1
|
Zhao F, Wang Y, Cheng W, Antwi-Boasiako A, Yan W, Zhang C, Gao X, Kong J, Liu W, Zhao T. Genome-Wide Association Study of Bacterial Blight Resistance in Soybean. PLANT DISEASE 2025; 109:341-351. [PMID: 39254851 DOI: 10.1094/pdis-01-24-0162-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Bacterial blight caused by Pseudomonas syringae pv. glycinea (Psg) is a widespread foliar disease. Although four Resistance to Pseudomonas syringae pv. glycinea (Rpg) 1 to 4 (Rpg1∼4) genes that have been observed to segregate in a Mendelian pattern have been reported to confer resistance to Psg in soybean, the genetic basis of quantitative resistance to bacterial blight in soybean remains unclear. In the present study, the Psg resistance of two soybean association panels consisting of 573 and 213 lines, respectively, was phenotyped in multiple environments in 2014 to 2016. Genome-wide association study was performed using two models, FarmCPU and BLINK, to identify Psg resistance loci. A total of 40 soybean varieties with high level of Psg resistance were identified, and 14 quantitative trait loci (QTLs) were detected on 12 soybean chromosomes. These QTLs were identified for the first time. The majority of the QTLs were detected only in one or the other association panels, while qRPG-18-1 was detected in both association panels for at least one growing season. A total of 46 candidate Psg resistance genes were identified from the qRpg_13_1, qRPG-15-1, and qRPG-18-1 loci based on gene function annotation. In addition, we found the genomic region covering rpg1-b and rpg1-r harbored the synteny with a genomic region on chromosome 15 and identified 16 nucleotide binding site-leucine-rich repeat (NBS-LRR) genes as the candidate Psg resistance genes from the synteny blocks. This study provides new information for dissecting the genetic control of Psg resistance in soybean.
Collapse
Affiliation(s)
- Fangzhou Zhao
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture/Zhongshan Biological Breeding Laboratory (ZSBBL)/National Innovation Platform for Soybean Breeding and Industry-Education Integration/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yanan Wang
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture/Zhongshan Biological Breeding Laboratory (ZSBBL)/National Innovation Platform for Soybean Breeding and Industry-Education Integration/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Cheng
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture/Zhongshan Biological Breeding Laboratory (ZSBBL)/National Innovation Platform for Soybean Breeding and Industry-Education Integration/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Augustine Antwi-Boasiako
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture/Zhongshan Biological Breeding Laboratory (ZSBBL)/National Innovation Platform for Soybean Breeding and Industry-Education Integration/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Council for Scientific and Industrial Research - Crops Research Institute (CSIR-CRI), Kumasi AK000-AK911, Fumesua, Ghana
| | - Wenkai Yan
- Bioinformatics Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunting Zhang
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture/Zhongshan Biological Breeding Laboratory (ZSBBL)/National Innovation Platform for Soybean Breeding and Industry-Education Integration/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuewen Gao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiejie Kong
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture/Zhongshan Biological Breeding Laboratory (ZSBBL)/National Innovation Platform for Soybean Breeding and Industry-Education Integration/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wusheng Liu
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, U.S.A
| | - Tuanjie Zhao
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture/Zhongshan Biological Breeding Laboratory (ZSBBL)/National Innovation Platform for Soybean Breeding and Industry-Education Integration/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
You HJ, Zhao R, Choi YM, Kang IJ, Lee S. Genome-Wide Association Study for Resistance to Phytophthora sojae in Soybean [ Glycine max (L.) Merr.]. PLANTS (BASEL, SWITZERLAND) 2024; 13:3501. [PMID: 39771199 PMCID: PMC11676158 DOI: 10.3390/plants13243501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
Phytophthora sojae (Kauffman and Gerdemann) is an oomycete pathogen that threatens soybean (Glycine max L.) production worldwide. The development of soybean cultivars with resistance to this pathogen is of paramount importance for the sustainable management of the disease. The objective of this study was to identify genomic regions associated with resistance to P. sojae isolate 40468 through genome-wide association analyses of 983 soybean germplasms. To elucidate the genetic basis of resistance, three statistical models were employed: the compressed mixed linear model (CMLM), Bayesian-information and linkage disequilibrium iteratively nested keyway (BLINK), and fixed and random model circulating probability unification (FarmCPU). The three models consistently identified a genomic region (3.8-5.3 Mbp) on chromosome 3, which has been previously identified as an Rps cluster. A total of 18 single nucleotide polymorphisms demonstrated high statistical significance across all three models, which were distributed in eight linkage disequilibrium (LD) blocks within the aforementioned interval. Of the eight, LD3-2 exhibited the discernible segregation of phenotypic reactions by haplotype. Specifically, over 93% of accessions with haplotypes LD3-2-F or LD3-2-G displayed resistance, whereas over 91% with LD3-2-A, LD3-2-C, or LD3-2-D exhibited susceptibility. Furthermore, the BLINK and FarmCPU models identified new genomic variations significantly associated with the resistance on several other chromosomes, indicating that the resistance observed in this panel was due to the presence of different alleles of multiple Rps genes. These findings underscore the necessity for robust statistical models to accurately detect true marker-trait associations and provide valuable insights into soybean genetics and breeding.
Collapse
Affiliation(s)
- Hee Jin You
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea; (H.J.Y.)
| | - Ruihua Zhao
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea; (H.J.Y.)
| | - Yu-Mi Choi
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - In-Jeong Kang
- Division of Crop Cultivation and Environment Research, Department of Central Area Crop Science, National Institute of Crop Science, Suwon 16613, Republic of Korea
| | - Sungwoo Lee
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea; (H.J.Y.)
| |
Collapse
|
3
|
Zhu N, Feng Y, Shi G, Zhang Q, Yuan B, Qiao Q. Evolutionary analysis of TIR- and non-TIR-NBS-LRR disease resistance genes in wild strawberries. FRONTIERS IN PLANT SCIENCE 2024; 15:1452251. [PMID: 39640992 PMCID: PMC11617207 DOI: 10.3389/fpls.2024.1452251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024]
Abstract
Introduction NBS-LRR genes (NLRs) are the most extensive category of plant resistance genes (R genes) and play a crucial role in pathogen defense. Understanding the diversity and evolutionary dynamics of NLRs in different plant species is essential for improving disease resistance. This study investigates the NLR gene family in eight diploid wild strawberry species to explore their structural characteristics, evolutionary relationships, and potential for enhancing disease resistance. Methods We conducted a comprehensive genome-wide identification and structural analysis of NLRs across eight diploid wild strawberry species. Phylogenetic analysis was performed to examine the relationships between TIR-NLRs (TNLs), Non-TIR-NLRs (non-TNLs), CC-NLRs (CNLs), and RPW8-NLRs (RNLs). Gene structures were compared, and gene expression was profiled across different NLR subfamilies. Additionally, in vitro leaf inoculation assays with Botrytis cinerea were performed to assess the resistance of various strawberry species. Results Our analysis revealed that non-TNLs constitute over 50% of the NLR gene family in all eight strawberry species, surpassing the proportion of TNLs. Phylogenetic analysis showed that TNLs diverged into two subclades: one grouping with CNLs and the other closely related to RNLs. A significantly higher number of non-TNLs were under positive selection compared to TNLs, indicating their rapid diversification. Gene structure analysis demonstrated that non-TNLs have shorter gene structures than TNLs and exhibit higher expression levels, particularly RNLs. Notably, non-TNLs showed dominant expression under both normal and infected conditions. In vitro leaf inoculation assays revealed that Fragaria pentaphylla and Fragaria nilgerrensis, which have the highest proportion of non-TNLs, exhibited significantly greater resistance to Botrytis cinerea compared to Fragaria vesca, which has the lowest proportion of non-TNLs. Discussion The findings of this study provide important insights into the evolutionary dynamics of NLRs in strawberries, particularly the significant role of non-TNLs in pathogen defense. The rapid diversification and higher expression levels of non-TNLs suggest their potential contribution to enhanced disease resistance. This research highlights the value of non-TNLs in strawberry breeding programs aimed at improving resistance to pathogens such as Botrytis cinerea.
Collapse
Affiliation(s)
- Ni Zhu
- School of Agriculture, Yunnan University, Kunming, China
| | - Yuxi Feng
- School of Agriculture, Yunnan University, Kunming, China
| | - Guangxin Shi
- School of Agriculture, Yunnan University, Kunming, China
| | - Qihang Zhang
- School of Agriculture, Yunnan University, Kunming, China
| | - Bo Yuan
- School of Agriculture, Yunnan University, Kunming, China
| | - Qin Qiao
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
4
|
Kwon JS, Lee J, Shilpha J, Jang H, Kang WH. The landscape of sequence variations between resistant and susceptible hot peppers to predict functional candidate genes against bacterial wilt disease. BMC PLANT BIOLOGY 2024; 24:1036. [PMID: 39482582 PMCID: PMC11529287 DOI: 10.1186/s12870-024-05742-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND Bacterial wilt (BW), caused by Ralstonia solanacearum (Ral), results in substantial yield losses in pepper crops. Developing resistant pepper varieties through breeding is the most effective strategy for managing BW. To achieve this, a thorough understanding of the genetic information connected with resistance traits is essential. Despite identifying three major QTLs for bacterial wilt resistance in pepper, Bw1 on chromosome 8, qRRs-10.1 on chromosome 10, and pBWR-1 on chromosome 1, the genetic information of related BW pepper varieties has not been sufficiently studied. Here, we resequenced two pepper inbred lines, C. annuum 'MC4' (resistant) and C. annuum 'Subicho' (susceptible), and analyzed genomic variations through SNPs and Indels to identify candidate genes for BW resistance. RESULTS An average of 139.5 Gb was generated among the two cultivars, with coverage ranging from 44.94X to 46.13X. A total of 8,815,889 SNPs was obtained between 'MC4' and 'Subicho'. Among them, 31,190 (0.35%) were non-synonymous SNPs (nsSNPs) corresponding to 10,926 genes, and these genes were assigned to 142 Gene Ontology (GO) terms across the two cultivars. We focused on three known BW QTL regions by identifying genes with sequence variants through gene set enrichment analysis and securing those belonging to high significant GO terms. Additionally, we found 310 NLR genes with nsSNP variants between 'MC4' (R) and 'Subicho' (S) within these regions. Also, we performed an Indel analysis on these genes. By integrating all this data, we identified eight candidate BW resistance genes, including two NLR genes with nsSNPs variations in qRRs-10.1 on chromosome 10. CONCLUSION We identified genomic variations in the form of SNPs and Indels by re-sequencing two pepper cultivars with contrasting traits for bacterial wilt. Specifically, the four genes associated with pBWR-1 and Bw1 that exhibit both nsSNP and Indel variations simultaneously in 'Subicho', along with the two NLR genes linked to qRRs-10.1, which are known for their direct involvement in immune responses, are identified as most likely BW resistance genes. These variants in leading candidate genes associated with BW resistance can be used as important markers for breeding pepper varieties.
Collapse
Affiliation(s)
- Ji-Su Kwon
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Junesung Lee
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jayabalan Shilpha
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hakgi Jang
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Won-Hee Kang
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
5
|
Cardoso-Sichieri R, Oliveira LS, Lopes-Caitar VS, Silva DCGD, Lopes IDON, Oliveira MFD, Arias CA, Abdelnoor RV, Marcelino-Guimarães FC. Genome-Wide Association Studies and QTL Mapping Reveal a New Locus Associated with Resistance to Bacterial Pustule Caused by Xanthomonas citri pv. glycines in Soybean. PLANTS (BASEL, SWITZERLAND) 2024; 13:2484. [PMID: 39273969 PMCID: PMC11397087 DOI: 10.3390/plants13172484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
Bacterial pustule (BP), caused by Xanthomonas citri pv. glycines, is an important disease that, under favorable conditions, can drastically affect soybean production. We performed a genome-wide association study (GWAS) with a panel containing Brazilian and American cultivars, which were screened qualitatively and quantitatively against two Brazilian X. citri isolates (IBS 333 and IBS 327). The panel was genotyped using a genotyping by sequencing (GBS) approach, and we identified two main new regions in soybeans associated with X. citri resistance on chromosomes 6 (IBS 333) and 18 (IBS 327), different from the traditional rxp gene located on chromosome 17. The region on chromosome 6 was also detected by QTL mapping using a biparental cross between Williams 82 (R) and PI 416937 (S), showing that Williams 82 has another recessive resistance gene besides rxp, which was also detected in nine BP-resistant ancestors of the Brazilian cultivars (including CNS, S-100), based on haplotype analysis. Furthermore, we identified additional SNPs in strong LD (0.8) with peak SNPs by exploring variation available in WGS (whole genome sequencing) data among 31 soybean accessions. In these regions in strong LD, two candidate resistance genes were identified (Glyma.06g311000 and Glyma.18g025100) for chromosomes 6 and 18, respectively. Therefore, our results allowed the identification of new chromosomal regions in soybeans associated with BP disease, which could be useful for marker-assisted selection and will enable a reduction in time and cost for the development of resistant cultivars.
Collapse
Affiliation(s)
- Rafaella Cardoso-Sichieri
- Center for Biological Sciences, Londrina State University (UEL), Celso Garcia Cid Road, km 380, Londrina 86057-970, PR, Brazil
| | - Liliane Santana Oliveira
- Department of Computer Science, Federal University of Technology of Paraná (UTFPR), Alberto Carazzai Avenue, 1640, Cornélio Procópio 86300-000, PR, Brazil
| | | | | | - Ivani de O N Lopes
- Brazilian Agricultural Research Corporation (Embrapa Soja), Carlos João Strass Road, Warta County 86085-981, PR, Brazil
| | - Marcelo Fernandes de Oliveira
- Brazilian Agricultural Research Corporation (Embrapa Soja), Carlos João Strass Road, Warta County 86085-981, PR, Brazil
| | - Carlos Arrabal Arias
- Brazilian Agricultural Research Corporation (Embrapa Soja), Carlos João Strass Road, Warta County 86085-981, PR, Brazil
| | - Ricardo Vilela Abdelnoor
- Brazilian Agricultural Research Corporation (Embrapa Soja), Carlos João Strass Road, Warta County 86085-981, PR, Brazil
| | | |
Collapse
|
6
|
Rodrigues JCM, Carrijo J, Anjos RM, Cunha NB, Grynberg P, Aragão FJL, Vianna GR. The role of microRNAs in NBS-LRR gene expression and its implications for plant immunity and crop development. Transgenic Res 2024; 33:159-174. [PMID: 38856866 DOI: 10.1007/s11248-024-00387-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/15/2024] [Indexed: 06/11/2024]
Abstract
Plants evolved, over millions of years, complex defense systems against pathogens. Once infected, the interaction between pathogen effector molecules and host receptors triggers plant immune responses, which include apoptosis, systemic immune response, among others. An important protein family responsible for pathogen effector recognition is the nucleotide binding site-leucine repeat rich (NBS-LRR) proteins. The NBS-LRR gene family is the largest disease resistance gene class in plants. These proteins are widely distributed in vascular plants and have a complex multigenic cluster distribution in plant genomes. To counteract the genetic load of such a large gene family on fitness cost, plants evolved a mechanism using post transcriptional gene silencing induced by small RNAs, particularly microRNAs. For the NBS-LRR gene family, the small RNAs involved in this silencing mechanism are mainly the microRNA482/2118 superfamily. This suppression mechanism is relieved upon pathogen infection, thus allowing increased NBS-LRR expression and triggering plant immunity. In this review, we will discuss the biogenesis of microRNAs and secondary RNAs involved in this silencing mechanism, biochemical and structural features of NBS-LRR proteins in response to pathogen effectors and the evolution of microRNA-based silencing mechanism with a focus on the miR482/2118 family. Furthermore, the biotechnological manipulation of microRNA expression, using both transgenic or genome editing approaches to improve cultivated plants will be discussed, with a focus on the miR482/2118 family in soybean.
Collapse
Affiliation(s)
- J C M Rodrigues
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil.
| | - J Carrijo
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - R M Anjos
- University of Brasília, Brasília, Brazil
| | - N B Cunha
- University of Brasília, Brasília, Brazil
| | - P Grynberg
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - F J L Aragão
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - G R Vianna
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| |
Collapse
|
7
|
Ngaki MN, Srivastava SK, Feifei W, Bhattacharyya MK. The soybean plasma membrane GmDR1 protein conferring broad-spectrum disease and pest resistance regulates several receptor kinases and NLR proteins. Sci Rep 2024; 14:12253. [PMID: 38806545 PMCID: PMC11133457 DOI: 10.1038/s41598-024-62332-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
Overexpression of Glycine max disease resistant 1 (GmDR1) exhibits broad-spectrum resistance against Fusarium virguliforme, Heterodera glycines (soybean cyst nematode), Tetranychus urticae (Koch) (spider mites), and Aphis glycines Matsumura (soybean aphids) in soybean. To understand the mechanisms of broad-spectrum immunity mediated by GmDR1, the transcriptomes of a strong and a weak GmDR1-overexpressor following treatment with chitin, a pathogen- and pest-associated molecular pattern (PAMP) common to these organisms, were investigated. The strong and weak GmDR1-overexpressors exhibited altered expression of 6098 and 992 genes, respectively, as compared to the nontransgenic control following chitin treatment. However, only 192 chitin- and 115 buffer-responsive genes exhibited over two-fold changes in expression levels in both strong and weak GmDR1-overexpressors as compared to the control. MapMan analysis of the 192 chitin-responsive genes revealed 64 biotic stress-related genes, of which 53 were induced and 11 repressed as compared to the control. The 53 chitin-induced genes include nine genes that encode receptor kinases, 13 encode nucleotide-binding leucine-rich repeat (NLR) receptor proteins, seven encode WRKY transcription factors, four ethylene response factors, and three MYB-like transcription factors. Investigation of a subset of these genes revealed three receptor protein kinases, seven NLR proteins, and one WRKY transcription factor genes that are induced following F. virguliforme and H. glycines infection. The integral plasma membrane GmDR1 protein most likely recognizes PAMPs including chitin and activates transcription of genes encoding receptor kinases, NLR proteins and defense-related genes. GmDR1 could be a pattern recognition receptor that regulates the expression of several NLRs for expression of PAMP-triggered immunity and/or priming the effector triggered immunity.
Collapse
Affiliation(s)
| | - Subodh K Srivastava
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
- USDA-ARS APDL, BARC-East Building 1040, 10300 Baltimore Ave., Beltsville, MD, 20705, USA
| | - Wang Feifei
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, The Chinese Academy of Sciences, Harbin, 150081, China
| | | |
Collapse
|
8
|
Ambalavanan A, Mallikarjuna MG, Bansal S, Bashyal BM, Subramanian S, Kumar A, Prakash G. Genome-wide characterization of the NBLRR gene family provides evolutionary and functional insights into blast resistance in pearl millet (Cenchrus americanus (L.) Morrone). PLANTA 2024; 259:143. [PMID: 38704489 DOI: 10.1007/s00425-024-04413-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/14/2024] [Indexed: 05/06/2024]
Abstract
MAIN CONCLUSION The investigation is the first report on genome-wide identification and characterization of NBLRR genes in pearl millet. We have shown the role of gene loss and purifying selection in the divergence of NBLRRs in Poaceae lineage and candidate CaNBLRR genes for resistance to Magnaporthe grisea infection. Plants have evolved multiple integral mechanisms to counteract the pathogens' infection, among which plant immunity through NBLRR (nucleotide-binding site, leucine-rich repeat) genes is at the forefront. The genome-wide mining in pearl millet (Cenchrus americanus (L.) Morrone) revealed 146 CaNBLRRs. The variation in the branch length of NBLRRs showed the dynamic nature of NBLRRs in response to evolving pathogen races. The orthology of NBLRRs showed a predominance of many-to-one orthologs, indicating the divergence of NBLRRs in the pearl millet lineage mainly through gene loss events followed by gene gain through single-copy duplications. Further, the purifying selection (Ka/Ks < 1) shaped the expansion of NBLRRs within the lineage of pear millet and other members of Poaceae. Presence of cis-acting elements, viz. TCA element, G-box, MYB, SARE, ABRE and conserved motifs annotated with P-loop, kinase 2, RNBS-A, RNBS-D, GLPL, MHD, Rx-CC and LRR suggests their putative role in disease resistance and stress regulation. The qRT-PCR analysis in pearl millet lines showing contrasting responses to Magnaporthe grisea infection identified CaNBLRR20, CaNBLRR33, CaNBLRR46 CaNBLRR51, CaNBLRR78 and CaNBLRR146 as putative candidates. Molecular docking showed the involvement of three and two amino acid residues of LRR domains forming hydrogen bonds (histidine, arginine and threonine) and salt bridges (arginine and lysine) with effectors. Whereas 14 and 20 amino acid residues of CaNBLRR78 and CaNBLRR20 showed hydrophobic interactions with 11 and 9 amino acid residues of effectors, Mg.00g064570.m01 and Mg.00g006570.m01, respectively. The present investigation gives a comprehensive overview of CaNBLRRs and paves the foundation for their utility in pearl millet resistance breeding through understanding of host-pathogen interactions.
Collapse
Affiliation(s)
- Aruljothi Ambalavanan
- Division of Plant Pathology, ICAR Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | - Shilpi Bansal
- Division of Plant Pathology, ICAR Indian Agricultural Research Institute, New Delhi, 110012, India
- Department of Science and Humanities, SRM Institute of Science and Technology, Modinagar, Uttar Pradesh, 201204, India
| | - Bishnu Maya Bashyal
- Division of Plant Pathology, ICAR Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Sabtharishi Subramanian
- Division of Entomology, ICAR Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Aundy Kumar
- Division of Plant Pathology, ICAR Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Ganesan Prakash
- Division of Plant Pathology, ICAR Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
9
|
Sang Y, Zhao H, Liu X, Yuan C, Qi G, Li Y, Dong L, Wang Y, Wang D, Wang Y, Dong Y. Genome-wide association study of powdery mildew resistance in cultivated soybean from Northeast China. FRONTIERS IN PLANT SCIENCE 2023; 14:1268706. [PMID: 38023859 PMCID: PMC10651740 DOI: 10.3389/fpls.2023.1268706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
Powdery mildew (PMD), caused by the pathogen Microsphaera diffusa, leads to substantial yield decreases in susceptible soybean under favorable environmental conditions. Effective prevention of soybean PMD damage can be achieved by identifying resistance genes and developing resistant cultivars. In this study, we genotyped 331 soybean germplasm accessions, primarily from Northeast China, using the SoySNP50K BeadChip, and evaluated their resistance to PMD in a greenhouse setting. To identify marker-trait associations while effectively controlling for population structure, we conducted genome-wide association studies utilizing factored spectrally transformed linear mixed models, mixed linear models, efficient mixed-model association eXpedited, and compressed mixed linear models. The results revealed seven single nucleotide polymorphism (SNP) loci strongly associated with PMD resistance in soybean. Among these, one SNP was localized on chromosome (Chr) 14, and six SNPs with low linkage disequilibrium were localized near or in the region of previously mapped genes on Chr 16. In the reference genome of Williams82, we discovered 96 genes within the candidate region, including 17 resistance (R)-like genes, which were identified as potential candidate genes for PMD resistance. In addition, we performed quantitative real-time reverse transcription polymerase chain reaction analysis to evaluate the gene expression levels in highly resistant and susceptible genotypes, focusing on leaf tissues collected at different times after M. diffusa inoculation. Among the examined genes, three R-like genes, including Glyma.16G210800, Glyma.16G212300, and Glyma.16G213900, were identified as strong candidates associated with PMD resistance. This discovery can significantly enhance our understanding of soybean resistance to PMD. Furthermore, the significant SNPs strongly associated with resistance can serve as valuable markers for genetic improvement in breeding M. diffusa-resistant soybean cultivars.
Collapse
Affiliation(s)
- Yongsheng Sang
- College of Agronomy, Jilin Agricultural University, Changchun, Jilin, China
- Soybean Institute, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Hongkun Zhao
- Soybean Institute, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Xiaodong Liu
- Crop Germplasm Institute, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Cuiping Yuan
- Soybean Institute, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Guangxun Qi
- Soybean Institute, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Yuqiu Li
- Soybean Institute, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Lingchao Dong
- Soybean Institute, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Yingnan Wang
- Soybean Institute, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Dechun Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Yumin Wang
- Soybean Institute, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Yingshan Dong
- College of Agronomy, Jilin Agricultural University, Changchun, Jilin, China
- Soybean Institute, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| |
Collapse
|
10
|
Leitão ST, Mendes FA, Rubiales D, Vaz Patto MC. Oligogenic Control of Quantitative Resistance Against Powdery Mildew Revealed in Portuguese Common Bean Germplasm. PLANT DISEASE 2023; 107:3113-3122. [PMID: 37102726 DOI: 10.1094/pdis-02-23-0313-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Common bean (Phaseolus vulgaris L.) is one of the most important food legumes worldwide, and its production is severely affected by fungal diseases such as powdery mildew. Portugal has a diverse germplasm, with accessions of Andean, Mesoamerican, and admixed origin, making it a valuable resource for common bean genetic studies. In this work, we evaluated the response of a Portuguese collection of 146 common bean accessions to Erysiphe diffusa infection, observing a wide range of disease severity and different levels of compatible and incompatible reactions, revealing the presence of different resistance mechanisms. We identified 11 incompletely hypersensitive resistant and 80 partially resistant accessions. We performed a genome-wide association study to clarify its genetic control, resulting in the identification of eight disease severity-associated single-nucleotide polymorphisms, spread across chromosomes Pv03, Pv09, and Pv10. Two of the associations were unique to partial resistance and one to incomplete hypersensitive resistance. The proportion of variance explained by each association varied between 15 and 86%. The absence of a major locus, together with the relatively small number of loci controlling disease severity, suggested an oligogenic inheritance of both types of resistance. Seven candidate genes were proposed, including a disease resistance protein (toll interleukin 1 receptor-nucleotide binding site-leucine-rich repeat class), an NF-Y transcription factor complex component, and an ABC-2 type transporter family protein. This work contributes with new resistance sources and genomic targets valuable to develop selection molecular tools and support powdery mildew resistance precision breeding in common bean.
Collapse
|
11
|
Mena E, Reboledo G, Stewart S, Montesano M, Ponce de León I. Comparative analysis of soybean transcriptional profiles reveals defense mechanisms involved in resistance against Diaporthe caulivora. Sci Rep 2023; 13:13061. [PMID: 37567886 PMCID: PMC10421924 DOI: 10.1038/s41598-023-39695-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Soybean stem canker (SSC) caused by the fungal pathogen Diaporthe caulivora is an important disease affecting soybean production worldwide. However, limited information related to the molecular mechanisms underlying soybean resistance to Diaporthe species is available. In the present work, we analyzed the defense responses to D. caulivora in the soybean genotypes Williams and Génesis 5601. The results showed that compared to Williams, Génesis 5601 is more resistant to fungal infection evidenced by significantly smaller lesion length, reduced disease severity and pathogen biomass. Transcriptional profiling was performed in untreated plants and in D. caulivora-inoculated and control-treated tissues at 8 and 48 h post inoculation (hpi). In total, 2.322 and 1.855 genes were differentially expressed in Génesis 5601 and Williams, respectively. Interestingly, Génesis 5601 exhibited a significantly higher number of upregulated genes compared to Williams at 8 hpi, 1.028 versus 434 genes. Resistance to D. caulivora was associated with defense activation through transcriptional reprogramming mediating perception of the pathogen by receptors, biosynthesis of phenylpropanoids, hormone signaling, small heat shock proteins and pathogenesis related (PR) genes. These findings provide novel insights into soybean defense mechanisms leading to host resistance against D. caulivora, and generate a foundation for the development of resistant SSC varieties within soybean breeding programs.
Collapse
Affiliation(s)
- Eilyn Mena
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Guillermo Reboledo
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Silvina Stewart
- Programa Nacional de Cultivos de Secano, Instituto Nacional de Investigación Agropecuaria (INIA), La Estanzuela, Colonia, Uruguay
| | - Marcos Montesano
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Laboratorio de Fisiología Vegetal, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Inés Ponce de León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| |
Collapse
|
12
|
Joshi A, Song HG, Yang SY, Lee JH. Integrated Molecular and Bioinformatics Approaches for Disease-Related Genes in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2454. [PMID: 37447014 DOI: 10.3390/plants12132454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023]
Abstract
Modern plant pathology relies on bioinformatics approaches to create novel plant disease diagnostic tools. In recent years, a significant amount of biological data has been generated due to rapid developments in genomics and molecular biology techniques. The progress in the sequencing of agriculturally important crops has made it possible to develop a better understanding of plant-pathogen interactions and plant resistance. The availability of host-pathogen genome data offers effective assistance in retrieving, annotating, analyzing, and identifying the functional aspects for characterization at the gene and genome levels. Physical mapping facilitates the identification and isolation of several candidate resistance (R) genes from diverse plant species. A large number of genetic variations, such as disease-causing mutations in the genome, have been identified and characterized using bioinformatics tools, and these desirable mutations were exploited to develop disease resistance. Moreover, crop genome editing tools, namely the CRISPR (clustered regulatory interspaced short palindromic repeats)/Cas9 (CRISPR-associated) system, offer novel and efficient strategies for developing durable resistance. This review paper describes some aspects concerning the databases, tools, and techniques used to characterize resistance (R) genes for plant disease management.
Collapse
Affiliation(s)
- Alpana Joshi
- Department of Bioenvironmental Chemistry, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Agriculture Technology & Agri-Informatics, Shobhit Institute of Engineering & Technology, Meerut 250110, India
| | - Hyung-Geun Song
- Department of Bioenvironmental Chemistry, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Seo-Yeon Yang
- Department of Agricultural Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Ji-Hoon Lee
- Department of Bioenvironmental Chemistry, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Agricultural Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
13
|
Lukanda MM, Dramadri IO, Adjei EA, Badji A, Arusei P, Gitonga HW, Wasswa P, Edema R, Ochwo-Ssemakula M, Tukamuhabwa P, Muthuri HM, Tusiime G. Genome-Wide Association Analysis for Resistance to Coniothyrium glycines Causing Red Leaf Blotch Disease in Soybean. Genes (Basel) 2023; 14:1271. [PMID: 37372451 PMCID: PMC10298659 DOI: 10.3390/genes14061271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Soybean is a high oil and protein-rich legume with several production constraints. Globally, several fungi, viruses, nematodes, and bacteria cause significant yield losses in soybean. Coniothyrium glycines (CG), the causal pathogen for red leaf blotch disease, is the least researched and causes severe damage to soybean. The identification of resistant soybean genotypes and mapping of genomic regions associated with resistance to CG is critical for developing improved cultivars for sustainable soybean production. This study used single nucleotide polymorphism (SNP) markers generated from a Diversity Arrays Technology (DArT) platform to conduct a genome-wide association (GWAS) analysis of resistance to CG using 279 soybean genotypes grown in three environments. A total of 6395 SNPs was used to perform the GWAS applying a multilocus model Fixed and random model Circulating Probability Unification (FarmCPU) with correction of the population structure and a statistical test p-value threshold of 5%. A total of 19 significant marker-trait associations for resistance to CG were identified on chromosomes 1, 5, 6, 9, 10, 12, 13, 15, 16, 17, 19, and 20. Approximately 113 putative genes associated with significant markers for resistance to red leaf blotch disease were identified across soybean genome. Positional candidate genes associated with significant SNP loci-encoding proteins involved in plant defense responses and that could be associated with soybean defenses against CG infection were identified. The results of this study provide valuable insight for further dissection of the genetic architecture of resistance to CG in soybean. They also highlight SNP variants and genes useful for genomics-informed selection decisions in the breeding process for improving resistance traits in soybean.
Collapse
Affiliation(s)
- Musondolya Mathe Lukanda
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (M.M.L.); (E.A.A.); (A.B.); (P.A.); (H.W.G.); (P.W.); (R.E.); (M.O.-S.); (P.T.); (G.T.)
- Makerere Regional Center for Crop Improvement (MaRCCI), Makerere University, Kampala P.O. Box 7062, Uganda
- Faculté des Sciences Agronomiques, Université Catholique du Graben, Butembo P.O. Box 29, Democratic Republic of the Congo
| | - Isaac Onziga Dramadri
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (M.M.L.); (E.A.A.); (A.B.); (P.A.); (H.W.G.); (P.W.); (R.E.); (M.O.-S.); (P.T.); (G.T.)
- Makerere Regional Center for Crop Improvement (MaRCCI), Makerere University, Kampala P.O. Box 7062, Uganda
| | - Emmanuel Amponsah Adjei
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (M.M.L.); (E.A.A.); (A.B.); (P.A.); (H.W.G.); (P.W.); (R.E.); (M.O.-S.); (P.T.); (G.T.)
- Makerere Regional Center for Crop Improvement (MaRCCI), Makerere University, Kampala P.O. Box 7062, Uganda
- Council for Scientific and Industrial Research-Savanna Agricultural Research Institute, Tamale P.O. Box TL 52, Ghana
| | - Arfang Badji
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (M.M.L.); (E.A.A.); (A.B.); (P.A.); (H.W.G.); (P.W.); (R.E.); (M.O.-S.); (P.T.); (G.T.)
- Makerere Regional Center for Crop Improvement (MaRCCI), Makerere University, Kampala P.O. Box 7062, Uganda
| | - Perpetua Arusei
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (M.M.L.); (E.A.A.); (A.B.); (P.A.); (H.W.G.); (P.W.); (R.E.); (M.O.-S.); (P.T.); (G.T.)
- Makerere Regional Center for Crop Improvement (MaRCCI), Makerere University, Kampala P.O. Box 7062, Uganda
- Department of Biological Sciences, Moi University, Eldoret P.O. Box 3900-30100, Kenya
| | - Hellen Wairimu Gitonga
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (M.M.L.); (E.A.A.); (A.B.); (P.A.); (H.W.G.); (P.W.); (R.E.); (M.O.-S.); (P.T.); (G.T.)
- Makerere Regional Center for Crop Improvement (MaRCCI), Makerere University, Kampala P.O. Box 7062, Uganda
| | - Peter Wasswa
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (M.M.L.); (E.A.A.); (A.B.); (P.A.); (H.W.G.); (P.W.); (R.E.); (M.O.-S.); (P.T.); (G.T.)
| | - Richard Edema
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (M.M.L.); (E.A.A.); (A.B.); (P.A.); (H.W.G.); (P.W.); (R.E.); (M.O.-S.); (P.T.); (G.T.)
- Makerere Regional Center for Crop Improvement (MaRCCI), Makerere University, Kampala P.O. Box 7062, Uganda
| | - Mildred Ochwo-Ssemakula
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (M.M.L.); (E.A.A.); (A.B.); (P.A.); (H.W.G.); (P.W.); (R.E.); (M.O.-S.); (P.T.); (G.T.)
| | - Phinehas Tukamuhabwa
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (M.M.L.); (E.A.A.); (A.B.); (P.A.); (H.W.G.); (P.W.); (R.E.); (M.O.-S.); (P.T.); (G.T.)
| | - Harun Murithi Muthuri
- Agricultural Research Service Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN 37831, USA;
- International Institute of Tropical Agriculture (IITA), ILRI, Nairobi P.O. Box 30709-00100, Kenya
| | - Geoffrey Tusiime
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (M.M.L.); (E.A.A.); (A.B.); (P.A.); (H.W.G.); (P.W.); (R.E.); (M.O.-S.); (P.T.); (G.T.)
| |
Collapse
|
14
|
Xiong H, Chen Y, Pan YB, Wang J, Lu W, Shi A. A genome-wide association study and genomic prediction for Phakopsora pachyrhizi resistance in soybean. FRONTIERS IN PLANT SCIENCE 2023; 14:1179357. [PMID: 37313252 PMCID: PMC10258334 DOI: 10.3389/fpls.2023.1179357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/25/2023] [Indexed: 06/15/2023]
Abstract
Soybean brown rust (SBR), caused by Phakopsora pachyrhizi, is a devastating fungal disease that threatens global soybean production. This study conducted a genome-wide association study (GWAS) with seven models on a panel of 3,082 soybean accessions to identify the markers associated with SBR resistance by 30,314 high quality single nucleotide polymorphism (SNPs). Then five genomic selection (GS) models, including Ridge regression best linear unbiased predictor (rrBLUP), Genomic best linear unbiased predictor (gBLUP), Bayesian least absolute shrinkage and selection operator (Bayesian LASSO), Random Forest (RF), and Support vector machines (SVM), were used to predict breeding values of SBR resistance using whole genome SNP sets and GWAS-based marker sets. Four SNPs, namely Gm18_57,223,391 (LOD = 2.69), Gm16_29,491,946 (LOD = 3.86), Gm06_45,035,185 (LOD = 4.74), and Gm18_51,994,200 (LOD = 3.60), were located near the reported P. pachyrhizi R genes, Rpp1, Rpp2, Rpp3, and Rpp4, respectively. Other significant SNPs, including Gm02_7,235,181 (LOD = 7.91), Gm02_7234594 (LOD = 7.61), Gm03_38,913,029 (LOD = 6.85), Gm04_46,003,059 (LOD = 6.03), Gm09_1,951,644 (LOD = 10.07), Gm10_39,142,024 (LOD = 7.12), Gm12_28,136,735 (LOD = 7.03), Gm13_16,350,701(LOD = 5.63), Gm14_6,185,611 (LOD = 5.51), and Gm19_44,734,953 (LOD = 6.02), were associated with abundant disease resistance genes, such as Glyma.02G084100, Glyma.03G175300, Glyma.04g189500, Glyma.09G023800, Glyma.12G160400, Glyma.13G064500, Glyma.14g073300, and Glyma.19G190200. The annotations of these genes included but not limited to: LRR class gene, cytochrome 450, cell wall structure, RCC1, NAC, ABC transporter, F-box domain, etc. The GWAS based markers showed more accuracies in genomic prediction than the whole genome SNPs, and Bayesian LASSO model was the ideal model in SBR resistance prediction with 44.5% ~ 60.4% accuracies. This study aids breeders in predicting selection accuracy of complex traits such as disease resistance and can shorten the soybean breeding cycle by the identified markers.
Collapse
Affiliation(s)
- Haizheng Xiong
- Department of Horticulture, University of Arkansas, Fayetteville, AR, United States
| | - Yilin Chen
- Department of Horticulture, University of Arkansas, Fayetteville, AR, United States
| | - Yong-Bao Pan
- Sugarcane Research Unit, Untied State Department of Agriculture – Agriculture Research Service (USDA-ARS), Houma, LA, United States
| | - Jinshe Wang
- Henan Academy of Crops Molecular Breeding, National Centre for Plant Breeding, Zhengzhou, China
| | - Weiguo Lu
- Henan Academy of Crops Molecular Breeding, National Centre for Plant Breeding, Zhengzhou, China
| | - Ainong Shi
- Department of Horticulture, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
15
|
Lee RC, Grime CR, O'Driscoll K, Khentry Y, Farfan-Caceres LM, Tahghighi H, Kamphuis LG. Field Pea ( Pisum sativum) Germplasm Screening for Seedling Ascochyta Blight Resistance and Genome-Wide Association Studies Reveal Loci Associated with Resistance to Peyronellaea pinodes and Ascochyta koolunga. PHYTOPATHOLOGY 2023; 113:265-276. [PMID: 35984372 DOI: 10.1094/phyto-02-22-0051-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ascochyta blight is a damaging disease that affects the stems, leaves, and pods of field pea (Pisum sativum) and impacts yield and grain quality. In Australia, field pea Ascochyta blight is primarily caused by the necrotrophic fungal species Peyronellaea pinodes and Ascochyta koolunga. In this study, we screened 1,276 Pisum spp. germplasm accessions in seedling disease assays with a mix of three isolates of P. pinodes and 641 accessions with three mixed isolates of A. koolunga (513 accessions were screened with both species). A selection of three P. sativum accessions with low disease scores for either pathogen, or in some cases both, were crossed with Australian field pea varieties PBA Gunyah and PBA Oura, and recombinant inbred line populations were made. Populations at the F3:4 and F4:5 generation were phenotyped for their disease response to P. pinodes and A. koolunga, and genotypes were determined using the diversity arrays technology genotyping method. Marker-trait associations were identified using a genome-wide association study approach. Trait-associated loci were mapped to the published P. sativum genome assembly, and candidate resistance gene analogues were identified in the corresponding genomic regions. One locus on chromosome 2 (LG1) was associated with resistance to P. pinodes, and the 8 Mb genomic region contains 156 genes, two of which are serine/threonine protein kinases, putatively contributing to the resistance trait. A second locus on chromosome 5 (LG3) was associated with resistance to A. koolunga, and the 35 Mb region contains 488 genes, of which five are potential candidate resistance genes, including protein kinases, a mitogen-activated protein kinase, and an ethylene-responsive protein kinase homolog.
Collapse
Affiliation(s)
- Robert C Lee
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102 Australia
| | - Christina R Grime
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102 Australia
| | - Kane O'Driscoll
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102 Australia
| | - Yuphin Khentry
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102 Australia
| | - Lina M Farfan-Caceres
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102 Australia
| | - Hediyeh Tahghighi
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102 Australia
| | - Lars G Kamphuis
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102 Australia
| |
Collapse
|
16
|
Xie Y, Liu B, Gao K, Zhao Y, Li W, Deng L, Zhou Z, Liu Q. Comprehensive Analysis and Functional Verification of the Pinus massoniana NBS-LRR Gene Family Involved in the Resistance to Bursaphelenchus xylophilus. Int J Mol Sci 2023; 24:1812. [PMID: 36768136 PMCID: PMC9915305 DOI: 10.3390/ijms24031812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Pinus massoniana Lamb. is a crucial timber and resin conifer in China, but its plantation industry is threatened by outbreaks of pine wilt disease (PWD) caused by Bursaphelenchus xylophilus (pinewood nematode; PWN). However, as of yet, there is no comprehensive analysis of NBS-LRR genes in P. massoniana involved in its defense against PWN. In this study, 507 NBS genes were identified in the transcriptome of resistant and susceptible P. masoniana inoculated with the PWN. The phylogenetic analysis and expression profiles of resistant and susceptible P. massoniana revealed that the up-regulated PmNBS-LRR97 gene was involved in conferring resistance to PWN. The results of real-time quantitative PCR (qRT-PCR) showed that PmNBS-LRR97 was significantly up-regulated after PWN infection, especially in the stems. Subcellular localization indicated that PmNBS-LRR97 located to the cell membrane. PmNBS-LRR97 significantly activated the expression of reactive oxygen species (ROS)-related genes in P. massoniana. In addition, the overexpression of PmNBS-LRR97 was capable of promoting the production of ROS, aiding in plant growth and development. In summary, PmNBS-LRR97 participates in the defense response to PWN and plays an active role in conferring resistance in P. massoniana. This finding provides new insight into the regulatory mechanism of the R gene in P. massoniana.
Collapse
Affiliation(s)
- Yini Xie
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Faculty of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou 311400, China
| | - Bin Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou 311400, China
| | - Kai Gao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou 311400, China
| | - Yunxiao Zhao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Wenhua Li
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou 311400, China
| | - Lili Deng
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou 311400, China
| | - Zhichun Zhou
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou 311400, China
| | - Qinghua Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou 311400, China
| |
Collapse
|
17
|
Hou X, He Z, Che Z, Li H, Tan X, Wang Q. Molecular mechanisms of Phytophthora sojae avirulence effectors escaping host recognition. Front Microbiol 2023; 13:1111774. [PMID: 36699593 PMCID: PMC9868715 DOI: 10.3389/fmicb.2022.1111774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/19/2022] [Indexed: 01/10/2023] Open
Abstract
Phytophthora sojae is a well-known destructive oomycete pathogen, which causes soybean stem and root rot and poses a serious threat to global food security. Growing soybean cultivars with the appropriate resistance to P. sojae (Rps) genes are the primary management strategy to reduce losses. In most Phytophthora pathosystems, host resistance protein encoded by a specific R gene in the plant recognizes corresponding RxLR effector protein, encoded by an avirulence gene. This gene-for-gene relationship has been exploited to help breeders and agronomists deploy soybean cultivars. To date, 6 Rps genes have been incorporated into commercial soybean germplasm and trigger plant immunity in response to 8 P. sojae avirulence effectors. The incorporation of Rps genes in the soybean population creates selection pressure in favor of novel pathotypes of P. sojae. The 8 avirulence genes evolved to evade the host immune system, driven by genetic selection pressures. Understanding the evading strategies has important reference value for the prevention and control of Phytophthora stem and root rot. This investigation primarily highlights the research on the strategies of P. sojae avirulence effector evasion of host recognition, looking forward to creating durable resistance genes and thereby enabling successful disease management.
Collapse
Affiliation(s)
- Xiaoyuan Hou
- Shandong Province Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Zheng He
- Shandong Province Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Zhengzheng Che
- Shandong Province Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Hengjing Li
- Shandong Province Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Xinwei Tan
- Shandong Province Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Qunqing Wang
- Shandong Province Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, China,State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China,*Correspondence: Qunqing Wang,
| |
Collapse
|
18
|
Chelliah A, Arumugam C, Suthanthiram B, Raman T, Subbaraya U. Genome-wide identification, characterization, and evolutionary analysis of NBS genes and their association with disease resistance in Musa spp. Funct Integr Genomics 2022; 23:7. [PMID: 36538175 DOI: 10.1007/s10142-022-00925-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/01/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022]
Abstract
Banana is an important food crop that is susceptible to a wide range of pests and diseases that can reduce yield and quality. The primary objective of banana breeding programs is to increase disease resistance, which requires the identification of resistance (R) genes. Despite the fact that resistant sources have been identified in bananas, the genes, particularly the nucleotide-binding site (NBS) family, which play an important role in protecting plants against pathogens, have received little attention. As a result, this study included a thorough examination of the NBS disease resistance gene family's classification, phylogenetic analysis, genome organization, evolution, cis-elements, differential expression, regulation by microRNAs, and protein-protein interaction. A total of 116 and 43 putative NBS genes from M. acuminata and M. balbisiana, respectively, were identified and characterized, and were classified into seven sub-families. Structural analysis of NBS genes revealed the presence of signal peptides, their sub-cellular localization, molecular weight and pI. Eight commonly conserved motifs were found, and NBS genes were unevenly distributed across multiple chromosomes, with the majority of NBS genes being located in chr3 and chr1 of the A and B genomes, respectively. Tandem duplication occurrences have helped bananas' NBS genes spread throughout evolution. Transcriptome analysis of NBS genes revealed significant differences in expression between resistant and susceptible cultivars of fusarium wilt, eumusae leaf spot, root lesion nematode, and drought, implying that they can be used as candidate resistant genes. Ninety miRNAs were discovered to have targets in 104 NBS genes from the A genome, providing important insights into NBS gene expression regulation. Overall, this study offers a valuable genomic resource and understanding of the function and evolution of NBS genes in relation to rapidly evolving pathogens, as well as providing breeders with selection targets for fast-tracking breeding of banana varieties with more durable resistance to pathogens.
Collapse
Affiliation(s)
- Anuradha Chelliah
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli - 620 102, Tamil Nadu, India.
| | - Chandrasekar Arumugam
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli - 620 102, Tamil Nadu, India
| | - Backiyarani Suthanthiram
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli - 620 102, Tamil Nadu, India
| | - Thangavelu Raman
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli - 620 102, Tamil Nadu, India
| | - Uma Subbaraya
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli - 620 102, Tamil Nadu, India
| |
Collapse
|
19
|
Inturrisi F, Bayer PE, Cantila AY, Tirnaz S, Edwards D, Batley J. In silico integration of disease resistance QTL, genes and markers with the Brassica juncea physical map. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:37. [PMID: 37309382 PMCID: PMC10248627 DOI: 10.1007/s11032-022-01309-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/09/2022] [Indexed: 06/14/2023]
Abstract
Brassica juncea (AABB), Indian mustard, is a source of disease resistance genes for a wide range of pathogens. The availability of reference genome sequences for B. juncea has made it possible to characterise the genomic structure and distribution of these disease resistance genes. Potentially functional disease resistance genes can be identified by co-localization with genetically mapped disease resistance quantitative trait loci (QTL). Here we identify and characterise disease resistance gene analogs (RGAs), including nucleotide-binding site-leucine-rich repeat (NLR), receptor-like kinase (RLK) and receptor-like protein (RLP) classes, and investigate their association with disease resistance QTL intervals. The molecular genetic marker sequences for four white rust (Albugo candida) disease resistance QTL, six blackleg (Leptosphaeria maculans) disease resistance QTL and BjCHI1, a gene cloned from B. juncea for hypocotyl rot disease, were extracted from previously published studies and used to compare with candidate RGAs. Our results highlight the complications for the identification of functional resistance genes, including the duplicated appearance of genetic markers for several resistance loci, including Ac2(t), AcB1-A4.1, AcB1-A5.1, Rlm6 and PhR2 in both the A and B genomes, due to the presence of homoeologous regions. Furthermore, the white rust loci, Ac2(t) and AcB1-A4.1, mapped to the same position on chromosome A04 and may be different alleles of the same gene. Despite these challenges, a total of nine candidate genomic regions hosting 14 RLPs, 28 NLRs and 115 RLKs were identified. This study facilitates the mapping and cloning of functional resistance genes for applications in crop improvement programs. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01309-5.
Collapse
Affiliation(s)
- Fabian Inturrisi
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA Australia
| | - Philipp E. Bayer
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA Australia
| | - Aldrin Y. Cantila
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA Australia
| | - Soodeh Tirnaz
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA Australia
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA Australia
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA Australia
| |
Collapse
|
20
|
Barka GD, Lee J. Advances in S gene targeted genome-editing and its applicability to disease resistance breeding in selected Solanaceae crop plants. Bioengineered 2022; 13:14646-14666. [PMID: 35891620 PMCID: PMC9342254 DOI: 10.1080/21655979.2022.2099599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Genome-editing tools for the development of traits to tolerate abiotic and biotic adversaries are the recently devised breeding techniques revolutionizing molecular breeding by addressing the issues of rapidness and precision. To that end, disease resistance development by disrupting disease susceptibility genes (S genes) to intervene in the biological mechanism of pathogenicity has significantly improved the techniques of molecular breeding. Despite the achievements in genome-editing aimed at the intervention of the function of susceptibility determinants or gene regulatory elements, off-target effects associated with yield-related traits are still the main setbacks. The challenges are attributed to the complexity of the inheritance of traits controlled by pleiotropic genes. Therefore, a more rigorous genome-editing tool with ultra-precision and efficiency for the development of broad-spectrum and durable disease resistance applied to staple crop plants is of critical importance in molecular breeding programs. The main objective of this article is to review the most impressive progresses achieved in resistance breeding against the main diseases of three Solanaceae crops (potato, Solanum tuberosum; tomato, Solanum lycopersicum and pepper, Capsicum annuum) using genome-editing by disrupting the sequences of S genes, their promoters, or pathogen genes. In this paper, we discussed the complexity and applicability of genome-editing tools, summarized the main disease of Solanaceae crops, and compiled the recent reports on disease resistance developed by S-gene silencing and their off-target effects. Moreover, GO count and gene annotation were made for pooled S-genes from biological databases. Achievements and prospects of S-gene-based next-generation breeding technologies are also discussed. Most S genes are membrane –anchored and are involved in infection and pre-penetration process S gene-editing is less likely to cause an off-target effect Gene-editing has been considered a more acceptable engineering tool Editing S genes either from the pathogen or host ends has opened new possibilities
Collapse
Affiliation(s)
- Geleta Dugassa Barka
- Department of Horticulture, Institute of Agricultural Science & Technology, Jeonbuk National University, Jeonju, South Korea.,Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | - Jundae Lee
- Department of Horticulture, Institute of Agricultural Science & Technology, Jeonbuk National University, Jeonju, South Korea
| |
Collapse
|
21
|
Si Z, Qiao Y, Zhang K, Ji Z, Han J. Genome-wide identification and characterization of NBS-encoding genes in the sweet potato wild ancestor Ipomoea trifida (H.B.K.). Open Life Sci 2022; 17:497-511. [PMID: 35647293 PMCID: PMC9102303 DOI: 10.1515/biol-2022-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/24/2022] [Accepted: 03/03/2022] [Indexed: 11/15/2022] Open
Abstract
The most predominant type of resistance (R) genes contain nucleotide-binding sites and leucine-rich repeat (NBS-LRR) domains, characterization of which is helpful for plant resistance improvement. However, the NBS genes of Ipomoea trifida (H.B.K.) remain insufficient to date. In this study, a genome-wide analysis of the NBS-encoding gene in I. trifida (H.B.K.) was carried out. A total of 442 NBS encoding genes were identified, amounting to 1.37% of the total genes of I. trifida (H.B.K.). Based on the analysis of the domains, the identified ItfNBS genes were further classified into seven groups: CNL, NL, CN, N, TNL, TN, and RNL. Phylogenetic analysis showed that the I. trifida NBS genes clustered into three independent clades: RNL, TNL, and CNL. Chromosome location analysis revealed that the distribution of ItfNBS genes in chromosomes was uneven, with a number ranging from 3 to 45. Multiple stress-related regulatory elements were detected in the promoters of the NBS-encoding genes, and their expression profiles were obtained. The qRT-PCR analysis revealed that IbNBS10, IbNBS20, IbNBS258, and IbNBS88 responded to stem nematode infection. These results provide critical proof for further characterization and analysis of NBS-encoding genes with important functions.
Collapse
Affiliation(s)
- Zengzhi Si
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology , Qinghuangdao , 066000, Hebei Province , China
| | - Yake Qiao
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology , Qinghuangdao , 066000, Hebei Province , China
| | - Kai Zhang
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology , Qinghuangdao , 066000, Hebei Province , China
| | - Zhixin Ji
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology , Qinghuangdao , 066000, Hebei Province , China
| | - Jinling Han
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology , Qinghuangdao , 066000, Hebei Province , China
| |
Collapse
|
22
|
Xu X, Chen Y, Li B, Zhang Z, Qin G, Chen T, Tian S. Molecular mechanisms underlying multi-level defense responses of horticultural crops to fungal pathogens. HORTICULTURE RESEARCH 2022; 9:uhac066. [PMID: 35591926 PMCID: PMC9113409 DOI: 10.1093/hr/uhac066] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/07/2022] [Indexed: 05/21/2023]
Abstract
The horticultural industry helps to enrich and improve the human diet while contributing to growth of the agricultural economy. However, fungal diseases of horticultural crops frequently occur during pre- and postharvest periods, reducing yields and crop quality and causing huge economic losses and wasted food. Outcomes of fungal diseases depend on both horticultural plant defense responses and fungal pathogenicity. Plant defense responses are highly sophisticated and are generally divided into preformed and induced defense responses. Preformed defense responses include both physical barriers and phytochemicals, which are the first line of protection. Induced defense responses, which include innate immunity (pattern-triggered immunity and effector-triggered immunity), local defense responses, and systemic defense signaling, are triggered to counterstrike fungal pathogens. Therefore, to develop regulatory strategies for horticultural plant resistance, a comprehensive understanding of defense responses and their underlying mechanisms is critical. Recently, integrated multi-omics analyses, CRISPR-Cas9-based gene editing, high-throughput sequencing, and data mining have greatly contributed to identification and functional determination of novel phytochemicals, regulatory factors, and signaling molecules and their signaling pathways in plant resistance. In this review, research progress on defense responses of horticultural crops to fungal pathogens and novel regulatory strategies to regulate induction of plant resistance are summarized, and then the problems, challenges, and future research directions are examined.
Collapse
Affiliation(s)
- Xiaodi Xu
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Huang Z, Qiao F, Yang B, Liu J, Liu Y, Wulff BBH, Hu P, Lv Z, Zhang R, Chen P, Xing L, Cao A. Genome-wide identification of the NLR gene family in Haynaldia villosa by SMRT-RenSeq. BMC Genomics 2022; 23:118. [PMID: 35144544 PMCID: PMC8832786 DOI: 10.1186/s12864-022-08334-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 01/24/2022] [Indexed: 01/19/2023] Open
Abstract
Background Nucleotide-binding and leucine-rich repeat (NLR) genes have attracted wide attention due to their crucial role in protecting plants from pathogens. SMRT-RenSeq, combining PacBio sequencing after resistance gene enrichment sequencing (RenSeq), is a powerful method for selectively capturing and sequencing full-length NLRs. Haynaldia villosa, a wild grass species with a proven potential for wheat improvement, confers resistance to multiple diseases. So, genome-wide identification of the NLR gene family in Haynaldia villosa by SMRT-RenSeq can facilitate disease resistance genes exploration. Results In this study, SMRT-RenSeq was performed to identify the genome-wide NLR complement of H. villosa. In total, 1320 NLRs were annotated in 1169 contigs, including 772 complete NLRs. All the complete NLRs were phylogenetically analyzed and 11 main clades with special characteristics were derived. NLRs could be captured with high efficiency when aligned with cloned R genes, and cluster expansion in some specific gene loci was observed. The physical location of NLRs to individual chromosomes in H. villosa showed a perfect homoeologous relationship with group 1, 2, 3, 5 and 6 of other Triticeae species, however, NLRs physically located on 4VL were largely in silico predicted to be located on the homoeologous group 7. Fifteen types of integrated domains (IDs) were integrated in 52 NLRs, and Kelch and B3 NLR-IDs were found to have expanded in H. villosa, while DUF948, NAM-associated and PRT_C were detected as unique integrated domains implying the new emergence of NLR-IDs after H. villosa diverged from other species. Conclusion SMRT-RenSeq is a powerful tool to identify NLR genes from wild species using the baits of the evolutionary related species with reference sequences. The availability of the NLRs from H. villosa provide a valuable library for R gene mining and transfer of disease resistance into wheat. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08334-w.
Collapse
Affiliation(s)
- Zhenpu Huang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/CIC-MCP, Nanjing, 210095, China
| | - Fangyuan Qiao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/CIC-MCP, Nanjing, 210095, China
| | - Boming Yang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/CIC-MCP, Nanjing, 210095, China
| | - Jiaqian Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/CIC-MCP, Nanjing, 210095, China
| | - Yangqi Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/CIC-MCP, Nanjing, 210095, China
| | - Brande B H Wulff
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.,Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Ping Hu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/CIC-MCP, Nanjing, 210095, China
| | - Zengshuai Lv
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/CIC-MCP, Nanjing, 210095, China
| | - Ruiqi Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/CIC-MCP, Nanjing, 210095, China
| | - Peidu Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/CIC-MCP, Nanjing, 210095, China
| | - Liping Xing
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/CIC-MCP, Nanjing, 210095, China.
| | - Aizhong Cao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/CIC-MCP, Nanjing, 210095, China.
| |
Collapse
|
24
|
Yan T, Zhou Z, Wang R, Bao D, Li S, Li A, Yu R, Wuriyanghan H. A cluster of atypical resistance genes in soybean confers broad-spectrum antiviral activity. PLANT PHYSIOLOGY 2022; 188:1277-1293. [PMID: 34730802 PMCID: PMC8825445 DOI: 10.1093/plphys/kiab507] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/02/2021] [Indexed: 06/12/2023]
Abstract
Soybean mosaic virus (SMV) is a severe soybean (Glycine max) pathogen. Here we characterize a soybean SMV resistance cluster (SRC) that comprises five resistance (R) genes. SRC1 encodes a Toll/interleukin-1 receptor and nucleotide-binding site (TIR-NBS [TN]) protein, SRC4 and SRC6 encode TIR proteins with a short EF-hand domain, while SRC7 and SRC8 encode TNX proteins with a noncanonical basic secretory protein (BSP) domain at their C-termini. We mainly studied SRC7, which contains a noncanonical BSP domain and gave full resistance to SMV. SRC7 possessed broad-spectrum antiviral activity toward several plant viruses including SMV, plum pox virus, potato virus Y, and tobacco mosaic virus. The TIR domain alone was both necessary and sufficient for SRC7 immune signaling, while the NBS domain enhanced its activity. Nuclear oligomerization via the interactions of both TIR and NBS domains was essential for SRC7 function. SRC7 expression was transcriptionally inducible by SMV infection and salicylic acid (SA) treatment, and SA was required for SRC7 triggered virus resistance. SRC7 expression was posttranscriptionally regulated by miR1510a and miR2109, and the SRC7-miR1510a/miR2109 regulatory network appeared to contribute to SMV-soybean interactions in both resistant and susceptible soybean cultivars. In summary, we report a soybean R gene cluster centered by SRC7 that is regulated at both transcriptional and posttranscriptional levels, possesses a yet uncharacterized BSP domain, and has broad-spectrum antiviral activities. The SRC cluster is special as it harbors several functional R genes encoding atypical TIR-NBS-LRR (TNL) type R proteins, highlighting its importance in SMV-soybean interaction and plant immunity.
Collapse
Affiliation(s)
- Ting Yan
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Zikai Zhou
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Ru Wang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Duran Bao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Shanshan Li
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Aoga Li
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Ruonan Yu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Hada Wuriyanghan
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| |
Collapse
|
25
|
Zhang M, Liu S, Wang Z, Yuan Y, Zhang Z, Liang Q, Yang X, Duan Z, Liu Y, Kong F, Liu B, Ren B, Tian Z. Progress in soybean functional genomics over the past decade. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:256-282. [PMID: 34388296 PMCID: PMC8753368 DOI: 10.1111/pbi.13682] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 05/24/2023]
Abstract
Soybean is one of the most important oilseed and fodder crops. Benefiting from the efforts of soybean breeders and the development of breeding technology, large number of germplasm has been generated over the last 100 years. Nevertheless, soybean breeding needs to be accelerated to meet the needs of a growing world population, to promote sustainable agriculture and to address future environmental changes. The acceleration is highly reliant on the discoveries in gene functional studies. The release of the reference soybean genome in 2010 has significantly facilitated the advance in soybean functional genomics. Here, we review the research progress in soybean omics (genomics, transcriptomics, epigenomics and proteomics), germplasm development (germplasm resources and databases), gene discovery (genes that are responsible for important soybean traits including yield, flowering and maturity, seed quality, stress resistance, nodulation and domestication) and transformation technology during the past decade. At the end, we also briefly discuss current challenges and future directions.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Zhao Wang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yaqin Yuan
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhifang Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qianjin Liang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xia Yang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zongbiao Duan
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Baohui Liu
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Bo Ren
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
26
|
Ferreira EGC, Marcelino-Guimarães FC. Mapping Major Disease Resistance Genes in Soybean by Genome-Wide Association Studies. Methods Mol Biol 2022; 2481:313-340. [PMID: 35641772 DOI: 10.1007/978-1-0716-2237-7_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Soybean is one of the most valuable agricultural crops in the world. Besides, this legume is constantly attacked by a wide range of pathogens (fungi, bacteria, viruses, and nematodes) compromising yield and increasing production costs. One of the major disease management strategies is the genetic resistance provided by single genes and quantitative trait loci (QTL). Identifying the genomic regions underlying the resistance against these pathogens on soybean is one of the first steps performed by molecular breeders. In the past, genetic mapping studies have been widely used to discover these genomic regions. However, over the last decade, advances in next-generation sequencing technologies and their subsequent cost decreasing led to the development of cost-effective approaches to high-throughput genotyping. Thus, genome-wide association studies applying thousands of SNPs in large sets composed of diverse soybean accessions have been successfully done. In this chapter, a comprehensive review of the majority of GWAS for soybean diseases published since this approach was developed is provided. Important diseases caused by Heterodera glycines, Phytophthora sojae, and Sclerotinia sclerotiorum have been the focus of the several GWAS. However, other bacterial and fungi diseases also have been targets of GWAS. As such, this GWAS summary can serve as a guide for future studies of these diseases. The protocol begins by describing several considerations about the pathogens and bringing different procedures of molecular characterization of them. Advice to choose the best isolate/race to maximize the discovery of multiple R genes or to directly map an effective R gene is provided. A summary of protocols, methods, and tools to phenotyping the soybean panel is given to several diseases. We also give details of options of DNA extraction protocols and genotyping methods, and we describe parameters of SNP quality to soybean data. Websites and their online tools to obtain genotypic and phenotypic data for thousands of soybean accessions are highlighted. Finally, we report several tricks and tips in Subheading 4, especially related to composing the soybean panel as well as generating and analyzing the phenotype data. We hope this protocol will be helpful to achieve GWAS success in identifying resistance genes on soybean.
Collapse
|
27
|
Deshmukh R, Tiwari S. Molecular interaction of charcoal rot pathogenesis in soybean: a complex interaction. PLANT CELL REPORTS 2021; 40:1799-1812. [PMID: 34232377 DOI: 10.1007/s00299-021-02747-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Charcoal rot (CR) is a major disease of soybean, which is caused by Macrophomina phaseolina (Mp). Increasing temperatures and low rainfall in recent years have immensely benefitted the pathogen. Hence, the search for genetically acquired resistance to this pathogen is essential. The pathogen is a hemibiotroph, which germinates on the root surface and colonizes epidermal tissue. Several surface receptors initiate pathogenesis, followed by the secretion of various enzymes that provide entry to host tissue. Several enzymes and other converging cascades in the pathogen participate against host defensive responses. β-glucan of the fungal cell wall is recognized as MAMPs (microbe-associated molecular patterns) in plants, which trigger host immune responses. Kinase receptors, resistance, and pathogenesis-related genes correspond to host defense response. They work in conjunction with hormone-mediated defense pathway especially, the systemic acquired resistance, calcium-signaling, and production of phytoalexins. Due to its quantitative nature, limited QTLs have been identified in soybean for CR resistance. The present review attempts to provide a functional link between M. phaseolina pathogenicity and soybean responses. Elucidation of CR resistance responses would facilitate improved designing of breeding programs, and may help in the selection of corresponding genes to introgress CR resistant traits.
Collapse
Affiliation(s)
- Reena Deshmukh
- Biotechnology Centre, Jawaharlal Nehru Agriculture University, Jabalpur, India.
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India.
| | - Sharad Tiwari
- Biotechnology Centre, Jawaharlal Nehru Agriculture University, Jabalpur, India
| |
Collapse
|
28
|
Andolfo G, Sánchez CS, Cañizares J, Pico MB, Ercolano MR. Large-scale gene gains and losses molded the NLR defense arsenal during the Cucurbita evolution. PLANTA 2021; 254:82. [PMID: 34559316 PMCID: PMC8463517 DOI: 10.1007/s00425-021-03717-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/01/2021] [Indexed: 05/04/2023]
Abstract
Genome-wide annotation reveals that the gene birth-death process of the Cucurbita R family is associated with a species-specific diversification of TNL and CNL protein classes. The Cucurbitaceae family includes nearly 1000 plant species known universally as cucurbits. Cucurbita genus includes many economically important worldwide crops vulnerable to more than 200 pathogens. Therefore, the identification of pathogen-recognition genes is of utmost importance for this genus. The major class of plant-resistance (R) genes encodes nucleotide-binding site and leucine-rich repeat (NLR) proteins, and is divided into three sub-classes namely, TIR-NB-LRR (TNL), CC-NB-LRR (CNL) and RPW8-NB-LRR (RNL). Although the characterization of the NLR gene family has been carried out in important Cucurbita species, this information is still linked to the availability of sequenced genomes. In this study, we analyzed 40 de novo transcriptomes and 5 genome assemblies, which were explored to investigate the Cucurbita expressed-NLR (eNLR) and NLR repertoires using an ad hoc gene annotation approach. Over 1850 NLR-encoding genes were identified, finely characterized and compared to 96 well-characterized plant R-genes. The maximum likelihood analyses revealed an unusual diversification of CNL/TNL genes and a strong RNL conservation. Indeed, several gene gain and loss events have shaped the Cucurbita NLR family. Finally, to provide a first validation step Cucurbita, eNLRs were explored by real-time PCR analysis. The NLR repertories of the 12 Cucurbita species presented in this paper will be useful to discover novel R-genes.
Collapse
Affiliation(s)
- Giuseppe Andolfo
- Department of Agricultural Sciences, University of Naples “Federico II”, Portici, NA Italy
| | - Cristina S. Sánchez
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Joaquìn Cañizares
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Maria B. Pico
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Maria R. Ercolano
- Department of Agricultural Sciences, University of Naples “Federico II”, Portici, NA Italy
| |
Collapse
|
29
|
Si Z, Qiao Y, Zhang K, Ji Z, Han J. Characterization of Nucleotide Binding -Site-Encoding Genes in Sweetpotato, Ipomoea batatas(L.) Lam., and Their Response to Biotic and Abiotic Stresses. Cytogenet Genome Res 2021; 161:257-271. [PMID: 34320507 DOI: 10.1159/000515834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/12/2021] [Indexed: 11/19/2022] Open
Abstract
Sweetpotato, Ipomoea batatas (L.) Lam., is an important and widely grown crop, yet its production is affected severely by biotic and abiotic stresses. The nucleotide binding site (NBS)-encoding genes have been shown to improve stress tolerance in several plant species. However, the characterization of NBS-encoding genes in sweetpotato is not well-documented to date. In this study, a comprehensive analysis of NBS-encoding genes has been conducted on this species by using bioinformatics and molecular biology methods. A total of 315 NBS-encoding genes were identified, and 260 of them contained all essential conserved domains while 55 genes were truncated. Based on domain architectures, the 260 NBS-encoding genes were grouped into 6 distinct categories. Phylogenetic analysis grouped these genes into 3 classes: TIR, CC (I), and CC (II). Chromosome location analysis revealed that the distribution of NBS-encoding genes in chromosomes was uneven, with a number ranging from 1 to 34. Multiple stress-related regulatory elements were detected in the promoters, and the NBS-encoding genes' expression profiles under biotic and abiotic stresses were obtained. According to the bioinformatics analysis, 9 genes were selected for RT-qPCR analysis. The results revealed that IbNBS75, IbNBS219, and IbNBS256 respond to stem nematode infection; Ib-NBS240, IbNBS90, and IbNBS80 respond to cold stress, while IbNBS208, IbNBS71, and IbNBS159 respond to 30% PEG treatment. We hope these results will provide new insights into the evolution of NBS-encoding genes in the sweetpotato genome and contribute to the molecular breeding of sweetpotato in the future.
Collapse
Affiliation(s)
- Zengzhi Si
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yake Qiao
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Kai Zhang
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Zhixin Ji
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Jinling Han
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| |
Collapse
|
30
|
Nagy ED, Stevens JL, Yu N, Hubmeier CS, LaFaver N, Gillespie M, Gardunia B, Cheng Q, Johnson S, Vaughn AL, Vega-Sanchez ME, Deng M, Rymarquis L, Lawrence RJ, Garvey GS, Gaeta RT. Novel disease resistance gene paralogs created by CRISPR/Cas9 in soy. PLANT CELL REPORTS 2021; 40:1047-1058. [PMID: 33704523 PMCID: PMC8184530 DOI: 10.1007/s00299-021-02678-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/24/2021] [Indexed: 05/25/2023]
Abstract
KEY MESSAGE Novel disease resistance gene paralogues are generated by targeted chromosome cleavage of tandem duplicated NBS-LRR gene complexes and subsequent DNA repair in soybean. This study demonstrates accelerated diversification of innate immunity of plants using CRISPR. Nucleotide-binding-site-leucine-rich-repeat (NBS-LRR) gene families are key components of effector-triggered immunity. They are often arranged in tandem duplicated arrays in the genome, a configuration that is conducive to recombinations that will lead to new, chimeric genes. These rearrangements have been recognized as major sources of novel disease resistance phenotypes. Targeted chromosome cleavage by CRISPR/Cas9 can conceivably induce rearrangements and thus emergence of new resistance gene paralogues. Two NBS-LRR families of soy have been selected to demonstrate this concept: a four-copy family in the Rpp1 region (Rpp1L) and a large, complex locus, Rps1 with 22 copies. Copy-number variations suggesting large-scale, CRISPR/Cas9-mediated chromosome rearrangements in the Rpp1L and Rps1 complexes were detected in up to 58.8% of progenies of primary transformants using droplet-digital PCR. Sequencing confirmed development of novel, chimeric paralogs with intact open reading frames. These novel paralogs may confer new disease resistance specificities. This method to diversify innate immunity of plants by genome editing is readily applicable to other disease resistance genes or other repetitive loci.
Collapse
Affiliation(s)
- Ervin D Nagy
- Bayer Crop Science, 700 Chesterfield Parkway West, Chesterfield, MO, 63017, USA.
| | - Julia L Stevens
- Bayer Crop Science, 700 Chesterfield Parkway West, Chesterfield, MO, 63017, USA
| | - Neil Yu
- Bayer Crop Science, 700 Chesterfield Parkway West, Chesterfield, MO, 63017, USA
| | - Chris S Hubmeier
- Bayer Crop Science, 700 Chesterfield Parkway West, Chesterfield, MO, 63017, USA
| | - Nona LaFaver
- Bayer Crop Science, 700 Chesterfield Parkway West, Chesterfield, MO, 63017, USA
| | - Megan Gillespie
- Bayer Crop Science, 700 Chesterfield Parkway West, Chesterfield, MO, 63017, USA
| | - Brian Gardunia
- Bayer Crop Science, 700 Chesterfield Parkway West, Chesterfield, MO, 63017, USA
| | - Qianshun Cheng
- Bayer Crop Science, 700 Chesterfield Parkway West, Chesterfield, MO, 63017, USA
| | - Steven Johnson
- Bayer Crop Science, 700 Chesterfield Parkway West, Chesterfield, MO, 63017, USA
| | - Audrey L Vaughn
- Bayer Crop Science, 700 Chesterfield Parkway West, Chesterfield, MO, 63017, USA
| | | | - Mingqui Deng
- Bayer Crop Science, 700 Chesterfield Parkway West, Chesterfield, MO, 63017, USA
| | - Linda Rymarquis
- Bayer Crop Science, 700 Chesterfield Parkway West, Chesterfield, MO, 63017, USA
| | - Richard J Lawrence
- Bayer Crop Science, 700 Chesterfield Parkway West, Chesterfield, MO, 63017, USA
| | - Graeme S Garvey
- Bayer Crop Science, 700 Chesterfield Parkway West, Chesterfield, MO, 63017, USA
| | - Robert T Gaeta
- Bayer Crop Science, 700 Chesterfield Parkway West, Chesterfield, MO, 63017, USA
| |
Collapse
|
31
|
Ratnaparkhe MB, Marmat N, Kumawat G, Shivakumar M, Kamble VG, Nataraj V, Ramesh SV, Deshmukh MP, Singh AK, Sonah H, Deshmukh RK, Prasad M, Chand S, Gupta S. Whole Genome Re-sequencing of Soybean Accession EC241780 Providing Genomic Landscape of Candidate Genes Involved in Rust Resistance. Curr Genomics 2020; 21:504-511. [PMID: 33214766 PMCID: PMC7604744 DOI: 10.2174/1389202921999200601142258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/07/2020] [Accepted: 04/21/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND In this study, whole genome re-sequencing of rust resistant soybean genotype EC241780 was performed to understand the genomic landscape involved in the resistance mechanism. METHODS A total of 374 million raw reads were obtained with paired-end sequencing performed with Illumina HiSeq 2500 instrument, out of which 287.3 million high quality reads were mapped to Williams 82 reference genome. Comparative sequence analysis of EC241780 with rust susceptible cultivars Williams 82 and JS 335 was performed to identify sequence variation and to prioritise the candidate genes. RESULTS Comparative analysis indicates that genotype EC241780 has high sequence similarity with rust resistant genotype PI 200492 and the resistance in EC241780 is conferred by the Rpp1 locus. Based on the sequence variations and functional annotations, three genes Glyma18G51715, Glyma18G51741 and Glyma18G51765 encoding for NBS-LRR family protein were identified as the most prominent candidate for Rpp1 locus. CONCLUSION The study provides insights of genome-wide sequence variation more particularly at Rpp1 loci which will help to develop rust resistant soybean cultivars through efficient exploration of the genomic resource.
Collapse
Affiliation(s)
- Milind Balkrishna Ratnaparkhe
- Address correspondence to this author at the ICAR-Indian Institute of Soybean Research (ICAR-IISR), Khandwa Road, Indore-452001 (M.P.) India; Cell: 8878600360/ 8989616095; Tel: +91-731-2437923; E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Identification and Analysis of NBS-LRR Genes in Actinidia chinensis Genome. PLANTS 2020; 9:plants9101350. [PMID: 33065969 PMCID: PMC7601643 DOI: 10.3390/plants9101350] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/28/2020] [Accepted: 10/06/2020] [Indexed: 11/17/2022]
Abstract
Nucleotide-binding site and leucine-rich repeat (NBS-LRR) genes represent the most important disease resistance genes in plants. The genome sequence of kiwifruit (Actinidia chinensis) provides resources for the characterization of NBS-LRR genes and identification of new R-genes in kiwifruit. In the present study, we identified 100 NBS-LRR genes in the kiwifruit genome and they were grouped into six distinct classes based on their domain architecture. Of the 100 genes, 79 are truncated non-regular NBS-LRR genes. Except for 37 NBS-LRR genes with no location information, the remaining 63 genes are distributed unevenly across 18 kiwifruit chromosomes and 38.01% of them are present in clusters. Seventeen families of cis-acting elements were identified in the promoters of the NBS-LRR genes, including AP2, NAC, ERF and MYB. Pseudomonas syringae pv. actinidiae (pathogen of the kiwifruit bacterial canker) infection induced differential expressions of 16 detected NBS-LRR genes and three of them are involved in plant immunity responses. Our study provides insight of the NBS-LRR genes in kiwifruit and a resource for the identification of new R-genes in the fruit.
Collapse
|
33
|
Fu P, Wu W, Lai G, Li R, Peng Y, Yang B, Wang B, Yin L, Qu J, Song S, Lu J. Identifying Plasmopara viticola resistance Loci in grapevine (Vitis amurensis) via genotyping-by-sequencing-based QTL mapping. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:75-84. [PMID: 32535323 DOI: 10.1016/j.plaphy.2020.05.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/20/2020] [Accepted: 05/15/2020] [Indexed: 05/07/2023]
Abstract
Downy mildew, caused by Plasmopara viticola, is a major disease that affects grapevines, and a few resistance (R) genes have been identified thus far. In order to identify R genes, we investigated F1 progeny from a cross between the downy mildew-resistant Vitis amurensis 'Shuang Hong' and the susceptible Vitis vinifera 'Cabernet Sauvignon'. The P. viticola-resistance of the progeny varied continuously and was segregated as a quantitative trait. Genotyping-by-sequencing was used to construct linkage maps. The integrated map spanned 1898.09 cM and included 5603 single nucleotide polymorphisms on 19 linkage groups (LGs). Linkage analysis identified three quantitative trait loci (QTLs) for P. viticola resistance: 22 (Rpv22) on LG 02, Rpv23 on LG15, and Rpv24 on LG18. The phenotypic variance contributed by these three QTLs ranged from 15.9 to 30.0%. qRT-PCR analysis of R-gene expression in these QTLs revealed a CC-NBS-LRR disease resistance gene RPP8, two LRR receptor-like serine/threonine-protein kinases, a serine/threonine-protein kinase BLUS1, a glutathione peroxidase 8, an ethylene-responsive transcription factor ERF038, and a transcription factor bZIP11 were induced by P. viticola, and these genes may play important role in P. viticola response.
Collapse
Affiliation(s)
- Peining Fu
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Wu
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Gongti Lai
- Institute of Agricultural Engineering and Technology, Fujian Academy of Agricultural Sciences, Fujian, China
| | - Rongfang Li
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yachun Peng
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Bohan Yang
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Wang
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Yin
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Guangxi, China
| | - Junjie Qu
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Guangxi, China
| | - Shiren Song
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiang Lu
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
34
|
Zhong C, Sun S, Zhang X, Duan C, Zhu Z. Fine Mapping, Candidate Gene Identification and Co-segregating Marker Development for the Phytophthora Root Rot Resistance Gene RpsYD25. Front Genet 2020; 11:799. [PMID: 32849803 PMCID: PMC7399351 DOI: 10.3389/fgene.2020.00799] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 07/03/2020] [Indexed: 12/18/2022] Open
Abstract
Phytophthora root rot (PRR) caused by Phytophthora sojae is a serious disease of soybean. The most effective disease-control strategy is to deploy resistant cultivars carrying Rps genes. Soybean cultivar Yudou25 can effectively resist pathotypes of P. sojae in China. Previous studies have mapped the Rps gene in Yudou25, RpsYD25, on chromosome 3. In this study, at first RpsYD25 was located between SSR markers Satt1k3 (2.2 cM) and BARCSOYSSR_03_0253 (4.5 cM) by using an F2:3 population containing 165 families derived from Zaoshu18 and Yudou25. Then the recombination sites were identified in 1127 F3:4 families derived from Zaoshu18 and Yudou25 using the developed PCR-based SNP, InDel and SSR markers, and RpsYD25 was finely mapped in the a 101.3 kb genomic region. In this region, a zinc ion binding and nucleic acid binding gene Glyma.03g034700 and two NBS-LRR genes Glyma.03g034800 and Glyma.03g034900 were predicted as candidate genes of RpsYD25, and five co-segregated SSR markers with RpsYD25 were identified and validated to be diagnostic markers. Combined with the resistance reaction to multiple P. sojae isolates, seven of 178 soybean genotypes were detected to contain RpsYD25 using the five co-segregated SSR markers. The soybean genotypes carrying RpsYD25 and the developed co-segregated markers can be effectively applied in the breeding for P. sojae resistance in China.
Collapse
Affiliation(s)
- Chao Zhong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Suli Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuecui Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Canxing Duan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhendong Zhu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
35
|
Barka GD, Caixeta ET, Ferreira SS, Zambolim L. In silico guided structural and functional analysis of genes with potential involvement in resistance to coffee leaf rust: A functional marker based approach. PLoS One 2020; 15:e0222747. [PMID: 32639982 PMCID: PMC7343155 DOI: 10.1371/journal.pone.0222747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 06/19/2020] [Indexed: 11/19/2022] Open
Abstract
Physiology-based differentiation of SH genes and Hemileia vastatrix races is the principal method employed for the characterization of coffee leaf rust resistance. Based on the gene-for-gene theory, nine major rust resistance genes (SH1-9) have been proposed. However, these genes have not been characterized at the molecular level. Consequently, the lack of molecular data regarding rust resistance genes or candidates is a major bottleneck in coffee breeding. To address this issue, we screened a BAC library with resistance gene analogs (RGAs), identified RGAs, characterized and explored for any SH related candidate genes. Herein, we report the identification and characterization of a gene (gene 11), which shares conserved sequences with other SH genes and displays a characteristic polymorphic allele conferring different resistance phenotypes. Furthermore, comparative analysis of the two RGAs belonging to CC-NBS-LRR revealed more intense diversifying selection in tomato and grape genomes than in coffee. For the first time, the present study has unveiled novel insights into the molecular nature of the SH genes, thereby opening new avenues for coffee rust resistance molecular breeding. The characterized candidate RGA is of particular importance for further biological function analysis in coffee.
Collapse
Affiliation(s)
- Geleta Dugassa Barka
- Laboratório de Biotecnologia do Cafeeiro (BIOCAFÉ), BIOAGRO, Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil
- Applied Biology Department, Adama Science and Technology University (ASTU), Adama, Oromia, Ethiopia
| | - Eveline Teixeira Caixeta
- Laboratório de Biotecnologia do Cafeeiro (BIOCAFÉ), BIOAGRO, Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil
- Embrapa Café, Empresa Brasileira de Pesquisa Agropecuária, Brasília, DF, Brazil
- * E-mail:
| | - Sávio Siqueira Ferreira
- Laboratório de Biotecnologia do Cafeeiro (BIOCAFÉ), BIOAGRO, Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil
| | - Laércio Zambolim
- Laboratório de Biotecnologia do Cafeeiro (BIOCAFÉ), BIOAGRO, Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil
| |
Collapse
|
36
|
Jiang B, Cheng Y, Cai Z, Li M, Jiang Z, Ma R, Yuan Y, Xia Q, Nian H. Fine mapping of a Phytophthora-resistance locus RpsGZ in soybean using genotyping-by-sequencing. BMC Genomics 2020; 21:280. [PMID: 32245402 PMCID: PMC7126358 DOI: 10.1186/s12864-020-6668-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/12/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Phytophthora root rot (PRR) caused by Phytophthora sojae (P. sojae) is one of the most serious limitations to soybean production worldwide. The identification of resistance gene(s) and their incorporation into elite varieties is an effective approach for breeding to prevent soybean from being harmed by this disease. A valuable mapping population of 228 F8:11 recombinant inbred lines (RILs) derived from a cross of the resistant cultivar Guizao1 and the susceptible cultivar BRSMG68 and a high-density genetic linkage map with an average distance of 0.81 centimorgans (cM) between adjacent bin markers in this population were used to map and explore candidate gene(s). RESULTS PRR resistance in Guizao1 was found to be controlled by a single Mendelian locus and was finely mapped to a 367.371-kb genomic region on chromosome 3 harbouring 19 genes, including 7 disease resistance (R)-like genes, in the reference Willliams 82 genome. Quantitative real-time PCR assays of possible candidate genes revealed that Glyma.03 g05300 was likely involved in PRR resistance. CONCLUSIONS These findings from the fine mapping of a novel Rps locus will serve as a basis for the cloning and transfer of resistance genes in soybean and the breeding of P. sojae-resistant soybean cultivars through marker-assisted selection.
Collapse
Affiliation(s)
- Bingzhi Jiang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| | - Yanbo Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| | - Zhandong Cai
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| | - Mu Li
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| | - Ze Jiang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| | - Ruirui Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| | - Yeshan Yuan
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| | - Qiuju Xia
- Beijing Genomics Institute (BGI) Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083 People’s Republic of China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| |
Collapse
|
37
|
Du C, Jiang J, Zhang H, Zhao T, Yang H, Zhang D, Zhao Z, Xu X, Li J. Transcriptomic profiling of Solanum peruvianum LA3858 revealed a Mi-3-mediated hypersensitive response to Meloidogyne incognita. BMC Genomics 2020; 21:250. [PMID: 32293256 PMCID: PMC7092525 DOI: 10.1186/s12864-020-6654-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 03/04/2020] [Indexed: 01/19/2023] Open
Abstract
Background The Mi-1 gene was the first identified and cloned gene that provides resistance to root-knot nematodes (RKNs) in cultivated tomato. However, owing to its temperature sensitivity, this gene does not meet the need for breeding disease-resistant plants that grow under high temperature. In this study, Mi-3 was isolated from the wild species PI 126443 (LA3858) and was shown to display heat-stable resistance to RKNs. However, the mechanism that regulates this resistance remains unknown. Results In this study, 4760, 1024 and 137 differentially expressed genes (DEGs) were enriched on the basis of pairwise comparisons (34 °C vs. 25 °C) at 0 (before inoculation), 3 and 6 days post-inoculation (dpi), respectively. A total of 7035 DEGs were identified from line LA3858 in the respective groups under the different soil temperature treatments. At 3 dpi, most DEGs were enriched in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to plant biotic responses, such as “plant-pathogen interaction” and “plant hormone signal transduction”. Significantly enriched DEGs were found to encode key proteins such as R proteins and heat-shock proteins (HSPs). Moreover, other DEGs were found to participate in Ca2+ signal transduction; the production of ROS; DEGs encoding transcription factors (TFs) from the bHLH, TGA, ERF, heat-shock transcription factor (HSF) and WRKY families were highly expressed, which contribute to be involved into the formation of phytohormones, such as salicylic acid (SA), jasmonic acid (JA) and ethylene (ET), the expression of most was upregulated at 3 dpi at the 25 °C soil temperature compared with the 34 °C soil temperature. Conclusion Taken together, the results of our study revealed reliable candidate genes from wild materials LA3858, that are related to Mi-3-mediate resistance to Meloidogyne incognita. A large number of vital pathways and DEGs were expressed specifically in accession LA3858 grown at 34 °C and 25 °C soil temperatures at 3 dpi. Upon infection by RKNs, pattern-recognition receptors (PRRs) specifically recognized conserved pathogen-associated molecular patterns (PAMPs) as a result of pathogen-triggered immunity (PTI), and the downstream defensive signal transduction pathway was likely activated through Ca2+ signal channels. The expression of various TFs was induced to synthesize phytohormones and activate R proteins related to resistance, resulting in the development of effector-triggered immunity (ETI). Last, a hypersensitive response in the roots occurred, which was probably induced by the accumulation of ROS.
Collapse
Affiliation(s)
- Chong Du
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jingbin Jiang
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - He Zhang
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Tingting Zhao
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Huanhuan Yang
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Dongye Zhang
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zhentong Zhao
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiangyang Xu
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jingfu Li
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
38
|
Gabur I, Chawla HS, Lopisso DT, von Tiedemann A, Snowdon RJ, Obermeier C. Gene presence-absence variation associates with quantitative Verticillium longisporum disease resistance in Brassica napus. Sci Rep 2020; 10:4131. [PMID: 32139810 PMCID: PMC7057980 DOI: 10.1038/s41598-020-61228-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/07/2020] [Indexed: 12/31/2022] Open
Abstract
Although copy number variation (CNV) and presence-absence variation (PAV) have been discovered in selected gene families in most crop species, the global prevalence of these polymorphisms in most complex genomes is still unclear and their influence on quantitatively inherited agronomic traits is still largely unknown. Here we analyze the association of gene PAV with resistance of oilseed rape (Brassica napus) against the important fungal pathogen Verticillium longisporum, as an example for a complex, quantitative disease resistance in the strongly rearranged genome of a recent allopolyploid crop species. Using Single Nucleotide absence Polymorphism (SNaP) markers to efficiently trace PAV in breeding populations, we significantly increased the resolution of loci influencing V. longisporum resistance in biparental and multi-parental mapping populations. Gene PAV, assayed by resequencing mapping parents, was observed in 23-51% of the genes within confidence intervals of quantitative trait loci (QTL) for V. longisporum resistance, and high-priority candidate genes identified within QTL were all affected by PAV. The results demonstrate the prominent role of gene PAV in determining agronomic traits, suggesting that this important class of polymorphism should be exploited more systematically in future plant breeding.
Collapse
Affiliation(s)
- Iulian Gabur
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Harmeet Singh Chawla
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Daniel Teshome Lopisso
- Section of General Plant Pathology and Crop Protection, Georg August University Göttingen, 37077, Göttingen, Germany
- College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia
| | - Andreas von Tiedemann
- Section of General Plant Pathology and Crop Protection, Georg August University Göttingen, 37077, Göttingen, Germany
| | - Rod J Snowdon
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Christian Obermeier
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, 35392, Giessen, Germany.
| |
Collapse
|
39
|
Development of Molecular Marker Linked with Bacterial Fruit Blotch Resistance in Melon ( Cucumis melo L.). Genes (Basel) 2020; 11:genes11020220. [PMID: 32093120 PMCID: PMC7074460 DOI: 10.3390/genes11020220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 11/17/2022] Open
Abstract
Bacterial fruit blotch (BFB) causes losses in melon marketable yield. However, until now, there has been no information about the genetic loci responsible for resistance to the disease or their pattern of inheritance. We determined the inheritance pattern of BFB resistance from a segregating population of 491 F2 individuals raised by crossing BFB-resistant (PI 353814) and susceptible (PI 614596) parental accessions. All F1 plants were resistant to Acidovorax citrulli strain KACC18782, and F2 plants segregated with a 3:1 ratio for resistant and susceptible phenotypes, respectively, in a seedling bioassay experiment, indicating that BFB resistance is controlled by a monogenic dominant gene. In an investigation of 57 putative disease-resistance related genes across the melon genome, only the MELO3C022157 gene (encoding TIR-NBS-LRR domain), showing polymorphism between resistant and susceptible parents, revealed as a good candidate for further investigation. Cloning, sequencing and quantitative RT-PCR expression of the polymorphic gene MELO3C022157 located on chromosome 9 revealed multiple insertion/deletions (InDels) and single nucleotide polymorphisms (SNPs), of which the SNP A2035T in the second exon of the gene caused loss of the LRR domain and truncated protein in the susceptible accession. The InDel marker MB157-2, based on the large (504 bp) insertion in the first intron of the susceptible accession, was able to distinguish resistant and susceptible accessions among 491 F2 and 22 landraces/inbred accessions with 98.17% and 100% detection accuracy, respectively. This novel PCR-based, co-dominant InDel marker represents a practical tool for marker-assisted breeding aimed at developing BFB-resistant melon accessions.
Collapse
|
40
|
Tirnaz S, Zhang Y, Batley J. Genome-Wide Mining of Disease Resistance Gene Analogs Using Conserved Domains. Methods Mol Biol 2020; 2107:365-375. [PMID: 31893459 DOI: 10.1007/978-1-0716-0235-5_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The production of legume crop species is severely affected by disease, imposing a significant yield loss annually worldwide. Plant resistance gene analogs (RGAs) play specific roles in plant resistance responses, and their identification and subsequent application in breeding programs help to reduce this yield loss. RGAs contain conserved domains and motifs, which can be used for their identification and classification. Nucleotide-binding site-leucine-rich repeat (NLR), receptor like kinase (RLK), and receptor like protein (RLP) genes are the main types of RGAs. Computational identification and characterization of RGAs has been performed successfully among different plant species. Here, we explain the computational workflow for genome-wide RGA identification in legumes.
Collapse
Affiliation(s)
- Soodeh Tirnaz
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Yueqi Zhang
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|
41
|
Goyal N, Bhatia G, Sharma S, Garewal N, Upadhyay A, Upadhyay SK, Singh K. Genome-wide characterization revealed role of NBS-LRR genes during powdery mildew infection in Vitis vinifera. Genomics 2020; 112:312-322. [PMID: 30802599 DOI: 10.1016/j.ygeno.2019.02.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/11/2019] [Accepted: 02/14/2019] [Indexed: 11/23/2022]
Abstract
NBS-LRR comprises a large class of disease resistance (R) proteins that play a widespread role in plant protection against pathogens. In grapevine, powdery mildew cause significant losses in its productivity and efforts are being directed towards finding of resistance loci or genes imparting resistance/tolerance against such fungal diseases. In the present study, we performed genome-wide analysis of NBS-LRR genes during PM infection in grapevine. We identified 18, 23, 12, 16, 10, 10, 9, 20 and 14 differentially expressed NBS-LRR genes in response to PM infection in seven partially PM-resistant (DVIT3351.27, Husseine, Karadzhandal, Khalchili, Late vavilov, O34-16, Sochal) and 2 PM-susceptible (Carignan and Thompson seedless) V. vinifera accessions. Further, the identified sequences were characterized based on chromosomal locations, physicochemical properties, gene structure and motif analysis, and functional annotation by Gene Ontology (GO) mapping. The NBS-LRR genes responsive to powdery mildew could potentially be exploited to improve resistance in grapes.
Collapse
Affiliation(s)
- Neetu Goyal
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Garima Bhatia
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Shailesh Sharma
- National Institute of Animal Biotechnology (NIAB), D. No. 1-121/1, 4th and 5th Floors, Axis Clinicals Building, Opp. to Talkie Town, Miyapur, Hyderabad, Telangana 500 049, India
| | - Naina Garewal
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Anuradha Upadhyay
- National Research Centre for Grapes, P.B. No. 3, Manjri Farm P.O., Solapur Road, Pune, Maharashtra 412 307, India
| | | | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
42
|
Ye W, Jiang J, Lin Y, Yeh KW, Lai Z, Xu X, Oelmüller R. Colonisation of Oncidium orchid roots by the endophyte Piriformospora indica restricts Erwinia chrysanthemi infection, stimulates accumulation of NBS-LRR resistance gene transcripts and represses their targeting micro-RNAs in leaves. BMC PLANT BIOLOGY 2019; 19:601. [PMID: 31888486 PMCID: PMC6937650 DOI: 10.1186/s12870-019-2105-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 10/28/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND Erwinia chrysanthemi (Ec) is a destructive pathogen which causes soft-rot diseases in diverse plant species including orchids. We investigated whether colonization of Oncidium roots by the endophytic fungus Piriformospora indica (Pi) restricts Ec-induced disease development in leaves, and whether this might be related to the regulation of nucleotide binding site-leucine rich repeat (NBS-LRR) Resistance (R) genes. RESULTS Root colonization of Oncidium stackings by Pi restricts progression of Ec-induced disease development in the leaves. Since Pi does not inhibit Ec growth on agar plates, we tested whether NBS-LRR R gene transcripts and the levels of their potential target miRNAs in Oncidium leaves might be regulated by Pi. Using bioinformatic tools, we first identified NBS-LRR R gene sequences from Oncidium, which are predicted to be targets of miRNAs. Among them, the expression of two R genes was repressed and the accumulation of several regulatory miRNA stimulated by Ec in the leaves of Oncidium plants. This correlated with the progression of disease development, jasmonic and salicylic acid accumulation, ethylene synthesis and H2O2 production after Ec infection of Oncidium leaves. Interestingly, root colonization by Pi restricted disease development in the leaves, and this was accompanied by higher expression levels of several defense-related R genes and lower expression level of their target miRNA. CONCLUSION Based on these data we propose that Pi controls the levels of NBS-LRR R mRNAs and their target miRNAs in leaves. This regulatory circuit correlates with the protection of Oncidium plants against Ec infection, and molecular and biochemical investigations will demonstrate in the future whether, and if so, to what extent these two observations are related to each other.
Collapse
Affiliation(s)
- Wei Ye
- Sanming Academy of Agricultural Sciences, Sanming, Fujian China
| | - Jinlan Jiang
- Sanming Academy of Agricultural Sciences, Sanming, Fujian China
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
| | - Kai-Wun Yeh
- Matthias-Schleiden-Institute, Plant Physiology, Friedrich Schiller University Jena, Jena, Germany
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
| | - Xuming Xu
- Sanming Academy of Agricultural Sciences, Sanming, Fujian China
| | - Ralf Oelmüller
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
- Matthias-Schleiden-Institute, Plant Physiology, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
43
|
Tian S, Yin X, Fu P, Wu W, Lu J. Ectopic Expression of Grapevine Gene VaRGA1 in Arabidopsis Improves Resistance to Downy Mildew and Pseudomonas syringae pv. tomato DC3000 But Increases Susceptibility to Botrytis cinerea. Int J Mol Sci 2019; 21:E193. [PMID: 31892116 PMCID: PMC6982372 DOI: 10.3390/ijms21010193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 12/29/2022] Open
Abstract
The protein family with nucleotide binding sites and leucine-rich repeat (NBS-LRR) in plants stimulates immune responses caused by effectors and can mediate resistance to hemi-biotrophs and biotrophs. In our previous study, a Toll-interleukin-1(TIR)-NBS-LRR gene cloned from Vitis amurensis "Shuanghong", VaRGA1, was induced by Plasmopara viticola and could improve the resistance of tobacco to Phytophthora capsici. In this study, VaRGA1 in "Shuanghong" was also induced by salicylic acid (SA), but inhibited by jasmonic acid (JA). To investigate whether VaRGA1 confers broad-spectrum resistance to pathogens, we transferred this gene into Arabidopsis and then treated with Hyaloperonospora arabidopsidis (Hpa), Botrytis cinerea (B. cinerea), and Pseudomonas syringae pv. tomato DC3000 (PstDC3000). Results showed that VaRGA1 improved transgenic Arabidopsis thaliana resistance to the biotrophic Hpa and hemi-biotrophic PstDC3000, but decreased resistance to the necrotrophic B. cinerea. Additionally, qPCR assays showed that VaRGA1 plays an important role in disease resistance by activating SA and inhibiting JA signaling pathways. A 1104 bp promoter fragment of VaRGA1 was cloned and analyzed to further elucidate the mechanism of induction of the gene at the transcriptional level. These results preliminarily confirmed the disease resistance function and signal regulation pathway of VaRGA1, and contributed to the identification of R-genes with broad-spectrum resistance function.
Collapse
Affiliation(s)
| | | | | | | | - Jiang Lu
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (S.T.); (X.Y.); (P.F.); (W.W.)
| |
Collapse
|
44
|
Du H, Wen C, Zhang X, Xu X, Yang J, Chen B, Geng S. Identification of a Major QTL ( qRRs-10.1) That Confers Resistance to Ralstonia solanacearum in Pepper ( Capsicum annuum) Using SLAF-BSA and QTL Mapping. Int J Mol Sci 2019; 20:ijms20235887. [PMID: 31771239 PMCID: PMC6928630 DOI: 10.3390/ijms20235887] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/04/2019] [Accepted: 11/21/2019] [Indexed: 11/24/2022] Open
Abstract
The soilborne pathogen Ralstonia solanacearum is the causal agent of bacterial wilt (BW), a major disease of pepper (Capsicum annuum). The genetic basis of resistance to this disease in pepper is not well known. This study aimed to identify BW resistance markers in pepper. Analysis of the dynamics of bioluminescent R. solanacearum colonization in reciprocal grafts of a resistant (BVRC 1) line and a susceptible (BVRC 25) line revealed that the resistant rootstock effectively suppressed the spreading of bacteria into the scion. The two clear-cut phenotypic distributions of the disease severity index in 440 F2 plants derived from BVRC 25 × BVRC 1 indicated that a major genetic factor as well as a few minor factors that control BW resistance. By specific-locus amplified fragment sequencing combined with bulked segregant analysis, two adjacent resistance-associated regions on chromosome 10 were identified. Quantitative trait (QTL) mapping revealed that these two regions belong to a single QTL, qRRs-10.1. The marker ID10-194305124, which reached a maximum log-likelihood value at 9.79 and accounted for 19.01% of the phenotypic variation, was located the closest to the QTL peak. A cluster of five predicted R genes and three defense-related genes, which are located in close proximity to the significant markers ID10-194305124 or ID10-196208712, are important candidate genes that may confer BW resistance in pepper.
Collapse
|
45
|
Song H, Guo Z, Hu X, Qian L, Miao F, Zhang X, Chen J. Evolutionary balance between LRR domain loss and young NBS-LRR genes production governs disease resistance in Arachis hypogaea cv. Tifrunner. BMC Genomics 2019; 20:844. [PMID: 31722670 PMCID: PMC6852974 DOI: 10.1186/s12864-019-6212-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 10/22/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Cultivated peanut (Arachis hypogaea L.) is an important oil and protein crop, but it has low disease resistance; therefore, it is important to reveal the number, sequence features, function, and evolution of genes that confer resistance. Nucleotide-binding site-leucine-rich repeats (NBS-LRRs) are resistance genes that are involved in response to various pathogens. RESULTS We identified 713 full-length NBS-LRRs in A. hypogaea cv. Tifrunner. Genetic exchange events occurred on NBS-LRRs in A. hypogaea cv. Tifrunner, which were detected in the same subgenomes and also found in different subgenomes. Relaxed selection acted on NBS-LRR proteins and LRR domains in A. hypogaea cv. Tifrunner. Using quantitative trait loci (QTL), we found that NBS-LRRs were involved in response to late leaf spot, tomato spotted wilt virus, and bacterial wilt in A. duranensis (2 NBS-LRRs), A. ipaensis (39 NBS-LRRs), and A. hypogaea cv. Tifrunner (113 NBS-LRRs). In A. hypogaea cv. Tifrunner, 113 NBS-LRRs were classified as 75 young and 38 old NBS-LRRs, indicating that young NBS-LRRs were involved in response to disease after tetraploidization. However, compared to A. duranensis and A. ipaensis, fewer LRR domains were found in A. hypogaea cv. Tifrunner NBS-LRR proteins, partly explaining the lower disease resistance of the cultivated peanut. CONCLUSIONS Although relaxed selection acted on NBS-LRR proteins and LRR domains, LRR domains were preferentially lost in A. hypogaea cv. Tifrunner compared to A. duranensis and A. ipaensis. The QTL results suggested that young NBS-LRRs were important for resistance against diseases in A. hypogaea cv. Tifrunner. Our results provid insight into the greater susceptibility of A. hypogaea cv. Tifrunner to disease compared to A. duranensis and A. ipaensis.
Collapse
Affiliation(s)
- Hui Song
- Grassland Agri-husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China.
| | - Zhonglong Guo
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Xiaohui Hu
- Shandong Peanut Research Institute, Qingdao, China
| | - Lang Qian
- Dalian Academy of Agricultural Sciences, Dalian, China
| | - Fuhong Miao
- Grassland Agri-husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Xiaojun Zhang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Jing Chen
- Shandong Peanut Research Institute, Qingdao, China.
| |
Collapse
|
46
|
Skolotneva ES, Salina EA. Resistance mechanisms involved in complex immunity of wheat against rust diseases. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The review is devoted to the disclosure of the modern concept of plant immunity as a hierarchical system of plant host protection, controlled by combinations of major and minor resistance genes (loci). The “zigzag” model is described in detail for discussing the molecular bases of plant immunity with key concepts: pathogen-associated molecular patterns triggering innate immunity, ambivalent effectors causing susceptibility, but when interacting with resistance genes, a hypersensitive reaction or alternative defense mechanisms. There are three types of resistance in cereals: (1) basal resistance provided by plasma membrane-localized receptors proteins; (2) racespecific resistance provided by intracellular immune R-receptors; (3) partial resistance conferred by quantitative gene loci. The system ‘wheat (Triticum aestivum) – the fungus causing leaf rust (Puccinia triticina)’ is an interesting model for observing all the resistance mechanisms listed above, since the strategy of this pathogen is aimed at the constitutive use of host resources. The review focuses on known wheat genes responsible for various types of resistance to leaf rust: race-specific genes Lr1, Lr10, Lr19, and Lr21; adult resistance genes which are hypersensitive Lr12, Lr13, Lr22a, Lr22b, Lr35, Lr48, and Lr49; nonhypersensitive genes conferring partial resistance Lr34, Lr46, Lr67, and Lr77. The involvement of some wheat R-genes in pre-haustorial resistance to leaf rust has been discovered recently: Lr1, Lr3a, Lr9, LrB, Lr19, Lr21, Lr38. The presence of these genes in the genotype ensures the interruption of early pathogenesis through the following mechanisms: disorientation and branching of the germ tube; formation of aberrant fungal penetration structures (appressorium, substomatal vesicle); accumulation of callose in mesophyll cell walls. Breeding for immunity is accelerated by implementation of data on various mechanisms of wheat resistance to rust diseases, which are summarized in this review.
Collapse
|
47
|
Van Ghelder C, Parent GJ, Rigault P, Prunier J, Giguère I, Caron S, Stival Sena J, Deslauriers A, Bousquet J, Esmenjaud D, MacKay J. The large repertoire of conifer NLR resistance genes includes drought responsive and highly diversified RNLs. Sci Rep 2019; 9:11614. [PMID: 31406137 PMCID: PMC6691002 DOI: 10.1038/s41598-019-47950-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/26/2019] [Indexed: 12/25/2022] Open
Abstract
The NLRs or NBS-LRRs (nucleotide-binding, leucine-rich-repeat) form the largest resistance gene family in plants, with lineage-specific contingents of TNL, CNL and RNL subfamilies and a central role in resilience to stress. The origin, evolution and distribution of NLR sequences has been unclear owing in part to the variable size and diversity of the RNL subfamily and a lack of data in Gymnosperms. We developed, searched and annotated transcriptomes assemblies of seven conifers and identified a resource of 3816 expressed NLR sequences. Our analyses encompassed sequences data spanning the major groups of land plants and determinations of NLR transcripts levels in response to drought in white spruce. We showed that conifers have among the most diverse and numerous RNLs in tested land plants. We report an evolutionary swap in the formation of RNLs, which emerged from the fusion of an RPW8 domain to a NB-ARC domain of CNL. We uncovered a quantitative relationship between RNLs and TNLs across all land plants investigated, with an average ratio of 1:10. The conifer RNL repertoire harbours four distinct groups, with two that differ from Angiosperms, one of which contained several upregulated sequences in response to drought while the majority of responsive NLRs are downregulated.
Collapse
Affiliation(s)
- Cyril Van Ghelder
- INRA, Université Côte d'Azur, CNRS, ISA, 400 route des Chappes, BP167, 06903, Sophia Antipolis, France. .,Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| | - Geneviève J Parent
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.,Forest Research Centre and Institute for Systems and Integrative Biology, Université Laval, 1030 rue de la Médecine, Québec, QC, G1V 0A6, Canada
| | - Philippe Rigault
- Gydle Inc., 1135 Grande Allée Ouest Suite 220, Québec, QC, G1S 1E7, Canada.,Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
| | - Julien Prunier
- Forest Research Centre and Institute for Systems and Integrative Biology, Université Laval, 1030 rue de la Médecine, Québec, QC, G1V 0A6, Canada
| | - Isabelle Giguère
- Forest Research Centre and Institute for Systems and Integrative Biology, Université Laval, 1030 rue de la Médecine, Québec, QC, G1V 0A6, Canada
| | - Sébastien Caron
- Gydle Inc., 1135 Grande Allée Ouest Suite 220, Québec, QC, G1S 1E7, Canada
| | - Juliana Stival Sena
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, G1V 4C7, Canada
| | - Annie Deslauriers
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, QC, G7H2B1, Canada
| | - Jean Bousquet
- Forest Research Centre and Institute for Systems and Integrative Biology, Université Laval, 1030 rue de la Médecine, Québec, QC, G1V 0A6, Canada.,Canada Research Chair in Forest Genomics, Université Laval, 1030 rue de la Médecine, Québec, QC, G1V 0A6, Canada
| | - Daniel Esmenjaud
- INRA, Université Côte d'Azur, CNRS, ISA, 400 route des Chappes, BP167, 06903, Sophia Antipolis, France
| | - John MacKay
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.,Forest Research Centre and Institute for Systems and Integrative Biology, Université Laval, 1030 rue de la Médecine, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
48
|
Oladzad A, Zitnick-Anderson K, Jain S, Simons K, Osorno JM, McClean PE, Pasche JS. Genotypes and Genomic Regions Associated With Rhizoctonia solani Resistance in Common Bean. FRONTIERS IN PLANT SCIENCE 2019; 10:956. [PMID: 31396253 PMCID: PMC6667560 DOI: 10.3389/fpls.2019.00956] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/09/2019] [Indexed: 05/11/2023]
Abstract
Rhizoctonia solani Kühn (teleomorph Thanatephorus cucumeris) is an important root rot pathogen of common bean (Phaseolus vulgaris L.). To uncover genetic factors associated with resistance to the pathogen, the Andean (ADP; n = 273) and Middle American (MDP; n = 279) diversity panels, which represent much of the genetic diversity known in cultivated common bean, were screened in the greenhouse using R. solani anastomosis group 2-2. Repeatability of the assay was confirmed by the response of five control genotypes. The phenotypic data for both panels were normally distributed. The resistance responses of ∼10% of the ADP (n = 28) and ∼6% of the MDP (n = 18) genotypes were similar or higher than that of the resistant control line VAX 3. A genome-wide association study (GWAS) was performed using ∼200k single nucleotide polymorphisms to discover genomic regions associated with resistance in each panel, For GWAS, the raw phenotypic score, and polynomial and binary transformation of the scores, were individually used as the input data. A major QTL peak was observed on Pv02 in the ADP, while a major QTL was observed on Pv01 with the MDP. These regions were associated with clusters of TIR-NB_ARC-LRR (TNL) gene models encoding proteins similar to known disease resistance genes. Other QTL, unique to each panel, were mapped within or adjacent to a gene model or cluster of related genes associated with disease resistance. This is a first case study that provides evidence for major as well as minor genes involved in resistance to R. solani in common bean. This information will be useful to integrate more durable root rot resistance in common bean breeding programs and to study the genetic mechanisms associated with root diseases in this important societal legume.
Collapse
Affiliation(s)
- Atena Oladzad
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | | | - Shalu Jain
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Kristin Simons
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Juan M. Osorno
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Phillip E. McClean
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Julie S. Pasche
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
49
|
Jiang B, Li M, Cheng Y, Cai Z, Ma Q, Jiang Z, Ma R, Xia Q, Zhang G, Nian H. Genetic mapping of powdery mildew resistance genes in soybean by high-throughput genome-wide sequencing. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1833-1845. [PMID: 30826863 DOI: 10.1007/s00122-019-03319-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
KEY MESSAGE The Mendelian locus conferring resistance to powdery mildew in soybean was precisely mapped using a combination of phenotypic screening, genetic analyses, and high-throughput genome-wide sequencing. Powdery mildew (PMD), caused by the fungus Microsphaera diffusa Cooke & Peck, leads to considerable yield losses in soybean [Glycine max (L.) Merr.] under favourable environmental conditions and can be controlled by identifying germplasm resources with resistance genes. In this study, resistance to M. diffusa among resistant varieties B3, Fudou234, and B13 is mapped as a single Mendelian locus using three mapping populations derived from crossing susceptible with resistant cultivars. The position of the PMD resistance locus in B3 is located between simple sequence repeat (SSR) markers GMES6959 and Satt_393 on chromosome 16, at genetic distances of 7.1 cM and 4.6 cM, respectively. To more finely map the PMD resistance gene, a high-density genetic map was constructed using 248 F8 recombinant inbred lines derived from a cross of Guizao1 × B13. The final map includes 3748 bins and is 3031.9 cM in length, with an average distance of 0.81 cM between adjacent markers. This genotypic analysis resulted in the precise delineation of the B13 PMD resistance locus to a 188.06-kb genomic region on chromosome 16 that harbours 28 genes, including 17 disease resistance (R)-like genes in the reference Williams 82 genome. Quantitative real-time PCR assays of possible candidate genes revealed differences in the expression levels of 9 R-like genes between the resistant and susceptible parents. These results provide useful information for marker-assisted breeding and gene cloning for PMD resistance.
Collapse
Affiliation(s)
- Bingzhi Jiang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Mu Li
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Yanbo Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Zhandong Cai
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Qibin Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Ze Jiang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Ruirui Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Qiuju Xia
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518086, People's Republic of China
| | - Gengyun Zhang
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518086, People's Republic of China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.
| |
Collapse
|
50
|
Bayer PE, Golicz AA, Tirnaz S, Chan CK, Edwards D, Batley J. Variation in abundance of predicted resistance genes in the Brassica oleracea pangenome. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:789-800. [PMID: 30230187 PMCID: PMC6419861 DOI: 10.1111/pbi.13015] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/16/2018] [Accepted: 09/14/2018] [Indexed: 05/19/2023]
Abstract
Brassica oleracea is an important agricultural species encompassing many vegetable crops including cabbage, cauliflower, broccoli and kale; however, it can be susceptible to a variety of fungal diseases such as clubroot, blackleg, leaf spot and downy mildew. Resistance to these diseases is meditated by specific disease resistance genes analogs (RGAs) which are differently distributed across B. oleracea lines. The sequenced reference cultivar does not contain all B. oleracea genes due to gene presence/absence variation between individuals, which makes it necessary to search for RGA candidates in the B. oleracea pangenome. Here we present a comparative analysis of RGA candidates in the pangenome of B. oleracea. We show that the presence of RGA candidates differs between lines and suggests that in B. oleracea, SNPs and presence/absence variation drive RGA diversity using separate mechanisms. We identified 59 RGA candidates linked to Sclerotinia, clubroot, and Fusarium wilt resistance QTL, and these findings have implications for crop breeding in B. oleracea, which may also be applicable in other crops species.
Collapse
Affiliation(s)
- Philipp E. Bayer
- School of Biological Sciences and Institute of AgricultureThe University of Western AustraliaCrawleyWAAustralia
| | - Agnieszka A. Golicz
- Plant Molecular Biology and Biotechnology LaboratoryFaculty of Veterinary and Agricultural SciencesUniversity of MelbourneMelbourneVic.Australia
| | - Soodeh Tirnaz
- School of Biological Sciences and Institute of AgricultureThe University of Western AustraliaCrawleyWAAustralia
| | - Chon‐Kit Kenneth Chan
- School of Biological Sciences and Institute of AgricultureThe University of Western AustraliaCrawleyWAAustralia
- Australian Genome Research FacilityMelbourneVic.Australia
| | - David Edwards
- School of Biological Sciences and Institute of AgricultureThe University of Western AustraliaCrawleyWAAustralia
| | - Jacqueline Batley
- School of Biological Sciences and Institute of AgricultureThe University of Western AustraliaCrawleyWAAustralia
| |
Collapse
|