1
|
Dutta AK, Sultana MM, Tanaka A, Suzuki T, Hachiya T, Nakagawa T. Expression analysis of genes encoding extracellular leucine-rich repeat proteins in Arabidopsis thaliana. Biosci Biotechnol Biochem 2024; 88:154-167. [PMID: 38040489 DOI: 10.1093/bbb/zbad171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Leucine-rich repeat (LRR)-containing proteins have been identified in diverse species, including plants. The diverse intracellular and extracellular LRR variants are responsible for numerous biological processes. We analyzed the expression patterns of Arabidopsis thaliana extracellular LRR (AtExLRR) genes, 10 receptor-like proteins, and 4 additional genes expressing the LRR-containing protein by a promoter: β-glucuronidase (GUS) study. According to in silico expression studies, several AtExLRR genes were expressed in a tissue- or stage-specific and abiotic/hormone stress-responsive manner, indicating their potential participation in specific biological processes. Based on the promoter: GUS assay, AtExLRRs were expressed in different cells and organs. A quantitative real-time PCR investigation revealed that the expressions of AtExLRR3 and AtExLRR9 were distinct under various abiotic stress conditions. This study investigated the potential roles of extracellular LRR proteins in plant growth, development, and response to various abiotic stresses.
Collapse
Affiliation(s)
- Amit Kumar Dutta
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan
- Bioresource and Life Sciences, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
- Department of Microbiology, University of Rajshahi, Rajshahi, Bangladesh
| | - Mst Momtaz Sultana
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan
- Bioresource and Life Sciences, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
- Department of Agricultural Extension (DAE), Ministry of Agriculture, Dhaka, Bangladesh
| | - Ai Tanaka
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Takushi Hachiya
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan
- Bioresource and Life Sciences, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Japan
| | - Tsuyoshi Nakagawa
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan
- Bioresource and Life Sciences, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Japan
- Science of Natural Environment Systems Course, Graduate School of Natural Science and Technology, Shimane University, Matsue, Japan
| |
Collapse
|
2
|
Nan GL, Teng C, Fernandes J, O'Connor L, Meyers BC, Walbot V. A cascade of bHLH-regulated pathways programs maize anther development. THE PLANT CELL 2022; 34:1207-1225. [PMID: 35018475 PMCID: PMC8972316 DOI: 10.1093/plcell/koac007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/20/2021] [Indexed: 05/15/2023]
Abstract
The spatiotemporal development of somatic tissues of the anther lobe is necessary for successful fertile pollen production. This process is mediated by many transcription factors acting through complex, multi-layered networks. Here, our analysis of functional knockout mutants of interacting basic helix-loop-helix genes Ms23, Ms32, basic helix-loop-helix 122 (bHLH122), and bHLH51 in maize (Zea mays) established that male fertility requires all four genes, expressed sequentially in the tapetum (TP). Not only do they regulate each other, but also they encode proteins that form heterodimers that act collaboratively to guide many cellular processes at specific developmental stages. MS23 is confirmed to be the master factor, as the ms23 mutant showed the earliest developmental defect, cytologically visible in the TP, with the most drastic alterations in premeiotic gene expression observed in ms23 anthers. Notably, the male-sterile ms23, ms32, and bhlh122-1 mutants lack 24-nt phased secondary small interfering RNAs (phasiRNAs) and the precursor transcripts from the corresponding 24-PHAS loci, while the bhlh51-1 mutant has wild-type levels of both precursors and small RNA products. Multiple lines of evidence suggest that 24-nt phasiRNA biogenesis primarily occurs downstream of MS23 and MS32, both of which directly activate Dcl5 and are required for most 24-PHAS transcription, with bHLH122 playing a distinct role in 24-PHAS transcription.
Collapse
Affiliation(s)
- Guo-Ling Nan
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Chong Teng
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - John Fernandes
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Lily O'Connor
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
- Department of Biology, Washington University, St Louis, Missouri 63130, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
- The Division of Plant Science and Technology, University of Missouri–Columbia, Columbia, Missouri 65211, USA
- Authors for correspondence: (V.W.) and (B.C.M.)
| | - Virginia Walbot
- Department of Biology, Stanford University, Stanford, California 94305, USA
- Authors for correspondence: (V.W.) and (B.C.M.)
| |
Collapse
|
3
|
Guo X, Li L, Liu X, Zhang C, Yao X, Xun Z, Zhao Z, Yan W, Zou Y, Liu D, Li H, Lu H. MYB2 Is Important for Tapetal PCD and Pollen Development by Directly Activating Protease Expression in Arabidopsis. Int J Mol Sci 2022; 23:ijms23073563. [PMID: 35408924 PMCID: PMC8998314 DOI: 10.3390/ijms23073563] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 12/11/2022] Open
Abstract
Tapetal programmed cell death (PCD) is a complex biological process that plays an important role in pollen formation and reproduction. Here, we identified the MYB2 transcription factor expressed in the tapetum from stage 5 to stage 11 that was essential for tapetal PCD and pollen development in Arabidopsis thaliana. Downregulation of MYB2 retarded tapetal degeneration, produced defective pollen, and decreased pollen vitality. EMSA and transcriptional activation analysis revealed that MYB2 acted as an upstream activator and directly regulated expression of the proteases CEP1 and βVPE. The expression of these proteases was lower in the buds of the myb2 mutant. Overexpression of either/both CEP1 or/and βVPE proteases partially recover pollen vitality in the myb2 background. Taken together, our results revealed that MYB2 regulates tapetal PCD and pollen development by directly activating expression of the proteases CEP1 and βVPE. Thus, a transcription factor/proteases regulatory and activated cascade was established for tapetal PCD during another development in Arabidopsis thaliana. Highlight: MYB2 is involved in tapetal PCD and pollen development by directly regulating expression of the protease CEP1 and βVPE and establishes a transcription factor/proteases regulatory and activated cascade.
Collapse
Affiliation(s)
- Xiaorui Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (X.G.); (H.L.)
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China;
| | - Lihong Li
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (L.L.); (X.L.); (C.Z.); (X.Y.); (Z.X.); (Z.Z.); (W.Y.); (Y.Z.)
| | - Xiatong Liu
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (L.L.); (X.L.); (C.Z.); (X.Y.); (Z.X.); (Z.Z.); (W.Y.); (Y.Z.)
| | - Chong Zhang
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (L.L.); (X.L.); (C.Z.); (X.Y.); (Z.X.); (Z.Z.); (W.Y.); (Y.Z.)
| | - Xiaoyun Yao
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (L.L.); (X.L.); (C.Z.); (X.Y.); (Z.X.); (Z.Z.); (W.Y.); (Y.Z.)
| | - Zhili Xun
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (L.L.); (X.L.); (C.Z.); (X.Y.); (Z.X.); (Z.Z.); (W.Y.); (Y.Z.)
| | - Zhijing Zhao
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (L.L.); (X.L.); (C.Z.); (X.Y.); (Z.X.); (Z.Z.); (W.Y.); (Y.Z.)
| | - Wenwen Yan
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (L.L.); (X.L.); (C.Z.); (X.Y.); (Z.X.); (Z.Z.); (W.Y.); (Y.Z.)
| | - Yirong Zou
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (L.L.); (X.L.); (C.Z.); (X.Y.); (Z.X.); (Z.Z.); (W.Y.); (Y.Z.)
| | - Di Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China;
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (L.L.); (X.L.); (C.Z.); (X.Y.); (Z.X.); (Z.Z.); (W.Y.); (Y.Z.)
| | - Hui Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (X.G.); (H.L.)
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China;
- Correspondence:
| | - Hai Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (X.G.); (H.L.)
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (L.L.); (X.L.); (C.Z.); (X.Y.); (Z.X.); (Z.Z.); (W.Y.); (Y.Z.)
| |
Collapse
|
4
|
Kakui H, Tsuchimatsu T, Yamazaki M, Hatakeyama M, Shimizu KK. Pollen Number and Ribosome Gene Expression Altered in a Genome-Editing Mutant of REDUCED POLLEN NUMBER1 Gene. FRONTIERS IN PLANT SCIENCE 2022; 12:768584. [PMID: 35087546 PMCID: PMC8787260 DOI: 10.3389/fpls.2021.768584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
The number of pollen grains varies within and between species. However, little is known about the molecular basis of this quantitative trait, in contrast with the many studies available on cell differentiation in the stamen. Recently, the first gene responsible for pollen number variation, REDUCED POLLEN NUMBER1 (RDP1), was isolated by genome-wide association studies of Arabidopsis thaliana and exhibited the signature of natural selection. This gene encodes a homolog of yeast Mrt4 (mRNA turnover4), which is an assembly factor of the large ribosomal subunit. However, no further data were available to link ribosome function to pollen development. Here, we characterized the RDP1 gene using the standard A. thaliana accession Col-0. The frameshift mutant, rdp1-3 generated by CRISPR/Cas9 revealed the pleiotropic effect of RDP1 in flowering, thus demonstrating that this gene is required for a broad range of processes other than pollen development. We found that the natural Col-0 allele conferred a reduced pollen number against the Bor-4 allele, as assessed using the quantitative complementation test, which is more sensitive than transgenic experiments. Together with a historical recombination event in Col-0, which was identified by sequence alignment, these results suggest that the coding sequence of RDP1 is the candidate region responsible for the natural phenotypic variation. To elucidate the biological processes in which RDP1 is involved, we conducted a transcriptome analysis. We found that genes responsible for ribosomal large subunit assembly/biogenesis were enriched among the differentially regulated genes, which supported the hypothesis that ribosome biogenesis is disturbed in the rdp1-3 mutant. Among the pollen-development genes, three key genes encoding basic helix-loop-helix (bHLH) transcription factors (ABORTED MICROSPORES (AMS), bHLH010, and bHLH089), as well as direct downstream genes of AMS, were downregulated in the rdp1-3 mutant. In summary, our results suggest a specialized function of ribosomes in pollen development through RDP1, which harbors natural variants under selection.
Collapse
Affiliation(s)
- Hiroyuki Kakui
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Takashi Tsuchimatsu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
- Department of Biology, Chiba University, Chiba, Japan
- Department of Biological Sciences, University of Tokyo, Tokyo, Japan
| | - Misako Yamazaki
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Masaomi Hatakeyama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Functional Genomics Center Zurich, Zurich, Switzerland
| | - Kentaro K. Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Huang T, Suen D. Iron insufficiency in floral buds impairs pollen development by disrupting tapetum function. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:244-267. [PMID: 34310779 PMCID: PMC9292431 DOI: 10.1111/tpj.15438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 06/25/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Reduction of crop yield due to iron (Fe) deficiency has always been a concern in agriculture. How Fe insufficiency in floral buds affects pollen development remains unexplored. Here, plants transferred to Fe-deficient medium at the reproductive stage had reduced floral Fe content and viable pollen and showed a defective pollen outer wall, all restored by supplying floral buds with Fe. A comparison of differentially expressed genes (DEGs) in Fe-deficient leaves, roots, and anthers suggested that changes in several cellular processes were unique to anthers, including increased lipid degradation. Co-expression analysis revealed that ABORTED MICROSPORES (AMS), DEFECTIVE IN TAPETAL DEVELOPMENT AND FUNCTION1, and BASIC HELIX-LOOP-HELIX 089/091/010 encode key upstream transcription factors of Fe deficiency-responsive DEGs involved in tapetum function and development, including tapetal ROS homeostasis, programmed cell death, and pollen outer wall formation-related lipid metabolism. Analysis of RESPIRATORY-BURST OXIDASE HOMOLOG E (RBOHE) gain- and loss-of-function under Fe deficiency indicated that RBOHE- and Fe-dependent regulation cooperatively control anther reactive oxygen species levels and pollen development. Since DEGs in Fe-deficient anthers were not significantly enriched in genes related to mitochondrial function, the changes in mitochondrial status under Fe deficiency, including respiration activity, density, and morphology, were probably because the Fe amount was insufficient to maintain proper mitochondrial protein function in anthers. To sum up, Fe deficiency in anthers may affect Fe-dependent protein function and impact upstream transcription factors and their downstream genes, resulting in extensively impaired tapetum function and pollen development.
Collapse
Affiliation(s)
- Tzu‐Hsiang Huang
- Agricultural Biotechnology Research CenterAcademia SinicaTaipei11529Taiwan
- Molecular and Biological Agricultural Sciences ProgramTaiwan International Graduate ProgramAcademia Sinica and National Chung‐Hsing UniversityTaipei11529Taiwan
- Graduate Institute of BiotechnologyNational Chung‐Hsing UniversityTaichung40227Taiwan
| | - Der‐Fen Suen
- Agricultural Biotechnology Research CenterAcademia SinicaTaipei11529Taiwan
- Molecular and Biological Agricultural Sciences ProgramTaiwan International Graduate ProgramAcademia Sinica and National Chung‐Hsing UniversityTaipei11529Taiwan
- Biotechnology CenterNational Chung‐Hsing UniversityTaichung40227Taiwan
| |
Collapse
|
6
|
Lei X, Liu B. Tapetum-Dependent Male Meiosis Progression in Plants: Increasing Evidence Emerges. FRONTIERS IN PLANT SCIENCE 2020; 10:1667. [PMID: 32010157 PMCID: PMC6979054 DOI: 10.3389/fpls.2019.01667] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/27/2019] [Indexed: 05/28/2023]
Abstract
In higher plants, male meiosis is a key process during microsporogenesis and is crucial for male fertility and seed set. Meiosis involves a highly dynamic organization of chromosomes and cytoskeleton and specifically takes place within sexual cells. However, studies in multiple plant species have suggested that the normal development of tapetum, the somatic cell layer surrounding the developing male meiocytes, is indispensable for the completion of the male meiotic cell cycle. Disrupted tapetum development causes alterations in the expression of a large range of genes involved in male reproduction. Moreover, recent experiments suggest that small RNAs (sRNAs) present in the anthers, including microRNAs (miRNAs) and phased, secondary, small interfering RNAs (phasiRNAs), play a potential but important role in controlling male meiosis, either by influencing the expression of meiotic genes in the meiocytes or through other unclear mechanisms, supporting the hypothesis that male meiosis is non-cell autonomously regulated. In this mini review, we summarize the recorded meiotic defects that occur in plants with defective tapetum development in both Arabidopsis and crops. Thereafter, we outline the latest understanding on the molecular mechanisms that potentially underpin the tapetum-dependent regulation of male meiosis, and we especially discuss the regulatory role of sRNAs. At the end, we propose several outstanding questions that should be addressed in future studies.
Collapse
Affiliation(s)
- Xiaoning Lei
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Bing Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
- Key Laboratory for Biotechnology of the State Ethnic Affairs Commission, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
7
|
Han Y, Gao Y, Zhao Y, Zhang D, Zhao C, Xin F, Zhu T, Jian M, Ding Q, Ma L. Energy metabolism involved in fertility of the wheat TCMS line YS3038. PLANTA 2019; 250:2159-2171. [PMID: 31628536 DOI: 10.1007/s00425-019-03281-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
Abstract
In the wheat TCMS line YS3038, the anther development is inhibited from late uninucleate stage to the binucleate stage. The disruption of energy metabolism pathways by aberrant transcriptional regulation causes the male sterility under low temperatures. The utilization of thermosensitive male sterile (TMS) lines provides a basis for two-line breeding. Previous work, including morphological and cytological observations, has shown that the development process of the TMS line YS3038 is inhibited from the late uninucleate stage to the binucleate stage. Transcriptomics studies could now help to elucidate the overall expression of related genes in a specific reproductive process, revealing the metabolic network and its regulatory mechanism of the reproductive process from the transcription level. Considering the fertility characteristics of YS3038, three important stages for transcriptome analysis were determined to be the early uninucleate, late uninucleate and binucleate stages. The number of differentially expressed genes (DEGs) was found to be highest in the binucleate stage, and most were related to energy metabolism. Quantitative PCR analysis of selected genes related to energy metabolism revealed that their expression patterns were consistent with the sequencing results. Analysis of the fertility mechanism of YS3038 showed that although the tapetum of anthers was degraded in advance of the tetrad stage, the development of microspores did not result in obvious abnormalities until the binucleate stage, because the genes involved in energy metabolism pathways, including starch and sucrose metabolism (SSM), glycolysis, the tricarboxylic acid (TCA) cycle, oxidative phosphorylation, and respiration electron transport chain are differentially expressed under sterile and fertile conditions. Therefore, the pollen in YS3038 was sterile.
Collapse
Affiliation(s)
- Yucui Han
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, China
| | - Yujie Gao
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, China
| | - Yue Zhao
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, China
| | - Dazhong Zhang
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, China
| | - Chao Zhao
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, China
| | - Fang Xin
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, China
| | - Ting Zhu
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, China
| | - Mingyang Jian
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, China
| | - Qin Ding
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China.
| | - Lingjian Ma
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, China.
| |
Collapse
|
8
|
Singh S, Dey SS, Bhatia R, Kumar R, Behera TK. Current understanding of male sterility systems in vegetable Brassicas and their exploitation in hybrid breeding. PLANT REPRODUCTION 2019; 32:231-256. [PMID: 31053901 DOI: 10.1007/s00497-019-00371-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Overview of the current status of GMS and CMS systems available in Brassica vegetables, their molecular mechanism, wild sources of sterile cytoplasm and exploitation of male sterility in hybrid breeding. The predominantly herbaceous family Brassicaceae (crucifers or mustard family) encompasses over 3700 species, and many of them are scientifically and economically important. The genus Brassica is an economically important genus within the tribe Brassicaceae that comprises important vegetable, oilseed and fodder crops. Brassica vegetables display strong hybrid vigor, and heterosis breeding is the integral part in their improvement. Commercial production of F1 hybrid seeds in Brassica vegetables requires an effective male sterility system. Among the available male sterility systems, cytoplasmic male sterility (CMS) is the most widely exploited in Brassica vegetables. This system is maternally inherited and studied intensively. A limited number of reports about the genic male sterility (GMS) are available in Brassica vegetables. The GMS system is reported to be dominant, recessive and trirecessive in nature in different species. In this review, we discuss the available male sterility systems in Brassica vegetables and their potential use in hybrid breeding. The molecular mechanism of mt-CMS and causal mitochondrial genes of CMS has been discussed in detail. Finally, the exploitation of male sterility system in heterosis breeding of Brassica vegetables, future prospects and need for further understanding of these systems are highlighted.
Collapse
Affiliation(s)
- Saurabh Singh
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012, India
| | - S S Dey
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012, India.
| | - Reeta Bhatia
- Division of Floriculture and Landscaping, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012, India
| | - Raj Kumar
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012, India
| | - T K Behera
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012, India
| |
Collapse
|
9
|
Ahn H, Jo K, Jeong D, Pak M, Hur J, Jung W, Kim S. PropaNet: Time-Varying Condition-Specific Transcriptional Network Construction by Network Propagation. FRONTIERS IN PLANT SCIENCE 2019; 10:698. [PMID: 31258543 PMCID: PMC6587906 DOI: 10.3389/fpls.2019.00698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
Transcription factor (TF) has a significant influence on the state of a cell by regulating multiple down-stream genes. Thus, experimental and computational biologists have made great efforts to construct TF gene networks for regulatory interactions between TFs and their target genes. Now, an important research question is how to utilize TF networks to investigate the response of a plant to stress at the transcription control level using time-series transcriptome data. In this article, we present a new computational network, PropaNet, to investigate dynamics of TF networks from time-series transcriptome data using two state-of-the-art network analysis techniques, influence maximization and network propagation. PropaNet uses the influence maximization technique to produce a ranked list of TFs, in the order of TF that explains differentially expressed genes (DEGs) better at each time point. Then, a network propagation technique is used to select a group of TFs that explains DEGs best as a whole. For the analysis of Arabidopsis time series datasets from AtGenExpress, we used PlantRegMap as a template TF network and performed PropaNet analysis to investigate transcriptional dynamics of Arabidopsis under cold and heat stress. The time varying TF networks showed that Arabidopsis responded to cold and heat stress quite differently. For cold stress, bHLH and bZIP type TFs were the first responding TFs and the cold signal influenced histone variants, various genes involved in cell architecture, osmosis and restructuring of cells. However, the consequences of plants under heat stress were up-regulation of genes related to accelerating differentiation and starting re-differentiation. In terms of energy metabolism, plants under heat stress show elevated metabolic process and resulting in an exhausted status. We believe that PropaNet will be useful for the construction of condition-specific time-varying TF network for time-series data analysis in response to stress. PropaNet is available at http://biohealth.snu.ac.kr/software/PropaNet.
Collapse
Affiliation(s)
- Hongryul Ahn
- Bioinformatics Institute, Seoul National University, Seoul, South Korea
| | - Kyuri Jo
- Bioinformatics Institute, Seoul National University, Seoul, South Korea
| | - Dabin Jeong
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea
| | - Minwoo Pak
- Department of Computer Science and Engineering, Seoul National University, Seoul, South Korea
| | - Jihye Hur
- Department of Crop Science, Konkuk University, Seoul, South Korea
| | - Woosuk Jung
- Department of Crop Science, Konkuk University, Seoul, South Korea
| | - Sun Kim
- Bioinformatics Institute, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea
- Department of Computer Science and Engineering, Seoul National University, Seoul, South Korea
| |
Collapse
|
10
|
Verma N. Transcriptional regulation of anther development in Arabidopsis. Gene 2018; 689:202-209. [PMID: 30572098 DOI: 10.1016/j.gene.2018.12.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/23/2018] [Accepted: 12/06/2018] [Indexed: 01/15/2023]
Abstract
This review focuses on the current knowledge of transcription factors involved in Arabidopsis anther development. Anther development is a multistage process and controlled by a complex network of transcription factors acting in spatio/temporal manner. Molecular understanding of anther developmental pathway is critical from the perspective of controlling male fertility and hybrid generation. Generation of hybrid lines relies upon the effective mechanisms of controlling the process of pollen development and pollen release. Controlling any developmental program requires a good knowledge of regulatory pathways governing that developmental program. In a regulatory pathway, transcription factors represent an important link between the developmental program and response of genes to growth regulators and environmental signals. Therefore, identifying the entire cohort of anther specific transcription factors is an essential step towards the molecular understanding of regulatory networks involved in pollen formation and pollen release.
Collapse
Affiliation(s)
- Neetu Verma
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India.
| |
Collapse
|
11
|
Guo J, Liu C, Wang P, Cheng Q, Sun L, Yang W, Shen H. The Aborted Microspores ( AMS)-Like Gene Is Required for Anther and Microspore Development in Pepper ( Capsicum annuum L.). Int J Mol Sci 2018; 19:ijms19051341. [PMID: 29724052 PMCID: PMC5983743 DOI: 10.3390/ijms19051341] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 12/01/2022] Open
Abstract
Pepper (Capsicum annuum L.) is an economically important vegetable crop worldwide. Although many genes associated with anther and pollen development have been identified, little is known about the mechanism of pollen abortion in pepper. Here, we identified and isolated two putative aborted microspore (AMS) isoforms from pepper flowers: CaAMS1 and CaAMS2. Sequence analysis showed that CaAMS2 was generated by retention of the fourth intron in CaAMS1 pre-mRNA. CaAMS1 encodes a putative protein with a basic helix-loop-helix (bHLH) domain belonging to the MYC subfamily of bHLH transcription factors, and it is localized to the nucleus. Truncated CaAMS2-1 and CaAMS2-2 are produced by alternative splicing. Quantitative real-time PCR analysis showed that CaAMS (referred to CaAMS1 and CaAMS2-2) was preferentially expressed in stamens and its expression level gradually decreases with flower development. RNA in situ hybridization analysis showed that CaAMS is strongly expressed in the tapetum at the tetrad and uninucleate stages. Downregulation of CaAMS led to partial shortened filaments, shriveled, indehiscent stamens and abortive pollens in pepper flowers. Several genes involved in pollen exine formation were downregulated in defective CaAMS-silenced anthers. Thus, CaAMS seems to play an important role in pepper tapetum and pollen development by regulating a complex genetic network.
Collapse
Affiliation(s)
- Jinju Guo
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Chen Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China.
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Shandong Branch of National Vegetable Improvement Center, Jinan 250100, China.
| | - Peng Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Qing Cheng
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Liang Sun
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Wencai Yang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Huolin Shen
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
12
|
Wang S, Lu J, Song XF, Ren SC, You C, Xu J, Liu CM, Ma H, Chang F. Cytological and Transcriptomic Analyses Reveal Important Roles of CLE19 in Pollen Exine Formation. PLANT PHYSIOLOGY 2017; 175:1186-1202. [PMID: 28916592 PMCID: PMC5664459 DOI: 10.1104/pp.17.00439] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/12/2017] [Indexed: 05/04/2023]
Abstract
The CLAVATA3/ESR-RELATED (CLE) peptide signals are required for cell-cell communication in several plant growth and developmental processes. However, little is known regarding the possible functions of the CLEs in the anther. Here, we show that a T-DNA insertional mutant, and dominant-negative (DN) and overexpression (OX) transgenic plants of the CLE19 gene, exhibited significantly reduced anther size and pollen grain number and abnormal pollen wall formation in Arabidopsis (Arabidopsis thaliana). Interestingly, the DN-CLE19 pollen grains showed a more extensively covered surface, but CLE19-OX pollen exine exhibited clearly missing connections in the network and lacked separation between areas that normally form the lacunae. With a combination of cell biological, genetic, and transcriptomic analyses on cle19, DN-CLE19, and CLE19-OX plants, we demonstrated that CLE19-OX plants produced highly vacuolated and swollen aborted microspores (ams)-like tapetal cells, lacked lipidic tapetosomes and elaioplasts, and had abnormal pollen primexine without obvious accumulation of sporopollenin precursors. Moreover, CLE19 is important for the normal expression of more than 1,000 genes, including the transcription factor gene AMS, 280 AMS-downstream genes, and other genes involved in pollen coat and pollen exine formation, lipid metabolism, pollen germination, and hormone metabolism. In addition, the DN-CLE19(+/+) ams(-/-) plants exhibited the ams anther phenotype and ams(+/-) partially suppressed the DN-CLE19 transgene-induced pollen exine defects. These findings demonstrate that the proper amount of CLE19 signal is essential for the normal expression of AMS and its downstream gene networks in the regulation of anther development and pollen exine formation.
Collapse
Affiliation(s)
- Shuangshuang Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jianan Lu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiu-Fen Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shi-Chao Ren
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Chenjiang You
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jie Xu
- Collaborative Innovation Center for Genetics and Development, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Institute of Crop Science, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Fang Chang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
13
|
Zhang SS, Yang H, Ding L, Song ZT, Ma H, Chang F, Liu JX. Tissue-Specific Transcriptomics Reveals an Important Role of the Unfolded Protein Response in Maintaining Fertility upon Heat Stress in Arabidopsis. THE PLANT CELL 2017; 29:1007-1023. [PMID: 28442596 PMCID: PMC5466030 DOI: 10.1105/tpc.16.00916] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/23/2017] [Accepted: 04/24/2017] [Indexed: 05/18/2023]
Abstract
High temperatures have a great impact on plant reproductive development and subsequent fruit and seed set, but the underlying molecular mechanisms are not well understood. We used transcriptome profiling to investigate the effect of heat stress on reproductive development of Arabidopsis thaliana plants and observed distinct response patterns in vegetative versus reproductive tissues. Exposure to heat stress affected reproductive developmental programs, including early phases of anther/ovule development and meiosis. Also, genes participating in the unfolded protein response (UPR) were enriched in the reproductive tissue-specific genes that were upregulated by heat. Moreover, we found that the UPR-deficient bzip28 bzip60 double mutant was sensitive to heat stresses and had reduced silique length and fertility. Comparison of heat-responsive wild type versus bzip28 bzip60 plants identified 521 genes that were regulated by bZIP28 and bZIP60 upon heat stress during reproductive stages, most of which were noncanonical UPR genes. Chromatin immunoprecipitation coupled with high-throughput sequencing analyses revealed 133 likely direct targets of bZIP28 in Arabidopsis seedlings subjected to heat stress, including 27 genes that were also upregulated by heat during reproductive development. Our results provide important insights into heat responsiveness in Arabidopsis reproductive tissues and demonstrate the protective roles of the UPR for maintaining fertility upon heat stress.
Collapse
Affiliation(s)
- Shuang-Shuang Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Hongxing Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Lan Ding
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Ze-Ting Song
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Fang Chang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jian-Xiang Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
14
|
Ranjan R, Khurana R, Malik N, Badoni S, Parida SK, Kapoor S, Tyagi AK. bHLH142 regulates various metabolic pathway-related genes to affect pollen development and anther dehiscence in rice. Sci Rep 2017; 7:43397. [PMID: 28262713 PMCID: PMC5338287 DOI: 10.1038/srep43397] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/20/2017] [Indexed: 01/14/2023] Open
Abstract
Apposite development of anther and its dehiscence are important for the reproductive success of the flowering plants. Recently, bHLH142, a bHLH transcription factor encoding gene of rice has been found to show anther-specific expression and mutant analyses suggest its functions in regulating tapetum differentiation and degeneration during anther development. However, our study on protein level expression and gain-of-function phenotype revealed novel aspects of its regulation and function during anther development. Temporally dissimilar pattern of bHLH142 transcript and polypeptide accumulation suggested regulation of its expression beyond transcriptional level. Overexpression of bHLH142 in transgenic rice resulted in indehiscent anthers and aborted pollen grains. Defects in septum and stomium rupture caused anther indehiscence while pollen abortion phenotype attributed to abnormal degeneration of the tapetum. Furthermore, RNA-Seq-based transcriptome analysis of tetrad and mature pollen stage anthers of wild type and bHLH142OEplants suggested that it might regulate carbohydrate and lipid metabolism, cell wall modification, reactive oxygen species (ROS) homeostasis and cell death-related genes during rice anther development. Thus, bHLH142 is an anther-specific gene whose expression is regulated at transcriptional and post-transcriptional/translational levels. It plays a role in pollen maturation and anther dehiscence by regulating expression of various metabolic pathways-related genes.
Collapse
Affiliation(s)
- Rajeev Ranjan
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Reema Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India
| | - Naveen Malik
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Saurabh Badoni
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Swarup K. Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sanjay Kapoor
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India
| | - Akhilesh K. Tyagi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India
| |
Collapse
|
15
|
Sheng Y, Wang Y, Jiao S, Jin Y, Ji P, Luan F. Mapping and Preliminary Analysis of ABORTED MICROSPORES ( AMS) as the Candidate Gene Underlying the Male Sterility ( MS-5) Mutant in Melon ( Cucumis melo L.). FRONTIERS IN PLANT SCIENCE 2017; 8:902. [PMID: 28611814 PMCID: PMC5447745 DOI: 10.3389/fpls.2017.00902] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/15/2017] [Indexed: 05/06/2023]
Abstract
Melon is an important agricultural and economic vegetable crop worldwide. The genetic male sterility mutant (ms-5) has a recessive nuclear gene that controls the male sterility germplasm. Male sterility could reduce the cost of F1 seed production in melon, but heterozygous fertile plants should be removed before pollination. In this study, bulked segregant analysis combined with specific length amplified fragment sequencing was applied to map the single nuclear male sterility recessive gene. A 30-kb candidate region on chromosome 9 located on scaffold 000048 and spanning 2,522,791 to 2,555,104 bp was identified and further confirmed by cleavage amplified polymorphic sequence markers based on parental line resequencing data and classical mapping of 252 F2 individuals. Gene prediction indicated that six annotated genes are present in the 30-kb candidate region. Quantitative RT-PCR revealed significant differences in the expression level of the LOC103498166 ABORTED MICROSPORES (AMS) gene in male-sterile lines (ms-5) and male-fertile (HM1-1) lines during the 2-mm (tetrad) and 5-mm (the first pollen mitosis) periods, and negative regulation of the AMS candidate gene transcription factor was also detected. Sequencing and cluster analysis of the AMS transcription factor revealed five single-nucleotide polymorphisms between the parental lines. The data presented herein suggest that the AMS transcription factor is a possible candidate gene for single nuclear male sterility in melon. The results of this study will help breeders to identify male-sterile and -fertile plants at seeding as marker-assisted selection methods, which would reduce the cost of seed production and improve the use of male-sterile lines in melon.
Collapse
Affiliation(s)
- Yunyan Sheng
- Department of Agriculture, Heilongjiang Bayi Agricultural UniversityDaqing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture/Northeast Agricultural UniversityHarbin, China
- *Correspondence: Yunyan Sheng,
| | - Yudan Wang
- Department of Agriculture, Heilongjiang Bayi Agricultural UniversityDaqing, China
| | - Shiqi Jiao
- Department of Horticulture, Northeast Agricultural UniversityHarbin, China
| | - Yazhong Jin
- Department of Agriculture, Heilongjiang Bayi Agricultural UniversityDaqing, China
| | - Peng Ji
- Department of Agriculture, Heilongjiang Bayi Agricultural UniversityDaqing, China
| | - Feishi Luan
- Department of Horticulture, Northeast Agricultural UniversityHarbin, China
| |
Collapse
|
16
|
Hao S, Ariizumi T, Ezura H. SEXUAL STERILITY is Essential for Both Male and Female Gametogenesis in Tomato. PLANT & CELL PHYSIOLOGY 2017; 58:22-34. [PMID: 28082517 DOI: 10.1093/pcp/pcw214] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/27/2016] [Indexed: 05/12/2023]
Abstract
Gametogenesis is a key step in the production of ovules or pollen in higher plants. The molecular aspects of gametogenesis are well characterized in the model plant Arabidopsis; however, little information is known in tomato, which is a model plant for fleshy fruit development. In this study, we characterized a tomato (Solanum lycopersicum L.) γ-ray mutant, sexual sterility (Slses), that exhibited both male and female sterility. Morphological analysis revealed that the Slses mutant forms incomplete ovules and wilted anthers devoid of pollen grains at the anthesis stage. Genetic and next-generation sequencing analyses revealed that the Slses mutant carried a 13 bp deletion within the first exon of a homolog of SPOROCYTELESS/NOZZLE (SPL/NZZ), which plays an important role in gametogenesis in Arabidopsis. Complementation analysis in which the complete SlSES genomic region was introduced into the Slses mutant fully restored normal phenotypes, demonstrating that Solyc07g063670 is responsible for the Slses mutation. SlSES probably act as a transcriptional repressor because of an EAR motif at the C-terminal region. Gene expression levels of WUSCHEL (SlWUS) and INNER NO OUTER (SlINO), both of which are required for ovule development, were dramatically reduced in the early stages of pistil development in the Slses mutant, suggesting a positive regulatory role for SlSES in the transcription of gametogenesis genes and differences in the regulation of INO (SlINO) and integument development by SPL/NZZ (SLSES) between Arabidopsis and tomato. Taken together, our results indicate that SlSES is a novel tomato gametogenesis gene essential for both male and female gametogenesis.
Collapse
Affiliation(s)
- Shuhei Hao
- Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tohru Ariizumi
- Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroshi Ezura
- Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
17
|
Ye J, Zhang Z, You C, Zhang X, Lu J, Ma H. Abundant protein phosphorylation potentially regulates Arabidopsis anther development. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4993-5008. [PMID: 27531888 PMCID: PMC5014169 DOI: 10.1093/jxb/erw293] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
As the male reproductive organ of flowering plants, the stamen consists of the anther and filament. Previous studies on stamen development mainly focused on single gene functions by genetic methods or gene expression changes using comparative transcriptomic approaches, especially in model plants such as Arabidopsis thaliana However, studies on Arabidopsis anther protein expression and post-translational modifications are still lacking. Here we report proteomic and phosphoproteomic studies on developing Arabidopsis anthers at stages 4-7 and 8-12. We identified 3908 high-confidence phosphorylation sites corresponding to 1637 phosphoproteins. Among the 1637 phosphoproteins, 493 were newly identified, with 952 phosphorylation sites. Phosphopeptide enrichment prior to LC-MS analysis facilitated the identification of low-abundance proteins and regulatory proteins, thereby increasing the coverage of proteomic analysis, and facilitated the analysis of more regulatory proteins. Thirty-nine serine and six threonine phosphorylation motifs were uncovered from the anther phosphoproteome and further analysis supports that phosphorylation of casein kinase II, mitogen-activated protein kinases, and 14-3-3 proteins is a key regulatory mechanism in anther development. Phosphorylated residues were preferentially located in variable protein regions among family members, but they were they were conserved across angiosperms in general. Moreover, phosphorylation might reduce activity of reactive oxygen species scavenging enzymes and hamper brassinosteroid signaling in early anther development. Most of the novel phosphoproteins showed tissue-specific expression in the anther according to previous microarray data. This study provides a community resource with information on the abundance and phosphorylation status of thousands of proteins in developing anthers, contributing to understanding post-translational regulatory mechanisms during anther development.
Collapse
Affiliation(s)
- Juanying Ye
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Zaibao Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Chenjiang You
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Xumin Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jianan Lu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
18
|
Walbot V, Egger RL. Pre-Meiotic Anther Development: Cell Fate Specification and Differentiation. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:365-95. [PMID: 26735065 DOI: 10.1146/annurev-arplant-043015-111804] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Research into anther ontogeny has been an active and developing field, transitioning from a strictly lineage-based view of cellular differentiation events to a more complex understanding of cell fate specification. Here we describe the modern interpretation of pre-meiotic anther development, from the earliest cell specifications within the anther lobes through SPL/NZZ-, MSP1-, and MEL1-dependent pathways as well as the initial setup of the abaxial and adaxial axes and outgrowth of the anther lobes. We then continue with a look at the known information regarding further differentiation of the somatic layers of the anther (the epidermis, endothecium, middle layer, and tapetum), with an emphasis on male-sterile mutants identified as defective in somatic cell specification. We also describe the differences in developmental stages among species and use this information to discuss molecular studies that have analyzed transcriptome, proteome, and small-RNA information in the anther.
Collapse
Affiliation(s)
- Virginia Walbot
- Department of Biology, Stanford University, Stanford, California 94305-5020; ,
| | - Rachel L Egger
- Department of Biology, Stanford University, Stanford, California 94305-5020; ,
| |
Collapse
|
19
|
Harkess A, Mercati F, Shan HY, Sunseri F, Falavigna A, Leebens-Mack J. Sex-biased gene expression in dioecious garden asparagus (Asparagus officinalis). THE NEW PHYTOLOGIST 2015; 207:883-92. [PMID: 25817071 DOI: 10.1111/nph.13389] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 02/07/2015] [Indexed: 05/21/2023]
Abstract
Sex chromosomes have evolved independently in phylogenetically diverse flowering plant lineages. The genes governing sex determination in dioecious species remain unknown, but theory predicts that the linkage of genes influencing male and female function will spur the origin and early evolution of sex chromosomes. For example, in an XY system, the origin of an active Y may be spurred by the linkage of female suppressing and male promoting genes. Garden asparagus (Asparagus officinalis) serves as a model for plant sex chromosome evolution, given that it has recently evolved an XX/XY sex chromosome system. In order to elucidate the molecular basis of gender differences and sex determination, we used RNA-sequencing (RNA-Seq) to identify differentially expressed genes between female (XX), male (XY) and supermale (YY) individuals. We identified 570 differentially expressed genes, and showed that significantly more genes exhibited male-biased than female-biased expression in garden asparagus. In the context of anther development, we identified genes involved in pollen microspore and tapetum development that were specifically expressed in males and supermales. Comparative analysis of genes in the Arabidopsis thaliana, Zea mays and Oryza sativa anther development pathways shows that anther sterility in females probably occurs through interruption of tapetum development before microspore meiosis.
Collapse
Affiliation(s)
- Alex Harkess
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Francesco Mercati
- Dipartimento di AGRARIA, Università Mediterranea di Reggio Calabria, Salita Melissari, 89124, Reggio Calabria (RC), Italy
- CNR - National Research Council of Italy, Institute of Biosciences and Bioresources, Corso Calatafimi 414, 90129, Palermo, Italy
| | - Hong-Yan Shan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincu, Xiangshan, Beijing, 100093, China
| | - Francesco Sunseri
- Dipartimento di AGRARIA, Università Mediterranea di Reggio Calabria, Salita Melissari, 89124, Reggio Calabria (RC), Italy
| | - Agostino Falavigna
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura - Research Unit for Vegetable Crops, Montanaso Lombardo, 26836, Lodi, Italy
| | - Jim Leebens-Mack
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
20
|
Ma Y, Kang J, Wu J, Zhu Y, Wang X. Identification of tapetum-specific genes by comparing global gene expression of four different male sterile lines in Brassica oleracea. PLANT MOLECULAR BIOLOGY 2015; 87:541-54. [PMID: 25711971 PMCID: PMC4377141 DOI: 10.1007/s11103-015-0287-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 01/19/2015] [Indexed: 05/18/2023]
Abstract
The tapetum plays an important role in anther development by providing necessary enzymes and nutrients for pollen development. However, it is difficult to identify tapetum-specific genes on a large-scale because of the difficulty of separating tapetum cells from other anther tissues. Here, we reported the identification of tapetum-specific genes by comparing the gene expression patterns of four male sterile (MS) lines of Brassica oleracea. The abortive phenotypes of the four MS lines revealed different defects in tapetum and pollen development but normal anther wall development when observed by transmission electron microscopy. These tapetum displayed continuous defective characteristics throughout the anther developmental stages. The transcriptome from flower buds, covering all anther developmental stages, was analyzed and bioinformatics analyses exploring tapetum development-related genes were performed. We identified 1,005 genes differentially expressed in at least one of the MS lines and 104 were non-pollen expressed genes (NPGs). Most of the identified NPGs were tapetum-specific genes considering that anther walls were normally developed in all four MS lines. Among the 104 NPGs, 22 genes were previously reported as being involved in tapetum development. We further separated the expressed NPGs into different developmental stages based on the MS defects. The data obtained in this study are not only informative for research on tapetum development in B. oleracea, but are also useful for genetic pathway research in other related species.
Collapse
Affiliation(s)
- Yuan Ma
- Key Laboratory of the Ministry of Education for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, 430072 China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun South Street 12, Beijing, 100087 China
| | - Jungen Kang
- Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Landianchang South Street 5, Beijing, 100081 China
| | - Jian Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun South Street 12, Beijing, 100087 China
| | - Yingguo Zhu
- Key Laboratory of the Ministry of Education for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun South Street 12, Beijing, 100087 China
| |
Collapse
|
21
|
Micallef L, Rodgers P. eulerAPE: drawing area-proportional 3-Venn diagrams using ellipses. PLoS One 2014; 9:e101717. [PMID: 25032825 PMCID: PMC4102485 DOI: 10.1371/journal.pone.0101717] [Citation(s) in RCA: 360] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 06/10/2014] [Indexed: 12/22/2022] Open
Abstract
Venn diagrams with three curves are used extensively in various medical and scientific disciplines to visualize relationships between data sets and facilitate data analysis. The area of the regions formed by the overlapping curves is often directly proportional to the cardinality of the depicted set relation or any other related quantitative data. Drawing these diagrams manually is difficult and current automatic drawing methods do not always produce appropriate diagrams. Most methods depict the data sets as circles, as they perceptually pop out as complete distinct objects due to their smoothness and regularity. However, circles cannot draw accurate diagrams for most 3-set data and so the generated diagrams often have misleading region areas. Other methods use polygons to draw accurate diagrams. However, polygons are non-smooth and non-symmetric, so the curves are not easily distinguishable and the diagrams are difficult to comprehend. Ellipses are more flexible than circles and are similarly smooth, but none of the current automatic drawing methods use ellipses. We present eulerAPE as the first method and software that uses ellipses for automatically drawing accurate area-proportional Venn diagrams for 3-set data. We describe the drawing method adopted by eulerAPE and we discuss our evaluation of the effectiveness of eulerAPE and ellipses for drawing random 3-set data. We compare eulerAPE and various other methods that are currently available and we discuss differences between their generated diagrams in terms of accuracy and ease of understanding for real world data.
Collapse
Affiliation(s)
- Luana Micallef
- School of Computing, University of Kent, Canterbury, Kent, United Kingdom
- * E-mail:
| | - Peter Rodgers
- School of Computing, University of Kent, Canterbury, Kent, United Kingdom
| |
Collapse
|
22
|
Dukowic-Schulze S, Chen C. The meiotic transcriptome architecture of plants. FRONTIERS IN PLANT SCIENCE 2014; 5:220. [PMID: 24926296 PMCID: PMC4046320 DOI: 10.3389/fpls.2014.00220] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/02/2014] [Indexed: 05/21/2023]
Abstract
Although a number of genes that play key roles during the meiotic process have been characterized in great detail, the whole process of meiosis is still not completely unraveled. To gain insight into the bigger picture, large-scale approaches like RNA-seq and microarray can help to elucidate the transcriptome landscape during plant meiosis, discover co-regulated genes, enriched processes, and highly expressed known and unknown genes which might be important for meiosis. These high-throughput studies are gaining more and more popularity, but their beginnings in plant systems reach back as far as the 1960's. Frequently, whole anthers or post-meiotic pollen were investigated, while less data is available on isolated cells during meiosis, and only few studies addressed the transcriptome of female meiosis. For this review, we compiled meiotic transcriptome studies covering different plant species, and summarized and compared their key findings. Besides pointing to consistent as well as unique discoveries, we finally draw conclusions what can be learned from these studies so far and what should be addressed next.
Collapse
Affiliation(s)
| | - Changbin Chen
- Department of Horticultural Science, University of MinnesotaSt. Paul, MN, USA
| |
Collapse
|
23
|
Qin Z, Zhang X, Zhang X, Xin W, Li J, Hu Y. The Arabidopsis transcription factor IIB-related protein BRP4 is involved in the regulation of mitotic cell-cycle progression during male gametogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2521-31. [PMID: 24723406 PMCID: PMC4036515 DOI: 10.1093/jxb/eru140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Male gametogenesis in angiosperms involves two rounds of mitosis that are essential for the generation of two sperm cells to achieve double fertilization, a distinct event in the sexual reproduction of flowering plants. Precise regulation of mitosis during male gametogenesis is critically important for the establishment of the male germline. However, the molecular mechanisms underlying mitotic division during male gametophyte development have not been characterized fully. Here, we report that the Arabidopsis transcription initiation factor TFIIB-related protein BRP4 is involved in the regulation of mitotic cell-cycle progression during male gametogenesis. BRP4 was expressed predominately in developing male gametophytes. Knockdown expression of BRP4 by a native promoter-driven RNA interference construct in Arabidopsis resulted in arrest of the mitotic progression of male gametophytes, leading to a defect in pollen development. Moreover, we showed that the level of expression of a gene encoding a subunit of the origin recognition complex, ORC6, was decreased in BRP4 knockdown plants, and that the ORC6 knockdown transgenic plants phenocopied the male gametophyte defect observed in BRP4 knockdown plants, suggesting that ORC6 acts downstream of BRP4 to mediate male mitotic progression. Taken together, our results reveal that BRP4 plays an important role in the regulation of mitotic cell-cycle progression during male gametogenesis.
Collapse
Affiliation(s)
- Zhixiang Qin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Xiaoran Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China University of Chinese Academy of Sciences, Beijing, PR China
| | - Xiao Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China University of Chinese Academy of Sciences, Beijing, PR China
| | - Wei Xin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Jia Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Yuxin Hu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China National Center for Plant Gene Research, Beijing, PR China
| |
Collapse
|
24
|
Xie HT, Wan ZY, Li S, Zhang Y. Spatiotemporal Production of Reactive Oxygen Species by NADPH Oxidase Is Critical for Tapetal Programmed Cell Death and Pollen Development in Arabidopsis. THE PLANT CELL 2014; 26:2007-2023. [PMID: 24808050 PMCID: PMC4079365 DOI: 10.1105/tpc.114.125427] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/10/2014] [Accepted: 04/16/2014] [Indexed: 05/17/2023]
Abstract
Male sterility in angiosperms has wide applications in agriculture, particularly in hybrid crop breeding and gene flow control. Microspores develop adjacent to the tapetum, a layer of cells that provides nutrients for pollen development and materials for pollen wall formation. Proper pollen development requires programmed cell death (PCD) of the tapetum, which requires transcriptional cascades and proteolytic enzymes. Reactive oxygen species (ROS) also affect tapetal PCD, and failures in ROS scavenging cause male sterility. However, many aspects of tapetal PCD remain unclear, including what sources generate ROS, whether ROS production has a temporal pattern, and how the ROS-producing system interacts with the tapetal transcriptional network. We report here that stage-specific expression of NADPH oxidases in the Arabidopsis thaliana tapetum contributes to a temporal peak of ROS production. Genetic interference with the temporal ROS pattern, by manipulating RESPIRATORY-BURST OXIDASE HOMOLOG (RBOH) genes, affected the timing of tapetal PCD and resulted in aborted male gametophytes. We further show that the tapetal transcriptional network regulates RBOH expression, indicating that the temporal pattern of ROS production intimately connects to other signaling pathways regulated by the tapetal transcriptional network to ensure the proper timing of tapetal PCD.
Collapse
Affiliation(s)
- Hong-Tao Xie
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Zhi-Yuan Wan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
25
|
Fu Z, Yu J, Cheng X, Zong X, Xu J, Chen M, Li Z, Zhang D, Liang W. The Rice Basic Helix-Loop-Helix Transcription Factor TDR INTERACTING PROTEIN2 Is a Central Switch in Early Anther Development. THE PLANT CELL 2014; 26:1512-1524. [PMID: 24755456 PMCID: PMC4036568 DOI: 10.1105/tpc.114.123745] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/27/2014] [Accepted: 04/04/2014] [Indexed: 05/18/2023]
Abstract
In male reproductive development in plants, meristemoid precursor cells possessing transient, stem cell-like features undergo cell divisions and differentiation to produce the anther, the male reproductive organ. The anther contains centrally positioned microsporocytes surrounded by four distinct layers of wall: the epidermis, endothecium, middle layer, and tapetum. Here, we report that the rice (Oryza sativa) basic helix-loop-helix (bHLH) protein TDR INTERACTING PROTEIN2 (TIP2) functions as a crucial switch in the meristemoid transition and differentiation during early anther development. The tip2 mutants display undifferentiated inner three anther wall layers and abort tapetal programmed cell death, causing complete male sterility. TIP2 has two paralogs in rice, TDR and EAT1, which are key regulators of tapetal programmed cell death. We revealed that TIP2 acts upstream of TDR and EAT1 and directly regulates the expression of TDR and EAT1. In addition, TIP2 can interact with TDR, indicating a role of TIP2 in later anther development. Our findings suggest that the bHLH proteins TIP2, TDR, and EAT1 play a central role in regulating differentiation, morphogenesis, and degradation of anther somatic cell layers, highlighting the role of paralogous bHLH proteins in regulating distinct steps of plant cell-type determination.
Collapse
Affiliation(s)
- Zhenzhen Fu
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Yu
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaowei Cheng
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Xu Zong
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Jie Xu
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingjiao Chen
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zongyun Li
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Dabing Zhang
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanqi Liang
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
26
|
Kelliher T, Walbot V. Maize germinal cell initials accommodate hypoxia and precociously express meiotic genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:639-52. [PMID: 24387628 PMCID: PMC3928636 DOI: 10.1111/tpj.12414] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/24/2013] [Accepted: 12/09/2013] [Indexed: 05/20/2023]
Abstract
In flowering plants, anthers are the site of de novo germinal cell specification, male meiosis, and pollen development. Atypically, anthers lack a meristem. Instead, both germinal and somatic cell types differentiate from floral stem cells packed into anther lobes. To better understand anther cell fate specification and to provide a resource for the reproductive biology community, we isolated cohorts of germinal and somatic initials from maize anthers within 36 h of fate acquisition, identifying 815 specific and 1714 significantly enriched germinal transcripts, plus 2439 specific and 2112 significantly enriched somatic transcripts. To clarify transcripts involved in cell differentiation, we contrasted these profiles to anther primordia prior to fate specification and to msca1 anthers arrested in the first step of fate specification and hence lacking normal cell types. The refined cell-specific profiles demonstrated that both germinal and somatic cell populations differentiate quickly and express unique transcription factor sets; a subset of transcript localizations was validated by in situ hybridization. Surprisingly, germinal initials starting 5 days of mitotic divisions were enriched significantly in >100 transcripts classified in meiotic processes that included recombination and synapsis, along with gene sets involved in RNA metabolism, redox homeostasis, and cytoplasmic ATP generation. Enrichment of meiotic-specific genes in germinal initials challenges current dogma that the mitotic to meiotic transition occurs later in development during pre-meiotic S phase. Expression of cytoplasmic energy generation genes suggests that male germinal cells accommodate hypoxia by diverting carbon away from mitochondrial respiration into alternative pathways that avoid producing reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Timothy Kelliher
- Department of Biology, Stanford University, Stanford, CA 94305-5020, U.S.A
| | - Virginia Walbot
- Department of Biology, Stanford University, Stanford, CA 94305-5020, U.S.A
| |
Collapse
|
27
|
Moon J, Skibbe D, Timofejeva L, Rachel Wang CJ, Kelliher T, Kremling K, Walbot V, Zacheus Cande W. Regulation of cell divisions and differentiation by MALE STERILITY32 is required for anther development in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:592-602. [PMID: 24033746 PMCID: PMC4239027 DOI: 10.1111/tpj.12318] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/13/2013] [Accepted: 08/22/2013] [Indexed: 05/19/2023]
Abstract
Male fertility in flowering plants relies on proper division and differentiation of cells in the anther, a process that gives rise to four somatic layers surrounding central germinal cells. The maize gene male sterility32 (ms32) encodes a basic helix-loop-helix (bHLH) transcription factor, which functions as an important regulator of both division and differentiation during anther development. After the four somatic cell layers are generated properly through successive periclinal divisions, in the ms32 mutant, tapetal precursor cells fail to differentiate, and, instead, undergo additional periclinal divisions to form extra layers of cells. These cells become vacuolated and expand, and lead to failure in pollen mother cell development. ms32 expression is specific to the pre-meiotic anthers and is distributed initially broadly in the four lobes, but as the anther develops, its expression becomes restricted to the innermost somatic layer, the tapetum. The ms32-ref mac1-1 double mutant is unable to form tapetal precursors and also exhibits excessive somatic proliferation leading to numerous, disorganized cell layers, suggesting a synergistic interaction between ms32 and mac1. Altogether, our results show that MS32 is a major regulator in maize anther development that promotes tapetum differentiation and inhibits periclinal division once a tapetal cell is specified.
Collapse
Affiliation(s)
- Jihyun Moon
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - David Skibbe
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Ljudmilla Timofejeva
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
- Department of Gene Technology, Tallinn University of Technology, Tallinn 12618, Estonia
| | | | - Timothy Kelliher
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Karl Kremling
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Virginia Walbot
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - William Zacheus Cande
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
- For correspondence ()
| |
Collapse
|
28
|
Wang H, Lu Y, Jiang T, Berg H, Li C, Xia Y. The Arabidopsis U-box/ARM repeat E3 ligase AtPUB4 influences growth and degeneration of tapetal cells, and its mutation leads to conditional male sterility. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:511-23. [PMID: 23398263 DOI: 10.1111/tpj.12146] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/29/2013] [Accepted: 02/01/2013] [Indexed: 05/06/2023]
Abstract
Pollen formation is a complex developmental process that has been extensively investigated to unravel underlying fundamental developmental mechanisms and for genetic manipulation of the male-sterility trait for hybrid crop production. Here we describe identification of AtPUB4, a U-box/ARM repeat-containing E3 ubiquitin ligase, as a novel player in male fertility in Arabidopsis. Loss of AtPUB4 function causes hypertrophic growth of the tapetum layer. The Atpub4 mutation also leads to incomplete degeneration of the tapetal cells and strikingly abnormal exine structures of pollen grains. As a result, although the Atpub4 mutant produces viable pollen, the pollen grains adhere to each other and to the remnants of incompletely degenerated tapetal cells, and do not properly disperse from dehisced anthers for successful pollination. We found that the male-sterility phenotype caused by the Atpub4 mutation is temperature-dependent: the mutant plants are sterile when grown at 22°C but are partially fertile at 16°C. Our study also indicates that the AtPUB4-mediated pathway acts in parallel with the brassinosteroid pathway in controlling developmental fates of the tapetal cells to ensure male fertility.
Collapse
Affiliation(s)
- Hai Wang
- Department of Biology, Hong Kong Baptist University, 224 Waterloo Rd, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
29
|
Ríos G, Tadeo FR, Leida C, Badenes ML. Prediction of components of the sporopollenin synthesis pathway in peach by genomic and expression analyses. BMC Genomics 2013; 14:40. [PMID: 23331975 PMCID: PMC3556096 DOI: 10.1186/1471-2164-14-40] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 01/15/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The outer cell wall of the pollen grain (exine) is an extremely resistant structure containing sporopollenin, a mixed polymer made up of fatty acids and phenolic compounds. The synthesis of sporopollenin in the tapetal cells and its proper deposition on the pollen surface are essential for the development of viable pollen. The beginning of microsporogenesis and pollen maturation in perennial plants from temperate climates, such as peach, is conditioned by the duration of flower bud dormancy. In order to identify putative genes involved in these processes, we analyzed the results of previous genomic experiments studying the dormancy-dependent gene expression in different peach cultivars. RESULTS The expression of 50 genes induced in flower buds after the endodormancy period (flower-bud late genes) was compared in ten cultivars of peach with different dormancy behaviour. We found two co-expression clusters enriched in putative orthologs of sporopollenin synthesis and deposition factors in Arabidopsis. Flower-bud late genes were transiently expressed in anthers coincidently with microsporogenesis and pollen maturation processes. We postulated the participation of some flower-bud late genes in the sporopollenin synthesis pathway and the transcriptional regulation of late anther development in peach. CONCLUSIONS Peach and the model plant Arabidopsis thaliana show multiple elements in common within the essential sporopollenin synthesis pathway and gene expression regulatory mechanisms affecting anther development. The transcriptomic analysis of dormancy-released flower buds proved to be an efficient procedure for the identification of anther and pollen development genes in perennial plants showing seasonal dormancy.
Collapse
Affiliation(s)
- Gabino Ríos
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera Moncada-Náquera km 4,5, Moncada, Valencia, E-46113, Spain
| | | | | | | |
Collapse
|
30
|
Cui X, Wang Q, Yin W, Xu H, Wilson ZA, Wei C, Pan S, Zhang D. PMRD: a curated database for genes and mutants involved in plant male reproduction. BMC PLANT BIOLOGY 2012; 12:215. [PMID: 23153247 PMCID: PMC3607949 DOI: 10.1186/1471-2229-12-215] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Accepted: 11/07/2012] [Indexed: 05/10/2023]
Abstract
BACKGROUND Male reproduction is an essential biological event in the plant life cycle separating the diploid sporophyte and haploid gametophyte generations, which involves expression of approximately 20,000 genes. The control of male reproduction is also of economic importance for plant breeding and hybrid seed production. With the advent of forward and reverse genetics and genomic technologies, a large number of male reproduction-related genes have been identified. Thus it is extremely challenging for individual researchers to systematically collect, and continually update, all the available information on genes and mutants related to plant male reproduction. The aim of this study is to manually curate such gene and mutant information and provide a web-accessible resource to facilitate the effective study of plant male reproduction. DESCRIPTION Plant Male Reproduction Database (PMRD) is a comprehensive resource for browsing and retrieving knowledge on genes and mutants related to plant male reproduction. It is based upon literature and biological databases and includes 506 male sterile genes and 484 mutants with defects of male reproduction from a variety of plant species. Based on Gene Ontology (GO) annotations and literature, information relating to a further 3697 male reproduction related genes were systematically collected and included, and using in text curation, gene expression and phenotypic information were captured from the literature. PMRD provides a web interface which allows users to easily access the curated annotations and genomic information, including full names, symbols, locations, sequences, expression patterns, functions of genes, mutant phenotypes, male sterile categories, and corresponding publications. PMRD also provides mini tools to search and browse expression patterns of genes in microarray datasets, run BLAST searches, convert gene ID and generate gene networks. In addition, a Mediawiki engine and a forum have been integrated within the database, allowing users to share their knowledge, make comments and discuss topics. CONCLUSION PMRD provides an integrated link between genetic studies and the rapidly growing genomic information. As such this database provides a global view of plant male reproduction and thus aids advances in this important area.
Collapse
Affiliation(s)
- Xiao Cui
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiudao Wang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Wenzhe Yin
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huayong Xu
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zoe A Wilson
- School of Biosciences, University of Nottingham, Loughborough, Leicestershire, Nottingham, LE12 5RD, UK
| | - Chaochun Wei
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shenyuan Pan
- School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Dabing Zhang
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
31
|
Feng B, Lu D, Ma X, Peng Y, Sun Y, Ning G, Ma H. Regulation of the Arabidopsis anther transcriptome by DYT1 for pollen development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:612-24. [PMID: 22775442 DOI: 10.1111/j.1365-313x.2012.05104.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Several genes encoding transcription factors have been shown to be essential for male fertility in plants, suggesting that transcriptional regulation is a major mechanism controlling anther development in Arabidopsis. DYSFUNCTIONAL TAPETUM 1 (DYT1), a putative bHLH transcription factor, plays a critical role in regulating tapetum function and pollen development. Here, we compare the transcriptomes of young anthers of wild-type and the dyt1 mutant, demonstrating that DYT1 is upstream of at least 22 genes encoding transcription factors and regulates the expression of a large number of genes, including genes involved in specific metabolic pathways. We also show that DYT1 can bind to DNA in a sequence-specific manner in vitro, and induction of DYT1 activity in vivo activated the expression of the downstream transcription factor genes MYB35 and MS1. We generated DYT1-SRDX transgenic plants whose fertility was dramatically reduced, implying that DYT1 probably acts as a transcriptional activator. Furthermore, we used yeast two-hybrid assays to show that DYT1 forms homodimers and heterodimers with other bHLH transcription factors. Our results demonstrate the important role of DYT1 in regulating anther transcriptome and function, and supporting normal pollen development.
Collapse
Affiliation(s)
- Baomin Feng
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | | | |
Collapse
|