1
|
Peng S, Zhang Q, Yang Y, Li Y, Feng W, Zhao D, Huang B, Liu D, Miao Y. Genome-wide identification and expression profiling of MYB transcription factors in Artemisia argyi. BMC Genomics 2025; 26:384. [PMID: 40251470 PMCID: PMC12007207 DOI: 10.1186/s12864-025-11441-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 03/04/2025] [Indexed: 04/20/2025] Open
Abstract
Artemisia argyi, a significant medicinal plant in China, is known for its high content of essential oils, flavonoids, and other bioactive compounds. MYB transcription factors are the largest gene family in plants and are widely reported to play important roles in plant development, metabolism, defense, and stress resistance. However, the MYB family of A. argyi has not been systematically studied. The aim of this study was to comprehensively analyze the MYB gene family of A. argyi and explore its potential role in flavonoid biosynthesis. Here, the phylogeny, chromosome location, gene structure, cis-acting elements, expression patterns and Gene ontology (GO) annotation of MYB gene family members were investigated using bioinformatics methods based on the whole-genome and transcriptome data of A. argyi. In total, 227 AYMYB transcription factors were identified from A. argyi genome, including 22 1R-MYB, 165 R2R3-MYB, 16 3R-MYB, 5 4R-MYB and 19 atypical MYB members. These AYMYBs were unevenly distributed across the A. argyi genome. Subcellular localization prediction revealed that all the AYMYBs were localized in the nucleus. The protein motifs, conserved domains, and gene structures of AYMYBs were identified, and the results showed that AYMYBs from the same subfamily exhibited similar motifs and gene structures. Cis-acting elements and GO analysis suggested that AYMYBs may be involved in many biological processes related to plant development, metabolism, defense, and stress resistance. Moreover, quantitative real-time PCR (qRT-PCR) analysis showed that approximately 50 genes showed high expression levels in the leaves of A. argyi and AYMYBs showed specific expression patterns under MeJA treatment. Together, our research will offer useful information for future investigations into the functions of MYB genes in A. argyi, especially in regulating the process of flavonoid biosynthesis in leaves and in response to MeJA treatment.
Collapse
Affiliation(s)
- Sainan Peng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Qianwen Zhang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yun Yang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yukun Li
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Wunian Feng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Dan Zhao
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Bisheng Huang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Dahui Liu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Yuhuan Miao
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
2
|
Wu S, Huang X, Fu C, Wan X, Huang K, Shad MA, Hu L, Chen L, Liu G, Wang L. Identification of the regulatory role of SsMYBS25-4 in salt stress from MYB-related transcription factors in sugarcane (Saccharum spontaneum). Int J Biol Macromol 2025; 303:140566. [PMID: 39894099 DOI: 10.1016/j.ijbiomac.2025.140566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/04/2025]
Abstract
Sugarcane is a highly valued crop known for its significant production of sugar and biomass. MYB transcription factors (TFs) are critical regulators in plant growth and stress tolerance, but MYB-related genes, an atypical subset of the MYB family, remain less explored. In this study, we identified 119 MYB-related genes in the genome of wild sugarcane (S. spontaneum). We thoroughly investigated their phylogenetic relationships, chromosomal locations, motif compositions, and three-dimensional (3D) protein structures by bioinformatic methods. Moreover, the expression patterns of these genes demonstrated significant diversity in plant growth and under salt stress. One of the genes, SsMYBS25-4, exhibited a significantly up-regulated expression in response to salt stress and was selected for further functional elucidation. It was found that the overexpression (OE) of SsMYBS25-4 in Arabidopsis can improve the salt stress tolerance of transgenic plants. Interestingly, the expression of some marker genes related to salt stress was significantly up-regulated in OE plants compared to wide-type plants. The SsMYB25-4 protein was localized in the nucleus and was proven to be directly bound to the promoter of the AtDR29B gene. We proposed a mechanism for SsMYB25-4 that enhances salt stress tolerance, contributing to the understanding and application of MYB-related genes in sugarcane breeding.
Collapse
Affiliation(s)
- Songguo Wu
- State Key Laboratory of Conservation and Utilization of Subtropical Agricultural Biological Resources, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xiaojin Huang
- State Key Laboratory of Conservation and Utilization of Subtropical Agricultural Biological Resources, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Chunli Fu
- State Key Laboratory of Conservation and Utilization of Subtropical Agricultural Biological Resources, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xincheng Wan
- State Key Laboratory of Conservation and Utilization of Subtropical Agricultural Biological Resources, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Ke Huang
- State Key Laboratory of Conservation and Utilization of Subtropical Agricultural Biological Resources, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Munsif Ali Shad
- State Key Laboratory of Conservation and Utilization of Subtropical Agricultural Biological Resources, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Lihua Hu
- State Key Laboratory of Conservation and Utilization of Subtropical Agricultural Biological Resources, Guangxi University, Nanning 530004, China
| | - Lingling Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agricultural Biological Resources, Guangxi University, Nanning 530004, China
| | - Guoquan Liu
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia 4072, Australia
| | - Lingqiang Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agricultural Biological Resources, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China; Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia 4072, Australia.
| |
Collapse
|
3
|
Uchida K, Fuji Y, Tabeta H, Akashi T, Hirai MY. Omics-based identification of the broader effects of 2-hydroxyisoflavanone synthase gene editing on a gene regulatory network beyond isoflavonoid loss in soybean hairy roots. PLANT & CELL PHYSIOLOGY 2025; 66:304-317. [PMID: 39786412 PMCID: PMC11957240 DOI: 10.1093/pcp/pcae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/07/2024] [Accepted: 12/26/2024] [Indexed: 01/12/2025]
Abstract
Soybean (Glycine max) is a leguminous crop cultivated worldwide that accumulates high levels of isoflavones. Although previous research has often focused on increasing the soybean isoflavone content because of the estrogen-like activity of dietary soy in humans, the rapidly increasing demand for soybean as a plant-based meat substitute has raised concerns about excessive isoflavone intake. Therefore, the production of isoflavone-free soybean has been anticipated. However, there have been no reports of an isoflavone-free soybean until now. Here, 2-hydroxyisoflavanone synthase (IFS), which is essential for isoflavone biosynthesis, was targeted for genome editing in soybean. A novel CRISPR/Cas9 system using Staphylococcus aureus Cas9 instead of the commonly used Streptococcus pyogenes Cas9 was established and customized. Through Agrobacterium rhizogenes-mediated transformation, IFS-edited hairy roots were generated in which all three IFS genes contained deletion mutations. Metabolome analyses of IFS-edited hairy roots revealed that isoflavone content significantly decreased, whereas levels of flavonoids, including a novel chalcone derivative, increased. A transcriptome analysis revealed changes in the expression levels of a large number of genes, including jasmonic acid-inducible genes. In addition, the functions of selected transcription factor genes (MYB14-L, GmbHLH112, and GmbHLH113), which were dramatically upregulated by IFS editing, were investigated by multiomics analyses of their over-expressing hairy root lines. They appear to be involved in flavonoid and triterpene saponin biosynthesis, salicylic acid metabolism, and central carbon metabolism. Overall, the results indicated that editing IFS genes caused the redirection of the metabolic flux from isoflavonoid biosynthesis to flavonoid accumulation, as well as dynamic changes in gene regulatory networks.
Collapse
Affiliation(s)
- Kai Uchida
- RIKEN Center for Sustainable Resource Science, 1-7-22 Yokohama, Kanagawa 230-0045, Japan
| | - Yushiro Fuji
- RIKEN Center for Sustainable Resource Science, 1-7-22 Yokohama, Kanagawa 230-0045, Japan
| | - Hiromitsu Tabeta
- RIKEN Center for Sustainable Resource Science, 1-7-22 Yokohama, Kanagawa 230-0045, Japan
| | - Tomoyoshi Akashi
- Department of Applied Biological Sciences, Nihon University1866, Fujisawa, Kanagawa, 252-0880, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601 Japan
| |
Collapse
|
4
|
Yue Z, Zhang G, Ercisli S, Wang J, Wang J, Li J, Chen T, Liu Z. Identification and functional characterization of MYB genes regulating polyphenol biosynthesis in cabbage for resistance to Xanthomonas campestris pv. campestris. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109714. [PMID: 40096760 DOI: 10.1016/j.plaphy.2025.109714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/19/2025]
Abstract
Cabbage (Brassica oleracea L. var. capitata) is a vital leafy vegetable, but its production is frequently impacted by Xanthomonas campestris pv. campestris (Xcc). The MYB family is one of the most abundant families involved in plant responses to biotic stresses. However, genome-wide identification of MYB and their roles in regulating phenolic synthesis during Xcc resistance have not been previously reported in cabbage. The present investigation reports a total of 322 BoMYB genes. Transcriptome data revealed that 37 BoMYBs were significantly upregulated upon Xcc infection. Concurrently, an increase in polyphenol content was observed, suggesting a pivotal role of polyphenols in Xcc resistance. Based on phylogenetic relationships and qRT-PCR analysis, BoMYB108 was identified as a candidate gene potentially involved in early resistance to Xcc by regulating polyphenol biosynthesis. Overexpression and silencing experiments were conducted to validate the function of BoMYB108. Overexpression of BoMYB108 significantly enhanced the accumulation of phenolic acids, while silencing resulted in the opposite effect. Furthermore, increased phenolic acid levels were associated with reduced reactive oxygen species (ROS) accumulation. These findings indicate that BoMYB108 promotes phenolic acid biosynthesis and mitigates ROS accumulation under Xcc stress, thereby alleviating Xcc-induced damage. In summary, this study provides a valuable data resource for the MYB gene family in cabbage and establishes a theoretical foundation for understanding the phenolic-based mechanisms of Xcc resistance in brassicaceous vegetables.
Collapse
Affiliation(s)
- Zhibin Yue
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, People's Republic of China
| | - Guobin Zhang
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, People's Republic of China
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, 25240, Erzurum, Türkiye
| | - Jie Wang
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, People's Republic of China
| | - Jue Wang
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, People's Republic of China
| | - Jinbao Li
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, People's Republic of China
| | - Tongyan Chen
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, People's Republic of China
| | - Zeci Liu
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, People's Republic of China.
| |
Collapse
|
5
|
Liu C, Chen X, Han W, Hao X, Qin L, Luo W, Zhao L, Li N, Sun L, Zhang J, Xing G, He J, Wang W, Gai J. A wild-allele GsPP2C-51-a1 enhances tolerance to drought stress in soybean and Arabidopsis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:51. [PMID: 39994030 DOI: 10.1007/s00122-025-04835-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/27/2025] [Indexed: 02/26/2025]
Abstract
KEY MESSAGE A wild-allele GsPP2C-51-a1 of Glyma.14g162100 was identified in SojaCSSLP5, back to wild soybean, conferring drought tolerance. Its functions were verified in transgenic hairy root soybeans and Arabidopsis under water deficit and ABA treatment. A population of wild soybean chromosome segment substitution lines (CSSLs), SojaCSSLP5, with NN1138-2 as the cultivated recurrent parent and N24852 as the wild donor parent, was used to identify drought-tolerant loci/segments from the donor. Relative shoot dry weight, a tolerance indicator, varied significantly among the parents and CSSLs. Six drought tolerance loci/segments were detected in SojaCSSLP5, including Gm14_LDB_21 with GsPP2C-51 (Glyma.14g162100) as one of the four possible genes. This gene belongs to the F1 clade of protein phosphatase 2C based on gene ontology annotation, qPCR, and previous research results. Glyma.14g162100 was traced back to the Chinese germplasm population, in which four alleles existed on the locus, with soja holding all four, and max holding only two without any new alleles emerging. N24852 and NN1138-2 hold a1 and a2, respectively. The GsPP2C-51 protein was located inside the nucleus. In transgenic hairy root composite soybean, the GsPP2C-51-a1 overexpressed plants maintained a higher leaf fresh weight (tolerance) under 15% PEG stress compared to the empty vector plants. This was strongly supported by improved tolerance, chlorophyll content, and a series of physiological responses in GsPP2C-51-a1 overexpressed Arabidopsis plants under water deficit and abscisic acid treatments. Thus, the wild-type allele GsPP2C-51-a1 (Glyma.14g162100a1) from N24852 positively regulates plant drought tolerance.
Collapse
Affiliation(s)
- Cheng Liu
- Sanya Institute of Nanjing Agricultural University & Soybean Research Institute & National Center for Soybean Improvement & Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Soybean (General) & National Key Laboratory for Crop Genetics and Germplasm Enhancement, & State Innovation Platform for Integrated Production and Education in Soybean Bio-Breeding & Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xianlian Chen
- Anhui Science & Technology University, Fengyang, 233100, China
| | - Wei Han
- Sanya Institute of Nanjing Agricultural University & Soybean Research Institute & National Center for Soybean Improvement & Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Soybean (General) & National Key Laboratory for Crop Genetics and Germplasm Enhancement, & State Innovation Platform for Integrated Production and Education in Soybean Bio-Breeding & Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiaoshuai Hao
- Sanya Institute of Nanjing Agricultural University & Soybean Research Institute & National Center for Soybean Improvement & Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Soybean (General) & National Key Laboratory for Crop Genetics and Germplasm Enhancement, & State Innovation Platform for Integrated Production and Education in Soybean Bio-Breeding & Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Liang Qin
- Sanya Institute of Nanjing Agricultural University & Soybean Research Institute & National Center for Soybean Improvement & Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Soybean (General) & National Key Laboratory for Crop Genetics and Germplasm Enhancement, & State Innovation Platform for Integrated Production and Education in Soybean Bio-Breeding & Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wei Luo
- Sanya Institute of Nanjing Agricultural University & Soybean Research Institute & National Center for Soybean Improvement & Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Soybean (General) & National Key Laboratory for Crop Genetics and Germplasm Enhancement, & State Innovation Platform for Integrated Production and Education in Soybean Bio-Breeding & Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Lizhi Zhao
- Sanya Institute of Nanjing Agricultural University & Soybean Research Institute & National Center for Soybean Improvement & Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Soybean (General) & National Key Laboratory for Crop Genetics and Germplasm Enhancement, & State Innovation Platform for Integrated Production and Education in Soybean Bio-Breeding & Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ning Li
- Sanya Institute of Nanjing Agricultural University & Soybean Research Institute & National Center for Soybean Improvement & Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Soybean (General) & National Key Laboratory for Crop Genetics and Germplasm Enhancement, & State Innovation Platform for Integrated Production and Education in Soybean Bio-Breeding & Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Lei Sun
- Sanya Institute of Nanjing Agricultural University & Soybean Research Institute & National Center for Soybean Improvement & Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Soybean (General) & National Key Laboratory for Crop Genetics and Germplasm Enhancement, & State Innovation Platform for Integrated Production and Education in Soybean Bio-Breeding & Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jiaoping Zhang
- Sanya Institute of Nanjing Agricultural University & Soybean Research Institute & National Center for Soybean Improvement & Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Soybean (General) & National Key Laboratory for Crop Genetics and Germplasm Enhancement, & State Innovation Platform for Integrated Production and Education in Soybean Bio-Breeding & Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Guangnan Xing
- Sanya Institute of Nanjing Agricultural University & Soybean Research Institute & National Center for Soybean Improvement & Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Soybean (General) & National Key Laboratory for Crop Genetics and Germplasm Enhancement, & State Innovation Platform for Integrated Production and Education in Soybean Bio-Breeding & Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jianbo He
- Sanya Institute of Nanjing Agricultural University & Soybean Research Institute & National Center for Soybean Improvement & Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Soybean (General) & National Key Laboratory for Crop Genetics and Germplasm Enhancement, & State Innovation Platform for Integrated Production and Education in Soybean Bio-Breeding & Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wubin Wang
- Sanya Institute of Nanjing Agricultural University & Soybean Research Institute & National Center for Soybean Improvement & Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Soybean (General) & National Key Laboratory for Crop Genetics and Germplasm Enhancement, & State Innovation Platform for Integrated Production and Education in Soybean Bio-Breeding & Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| | - Junyi Gai
- Sanya Institute of Nanjing Agricultural University & Soybean Research Institute & National Center for Soybean Improvement & Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Soybean (General) & National Key Laboratory for Crop Genetics and Germplasm Enhancement, & State Innovation Platform for Integrated Production and Education in Soybean Bio-Breeding & Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| |
Collapse
|
6
|
Bao G, Xu X, Yang J, Liu J, Shi T, Zhao X, Li X, Bian S. Identification and functional characterization of the MYB transcription factor GmMYBLJ in soybean leaf senescence. FRONTIERS IN PLANT SCIENCE 2025; 16:1533592. [PMID: 39926644 PMCID: PMC11802812 DOI: 10.3389/fpls.2025.1533592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/06/2025] [Indexed: 02/11/2025]
Abstract
Leaf senescence is an important agronomic trait that significantly influences the quality and yield of soybeans. v-Myb avian myeloblastosis viral oncogene homolog (MYB) transcription factors are considered crucial regulators governing leaf senescence, which can be utilized to improve agronomic traits in crops. However, our knowledge regarding the functional roles of soybean MYBs in leaf senescence is extremely limited. In this study, GmMYBLJ, a CCA1-like MYB, was identified and functionally characterized with respect to leaf senescence. The GmMYBLJ protein is localized in the nucleus, and a high accumulation of its transcripts was observed in nodules and embryos. Notably, GmMYBLJ was highly expressed in soybean senescent leaves and was transcriptionally induced by dark or NaCl treatment, as confirmed by histochemical GUS staining analysis. Ectopic overexpression of GmMYBLJ in Arabidopsis not only led to earlier leaf senescence, reduced chlorophyll content, and increased MDA accumulation but also promoted the expression of several WRKY family transcription factors and senescence-associated genes, such as SAG12 and ORE1. Further investigation showed that overexpression of GmMYBLJ accelerated Arabidopsis leaf senescence under darkness and in response to Pst DC3000 infection. Moreover, transgenic soybean plants overexpressing GmMYBLJ grew faster and exhibited accelerated senescence under salt stress. DAB staining analysis showed that GmMYBLJ induced ROS accumulation in soybean hairy roots and Arabidopsis leaves. Collectively, our results provided useful information into the functional roles of GmMYBLJ in both age-dependent and stress-induced senescence.
Collapse
Affiliation(s)
- Guohua Bao
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Xiao Xu
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Jing Yang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, Jilin, China
| | - Juanjuan Liu
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Tianran Shi
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Xiaoxuan Zhao
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Xuyan Li
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Shaomin Bian
- College of Plant Science, Jilin University, Changchun, Jilin, China
| |
Collapse
|
7
|
Mukuze C, Msiska UM, Badji A, Obua T, Kweyu SV, Nghituwamhata SN, Rono EC, Maphosa M, Kasule F, Tukamuhabwa P. Genome-wide association mapping of bruchid resistance loci in soybean. PLoS One 2025; 20:e0292481. [PMID: 39792861 PMCID: PMC11723639 DOI: 10.1371/journal.pone.0292481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/22/2024] [Indexed: 01/12/2025] Open
Abstract
Soybean is a globally important industrial, food, and cash crop. Despite its importance in present and future economies, its production is severely hampered by bruchids (Callosobruchus chinensis), a destructive storage insect pest, causing considerable yield losses. Therefore, the identification of genomic regions and candidate genes associated with bruchid resistance in soybean is crucial as it helps breeders to develop new soybean varieties with improved resistance and quality. In this study, 6 multi-locus methods of the mrMLM model for genome-wide association study were used to dissect the genetic architecture of bruchid resistance on 4traits: percentage adult bruchid emergence (PBE), percentage weight loss (PWL), median development period (MDP), and Dobie susceptibility index (DSI) on 100 diverse soybean genotypes, genotyped with 14,469 single-nucleotide polymorphism (SNP) markers. Using the best linear unbiased predictors (BLUPs), 13 quantitative trait nucleotides (QTNs) were identified by the mrMLM model, of which rs16_14976250 was associated with more than 1 bruchid resistance traits. As a result, the identified QTNs linked with resistance traits can be employed in marker-assisted breeding for the accurate and rapid screening of soybean genotypes for resistance to bruchids. Moreover, a gene search on the Phytozome soybean reference genome identified 27 potential candidate genes located within a window of 478.45 kb upstream and downstream of the most reliable QTNs. These candidate genes exhibit molecular and biological functionalities associated with various soybean resistance mechanisms and, therefore, could be incorporated into the farmers' preferred soybean varieties that are susceptible to bruchids.
Collapse
Affiliation(s)
- Clever Mukuze
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
- Department of Crop Science and Post-Harvest Technology, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| | - Ulemu M. Msiska
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
- Department of Agri-Sciences, Faculty of Environmental Sciences, Mzuzu University, Luwinga, Malawi
| | - Afang Badji
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | - Tonny Obua
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | - Sharon V. Kweyu
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | - Selma N. Nghituwamhata
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | - Evalyne C. Rono
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | - Mcebisi Maphosa
- Department of Crop and Soil Science, Faculty of Agricultural Sciences, Lupane State University, Lupane, Zimbabwe
| | - Faizo Kasule
- National Agricultural Research Organization (NARO), National Semi-Arid Resources Research Institute, Soroti, Uganda
| | - Phinehas Tukamuhabwa
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| |
Collapse
|
8
|
Li J, Yang X, Tian B, Tian T, Meng Y, Liu F. Analysis of the MYB gene family in tartary buckwheat and functional investigation of FtPinG0005108900.01 in response to drought. BMC PLANT BIOLOGY 2025; 25:25. [PMID: 39773440 PMCID: PMC11706168 DOI: 10.1186/s12870-024-06019-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025]
Abstract
Tartary buckwheat (Fagopyrum tataricum) is an important crop used for edible food and medicinal usage. Drought annually brings reduction in crop yield and quality, causing enormous economic losses. Transcription factors are often involved in the regulation of plant responses to environmental stresses. In this study, we identified 233 MYB transcription factors in tartary buckwheat and classified them into 13 groups, including 1R, R2R3, 3R, 4R types. Gene structure and conserved motifs of these 233 FtMYBs suggested the relative conservation of these FtMYBs within each group. There is strong collinearity within the genomes of F. tataricum, with identifying syntenic gene pairs of FtMYB. Further, the expansion of FtMYB genes was attributed to whole genome duplication. The enrichment analysis of cis-acting elements in the FtMYB genes indicated that FtMYBs may participate in abiotic stress responses. The transcriptional changes of FtMYB genes in tartary buckwheat were then investigated using public data and qPCR. A number of FtMYB genes exhibited apparent transcript levels in the detected tissues and most of them disturbed their expression after the treatment of PEG6000 or natural treatment of tartary buckwheat seedlings. Some of the FtMYB genes showed a similar expression trend with qPCR validation. FtMYB gene FtPinG0005108900.01 were shown to activated by PEG6000 and natural drought treatment, and its encoded protein localizes to nucleus, revealing it as a typical transcription factor. Overexpression of FtPinG0005108900.01 increase the drought tolerance, and transcriptome analysis indicated that lignin synthesis other than flavonoid biosynthesis pathway was activated in the overexpressing plants following drought treatment. Our results provided detailed evolution and comparative genomic information of FtMYBs in tartary buckwheat and dissected the function of a FtMYB gene FtPinG0005108900.01 in response to drought.
Collapse
Affiliation(s)
- Jinbo Li
- Life Science College, Luoyang Normal University, Luoyang, 471934, China
| | - Xin Yang
- State Key Laboratory of Crop Stress Adaption and Improvement, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Bianling Tian
- State Key Laboratory of Crop Stress Adaption and Improvement, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Tian Tian
- State Key Laboratory of Crop Stress Adaption and Improvement, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yu Meng
- College of Landscape and Travel, Hebei Agricultural University, Baoding, 071001, China.
| | - Fei Liu
- State Key Laboratory of Crop Stress Adaption and Improvement, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
9
|
Ahmad Y, Haider S, Iqbal J, Naseer S, Attia KA, Mohammed AA, Fiaz S, Mahmood T. In-silico analysis and transformation of OsMYB48 transcription factor driven by CaMV35S promoter in model plant - Nicotiana tabacum L. conferring abiotic stress tolerance. GM CROPS & FOOD 2024; 15:130-149. [PMID: 38551174 PMCID: PMC11651284 DOI: 10.1080/21645698.2024.2334476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
Global crop yield has been affected by a number of abiotic stresses. Heat, salinity, and drought stress are at the top of the list as serious environmental growth-limiting factors. To enhance crop productivity, molecular approaches have been used to determine the key regulators affecting stress-related phenomena. MYB transcription factors (TF) have been reported as one of the promising defensive proteins against the unfavorable conditions that plants must face. Different roles of MYB TFs have been suggested such as regulation of cellular growth and differentiation, hormonal signaling, mediating abiotic stress responses, etc. To gain significant insights, a comprehensive in-silico analysis of OsMYB TF was carried out in comparison with 21 dicot MYB TFs and 10 monocot MYB TFs. Their chromosomal location, gene structure, protein domain, and motifs were analyzed. The phylogenetic relationship was also studied, which resulted in the classification of proteins into four basic groups: groups A, B, C, and D. The protein motif analysis identified several conserved sequences responsible for cellular activities. The gene structure analysis suggested that proteins that were present in the same class, showed similar intron-exon structures. Promoter analysis revealed major cis-acting elements that were found to be responsible for hormonal signaling and initiating a response to abiotic stress and light-induced mechanisms. The transformation of OsMYB TF into tobacco was carried out using the Agrobacterium-mediated transformation method, to further analyze the expression level of a gene in different plant parts, under stress conditions. To summarize, the current studies shed light on the evolution and role of OsMYB TF in plants. Future investigations should focus on elucidating the functional roles of MYB transcription factors in abiotic stress tolerance through targeted genetic modification and CRISPR/Cas9-mediated genome editing. The application of omics approaches and systems biology will be indispensable in delineating the regulatory networks orchestrated by MYB TFs, facilitating the development of crop genotypes with enhanced resilience to environmental stressors. Rigorous field validation of these genetically engineered or edited crops is imperative to ascertain their utility in promoting sustainable agricultural practices.
Collapse
Affiliation(s)
- Yumna Ahmad
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Saqlain Haider
- Plant and AgriBiosciences Research Centre, Ryan Institute, University of Galway, Galway, Ireland
| | - Javed Iqbal
- Department of Botany, Bacha Khan University, Charsadda, Pakistan
| | - Sana Naseer
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Kotb A. Attia
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Arif Ahmed Mohammed
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, Pakistan
| | - Tariq Mahmood
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| |
Collapse
|
10
|
Li J, Wu M, Chen H, Liao W, Yao S, Wei Y, Wang H, Long Q, Hu X, Wang W, Wang G, Qiu L, Wang X. An integrated physiological indicator and transcriptomic analysis reveals the response of soybean buds to high-temperature stress. BMC PLANT BIOLOGY 2024; 24:1102. [PMID: 39563228 DOI: 10.1186/s12870-024-05798-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND Under global warming, high temperature (HT) has become a major meteorological factor affecting soybean production. To explore the candidate genes and regulatory mechanism of the soybean bud response to HT stress, previously identified as HT-tolerant ('Handou14'; HD14) and HT-sensitive ('Jiadou36'; JD36) were treated for 5 days in an artificial climate incubator either with HT (43 °C (day)/ 33 °C (night), 16 h light/8 h darkness) or the non-stress growth condition (25 °C, 16 h light/8 h darkness) as the control at the bud stage were used as experimental materials in this study. After HT treatment, changes in physiological indicators including hypocotyl length, enzyme activity and hormone content were detected; at the same time, the cotyledons, hypocotyls, and main roots were collected for transcriptome sequencing analysis. Analyzing the mechanisms of HT stress response in the bud stage of HD14 and JD36 at physiological and transcription levels. RESULTS Analysis of physiological indicator showed that the activities of superoxide dismutase (SOD) were significantly increased 47.4% and 41.2% in the cotyledon of HD14 and the main root of JD36, and the contents of peroxidase (POD) were significantly increased 61.5% and 125% in the hypocotyl of HD14 and JD36; the contents of malonaldehyde (MDA) were significantly increased 44.8% and 22.2% in the main root of HD14 and JD36 after HT treatment. The content of abscisic acid (ABA) were significantly increased 1.9 fold and 1.2 fold in the root of HD14 and JD36 in response to HT treatment, whereas the content of gibberellin (GA) were decreased 2.2 fold and 1.3 fold in the cotyledon and root, and increased 1.6 fold in the hypocotyl in HD14 (P < 0.05). Thus, higher SOD and POD activities, higher ABA content, and a smaller increase in MDA content may improve tolerance to HT stress. The HT-tolerant cultivar may have stronger GA signal transduction in the hypocotyl to combat the negative effects of HT. RNA-sequencing was performed to analyze the differential expression of genes in buds of the two cultivars under the HT treatment and control condition. In total, 3,633, 1,964, 9,934, and 3,036 differentially expressed genes (DEGs) were identified in the CH (control group of HD14) vs. TH (HT-treatment group of HD14), CJ (control group of JD36) vs. TJ (HT-treatment group of JD36), TJ vs. TH, and CJ vs. CH comparison groups, respectively. Bioinformatic analysis revealed that most DEGs were mainly involved in metabolic processes, catalytic activity, carbohydrate, energy transduction, and signaling pathways. The results of qRT-PCR validation (86.67%) and changes in physiological indicators were consistent with the RNA-sequencing data. Five DEGs were selected as candidate genes in the response to HT stress at the bud stage. CONCLUSION In summary, soybean cells are protected from oxidative damage by an increase in antioxidant enzyme activities and accumulation of hormone content under HT stress. Concomitantly, changes in the expression of crucial genes and signal transmission processes are induced, thus initiating adaptive and protective mechanisms. This study provides a theoretical basis for clarification of the physiological and molecular mechanisms in the response to HT stress of soybean bud.
Collapse
Affiliation(s)
- Jiajia Li
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Meiyan Wu
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Haoran Chen
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Wei Liao
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Shu Yao
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Ying Wei
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Heng Wang
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Qun Long
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaoyu Hu
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Wei Wang
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Guoji Wang
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Lijuan Qiu
- Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA), Institute of Crop Sciences, The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xiaobo Wang
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
11
|
Chatti K, Kmeli N, Bettaieb I, Hamdi J, Gaaied S, Mlouka R, Mars M, Bouktila D. Genome-Wide Analysis of the Common Fig (Ficus carica L.) R2R3-MYB Genes Reveals Their Structure, Evolution, and Roles in Fruit Color Variation. Biochem Genet 2024:10.1007/s10528-024-10960-w. [PMID: 39508995 DOI: 10.1007/s10528-024-10960-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 10/26/2024] [Indexed: 11/15/2024]
Abstract
The R2R3-MYB transcription factor (TF) family is crucial for regulating plant growth, stress response, and fruit ripening. Although this TF family has been examined in a multitude of plants, the R2R3-MYB TFs in Ficus carica, a Mediterranean fruit species, have yet to be characterized. This study identified and classified 63 R2R3-MYB genes (FcMYB1 to FcMYB63) in the F. carica genome. We analyzed these genes for physicochemical properties, conserved motifs, phylogenetic relationships, gene architecture, selection pressure, and gene expression profiles and networks. The genes were classified into 29 clades, with members of the same clade showing similar exon-intron structures and motif compositions. Of the 54 orthologous gene pairs shared with mulberry (Morus notabilis), 52 evolved under negative selection, while two pairs (FcMYB55/MnMYB20 and FcMYB59/MnMYB31) experienced diversifying selection. RNA-Seq analysis showed that FcMYB26, FcMYB33, and FcMYB34 were significantly overexpressed in fig fruit peel during maturation phase III. Weighted gene co-expression network analysis (WGCNA) indicated that these genes are part of an expression module associated with the anthocyanin pathway. RT-qPCR validation confirmed these findings and revealed that the Tunisian cultivars 'Zidi' and 'Soltani' have cultivar-specific R2R3-FcMYB genes highly overexpressed during the final stage of fruit maturation and color acquisition. These genes likely influence cultivar-specific pigment synthesis. This study provides a comprehensive overview of the R2R3-MYB TF family in fig, offering a framework for selecting genes related to fruit peel color in breeding programs.
Collapse
Affiliation(s)
- Khaled Chatti
- Laboratory of Genetics, Biodiversity and Bioressources Exploitation (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, 5000, Monastir, Tunisia
| | - Narjes Kmeli
- Laboratory of Genetics, Biodiversity and Bioressources Exploitation (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, 5000, Monastir, Tunisia
| | - Inchirah Bettaieb
- Laboratory of Genetics, Biodiversity and Bioressources Exploitation (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, 5000, Monastir, Tunisia
| | - Jihen Hamdi
- Laboratory of Genetics, Biodiversity and Bioressources Exploitation (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, 5000, Monastir, Tunisia
| | - Sonia Gaaied
- Laboratory of Agrobiodiversity and Ecotoxicology (LR02AGR21), Higher Institute of Agronomy of Chott-Mariem, University of Sousse, 4042, Sousse, Tunisia
| | - Rania Mlouka
- Laboratory of Agrobiodiversity and Ecotoxicology (LR02AGR21), Higher Institute of Agronomy of Chott-Mariem, University of Sousse, 4042, Sousse, Tunisia
| | - Messaoud Mars
- Laboratory of Agrobiodiversity and Ecotoxicology (LR02AGR21), Higher Institute of Agronomy of Chott-Mariem, University of Sousse, 4042, Sousse, Tunisia
| | - Dhia Bouktila
- Laboratory of Genetics, Biodiversity and Bioressources Exploitation (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, 5000, Monastir, Tunisia.
| |
Collapse
|
12
|
An Q, Jiang Y, Zhou G. Genome-wide investigation of MYB gene family in Areca catechu and potential roles of AcTDF in transgenic Arabidopsis. Mol Biol Rep 2024; 51:1121. [PMID: 39499341 DOI: 10.1007/s11033-024-10055-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/23/2024] [Indexed: 11/07/2024]
Abstract
BACKGROUND MYB protein, a crucial transcription factor, holds crucial importance in plant growth, development, stress responses, and secondary metabolite regulation. While MYB proteins have been extensively studied, research on MYBs within the palm family, particularly in Areca catechu, remains limited. METHODS AND RESULTS This study identified 259 MYB genes in Areca catechu, including 105 1R-MYBs, 150 R2R3-MYBs, 3 3R-MYBs, and 1 4R-MYBs. Physicochemical properties, collinearity, and gene structure of these genes were analyzed. The AcMYB is distributed across 16 chromosomes of A.catechu and has 119 and 195 homologs in Arabidopsis and rice, respectively. Cis-acting elements in the promoter region suggest roles in plant hormones, growth, development, and stress. R2R3-MYB genes were divided into eight groups based on tissue expression profiles. The flowering-related gene AcTDF is highly expressed in male flowers. Overexpression of AcTDF in Arabidopsis promotes early flowering, upregulates AtSOC1 and AtFUL, and enhances tolerance to drought and salt stress. CONCLUSIONS These results provide valuable insights for the identification and analysis of the MYB gene family in Areca catechu and offer a basis for the subsequent verification of its related functions and the role and significance of its role in the evolution of palms.
Collapse
Affiliation(s)
- Qiyuan An
- Liaoning Research Institute of Cash Crops, Liaoyang, 111000, China
| | - Yiqi Jiang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Guangzhen Zhou
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, 571158, China.
| |
Collapse
|
13
|
Li XJ, Zhou XH, Bao AK. Genome-wide analysis of the R2R3-MYB gene family and identification of candidate genes that regulate isoflavone biosynthesis in red clover (Trifolium pratense). Int J Biol Macromol 2024; 282:137182. [PMID: 39489260 DOI: 10.1016/j.ijbiomac.2024.137182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/23/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Red clover (Trifolium pratense) is a perennial legume with high feeding and medicinal value attributed to its abundant isoflavone content. Previous studies reported that R2R3-MYB transcription factors are involved in the biosynthesis of isoflavones; however, their specific role in red clover remains poorly understood. Through comprehensive genome-wide and transcriptome analyses, a total of 138 TpR2R3-MYB genes were identified and classified into 30 distinct subgroups within a phylogenetic tree. Importantly, six of these subgroups showed associations with isoflavone biosynthesis in red clover. The majority of segmental duplication events (Ka/Ks < 1) indicated that the TpR2R3-MYB gene underwent strong purifying selection during evolution. The qRT-PCR analysis demonstrated high expression levels of TpMYB79 and TpMYB53 in Minshan red clover at full flowering stage, consistent with the trend for isoflavone content determination, suggesting that TpMYB79 and TpMYB53 might be important regulators of isoflavone biosynthesis in red clover. Additionally, we observed nucleus and vacuole membrane localization of TpMYB53 and TpMYB79, with TpMYB53 primarily exerting transcriptional activation through its C-terminal activation motifs while TpMYB79 exhibited no transcriptional activity. These findings provided a foundation for the study of the biological function of R2R3-MYB transcription factors in red clover.
Collapse
Affiliation(s)
- Xiao-Jia Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xue-Hui Zhou
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Ai-Ke Bao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
14
|
Cao M, Zhang Z, Hu H, Wu Y, He T, Huang C, Wang K, Zhang Q, Cao M, Huang J, Li Y. Comprehensive studies of the serine carboxypeptidase-like (SCPL) gene family in Carya cathayensis revealed the roles of SCPL4 in epigallocatechin-3-gallate (EGCG) synthesis and drought tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109183. [PMID: 39378646 DOI: 10.1016/j.plaphy.2024.109183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Hickory (Carya cathayensis) nuts are rich in epigallocatechin-3-gallate (EGCG) with multiple health functions. EGCG also regulates plant growth, development and stress responses. However, research on the synthesis mechanism of EGCG and its function in hickory is currently limited. Herein, 44 serine carboxypeptidase-like (SCPL) members were identified from the hickory genome and classified into three major categories: SCPL-I, SCPL-II, and SCPL-III. In the CcSCPLs-IA branch, CcSCPL3/4/5/8/9/11/13 showed differential expression patterns in various tissues, especially with relatively high expression levels in plant roots, female flowers and seed coat. These proteins have a catalytic triad composed of serine (Ser), aspartic acid (Asp) and histidine (His). Ser-His in the triad and arginine (Arg) mediated the docking of CcSCPL3/4/5/11 with 1-O-galloyl-β-d-glucose (βG) and epigallocatechin (EGC), whereas the Asp of the triad did not. CcSCPL4 was further confirmed to promote the synthesis of EGCG in tobacco leaves. CcSCPL4 may function as monomer and be mainly localized within cellular structures outside the nucleus. Notably, the expression level of CcSCPL4 significantly changed after drought, cold, and salt stress, with the highest expression level under drought stress. Meanwhile CcSCPL4 over-expression could enhance the drought resistance of Saccharomyces cerevisiae and Arabidopsis. This study elucidates key enzymes for EGCG synthesis and their role in drought resistance, providing insights into the EGCG synthesis pathway and molecular breeding of hickory in future.
Collapse
Affiliation(s)
- Minghao Cao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Ziyue Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Huangpeng Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yuanpeng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Tengjie He
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Chunying Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Ketao Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Qixiang Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Min Cao
- Songyang County Bureau of Natural Resources, Songyang, 323400, China
| | - Jianqin Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Yan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
15
|
Balhara R, Verma D, Kaur R, Singh K. MYB transcription factors, their regulation and interactions with non-coding RNAs during drought stress in Brassica juncea. BMC PLANT BIOLOGY 2024; 24:999. [PMID: 39448923 PMCID: PMC11515528 DOI: 10.1186/s12870-024-05736-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Brassica juncea (L.) Czern is an important oilseed crop affected by various abiotic stresses like drought, heat, and salt. These stresses have detrimental effects on the crop's overall growth, development and yield. Various Transcription factors (TFs) are involved in regulation of plant stress response by modulating expression of stress-responsive genes. The myeloblastosis (MYB) TFs is one of the largest families of TFs associated with various developmental and biological processes such as plant growth, secondary metabolism, stress response etc. However, MYB TFs and their regulation by non-coding RNAs (ncRNAs) in response to stress have not been studied in B. juncea. Thus, we performed a detailed study on the MYB TF family and their interactions with miRNAs and Long non coding RNAs. RESULTS Computational investigation of genome and proteome data presented a comprehensive picture of the MYB genes and their protein architecture, including intron-exon organisation, conserved motif analysis, R2R3 MYB DNA-binding domains analysis, sub-cellular localization, protein-protein interaction and chromosomal locations. Phylogenetically, BjuMYBs were further classified into different subclades on the basis of topology and classification in Arabidopsis. A total of 751 MYBs were identified in B. juncea corresponding to 297 1R-BjuMYBs, 440 R2R3-BjuMYBs, 12 3R-BjuMYBs, and 2 4R-BjuMYBs types. We validated the transcriptional profiles of nine selected BjuMYBs under drought stress through RT-qPCR. Promoter analysis indicated the presence of drought-responsive cis-regulatory components. Additionally, the miRNA-MYB TF interactions was also studied, and most of the microRNAs (miRNAs) that target BjuMYBs were involved in abiotic stress response and developmental processes. Regulatory network analysis and expression patterns of lncRNA-miRNA-MYB indicated that selected long non-coding RNAs (lncRNAs) acted as strong endogenous target mimics (eTMs) of the miRNAs regulated expression of BjuMYBs under drought stress. CONCLUSIONS The present study has established preliminary groundwork of MYB TFs and their interaction with ncRNAs in B. juncea and it will help in developing drought- tolerant Brassica crops.
Collapse
Affiliation(s)
- Rinku Balhara
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Deepika Verma
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Ravneet Kaur
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Kashmir Singh
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh, 160014, India.
| |
Collapse
|
16
|
Liu Q, Xu Y, Li X, Qi T, Li B, Wang H, Zhu Y. Genome-Wide Identification and Characterization of MYB Transcription Factors in Sudan Grass under Drought Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2645. [PMID: 39339621 PMCID: PMC11435211 DOI: 10.3390/plants13182645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Sudan grass (Sorghum sudanense S.) is a warm-season annual grass with high yield, rich nutritional value, good regeneration, and tolerance to biotic and abiotic stresses. However, prolonged drought affects the yield and quality of Sudan grass. As one of the largest families of multifunctional transcription factors in plants, MYB is widely involved in regulating plant growth and development, hormonal signaling, and stress responses at the gene transcription level. However, the regulatory role of MYB genes has not been well characterized in Sudan grass under abiotic stress. In this study, 113 MYB genes were identified in the Sudan grass genome and categorized into three groups by phylogenetic analysis. The promoter regions of SsMYB genes contain different cis-regulatory elements, which are involved in developmental, hormonal, and stress responses, and may be closely related to their diverse regulatory functions. In addition, collinearity analysis showed that the expansion of the SsMYB gene family occurred mainly through segmental duplications. Under drought conditions, SsMYB genes showed diverse expression patterns, which varied at different time points. Interaction networks of 74 SsMYB genes were predicted based on motif binding sites, expression correlations, and protein interactions. Heterologous expression showed that SsMYB8, SsMYB15, and SsMYB64 all significantly enhanced the drought tolerance of yeast cells. Meanwhile, the subcellular localization of all three genes is in the nucleus. Overall, this study provides new insights into the evolution and function of MYB genes and provides valuable candidate genes for breeding efforts in Sudan grass.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yongqun Zhu
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Q.L.); (Y.X.); (X.L.); (T.Q.); (B.L.); (H.W.)
| |
Collapse
|
17
|
Li H, Lu Y, Liu Z, Ren Q, Liu Z, Liu S, Ren R, Wang F, Liu Y, Zhang Y. Transcriptomic analysis unveils alterations in the genetic expression profile of tree peony (Paeonia suffruticosa Andrews) infected by Alternaria alternata. BMC Genomics 2024; 25:861. [PMID: 39277723 PMCID: PMC11402206 DOI: 10.1186/s12864-024-10784-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Black spot disease in tree peony caused by the fungal necrotroph A. alternata, is a primary limiting factor in the production of the tree peony. The intricate molecular mechanisms underlying the tree peony resistance to A. alternata have not been thoroughly investigated. RESULTS The present study utilized high-throughput RNA sequencing (RNA-seq) technology to conduct global expression profiling, revealing an intricate network of genes implicated in the interaction between tree peony and A. alternata. RNA-Seq libraries were constructed from leaf samples and high-throughput sequenced using the BGISEQ-500 sequencing platform. Six distinct libraries were characterized. M1, M2 and M3 were derived from leaves that had undergone mock inoculation, while I1, I2 and I3 originated from leaves that had been inoculated with the pathogen. A range of 10.22-11.80 gigabases (Gb) of clean bases were generated, comprising 68,131,232 - 78,633,602 clean bases and 56,677 - 68,996 Unigenes. A grand total of 99,721 Unigenes were acquired, boasting a mean length of 1,266 base pairs. All these 99,721 Unigenes were annotated in various databases, including NR (Non-Redundant, 61.99%), NT (Nucleotide, 45.50%), SwissProt (46.32%), KEGG (Kyoto Encyclopedia of Genes and Genomes, 49.33%), KOG (clusters of euKaryotic Orthologous Groups, 50.18%), Pfam (Protein family, 47.16%), and GO (Gene Ontology, 34.86%). In total, 66,641 (66.83%) Unigenes had matches in at least one database. By conducting a comparative transcriptome analysis of the mock- and A. alternata-infected sample libraries, we found differentially expressed genes (DEGs) that are related to phytohormone signalling, pathogen recognition, active oxygen generation, and circadian rhythm regulation. Furthermore, multiple different kinds of transcription factors were identified. The expression levels of 10 selected genes were validated employing qRT-PCR (quantitative real-time PCR) to confirm RNA-Seq data. CONCLUSIONS A multitude of transcriptome sequences have been generated, thus offering a valuable genetic repository for further scholarly exploration on the immune mechanisms underlying the tree peony infected by A. alternata. While the expression of most DEGs increased, a few DEGs showed decreased expression.
Collapse
Affiliation(s)
- Huiyun Li
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China.
| | - Yifan Lu
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Zixin Liu
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Qing Ren
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Zhongyan Liu
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Sibing Liu
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Ruili Ren
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Fei Wang
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Yi Liu
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Yanzhao Zhang
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China.
| |
Collapse
|
18
|
Zhu X, Majeed Y, Zhang N, Li W, Duan H, Dou X, Jin H, Chen Z, Chen S, Zhou J, Wang Q, Tang J, Zhang Y, Si H. Identification of autophagy gene family in potato and the role of StATG8a in salt and drought stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14584. [PMID: 39431433 DOI: 10.1111/ppl.14584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/22/2024]
Abstract
Autophagy is a highly conserved method of recycling cytoplasm components in eukaryotes. It plays an important role in plant growth and development, as well as in response to biotic and abiotic stresses. Although autophagy-related genes (ATGs) have been identified in several crop species, their particular role in potato (Solanum tuberosum L.) remains unclear. Several transcription factors and signaling genes in the transgenic lines of the model plant Arabidopsis thaliana, such as AtTSPO, AtBES1, AtPIP2;7, AtCOST1 as well as AtATI1/2, ATG8f, GFP-ATG8F-HA, AtDSK2, AtNBR1, AtHKT1 play crucial functions under drought and salt stresses, respectively. In this study, a total of 29 putative StATGs from 15 different ATG subfamilies in the potato genome were identified. Their physicochemical properties, evolutionary connections, chromosomal distribution, gene duplication, protein-protein interaction network, conserved motifs, gene structure, interspecific collinearity relationship, and cis-regulatory elements were analyzed. The results of qRT-PCR detection of StATG expression showed that 29 StATGs were differentially expressed in potato's leaves, flowers, petiole, stem, stolon, tuber, and root. StATGs were dynamically modulated by salt and drought stresses and up-regulated under salt and drought conditions. Our results showed that the StATG8a localized in the cytoplasm and the nucleus. Potato cultivar "Atlantic" overexpressing or downregulating StATG8a were constructed. Based on physiological, biochemical, and photosynthesis parameters, potato lines overexpressing StATG8a exhibited 9 times higher drought and salt tolerance compared to non-transgenic plants. In contrast, the potato plants with knockdown expression showed a downtrend in drought and salt tolerance compared to non-transgenic potato lines. These results could provide new insights into the function of StATG8a in salt and drought response and its possible mechanisms.
Collapse
Affiliation(s)
- Xi Zhu
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
- National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Yasir Majeed
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Ning Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Wei Li
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
| | - Huimin Duan
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
| | - Xuemei Dou
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Hui Jin
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
| | - Zhuo Chen
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
| | - Shu Chen
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
| | - Jiannan Zhou
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
| | - Qihua Wang
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
| | - Jinghua Tang
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
| | - Yu Zhang
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
19
|
Zuo D, Yan Y, Ma J, Zhao P. Genome-Wide Analysis of Transcription Factor R2R3-MYB Gene Family and Gene Expression Profiles during Anthocyanin Synthesis in Common Walnut ( Juglans regia L.). Genes (Basel) 2024; 15:587. [PMID: 38790216 PMCID: PMC11121633 DOI: 10.3390/genes15050587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
The R2R3-MYB gene family, encoding plant transcriptional regulators, participates in many metabolic pathways of plant physiology and development, including flavonoid metabolism and anthocyanin synthesis. This study proceeded as follows: the JrR2R3-MYB gene family was analyzed genome-wide, and the family members were identified and characterized using the high-quality walnut reference genome "Chandler 2.0". All 204 JrR2R3-MYBs were established and categorized into 30 subgroups via phylogenetic analysis. JrR2R3-MYBs were unevenly distributed over 16 chromosomes. Most JrR2R3-MYBs had similar structures and conservative motifs. The cis-acting elements exhibit multiple functions of JrR2R3-MYBs such as light response, metabolite response, and stress response. We found that the expansion of JrR2R3-MYBs was mainly caused by WGD or segmental duplication events. Ka/Ks analysis indicated that these genes were in a state of negative purifying selection. Transcriptome results suggested that JrR2R3-MYBs were widely entangled in the process of walnut organ development and differentially expressed in different colored varieties of walnuts. Subsequently, we identified 17 differentially expressed JrR2R3-MYBs, 9 of which may regulate anthocyanin biosynthesis based on the results of a phylogenetic analysis. These genes were present in greater expression levels in 'Zijing' leaves than in 'Lvling' leaves, as revealed by the results of qRT-PCR experiments. These results contributed to the elucidation of the functions of JrR2R3-MYBs in walnut coloration. Collectively, this work provides a foundation for exploring the functional characteristics of the JrR2R3-MYBs in walnuts and improving the nutritional value and appearance quality of walnuts.
Collapse
Affiliation(s)
| | | | | | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (D.Z.); (Y.Y.); (J.M.)
| |
Collapse
|
20
|
Yang Y, Zhou X, Zhu X, Ding B, Jiang L, Zhang H, Li S, Cao S, Zhang M, Pei Y, Hou L. GhMYB52 Like: A Key Factor That Enhances Lint Yield by Negatively Regulating the Lignin Biosynthesis Pathway in Fibers of Upland Cotton ( Gossypium hirsutum L.). Int J Mol Sci 2024; 25:4921. [PMID: 38732136 PMCID: PMC11084151 DOI: 10.3390/ijms25094921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
In the context of sustainable agriculture and biomaterial development, understanding and enhancing plant secondary cell wall formation are crucial for improving crop fiber quality and biomass conversion efficiency. This is especially critical for economically important crops like upland cotton (Gossypium hirsutum L.), for which fiber quality and its processing properties are essential. Through comprehensive genome-wide screening and analysis of expression patterns, we identified a particularly high expression of an R2R3 MYB transcription factor, GhMYB52 Like, in the development of the secondary cell wall in cotton fiber cells. Utilizing gene-editing technology to generate a loss-of-function mutant to clarify the role of GhMYB52 Like, we revealed that GhMYB52 Like does not directly contribute to cellulose synthesis in cotton fibers but instead represses a subset of lignin biosynthesis genes, establishing it as a lignin biosynthesis inhibitor. Concurrently, a substantial decrease in the lint index, a critical measure of cotton yield, was noted in parallel with an elevation in lignin levels. This study not only deepens our understanding of the molecular mechanisms underlying cotton fiber development but also offers new perspectives for the molecular improvement of other economically important crops and the enhancement of biomass energy utilization.
Collapse
Affiliation(s)
- Yang Yang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.Y.); (X.Z.); (B.D.); (L.J.); (H.Z.); (S.L.); (S.C.); (M.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Xue Zhou
- Laboratory Animal Center, Southwest University, Chongqing 400715, China;
| | - Xi Zhu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.Y.); (X.Z.); (B.D.); (L.J.); (H.Z.); (S.L.); (S.C.); (M.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Bo Ding
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.Y.); (X.Z.); (B.D.); (L.J.); (H.Z.); (S.L.); (S.C.); (M.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Linzhu Jiang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.Y.); (X.Z.); (B.D.); (L.J.); (H.Z.); (S.L.); (S.C.); (M.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Huiming Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.Y.); (X.Z.); (B.D.); (L.J.); (H.Z.); (S.L.); (S.C.); (M.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Silu Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.Y.); (X.Z.); (B.D.); (L.J.); (H.Z.); (S.L.); (S.C.); (M.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Shuyan Cao
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.Y.); (X.Z.); (B.D.); (L.J.); (H.Z.); (S.L.); (S.C.); (M.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Mi Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.Y.); (X.Z.); (B.D.); (L.J.); (H.Z.); (S.L.); (S.C.); (M.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Yan Pei
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.Y.); (X.Z.); (B.D.); (L.J.); (H.Z.); (S.L.); (S.C.); (M.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Lei Hou
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.Y.); (X.Z.); (B.D.); (L.J.); (H.Z.); (S.L.); (S.C.); (M.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| |
Collapse
|
21
|
Wang B, Wen X, Fu B, Wei Y, Song X, Li S, Wang L, Wu Y, Hong Y, Dai S. Genome-Wide Analysis of MYB Gene Family in Chrysanthemum ×morifolium Provides Insights into Flower Color Regulation. PLANTS (BASEL, SWITZERLAND) 2024; 13:1221. [PMID: 38732436 PMCID: PMC11085527 DOI: 10.3390/plants13091221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024]
Abstract
MYBs constitute the second largest transcription factor (TF) superfamily in flowering plants with substantial structural and functional diversity, which have been brought into focus because they affect flower colors by regulating anthocyanin biosynthesis. Up to now, the genomic data of several Chrysanthemum species have been released, which provides us with abundant genomic resources for revealing the evolution of the MYB gene family in Chrysanthemum species. In the present study, comparative analyses of the MYB gene family in six representative species, including C. lavandulifolium, C. seticuspe, C. ×morifolium, Helianthus annuus, Lactuca sativa, and Arabidopsis thaliana, were performed. A total of 1104 MYBs, which were classified into four subfamilies and 35 lineages, were identified in the three Chrysanthemum species (C. lavandulifolium, C. seticuspe, and C. ×morifolium). We found that whole-genome duplication and tandem duplication are the main duplication mechanisms that drove the occurrence of duplicates in CmMYBs (particularly in the R2R3-MYB subfamily) during the evolution of the cultivated chrysanthemums. Sequence structure and selective pressure analyses of the MYB gene family revealed that some of R2R3-MYBs were subjected to positive selection, which are mostly located on the distal telomere segments of the chromosomes and contain motifs 7 and 8. In addition, the gene expression analysis of CmMYBs in different organs and at various capitulum developmental stages of C. ×morifolium indicated that CmMYBS2, CmMYB96, and CmMYB109 might be the negative regulators for anthocyanin biosynthesis. Our results provide the phylogenetic context for research on the genetic and functional evolution of the MYB gene family in Chrysanthemum species and deepen our understanding of the regulatory mechanism of MYB TFs on the flower color of C. ×morifolium.
Collapse
Affiliation(s)
- Bohao Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (B.W.)
| | - Xiaohui Wen
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou 311251, China
| | - Boxiao Fu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (B.W.)
| | - Yuanyuan Wei
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (B.W.)
| | - Xiang Song
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (B.W.)
| | - Shuangda Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (B.W.)
| | - Luyao Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (B.W.)
| | - Yanbin Wu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (B.W.)
| | - Yan Hong
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (B.W.)
| | - Silan Dai
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (B.W.)
| |
Collapse
|
22
|
Xu M, Fu J, Ni Y, Zhang C. Genome‑wide analysis of the MYB gene family in pumpkin. PeerJ 2024; 12:e17304. [PMID: 38680887 PMCID: PMC11056105 DOI: 10.7717/peerj.17304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/04/2024] [Indexed: 05/01/2024] Open
Abstract
The MYB gene family exerts significant influence over various biological processes and stress responses in plants. Despite this, a comprehensive analysis of this gene family in pumpkin remains absent. In this study, the MYB genes of Cucurbita moschata were identified and clustered into 33 groups (C1-33), with members of each group being highly conserved in terms of their motif composition. Furthermore, the distribution of 175 CmoMYB genes across all 20 chromosomes was found to be non-uniform. Examination of the promoter regions of these genes revealed the presence of cis-acting elements associated with phytohormone responses and abiotic/biotic stress. Utilizing quantitative real-time polymerase chain reaction (qRT-PCR), the expression patterns of 13 selected CmoMYB genes were validated, particularly in response to exogenous phytohormone exposure and various abiotic stressors, including ABA, SA, MeJA, and drought treatments. Expression analysis in different tissues showed that CmoMYB genes are expressed at different levels in different tissues, suggesting that they are functionally divergent in regulating growth and abiotic stresses. These results provide a basis for future studies to characterize the function of the MYB gene family under abiotic stresses in pumpkins.
Collapse
Affiliation(s)
- Minyan Xu
- Laboratory of Botany, Anhui Wenda University of Information Engineering, Hefei, Anhui, China
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Jingjing Fu
- Laboratory of Botany, Anhui Wenda University of Information Engineering, Hefei, Anhui, China
| | - Ying Ni
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Chenchen Zhang
- Laboratory of Botany, Anhui Wenda University of Information Engineering, Hefei, Anhui, China
| |
Collapse
|
23
|
Wang S, Jiang R, Feng J, Zou H, Han X, Xie X, Zheng G, Fang C, Zhao J. Overexpression of transcription factor FaMYB63 enhances salt tolerance by directly binding to the SOS1 promoter in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2024; 114:32. [PMID: 38512490 DOI: 10.1007/s11103-024-01431-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/20/2024] [Indexed: 03/23/2024]
Abstract
Salinity is a pivotal abiotic stress factor with far-reaching consequences on global crop growth, yield, and quality and which includes strawberries. R2R3-MYB transcription factors encompass a range of roles in plant development and responses to abiotic stress. In this study, we identified that strawberry transcription factor FaMYB63 exhibited a significant upregulation in its expression under salt stress conditions. An analysis using yeast assay demonstrated that FaMYB63 exhibited the ability to activate transcriptional activity. Compared with those in the wild-type (WT) plants, the seed germination rate, root length, contents of chlorophyll and proline, and antioxidant activities (SOD, CAT, and POD) were significantly higher in FaMYB63-overexpressing Arabidopsis plants exposed to salt stress. Conversely, the levels of malondialdehyde (MDA) were considerably lower. Additionally, the FaMYB63-overexpressed Arabidopsis plants displayed a substantially improved capacity to scavenge active oxygen. Furthermore, the activation of stress-related genes by FaMYB63 bolstered the tolerance of transgenic Arabidopsis to salt stress. It was also established that FaMYB63 binds directly to the promoter of the salt overly sensitive gene SOS1, thereby activating its expression. These findings identified FaMYB63 as a possible and important regulator of salt stress tolerance in strawberries.
Collapse
Affiliation(s)
- Shuaishuai Wang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Rongyi Jiang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Jian Feng
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Haodong Zou
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaohuan Han
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Xingbin Xie
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Guanghui Zheng
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Congbing Fang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| | - Jing Zhao
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
24
|
Danso B, Ackah M, Jin X, Ayittey DM, Amoako FK, Zhao W. Genome-Wide Analysis of the Xyloglucan Endotransglucosylase/Hydrolase ( XTH) Gene Family: Expression Pattern during Magnesium Stress Treatment in the Mulberry Plant ( Morus alba L.) Leaves. PLANTS (BASEL, SWITZERLAND) 2024; 13:902. [PMID: 38592929 PMCID: PMC10975095 DOI: 10.3390/plants13060902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/01/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
Mulberry (Morus alba L.), a significant fruit tree crop, requires magnesium (Mg) for its optimal growth and productivity. Nonetheless, our understanding of the molecular basis underlying magnesium stress tolerance in mulberry plants remains unexplored. In our previous study, we identified several differential candidate genes associated with Mg homeostasis via transcriptome analysis, including the xyloglucan endotransglucosylase/hydrolase (XTH) gene family. The XTH gene family is crucial for plant cell wall reconstruction and stress responses. These genes have been identified and thoroughly investigated in various plant species. However, there is no research pertaining to XTH genes within the M. alba plant. This research systematically examined the M. alba XTH (MaXTH) gene family at the genomic level using a bioinformatic approach. In total, 22 MaXTH genes were discovered and contained the Glyco_hydro_16 and XET_C conserved domains. The MaXTHs were categorized into five distinct groups by their phylogenetic relationships. The gene structure possesses four exons and three introns. Furthermore, the MaXTH gene promoter analysis reveals a plethora of cis-regulatory elements, mainly stress responsiveness, phytohormone responsiveness, and growth and development. GO analysis indicated that MaXTHs encode proteins that exhibit xyloglucan xyloglucosyl transferase and hydrolase activities in addition to cell wall biogenesis as well as xyloglucan and carbohydrate metabolic processes. Moreover, a synteny analysis unveiled an evolutionary relationship between the XTH genes in M. alba and those in three other species: A. thaliana, P. trichocarpa, and Zea mays. Expression profiles from RNA-Seq data displayed distinct expression patterns of XTH genes in M. alba leaf tissue during Mg treatments. Real-time quantitative PCR analysis confirmed the expression of the MaXTH genes in Mg stress response. Overall, this research enhances our understanding of the characteristics of MaXTH gene family members and lays the foundation for future functional genomic study in M. alba.
Collapse
Affiliation(s)
- Blessing Danso
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (B.D.)
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Michael Ackah
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (B.D.)
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xin Jin
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (B.D.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Derek M. Ayittey
- School of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201308, China
| | - Frank Kwarteng Amoako
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Straße 2, 24118 Kiel, Germany;
| | - Weiguo Zhao
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (B.D.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| |
Collapse
|
25
|
Nanjareddy K, Guerrero-Carrillo MF, Lara M, Arthikala MK. Genome-wide identification and comparative analysis of the Amino Acid Transporter (AAT) gene family and their roles during Phaseolus vulgaris symbioses. Funct Integr Genomics 2024; 24:47. [PMID: 38430379 PMCID: PMC10908646 DOI: 10.1007/s10142-024-01331-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Amino acid transporters (AATs) are essential integral membrane proteins that serve multiple roles, such as facilitating the transport of amino acids across cell membranes. They play a crucial role in the growth and development of plants. Phaseolus vulgaris, a significant legume crop, serves as a valuable model for studying root symbiosis. In this study, we have conducted an exploration of the AAT gene family in P. vulgaris. In this research, we identified 84 AAT genes within the P. vulgaris genome sequence and categorized them into 12 subfamilies based on their similarity and phylogenetic relationships with AATs found in Arabidopsis and rice. Interestingly, these AAT genes were not evenly distributed across the chromosomes of P. vulgaris . Instead, there was an unusual concentration of these genes located toward the outer edges of chromosomal arms. Upon conducting motif analysis and gene structural analysis, we observed a consistent presence of similar motifs and an intron-exon distribution pattern among the subfamilies. When we analyzed the expression profiles of PvAAT genes, we noted tissue-specific expression patterns. Furthermore, our investigation into AAT gene expression under rhizobial and mycorrhizal symbiotic conditions revealed that certain genes exhibited high levels of expression. Specifically, ATLa5 and LHT2 was notably upregulated under both symbiotic conditions. These findings point towards a potential role of AATs in the context of rhizobial and mycorrhizal symbiosis in P. vulgaris, in addition to their well-established regulatory functions.
Collapse
Affiliation(s)
- Kalpana Nanjareddy
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León-Universidad Nacional Autónoma de México (UNAM), Leon, Guanajuato, C.P. 37689, México.
| | - María Fernanda Guerrero-Carrillo
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León-Universidad Nacional Autónoma de México (UNAM), Leon, Guanajuato, C.P. 37689, México
| | - Miguel Lara
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, 62210, Morelos, México
| | - Manoj-Kumar Arthikala
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León-Universidad Nacional Autónoma de México (UNAM), Leon, Guanajuato, C.P. 37689, México.
| |
Collapse
|
26
|
Wang Y, Yang X, Hu Y, Liu X, Shareng T, Cao G, Xing Y, Yang Y, Li Y, Huang W, Wang Z, Bai G, Ji Y, Wang Y. Transcriptome-Based Identification of the SaR2R3-MYB Gene Family in Sophora alopecuroides and Function Analysis of SaR2R3-MYB15 in Salt Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2024; 13:586. [PMID: 38475433 DOI: 10.3390/plants13050586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
As one of the most prominent gene families, R2R3-MYB transcription factors significantly regulate biochemical and physiological processes under salt stress. However, in Sophora alopecuroides, a perennial herb known for its exceptional saline alkali resistance, the comprehensive identification and characterization of SaR2R3-MYB genes and their potential functions in response to salt stress have yet to be determined. We investigated the expression profiles and biological functions of SaR2R3-MYB transcription factors in response to salt stress, utilizing a transcriptome-wide mining method. Our analysis identified 28 SaR2R3-MYB transcription factors, all sharing a highly conserved R2R3 domain, which were further divided into 28 subgroups through phylogenetic analysis. Some SaR2R3-MYB transcription factors showed induction under salt stress, with SaR2R3-MYB15 emerging as a potential regulator based on analysis of the protein-protein interaction network. Validation revealed the transcriptional activity and nuclear localization of SaR2R3-MYB15. Remarkably, overexpression of SaR2R3-MYB15 in transgenic plants could increase the activity of antioxidant enzymes and the accumulation of proline but decrease the content of malondialdehyde (MDA), compared with wild-type plants. Moreover, several salt stress-related genes showed higher expression levels in transgenic plants, implying their potential to enhance salt tolerance. Our findings shed light on the role of SaR2R3-MYB genes in salt tolerance in S. alopecuroides.
Collapse
Affiliation(s)
- Yuan Wang
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Inner Mongolia Engineering Laboratory of Economic Forest Sterile Virus-Free Cultivation, Hohhot 010021, China
| | - Xiaoming Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yongning Hu
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
| | - Xinqian Liu
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
| | - Tuya Shareng
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
- Inner Mongolia Ordos Forest Ecosystem Research Station, Ordos 016100, China
| | - Gongxiang Cao
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
- Inner Mongolia Ordos Forest Ecosystem Research Station, Ordos 016100, China
| | - Yukun Xing
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
- Inner Mongolia Ordos Forest Ecosystem Research Station, Ordos 016100, China
| | - Yuewen Yang
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
- Inner Mongolia Ordos Forest Ecosystem Research Station, Ordos 016100, China
| | - Yinxiang Li
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
| | - Weili Huang
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
- Inner Mongolia Engineering Laboratory of Economic Forest Sterile Virus-Free Cultivation, Hohhot 010021, China
| | - Zhibo Wang
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
| | - Gaowa Bai
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
| | - Yuanyuan Ji
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
| | - Yuzhi Wang
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
| |
Collapse
|
27
|
Chen N, Zhan W, Shao Q, Liu L, Lu Q, Yang W, Que Z. Cloning, Expression, and Functional Analysis of the MYB Transcription Factor SlMYB86-like in Tomato. PLANTS (BASEL, SWITZERLAND) 2024; 13:488. [PMID: 38498460 PMCID: PMC10893056 DOI: 10.3390/plants13040488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 03/20/2024]
Abstract
MYB transcription factors (TFs) have been shown to play a key role in plant growth and development and are in response to various types of biotic and abiotic stress. Here, we clarified the structure, expression patterns, and function of a MYB TF, SlMYB86-like (Solyc06g071690) in tomato using an inbred tomato line exhibiting high resistance to bacterial wilt (Hm 2-2 (R)) and one susceptible line (BY 1-2 (S)). The full-length cDNA sequence of this gene was 1226 bp, and the open reading frame was 966 bp, which encoded 321 amino acids; its relative molecular weight was 37.05055 kDa; its theoretical isoelectric point was 7.22; it was a hydrophilic nonsecreted protein; and it had no transmembrane structures. The protein also contains a highly conserved MYB DNA-binding domain and was predicted to be localized to the nucleus. Phylogenetic analysis revealed that SlMYB86-like is closely related to SpMYB86-like in Solanum pennellii and clustered with other members of the family Solanaceae. Quantitative real-time PCR (qRT-PCR) analysis revealed that the expression of the SlMYB86-like gene was tissue specific and could be induced by Ralstonia solanacearum, salicylic acid, and jasmonic acid. The results of virus-induced gene silencing (VIGS) revealed that SlMYB86-like silencing decreased the resistance of tomato plants to bacterial wilt, suggesting that it positively regulates the resistance of tomatoes to bacterial wilt. Overall, these findings indicate that SlMYB86-like plays a key role in regulating the resistance of tomatoes to bacterial wilt.
Collapse
Affiliation(s)
- Na Chen
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, China; (Q.S.); (L.L.); (Q.L.); (W.Y.); (Z.Q.)
| | - Wenwen Zhan
- Guangzhou Resuce Agricultural Science and Technology Co., Ltd., Guangzhou 510642, China;
| | - Qin Shao
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, China; (Q.S.); (L.L.); (Q.L.); (W.Y.); (Z.Q.)
| | - Liangliang Liu
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, China; (Q.S.); (L.L.); (Q.L.); (W.Y.); (Z.Q.)
| | - Qineng Lu
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, China; (Q.S.); (L.L.); (Q.L.); (W.Y.); (Z.Q.)
| | - Weihai Yang
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, China; (Q.S.); (L.L.); (Q.L.); (W.Y.); (Z.Q.)
| | - Zhiqun Que
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, China; (Q.S.); (L.L.); (Q.L.); (W.Y.); (Z.Q.)
| |
Collapse
|
28
|
Ding P, Tang P, Li X, Haroon A, Nasreen S, Noor H, Attia KA, Abushady AM, Wang R, Cui K, Wu X, Sun M, Gao Z. Genome-wide identification, phylogeny and expression analysis of the R2R3-MYB gene family in quinoa ( Chenopodium quinoa) under abiotic stress. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23261. [PMID: 38417846 DOI: 10.1071/fp23261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/14/2024] [Indexed: 03/01/2024]
Abstract
The MYB transcription factor (TF) are among the largest gene families of plants being responsible for several biological processes. The R2R3-MYB gene family are integral player regulating plant primary and secondary metabolism, growth and development, and responses to hormones and stresses. The phylogenetic analysis combined with gene structure analysis and motif determination resulted in division of R2R3-MYB gene family into 27 subgroups. Evidence generated from synteny analyses indicated that CqR2R3-MYBs gene family is featured by tandem and segmental duplication events. On the basis of RNA-Seq data, the expression patterns of different tissues under salt treatment were investigated resulting CqR2R3-MYB genes high expression both in roots and stem of quinoa (Chenopodium quinoa ) plants. More than half of CqR2R3-MYB genes showed expression under salt stress. Based on this result, CqR2R3-MYB s may regulate quinoa plant growth development and resistance to abiotic stresses. These findings provided comprehensive insights on role of CqR2R3-MYBs gene family members in quinoa and candidate MYB gene family members can be further studies on their role for abiotic stress tolerance in crop plants.
Collapse
Affiliation(s)
- Pengcheng Ding
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Peng Tang
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Xiaofen Li
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Adeela Haroon
- Department of Botany, The Women University Multan, Multan 66000, Pakistan
| | - Saima Nasreen
- Department of Environmental Sciences, The Women University Multan, Multan 66000, Pakistan
| | - Hafeez Noor
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Kotb A Attia
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Asmaa M Abushady
- Biotechnology School, Nile University, 26th July Corridor, Sheikh Zayed City, Giza 12588, Egypt
| | - Rongzhen Wang
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Kaiyuan Cui
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Xiangyun Wu
- Shanxi Jiaqi Agri-Tech Co., Ltd., Taiyuan 030006, China
| | - Min Sun
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Zhiqiang Gao
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| |
Collapse
|
29
|
Su J, Zhan N, Cheng X, Song S, Dong T, Ge X, Duan H. Genome-Wide Analysis of Cotton MYB Transcription Factors and the Functional Validation of GhMYB in Response to Drought Stress. PLANT & CELL PHYSIOLOGY 2024; 65:79-94. [PMID: 37847105 DOI: 10.1093/pcp/pcad125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
MYB transcription factors play important roles during abiotic stress responses in plants. However, little is known about the accurate systematic analysis of MYB genes in the four cotton species, Gossypium hirsutum, G. barbadense, G. arboreum and G. raimondii. Herein, we performed phylogenetic analysis and showed that cotton MYBs and Arabidopsis MYBs were clustered in the same subfamilies for each species. The identified cotton MYBs were distributed unevenly on chromosomes in various densities for each species, wherein genome-wide tandem and segment duplications were the main driving force of MYB family expansion. Synteny analysis suggested that the abundant collinearity pairs of MYBs were identified between G. hirsutum and the other three species, and that they might have undergone strong purification selection. Characteristics of conserved motifs, along with their consensus sequence, promoter cis elements and gene structure, revealed that MYB proteins might be highly conserved in the same subgroups for each species. Subsequent analysis of differentially expressed genes and expression patterns indicated that most GhMYBs might be involved in response to drought (especially) and salt stress, which was supported by the expression levels of nine GhMYBs using real-time quantitative PCR. Finally, we performed a workflow that combined virus-induced gene silencing and the heterologous transformation of Arabidopsis, which confirmed the positive roles of GhMYBs under drought conditions, as validated by determining the drought-tolerant phenotypes, damage index and/or water loss rate. Collectively, our findings not only expand our understanding of the relationships between evolution and function of MYB genes, but they also provide candidate genes for cotton breeding.
Collapse
Affiliation(s)
- Jiuchang Su
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Na Zhan
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Xiaoru Cheng
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Shanglin Song
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Tianyu Dong
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Hongying Duan
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
30
|
Li J, Guo S, Min Htwe Y, Sun X, Zhou L, Wang F, Zeng C, Chen S, Iqbal A, Yang Y. Genome-wide identification, classification and expression analysis of MYB gene family in coconut ( Cocos nucifera L.). FRONTIERS IN PLANT SCIENCE 2024; 14:1263595. [PMID: 38288415 PMCID: PMC10822967 DOI: 10.3389/fpls.2023.1263595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/21/2023] [Indexed: 01/31/2024]
Abstract
MYB transcription factors regulate the growth, development, and secondary metabolism of plant species. To investigate the origin of color variations in coconut pericarp, we identified and analyzed the MYB gene family present in coconut. According to the sequence of MYB genes in Arabidopsis thaliana, homologous MYB gene sequences were found in the whole genome database of coconut, the conserved sequence motifs within MYB proteins were analyzed by Motif Elicitation (MEME) tool, and the sequences without conservative structure were eliminated. Additionally, we employed RNA-seq technology to generate gene expression signatures of the R2R3-MYB genes across distinctive coconut parts exhibiting diverse colors. To validate these profiles, we conducted quantitative PCR (qPCR). Through comprehensive genome-wide screening, we successfully identified a collection of 179 MYB genes in coconut. Subsequent phylogenetic analysis categorized these 179 coconut MYB genes into 4-subfamilies: 124 R2R3-MYB, 4 3R-MYB types, 4 4R-MYB type, and 47 unknown types. Furthermore, these genes were further divided into 34 subgroups, with 28 of these subgroups successfully classified into known subfamilies found in Arabidopsis thaliana. By mapping the CnMYB genes onto the 16 chromosomes of the coconut genome, we unveiled a collinearity association between them. Moreover, a preservation of gene structure and motif distribution was observed across the CnMYB genes. Our research encompassed a thorough investigation of the R2R3-MYB genes present in the coconut genome, including the chromosomal localization, gene assembly, conserved regions, phylogenetic associations, and promoter cis-acting elements of the studied genes. Our findings revealed a collection of 12 R2R3-MYB candidate genes, namely CnMYB8, CnMYB15, CnMYB27, CnMYB28, CnMYB61, CnMYB63, CnMYB68, CnMYB94, CnMYB101, CnMYB150, CnMYB153, and CnMYB164. These genes showed differential expressions in diverse tissues and developmental stages of four coconut species, such as CnMYB68, CnMYB101, and CnMYB28 exhibited high expression in majority of tissues and coconut species, while CnMYB94 and CnMYB164 showed lower expression. These findings shed light on the crucial functional divergence of CnMYB genes across various coconut tissues, suggesting these genes as promising candidate genes for facilitating color development in this important crop.
Collapse
Affiliation(s)
- Jing Li
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Shukuan Guo
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Yin Min Htwe
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Xiwei Sun
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Lixia Zhou
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Fangyuan Wang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Chunru Zeng
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Shuangyan Chen
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
- School of Tropical Crops, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Amjad Iqbal
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
- Department of Food Science & Technology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Yaodong Yang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| |
Collapse
|
31
|
Zhang Z, Liu Z, Wu H, Xu Z, Zhang H, Qian W, Gao W, She H. Genome-Wide Identification and Characterization of MYB Gene Family and Analysis of Its Sex-Biased Expression Pattern in Spinacia oleracea L. Int J Mol Sci 2024; 25:795. [PMID: 38255867 PMCID: PMC10815031 DOI: 10.3390/ijms25020795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
The members of the myeloblastosis (MYB) family of transcription factors (TFs) participate in a variety of biological regulatory processes in plants, such as circadian rhythm, metabolism, and flower development. However, the characterization of MYB genes across the genomes of spinach Spinacia oleracea L. has not been reported. Here, we identified 140 MYB genes in spinach and described their characteristics using bioinformatics approaches. Among the MYB genes, 54 were 1R-MYB, 80 were 2R-MYB, 5 were 3R-MYB, and 1 was 4R-MYB. Almost all MYB genes were located in the 0-30 Mb region of autosomes; however, the 20 MYB genes were enriched at both ends of the sex chromosome (chromosome 4). Based on phylogeny, conserved motifs, and the structure of genes, 2R-MYB exhibited higher conservation relative to 1R-MYB genes. Tandem duplication and collinearity of spinach MYB genes drive their evolution, enabling the functional diversification of spinach genes. Subcellular localization prediction indicated that spinach MYB genes were mainly located in the nucleus. Cis-acting element analysis confirmed that MYB genes were involved in various processes of spinach growth and development, such as circadian rhythm, cell differentiation, and reproduction through hormone synthesis. Furthermore, through the transcriptome data analysis of male and female flower organs at five different periods, ten candidate genes showed biased expression in spinach males, suggesting that these genes might be related to the development of spinach anthers. Collectively, this study provides useful information for further investigating the function of MYB TFs and novel insights into the regulation of sex determination in spinach.
Collapse
Affiliation(s)
- Zhilong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.Q.)
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Zhiyuan Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.Q.)
| | - Hao Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.Q.)
| | - Zhaosheng Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.Q.)
| | - Helong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.Q.)
| | - Wei Qian
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.Q.)
| | - Wujun Gao
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Hongbing She
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.Q.)
| |
Collapse
|
32
|
Zhang X, Xu Z, Liu B, Xiao Y, Chai L, Zhong L, Huo H, Liu L, Yang H, Liu H. Identification of MYB gene family in medicinal tea tree Melaleuca alternifolia (Maiden and Betche) cheel and analysis of members regulating terpene biosynthesis. Mol Biol Rep 2024; 51:70. [PMID: 38175288 DOI: 10.1007/s11033-023-09019-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/12/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND The tea tree (Melaleuca alternifolia) is renowned for its production of tea tree oil, an essential oil primarily composed of terpenes extracted from its shoot. MYB transcription factors, which are one of the largest TF families, play a crucial role in regulating primary and secondary metabolite synthesis. However, knowledge of the MYB gene family in M. alternifolia is limited. METHODS AND RESULTS Here, we conducted a comprehensive genome-wide analysis of MYB genes in M. alternifolia, referred to as MaMYBs, including phylogenetic relationships, structures, promoter regions, and GO annotations. Our findings classified 219 MaMYBs into four subfamilies: one 5R-MYB, four 3R-MYBs, sixty-one MYB-related, and the remaining 153 are all 2R-MYBs. Seven genes (MYB189, MYB146, MYB44, MYB29, MYB175, MYB162, and MYB160) were linked to terpenoid synthesis based on GO annotation. Phylogenetic analysis with Arabidopsis homologous MYB genes suggested that MYB193 and MYB163 may also be involved in terpenoid synthesis. Additionally, through correlation analysis of gene expression and metabolite content, we identified 42 MYB genes associated with metabolite content. CONCLUSION The results provide valuable insights into the importance of MYB transcription factors in essential oil production in M. alternifolia. These findings lay the groundwork for a better understanding of the MYB regulatory network and the development of novel strategies to enhance essential oil synthesis in M. alternifolia.
Collapse
Affiliation(s)
- Xiaoning Zhang
- Guangxi Key Laboratory of Special Non-Wood Forest Cultivation and Utilization, Guangxi Forestry Research Institute, Nanning, 530002, China
| | - Zhanwu Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Buming Liu
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, China
| | - Yufei Xiao
- Guangxi Key Laboratory of Special Non-Wood Forest Cultivation and Utilization, Guangxi Forestry Research Institute, Nanning, 530002, China
| | - Ling Chai
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, China
| | - Lianxiang Zhong
- Guangxi Key Laboratory of Special Non-Wood Forest Cultivation and Utilization, Guangxi Forestry Research Institute, Nanning, 530002, China
| | - Heqiang Huo
- Department of Environmental Horticulture, Mid-Florida Research and Education Center, Apopka, 32703, FL, USA
| | - Li Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Hong Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Hailong Liu
- Guangxi Key Laboratory of Special Non-Wood Forest Cultivation and Utilization, Guangxi Forestry Research Institute, Nanning, 530002, China.
| |
Collapse
|
33
|
Kalwan G, Priyadarshini P, Kumar K, Yadava YK, Yadav S, Kohli D, Gill SS, Gaikwad K, Hegde V, Jain PK. Genome wide identification and characterization of the amino acid transporter (AAT) genes regulating seed protein content in chickpea (Cicer arietinum L.). Int J Biol Macromol 2023; 252:126324. [PMID: 37591427 DOI: 10.1016/j.ijbiomac.2023.126324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/29/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
Amino acid transporters (AATs), besides, being a crucial component for nutrient partitioning system are also vital for growth and development of the plants and stress resilience. In order to understand the role of AAT genes in seed quality proteins, a comprehensive analysis of AAT gene family was carried out in chickpea leading to identification of 109 AAT genes, representing 10 subfamilies with random distribution across the chickpea genome. Several important stress responsive cis-regulatory elements like Myb, ABRE, ERE were detected in the promoter region of these CaAAT genes. Most of the genes belonging to the same sub-families shared the intron-exon distribution pattern owing to their conserved nature. Random distribution of these CaAAT genes was observed on plasma membrane, vacuolar membrane, Endoplasmic reticulum and Golgi membranes, which may be associated to distinct biochemical pathways. In total 92 out 109 CaAAT genes arise as result of duplication, among which segmental duplication was more prominent over tandem duplication. As expected, the phylogenetic tree was divided into 2 major clades, and further sub-divided into different sub-families. Among the 109 CaAAT genes, 25 were found to be interacting with 25 miRNAs, many miRNAs like miR156, miR159 and miR164 were interacting only with single AAT genes. Tissues specific expression pattern of many CaAAT genes was observed like CaAAP7 and CaAVT18 in nodules, CaAAP17, CaAVT5 and CaCAT9 in vegetative tissues while CaCAT10 and CaAAP23 in seed related tissues as per the expression analysis. Mature seed transcriptome data revealed that genotypes having high protein content (ICC 8397, ICC 13461) showed low CaAATs expression as compared to the genotypes having low protein content (FG 212, BG 3054). Amino acid profiling of these genotypes revealed a significant difference in amount of essential and non-essential amino acids, probably due to differential expression of CaAATs. Thus, the present study provides insights into the biological role of AAT genes in chickpea, which will facilitate their functional characterization and role in various developmental stages, stress responses and involvement in nutritional quality enhancement.
Collapse
Affiliation(s)
- Gopal Kalwan
- ICAR - National Institute for Plant Biotechnology, New Delhi 110012, India; PG School, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Parichita Priyadarshini
- ICAR - National Institute for Plant Biotechnology, New Delhi 110012, India; PG School, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; ICAR-Indian Grassland and Fodder Research Institute, Jhansi, Uttar Pradesh 284003, India
| | - Kuldeep Kumar
- ICAR - National Institute for Plant Biotechnology, New Delhi 110012, India; PG School, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; ICAR - Indian Institute of Pulses Research, Kanpur, Uttar Pradesh 208024, India
| | | | - Sheel Yadav
- ICAR - National Institute for Plant Biotechnology, New Delhi 110012, India; PG School, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Deshika Kohli
- ICAR - National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Sarvajeet Singh Gill
- Stress Physiology & Molecular Biology Lab, Centre for Biotechnology, Maharshi Dayanand University, Rohtak 124 001, Haryana, India
| | - Kishor Gaikwad
- ICAR - National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Venkatraman Hegde
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Pradeep Kumar Jain
- ICAR - National Institute for Plant Biotechnology, New Delhi 110012, India.
| |
Collapse
|
34
|
Ren J, Feng L, Guo L, Gou H, Lu S, Mao J. Genome-wide identification and expression analysis of the BURP domain-containing genes in Malus domestica. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1717-1731. [PMID: 38162916 PMCID: PMC10754798 DOI: 10.1007/s12298-023-01393-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 01/03/2024]
Abstract
The conserved BURP-containing proteins are specific to plants and play a crucial role in plant growth, development, and response to abiotic stresses. However, less is known about the systematic characterization of BURP-containing proteins in apple. This study aimed to identify and analyze all BURP-containing genes in the apple genome, as well as to examine their expression patterns through various bioinformatics methods. Eighteen members of BURP-containing genes were identified in apple, six members lacked signal peptides, and the secondary structure was mainly a Random coil of BURP-containing genes. Gene structure and Motif analysis showed that proteins have similar structures and are conserved at the C-terminal. Cis-acting element analysis revealed that the proteins contain phytohormone and stress response elements, and chromosomal localization revealed that the family is unevenly distributed across eight chromosomes, with duplication of fragments leading to the expansion of family proteins. Tissue expression showed that MdPG3 and MdPG4 were expressed in different tissues and different varieties, MdRD2 and MdRD7 were highly expressed in 'M74' fruits and MdRD7 in 'M49' leaves, while MdUSP1 was highly expressed in 'GD' roots. The quantitative real-time PCR analysis showed that the expressions of six and seven genes were significantly up-regulated under NaCl and PEG treatments, respectively, whereas MdRD7 was significantly up-regulated under NaCl and PEG treatment over time. This study offers a comprehensive identification and expression analysis of BURP-containing proteins in apple. The findings provide a theoretical foundation for further exploration of the functions of this protein family. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01393-7.
Collapse
Affiliation(s)
- Jiaxuan Ren
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Li Feng
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Lili Guo
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Huimin Gou
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| |
Collapse
|
35
|
Yu X, Tang L, Tang X, Mao Y. Genome-Wide Identification and Analysis of MYB Transcription Factors in Pyropia yezoensis. PLANTS (BASEL, SWITZERLAND) 2023; 12:3613. [PMID: 37896076 PMCID: PMC10609806 DOI: 10.3390/plants12203613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
MYB transcription factors are one of the largest transcription factor families in plants, and they regulate numerous biological processes. Red algae are an important taxonomic group and have important roles in economics and research. However, no comprehensive analysis of the MYB gene family in any red algae, including Pyropia yezoensis, has been conducted. To identify the MYB gene members of Py. yezoensis, and to investigate their family structural features and expression profile characteristics, a study was conducted. In this study, 3 R2R3-MYBs and 13 MYB-related members were identified in Py. yezoensis. Phylogenetic analysis indicated that most red algae MYB genes could be clustered with green plants or Glaucophyta MYB genes, inferring their ancient origins. Synteny analysis indicated that 13 and 5 PyMYB genes were orthologous to Pyropia haitanensis and Porphyra umbilicalis, respectively. Most Bangiaceae MYB genes contain several Gly-rich motifs, which may be the result of an adaptation to carbon limitations and maintenance of important regulatory functions. An expression profile analysis showed that PyMYB genes exhibited diverse expression profiles. However, the expression patterns of different members appeared to be diverse, and PyMYB5 was upregulated in response to dehydration, low temperature, and Pythium porphyrae infection. This is the first comprehensive study of the MYB gene family in Py. Yezoensis and it provides vital insights into the functional divergence of MYB genes.
Collapse
Affiliation(s)
- Xinzi Yu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Lei Tang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xianghai Tang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yunxiang Mao
- MOE Key Laboratory of Utilization and Conservation of Tropical Marine Bioresource & Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya 572022, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
36
|
Wang Y, Zhou H, He Y, Shen X, Lin S, Huang L. MYB transcription factors and their roles in the male reproductive development of flowering plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111811. [PMID: 37574139 DOI: 10.1016/j.plantsci.2023.111811] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/29/2023] [Accepted: 07/25/2023] [Indexed: 08/15/2023]
Abstract
As one of the largest transcription factor families with complex functional differentiation in plants, the MYB transcription factors (MYB TFs) play important roles in the physiological and biochemical processes of plant growth and development. Male reproductive development, an essential part of sexual reproduction in flowering plants, is undoubtedly regulated by MYB TFs. In this review, we summarize the roles of the MYB TFs involved in the three stages of male reproductive development: pollen grains formation and maturation, filament elongation and anther dehiscence, and fertilization. Also, the potential downstream target genes and upstream regulators of these MYB TFs are discussed. Furthermore, we propose the underlying regulatory mechanisms of these MYB TFs: (1) A complex network of MYB TFs regulates various aspects of male reproductive development; (2) MYB homologous genes in different species may be functionally conserved or differentiated; (3) MYB TFs often form regulatory complexes with bHLH TFs.
Collapse
Affiliation(s)
- Yijie Wang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Huiyan Zhou
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Yuanrong He
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya, China
| | - Xiuping Shen
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Sue Lin
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, Zhejiang, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya, China.
| |
Collapse
|
37
|
Lv X, Tian S, Huang S, Wei J, Han D, Li J, Guo D, Zhou Y. Genome-wide identification of the longan R2R3-MYB gene family and its role in primary and lateral root. BMC PLANT BIOLOGY 2023; 23:448. [PMID: 37741992 PMCID: PMC10517564 DOI: 10.1186/s12870-023-04464-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
R2R3-MYB is an important transcription factor family that regulates plant growth and development. Root development directly affects the absorption of water and nutrients by plants. Therefore, to understand the regulatory role of R2R3-MYB transcription factor family in root development of longan, this study identified the R2R3-MYB gene family members at the genome-wide level, and analyzed their phylogenetic characteristics, physical and chemical properties, gene structure, chromosome location and tissue expression. The analysis identified 124 R2R3-MYB family members in the longan genome. Phylogenetic analysis divided these members into 22 subfamilies, and the members of the unified subfamily had similar motifs and gene structures. The result of qRT-PCR showed that expression levels of DlMYB33, DlMYB34, DlMYB59, and DlMYB77 were significantly higher in main roots than in lateral as opposed to those of DlMYB35, DlMYB69, DlMYB70, and DlMYB83, which were significantly lower. SapBase database prediction and miRNAs sequencing results showed that 34 longan miRNAs could cleave R2R3-MYB, including 17 novel miRNAs unique to longan. The qRT-PCR and subcellular localization experiments of DlMYB92 and DlMYB98 showed that DlMYB92 is a key factor that regulates transcription in the nucleus and participates in the regulation of longan lateral root development. Longan also has a conserved miRNA-MYB-lateral root development regulation mechanism. This study provides a reference for further research on the transcriptional regulation of the miRNA-R2R3-MYB module in the root development of longan.
Collapse
Affiliation(s)
- Xinmin Lv
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Shichang Tian
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Shilian Huang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Junbin Wei
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Dongmei Han
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jianguang Li
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Dongliang Guo
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Yan Zhou
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, China.
| |
Collapse
|
38
|
Wang S, Wen B, Yang Y, Long S, Liu J, Li M. Genome-Wide Identification and Expression Analysis of the RADIALIS-like Gene Family in Camellia sinensis. PLANTS (BASEL, SWITZERLAND) 2023; 12:3039. [PMID: 37687288 PMCID: PMC10490161 DOI: 10.3390/plants12173039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023]
Abstract
The RADIALIS-like (RL) proteins are v-myb avian myeloblastosis viral oncogene homolog (MYB)-related transcription factors (TFs), and are involved in many biological processes, including metabolism, development, and response to biotic and abiotic stresses. However, the studies on the RL genes of Camellia sinensis are not comprehensive enough. Therefore, we undertook this study and identified eight CsaRLs based on the typical conserved domain SANT Associated domain (SANT) of RL. These genes have low molecular weights and theoretical pI values ranging from 5.67 to 9.76. Gene structure analysis revealed that six CsaRL genes comprise two exons and one intron, while the other two contain a single exon encompassing motifs 1 and 2, and part of motif 3. The phylogenetic analysis divided one hundred and fifty-eight RL proteins into five primary classes, in which CsaRLs clustered in Group V and were homologous with CssRLs of the Shuchazao variety. In addition, we selected different tissue parts to analyze the expression profile of CsaRLs, and the results show that almost all genes displayed variable expression levels across tissues, with CsaRL1a relatively abundant in all tissues. qRT-PCR (real-time fluorescence quantitative PCR) was used to detect the relative expression levels of the CsaRL genes under various abiotic stimuli, and it was found that CsaRL1a expression levels were substantially higher than other genes, with abscisic acid (ABA) causing the highest expression. The self-activation assay with yeast two-hybrid system showed that CsaRL1a has no transcriptional activity. According to protein functional interaction networks, CsaRL1a was well connected with WIN1-like, lysine histidine transporter-1-like, β-amylase 3 chloroplastic-like, carbonic anhydrase-2-like (CA2), and carbonic anhydrase dnaJC76 (DJC76). This study adds to our understanding of the RL family and lays the groundwork for further research into the function and regulatory mechanisms of the CsaRLs gene family in Camellia sinensis.
Collapse
Affiliation(s)
| | | | | | | | - Jianjun Liu
- College of Tea Sciences, Guizhou University, Guiyang 550025, China; (S.W.); (B.W.); (Y.Y.); (S.L.)
| | - Meifeng Li
- College of Tea Sciences, Guizhou University, Guiyang 550025, China; (S.W.); (B.W.); (Y.Y.); (S.L.)
| |
Collapse
|
39
|
Qin S, Wei F, Liang Y, Tang D, Lin Q, Miao J, Wei K. Genome-wide analysis of the R2R3-MYB gene family in Spatholobus suberectus and identification of its function in flavonoid biosynthesis. FRONTIERS IN PLANT SCIENCE 2023; 14:1219019. [PMID: 37670861 PMCID: PMC10476624 DOI: 10.3389/fpls.2023.1219019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/31/2023] [Indexed: 09/07/2023]
Abstract
Spatholobus suberectus Dunn (S. suberectus), a plant species within the Leguminosae family, has a long history of use in traditional medicines. The dried stem of S. suberectus exhibits various pharmacological activities because it contains various flavonoids. Diverse functions in plants are associated with the R2R3-MYB gene family, including the biosynthesis of flavonoids. Nonetheless, its role remains unelucidated in S. suberectus. Therefore, the newly sequenced S. suberectus genome was utilized to conduct a systematic genome-wide analysis of the R2R3-MYB gene family. The resulting data identified 181 R2R3-SsMYB genes in total, which were then categorized by phylogenetic analysis into 35 subgroups. Among the R2R3-SsMYB genes, 174 were mapped to 9 different chromosomes, and 7 genes were not located on any chromosome. Moreover, similarity in terms of exon-intron structures and motifs was exhibited by most genes in the same subgroup. The expansion of the gene family was primarily driven by segmental duplication events, as demonstrated by collinearity analysis. Notably, most of the duplicated genes underwent purifying selection, which was depicted through the Ka/Ks analysis. In this study, 22 R2R3-SsMYB genes were shown to strongly influence the level of flavonoids. The elevated expression level of these genes was depicted in the tissues with flavonoid accumulation in contrast with other tissues through qRT-PCR data. The resulting data elucidate the structural and functional elements of R2R3-SsMYB genes and present genes that could potentially be utilized for enhancing flavonoid biosynthesis in S. suberectus.
Collapse
Affiliation(s)
- Shuangshuang Qin
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Fan Wei
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Ying Liang
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Danfeng Tang
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Quan Lin
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Jianhua Miao
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Kunhua Wei
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| |
Collapse
|
40
|
Ma R, Luo J, Wang W, Song T, Fu Y. Function of the R2R3-MYB Transcription Factors in Dalbergia odorifera and Their Relationship with Heartwood Formation. Int J Mol Sci 2023; 24:12430. [PMID: 37569814 PMCID: PMC10419101 DOI: 10.3390/ijms241512430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
R2R3-MYB transcription factors (TFs) form one of the most important TF families involved in regulating various physiological functions in plants. The heartwood of Dalbergia odorifera is a kind of high-grade mahogany and valuable herbal medicine with wide application. However, the role of R2R3-MYB genes in the growth and development of D. odorifera, especially their relevance to heartwood formation, has not been revealed. A total of 126 R2R3-MYBs were screened from the D. odorifera genome and named DodMYB1-126 based on their location on 10 chromosomes. The collinearity results showed that purification selection was the main driving force for the evolution of the R2R3-MYB TFs family, and whole genome/fragment replication event was the main form for expanding the R2R3-MYB family, generating a divergence of gene structure and function. Comparative phylogenetic analysis classified the R2R3-MYB TFs into 33 subfamilies. S3-7,10,12-13,21 and N4-7 were extensively involved in the metabolic process; S9,13,16-19,24-25 and N1-3,8 were associated with the growth and development of D. odorifera. Based on the differential transcriptional expression levels of R2R3-MYBs in different tissues, DodMYB32, DodMYB55, and DodMYB89 were tentatively screened for involvement in the regulatory process of heartwood. Further studies have shown that the DodMYB89, localized in the nucleus, has transcriptional activation activity and is involved in regulating the biosynthesis of the secondary metabolites of heartwood by activating the promoters of the structural genes DodI2'H and DodCOMT. This study aimed to comprehensively analyze the functions of the R2R3-MYB TFs and screen for candidate genes that might be involved in heartwood formation of D. odorifera.
Collapse
Affiliation(s)
- Ruoke Ma
- Key Laboratory of National Forestry and Grassland Administration for Fast-Growing Tree Breeding and Cultivation in Central and Southern China, College of Forestry, Guangxi University, Nanning 530004, China; (R.M.); (J.L.); (W.W.)
| | - Jia Luo
- Key Laboratory of National Forestry and Grassland Administration for Fast-Growing Tree Breeding and Cultivation in Central and Southern China, College of Forestry, Guangxi University, Nanning 530004, China; (R.M.); (J.L.); (W.W.)
| | - Weijie Wang
- Key Laboratory of National Forestry and Grassland Administration for Fast-Growing Tree Breeding and Cultivation in Central and Southern China, College of Forestry, Guangxi University, Nanning 530004, China; (R.M.); (J.L.); (W.W.)
| | - Tianqi Song
- College of Agronomy, Northwest A&F University, Xianyang 712000, China;
| | - Yunlin Fu
- Key Laboratory of National Forestry and Grassland Administration for Fast-Growing Tree Breeding and Cultivation in Central and Southern China, College of Forestry, Guangxi University, Nanning 530004, China; (R.M.); (J.L.); (W.W.)
| |
Collapse
|
41
|
Yang J, Xu J, Zhang Y, Cui J, Hu H, Xue J, Zhu L. Two R2R3-MYB transcription factors from Chinese cedar (Cryptomeria fortunei Hooibrenk) are involved in the regulation of secondary cell wall formation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107879. [PMID: 37422947 DOI: 10.1016/j.plaphy.2023.107879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/06/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
As the most abundant renewable energy source, wood comprises the secondary cell wall (SCW). SCW biosynthesis involves lignin and cellulose deposition. Increasing studies have illustrated that R2R3-MYB transcription factors (TFs) play pivotal roles in affecting lignin accumulation and SCW formation. Nevertheless, the regulatory roles of R2R3-MYBs are still unresolved in Cryptomeria fortunei Hooibrenk cambium and wood formation. To dissect the potentials of CfMYBs, we successfully cloned and intensively studied the functions of CfMYB4 and CfMYB5 in SCW formation and abiotic stress response. They both contained the conserved MYB domain capable of forming a special structure that could bind to the core motifs of downstream genes. The phylogenetic tree implied that two CfMYBs clustered into different evolutionary branches. They were predominantly expressed in the stem and were localized to the nucleus. Furthermore, CfMYB4 functioned as an activator to enhance lignin and cellulose accumulation, and increase the SCW thickness by elevating the expression levels of SCW-related genes. By contrast, CfMYB5 negatively regulated lignin and cellulose biosynthesis, and decreased SCW formation by reducing the expression of SCW biosynthetic genes. Our data not only highlight the regulatory functions of CfMYBs in lignin deposition but also provide critical insights into the development of strategies for the genetic improvement of Cryptomeria fortunei wood biomass.
Collapse
Affiliation(s)
- Junjie Yang
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Jin Xu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yingting Zhang
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiebing Cui
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Hailiang Hu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Jinyu Xue
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Lijuan Zhu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
42
|
Yao G, Gou S, Zhong T, Wei S, An X, Sun H, Sun C, Hu K, Zhang H. Persulfidation of transcription factor MYB10 inhibits anthocyanin synthesis in red-skinned pear. PLANT PHYSIOLOGY 2023; 192:2185-2202. [PMID: 36797801 PMCID: PMC10315305 DOI: 10.1093/plphys/kiad100] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/04/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Hydrogen sulfide (H2S) is a gaseous signaling molecule that delays color change during fruit ripening. Whether H2S affects anthocyanin biosynthesis in red-skinned pears (Pyrus L.) remains unclear. Here, we found that H2S substantially inhibits anthocyanin accumulation in red-skinned pears and the expression of several genes encoding transcription factors is affected in response to H2S signaling. For example, PyMYB10 and PyMYB73 were down-regulated, whereas PyMYB114 and PyMYB6 were up-regulated. Bioinformatics analysis showed that PyMYB73 and PyMYB6, each containing an EAR motif, may negatively regulate anthocyanin accumulation. Transient expression analysis showed that PyMYB73 substantially promotes anthocyanin biosynthesis by co-transforming with PyMYB10/PyMYB114 + PybHLH3; however, PyMYB6 inhibited anthocyanin biosynthesis in strawberry (Fragaria vesca) receptacles and pear fruits, and PyMYB73 interacted with PyMYB10 and PyMYB6 but not PyMYB114 or PybHLH3. Further investigation showed that Cys194 and Cys218 of PyMYB10 were modified by persulfidation and that PyMYB10Cys218Ala substantially increased anthocyanin accumulation by a transient transformation system. Co-transformation of PyMYB10Cys218Ala + PyMYB73/PyMYB6 also promoted anthocyanin accumulation in pear fruits. Yeast two-hybrid assays showed that the mutation of PyMYB10 did not affect the interaction between PyMYB10 and PyMYB73, but it inhibited interaction with PyMYB6. Moreover, H2S weakened the interaction between PyMYB10 and PyMYB73 but enhanced the interaction with PyMYB6. Thus, we provided a model in which PyMYB10 undergoes persulfidation at Cys218, enhancing the interaction with PyMYB6 and reducing the interaction with PyMYB73. These subsequently results in lower expression of the anthocyanin biosynthesis-related genes Pyrus dihydroflavonol 4-reductase (PyDFR), Pyrus anthocyanidin synthase (PyANS), Pyrus UDP-glucose: flavonoid 3-glucosyl transferase (PyUFGT) and Pyrus glutathione S-transferase (PyGST), thereby inhibiting anthocyanin accumulation in red-skinned pears. Our findings provided a molecular mechanism for H2S-mediated anthocyanin biosynthesis in red-skinned pears.
Collapse
Affiliation(s)
- Gaifang Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shasha Gou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Tingying Zhong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shuwei Wei
- Shandong Institute of Pomology, Tai’an 271000, China
| | - Xin An
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hongye Sun
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chen Sun
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Kangdi Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hua Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
43
|
Zeng Y, Li Z, Chen Y, Li W, Wang HB, Shen Y. Global dissection of R2R3-MYB in Pogostemon cablin uncovers a species-specific R2R3-MYB clade. Genomics 2023; 115:110643. [PMID: 37217084 DOI: 10.1016/j.ygeno.2023.110643] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/06/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023]
Abstract
MYB family is one of the largest transcription factor families in plants and plays a crucial role in regulating plant biochemical and physiological processes. However, R2R3-MYBs in patchouli have not been systematically investigated. Here, based on the gene annotation of patchouli genome sequence, 484 R2R3-MYB transcripts were detected. Further in-depth analysis of the gene structure and expression of R2R3-MYBs supported the tetraploid hybrid origin of patchouli. When combined with R2R3-MYBs from Arabidopsis, a phylogenetic tree of patchouli R2R3-MYBs was constructed and divided into 31 clades. Interestingly, a patchouli-specific R2R3-MYB clade was found and confirmed by homologous from other Lamiaceae species. The syntenic analysis demonstrated that tandem duplication contributed to its evolution. This study systematically analysed the R2R3-MYB family in patchouli, providing information on its gene characterization, functional prediction, and species evolution.
Collapse
Affiliation(s)
- Ying Zeng
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhipeng Li
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yiqiong Chen
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wanying Li
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong-Bin Wang
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yanting Shen
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
44
|
Zhou F, Wu H, Chen Y, Wang M, Tuskan GA, Yin T. Function and molecular mechanism of a poplar placenta limited MIXTA gene in regulating differentiation of plant epidermal cells. Int J Biol Macromol 2023; 242:124743. [PMID: 37150377 DOI: 10.1016/j.ijbiomac.2023.124743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/20/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
The placenta in fruits of most plants either desiccate and shrink as the fruits mature or develop further to form the fleshy tissues. In poplars, placental epidermal cells protrude collectively to produce catkin fibers. In this study, three carpel limited MIXTA genes, PdeMIXTA02, PdeMIXTA03, PdeMIXTA04, were find to specifically expressed in carpel immediately after pollination. Heterologous expression of the three genes in Arabidopsis demonstrated that PdeMIXTA04 significantly promoted trichomes density and could restore trichomes in the trichomeless mutant. By contrast, such functions were not observed with PdeMIXTA02, PdeMIXTA03. In situ hybridization revealed that PdeMIXTA04 was explicitly expressed in poplar placental epidermal cells. We also confirmed trichome-specific expression of the PdeMIXTA04 promoter. Multiple experimental proofs have confirmed the interaction between PdeMIXTA04, PdeMYC and PdeWD40, indicating PdeMIXTA04 functioned through the MYB-bHLH-WD40 ternary complex. Our work provided distinctive understanding of the molecular mechanism triggering differentiation of poplar catkins.
Collapse
Affiliation(s)
- Fangwei Zhou
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Huaitong Wu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Yingnan Chen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Mingxiu Wang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Gerald A Tuskan
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Tongming Yin
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
45
|
Li H, Yang J, Ma R, An X, Pan F, Zhang S, Fu Y. Genome-wide identification and expression analysis of MYB gene family in Cajanus cajan and CcMYB107 improves plant drought tolerance. PHYSIOLOGIA PLANTARUM 2023; 175:e13954. [PMID: 37318225 DOI: 10.1111/ppl.13954] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/16/2023]
Abstract
MYB transcription factor (TF) is one of the largest superfamilies that play a vital role in multiple plant biological processes. However, the MYB family has not been comprehensively identified and functionally verified in Cajanus cajan, which is the sixth most important legume crop. Here, 170 CcR2R3-MYBs were identified and divided into 43 functional subgroups. Segmental and tandem duplications and alternative splicing events were found and promoted the expansion of the CcR2R3-MYB gene family. Functional prediction results showed that CcR2R3-MYBs were mainly involved in secondary metabolism, cell fate and identity, developmental processes, and responses to abiotic stress. Cis-acting element analysis of promoters revealed that stress response elements were widespread in the above four functional branches, further suggesting CcR2R3-MYBs were extensively involved in abiotic stress response. The transcriptome data and qRT-PCR results indicated that most of the CcR2R3-MYB genes responded to various stresses, of which the expression of CcMYB107 was significantly induced by drought stress. Overexpression of CcMYB107 enhanced antioxidant enzyme activity and increased proline and lignin accumulation, thus improving the drought resistance of C. cajan. Furthermore, Overexpression of CcMYB107 up-regulated the expression of stress-related genes and lignin biosynthesis genes after drought stress. Our findings established a strong foundation for the investigation of biological function of CcR2R3-MYB TFs in C. cajan.
Collapse
Affiliation(s)
- Hongquan Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, Harbin, China
| | - Jie Yang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, Harbin, China
| | - Ruijin Ma
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, Harbin, China
| | - Xiaoli An
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, Harbin, China
| | - Feng Pan
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, Harbin, China
| | - Su Zhang
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Yujie Fu
- College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
46
|
Ahmad I, Soni SK, M M, Pandey D. In-silico mining and characterization of MYB family genes in wilt-resistant hybrid guava (Psidium guajava × Psidium molle). J Genet Eng Biotechnol 2023; 21:74. [PMID: 37389653 DOI: 10.1186/s43141-023-00528-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND The MYB family is one of the most significant groups of transcription factors in plants. However, several MYBs have been linked to secondary metabolism and are important for determining the color of fruit's peel and pulp. Despite being a substantial fruit crop in tropical and subtropical areas of the world, wilt-resistant hybrid guava (Psidium guajava × Psidium molle; PGPM) has not yet been the subject of a thorough examination. This study's goal was to assess the expression of MYB in guava fruit pulp, roots, and seeds to predict its function by in silico analysis of the guava root transcriptome data. RESULTS In the current study, we have mined the MYBs family of MYB genes from the transcriptome of the PGPM guava root. We have mined 15 distinct MYB transcription factor genes/transcripts viz MYB3, MYB4, MYB23, MYB86, MYB90, MYB308, MYB5, MYB82, MYB114, MYB6, MYB305, MYB44, MYB51, MYB46, and MYB330. From the analyses, it was found that R2-MYB and R3-MYB domains are conserved in all known guava MYB proteins. The expression of six different MYB TFs was examined using semi-quantitative RT-PCR in "Shweta" pulp (white colour pulp), "Lalit" pulp (red color pulp), "Lalit" root, and "Lalit" seed. CONCLUSION There were 15 MYB family members observed in guava. They were unequally distributed across the chromosomes, most likely as a result of gene duplication. Additionally, the expression patterns of the particular MYBs showed that MYB may be involved in the control of wilt, fruit ripening, seed development, and root development. Our results allow for a more thorough functional characterization of the guava MYB family genes and open the door to additional research into one essential MYB transcription factor family of genes and its involvement in the growth and ripening of guava fruit.
Collapse
Affiliation(s)
- Israr Ahmad
- Division of Crop Improvement and Biotechnology, ICAR-Central Institute for Subtropical Horticulture, Rehmankhera, P.O. Kakori, Lucknow, Uttar Pradesh, 226101, India.
| | - Sumit K Soni
- Division of Crop Improvement and Biotechnology, ICAR-Central Institute for Subtropical Horticulture, Rehmankhera, P.O. Kakori, Lucknow, Uttar Pradesh, 226101, India.
| | - Muthukumar M
- Division of Crop Improvement and Biotechnology, ICAR-Central Institute for Subtropical Horticulture, Rehmankhera, P.O. Kakori, Lucknow, Uttar Pradesh, 226101, India
| | - Devendra Pandey
- Division of Crop Improvement and Biotechnology, ICAR-Central Institute for Subtropical Horticulture, Rehmankhera, P.O. Kakori, Lucknow, Uttar Pradesh, 226101, India
| |
Collapse
|
47
|
Chambard M, Albert B, Cadiou M, Auby S, Profizi C, Boulogne I. Living yeast-based biostimulants: different genes for the same results? FRONTIERS IN PLANT SCIENCE 2023; 14:1171564. [PMID: 37404542 PMCID: PMC10315835 DOI: 10.3389/fpls.2023.1171564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/31/2023] [Indexed: 07/06/2023]
Abstract
Nowadays, many products are available in the plant biostimulants market. Among them, living yeast-based biostimulants are also commercialized. Given the living aspect of these last products, the reproducibility of their effects should be investigated to ensure end-users' confidence. Therefore, this study aimed to compare the effects of a living yeast-based biostimulant between two different soybean cultures. These two cultures named C1 and C2 were conducted on the same variety and soil but in different locations and dates until the VC developmental stage (unifoliate leaves unrolled), with Bradyrhizobium japonicum (control and Bs condition) and with and without biostimulant coating seed treatment. The foliar transcriptomic analysis done first showed a high gene expression difference between the two cultures. Despite this first result, a secondary analysis seemed to show that this biostimulant led to a similar pathway enhancement in plants and with common genes even if the expressed genes were different between the two cultures. The pathways which seem to be reproducibly impacted by this living yeast-based biostimulant are abiotic stress tolerance and cell wall/carbohydrate synthesis. Impacting these pathways may protect the plant from abiotic stresses and maintain a higher level of sugars in plant.
Collapse
Affiliation(s)
- Marie Chambard
- Univ Rouen Normandie, GLYCOMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, Rouen, France
| | | | | | - Sarah Auby
- Agrauxine by Lesaffre, Beaucouzé, France
| | | | - Isabelle Boulogne
- Univ Rouen Normandie, GLYCOMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, Rouen, France
| |
Collapse
|
48
|
Yang Y, Zhu J, Wang H, Guo D, Wang Y, Mei W, Peng S, Dai H. Systematic investigation of the R2R3-MYB gene family in Aquilaria sinensis reveals a transcriptional repressor AsMYB054 involved in 2-(2-phenylethyl)chromone biosynthesis. Int J Biol Macromol 2023:125302. [PMID: 37315664 DOI: 10.1016/j.ijbiomac.2023.125302] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/19/2023] [Accepted: 06/04/2023] [Indexed: 06/16/2023]
Abstract
Trees in the genus Aquilaria produce agarwood, a valuable resin used in medicine, perfumes, and incense. 2-(2-Phenethyl)chromones (PECs) are characteristic components of agarwood; however, molecular mechanisms underlying PEC biosynthesis and regulation remain largely unknown. The R2R3-MYB transcription factors play important regulatory roles in the biosynthesis of various secondary metabolites. In this study, 101 R2R3-MYB genes in Aquilaria sinensis were systematically identified and analyzed at the genome-wide level. Transcriptomic analysis revealed that 19 R2R3-MYB genes were significantly regulated by an agarwood inducer, and showed significant correlations with PEC accumulation. Expression and evolutionary analyses revealed that AsMYB054, a subgroup 4 R2R3-MYB, was negatively correlated with PEC accumulation. AsMYB054 was located in the nucleus and functioned as a transcriptional repressor. Moreover, AsMYB054 could bind to the promoters of the PEC biosynthesis related genes AsPKS02 and AsPKS09, and inhibit their transcriptional activity. These findings suggested that AsMYB054 functions as a negative regulator of PEC biosynthesis via the inhibition of AsPKS02 and AsPKS09 in A. sinensis. Our results provide a comprehensive understanding of the R2R3-MYB subfamily in A. sinensis and lay a foundation for further functional analyses of R2R3-MYB genes in PEC biosynthesis.
Collapse
Affiliation(s)
- Yan Yang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163000, China; International Joint Research Center of Agarwood, Haikou 571101, China
| | - Jiahong Zhu
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Hao Wang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; International Joint Research Center of Agarwood, Haikou 571101, China
| | - Dong Guo
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Ying Wang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Wenli Mei
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; International Joint Research Center of Agarwood, Haikou 571101, China.
| | - Shiqing Peng
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; International Joint Research Center of Agarwood, Haikou 571101, China.
| | - Haofu Dai
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163000, China; International Joint Research Center of Agarwood, Haikou 571101, China.
| |
Collapse
|
49
|
Lv J, Xu Y, Dan X, Yang Y, Mao C, Ma X, Zhu J, Sun M, Jin Y, Huang L. Genomic survey of MYB gene family in six pearl millet (Pennisetum glaucum) varieties and their response to abiotic stresses. Genetica 2023:10.1007/s10709-023-00188-8. [PMID: 37266766 DOI: 10.1007/s10709-023-00188-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023]
Abstract
In addition to their roles in developmental and metabolic processes, MYB transcription factors play crucial roles in plant defense mechanisms and stress responses. A comprehensive analysis of six pearl millet genomes revealed the presence of 1133 MYB genes, which can be classified into four phylogenetically distinct subgroups. The duplication pattern of MYB genes across the pearl millet genomes demonstrates their conserved and similar evolutionary history. Overall, MYB genes were observed to be involved in drought and heat stress responses, with stronger differential expressed observed in root tissues. Multiple analyses indicated that MYB genes mediate abiotic stress responses by modulating abscisic acid-related pathways, circadian rhythms, and histone modification processes. A substantial number of duplicated genes were determined to exhibit differential expression under abiotic stress. The consistent positive expression trend observed in duplicated gene pairs, such as PMA5G04432.1 and PMA2G00728.1, across various abiotic stresses suggests that duplicated MYB genes plays a key role in the evolution of adaptive responses of pearl millet to abiotic stresses.
Collapse
Affiliation(s)
- Jinhang Lv
- Department of Grassland Science and Technology, Sichuan Agricultural University, Sichuan, China
| | - Yue Xu
- Department of Grassland Science and Technology, Sichuan Agricultural University, Sichuan, China
| | - Xuming Dan
- Department of The College of Life Sciences, Sichuan University, Sichuan, China
| | - Yuchen Yang
- Department of Grassland Science and Technology, Sichuan Agricultural University, Sichuan, China
| | - Chunli Mao
- Department of Grassland Science and Technology, Sichuan Agricultural University, Sichuan, China
| | - Xixi Ma
- Department of Grassland Science and Technology, Sichuan Agricultural University, Sichuan, China
| | - Jie Zhu
- Department of Grassland Science and Technology, Sichuan Agricultural University, Sichuan, China
| | - Min Sun
- Department of Grassland Science and Technology, Sichuan Agricultural University, Sichuan, China
| | - Yarong Jin
- Department of Grassland Science and Technology, Sichuan Agricultural University, Sichuan, China
| | - Linkai Huang
- Department of Grassland Science and Technology, Sichuan Agricultural University, Sichuan, China.
| |
Collapse
|
50
|
Wang X, Zhao S, Zhou R, Liu Y, Guo L, Hu H. Identification of Vitis vinifera MYB transcription factors and their response against grapevine berry inner necrosis virus. BMC PLANT BIOLOGY 2023; 23:279. [PMID: 37231351 DOI: 10.1186/s12870-023-04296-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND The myeloblastosis (MYB) superfamily is the largest transcription factor family in plants that play diverse roles during stress responses. However, the biotic stress-responsive MYB transcription factors of the grapevine have not been systematically studied. In China, grapevine berries are often infected with the grapevine berry inner necrosis virus (GINV), which eventually reduces the nutritional quality and commodity value. RESULTS The present study identified and characterized 265 VvMYB or VvMYB-related genes of the "Crimson seedless" grapevine. Based on DNA-binding domain analysis, these VvMYB proteins were classified into four subfamilies, including MYB-related, 2R-MYB, 3R-MYB, and 4R-MYB. Phylogenetic analysis divided the MYB transcription factors into 26 subgroups. Overexpression of VvMYB58 suppressed GINV abundance in the grapevine. Further qPCR indicated that among 41 randomly selected VvMYB genes, 12 were induced during GINV infection, while 28 were downregulated. These findings suggest that VvMYB genes actively regulate defense response in the grapevine. CONCLUSION A deeper understanding of the MYB TFs engaged in GINV defense response will help devise better management strategies. The present study also provides a foundation for further research on the functions of the MYB transcription factors.
Collapse
Affiliation(s)
- Xianyou Wang
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, Henan, 453003, P. R. China.
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China.
| | - Shanshan Zhao
- School of Food Science, Henan Institute of Science and Technology, Henan, 453003, P. R. China
| | - Ruijin Zhou
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, Henan, 453003, P. R. China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Yunli Liu
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, Henan, 453003, P. R. China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Longlong Guo
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, Henan, 453003, P. R. China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Huiling Hu
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, Henan, 453003, P. R. China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| |
Collapse
|