1
|
Li L, Feldman BJ. White adipocytes in subcutaneous fat depots require KLF15 for maintenance in preclinical models. J Clin Invest 2024; 134:e172360. [PMID: 38949025 PMCID: PMC11213504 DOI: 10.1172/jci172360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/10/2024] [Indexed: 07/02/2024] Open
Abstract
Healthy adipose tissue is essential for normal physiology. There are 2 broad types of adipose tissue depots: brown adipose tissue (BAT), which contains adipocytes poised to burn energy through thermogenesis, and white adipose tissue (WAT), which contains adipocytes that store lipids. However, within those types of adipose, adipocytes possess depot and cell-specific properties that have important implications. For example, the subcutaneous and visceral WAT confers divergent risk for metabolic disease. Further, within a depot, different adipocytes can have distinct properties; subcutaneous WAT can contain adipocytes with either white or brown-like (beige) adipocyte properties. However, the pathways that regulate and maintain this cell and depot-specificity are incompletely understood. Here, we found that the transcription factor KLF15 is required for maintaining white adipocyte properties selectively within the subcutaneous WAT. We revealed that deletion of Klf15 is sufficient to induce beige adipocyte properties and that KLF15's direct regulation of Adrb1 is a critical molecular mechanism for this process. We uncovered that this activity is cell autonomous but has systemic implications in mouse models and is conserved in primary human adipose cells. Our results elucidate a pathway for depot-specific maintenance of white adipocyte properties that could enable the development of therapies for obesity and associated diseases.
Collapse
Affiliation(s)
- Liang Li
- Department of Pediatrics, University of California, San Francisco (UCSF) School of Medicine, San Francisco, California, USA
| | - Brian J. Feldman
- Department of Pediatrics, University of California, San Francisco (UCSF) School of Medicine, San Francisco, California, USA
- Nutrition and Obesity Research Center, UCSF, San Francisco, California, USA
| |
Collapse
|
2
|
Regulation of neurotropic herpesvirus productive infection and latency-reactivation cycle by glucocorticoid receptor and stress-induced transcription factors. VITAMINS AND HORMONES 2021; 117:101-132. [PMID: 34420577 DOI: 10.1016/bs.vh.2021.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Neurotropic α-herpesvirinae subfamily members, herpes simplex virus type 1 (HSV-1) and bovine herpesvirus 1 (BoHV-1), are important viral pathogens in their respective hosts. Following acute infection on mucosal surfaces, these viruses establish life-long latency in neurons within trigeminal ganglia (TG) and central nervous system. Chronic or acute stress (physiological or psychological) increases the frequency of reactivation from latency, which leads to virus shedding, virus transmission, and recurrent disease. While stress impairs immune responses and inflammatory signaling cascades, we predict stressful stimuli directly stimulate viral gene expression and productive infection during early stages of reactivation from latency. For example, BoHV-1 and HSV-1 productive infection is impaired by glucocorticoid receptor (GR) antagonists but is stimulated by the synthetic corticosteroid dexamethasone. Promoters that drive expression of key viral transcriptional regulatory proteins are cooperatively stimulated by GR and specific Krüppel like transcription factors (KLF) induced during stress induced reactivation from latency. The BoHV-1 immediate early transcription unit 1 promoter and contains two GR response elements (GRE) that are essential for cooperative transactivation by GR and KLF15. Conversely, the HSV-1 infected cell protein 0 (ICP0) and ICP4 promoter as well as the BoHV-1 ICP0 early promoter lack consensus GREs: however, these promoters are cooperatively transactivated by GR and KLF4 or KLF15. Hence, growing evidence suggests GR and stress-induced transcription factors directly stimulate viral gene expression and productive infection during early stages of reactivation from latency. We predict the immune inhibitory effects of stress enhance virus spread at late stages during reactivation from latency.
Collapse
|
3
|
El-mayet FS, Harrison KS, Jones C. Regulation of Krüppel-Like Factor 15 Expression by Herpes Simplex Virus Type 1 or Bovine Herpesvirus 1 Productive Infection. Viruses 2021; 13:1148. [PMID: 34203849 PMCID: PMC8232590 DOI: 10.3390/v13061148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023] Open
Abstract
Expression of Krüppel-like factor 15 (KLF15), a stress-induced transcription factor, is induced during bovine herpesvirus 1 (BoHV-1) reactivation from latency, and KLF15 stimulates BoHV-1 replication. Transient transfection studies revealed that KLF15 and glucocorticoid receptor (GR) cooperatively transactivate the BoHV-1-immediate-early transcription unit 1 (IEtu1), herpes simplex virus type 1 (HSV-1) infected cell protein 0 (ICP0), and ICP4 promoters. The IEtu1 promoter drives expression of bICP0 and bICP4, two key BoHV-1 transcriptional regulatory proteins. Based on these studies, we hypothesized infection is a stressful stimulus that increases KLF15 expression and enhances productive infection. New studies demonstrated that silencing KLF15 impaired HSV-1 productive infection, and KLF15 steady-state protein levels were increased at late stages of productive infection. KLF15 was primarily localized to the nucleus following infection of cultured cells with HSV-1, but not BoHV-1. When cells were transfected with a KLF15 promoter construct and then infected with HSV-1, promoter activity was significantly increased. The ICP0 gene, and to a lesser extent, bICP0 transactivated the KLF15 promoter in the absence of other viral proteins. In contrast, BoHV-1 or HSV-1 encoded VP16 had no effect on KLF15 promoter activity. Collectively, these studies revealed that HSV-1 and BoHV-1 productive infection increased KLF15 steady-state protein levels, which correlated with increased virus production.
Collapse
Affiliation(s)
- Fouad S. El-mayet
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (F.S.E.-m.); (K.S.H.)
- Department of Virology, Faculty of Veterinary Medicine, Benha University, Moshtohor 13736, Kaliobyia, Egypt
| | - Kelly S. Harrison
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (F.S.E.-m.); (K.S.H.)
| | - Clinton Jones
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (F.S.E.-m.); (K.S.H.)
| |
Collapse
|
4
|
Ostler JB, Harrison KS, Schroeder K, Thunuguntla P, Jones C. The Glucocorticoid Receptor (GR) Stimulates Herpes Simplex Virus 1 Productive Infection, in Part Because the Infected Cell Protein 0 (ICP0) Promoter Is Cooperatively Transactivated by the GR and Krüppel-Like Transcription Factor 15. J Virol 2019; 93:e02063-18. [PMID: 30602606 PMCID: PMC6401466 DOI: 10.1128/jvi.02063-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 12/19/2018] [Indexed: 12/14/2022] Open
Abstract
Following acute infection, herpes simplex virus 1 (HSV-1) establishes lifelong latency in neurons. Physical, emotional, and chemical stresses are linked to increasing the incidence of reactivation from latency, but the mechanism of action is not well understood. In general, stress increases corticosteroid levels, leading to activation of the glucocorticoid receptor (GR), a pioneer transcription factor. Consequently, we hypothesized that stress-mediated activation of the GR can stimulate productive infection and viral gene expression. New studies demonstrated that the GR-specific antagonist (CORT-108297) significantly reduced HSV-1 productive infection in mouse neuroblastoma cells (Neuro-2A). Additional studies demonstrated that the activated GR and Krüppel-like transcription factor 15 (KLF15) cooperatively transactivated the infected cell protein 0 (ICP0) promoter, a crucial viral regulatory protein. Interestingly, the synthetic corticosteroid dexamethasone and GR or KLF15 alone had little effect on ICP0 promoter activity in transfected Neuro-2A or Vero cells. Chromatin immunoprecipitation (ChIP) studies revealed that the GR and KLF15 occupied ICP0 promoter sequences important for transactivation at 2 and 4 h after infection; however, binding was not readily detected at 6 h after infection. Similar results were obtained for cells transfected with the full-length ICP0 promoter. ICP0 promoter sequences lack a consensus "whole" GR response element (GRE) but contain putative half-GREs that were important for dexamethasone induced promoter activity. The activated GR stimulates expression of, and interacts with, KLF15; consequently, these data suggest KLF15 and the GR form a feed-forward loop that activates viral gene expression and productive infection following stressful stimuli.IMPORTANCE The ability of herpes simplex virus 1 (HSV-1) to periodically reactivate from latency results in virus transmission and recurrent disease. The incidence of reactivation from latency is increased by chronic or acute stress. Stress increases the levels of corticosteroids, which bind and activate the glucocorticoid receptor (GR). Since GR activation is an immediate early response to stress, we tested whether the GR influences productive infection and the promoter that drives infected cell protein 0 (ICP0) expression. Pretreatment of cells with a GR-specific antagonist (CORT-108297) significantly reduced virus replication. Although the GR had little effect on ICP0 promoter activity alone, the Krüppel-like transcription factor 15 (KLF15) cooperated with the GR to stimulate promoter activity in transfected cells. In transfected or infected cells, the GR and KLF15 occupied ICP0 sequences important for transactivation. Collectively, these studies provide insight into how stress can directly stimulate productive infection and viral gene expression.
Collapse
Affiliation(s)
- Jeffery B Ostler
- Oklahoma State University Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Kelly S Harrison
- Oklahoma State University Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Kayla Schroeder
- Oklahoma State University Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Prasanth Thunuguntla
- Oklahoma State University Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Clinton Jones
- Oklahoma State University Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| |
Collapse
|
5
|
El-Mayet FS, El-Habbaa AS, D'Offay J, Jones C. Synergistic Activation of Bovine Herpesvirus 1 Productive Infection and Viral Regulatory Promoters by the Progesterone Receptor and Krüppel-Like Transcription Factor 15. J Virol 2019; 93:e01519-18. [PMID: 30305353 PMCID: PMC6288325 DOI: 10.1128/jvi.01519-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/03/2018] [Indexed: 12/17/2022] Open
Abstract
Bovine herpesvirus 1 (BoHV-1), including modified live vaccines, readily infects the fetus and ovaries, which can lead to reproductive failure. The BoHV-1 latency reactivation cycle in sensory neurons may further complicate reproductive failure in pregnant cows. The immediate early transcription unit 1 (IEtu1) promoter drives expression of important viral transcriptional regulators (bICP0 and bICP4). This promoter contains two functional glucocorticoid receptor (GR) response elements (GREs) that have the potential to stimulate productive infection following stressful stimuli. Since progesterone and the progesterone receptor (PR) can activate many GREs, we hypothesized that the PR and/or progesterone regulates productive infection and viral transcription. New studies demonstrated that progesterone stimulated productive infection. Additional studies revealed the PR and Krüppel-like transcription factor 15 (KLF15) cooperated to stimulate productive infection and IEtu1 promoter activity. IEtu1 promoter activation required both GREs, which correlated with the ability of the PR to interact with wild-type (wt) GREs but not mutant GREs. KLF15 also cooperated with the PR to transactivate the bICP0 early promoter, a promoter that maintains bICP0 protein expression during productive infection. Intergenic viral DNA fragments (less than 400 bp) containing two GREs and putative KLF binding sites present within genes encoding unique long 52 (UL-52; component of DNA primase/helicase complex), Circ, bICP4, and IEtu2 were stimulated by KLF15 and the PR more than 10-fold, suggesting that additional viral promoters are activated by these transcription factors. Collectively, these studies suggest progesterone and the PR promote BoHV-1 spread to reproductive tissues, thus increasing the incidence of reproductive failure.IMPORTANCE Bovine herpesvirus 1 (BoHV-1) is the most frequently diagnosed cause of abortions in pregnant cows and can cause "abortion storms" in susceptible herds. Virulent field strains and even commercially available modified live vaccines can induce abortion, in part because BoHV-1 replicates efficiently in the ovary and corpus luteum. We now demonstrate that progesterone and the progesterone receptor (PR) stimulate productive infection. The BoHV-1 genome contains approximately 100 glucocorticoid receptor (GR) response elements (GREs). Interestingly, the PR can bind and activate many promoters that contain GREs. The PR and Krüppel-like transcription factor 15 (KLF15), which regulate key steps during embryo implantation, cooperate to stimulate productive infection and two viral promoters that drive expression of key viral transcriptional regulators. These studies suggest that the ability of progesterone and the PR to stimulate productive infection has the potential to promote virus spread in reproductive tissue and induce reproductive failure.
Collapse
Affiliation(s)
- Fouad S El-Mayet
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
- Benha University, Faculty of Veterinary Medicine, Department of Virology, Benha, Egypt
| | - Ayman S El-Habbaa
- Benha University, Faculty of Veterinary Medicine, Department of Virology, Benha, Egypt
| | - Jean D'Offay
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Clinton Jones
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| |
Collapse
|
6
|
Combinatorial Effects of the Glucocorticoid Receptor and Krüppel-Like Transcription Factor 15 on Bovine Herpesvirus 1 Transcription and Productive Infection. J Virol 2017; 91:JVI.00904-17. [PMID: 28794031 DOI: 10.1128/jvi.00904-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/04/2017] [Indexed: 12/11/2022] Open
Abstract
Bovine herpesvirus 1 (BoHV-1), an important bovine pathogen, establishes lifelong latency in sensory neurons. Latently infected calves consistently reactivate from latency following a single intravenous injection of the synthetic corticosteroid dexamethasone. The immediate early transcription unit 1 (IEtu1) promoter, which drives bovine ICP0 (bICP0) and bICP4 expression, is stimulated by dexamethasone because it contains two glucocorticoid receptor (GR) response elements (GREs). Several Krüppel-like transcription factors (KLF), including KLF15, are induced during reactivation from latency, and they stimulate certain viral promoters and productive infection. In this study, we demonstrate that the GR and KLF15 were frequently expressed in the same trigeminal ganglion (TG) neuron during reactivation and cooperatively stimulated productive infection and IEtu1 GREs in mouse neuroblastoma cells (Neuro-2A). We further hypothesized that additional regions in the BoHV-1 genome are transactivated by the GR or stress-induced transcription factors. To test this hypothesis, BoHV-1 DNA fragments (less than 400 bp) containing potential GR and KLF binding sites were identified and examined for transcriptional activation by stress-induced transcription factors. Intergenic regions within the unique long 52 gene (UL52; a component of the DNA primase/helicase complex), bICP4, IEtu2, and the unique short region were stimulated by KLF15 and the GR. Chromatin immunoprecipitation studies revealed that the GR and KLF15 interacted with sequences within IEtu1 GREs and the UL52 fragment. Coimmunoprecipitation studies demonstrated that KLF15 and the GR were associated with each other in transfected cells. Since the GR stimulates KLF15 expression, we suggest that these two transcription factors form a feed-forward loop that stimulates viral gene expression and productive infection following stressful stimuli.IMPORTANCE Bovine herpesvirus 1 (BoHV-1) is an important viral pathogen that causes respiratory disease and suppresses immune responses in cattle; consequently, life-threatening bacterial pneumonia can occur. Following acute infection, BoHV-1 establishes lifelong latency in sensory neurons. Reactivation from latency is initiated by the synthetic corticosteroid dexamethasone. Dexamethasone stimulates lytic cycle viral gene expression in sensory neurons of calves latently infected with BoHV-1, culminating in virus shedding and transmission. Two stress-induced cellular transcription factors, Krüppel-like transcription factor 15 (KLF15) and the glucocorticoid receptor (GR), cooperate to stimulate productive infection and viral transcription. Additional studies demonstrated that KLF15 and the GR form a stable complex and that these stress-induced transcription factors bind to viral DNA sequences, which correlates with transcriptional activation. The ability of the GR and KLF15 to synergistically stimulate viral gene expression and productive infection may be critical for the ability of BoHV-1 to reactivate from latency following stressful stimuli.
Collapse
|
7
|
Stress-induced cellular transcription factors expressed in trigeminal ganglionic neurons stimulate the herpes simplex virus 1 ICP0 promoter. J Virol 2013; 87:13042-7. [PMID: 24027338 DOI: 10.1128/jvi.02476-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Alphaherpesvirinae family members can reactivate from latency following stress. The synthetic corticosteroid dexamethasone induces certain cellular transcription factors in murine and bovine trigeminal ganglionic neurons. Three dexamethasone-induced transcription factors, Krüppel-like factor 15, Slug, and SPDEF, stimulated the herpes simplex virus type 1-infected cell protein 0 (ICP0) promoter more than 150-fold. Conversely, other viral promoters (VP16 and ICP4) were not strongly stimulated, suggesting that the ICP0 promoter is preferentially activated by dexamethasone-simulated stress.
Collapse
|
8
|
Rossmiller B, Mao H, Lewin AS. Gene therapy in animal models of autosomal dominant retinitis pigmentosa. Mol Vis 2012; 18:2479-96. [PMID: 23077406 PMCID: PMC3472929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 10/04/2012] [Indexed: 12/04/2022] Open
Abstract
Gene therapy for dominantly inherited genetic disease is more difficult than gene-based therapy for recessive disorders, which can be treated with gene supplementation. Treatment of dominant disease may require gene supplementation partnered with suppression of the expression of the mutant gene either at the DNA level, by gene repair, or at the RNA level by RNA interference or transcriptional repression. In this review, we examine some of the gene delivery approaches used to treat animal models of autosomal dominant retinitis pigmentosa, focusing on those models associated with mutations in the gene for rhodopsin. We conclude that combinatorial approaches have the greatest promise for success.
Collapse
|
9
|
Repression of cardiac hypertrophy by KLF15: underlying mechanisms and therapeutic implications. PLoS One 2012; 7:e36754. [PMID: 22586493 PMCID: PMC3346753 DOI: 10.1371/journal.pone.0036754] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 04/09/2012] [Indexed: 01/02/2023] Open
Abstract
The Kruppel-like factor (KLF) family of transcription factors regulates diverse cell biological processes including proliferation, differentiation, survival and growth. Previous studies have shown that KLF15 inhibits cardiac hypertrophy by repressing the activity of pivotal cardiac transcription factors such as GATA4, MEF2 and myocardin. We set out this study to characterize the interaction of KLF15 with putative other transcription factors. We first show that KLF15 interacts with myocardin-related transcription factors (MRTFs) and strongly represses the transcriptional activity of MRTF-A and MRTF-B. Second, we identified a region within the C-terminal zinc fingers of KLF15 that contains the nuclear localization signal. Third, we investigated whether overexpression of KLF15 in the heart would have therapeutic potential. Using recombinant adeno-associated viruses (rAAV) we have overexpressed KLF15 specifically in the mouse heart and provide the first evidence that elevation of cardiac KLF15 levels prevents the development of cardiac hypertrophy in a model of Angiotensin II induced hypertrophy.
Collapse
|
10
|
Cellular transcription factors induced in trigeminal ganglia during dexamethasone-induced reactivation from latency stimulate bovine herpesvirus 1 productive infection and certain viral promoters. J Virol 2011; 86:2459-73. [PMID: 22190728 DOI: 10.1128/jvi.06143-11] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bovine herpesvirus 1 (BHV-1), an alphaherpesvirinae subfamily member, establishes latency in sensory neurons. Elevated corticosteroid levels, due to stress, reproducibly triggers reactivation from latency in the field. A single intravenous injection of the synthetic corticosteroid dexamethasone (DEX) to latently infected calves consistently induces reactivation from latency. Lytic cycle viral gene expression is detected in sensory neurons within 6 h after DEX treatment of latently infected calves. These observations suggested that DEX stimulated expression of cellular genes leads to lytic cycle viral gene expression and productive infection. In this study, a commercially available assay-Bovine Gene Chip-was used to compare cellular gene expression in the trigeminal ganglia (TG) of calves latently infected with BHV-1 versus DEX-treated animals. Relative to TG prepared from latently infected calves, 11 cellular genes were induced more than 10-fold 3 h after DEX treatment. Pentraxin three, a regulator of innate immunity and neurodegeneration, was stimulated 35- to 63-fold after 3 or 6 h of DEX treatment. Two transcription factors, promyelocytic leukemia zinc finger (PLZF) and Slug were induced more than 15-fold 3 h after DEX treatment. PLZF or Slug stimulated productive infection 20- or 5-fold, respectively, and Slug stimulated the late glycoprotein C promoter more than 10-fold. Additional DEX-induced transcription factors also stimulated productive infection and certain viral promoters. These studies suggest that DEX-inducible cellular transcription factors and/or signaling pathways stimulate lytic cycle viral gene expression, which subsequently leads to successful reactivation from latency in a small subset of latently infected neurons.
Collapse
|
11
|
Dmitriev P, Petrov A, Ansseau E, Stankevicins L, Charron S, Kim E, Bos TJ, Robert T, Turki A, Coppée F, Belayew A, Lazar V, Carnac G, Laoudj D, Lipinski M, Vassetzky YS. The Krüppel-like factor 15 as a molecular link between myogenic factors and a chromosome 4q transcriptional enhancer implicated in facioscapulohumeral dystrophy. J Biol Chem 2011; 286:44620-31. [PMID: 21937448 DOI: 10.1074/jbc.m111.254052] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD), a dominant hereditary disease with a prevalence of 7 per 100,000 individuals, is associated with a partial deletion in the subtelomeric D4Z4 repeat array on chromosome 4q. The D4Z4 repeat contains a strong transcriptional enhancer that activates promoters of several FSHD-related genes. We report here that the enhancer within the D4Z4 repeat binds the Krüppel-like factor KLF15. KLF15 was found to be up-regulated during myogenic differentiation induced by serum starvation or by overexpression of the myogenic differentiation factor MYOD. When overexpressed, KLF15 activated the D4Z4 enhancer and led to overexpression of DUX4c (Double homeobox 4, centromeric) and FRG2 (FSHD region gene 2) genes, whereas its silencing caused inactivation of the D4Z4 enhancer. In immortalized human myoblasts, the D4Z4 enhancer was activated by the myogenic factor MYOD, an effect that was abolished upon KLF15 silencing or when the KLF15-binding sites within the D4Z4 enhancer were mutated, indicating that the myogenesis-related activation of the D4Z4 enhancer was mediated by KLF15. KLF15 and several myogenesis-related factors were found to be expressed at higher levels in myoblasts, myotubes, and muscle biopsies from FSHD patients than in healthy controls. We propose that KLF15 serves as a molecular link between myogenic factors and the activity of the D4Z4 enhancer, and it thus contributes to the overexpression of the DUX4c and FRG2 genes during normal myogenic differentiation and in FSHD.
Collapse
Affiliation(s)
- Petr Dmitriev
- CNRS UMR8126, Université Paris-Sud 11, Institut de Cancérologie Gustave Roussy, 94805 Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Huang J, Zhang J, Lei T, Chen X, Zhang Y, Zhou L, Yu A, Chen Z, Zhou R, Yang Z. Cloning of porcine chemerin, ChemR23 and GPR1 and their involvement in regulation of lipogenesis. BMB Rep 2010; 43:491-8. [DOI: 10.5483/bmbrep.2010.43.7.491] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
13
|
Abstract
An analysis of mRNA expression in T47D breast cancer cells treated with the synthetic progestin R5020 revealed a subset of progesterone receptor (PR) target genes that are enriched for E2F binding sites. Following up on this observation, we determined that PR-B acts in both direct and indirect manners to positively upregulate E2F1 expression in T47D cells. The direct effects of PR on E2F1 expression were confirmed by chromatin immunoprecipitation (ChIP) analysis, which indicated that the agonist-bound receptor was recruited to several enhancer elements proximal to the E2F1 transcript. However, we also noted that cycloheximide partially inhibits R5020 induction of E2F1 expression, indicating that the ligand-dependent actions of PR on this gene may involve additional indirect regulatory pathways. In support of this hypothesis, we demonstrated that treatment with R5020 significantly increases both hyperphosphorylation of Rb and recruitment of E2F1 to its own promoter, thus activating a positive feedback loop that further amplifies its transcription. Furthermore, we established that PR-mediated induction of Krüppel-like factor 15 (KLF15), which can bind to GC-rich DNA within the E2F1 promoter, is required for maximal induction of E2F1 expression by progestins. Taken together, these results suggest a new paradigm for multimodal regulation of target gene expression by PR.
Collapse
|
14
|
Pan Y, Martinez-De Luna RI, Lou CH, Nekkalapudi S, Kelly LE, Sater AK, El-Hodiri HM. Regulation of photoreceptor gene expression by the retinal homeobox (Rx) gene product. Dev Biol 2010; 339:494-506. [PMID: 20060393 DOI: 10.1016/j.ydbio.2009.12.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 12/04/2009] [Accepted: 12/18/2009] [Indexed: 12/30/2022]
Abstract
The retinal homeobox (Rx) gene product is essential for eye development. However little is known about its molecular function. It has been demonstrated that Rx binds to photoreceptor conserved element (PCE-1), a highly conserved element found in the promoter region of photoreceptor-specific genes such as rhodopsin and red cone opsin. We verify that Rx is co-expressed with rhodopsin and red cone opsin in maturing photoreceptors and demonstrate that Rx binds to the rhodopsin and red cone opsin promoters in vivo. We also find that Rx can cooperate with the Xenopus analogs of Crx and Nrl, otx5b and XLMaf (respectively), to activate a Xenopus opsin promoter-dependent reporter. Finally, we demonstrate that reduction of Rx expression in tadpoles results in decreases in expression of several PCE-1 containing photoreceptor genes, abnormal photoreceptor morphology, and impaired vision. Our data suggests that Rx, in combination with other transcription factors, is necessary for normal photoreceptor gene expression, maintenance, and function. This establishes a direct role for Rx in regulation of genes expressed in a differentiated cell type.
Collapse
Affiliation(s)
- Yi Pan
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Kee HJ, Kook H. Krüppel-like factor 4 mediates histone deacetylase inhibitor-induced prevention of cardiac hypertrophy. J Mol Cell Cardiol 2009; 47:770-80. [DOI: 10.1016/j.yjmcc.2009.08.022] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 07/31/2009] [Accepted: 08/20/2009] [Indexed: 01/16/2023]
|
16
|
Trimarchi JM, Stadler MB, Cepko CL. Individual retinal progenitor cells display extensive heterogeneity of gene expression. PLoS One 2008; 3:e1588. [PMID: 18270576 PMCID: PMC2220035 DOI: 10.1371/journal.pone.0001588] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 01/15/2008] [Indexed: 12/28/2022] Open
Abstract
The development of complex tissues requires that mitotic progenitor cells integrate information from the environment. The highly varied outcomes of such integration processes undoubtedly depend at least in part upon variations among the gene expression programs of individual progenitor cells. To date, there has not been a comprehensive examination of these differences among progenitor cells of a particular tissue. Here, we used comprehensive gene expression profiling to define these differences among individual progenitor cells of the vertebrate retina. Retinal progenitor cells (RPCs) have been shown by lineage analysis to be multipotent throughout development and to produce distinct types of daughter cells in a temporal, conserved order. A total of 42 single RPCs were profiled on Affymetrix arrays. In situ hybridizations performed on both retinal sections and dissociated retinal cells were used to validate the results of the microarrays. An extensive amount of heterogeneity in gene expression among RPCs, even among cells isolated from the same developmental time point, was observed. While many classes of genes displayed heterogeneity of gene expression, the expression of transcription factors constituted a significant amount of the observed heterogeneity. In contrast to previous findings, individual RPCs were found to express multiple bHLH transcription factors, suggesting alternative models to those previously developed concerning how these factors may be coordinated. Additionally, the expression of cell cycle related transcripts showed differences among those associated with G2 and M, versus G1 and S phase, suggesting different levels of regulation for these genes. These data provide insights into the types of processes and genes that are fundamental to cell fate choices, proliferation decisions, and, for cells of the central nervous system, the underpinnings of the formation of complex circuitry.
Collapse
Affiliation(s)
- Jeffrey M. Trimarchi
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael B. Stadler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Constance L. Cepko
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- *E-mail:
| |
Collapse
|
17
|
Manavathi B, Peng S, Rayala SK, Talukder AH, Wang MH, Wang RA, Balasenthil S, Agarwal N, Frishman LJ, Kumar R. Repression of Six3 by a corepressor regulates rhodopsin expression. Proc Natl Acad Sci U S A 2007; 104:13128-33. [PMID: 17666527 PMCID: PMC1941821 DOI: 10.1073/pnas.0705878104] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2006] [Indexed: 11/18/2022] Open
Abstract
Here, we provide gain-of-function, loss-of function, and molecular evidence supporting genetic interactions between metastasis associated protein 1 (MTA1) and Six3 and between Six3 and rhodopsin. We discovered that MTA1 physically interacts with the Six3 chromatin in a histone deacetylase-dependent manner, leading to transcriptional suppression of the Six3 gene. MTA1 is also a Six3-interacting corepressor that contributes to a self-negative regulation of Six3 transcription by Six3. In contrast, deletion of the MTA1 alleles in murine embryonic fibroblasts or its knockdown in rat retinal ganglion cells stimulates Six3 expression. MTA1 inactivation in the MTA1-null mice results in an elevated Six3 level and proliferation of the retina cells with no obvious abnormities in eye formation. However, unexpectedly, we discovered an enhanced recruitment of Six3 to the rhodopsin chromatin in retina from the MTA1-null mice; Six3's homeodomain interacts with specific DNA elements in the rhodopsin promoter to stimulate its transcription, resulting in increased rhodopsin expression. Further, in holoprosencephaly patients, Six3 protein with a naturally occurring deletion mutation in the helix 3 of the homeodomain does not bind to rhodopsin DNA or stimulate rhodopsin transcription, implying a potential defective rhodopsin pathway in the affected holoprosencephaly patients. Further Six3 cooperates with Crx or NRL in stimulating transcription from the rhodopsin-luc. These findings reveal a previously unrecognized role for the MTA1 as an upstream modifier of Six3 and indicate that Six3 is a direct stimulator of rhodopsin expression, thus revealing a putative role for the MTA1/Six3/rhodopsin pathway in vertebrate eye.
Collapse
Affiliation(s)
| | - Shaohua Peng
- Departments of *Molecular and Cellular Oncology and
| | | | | | - Minhua H. Wang
- College of Optometry, University of Houston, Houston, TX 77004; and
| | - Rui-An Wang
- Departments of *Molecular and Cellular Oncology and
| | | | - Neeraj Agarwal
- Cell Biology and Genetics, North Texas Health Science Center, Fort Worth, TX 76107
| | | | - Rakesh Kumar
- Departments of *Molecular and Cellular Oncology and
- Biochemistry and Molecular Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
18
|
Moncayo R, Moncayo H. A musculoskeletal model of low grade connective tissue inflammation in patients with thyroid associated ophthalmopathy (TAO): the WOMED concept of lateral tension and its general implications in disease. BMC Musculoskelet Disord 2007; 8:17. [PMID: 17319961 PMCID: PMC1820789 DOI: 10.1186/1471-2474-8-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Accepted: 02/23/2007] [Indexed: 12/16/2022] Open
Abstract
Background Low level connective tissue inflammation has been proposed to play a role in thyroid associated ophthalmopathy (TAO). The aim of this study was to investigate this postulate by a musculoskeletal approach together with biochemical parameters. Methods 13 patients with TAO and 16 controls were examined. Erythrocyte levels of Zn, Cu, Ca2+, Mg, and Fe were determined. The musculoskeletal evaluation included observational data on body posture with emphasis on the orbit-head region. The angular foot position in the frontal plane was quantified following gait observation. The axial orientation of the legs and feet was evaluated in an unloaded supine position. Functional propioceptive tests based on stretch stimuli were done by using foot inversion and foot rotation. Results Alterations in the control group included neck tilt in 3 cases, asymmetrical foot angle during gait in 2, and a reaction to foot inversion in 5 cases. TAO patients presented facial asymmetry with displaced eye fissure inclination (mean 9.1°) as well as tilted head-on-neck position (mean 5.7°). A further asymmetry feature was external rotation of the legs and feet (mean 27°). Both foot inversion as well as foot rotation induced a condition of neuromuscular deficit. This condition could be regulated by gentle acupressure either on the lateral abdomen or the lateral ankle at the acupuncture points gall bladder 26 or bladder 62, respectively. In 5 patients, foot rotation produced a phenomenon of moving toes in the contra lateral foot. In addition foot rotation was accompanied by an audible tendon snapping. Lower erythrocyte Zn levels and altered correlations between Ca2+, Mg, and Fe were found in TAO. Conclusion This whole body observational study has revealed axial deviations and body asymmetry as well as the phenomenon of moving toes in TAO. The most common finding was an arch-like displacement of the body, i.e. eccentric position, with foot inversion and head tilt to the contra lateral side and tendon snapping. We propose that eccentric muscle action over time can be the basis for a low grade inflammatory condition. The general implications of this model and its relations to Zn and Se will be discussed.
Collapse
Affiliation(s)
- Roy Moncayo
- WOMED, Karl-Kapferer-Strasse 5, A-6020 Innsbruck, Austria
| | - Helga Moncayo
- WOMED, Karl-Kapferer-Strasse 5, A-6020 Innsbruck, Austria
| |
Collapse
|