean pooled synonymous diversity for assemblage A was nearly five times lower than for assemblage B (0.77%±0.30% and 4.14%±1.65%, respectively). Synonymous variation in both assemblages was in mutation-drift equilibrium and an excess of low-frequency nonsynonymous variants suggested the action of purifying selection at the three loci. Differences between isolates contributed to 40% and 60% of total genetic variance in assemblages A and B, respectively, which revealed a significant genetic structure. These results, together with the lack of evidence for recombination, support that (i) Giardia assemblages A and B are in demographic equilibrium and behave as two genetically isolated populations, (ii) infections are initiated by a reduced number of individuals, which may be genetically diverse and even belong to different assemblages, and (iii) parasites reproduce clonally within the host. However, the observation of invariant loci in some isolates means that mechanisms for the homogenization of the genetic content of the two diploid nuclei in each individual must exist.
Collapse
Affiliation(s)
- Luis B Gabín-García
- Grupo de Medicina Xenómica, Centro de Investigación en Medicina Molecular e Enfermidades Crónicas da Universidade de Santiago de Compostela (CIMUS), Avda. Barcelona s/n, 15782 Santiago, Galicia, Spain; Xenómica Comparada de Parasitos Humanos, Instituto de Investigacións Sanitarias de Santiago (IDIS), Travesia da Choupana s/n, 15706 Santiago, Galicia, Spain.
| | - Carolina Bartolomé
- Grupo de Medicina Xenómica, Centro de Investigación en Medicina Molecular e Enfermidades Crónicas da Universidade de Santiago de Compostela (CIMUS), Avda. Barcelona s/n, 15782 Santiago, Galicia, Spain; Xenómica Comparada de Parasitos Humanos, Instituto de Investigacións Sanitarias de Santiago (IDIS), Travesia da Choupana s/n, 15706 Santiago, Galicia, Spain
| | - José L Abal-Fabeiro
- Grupo de Medicina Xenómica, Centro de Investigación en Medicina Molecular e Enfermidades Crónicas da Universidade de Santiago de Compostela (CIMUS), Avda. Barcelona s/n, 15782 Santiago, Galicia, Spain; Xenómica Comparada de Parasitos Humanos, Instituto de Investigacións Sanitarias de Santiago (IDIS), Travesia da Choupana s/n, 15706 Santiago, Galicia, Spain
| | - Santiago Méndez
- Xenómica Comparada de Parasitos Humanos, Instituto de Investigacións Sanitarias de Santiago (IDIS), Travesia da Choupana s/n, 15706 Santiago, Galicia, Spain; Servizo de Microbioloxía e Parasitoloxía, Complexo Hospitalario Universitario de Santiago, Travesia da Choupana s/n, 15706 Santiago, Galicia, Spain
| | - José Llovo
- Xenómica Comparada de Parasitos Humanos, Instituto de Investigacións Sanitarias de Santiago (IDIS), Travesia da Choupana s/n, 15706 Santiago, Galicia, Spain; Servizo de Microbioloxía e Parasitoloxía, Complexo Hospitalario Universitario de Santiago, Travesia da Choupana s/n, 15706 Santiago, Galicia, Spain
| | - Xulio Maside
- Grupo de Medicina Xenómica, Centro de Investigación en Medicina Molecular e Enfermidades Crónicas da Universidade de Santiago de Compostela (CIMUS), Avda. Barcelona s/n, 15782 Santiago, Galicia, Spain; Xenómica Comparada de Parasitos Humanos, Instituto de Investigacións Sanitarias de Santiago (IDIS), Travesia da Choupana s/n, 15706 Santiago, Galicia, Spain
| |
Collapse
|
13
|
de Lucio A, Amor-Aramendía A, Bailo B, Saugar JM, Anegagrie M, Arroyo A, López-Quintana B, Zewdie D, Ayehubizu Z, Yizengaw E, Abera B, Yimer M, Mulu W, Hailu T, Herrador Z, Fuentes I, Carmena D. Prevalence and Genetic Diversity of Giardia duodenalis and Cryptosporidium spp. among School Children in a Rural Area of the Amhara Region, North-West Ethiopia. PLoS One 2016; 11:e0159992. [PMID: 27466809 PMCID: PMC4965151 DOI: 10.1371/journal.pone.0159992] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/22/2016] [Indexed: 02/03/2023] Open
Abstract
Backgroud Giardia duodenalis and Cryptosporidium spp. are enteric protozoan causing gastrointestinal illness in humans and animals. Giardiasis and cryptosporidiosis are not formally considered as neglected tropical diseases, but belong to the group of poverty-related infectious diseases that impair the development and socio-economic potential of infected individuals in developing countries. Methods We report here the prevalence and genetic diversity of G. duodenalis and Cryptosporidium spp. in children attending rural primary schools in the Bahir Dar district of the Amhara Region, Ethiopia. Stool samples were collected from 393 children and analysed by molecular methods. G. duodenalis was detected by real-time PCR, and the assemblages and sub-assemblages were determined by multilocus sequence-based genotyping of the glutamate dehydrogenase and β-giardin genes of the parasite. Detection and identification of Cryptosporidium species was carried out by sequencing of a partial fragment of the small-subunit ribosomal RNA gene. Principal Findings The PCR-based prevalences of G. duodenalis and Cryptosporidium spp. were 55.0% (216/393) and 4.6% (18/393), respectively. A total of 78 G. duodenalis isolates were successfully characterized, revealing the presence of sub-assemblages AII (10.3%), BIII (28.2%), and BIV (32.0%). Discordant typing results AII/AIII and BIII/BIV were identified in 7.7% and 15.4% of the isolates, respectively. An additional five (6.4%) isolates were assigned to assemblage B. No mixed infections of assemblages A+B were found. Extensive genetic variation at the nucleotide level was observed within assemblage B (but no within assemblage A), resulting in the identification of a large number of sub-types. Cryptosporidium diversity was demonstrated by the occurrence of C. hominis, C. parvum, and C. viatorum in the population under study. Conclusions Our data suggest an epidemiological scenario with an elevated transmission intensity of a wide range of G. duodenalis genetic variants. Importantly, the elevated degree of genetic diversity observed within assemblage B is consistent with the occurrence of intra-assemblage recombination in G. duodenalis.
Collapse
Affiliation(s)
- Aida de Lucio
- Parasitology Service, National Centre for Microbiology, Majadahonda, Madrid, Spain
| | | | - Begoña Bailo
- Parasitology Service, National Centre for Microbiology, Majadahonda, Madrid, Spain
| | - José M. Saugar
- Parasitology Service, National Centre for Microbiology, Majadahonda, Madrid, Spain
| | - Melaku Anegagrie
- National Centre of Tropical Medicine, Madrid, Spain
- Mundo Sano Foundation, Madrid, Spain
| | - Ana Arroyo
- Microbiology and Parasitology Service, La Paz-Carlos III Hospital, Madrid, Spain
| | | | - Derjew Zewdie
- Department of Microbiology, Immunology and Parasitology, College of Medicine and Health Science, Bahir Dar, Ethiopia
| | - Zimmam Ayehubizu
- Department of Microbiology, Immunology and Parasitology, College of Medicine and Health Science, Bahir Dar, Ethiopia
| | - Endalew Yizengaw
- Department of Microbiology, Immunology and Parasitology, College of Medicine and Health Science, Bahir Dar, Ethiopia
| | - Bayeh Abera
- Department of Microbiology, Immunology and Parasitology, College of Medicine and Health Science, Bahir Dar, Ethiopia
| | - Mulat Yimer
- Department of Microbiology, Immunology and Parasitology, College of Medicine and Health Science, Bahir Dar, Ethiopia
| | - Wondemagen Mulu
- Department of Microbiology, Immunology and Parasitology, College of Medicine and Health Science, Bahir Dar, Ethiopia
| | - Tadesse Hailu
- Department of Microbiology, Immunology and Parasitology, College of Medicine and Health Science, Bahir Dar, Ethiopia
| | | | - Isabel Fuentes
- Parasitology Service, National Centre for Microbiology, Majadahonda, Madrid, Spain
| | - David Carmena
- Parasitology Service, National Centre for Microbiology, Majadahonda, Madrid, Spain
- * E-mail: ;
| |
Collapse
|
14
|
Choy SH, Mahdy MAK, Al-Mekhlafi HM, Low VL, Surin J. Population expansion and gene flow in Giardia duodenalis as revealed by triosephosphate isomerase gene. Parasit Vectors 2015; 8:454. [PMID: 26373536 PMCID: PMC4572684 DOI: 10.1186/s13071-015-1084-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 09/10/2015] [Indexed: 12/21/2022] Open
Abstract
Background Giardia duodenalis is a protozoan parasite that can cause significant diarrhoeal diseases. Knowledge of population genetics is a prerequisite for ascertaining the invasion patterns of this parasite. In order to infer evolutionary patterns that could not be uncovered based on the morphological features, a population genetic study with the incorporation of molecular marker was carried out to access the genetic structure of G. duodenalis isolated from the Malaysian population and the global populations. Methods A total of 154 samples positive for Giardia, collected from different Malaysian communities, were subjected to DNA amplification and sequencing targeting three genetic loci (tpi, gdh, and bg). The tpi sequences together with sequences from the global data obtained from the NCBI GenBank were used for genetic diversity analyses including identification of haplotypes, haplotype diversity, nucleotide diversity, Tajima’s D and Fu and Li’s D, gene flow and genetic differentiation tests. Results Analysis of the Malaysian and global data showed that assemblages A, B, and E (the most prevalent assemblages in humans and animals), have different levels of genetic diversity. Assemblage B had the highest level of both haplotype diversity and nucleotide diversity, followed by assemblage E. The analysis also revealed population expansion and high gene flow in all assemblages. No clear genetic structure was observed across five continents (i.e., the Americas, Europe, Asia, Australia and Africa). However, median joining network of assemblage B formed a cluster that was exclusively isolated from Asia while other haplotypes were well dispersed across the continents. Conclusions This study provides new insight into the genetic diversity of Giardia assemblages in different geographical regions. The significant result shown by gene flow and genetic differentiation analyses as well as test of neutrality among the populations should have brought a clearer picture to the dynamics and distribution of Giardia infection.
Collapse
Affiliation(s)
- Seow Huey Choy
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Mohammed A K Mahdy
- Department of Parasitology, Faculty of Medicine and Health Science, Sana'a University, Sana'a, Yemen. .,Tropical Disease Research Center, University of Science and Technology, Sana'a, Yemen.
| | - Hesham M Al-Mekhlafi
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia. .,Department of Parasitology, Faculty of Medicine and Health Science, Sana'a University, Sana'a, Yemen.
| | - Van Lun Low
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Johari Surin
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
15
|
Anuar TS, Nor Azreen S, Salleh FM, Moktar N. Molecular epidemiology of giardiasis among Orang Asli in Malaysia: application of the triosephosphate isomerase gene. BMC Infect Dis 2014; 14:78. [PMID: 24520940 PMCID: PMC3933338 DOI: 10.1186/1471-2334-14-78] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 02/05/2014] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Giardia duodenalis is a flagellate parasite which has been considered the most common protozoa infecting human worldwide. Molecular characterization of G. duodenalis isolates have revealed the existence of eight groups (Assemblage A to H) which differ in their host distribution. Assemblages A and B are found in humans and in many other mammals. METHODS This cross-sectional study was conducted to identify assemblage's related risk factors of G. duodenalis among Orang Asli in Malaysia. Stool samples were collected from 611 individuals aged between 2 and 74 years old of whom 266 were males and 345 were females. Socioeconomic data were collected through a pre-tested questionnaire. All stool samples were processed with formalin-ether sedimentation and Wheatley's trichrome staining techniques for the primary identification of G. duodenalis. Molecular identification was carried out by the amplification of a triosephosphate isomerase gene using nested-PCR assay. RESULTS Sixty-two samples (10.2%) were identified as assemblage A and 36 (5.9%) were assemblage B. Risk analysis based on the detected assemblages using univariate and logistic regression analyses identified subjects who have close contact with household pets i.e. dogs and cats (OR = 2.60; 95% CI = 1.42, 4.78; P = 0.002) was found to be significant predictor for assemblage A. On the other hand, there were three significant risk factors caused by assemblage B: (i) children ≤15 years old (OR = 2.33; 95% CI = 1.11, 4.87; P = 0.025), (ii) consuming raw vegetables (OR = 2.82; 95% CI = 1.27, 6.26; P = 0.011) and (iii) the presence of other family members infected with giardiasis (OR = 6.31; 95% CI = 2.99, 13.31; P < 0.001). CONCLUSIONS The present study highlighted that G. duodenalis infection among Orang Asli was caused by both assemblages with significant high prevalence of assemblage A. Therefore, taking precaution after having contact with household pets and their stool, screening and treating infected individuals, awareness on the importance of good health practices and washing vegetables are the practical intervention ways in preventing giardiasis in Orang Asli community.
Collapse
Affiliation(s)
- Tengku Shahrul Anuar
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Universiti Teknologi MARA, Puncak Alam Campus, 42300 Selangor, Malaysia
| | - Siti Nor Azreen
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Fatmah Md Salleh
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Norhayati Moktar
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Ryan U, Cacciò SM. Zoonotic potential of Giardia. Int J Parasitol 2013; 43:943-56. [PMID: 23856595 DOI: 10.1016/j.ijpara.2013.06.001] [Citation(s) in RCA: 412] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/12/2013] [Accepted: 06/14/2013] [Indexed: 11/27/2022]
Abstract
Giardia duodenalis (syn. Giardia lamblia and Giardia intestinalis) is a common intestinal parasite of humans and mammals worldwide. Assessing the zoonotic transmission of the infection requires molecular characterization as there is considerable genetic variation within G. duodenalis. To date eight major genetic groups (assemblages) have been identified, two of which (A and B) are found in both humans and animals, whereas the remaining six (C to H) are host-specific and do not infect humans. Sequence-based surveys of single loci have identified a number of genetic variants (genotypes) within assemblages A and B in animal species, some of which may have zoonotic potential. Multi-locus typing data, however, has shown that in most cases, animals do not share identical multi-locus types with humans. Furthermore, interpretation of genotyping data is complicated by the presence of multiple alleles that generate "double peaks" in sequencing files from PCR products, and by the potential exchange of genetic material among isolates, which may account for the non-concordance in the assignment of isolates to specific assemblages. Therefore, a better understanding of the genetics of this parasite is required to allow the design of more sensitive and variable subtyping tools, that in turn may help unravel the complex epidemiology of this infection.
Collapse
Affiliation(s)
- Una Ryan
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, 6150 Western Australia, Australia.
| | | |
Collapse
|
17
|
Leelayoova S, Siripattanapipong S, Hitakarun A, Kato H, Tan-ariya P, Siriyasatien P, Osatakul S, Mungthin M. Multilocus characterization and phylogenetic analysis of Leishmania siamensis isolated from autochthonous visceral leishmaniasis cases, southern Thailand. BMC Microbiol 2013; 13:60. [PMID: 23506297 PMCID: PMC3724499 DOI: 10.1186/1471-2180-13-60] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 03/13/2013] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Visceral leishmaniasis (VL) caused by Leishmania siamensis is an emerging disease continuously reported in six southern provinces of Thailand. To date, the phylogenetic relationships among Leishmania isolates from Thai patients and other Leishmania species are still unclear and the taxonomic diversity needs to be established. In this study, the phylogenetic inference trees were constructed based on four genetic loci (i.e., SSU-rRNA, ITS1, hsp70, and cyt b), using DNA sequences obtained from autochthonous VL patients from southern Thailand and reference sequences of reported Leishmania isolates from other studies deposited in GenBank. RESULTS Phylogenetic analyses of hsp70 and cyt b loci supported a clade comprised of L. siamensis isolates, which is independent to the other members in the genus Leishmania. In combination with genetic distance analysis, sequence polymorphisms were observed among L. siamensis isolates and two different lineages could be differentiated, lineages PG and TR. Phylogenetic analysis of the cyt b gene further showed that L. siamensis lineage TR is closely related to L. enrietti, a parasite of guinea pigs. CONCLUSION The finding of this study sheds further light on the relationships of L. siamensis, both in intra- and inter-species aspects. This information would be useful for further in-depth studies on the biological properties of this important parasite.
Collapse
Affiliation(s)
- Saovanee Leelayoova
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok 10400, Thailand
| | | | - Atitaya Hitakarun
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Hirotomo Kato
- Department of Disease Control, Laboratory of Parasitology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Peerapan Tan-ariya
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Padet Siriyasatien
- Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Seksit Osatakul
- Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Mathirut Mungthin
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok 10400, Thailand
| |
Collapse
|
18
|
Abstract
In this review, the current status of genomic and proteomic research on Giardia is examined in terms of evolutionary biology, phylogenetic relationships and taxonomy. The review also describes how characterising genetic variation in Giardia from numerous hosts and endemic areas has provided a better understanding of life cycle patterns, transmission and the epidemiology of Giardia infections in humans, domestic animals and wildlife. Some progress has been made in relating genomic information to the phenotype of Giardia, and as a consequence, new information has been obtained on aspects of developmental biology and the host-parasite relationship. However, deficiencies remain in our understanding of pathogenesis and host specificity, highlighting the limitations of currently available genomic datasets.
Collapse
|