1
|
Chetan K, Singh VK, Haider MW, Saharan MS, Kumar R. Unveiling the wheat-rust battleground: A transcriptomic journey. Heliyon 2024; 10:e40834. [PMID: 39687182 PMCID: PMC11648920 DOI: 10.1016/j.heliyon.2024.e40834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
The global wheat production faces significant challenges due to major rust-causing fungi, namely Puccinia striiformis f. sp. tritici, P. triticina, and P. graminis f. sp. tritici, responsible for stripe, leaf, and stem rust diseases, respectively. The evolutionary relationship between wheat (host) and Puccinia (pathogen) renders existing wheat resistance ineffective over time. The most viable solution to this issue lies in the development of new resistant wheat varieties. However, achieving this requires a comprehensive understanding of wheat's defense mechanisms against ever-evolving pathogens. Transcriptomics emerges as a powerful tool for analyzing gene activity at the molecular level. Over the last decade, this technique has transformed our comprehension of the wheat-rust interaction. Transcriptomics has unveiled a compelling "biphasic model" of gene expression in wheat infected with rust fungi, delineating two distinct phases of defense activation. Moreover, it has illuminated the intricate signaling pathways, hormonal interactions, and diverse defense mechanisms employed by wheat. These mechanisms encompass the oxidative burst, reinforcement of cell walls, and controlled cessation of photosynthesis, all aimed at combatting the invading pathogen. However, the utility of transcriptomics extends beyond elucidating defense strategies; it enables the identification of novel genes linked to resistance or susceptibility. By unraveling the functions of these genes, researchers can uncover new avenues for breeding resistant wheat varieties, arming wheat with the molecular arsenal necessary to prevail in the ongoing battle against rust fungi. This review represents a pioneering effort in exploring transcriptomic techniques and accumulated data to present a comprehensive overview of the wheat-Puccinia interaction at the system-wide level.
Collapse
Affiliation(s)
- K.K. Chetan
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Vaibhav Kumar Singh
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Mohammad Waris Haider
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Mahender Singh Saharan
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Ravinder Kumar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
2
|
Sun C, Li Y, Zhao T, Bi W, Song Y, Liang X, Wang X, Dou D, Xu G. Potato calcium sensor modules StCBL3-StCIPK7 and StCBL3-StCIPK24 negatively regulate plant immunity. BMC PLANT BIOLOGY 2024; 24:30. [PMID: 38182981 PMCID: PMC10768403 DOI: 10.1186/s12870-023-04713-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Potato late blight, caused by Phytophthora infestans, is the most devastating disease on potato. Dissecting critical immune components in potato will be supportive for engineering P. infestans resistance. Upon pathogens attack, plant Ca2+ signature is generated and decoded by an array of Ca2+ sensors, among which calcineurin B-like proteins (CBLs) coupled with plant specific CBL-interacting protein kinases (CIPKs) are much less explored in plant immunity. RESULTS In this study, we identified that two differential potato CBL-CIPK modules regulate plant defense responses against Phytophthora and ROS production, respectively. By deploying virus-induced gene silencing (VIGS) system-based pathogen inoculation assays, StCBL3 was shown to negatively regulate Phytophthora resistance. Consistently, StCBL3 was further found to negatively regulate PTI and ETI responses in Nicotiana benthamiana. Furthermore, StCIPK7 was identified to act together with StCBL3 to negatively regulate Phytophthora resistance. StCIPK7 physically interacts with StCBL3 and phosphorylates StCBL3 in a Ca2+-dependent manner. StCBL3 promotes StCIPK7 kinase activity. On the other hand, another StCBL3-interacting kinase StCIPK24 negatively modulating flg22-triggered accumulation of reactive oxygen species (ROS) by interacting with StRBOHB. CONCLUSIONS Together, these findings demonstrate that the StCBL3-StCIPK7 complex negatively modulates Phytophthora resistance and StCBL3-StCIPK24 complex negatively regulate ROS production. Our results offer new insights into the roles of potato CBL-CIPK in plant immunity and provide valuable gene resources to engineer the disease resistance potato in the future.
Collapse
Affiliation(s)
- Congcong Sun
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Yuanyuan Li
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Tingting Zhao
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Weishuai Bi
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Yingying Song
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xiangxiu Liang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaodan Wang
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Daolong Dou
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guangyuan Xu
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
3
|
Kamel AM, Metwally K, Sabry M, Albalawi DA, Abbas ZK, Darwish DBE, Al-Qahtani SM, Al-Harbi NA, Alzuaibr FM, Khalil HB. The Expression of Triticum aestivum Cysteine-Rich Receptor-like Protein Kinase Genes during Leaf Rust Fungal Infection. PLANTS (BASEL, SWITZERLAND) 2023; 12:2932. [PMID: 37631144 PMCID: PMC10457733 DOI: 10.3390/plants12162932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023]
Abstract
Understanding the role of cysteine-rich receptor-like kinases (CRKs) in plant defense mechanisms is crucial for enhancing wheat resistance to leaf rust fungus infection. Here, we identified and verified 164 members of the CRK gene family using the Triticum aestivum reference version 2 collected from the international wheat genome sequencing consortium (IWGSC). The proteins exhibited characteristic features of CRKs, including the presence of signal peptides, cysteine-rich/stress antifungal/DUF26 domains, transmembrane domains, and Pkinase domains. Phylogenetic analysis revealed extensive diversification within the wheat CRK gene family, indicating the development of distinct specific functional roles to wheat plants. When studying the expression of the CRK gene family in near-isogenic lines (NILs) carrying Lr57- and Lr14a-resistant genes, Puccinia triticina, the causal agent of leaf rust fungus, triggered temporal gene expression dynamics. The upregulation of specific CRK genes in the resistant interaction indicated their potential role in enhancing wheat resistance to leaf rust, while contrasting gene expression patterns in the susceptible interaction highlighted potential susceptibility associated CRK genes. The study uncovered certain CRK genes that exhibited expression upregulation upon leaf rust infection and the Lr14a-resistant gene. The findings suggest that targeting CRKs may present a promising strategy for improving wheat resistance to rust diseases.
Collapse
Affiliation(s)
- Ahmed M. Kamel
- Department of Genetics, Faculty of Agriculture, Ain Shams University, 68 Hadayek Shoubra, Cairo 11241, Egypt
| | - Khaled Metwally
- Department of Genetics, Faculty of Agriculture, Ain Shams University, 68 Hadayek Shoubra, Cairo 11241, Egypt
| | - Mostafa Sabry
- Department of Genetics, Faculty of Agriculture, Ain Shams University, 68 Hadayek Shoubra, Cairo 11241, Egypt
| | - Doha A. Albalawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia (D.B.E.D.)
| | - Zahid K. Abbas
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia (D.B.E.D.)
| | - Doaa B. E. Darwish
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia (D.B.E.D.)
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35511, Egypt
| | - Salem M. Al-Qahtani
- Biology Department, University College of Tayma, University of Tabuk, P.O. Box 741, Tabuk 47512, Saudi Arabia
| | - Nadi A. Al-Harbi
- Biology Department, University College of Tayma, University of Tabuk, P.O. Box 741, Tabuk 47512, Saudi Arabia
| | - Fahad M. Alzuaibr
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia (D.B.E.D.)
| | - Hala B. Khalil
- Department of Genetics, Faculty of Agriculture, Ain Shams University, 68 Hadayek Shoubra, Cairo 11241, Egypt
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
4
|
Kim M, Lee D, Cho HS, Chung YS, Park HJ, Jung HW. RNA-seq Gene Profiling Reveals Transcriptional Changes in the Late Phase during Compatible Interaction between a Korean Soybean Cultivar (Glycine max cv. Kwangan) and Pseudomonas syringae pv. syringae B728a. THE PLANT PATHOLOGY JOURNAL 2022; 38:603-615. [PMID: 36503189 PMCID: PMC9742799 DOI: 10.5423/ppj.oa.08.2022.0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 06/17/2023]
Abstract
Soybean (Glycine max (L) Merr.) provides plant-derived proteins, soy vegetable oils, and various beneficial metabolites to humans and livestock. The importance of soybean is highly underlined, especially when carbon-negative sustainable agriculture is noticeable. However, many diseases by pests and pathogens threaten sustainable soybean production. Therefore, understanding molecular interaction between diverse cultivated varieties and pathogens is essential to developing disease-resistant soybean plants. Here, we established a pathosystem of the Korean domestic cultivar Kwangan against Pseudomonas syringae pv. syringae B728a. This bacterial strain caused apparent disease symptoms and grew well in trifoliate leaves of soybean plants. To examine the disease susceptibility of the cultivar, we analyzed transcriptional changes in soybean leaves on day 5 after P. syringae pv. syringae B728a infection. About 8,900 and 7,780 differentially expressed genes (DEGs) were identified in this study, and significant proportions of DEGs were engaged in various primary and secondary metabolisms. On the other hand, soybean orthologs to well-known plant immune-related genes, especially in plant hormone signal transduction, mitogen-activated protein kinase signaling, and plant-pathogen interaction, were mainly reduced in transcript levels at 5 days post inoculation. These findings present the feature of the compatible interaction between cultivar Kwangan and P. syringae pv. syringae B728a, as a hemibiotroph, at the late infection phase. Collectively, we propose that P. syringae pv. syringae B728a successfully inhibits plant immune response in susceptible plants and deregulates host metabolic processes for their colonization and proliferation, whereas host plants employ diverse metabolites to protect themselves against infection with the hemibiotrophic pathogen at the late infection phase.
Collapse
Affiliation(s)
- Myoungsub Kim
- Department of Applied Bioscience, Dong-A University, Busan 49315,
Korea
| | - Dohui Lee
- Department of Applied Bioscience, Dong-A University, Busan 49315,
Korea
| | - Hyun Suk Cho
- Department of Applied Bioscience, Dong-A University, Busan 49315,
Korea
| | - Young-Soo Chung
- Department of Applied Bioscience, Dong-A University, Busan 49315,
Korea
| | - Hee Jin Park
- Department of Molecular Genetics, Dong-A University, Busan 49315,
Korea
- Department of Biological Sciences, Chonnam National University, Gwangju 61186,
Korea
| | - Ho Won Jung
- Institute of Agricultural Life Science, Dong-A University, Busan 49315,
Korea
| |
Collapse
|
5
|
Wu N, Ozketen AC, Cheng Y, Jiang W, Zhou X, Zhao X, Guan Y, Xiang Z, Akkaya MS. Puccinia striiformis f. sp. tritici effectors in wheat immune responses. FRONTIERS IN PLANT SCIENCE 2022; 13:1012216. [PMID: 36420019 PMCID: PMC9677129 DOI: 10.3389/fpls.2022.1012216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The obligate biotrophic fungus Puccinia striiformis f. sp. tritici, which causes yellow (stripe) rust disease, is among the leading biological agents resulting in tremendous yield losses on global wheat productions per annum. The combatting strategies include, but are not limited to, fungicide applications and the development of resistant cultivars. However, evolutionary pressure drives rapid changes, especially in its "effectorome" repertoire, thus allowing pathogens to evade and breach resistance. The extracellular and intracellular effectors, predominantly secreted proteins, are tactical arsenals aiming for many defense processes of plants. Hence, the identity of the effectors and the molecular mechanisms of the interactions between the effectors and the plant immune system have long been targeted in research. The obligate biotrophic nature of P. striiformis f. sp. tritici and the challenging nature of its host, the wheat, impede research on this topic. Next-generation sequencing and novel prediction algorithms in bioinformatics, which are accompanied by in vitro and in vivo validation approaches, offer a speedy pace for the discovery of new effectors and investigations of their biological functions. Here, we briefly review recent findings exploring the roles of P. striiformis f. sp. tritici effectors together with their cellular/subcellular localizations, host responses, and interactors. The current status and the challenges will be discussed. We hope that the overall work will provide a broader view of where we stand and a reference point to compare and evaluate new findings.
Collapse
Affiliation(s)
- Nan Wu
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | | | - Yu Cheng
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Wanqing Jiang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xuan Zhou
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xinran Zhao
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Yaorong Guan
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Zhaoxia Xiang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Mahinur S. Akkaya
- School of Bioengineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
6
|
Mapuranga J, Zhang N, Zhang L, Liu W, Chang J, Yang W. Harnessing genetic resistance to rusts in wheat and integrated rust management methods to develop more durable resistant cultivars. FRONTIERS IN PLANT SCIENCE 2022; 13:951095. [PMID: 36311120 PMCID: PMC9614308 DOI: 10.3389/fpls.2022.951095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Wheat is one of the most important staple foods on earth. Leaf rust, stem rust and stripe rust, caused by Puccini triticina, Puccinia f. sp. graminis and Puccinia f. sp. striiformis, respectively, continue to threaten wheat production worldwide. Utilization of resistant cultivars is the most effective and chemical-free strategy to control rust diseases. Convectional and molecular biology techniques identified more than 200 resistance genes and their associated markers from common wheat and wheat wild relatives, which can be used by breeders in resistance breeding programmes. However, there is continuous emergence of new races of rust pathogens with novel degrees of virulence, thus rendering wheat resistance genes ineffective. An integration of genomic selection, genome editing, molecular breeding and marker-assisted selection, and phenotypic evaluations is required in developing high quality wheat varieties with resistance to multiple pathogens. Although host genotype resistance and application of fungicides are the most generally utilized approaches for controlling wheat rusts, effective agronomic methods are required to reduce disease management costs and increase wheat production sustainability. This review gives a critical overview of the current knowledge of rust resistance, particularly race-specific and non-race specific resistance, the role of pathogenesis-related proteins, non-coding RNAs, and transcription factors in rust resistance, and the molecular basis of interactions between wheat and rust pathogens. It will also discuss the new advances on how integrated rust management methods can assist in developing more durable resistant cultivars in these pathosystems.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenxiang Yang
- College of Plant Protection, Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China
| |
Collapse
|
7
|
Purohit A, Ghosh S, Ganguly S, Negi MS, Tripathi SB, Chaudhuri RK, Chakraborti D. Comparative transcriptomic profiling of susceptible and resistant cultivars of pigeonpea demonstrates early molecular responses during Fusarium udum infection. Sci Rep 2021; 11:22319. [PMID: 34785701 PMCID: PMC8595609 DOI: 10.1038/s41598-021-01587-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 10/26/2021] [Indexed: 12/30/2022] Open
Abstract
Vascular wilt caused by Fusarium udum Butler is the most important disease of pigeonpea throughout the world. F. udum isolate MTCC 2204 (M1) inoculated pigeonpea plants of susceptible (ICP 2376) and resistant (ICP 8863) cultivars were taken at invasion stage of pathogenesis process for transcriptomic profiling to understand defense signaling reactions that interplay at early stage of this plant-pathogen encounter. Differential transcriptomic profiles were generated through cDNA-AFLP from M1 inoculated resistant and susceptible pigeonpea root tissues. Twenty five percent of transcript derived fragments (TDFs) were found to be pathogen induced. Among them 73 TDFs were re-amplified and sequenced. Homology search of the TDFs in available databases and thorough study of scientific literature identified several pathways, which could play crucial role in defense responses of the F. udum inoculated resistant plants. Some of the defense responsive pathways identified to be active during this interaction are, jasmonic acid and salicylic acid mediated defense responses, cell wall remodeling, vascular development and pattering, abscisic acid mediated responses, effector triggered immunity, and reactive oxygen species mediated signaling. This study identified important wilt responsive regulatory pathways in pigeonpea which will be helpful for further exploration of these resistant components for pigeonpea improvement.
Collapse
Affiliation(s)
- Arnab Purohit
- Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, West Bengal, 700016, India
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Sanatan Ghosh
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Shreeparna Ganguly
- Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, West Bengal, 700016, India
| | - Madan Singh Negi
- Sustainable Agriculture Division, TERI, India Habitat Center Complex, Lodhi Road, New Delhi, 110003, India
| | - Shashi Bhushan Tripathi
- TERI-School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi, 110070, India
| | | | - Dipankar Chakraborti
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
8
|
Yuan M, Ngou BPM, Ding P, Xin XF. PTI-ETI crosstalk: an integrative view of plant immunity. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102030. [PMID: 33684883 DOI: 10.1016/j.pbi.2021.102030] [Citation(s) in RCA: 425] [Impact Index Per Article: 106.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 02/08/2021] [Indexed: 05/02/2023]
Abstract
Plants resist attacks by pathogens via innate immune responses, which are initiated by cell surface-localized pattern-recognition receptors (PRRs) and intracellular nucleotide-binding domain leucine-rich repeat containing receptors (NLRs) leading to pattern-triggered immunity (PTI) and effector-triggered immunity (ETI), respectively. Although the two classes of immune receptors involve different activation mechanisms and appear to require different early signalling components, PTI and ETI eventually converge into many similar downstream responses, albeit with distinct amplitudes and dynamics. Increasing evidence suggests the existence of intricate interactions between PRR-mediated and NLR-mediated signalling cascades as well as common signalling components shared by both. Future investigation of the mechanisms underlying signal collaboration between PRR-initiated and NLR-initiated immunity will enable a more complete understanding of the plant immune system. This review discusses recent advances in our understanding of the relationship between the two layers of plant innate immunity.
Collapse
Affiliation(s)
- Minhang Yuan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Bruno Pok Man Ngou
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Pingtao Ding
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK; Institute of Biology Leiden, Leiden University, Sylviusweg 72, Leiden 2333 BE, The Netherlands.
| | - Xiu-Fang Xin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China; CAS-JIC Center of Excellence for Plant and Microbial Sciences (CEPAMS), Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
9
|
Poretti M, Sotiropoulos AG, Graf J, Jung E, Bourras S, Krattinger SG, Wicker T. Comparative Transcriptome Analysis of Wheat Lines in the Field Reveals Multiple Essential Biochemical Pathways Suppressed by Obligate Pathogens. FRONTIERS IN PLANT SCIENCE 2021; 12:720462. [PMID: 34659291 PMCID: PMC8513673 DOI: 10.3389/fpls.2021.720462] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/20/2021] [Indexed: 05/03/2023]
Abstract
Mildew and rust are the most devastating cereal pathogens, and in wheat they can cause up to 50% yield loss every year. Wheat lines containing resistance genes are used to effectively control fungal diseases, but the molecular mechanisms underlying the interaction between wheat and its fungal pathogens are poorly understood. Here, we used RNA sequencing (RNA-Seq) to compare the transcriptomic landscape of susceptible and resistant wheat lines to identify genes and pathways that are targeted by obligate biotrophic fungal pathogens. The five lines differed in the expression of thousands of genes under infection as well as control conditions. Generally, mixed infection with powdery mildew and leaf rust resulted in downregulation of numerous genes in susceptible lines. Interestingly, transcriptomic comparison between the nearly isogenic lines Thatcher and Thatcher-Lr34 identified 753 genes that are uniquely downregulated in the susceptible line upon infection. Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis, revealed the suppression of six major biochemical pathways, namely nuclear transport, alternative splicing, DNA damage response, ubiquitin-mediated proteolysis, phosphoinositol signaling, and photosynthesis. We conclude that powdery mildew and leaf rust evade the wheat defense system by suppression of programmed cell death (PCD) and responses to cellular damage. Considering the broad range of the induced changes, we propose that the pathogen targets "master regulators" at critical steps in the respective pathways. Identification of these wheat genes targeted by the pathogen could inspire new directions for future wheat breeding.
Collapse
Affiliation(s)
- Manuel Poretti
- Department of Plant and Microbial Biology, University of Zürich, Zurich, Switzerland
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | | | - Johannes Graf
- Department of Plant and Microbial Biology, University of Zürich, Zurich, Switzerland
| | - Esther Jung
- Department of Plant and Microbial Biology, University of Zürich, Zurich, Switzerland
| | - Salim Bourras
- Department of Forest Mycology and Plant Pathology, Division of Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Simon G. Krattinger
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), Thuwal, Saudi Arabia
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zürich, Zurich, Switzerland
- *Correspondence: Thomas Wicker,
| |
Collapse
|
10
|
Liu P, Guo J, Zhang R, Zhao J, Liu C, Qi T, Duan Y, Kang Z, Guo J. TaCIPK10 interacts with and phosphorylates TaNH2 to activate wheat defense responses to stripe rust. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:956-968. [PMID: 30451367 PMCID: PMC6587807 DOI: 10.1111/pbi.13031] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/10/2018] [Accepted: 11/14/2018] [Indexed: 05/18/2023]
Abstract
Calcineurin B-like interacting protein kinase (CIPKs) has been shown to be required for biotic stress tolerance of plants in plant-pathogen interactions. However, the roles of CIPKs in immune signalling of cereal crops and an in-depth knowledge of substrates of CIPKs in response to biotic stress are under debate. In this study, we identified and cloned a CIPK homologue gene TaCIPK10 from wheat. TaCIPK10 was rapidly induced by Puccinia striiformis f. sp. tritici (Pst) inoculation and salicylic acid (SA) treatment. In vitro phosphorylation assay demonstrated that the kinase activity of TaCIPK10 is regulated by Ca2+ and TaCBL4. Knockdown TaCIPK10 significantly reduced wheat resistance to Pst, whereas TaCIPK10 overexpression resulted in enhanced wheat resistance to Pst by the induction of defense response in different aspects, including hypersensitive cell death, ROS accumulation and pathogenesis-relative genes expression. Moreover, TaCIPK10 physically interacted with and phosphorylated TaNH2, which was homologous to AtNPR3/4. Silencing of TaNH2 in wheat resulted in enhanced susceptibility to the avirulent Pst race, CYR23, indicating its positive role in wheat resistance. Our results demonstrate that TaCIPK10 positively regulate wheat resistance to Pst as molecular links between of Ca2+ and downstream components of defense response and TaCIPK10 interacts with and phosphorylates TaNH2 to regulate wheat resistance to Pst.
Collapse
Affiliation(s)
- Peng Liu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Jia Guo
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Ruiming Zhang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Jiaxin Zhao
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Cong Liu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Tuo Qi
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Yinghui Duan
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
11
|
Kanwar P, Jha G. Alterations in plant sugar metabolism: signatory of pathogen attack. PLANTA 2019; 249:305-318. [PMID: 30267150 DOI: 10.1007/s00425-018-3018-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/23/2018] [Indexed: 05/03/2023]
Abstract
This review summarizes the current understanding, future challenges and ongoing quest on sugar metabolic alterations that influence the outcome of plant-pathogen interactions. Intricate cellular and molecular events occur during plant-pathogen interactions. They cause major metabolic perturbations in the host and alterations in sugar metabolism play a pivotal role in governing the outcome of various kinds of plant-pathogen interactions. Sugar metabolizing enzymes and transporters of both host and pathogen origin get differentially regulated during the interactions. Both plant and pathogen compete for utilizing the host sugar metabolic machinery and in turn promote resistant or susceptible responses. However, the kind of sugar metabolism alteration that is beneficial for the host or pathogen is yet to be properly understood. Recently developed tools and methodologies are facilitating research to understand the intricate dynamics of sugar metabolism during the interactions. The present review elaborates current understanding, future challenges and ongoing quest on sugar metabolism, mobilization and regulation during various plant-pathogen interactions.
Collapse
Affiliation(s)
- Poonam Kanwar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Gopaljee Jha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
12
|
Seiml-Buchinger VV, Zinovieva SV, Udalova ZV, Matveeva EM. Jasmonic acid modulates Meloidogyne incognita – tomato plant interactions. NEMATOLOGY 2019. [DOI: 10.1163/15685411-00003205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Summary
Molecular aspects of the responses of tomato (Solanum lycopersicum) plants to invasion by Meloidogyne incognita, as well as the nematode reproduction capacity, were investigated and the role of jasmonic acid (JA) in these interactions was evaluated. Real-time quantitative PCR analysis showed that resistant and susceptible plants had similar levels of Mi1.2, PR1 and PR6 gene expression in stress-free conditions. During nematode invasion resistant plants showed up-regulation of Mi1.2, PR1 and PR6 genes and no reproduction of M. incognita. By contrast, susceptible plants showed no response in gene expression and the nematode had a high level of reproduction. Treatment of tomato plants with JA modulated Mi1.2 and PR6 gene expression that was accompanied by a suppression of the M. incognita reproduction on the roots of JA-treated susceptible plants.
Collapse
Affiliation(s)
- Victoria V. Seiml-Buchinger
- 1Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences (IB KarRC RAS), 11 Pushkinskaya St., 185910 Petrozavodsk, Russian Federation
| | - Svetlana V. Zinovieva
- 2Center of Parasitology, Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskii Pr., 119071 Moscow, Russian Federation
| | - Zhanna V. Udalova
- 2Center of Parasitology, Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskii Pr., 119071 Moscow, Russian Federation
| | - Elizaveta M. Matveeva
- 1Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences (IB KarRC RAS), 11 Pushkinskaya St., 185910 Petrozavodsk, Russian Federation
| |
Collapse
|
13
|
Liu P, Duan Y, Liu C, Xue Q, Guo J, Qi T, Kang Z, Guo J. The calcium sensor TaCBL4 and its interacting protein TaCIPK5 are required for wheat resistance to stripe rust fungus. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4443-4457. [PMID: 29931351 DOI: 10.1093/jxb/ery227] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 06/08/2018] [Indexed: 06/08/2023]
Abstract
Calcineurin B-like proteins (CBLs) act as Ca2+ sensors to activate specific protein kinases, namely CBL-interacting protein kinases (CIPKs). Recent research has demonstrated that the CBL-CIPK complex is not only required for abiotic stress signaling, but is also probably involved in biotic stress perception. However, the role of this complex in immune signaling, including pathogen perception, is unknown. In this study, we isolated one signaling component of the TaCBL-TaCIPK complex (TaCBL4-TaCIPK5) and characterized its role in the interaction between wheat (Triticum aestivum) and Puccinia striiformis f. sp. tritici (Pst, stripe rust fungus). Among all TaCBLs in wheat, TaCBL4 mRNA accumulation markedly increased after infection by Pst. Silencing of TaCBL4 resulted in enhanced susceptibility to avirulent Pst infection. In addition, screening determined that TaCIPK5 physically interacted with TaCBL4 in planta and positively contributed to wheat resistance to Pst. Moreover, the disease resistance phenotype of TaCBL4 and TaCIPK5 co-silenced plants was consistent with that of single-knockdown plants. The accumulation of reactive oxygen species (ROS) was significantly altered in all silenced plants during Pst infection. Together these findings demonstrate that the TaCBL4-TaCIPK5 complex positively modulates wheat resistance in a ROS-dependent manner, and provide new insights into the roles of CBL-CIPK in wheat.
Collapse
Affiliation(s)
- Peng Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Yinghui Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Cong Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Qinghe Xue
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Jia Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Tuo Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, P. R. China
| |
Collapse
|
14
|
Zhang Q, Wang B, Wei J, Wang X, Han Q, Kang Z. TaNTF2, a contributor for wheat resistance to the stripe rust pathogen. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 123:260-267. [PMID: 29274571 DOI: 10.1016/j.plaphy.2017.12.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 06/07/2023]
Abstract
Nuclear Transport Factor 2 (NTF2) functions as a critical regulator in balancing the GTP-and GDP-bound forms of Ran, a class of evolutionarily conserved small GTP-binding protein. During the incompatible interaction between wheat-Puccinia striiformis f. sp. tritici (Pst), a cDNA fragment encoding a putative wheat NTF2 gene was found to be significantly induced, suggesting a potential role in wheat resistance to Pst. In this work, the full length of TaNTF2 was obtained, with three copies located on 7A, 7B and 7D chromosomes, respectively. QRT-PCR further verified the up-regulated expression of TaNTF2 in response to avirulent Pst. In addition, TaNTF2 was also induced by exogenous hormone applications, especially JA treatment. Transient expression of TaNTF2 in tobacco cells confirmed its subcellular localization in the cytoplasm, perinuclear area and nucleus. And virus induced gene silencing (VIGS) was used to identify the function of TaNTF2 during an incompatible wheat-Pst interaction. When TaNTF2 was knocked down, resistance of wheat to avirulentPst was decreased, with a bigger necrotic spots, and higher numbers of hyphal branches and haustorial mother cells. Our results demonstrated that TaNTF2 was a contributor for wheat resistance to the stripe rust pathogen, which will help to comprehensively understand the NTF2/Ran modulating mechanism in wheat-Pst interaction.
Collapse
Affiliation(s)
- Qiong Zhang
- College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Bing Wang
- College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jinping Wei
- College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaojie Wang
- College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qingmei Han
- College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Zhensheng Kang
- College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
15
|
Singh D, Kumar D, Satapathy L, Pathak J, Chandra S, Riaz A, Bhaganagre G, Dhariwal R, Kumar M, Prabhu KV, Balyan HS, Gupta PK, Mukhopadhyay K. Insights of Lr28 mediated wheat leaf rust resistance: Transcriptomic approach. Gene 2017; 637:72-89. [DOI: 10.1016/j.gene.2017.09.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/31/2017] [Accepted: 09/14/2017] [Indexed: 01/09/2023]
|
16
|
Chakraborty N, Chandra S, Acharya K. Biochemical basis of improvement of defense in tomato plant against Fusarium wilt by CaCl 2. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:581-596. [PMID: 28878497 PMCID: PMC5567711 DOI: 10.1007/s12298-017-0450-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 05/09/2017] [Accepted: 05/12/2017] [Indexed: 05/24/2023]
Abstract
The objective of this study was to investigate the effectiveness of calcium chloride (CaCl2), as potential elicitor, on tomato plants against Fusarium oxysporum f. sp. lycopersici. Foliar application of CaCl2 showed significant reduction of wilt incidence after challenge inoculation. Increased production of defense and antioxidant enzymes was observed in elicitor treated sets over control. Simultaneously, altered amount of phenolic acids were analyzed spectrophotometrically and by using high performance liquid chromatography. Significant induction of defense-related genes expressions was measured by semi-quantitative RT-PCR. Greater lignifications by microscopic analysis were also recorded in elicitor treated plants. Simultaneously, generation of nitric oxide (NO) in elicitor treated plants was confirmed by spectrophotometrically and microscopically by using membrane permeable fluorescent dye. Furthermore, plants treated with potential NO donor and NO modulators showed significant alteration of all those aforesaid defense molecules. Transcript analysis of nitrate reductase and calmodulin gene showed positive correlation with elicitor treatment. Furthermore, CaCl2 treatment showed greater seedling vigor index, mean trichome density etc. The result suggests that CaCl2 have tremendous potential to elicit defense responses as well as plant growth in co-relation with NO, which ultimately leads to resistance against the wilt pathogen.
Collapse
Affiliation(s)
- Nilanjan Chakraborty
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Calcutta, 700019 India
- Department of Botany, Scottish Church College, Calcutta, 700006 India
| | - Swarnendu Chandra
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Calcutta, 700019 India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Calcutta, 700019 India
| |
Collapse
|
17
|
Amini S, Maali-Amiri R, Mohammadi R, Kazemi-Shahandashti SS. cDNA-AFLP analysis of transcripts induced in chickpea plants by TiO 2 nanoparticles during cold stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 111:39-49. [PMID: 27907856 DOI: 10.1016/j.plaphy.2016.11.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/14/2016] [Accepted: 11/18/2016] [Indexed: 06/06/2023]
Abstract
We evaluated the effect of TiO2 nanoparticles (NPs) on cold tolerance (CT) development in two chickpea (Cicer arietinum L.) genotypes (Sel96Th11439, cold tolerant, and ILC533, cold susceptible) by using cDNA-amplified fragment length polymorphism (cDNA-AFLP) technique during the first and sixth days of cold stress (CS) at 4 °C. Selective amplification by primer combinations generated 4200 transcript-derived fragments (TDFs) while 100 of them (2.62%) were differentially expressed. During CS, 60 differentially expressed TDFs of TiO2 NPs-treated plants were cloned and 10 of them produced successfully readable sequences. These data represented different groups of genes involved in metabolism pathways, cellular defense, cell connections and signaling, transcriptional regulation and chromatin architecture. Two out of 10 TDFs were unknown genes with uncharacterized functions or sequences without homology to known ones. The network-based analysis showed a gene-gene relationship in response to CS. Quantitative reverse-transcriptase polymerase chain reaction (qPCR) confirmed differential expression of identified genes (six out of 10 TDFs) with potential functions in CT and showed similar patterns with cDNA-AFLP results. An increase in transcription level of these TDFs, particularly on the first day of CS, was crucial for developing CT through decreasing electrolyte leakage index (ELI) content in tolerant plants compared to susceptible ones, as well as in TiO2 NPs-treated plants compared to control ones. It could also indicate probable role of TiO2 NPs against CS-induced oxidative stress. Therefore, a new application of TiO2 NPs in CT development is suggested for preventing or controlling the damages in field conditions and increasing crop productivity.
Collapse
Affiliation(s)
- Saeed Amini
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj 31587-77871, Iran
| | - Reza Maali-Amiri
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj 31587-77871, Iran.
| | - Rahmat Mohammadi
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj 31587-77871, Iran
| | | |
Collapse
|
18
|
Qi T, Wang J, Sun Q, Day B, Guo J, Ma Q. TaARPC3, Contributes to Wheat Resistance against the Stripe Rust Fungus. FRONTIERS IN PLANT SCIENCE 2017; 8:1245. [PMID: 28769954 PMCID: PMC5513970 DOI: 10.3389/fpls.2017.01245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/30/2017] [Indexed: 05/19/2023]
Abstract
The actin cytoskeleton participates in numerous cellular processes, including less-characterized processes, such as nuclear organization, chromatin remodeling, transcription, and signal transduction. As a key regulator of actin cytoskeletal dynamics, the actin related protein 2/3 complex (Arp2/3 complex) controls multiple developmental processes in a variety of tissues and cell types. To date, the role of the Arp2/3 complex in plant disease resistance signaling is largely unknown. Herein, we identified and characterized wheat ARPC3, TaARPC3, which encodes the C3 subunit of the Arp2/3 complex. Expression of TaARPC3 in the arc18 mutant of Saccharomyces cerevisiae Δarc18 resulted in complementation of stress-induced phenotypes in S. cerevisiae, as well as restore wild-type cell shape malformations. TaARPC3 was found predominantly to be localized in the nucleus and cytoplasm when expressed transiently in wheat protoplast. TaARPC3 was significantly induced in response to avirulent race of Puccinia striiformis f. sp. tritici (Pst). Knock-down of TaARPC3 by virus-induced gene silencing resulted in a reduction of resistance against Pst through a specific reduction in actin cytoskeletal organization. Interestingly, this reduction was found to coincide with a block in reactive oxygen species (ROS) accumulation, the hypersensitive response (HR), an increase in TaCAT1 mRNA accumulation, and the growth of Pst. Taken together, these findings suggest that TaARPC3 is a key subunit of the Arp2/3 complex which is required for wheat resistance against Pst, a process that is associated with the regulation of the actin cytoskeleton.
Collapse
Affiliation(s)
- Tuo Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
| | - Juan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
| | - Qixiong Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East LansingMI, United States
- Plant Resilience Institute, Michigan State University, East LansingMI, United States
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
- *Correspondence: Qing Ma, Jun Guo,
| | - Qing Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
- *Correspondence: Qing Ma, Jun Guo,
| |
Collapse
|
19
|
Genome-wide identification and functional prediction of novel and fungi-responsive lincRNAs in Triticum aestivum. BMC Genomics 2016; 17:238. [PMID: 26980266 PMCID: PMC4791882 DOI: 10.1186/s12864-016-2570-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/07/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Stripe rust (Puccinia striiformis f. sp. tritici; Pst) and powdery mildew (Blumeria graminis f. sp. tritici; Bgt) are important diseases of wheat (Triticum aestivum) worldwide. Increasingly evidences suggest that long intergenic ncRNAs (lincRNAs) are developmentally regulated and play important roles in development and stress responses of plants. However, identification of lincRNAs in wheat is still limited comparing with functional gene expression. RESULTS The transcriptome of the hexaploid wheat line N9134 inoculated with the Chinese Pst race CYR31 and Bgt race E09 at 1, 2, and 3 days post-inoculation was recapitulated to detect the lincRNAs. Here, 283 differential expressed lincRNAs were identified from 58218 putative lincRNAs, which account for 31.2% of transcriptome. Of which, 254 DE-LincRNAs responded to the Bgt stress, and 52 lincRNAs in Pst. Among them, 1328 SnRNP motifs (sm sites) were detected and showed RRU4-11RR sm site element and consensus RRU1-9VU1-7RR SnRNP motifs, where the total number of uridine was more than 3 but less than 11. Additionally, 101 DE-lincRNAs were predicted as targets of miRNA by psRNATarget, while 5 target mimics were identified using target mimicry search in TAPIR. CONCLUSIONS Taken together, our findings indicate that the lincRNA of wheat responded to Bgt and Pst stress and played important roles in splicesome and inter-regulating with miRNA. The sm site of wheat showed a more complex construction than that in mammal and model plant. The mass sequence data generated in this study provide a cue for future functional and molecular research on wheat-fungus interactions.
Collapse
|
20
|
Transcriptome Analysis of Ramie (Boehmeria nivea L. Gaud.) in Response to Ramie Moth (Cocytodes coerulea Guenée) Infestation. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3702789. [PMID: 27034936 PMCID: PMC4789370 DOI: 10.1155/2016/3702789] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/13/2015] [Accepted: 02/01/2016] [Indexed: 11/27/2022]
Abstract
The ramie moth Cocytodes coerulea Guenée (RM) is an economically important pest that seriously impairs the yield of ramie, an important natural fiber crop. The molecular mechanisms that underlie the ramie-pest interactions are unclear up to date. Therefore, a transcriptome profiling analysis would aid in understanding the ramie defense mechanisms against RM. In this study, we first constructed two cDNA libraries derived from RM-challenged (CH) and unchallenged (CK) ramie leaves. The subsequent sequencing of the CH and CK libraries yielded 40.2 and 62.8 million reads, respectively. Furthermore, de novo assembling of these reads generated 26,759 and 29,988 unigenes, respectively. An integrated assembly of data from these two libraries resulted in 46,533 unigenes, with an average length of 845 bp per unigene. Among these genes, 24,327 (52.28%) were functionally annotated by predicted protein function. A comparative analysis of the CK and CH transcriptome profiles revealed 1,980 differentially expressed genes (DEGs), of which 750 were upregulated and 1,230 were downregulated. A quantitative real-time PCR (qRT-PCR) analysis of 13 random selected genes confirmed the gene expression patterns that were determined by Illumina sequencing. Among the DEGs, the expression patterns of transcription factors, protease inhibitors, and antioxidant enzymes were studied. Overall, these results provide useful insights into the defense mechanism of ramie against RM.
Collapse
|
21
|
Sonah H, Zhang X, Deshmukh RK, Borhan MH, Fernando WGD, Bélanger RR. Comparative Transcriptomic Analysis of Virulence Factors in Leptosphaeria maculans during Compatible and Incompatible Interactions with Canola. FRONTIERS IN PLANT SCIENCE 2016; 7:1784. [PMID: 27990146 PMCID: PMC5131014 DOI: 10.3389/fpls.2016.01784] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 11/11/2016] [Indexed: 05/08/2023]
Abstract
Leptosphaeria maculans is a hemibiotrophic fungus that causes blackleg of canola (Brassica napus), one of the most devastating diseases of this crop. In the present study, transcriptome profiling of L. maculans was performed in an effort to understand and define the pathogenicity genes that govern both the biotrophic and the necrotrophic phase of the fungus, as well as those that separate a compatible from an incompatible interaction. For this purpose, comparative RNA-seq analyses were performed on L. maculans isolate D5 at four different time points following inoculation on susceptible cultivar Topas-DH16516 or resistant introgression line Topas-Rlm2. Analysis of 1.6 billion Illumina reads readily identified differentially expressed genes that were over represented by candidate secretory effector proteins, CAZymes, and other pathogenicity genes. Comparisons between the compatible and incompatible interactions led to the identification of 28 effector proteins whose chronology and level of expression suggested a role in the establishment and maintenance of biotrophy with the plant. These included all known Avr genes of isolate D5 along with eight newly characterized effectors. In addition, another 15 effector proteins were found to be exclusively expressed during the necrotrophic phase of the fungus, which supports the concept that L. maculans has a separate and distinct arsenal contributing to each phase. As for CAZymes, they were often highly expressed at 3 dpi but with no difference in expression between the compatible and incompatible interactions, indicating that other factors were necessary to determine the outcome of the interaction. However, their significantly higher expression at 11 dpi in the compatible interaction confirmed that they contributed to the necrotrophic phase of the fungus. A notable exception was LysM genes whose high expression was singularly observed on the susceptible host at 7 dpi. In the case of TFs, their higher expression at 7 and 11 dpi on susceptible Topas support an important role in regulating the genes involved in the different pathogenic phases of L. maculans. In conclusion, comparison of the transcriptome of L. maculans during compatible and incompatible interactions has led to the identification of key pathogenicity genes that regulate not only the fate of the interaction but also lifestyle transitions of the fungus.
Collapse
Affiliation(s)
- Humira Sonah
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université LavalQuébec QC, Canada
| | - Xuehua Zhang
- Department of Plant Science, University of Manitoba WinnipegWinnipeg, MB, Canada
| | - Rupesh K. Deshmukh
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université LavalQuébec QC, Canada
| | | | | | - Richard R. Bélanger
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université LavalQuébec QC, Canada
- *Correspondence: Richard R. Bélanger
| |
Collapse
|
22
|
Li X, Liu T, Chen W, Zhong S, Zhang H, Tang Z, Chang Z, Wang L, Zhang M, Li L, Rao H, Ren Z, Luo P. Wheat WCBP1 encodes a putative copper-binding protein involved in stripe rust resistance and inhibition of leaf senescence. BMC PLANT BIOLOGY 2015; 15:239. [PMID: 26444258 PMCID: PMC4595213 DOI: 10.1186/s12870-015-0612-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/12/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Stripe rust, a highly destructive foliar disease of wheat (Triticum aestivum), causes severe losses, which may be accompanied by reduced photosynthetic activity and accelerated leaf senescence. METHODS We used suppression subtractive hybridization (SSH) to examine the mechanisms of resistance in the resistant wheat line L693 (Reg. No. GP-972, PI 672538), which was derived from a lineage that includes a wide cross between common and Thinopyrum intermedium. Sequencing of an SSH cDNA library identified 112 expressed sequence tags. RESULTS In silico mapping placed one of these tags [GenBank: JK972238] on chromosome 1A. Primers based on [GenBank: JK972238] amplified a polymorphic band, which co-segregated with YrL693. We cloned a candidate gene encoding wheat copper-binding protein (WCBP1) by amplifying the polymorphic region, and we mapped WCBP1 to a 0.64 cM genetic interval. Brachypodium, rice, and sorghum have genes and genomic regions syntenic to this region. DISCUSSION Sequence analysis suggested that the resistant WCBP1 allele might have resulted from a deletion of 36-bp sequence of the wheat genomic sequence, rather than direct transfer from Th. intermedium. qRT-PCR confirmed that WCBP1 expression changes in response to pathogen infection. CONCLUSIONS The unique chromosomal location and expression mode of WCBP1 suggested that WCBP1 is the putative candidate gene of YrL693, which was involved in leaf senescence and photosynthesis related to plant responses to stripe rust infection during the grain-filling stage.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
- Provincial Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Taiguo Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
| | - Wanquan Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
| | - Shengfu Zhong
- Provincial Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Huaiyu Zhang
- Provincial Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Zongxiang Tang
- Provincial Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Zhijian Chang
- Institute of Crop Genetics, Shanxi Academy of Agricultural Science, Taiyuan, Shanxi, 030031, China.
| | - Ling Wang
- Provincial Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Min Zhang
- Provincial Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Liqin Li
- Provincial Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Hefei Rao
- Provincial Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Zhenglong Ren
- Provincial Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Peigao Luo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
- Provincial Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
23
|
Wang GF, Fan R, Wang X, Wang D, Zhang X. TaRAR1 and TaSGT1 associate with TaHsp90 to function in bread wheat (Triticum aestivum L.) seedling growth and stripe rust resistance. PLANT MOLECULAR BIOLOGY 2015; 87:577-89. [PMID: 25697954 DOI: 10.1007/s11103-015-0298-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 02/13/2015] [Indexed: 05/03/2023]
Abstract
RAR1 and SGT1 are important co-chaperones of Hsp90. We previously showed that TaHsp90.1 is required for wheat seedling growth, and that TaHsp90.2 and TaHsp90.3 are essential for resistance (R) gene mediated resistance to stripe rust fungus. Here, we report the characterization of TaRAR1 and TaSGT1 genes in bread wheat. TaRAR1 and TaSGT1 each had three homoeologs, which were located on wheat groups 2 and 3 chromosomes, respectively. Strong inhibition of seedling growth was observed after silencing TaSGT1 but not TaRAR1. In contrast, decreasing the expression of TaRAR1 or TaSGT1 could all compromise R gene mediated resistance to stripe rust fungus infection. Protein-protein interactions were found among TaRAR1, TaSGT1 and TaHsp90. The N-terminus of TaHsp90, the CHORD-I and CHORD-II domains of TaRAR1 and the CS domain of TaSGT1 may be instrumental for the interactions among the three proteins. Based on this work and our previous study on TaHsp90, we speculate that the TaSGT1-TaHsp90.1 interaction is important for maintaining bread wheat seedling growth. The TaRAR1-TaSGT1-TaHsp90.2 and TaRAR1-TaSGT1-TaHsp90.3 interactions are involved in controlling the resistance to stripe rust disease. The new information obtained here should aid further functional investigations of TaRAR1-TaSGT1-TaHsp90 complexes in regulating bread wheat growth and disease resistance.
Collapse
Affiliation(s)
- Guan-Feng Wang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China,
| | | | | | | | | |
Collapse
|
24
|
Kumar D, Kirti PB. Transcriptomic and proteomic analyses of resistant host responses in Arachis diogoi challenged with late leaf spot pathogen, Phaeoisariopsis personata. PLoS One 2015; 10:e0117559. [PMID: 25646800 PMCID: PMC4315434 DOI: 10.1371/journal.pone.0117559] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 12/27/2014] [Indexed: 11/19/2022] Open
Abstract
Late leaf spot is a serious disease of peanut caused by the imperfect fungus, Phaeoisariopsis personata. Wild diploid species, Arachis diogoi. is reported to be highly resistant to this disease and asymptomatic. The objective of this study is to investigate the molecular responses of the wild peanut challenged with the late leaf spot pathogen using cDNA-AFLP and 2D proteomic study. A total of 233 reliable, differentially expressed genes were identified in Arachis diogoi. About one third of the TDFs exhibit no significant similarity with the known sequences in the data bases. Expressed sequence tag data showed that the characterized genes are involved in conferring resistance in the wild peanut to the pathogen challenge. Several genes for proteins involved in cell wall strengthening, hypersensitive cell death and resistance related proteins have been identified. Genes identified for other proteins appear to function in metabolism, signal transduction and defence. Nineteen TDFs based on the homology analysis of genes associated with defence, signal transduction and metabolism were further validated by quantitative real time PCR (qRT-PCR) analyses in resistant wild species in comparison with a susceptible peanut genotype in time course experiments. The proteins corresponding to six TDFs were differentially expressed at protein level also. Differentially expressed TDFs and proteins in wild peanut indicate its defence mechanism upon pathogen challenge and provide initial breakthrough of genes possibly involved in recognition events and early signalling responses to combat the pathogen through subsequent development of resistivity. This is the first attempt to elucidate the molecular basis of the response of the resistant genotype to the late leaf spot pathogen, and its defence mechanism.
Collapse
Affiliation(s)
- Dilip Kumar
- Department of Plant Sciences, School of Life Science, University of Hyderabad, Hyderabad, India
| | | |
Collapse
|
25
|
Rao J, Liu D, Zhang N, He H, Ge F, Chen C. Differential gene expression in incompatible interaction between Lilium regale Wilson and Fusarium oxysporum f. sp. lilii revealed by combined SSH and microarray analysis. Mol Biol 2014. [DOI: 10.1134/s0026893314060144] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Stage-specific reprogramming of gene expression characterizes Lr48-mediated adult plant leaf rust resistance in wheat. Funct Integr Genomics 2014; 15:233-45. [DOI: 10.1007/s10142-014-0416-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 11/09/2014] [Accepted: 11/17/2014] [Indexed: 12/13/2022]
|
27
|
Bastiaanse H, Muhovski Y, Parisi O, Paris R, Mingeot D, Lateur M. Gene expression profiling by cDNA-AFLP reveals potential candidate genes for partial resistance of 'Président Roulin' against Venturia inaequalis. BMC Genomics 2014; 15:1043. [PMID: 25433532 PMCID: PMC4302150 DOI: 10.1186/1471-2164-15-1043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/19/2014] [Indexed: 12/03/2022] Open
Abstract
Background Scab, caused by the fungus Venturia inaequalis, is one of the most important diseases of cultivated apple. While a few scab resistance genes (R genes) governing qualitative resistance have been isolated and characterized, the biological roles of genes governing quantitative resistance, supposed to be more durable, are still unknown. This study aims to investigate the molecular mechanisms involved in the partial resistance of the old Belgian apple cultivar ‘Président Roulin’ against V. inaequalis. Results A global gene expression analysis was conducted in ‘Président Roulin’ (partially resistant) and in ‘Gala’ (susceptible) challenged by V. inaequalis by using the cDNA-AFLP method (cDNA-Amplified Fragment Length Polymorphism). Transcriptome analysis revealed significant modulation (up- or down-regulation) of 281 out of approximately 20,500 transcript derived fragments (TDFs) in ‘Président Roulin’ 48 hours after inoculation. Sequence annotation revealed similarities to several genes encoding for proteins belonging to the NBS-LRR and LRR-RLK classes of plant R genes and to other defense-related proteins. Differentially expressed genes were sorted into functional categories according to their gene ontology annotation and this expression signature was compared to published apple cDNA libraries by Gene Enrichment Analysis. The first comparison was made with two cDNA libraries from Malus x domestica uninfected leaves, and revealed in both libraries a signature of enhanced expression in ‘Président Roulin’ of genes involved in response to stress and photosynthesis. In the second comparison, the pathogen-responsive TDFs from the partially resistant cultivar were compared to the cDNA library from inoculated leaves of Rvi6 (HcrVf2)-transformed ‘Gala’ lines (complete disease resistance) and revealed both common physiological events, and notably differences in the regulation of defense response, the regulation of hydrolase activity, and response to DNA damage. TDFs were in silico mapped on the ‘Golden Delicious’ apple reference genome and significant co-localizations with major scab R genes, but not with quantitative trait loci (QTLs) for scab resistance nor resistance gene analogues (RGAs) were found. Conclusions This study highlights possible candidate genes that may play a role in the partial scab resistance mechanisms of ‘Président Roulin’ and increase our understanding of the molecular mechanisms involved in the partial resistance against apple scab. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1043) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Héloïse Bastiaanse
- Life Sciences Department, Breeding and Biodiversity Unit, Walloon Agricultural Research Center, Rue de Liroux, 4, 5030 Gembloux, Belgium.
| | | | | | | | | | | |
Collapse
|
28
|
Zhang H, Yang Y, Wang C, Liu M, Li H, Fu Y, Wang Y, Nie Y, Liu X, Ji W. Large-scale transcriptome comparison reveals distinct gene activations in wheat responding to stripe rust and powdery mildew. BMC Genomics 2014; 15:898. [PMID: 25318379 PMCID: PMC4201691 DOI: 10.1186/1471-2164-15-898] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/09/2014] [Indexed: 12/13/2022] Open
Abstract
Background Stripe rust (Puccinia striiformis f. sp. tritici; Pst) and powdery mildew (Blumeria graminis f. sp. tritici; Bgt) are important diseases of wheat (Triticum aestivum) worldwide. Similar mechanisms and gene transcripts are assumed to be involved in the host defense response because both pathogens are biotrophic fungi. The main objective of our study was to identify co-regulated mRNAs that show a change in expression pattern after inoculation with Pst or Bgt, and to identify mRNAs specific to the fungal stress response. Results The transcriptome of the hexaploid wheat line N9134 inoculated with the Chinese Pst race CYR 31 was compared with that of the same line inoculated with Bgt race E09 at 1, 2, and 3 days post-inoculation. Infection by Pst and Bgt affected transcription of 23.8% of all T. aestivum genes. Infection by Bgt triggered a more robust alteration in gene expression in N9134 compared with the response to Pst infection. An array of overlapping gene clusters with distinctive expression patterns provided insight into the regulatory differences in the responses to Bgt and Pst infection. The differentially expressed genes were grouped into seven enriched Kyoto Encyclopedia of Genes and Genomes pathways in Bgt-infected leaves and four pathways in Pst-infected leaves, while only two pathways overlapped. In the plant–pathogen interaction pathway, N9134 activated a higher number of genes and pathways in response to Bgt infection than in response to Pst invasion. Genomic analysis revealed that the wheat genome shared some microbial genetic fragments, which were specifically induced in response to Bgt and Pst infection. Conclusions Taken together, our findings indicate that the responses of wheat N9134 to infection by Bgt and Pst shows differences in the pathways and genes activated. The mass sequence data for wheat–fungus interaction generated in this study provides a powerful platform for future functional and molecular research on wheat–fungus interactions. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-898) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy (Northwest A&F University), Yangling, Shaanxi 712100, China.
| |
Collapse
|
29
|
Ali A, Alexandersson E, Sandin M, Resjö S, Lenman M, Hedley P, Levander F, Andreasson E. Quantitative proteomics and transcriptomics of potato in response to Phytophthora infestans in compatible and incompatible interactions. BMC Genomics 2014; 15:497. [PMID: 24947944 PMCID: PMC4079953 DOI: 10.1186/1471-2164-15-497] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 06/10/2014] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND In order to get global molecular understanding of one of the most important crop diseases worldwide, we investigated compatible and incompatible interactions between Phytophthora infestans and potato (Solanum tuberosum). We used the two most field-resistant potato clones under Swedish growing conditions, which have the greatest known local diversity of P. infestans populations, and a reference compatible cultivar. RESULTS Quantitative label-free proteomics of 51 apoplastic secretome samples (PXD000435) in combination with genome-wide transcript analysis by 42 microarrays (E-MTAB-1515) were used to capture changes in protein abundance and gene expression at 6, 24 and 72 hours after inoculation with P. infestans. To aid mass spectrometry analysis we generated cultivar-specific RNA-seq data (E-MTAB-1712), which increased peptide identifications by 17%. Components induced only during incompatible interactions, which are candidates for hypersensitive response initiation, include a Kunitz-like protease inhibitor, transcription factors and an RCR3-like protein. More secreted proteins had lower abundance in the compatible interaction compared to the incompatible interactions. Based on this observation and because the well-characterized effector-target C14 protease follows this pattern, we suggest 40 putative effector targets. CONCLUSIONS In summary, over 17000 transcripts and 1000 secreted proteins changed in abundance in at least one time point, illustrating the dynamics of plant responses to a hemibiotroph. Half of the differentially abundant proteins showed a corresponding change at the transcript level. Many putative hypersensitive and effector-target proteins were single representatives of large gene families.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Erik Andreasson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| |
Collapse
|
30
|
Okay S, Derelli E, Unver T. Transcriptome-wide identification of bread wheat WRKY transcription factors in response to drought stress. Mol Genet Genomics 2014; 289:765-81. [DOI: 10.1007/s00438-014-0849-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 03/27/2014] [Indexed: 12/14/2022]
|
31
|
Dourado MN, Bogas AC, Pomini AM, Andreote FD, Quecine MC, Marsaioli AJ, Araújo WL. Methylobacterium-plant interaction genes regulated by plant exudate and quorum sensing molecules. Braz J Microbiol 2014; 44:1331-9. [PMID: 24688531 PMCID: PMC3958207 DOI: 10.1590/s1517-83822013000400044] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 04/04/2013] [Indexed: 11/21/2022] Open
Abstract
Bacteria from the genus Methylobacterium interact symbiotically (endophytically and epiphytically) with different plant species. These interactions can promote plant growth or induce systemic resistance, increasing plant fitness. The plant colonization is guided by molecular communication between bacteria-bacteria and bacteria-plants, where the bacteria recognize specific exuded compounds by other bacteria (e.g. homoserine molecules) and/or by the plant roots (e.g. flavonoids, ethanol and methanol), respectively. In this context, the aim of this study was to evaluate the effect of quorum sensing molecules (N-acyl-homoserine lactones) and plant exudates (including ethanol) in the expression of a series of bacterial genes involved in Methylobacterium-plant interaction. The selected genes are related to bacterial metabolism (mxaF), adaptation to stressful environment (crtI, phoU and sss), to interactions with plant metabolism compounds (acdS) and pathogenicity (patatin and phoU). Under in vitro conditions, our results showed the differential expression of some important genes related to metabolism, stress and pathogenesis, thereby AHL molecules up-regulate all tested genes, except phoU, while plant exudates induce only mxaF gene expression. In the presence of plant exudates there is a lower bacterial density (due the endophytic and epiphytic colonization), which produce less AHL, leading to down regulation of genes when compared to the control. Therefore, bacterial density, more than plant exudate, influences the expression of genes related to plant-bacteria interaction.
Collapse
Affiliation(s)
| | | | - Armando M Pomini
- Departamento de Química, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Fernando Dini Andreote
- Departamento de Ciências do Solos, Escola Superior de Agricultura "Luiz de Queiróz", Universidade de São Paulo, Piracicaba, SP, Brazil
| | | | - Anita J Marsaioli
- Instituto de Química, Universidade de Campinas, Campinas, São Paulo, Brazil
| | - Welington Luiz Araújo
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
32
|
González-Agüero M, García-Rojas M, Di Genova A, Correa J, Maass A, Orellana A, Hinrichsen P. Identification of two putative reference genes from grapevine suitable for gene expression analysis in berry and related tissues derived from RNA-Seq data. BMC Genomics 2013; 14:878. [PMID: 24330674 PMCID: PMC3878734 DOI: 10.1186/1471-2164-14-878] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 12/02/2013] [Indexed: 11/10/2022] Open
Abstract
Background Data normalization is a key step in gene expression analysis by qPCR. Endogenous control genes are used to estimate variations and experimental errors occurring during sample preparation and expression measurements. However, the transcription level of the most commonly used reference genes can vary considerably in samples obtained from different individuals, tissues, developmental stages and under variable physiological conditions, resulting in a misinterpretation of the performance of the target gene(s). This issue has been scarcely approached in woody species such as grapevine. Results A statistical criterion was applied to select a sub-set of 19 candidate reference genes from a total of 242 non-differentially expressed (NDE) genes derived from a RNA-Seq experiment comprising ca. 500 million reads obtained from 14 table-grape genotypes sampled at four phenological stages. From the 19 candidate reference genes, VvAIG1 (AvrRpt2-induced gene) and VvTCPB (T-complex 1 beta-like protein) were found to be the most stable ones after comparing the complete set of genotypes and phenological stages studied. This result was further validated by qPCR and geNorm analyses. Conclusions Based on the evidence presented in this work, we propose to use the grapevine genes VvAIG1 or VvTCPB or both as a reference tool to normalize RNA expression in qPCR assays or other quantitative method intended to measure gene expression in berries and other tissues of this fruit crop, sampled at different developmental stages and physiological conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Patricio Hinrichsen
- Instituto de Investigaciones Agropecuarias (INIA -Chile), La Platina Research Centre, Santiago, Chile, Av, Santa Rosa 11, 610, P,O, Box 439-3, Santiago, Chile.
| |
Collapse
|
33
|
Kane K, Dahal KP, Badawi MA, Houde M, Hüner NPA, Sarhan F. Long-term growth under elevated CO2 suppresses biotic stress genes in non-acclimated, but not cold-acclimated winter wheat. PLANT & CELL PHYSIOLOGY 2013; 54:1751-68. [PMID: 23969557 DOI: 10.1093/pcp/pct116] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This study compared the photosynthetic performance and the global gene expression of the winter hardy wheat Triticum aestivum cv Norstar grown under non-acclimated (NA) or cold-acclimated (CA) conditions at either ambient CO2 or elevated CO2. CA Norstar maintained comparable light-saturated and CO2-saturated rates of photosynthesis but lower quantum requirements for PSII and non-photochemical quenching relative to NA plants even at elevated CO2. Neither NA nor CA plants were sensitive to feedback inhibition of photosynthesis at elevated CO2. Global gene expression using microarray combined with bioinformatics analysis revealed that genes affected by elevated CO2 were three times higher in NA (1,022 genes) compared with CA (372 genes) Norstar. The most striking effect was the down-regulation of genes involved in the plant defense responses in NA Norstar. In contrast, cold acclimation reversed this down-regulation due to the cold induction of genes involved in plant pathogenesis resistance; and cellular and chloroplast protection. These results suggest that elevated CO2 has less impact on plant performance and productivity in cold-adapted winter hardy plants in the northern climates compared with warmer environments. Selection for cereal cultivars with constitutively higher expression of biotic stress defense genes may be necessary under elevated CO2 during the warm growth period and in warmer climates.
Collapse
Affiliation(s)
- Khalil Kane
- Département des Sciences biologiques, Université du Québec à Montréal, CP 8888 Succursale Centre-Ville, Montréal, Québec, Canada H3C 3P8
| | | | | | | | | | | |
Collapse
|
34
|
Chaves MS, Martinelli JA, Wesp-Guterres C, Graichen FAS, Brammer SP, Scagliusi SM, da Silva PR, Wiethölter P, Torres GAM, Lau EY, Consoli L, Chaves ALS. The importance for food security of maintaining rust resistance in wheat. Food Secur 2013. [DOI: 10.1007/s12571-013-0248-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Petriccione M, Di Cecco I, Arena S, Scaloni A, Scortichini M. Proteomic changes in Actinidia chinensis shoot during systemic infection with a pandemic Pseudomonas syringae pv. actinidiae strain. J Proteomics 2013; 78:461-76. [DOI: 10.1016/j.jprot.2012.10.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/10/2012] [Accepted: 10/14/2012] [Indexed: 10/27/2022]
|
36
|
Kim DY, Hong MJ, Jang JH, Seo YW. cDNA-AFLP analysis reveals differential gene expression in response to salt stress in Brachypodium distachyon. Genes Genomics 2012. [DOI: 10.1007/s13258-012-0067-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Wang X, Tang C, Huang X, Li F, Chen X, Zhang G, Sun Y, Han D, Kang Z. Wheat BAX inhibitor-1 contributes to wheat resistance to Puccinia striiformis. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4571-84. [PMID: 22696283 DOI: 10.1093/jxb/ers140] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BAX inihibitor-1 (BI-1) is proposed to be a cell death suppressor conserved in both animals and plants. The ability of BI-1 genes to inhibit programmed cell death (PCD) has been well studied in animals, but the physiological importance of BI-1 in plant-microbe interactions remains unclear. This study characterized BI-1 from wheat infected by Puccinia striiformis f. sp. tritici (Pst). The deduced TaBI-1 protein contained a Bax inhibitor domain and seven transmembrane regions conserved among members of the BI-1 family. Transcription of TaBI-1 was detected in all wheat tissues tested (culms, roots, leaves, anthers, and spikelets). Furthermore, TaBI-1 exhibited positive transcriptional responses to Pst infection and abiotic stresses. Overexpression of TaBI-1 in tobacco blocked Bax-induced cell death. Silencing TaBI-1 in plants of a resistant wheat genotype converted a resistant reaction to a relatively susceptible reaction when inoculated with an avirulent pathotype of the pathogen, and increased the area per infection site, but the percentage of necrotic cells did not change significantly, indicating that TaBI-1, a negative cell death regulator, contributes to wheat resistance to stripe rust. These results provide a better understanding of the molecular mechanism of wheat resistance to stripe rust.
Collapse
Affiliation(s)
- Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Targeted spatio-temporal expression based characterization of state of infection and time-point of maximum defense in wheat NILs during leaf rust infection. Mol Biol Rep 2012; 39:9373-82. [DOI: 10.1007/s11033-012-1801-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 06/09/2012] [Indexed: 10/28/2022]
|
39
|
Paris R, Dondini L, Zannini G, Bastia D, Marasco E, Gualdi V, Rizzi V, Piffanelli P, Mantovani V, Tartarini S. dHPLC efficiency for semi-automated cDNA-AFLP analyses and fragment collection in the apple scab-resistance gene model. PLANTA 2012; 235:1065-1080. [PMID: 22270558 DOI: 10.1007/s00425-012-1589-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 01/04/2012] [Indexed: 05/31/2023]
Abstract
cDNA-AFLP analysis for transcript profiling has been successfully applied to study many plant biological systems, particularly plant-microbe interactions. However, the separation of cDNA-AFLP fragments by gel electrophoresis is reported to be labor-intensive with only limited potential for automation, and the collection of differential bands for gene identification is even more cumbersome. In this work, we present the use of dHPLC (denaturing high performance liquid chromatography) and automated DNA fragment collection using the WAVE(®) System to analyze and recover cDNA-AFLP fragments. The method is successfully applied to the Malus-Venturia inaequalis interaction, making it possible to collect 66 different transcript-derived fragments for apple genes putatively involved in the defense response activated by the HcrVf2 resistance gene. The results, validated by real time quantitative RT-PCR, were consistent with the plant-pathogen interaction under investigation and this further supports the suitability of dHPLC for cDNA-AFLP transcript profiling. Features and advantages of this new approach are discussed, evincing that it is an almost fully automatable and cost-effective solution for processing large numbers of samples and collecting differential genes involved in other biological processes and non-model plants.
Collapse
Affiliation(s)
- Roberta Paris
- Department of Fruit Tree and Woody Plant Science, University of Bologna, viale Fanin 46, 40127, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Arnerup J, Lind M, Olson Å, Stenlid J, Elfstrand M. The pathogenic white-rot fungus Heterobasidion parviporum triggers non-specific defence responses in the bark of Norway spruce. TREE PHYSIOLOGY 2011; 31:1262-72. [PMID: 22084022 DOI: 10.1093/treephys/tpr113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Norway spruce [Picea abies (L.) Karst.] is one of the economically most important conifer species in Europe. The major pathogen on Norway spruce is Heterobasidion parviporum (Fr.) Niemelä & Korhonen. To achieve a better understanding of Norway spruce's defence mechanisms, transcriptional responses in bark to H. parviporum infection were compared with the response to wounding using cDNA-amplified fragment length polymorphism. The majority of the recovered transcript-derived fragments (TDFs) showed a similar expression pattern for infection and wounding treatment, although inoculated samples showed an enhanced reaction. Genes related to systemic acquired resistance, e.g., PR1, accumulated after H. parviporum infection. Simultaneously, several transcripts involved in various aspects of jasmonic acid (JA)- and ethylene (ET)-mediated signalling accumulated. Genes involved in the ubiquitin/proteasome system were also regulated. Expression patterns have been confirmed by quantitative polymerase chain reaction. The expression patterns of the isolated TDFs suggest that infection with H. parviporum in Norway spruce induces a broad defence, with many similarities to non-specific defence responses in angiosperms. The parallel induction of salicylic acid- and JA/ET-mediated pathways implies spatially separated responses in different cell layers, with and without hyphal contact. A set of TDFs were analysed in an independent experiment with unrelated material treated with wounding or with inoculation with H. parviporum or Phlebiopsis gigantea, verifying the original observations and underlining the non-specific defence responses. In addition, our data suggest that rerouting of carbon in secondary metabolism is an integral part of Norway spruce induced defence. We report the sequences of three 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase genes (PaDAHP1, PaDAHP2 and PaDAHP3) and their relative expression in response to wounding and infection with H. parviporum and P. gigantea. The results clearly indicate differential regulation of the three DAHPs in the induced defence responses in Norway spruce. This study gives insights into the central mechanisms in the induced defences in Norway spruce.
Collapse
Affiliation(s)
- Jenny Arnerup
- Department of Forest Mycology and Pathology, Swedish University of Agricultural Sciences, Box 7026, S-750 07 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
41
|
Malacarne G, Vrhovsek U, Zulini L, Cestaro A, Stefanini M, Mattivi F, Delledonne M, Velasco R, Moser C. Resistance to Plasmopara viticola in a grapevine segregating population is associated with stilbenoid accumulation and with specific host transcriptional responses. BMC PLANT BIOLOGY 2011; 11:114. [PMID: 21838877 PMCID: PMC3170253 DOI: 10.1186/1471-2229-11-114] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 08/12/2011] [Indexed: 05/18/2023]
Abstract
BACKGROUND Downy mildew, caused by the oomycete Plasmopara viticola, is a serious disease in Vitis vinifera, the most commonly cultivated grapevine species. Several wild Vitis species have instead been found to be resistant to this pathogen and have been used as a source to introgress resistance into a V. vinifera background. Stilbenoids represent the major phytoalexins in grapevine, and their toxicity is closely related to the specific compound. The aim of this study was to assess the resistance response to P. viticola of the Merzling × Teroldego cross by profiling the stilbenoid content of the leaves of an entire population and the transcriptome of resistant and susceptible individuals following infection. RESULTS A three-year analysis of the population's response to artificial inoculation showed that individuals were distributed in nine classes ranging from total resistance to total susceptibility. In addition, quantitative metabolite profiling of stilbenoids in the population, carried out using HPLC-DAD-MS, identified three distinct groups differing according to the concentrations present and the complexity of their profiles. The high producers were characterized by the presence of trans-resveratrol, trans-piceid, trans-pterostilbene and up to thirteen different viniferins, nine of them new in grapevine.Accumulation of these compounds is consistent with a resistant phenotype and suggests that they may contribute to the resistance response.A preliminary transcriptional study using cDNA-AFLP selected a set of genes modulated by the oomycete in a resistant genotype. The expression of this set of genes in resistant and susceptible genotypes of the progeny population was then assessed by comparative microarray analysis.A group of 57 genes was found to be exclusively modulated in the resistant genotype suggesting that they are involved in the grapevine-P. viticola incompatible interaction. Functional annotation of these transcripts revealed that they belong to the categories defense response, photosynthesis, primary and secondary metabolism, signal transduction and transport. CONCLUSIONS This study reports the results of a combined metabolic and transcriptional profiling of a grapevine population segregating for resistance to P. viticola. Some resistant individuals were identified and further characterized at the molecular level. These results will be valuable to future grapevine breeding programs.
Collapse
Affiliation(s)
- Giulia Malacarne
- Fondazione Edmund Mach, Research and Innovation Center, Via E.Mach 1, 38010 San Michele all'Adige, Italy
| | - Urska Vrhovsek
- Fondazione Edmund Mach, Research and Innovation Center, Via E.Mach 1, 38010 San Michele all'Adige, Italy
| | - Luca Zulini
- Fondazione Edmund Mach, Research and Innovation Center, Via E.Mach 1, 38010 San Michele all'Adige, Italy
| | - Alessandro Cestaro
- Fondazione Edmund Mach, Research and Innovation Center, Via E.Mach 1, 38010 San Michele all'Adige, Italy
| | - Marco Stefanini
- Fondazione Edmund Mach, Research and Innovation Center, Via E.Mach 1, 38010 San Michele all'Adige, Italy
| | - Fulvio Mattivi
- Fondazione Edmund Mach, Research and Innovation Center, Via E.Mach 1, 38010 San Michele all'Adige, Italy
| | - Massimo Delledonne
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Riccardo Velasco
- Fondazione Edmund Mach, Research and Innovation Center, Via E.Mach 1, 38010 San Michele all'Adige, Italy
| | - Claudio Moser
- Fondazione Edmund Mach, Research and Innovation Center, Via E.Mach 1, 38010 San Michele all'Adige, Italy
| |
Collapse
|
42
|
Huang X, Chen X, Coram T, Wang M, Kang Z. Gene expression profiling of Puccinia striiformis f. sp. tritici during development reveals a highly dynamic transcriptome. J Genet Genomics 2011; 38:357-71. [PMID: 21867962 DOI: 10.1016/j.jgg.2011.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 07/12/2011] [Accepted: 07/15/2011] [Indexed: 12/27/2022]
Abstract
Puccinia striiformis f. sp. tritici (Pst) causes stripe rust, one of the most important diseases of wheat worldwide. cDNA libraries had been constructed from urediniospores, germinated urediniospores and haustoria. However, little is known about the expression patterns of the genes related to the infection process and sporulation of the pathogen. In this study, a custom oligonucleotide microarray was constructed using sequences of 442 gene transcripts selected from Pst cDNA libraries. The expression patterns of the genes were determined by hybridizing the microarray with cDNA from Pst in vitro and Pst-infected wheat leaves. The time course study identified 55 transcripts that were differentially expressed during the infection process in a compatible interaction. They were identified to have functions related to the following biological processes, including carbohydrate and lipid metabolism, energy, cell signaling, protein synthesis, cell structure and division. In an incompatible interaction, 17 transcripts of the pathogen were differentially expressed in resistant wheat leaves inoculated with an avirulent Pst race, ten of which had similar expression patterns to those in the compatible interaction. Several candidates for pathogenicity and virulence/avirulence related genes were also identified. The results of quantitative real-time PCR validated the expression patterns of some selected genes. The study demonstrates that the custom oligonucleotide microarray technology is useful to determine the expression patterns of the pathogen genes involved in different types of the host-pathogen interactions and stages of development.
Collapse
Affiliation(s)
- Xueling Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, PR China
| | | | | | | | | |
Collapse
|
43
|
Wang GF, Wei X, Fan R, Zhou H, Wang X, Yu C, Dong L, Dong Z, Wang X, Kang Z, Ling H, Shen QH, Wang D, Zhang X. Molecular analysis of common wheat genes encoding three types of cytosolic heat shock protein 90 (Hsp90): functional involvement of cytosolic Hsp90s in the control of wheat seedling growth and disease resistance. THE NEW PHYTOLOGIST 2011; 191:418-431. [PMID: 21488877 DOI: 10.1111/j.1469-8137.2011.03715.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Heat shock protein 90 (Hsp90) molecular chaperones play important roles in plant growth and responses to environmental stimuli. However, little is known about the genes encoding Hsp90s in common wheat. Here, we report genetic and functional analysis of the genes specifying cytosolic Hsp90s in this species. Three groups of homoeologous genes (TaHsp90.1, TaHsp90.2 and TaHsp90.3), encoding three types of cytosolic Hsp90, were isolated. The loci containing TaHsp90.1, TaHsp90.2 and TaHsp90.3 genes were assigned to groups 2, 7 and 5 chromosomes, respectively. TaHsp90.1 genes exhibited higher transcript levels in the stamen than in the leaf, root and culm. TaHsp90.2 and TaHsp90.3 genes were more ubiquitously transcribed in the vegetative and reproductive organs examined. Decreasing the expression of TaHsp90.1 genes through virus-induced gene silencing (VIGS) caused pronounced inhibition of wheat seedling growth, whereas the suppression of TaHsp90.2 or TaHsp90.3 genes via VIGS compromised the hypersensitive resistance response of the wheat variety Suwon 11 to stripe rust fungus. Our work represents the first systematic determination of wheat genes encoding cytosolic Hsp90s, and provides useful evidence for the functional involvement of cytosolic Hsp90s in the control of seedling growth and disease resistance in common wheat.
Collapse
Affiliation(s)
- Guan-Feng Wang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate School of Chinese Academy of Sciences, Yuquan Road, Beijing 100039, China
| | - Xuening Wei
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate School of Chinese Academy of Sciences, Yuquan Road, Beijing 100039, China
| | - Renchun Fan
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huanbin Zhou
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate School of Chinese Academy of Sciences, Yuquan Road, Beijing 100039, China
| | - Xianping Wang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunmei Yu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate School of Chinese Academy of Sciences, Yuquan Road, Beijing 100039, China
| | - Lingli Dong
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate School of Chinese Academy of Sciences, Yuquan Road, Beijing 100039, China
| | - Zhenying Dong
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaojie Wang
- College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A & F University, Yangling 712100, China
| | - Zhensheng Kang
- College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A & F University, Yangling 712100, China
| | - Hongqing Ling
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian-Hua Shen
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Daowen Wang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangqi Zhang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
44
|
Wang L, Zhou B, Wu L, Guo B, Jiang T. Differentially expressed genes in Populus simonii x Populus nigra in response to NaCl stress using cDNA-AFLP. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:796-801. [PMID: 21497716 DOI: 10.1016/j.plantsci.2011.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 01/31/2011] [Accepted: 02/02/2011] [Indexed: 05/11/2023]
Abstract
Salinity is an important environmental factor limiting growth and productivity of plants, and affects almost every aspect of the plant physiology and biochemistry. The objective of this study was to apply cDNA-AFLP and to identify differentially expressed genes in response to NaCl stress vs. no-stress in Populus simonii x Populus nigra in order to develop genetic resources for genetic improvement. Selective amplification with 64 primer combinations allowed the visualization of 4407 transcript-derived fragments (TDFs), and 2027 were differentially expressed. Overall, 107 TDFs were re-sequenced successfully, and 86 unique sequences were identified in 10 functional categories based on their putative functions. A subset of these genes was selected for real-time PCR validation, which confirmed the differential expression patterns in the leaf tissues under NaCl stress vs. no stress. Differential expressed genes will be studied further for association with salt or drought-tolerance in P. simonii x P. nigra. This study suggests that cDNA-AFLP is a useful tool to serve as an initial step for characterizing transcriptional changes induced by NaCl salinity stress in P. simonii x P. nigra and provides resources for further study and application in genetic improvement and breeding. All unique sequences have been deposited in the Genbank as accession numbers GW672587-GW672672 for public use.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Forest Tree Genetic Improvement and Biotechnology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | | | | | | | | |
Collapse
|
45
|
Gamm M, Héloir MC, Kelloniemi J, Poinssot B, Wendehenne D, Adrian M. Identification of reference genes suitable for qRT-PCR in grapevine and application for the study of the expression of genes involved in pterostilbene synthesis. Mol Genet Genomics 2011. [PMID: 21340517 DOI: 10.1007/s00438-011-0607-60] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The recent publication of the grapevine genome sequence facilitates the use of qRT-PCR to study gene expression changes. For this approach, reference genes are commonly used to normalize data and their stability of expression should be systematically validated. Among grapevine defenses is the production of the antimicrobial stilbenic phytoalexins, notably the highly fungitoxic pterostilbene, which plays a crucial role in grapevine interaction with Plasmopara viticola and Botrytis cinerea. As a resveratrol O-methyltransferase (ROMT) gene involved in pterostilbene synthesis was recently identified, we investigated the accumulation of the corresponding transcripts to those of two other stilbene biosynthesis related genes phenylalanine ammonia lyase (PAL) and stilbene synthase (STS) in response to pathogen infection. Using three computer-based statistical methods and C(t) values or LRE method generated values as input data, we have first identified two reference genes (VATP16 and 60SRP) suitable for normalization of qPCR expression data obtained in grapevine leaves and berries infected by P. viticola and B. cinerea, respectively. Next, we have highlighted that the expression of ROMT is induced in P. viticola-infected leaves and also in B. cinerea-infected berries, confirming the involvement of pterostilbene in grapevine defenses.
Collapse
Affiliation(s)
- Magdalena Gamm
- Unité Mixte de Recherche INRA 1088/CNRS 5184, Université de Bourgogne Plante-Microbe-Environnement, 17 rue Sully, BP 86510, 21065 Dijon cedex, France
| | | | | | | | | | | |
Collapse
|
46
|
Ganeshan S, Sharma P, Young L, Kumar A, Fowler DB, Chibbar RN. Contrasting cDNA-AFLP profiles between crown and leaf tissues of cold-acclimated wheat plants indicate differing regulatory circuitries for low temperature tolerance. PLANT MOLECULAR BIOLOGY 2011; 75:379-398. [PMID: 21267634 DOI: 10.1007/s11103-011-9734-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 01/09/2011] [Indexed: 05/30/2023]
Abstract
Low-temperature (LT) tolerance in winter wheat (Triticum aestivum L.) is an economically important but complex trait. Four selected wheat genotypes, a winter hardy cultivar, Norstar, a tender spring cultivar, Manitou and two near-isogenic lines with Vrn-A1 (spring Norstar) and vrn-A1 (winter Manitou) alleles of Manitou and Norstar were cold-acclimated at 6°C and crown and leaf tissues were collected at 0, 2, 14, 21, 35, 42, 56 and 70 days of cold acclimation. cDNA-AFLP profiling was used to determine temporal expression profiles of transcripts during cold-acclimation in crown and leaf tissues, separately to determine if LT regulatory circuitries in crown and leaf tissues could be delineated using this approach. Screening 64 primer combinations identified 4,074 and 2,757 differentially expressed transcript-derived fragments (TDFs) out of which 38 and 16% were up-regulated as compared to 3 and 6% that were down-regulated in crown and leaf tissues, respectively. DNA sequencing of TDFs revealed sequences common to both tissues including genes coding for DEAD-box RNA helicase, choline-phosphate cytidylyltransferase and delta-1-pyrroline carboxylate synthetase. TDF specific to crown tissues included genes coding for phospahtidylinositol kinase, auxin response factor protein and brassinosteroid insensitive 1-associated receptor kinase. In leaf, genes such as methylene tetrahydrofolate reductase, NADH-cytochrome b5 reductase and malate dehydrogenase were identified. However, 30 and 14% of the DNA sequences from the crown and leaf tissues, respectively, were hypothetical or unknown proteins. Cluster analysis of up-, down-regulated and unique TDFs, DNA sequence and real-time PCR validation, infer that mechanisms operating in crown and leaf tissue in response to LT are differently regulated and warrant further studies.
Collapse
Affiliation(s)
- Seedhabadee Ganeshan
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | | | | | | | | | | |
Collapse
|
47
|
Identification of reference genes suitable for qRT-PCR in grapevine and application for the study of the expression of genes involved in pterostilbene synthesis. Mol Genet Genomics 2011; 285:273-85. [PMID: 21340517 DOI: 10.1007/s00438-011-0607-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 02/07/2011] [Indexed: 01/31/2023]
Abstract
The recent publication of the grapevine genome sequence facilitates the use of qRT-PCR to study gene expression changes. For this approach, reference genes are commonly used to normalize data and their stability of expression should be systematically validated. Among grapevine defenses is the production of the antimicrobial stilbenic phytoalexins, notably the highly fungitoxic pterostilbene, which plays a crucial role in grapevine interaction with Plasmopara viticola and Botrytis cinerea. As a resveratrol O-methyltransferase (ROMT) gene involved in pterostilbene synthesis was recently identified, we investigated the accumulation of the corresponding transcripts to those of two other stilbene biosynthesis related genes phenylalanine ammonia lyase (PAL) and stilbene synthase (STS) in response to pathogen infection. Using three computer-based statistical methods and C(t) values or LRE method generated values as input data, we have first identified two reference genes (VATP16 and 60SRP) suitable for normalization of qPCR expression data obtained in grapevine leaves and berries infected by P. viticola and B. cinerea, respectively. Next, we have highlighted that the expression of ROMT is induced in P. viticola-infected leaves and also in B. cinerea-infected berries, confirming the involvement of pterostilbene in grapevine defenses.
Collapse
|
48
|
Bischof M, Eichmann R, Hückelhoven R. Pathogenesis-associated transcriptional patterns in Triticeae. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:9-19. [PMID: 20674077 DOI: 10.1016/j.jplph.2010.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 06/17/2010] [Accepted: 06/18/2010] [Indexed: 05/08/2023]
Abstract
The Triticeae tribe of the plant Poaceae family contains some of the most important cereal crop plants for nutrition of humans and livestock such as wheat and barley. Despite the agronomical relevance of plant immunity, knowledge on mechanisms of disease or resistance in Triticeae is limited. It is hardly understood what actually stops a microbial invader when restricted by the plant and in how far a susceptible host plant contributes to pathogenesis. Transcriptional reprogramming of the host plant may be involved in both immunity and disease. This paper gives an overview about recent analyses of global pathogenesis-related transcriptional patterns in response of Triticeae to biotrophic or non-biotrophic fungal pathogens and their toxins. It highlights enriched biological functions in association with successful plant defence or disease as well as experiments that successfully translated gene expression data into analysis of gene functions.
Collapse
Affiliation(s)
- Melanie Bischof
- Lehrstuhl für Phytopathologie, Technische Universität München, Emil-Ramann-Straße 2, Freising-Weihenstephan, Germany
| | | | | |
Collapse
|