1
|
Stavrianakis G, Sentas E, Zafeirelli S, Tscheulin T, Kizos T. Utilizing Olive Fly Ecology Towards Sustainable Pest Management. BIOLOGY 2025; 14:125. [PMID: 40001893 PMCID: PMC11851947 DOI: 10.3390/biology14020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025]
Abstract
The olive fly (Bactrocera oleae, OLF) is a major pest of global significance that occurs in places where olive cultivation thrives. This paper highlights the economic and environmental damage caused by OLF infestations, including reduced olive oil yield and quality, disrupted supply chains, and ecosystem imbalances due to heavy insecticide use. Understanding olive fly ecology is crucial for developing effective control strategies. The review explores the fly's life cycle, its relationship with olive trees, and how environmental factors like temperature and humidity influence population dynamics. Additionally, studying the role of natural enemies and agricultural practices can pave the way for sustainable control methods that minimize environmental harm. Climate change, intensive cultivation, and the development of resistance to insecticides necessitate a shift towards sustainable practices. This includes exploring alternative control methods like biological control with natural enemies and attract-and-kill strategies. Furthermore, a deeper understanding of OLF ecology, including its response to temperature and its ability to find refuge in diverse landscapes, is critical for predicting outbreaks and implementing effective protection strategies. By employing a holistic approach that integrates ecological knowledge with sustainable control methods, we can ensure the continued viability of olive cultivation, protect the environment, and produce high-quality olive oil.
Collapse
Affiliation(s)
- Giorgos Stavrianakis
- Rural Geography & Precision Farming Systems Lab, Department of Geography, University of the Aegean, Mytilene 81100, Greece; (G.S.); (E.S.); (S.Z.)
| | - Efstratios Sentas
- Rural Geography & Precision Farming Systems Lab, Department of Geography, University of the Aegean, Mytilene 81100, Greece; (G.S.); (E.S.); (S.Z.)
| | - Sofia Zafeirelli
- Rural Geography & Precision Farming Systems Lab, Department of Geography, University of the Aegean, Mytilene 81100, Greece; (G.S.); (E.S.); (S.Z.)
| | - Thomas Tscheulin
- Biogeography & Ecology Lab, Department of Geography, University of the Aegean, Mytilene 81100, Greece;
| | - Thanasis Kizos
- Rural Geography & Precision Farming Systems Lab, Department of Geography, University of the Aegean, Mytilene 81100, Greece; (G.S.); (E.S.); (S.Z.)
| |
Collapse
|
2
|
Castaldi V, Langella E, Buonanno M, Di Lelio I, Aprile AM, Molisso D, Criscuolo MC, D'Andrea LD, Romanelli A, Amoresano A, Pinto G, Illiano A, Chiaiese P, Becchimanzi A, Pennacchio F, Rao R, Monti SM. Intrinsically disordered Prosystemin discloses biologically active repeat motifs. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111969. [PMID: 38159610 DOI: 10.1016/j.plantsci.2023.111969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
The in-depth studies over the years on the defence barriers by tomato plants have shown that the Systemin peptide controls the response to a wealth of environmental stress agents. This multifaceted stress reaction seems to be related to the intrinsic disorder of its precursor protein, Prosystemin (ProSys). Since latest findings show that ProSys has biological functions besides Systemin sequence, here we wanted to assess if this precursor includes peptide motifs able to trigger stress-related pathways. Candidate peptides were identified in silico and synthesized to test their capacity to trigger defence responses in tomato plants against different biotic stressors. Our results demonstrated that ProSys harbours several repeat motifs which triggered plant immune reactions against pathogens and pest insects. Three of these peptides were detected by mass spectrometry in plants expressing ProSys, demonstrating their effective presence in vivo. These experimental data shed light on unrecognized functions of ProSys, mediated by multiple biologically active sequences which may partly account for the capacity of ProSys to induce defense responses to different stress agents.
Collapse
Affiliation(s)
- Valeria Castaldi
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, Portici, Naples 80055, Italy
| | - Emma Langella
- Institute of Biostructures and Bioimaging, National Research Council (IBB, CNR), via Pietro Castellino 111, Naples 80131, Italy.
| | - Martina Buonanno
- Institute of Biostructures and Bioimaging, National Research Council (IBB, CNR), via Pietro Castellino 111, Naples 80131, Italy
| | - Ilaria Di Lelio
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, Portici, Naples 80055, Italy; Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, via Università 100, Portici, 80055 Naples, Italy
| | - Anna Maria Aprile
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, Portici, Naples 80055, Italy
| | - Donata Molisso
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, Portici, Naples 80055, Italy
| | - Martina Chiara Criscuolo
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, Portici, Naples 80055, Italy
| | - Luca Domenico D'Andrea
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Consiglio Nazionale delle Ricerche (CNR), via Alfonso Corti 12, 20131 Milano, Italy
| | | | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, via Cynthia 8, Napoli and Interuniversitary Consortium "Istituto Nazionale Biostrutture e Biosistemi, 80126 Roma, Italy
| | - Gabriella Pinto
- Department of Chemical Sciences, University of Naples Federico II, via Cynthia 8, Napoli and Interuniversitary Consortium "Istituto Nazionale Biostrutture e Biosistemi, 80126 Roma, Italy
| | - Anna Illiano
- Department of Chemical Sciences, University of Naples Federico II, via Cynthia 8, Napoli and Interuniversitary Consortium "Istituto Nazionale Biostrutture e Biosistemi, 80126 Roma, Italy
| | - Pasquale Chiaiese
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, Portici, Naples 80055, Italy
| | - Andrea Becchimanzi
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, Portici, Naples 80055, Italy; Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, via Università 100, Portici, 80055 Naples, Italy
| | - Francesco Pennacchio
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, Portici, Naples 80055, Italy; Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, via Università 100, Portici, 80055 Naples, Italy
| | - Rosa Rao
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, Portici, Naples 80055, Italy; Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, via Università 100, Portici, 80055 Naples, Italy.
| | - Simona Maria Monti
- Institute of Biostructures and Bioimaging, National Research Council (IBB, CNR), via Pietro Castellino 111, Naples 80131, Italy.
| |
Collapse
|
3
|
Molisso D, Coppola M, Buonanno M, Di Lelio I, Aprile AM, Langella E, Rigano MM, Francesca S, Chiaiese P, Palmieri G, Tatè R, Sinno M, Barra E, Becchimanzi A, Monti SM, Pennacchio F, Rao R. Not Only Systemin: Prosystemin Harbors Other Active Regions Able to Protect Tomato Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:887674. [PMID: 35685017 PMCID: PMC9173717 DOI: 10.3389/fpls.2022.887674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Prosystemin is a 200-amino acid precursor expressed in Solanaceae plants which releases at the C-terminal part a peptidic hormone called Systemin in response to wounding and herbivore attack. We recently showed that Prosystemin is not only a mere scaffold of Systemin but, even when deprived of Systemin, is biologically active. These results, combined with recent discoveries that Prosystemin is an intrinsically disordered protein containing disordered regions within its sequence, prompted us to investigate the N-terminal portions of the precursor, which contribute to the greatest disorder within the sequence. To this aim, PS1-70 and PS1-120 were designed, produced, and structurally and functionally characterized. Both the fragments, which maintained their intrinsic disorder, were able to induce defense-related genes and to protect tomato plants against Botrytis cinerea and Spodoptera littoralis larvae. Intriguingly, the biological activity of each of the two N-terminal fragments and of Systemin is similar but not quite the same and does not show any toxicity on experimental non-targets considered. These regions account for different anti-stress activities conferred to tomato plants by their overexpression. The two N-terminal fragments identified in this study may represent new promising tools for sustainable crop protection.
Collapse
Affiliation(s)
- Donata Molisso
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Mariangela Coppola
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Martina Buonanno
- Institute of Biostructures and Bioimaging, National Research Council (IBB-CNR), Naples, Italy
| | - Ilaria Di Lelio
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Anna Maria Aprile
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Emma Langella
- Institute of Biostructures and Bioimaging, National Research Council (IBB-CNR), Naples, Italy
| | - Maria Manuela Rigano
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Silvana Francesca
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Pasquale Chiaiese
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Gianna Palmieri
- Institute of Biosciences and BioResources, National Research Council (IBBR-CNR), Naples, Italy
| | - Rosarita Tatè
- Institute of Genetics and Biophysics, National Research Council (IGB-CNR), Naples, Italy
| | - Martina Sinno
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Eleonora Barra
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Andrea Becchimanzi
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Simona Maria Monti
- Institute of Biostructures and Bioimaging, National Research Council (IBB-CNR), Naples, Italy
| | - Francesco Pennacchio
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Naples, Italy
| | - Rosa Rao
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Naples, Italy
| |
Collapse
|
4
|
Fruit Fly Larval Survival in Picked and Unpicked Tomato Fruit of Differing Ripeness and Associated Gene Expression Patterns. INSECTS 2022; 13:insects13050451. [PMID: 35621786 PMCID: PMC9146954 DOI: 10.3390/insects13050451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022]
Abstract
The larvae of frugivorous tephritid fruit flies feed within fruit and are global pests of horticulture. With the reduced use of pesticides, alternative control methods are needed, of which fruit resistance is one. In the current study, we explicitly tested for phenotypic evidence of induced fruit defences by running concurrent larval survival experiments with fruit on or off the plant, assuming that defence induction would be stopped or reduced by fruit picking. This was accompanied by RT-qPCR analysis of fruit defence and insect detoxification gene expression. Our fruit treatments were picking status (unpicked vs. picked) and ripening stage (colour break vs. fully ripe), our fruit fly was the polyphagous Bactrocera tryoni, and larval survival was assessed through destructive fruit sampling at 48 and 120 h, respectively. The gene expression study targeted larval and fruit tissue samples collected at 48 h and 120 h from picked and unpicked colour-break fruit. At 120 h in colour-break fruit, larval survival was significantly higher in the picked versus unpicked fruit. The gene expression patterns in larval and plant tissue were not affected by picking status, but many putative plant defence and insect detoxification genes were upregulated across the treatments. The larval survival results strongly infer an induced defence mechanism in colour-break tomato fruit that is stronger/faster in unpicked fruits; however, the gene expression patterns failed to provide the same clear-cut treatment effect. The lack of conformity between these results could be related to expression changes in unsampled candidate genes, or due to critical changes in gene expression that occurred during the unsampled periods.
Collapse
|
5
|
Notario A, Sánchez R, Luaces P, Sanz C, Pérez AG. The Infestation of Olive Fruits by Bactrocera oleae (Rossi) Modifies the Expression of Key Genes in the Biosynthesis of Volatile and Phenolic Compounds and Alters the Composition of Virgin Olive Oil. Molecules 2022; 27:1650. [PMID: 35268754 PMCID: PMC8911628 DOI: 10.3390/molecules27051650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 11/22/2022] Open
Abstract
Bactrocera oleae, the olive fruit fly, is one of the most important pests affecting the olive fruit, causing serious quantitative and qualitative damage to olive oil production. In this study, the changes induced by B. oleae infestation in the biosynthesis of volatile and phenolic compounds in olive (cvs. Picual, Manzanilla, and Hojiblanca) have been analyzed. Despite cultivar differences, the oils obtained from infested fruits showed a significant increase in the content of certain volatile compounds such as (E)-hex-2-enal, ethanol, ethyl acetate, and β-ocimene and a drastic decrease of the phenolic contents. The impact of those changes on the inferred quality of the oils has been studied. In parallel, the changes induced by the attack of the olive fly on the expression of some key genes in the biosynthesis of volatile and phenolic compounds, such as lipoxygenase, β-glucosidase, and polyphenol oxidase, have been analyzed. The strong induction of a new olive polyphenol oxidase gene (OePPO2) explains the reduction of phenolic content in the oils obtained from infested fruits and suggest the existence of a PPO-mediated oxidative defense system in olives.
Collapse
Affiliation(s)
| | | | | | | | - Ana G. Pérez
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, Campus UPO, Ctra. Utrera km 1, Bldg. 46, 41013 Seville, Spain; (A.N.); (R.S.); (P.L.); (C.S.)
| |
Collapse
|
6
|
Molisso D, Coppola M, Buonanno M, Di Lelio I, Monti SM, Melchiorre C, Amoresano A, Corrado G, Delano-Frier JP, Becchimanzi A, Pennacchio F, Rao R. Tomato Prosystemin Is Much More than a Simple Systemin Precursor. BIOLOGY 2022; 11:biology11010124. [PMID: 35053122 PMCID: PMC8772835 DOI: 10.3390/biology11010124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 02/04/2023]
Abstract
Simple Summary Prosystemin is a 200 amino acid precursor that releases, upon wounding and biotic attacks, an 18 amino acid peptide called Systemin. This peptide was traditionally considered as the principal actor of the resistance of tomato plants induced by triggering multiple defense pathways in response to a wide range of biotic/abiotic stress agents. Recent findings from our group discovered the disordered structure of Prosystemin that promotes the binding of different molecular partners and the possible activation of multiple stress-related pathways. All of our recent findings suggest that Prosystemin could be more than a simple precursor of Systemin peptide. Indeed, we hypothesized that it contains other sequences able to activate multiple stress-related responses. To verify this hypothesis, we produced a truncated Prosystemin protein deprived of the Systemin peptide and the relative deleted gene. Experiments with transgenic tomato plants overexpressing the truncated Prosystemin and with plants exogenously treated with the recombinant truncated protein demonstrated that both transgenic and treated plants modulated the expression of defense-related genes and were protected against a noctuid moth and a fungal pathogen. Taken together, our results demonstrated that Prosystemin is not a mere scaffold of Systemin, but itself contains other biologically active regions. Abstract Systemin (Sys) is an octadecapeptide, which upon wounding, is released from the carboxy terminus of its precursor, Prosystemin (ProSys), to promote plant defenses. Recent findings on the disordered structure of ProSys prompted us to investigate a putative biological role of the whole precursor deprived of the Sys peptide. We produced transgenic tomato plants expressing a truncated ProSys gene in which the exon coding for Sys was removed and compared their defense response with that induced by the exogenous application of the recombinant truncated ProSys (ProSys(1-178), the Prosystemin sequence devoid of Sys region). By combining protein structure analyses, transcriptomic analysis, gene expression profiling and bioassays with different pests, we demonstrate that truncated ProSys promotes defense barriers in tomato plants through a hormone-independent defense pathway, likely associated with the production of oligogalacturonides (OGs). Both transgenic and plants treated with the recombinant protein showed the modulation of the expression of genes linked with defense responses and resulted in protection against the lepidopteran pest Spodoptera littoralis and the fungus Botrytis cinerea. Our results suggest that the overall function of the wild-type ProSys is more complex than previously shown, as it might activate at least two tomato defense pathways: the well-known Sys-dependent pathway connected with the induction of jasmonic acid biosynthesis and the successive activation of a set of defense-related genes, and the ProSys(1-178)-dependent pathway associated with OGs production leading to the OGs mediate plant immunity.
Collapse
Affiliation(s)
- Donata Molisso
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Naples, Italy; (D.M.); (M.C.); (I.D.L.); (G.C.); (A.B.); (F.P.)
- Materias s.r.l., Corso N. Protopisani 50, 80146 Naples, Italy
| | - Mariangela Coppola
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Naples, Italy; (D.M.); (M.C.); (I.D.L.); (G.C.); (A.B.); (F.P.)
| | - Martina Buonanno
- Istituto di Biostrutture e Bioimmagini-CNR, Via Mezzocannone 16, 80134 Naples, Italy;
| | - Ilaria Di Lelio
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Naples, Italy; (D.M.); (M.C.); (I.D.L.); (G.C.); (A.B.); (F.P.)
| | - Simona Maria Monti
- Istituto di Biostrutture e Bioimmagini-CNR, Via Mezzocannone 16, 80134 Naples, Italy;
- Correspondence: (S.M.M.); (R.R.)
| | - Chiara Melchiorre
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cinthia 4, 80126 Naples, Italy; (C.M.); (A.A.)
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cinthia 4, 80126 Naples, Italy; (C.M.); (A.A.)
| | - Giandomenico Corrado
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Naples, Italy; (D.M.); (M.C.); (I.D.L.); (G.C.); (A.B.); (F.P.)
| | - John Paul Delano-Frier
- Center for Research and Advanced Studies (CINVESTAV) Irapuato, Department of Biochemistry and Biotechnology, Km. 9.6 Libramiento Norte Carretera Irapuato-León, Irapuato 36500, Mexico;
| | - Andrea Becchimanzi
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Naples, Italy; (D.M.); (M.C.); (I.D.L.); (G.C.); (A.B.); (F.P.)
| | - Francesco Pennacchio
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Naples, Italy; (D.M.); (M.C.); (I.D.L.); (G.C.); (A.B.); (F.P.)
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Via Università 100, 80055 Naples, Italy
| | - Rosa Rao
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Naples, Italy; (D.M.); (M.C.); (I.D.L.); (G.C.); (A.B.); (F.P.)
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Via Università 100, 80055 Naples, Italy
- Correspondence: (S.M.M.); (R.R.)
| |
Collapse
|
7
|
Roohigohar S, Clarke AR, Prentis PJ. Gene selection for studying frugivore-plant interactions: a review and an example using Queensland fruit fly in tomato. PeerJ 2021; 9:e11762. [PMID: 34434644 PMCID: PMC8359797 DOI: 10.7717/peerj.11762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 06/21/2021] [Indexed: 12/17/2022] Open
Abstract
Fruit production is negatively affected by a wide range of frugivorous insects, among them tephritid fruit flies are one of the most important. As a replacement for pesticide-based controls, enhancing natural fruit resistance through biotechnology approaches is a poorly researched but promising alternative. The use of quantitative reverse transcription PCR (RT-qPCR) is an approach to studying gene expression which has been widely used in studying plant resistance to pathogens and non-frugivorous insect herbivores, and offers a starting point for fruit fly studies. In this paper, we develop a gene selection pipe-line for known induced-defense genes in tomato fruit, Solanum lycopersicum, and putative detoxification genes in Queensland fruit fly, Bactrocera tryoni, as a basis for future RT-qPCR research. The pipeline started with a literature review on plant/herbivore and plant/pathogen molecular interactions. With respect to the fly, this was then followed by the identification of gene families known to be associated with insect resistance to toxins, and then individual genes through reference to annotated B. tryoni transcriptomes and gene identity matching with related species. In contrast for tomato, a much better studied species, individual defense genes could be identified directly through literature research. For B. tryoni, gene selection was then further refined through gene expression studies. Ultimately 28 putative detoxification genes from cytochrome P450 (P450), carboxylesterase (CarE), glutathione S-transferases (GST), and ATP binding cassette transporters (ABC) gene families were identified for B. tryoni, and 15 induced defense genes from receptor-like kinase (RLK), D-mannose/L-galactose, mitogen-activated protein kinase (MAPK), lipoxygenase (LOX), gamma-aminobutyric acid (GABA) pathways and polyphenol oxidase (PPO), proteinase inhibitors (PI) and resistance (R) gene families were identified from tomato fruit. The developed gene selection process for B. tryoni can be applied to other herbivorous and frugivorous insect pests so long as the minimum necessary genomic information, an annotated transcriptome, is available.
Collapse
Affiliation(s)
- Shirin Roohigohar
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Anthony R Clarke
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Peter J Prentis
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| |
Collapse
|
8
|
Yadav S, Carvalho J, Trujillo I, Prado M. Microsatellite Markers in Olives ( Olea europaea L.): Utility in the Cataloging of Germplasm, Food Authenticity and Traceability Studies. Foods 2021; 10:foods10081907. [PMID: 34441688 PMCID: PMC8394707 DOI: 10.3390/foods10081907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
The olive fruit, a symbol of Mediterranean diets, is a rich source of antioxidants and oleic acid (55–83%). Olive genetic resources, including cultivated olives (cultivars), wild olives as well as related subspecies, are distributed widely across the Mediterranean region and other countries. Certain cultivars have a high commercial demand and economical value due to the differentiating organoleptic characteristics. This might result in economically motivated fraudulent practices and adulteration. Hence, tools to ensure the authenticity of constituent olive cultivars are crucial, and this can be achieved accurately through DNA-based methods. The present review outlines the applications of microsatellite markers, one of the most extensively used types of molecular markers in olive species, particularly referring to the use of these DNA-based markers in cataloging the vast olive germplasm, leading to identification and authentication of the cultivars. Emphasis has been given on the need to adopt a uniform platform where global molecular information pertaining to the details of available markers, cultivar-specific genotyping profiles (their synonyms or homonyms) and the comparative profiles of oil and reference leaf samples is accessible to researchers. The challenges of working with microsatellite markers and efforts underway, mainly advancements in genotyping methods which can be effectively incorporated in olive oil varietal testing, are also provided. Such efforts will pave the way for the development of more robust microsatellite marker-based olive agri-food authentication platforms.
Collapse
Affiliation(s)
- Shambhavi Yadav
- Genetics and Tree Improvement Division, Forest Research Institute, P.O. New Forest, Dehradun 248001, India
- Correspondence: (S.Y.); (I.T.)
| | - Joana Carvalho
- Food Quality and Safety Research Group, International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal; (J.C.); (M.P.)
- Department of Analytical Chemistry, Nutrition and Food Science, Campus Vida, College of Pharmacy/School of Veterinary Sciences, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Isabel Trujillo
- Excellence Unit of Maria de Maeztu, Department of Agronomy, Rabanales Campus, International Campus of Excellence on Agrofood (ceiA3), University of Córdoba, 14014 Córdoba, Spain
- Correspondence: (S.Y.); (I.T.)
| | - Marta Prado
- Food Quality and Safety Research Group, International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal; (J.C.); (M.P.)
| |
Collapse
|
9
|
Di Lelio I, Coppola M, Comite E, Molisso D, Lorito M, Woo SL, Pennacchio F, Rao R, Digilio MC. Temperature Differentially Influences the Capacity of Trichoderma Species to Induce Plant Defense Responses in Tomato Against Insect Pests. FRONTIERS IN PLANT SCIENCE 2021; 12:678830. [PMID: 34177994 PMCID: PMC8221184 DOI: 10.3389/fpls.2021.678830] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/14/2021] [Indexed: 05/31/2023]
Abstract
Species of the ecological opportunistic, avirulent fungus, Trichoderma are widely used in agriculture for their ability to protect crops from the attack of pathogenic fungi and for plant growth promotion activity. Recently, it has been shown that they may also have complementary properties that enhance plant defense barriers against insects. However, the use of these fungi is somewhat undermined by their variable level of biocontrol activity, which is influenced by environmental conditions. Understanding the source of this variability is essential for its profitable and wide use in plant protection. Here, we focus on the impact of temperature on Trichoderma afroharzianum T22, Trichoderma atroviride P1, and the defense response induced in tomato by insects. The in vitro development of these two strains was differentially influenced by temperature, and the observed pattern was consistent with temperature-dependent levels of resistance induced by them in tomato plants against the aphid, Macrosiphum euphorbiae, and the noctuid moth, Spodoptera littoralis. Tomato plants treated with T. afroharzianum T22 exhibited enhanced resistance toward both insect pests at 25°C, while T. atroviride P1 proved to be more effective at 20°C. The comparison of plant transcriptomic profiles generated by the two Trichoderma species allowed the identification of specific defense genes involved in the observed response, and a selected group was used to assess, by real-time quantitative reverse transcription PCR (qRT-PCR), the differential gene expression in Trichoderma-treated tomato plants subjected to the two temperature regimens that significantly affected fungal biological performance. These results will help pave the way toward a rational selection of the most suitable Trichoderma isolates for field applications, in order to best face the challenges imposed by local environmental conditions and by extreme climatic shifts due to global warming.
Collapse
Affiliation(s)
- Ilaria Di Lelio
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Mariangela Coppola
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Ernesto Comite
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Donata Molisso
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Matteo Lorito
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Naples, Italy
| | - Sheridan Lois Woo
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Naples, Italy
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Francesco Pennacchio
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Naples, Italy
| | - Rosa Rao
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Naples, Italy
| | - Maria Cristina Digilio
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Naples, Italy
| |
Collapse
|
10
|
Colonization of Solanum melongena and Vitis vinifera Plants by Botrytis cinerea Is Strongly Reduced by the Exogenous Application of Tomato Systemin. J Fungi (Basel) 2020; 7:jof7010015. [PMID: 33383908 PMCID: PMC7824362 DOI: 10.3390/jof7010015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 01/11/2023] Open
Abstract
Plant defense peptides are able to control immune barriers and represent a potential novel resource for crop protection. One of the best-characterized plant peptides is tomato Systemin (Sys) an octadecapeptide synthesized as part of a larger precursor protein. Upon pest attack, Sys interacts with a leucine-rich repeat receptor kinase, systemin receptor SYR, activating a complex intracellular signaling pathway that leads to the wound response. Here, we demonstrated, for the first time, that the direct delivery of the peptide to Solanum melongena and Vitis vinifera plants protects from the agent of Grey mould (Botrytis cinerea). The observed disease tolerance is associated with the increase of total soluble phenolic content, the activation of antioxidant enzymes, and the up-regulation of defense-related genes in plants treated with the peptide. Our results suggest that in treated plants, the biotic defense system is triggered by the Sys signaling pathway as a consequence of Sys interaction with a SYR-like receptor recently found in several plant species, including those under investigation. We propose that this biotechnological use of Sys, promoting defense responses against invaders, represents a useful tool to integrate into pest management programs for the development of novel strategies of crop protection.
Collapse
|
11
|
Marra R, Coppola M, Pironti A, Grasso F, Lombardi N, d’Errico G, Sicari A, Bolletti Censi S, Woo SL, Rao R, Vinale F. The Application of Trichoderma Strains or Metabolites Alters the Olive Leaf Metabolome and the Expression of Defense-Related Genes. J Fungi (Basel) 2020; 6:jof6040369. [PMID: 33339378 PMCID: PMC7766153 DOI: 10.3390/jof6040369] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/16/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022] Open
Abstract
Biocontrol fungal strains of the genus Trichoderma can antagonize numerous plant pathogens and promote plant growth using different mechanisms of action, including the production of secondary metabolites (SMs). In this work we analyzed the effects of repeated applications of selected Trichoderma strains or SMs on young olive trees on the stimulation of plant growth and on the development of olive leaf spot disease caused by Fusicladium oleagineum. In addition, metabolomic analyses and gene expression profiles of olive leaves were carried out by LC-MS Q-TOF and real-time RT-PCR, respectively. A total of 104 phenolic compounds were detected from olive leave extracts and 20 were putatively identified. Targeted and untargeted approaches revealed significant differences in both the number and type of phenolic compounds accumulated in olive leaves after Trichoderma applications, as compared to water-treated plants. Different secoiridoids were less abundant in treated plants than in controls, while the accumulation of flavonoids (including luteolin and apigenin derivatives) increased following the application of specific Trichoderma strain. The induction of defense-related genes, and of genes involved in the synthesis of the secoiridoid oleuropein, was also analyzed and revealed a significant variation of gene expression according to the strain or metabolite applied.
Collapse
Affiliation(s)
- Roberta Marra
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy; (M.C.); (A.P.); (F.G.); (N.L.); (G.d.); (R.R.)
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Portici, 80055 Naples, Italy; (S.L.W.); (F.V.)
- Correspondence: ; Tel.: +39-0812532253
| | - Mariangela Coppola
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy; (M.C.); (A.P.); (F.G.); (N.L.); (G.d.); (R.R.)
| | - Angela Pironti
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy; (M.C.); (A.P.); (F.G.); (N.L.); (G.d.); (R.R.)
| | - Filomena Grasso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy; (M.C.); (A.P.); (F.G.); (N.L.); (G.d.); (R.R.)
| | - Nadia Lombardi
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy; (M.C.); (A.P.); (F.G.); (N.L.); (G.d.); (R.R.)
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Portici, 80055 Naples, Italy; (S.L.W.); (F.V.)
| | - Giada d’Errico
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy; (M.C.); (A.P.); (F.G.); (N.L.); (G.d.); (R.R.)
| | - Andrea Sicari
- Linfa S.c.a r.l., 89900 Vibo Valentia, Italy; (A.S.); (S.B.C.)
| | | | - Sheridan L. Woo
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Portici, 80055 Naples, Italy; (S.L.W.); (F.V.)
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy
| | - Rosa Rao
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy; (M.C.); (A.P.); (F.G.); (N.L.); (G.d.); (R.R.)
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Portici, 80055 Naples, Italy; (S.L.W.); (F.V.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy
| | - Francesco Vinale
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Portici, 80055 Naples, Italy; (S.L.W.); (F.V.)
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy
- Institute for Sustainable Plant Protection, National Research Council, Portici, 80055 Naples, Italy
| |
Collapse
|
12
|
Sinno M, Bézier A, Vinale F, Giron D, Laudonia S, Garonna AP, Pennacchio F. Symbiosis disruption in the olive fruit fly, Bactrocera oleae (Rossi), as a potential tool for sustainable control. PEST MANAGEMENT SCIENCE 2020; 76:3199-3207. [PMID: 32358914 DOI: 10.1002/ps.5875] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/23/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The olive fruit fly Bactrocera oleae (Rossi) (OLF) is a major agricultural pest, whose control primarily relies on the use of chemical insecticides. Therefore, development of sustainable control strategies is highly desirable. The primary endosymbiotic bacterium of OLF, 'Candidatus Erwinia dacicola', is essential for successful larval development in unripe olive fruits. Therefore, targeting this endosymbiont with antimicrobial compounds may result in OLF fitness reduction and may exert control on natural populations of OLF. RESULTS Here, we evaluate the impact of compounds with antimicrobial activity on the OLF endosymbiont. Copper oxychloride (CO) and the fungal metabolite viridiol (Vi), produced by Trichoderma spp., were used. Laboratory bioassays were carried out to assess the effect of oral administration of these compounds on OLF fitness and molecular analyses (quantitative polymerase chain reaction) were conducted to measure the load of OLF-associated microorganisms in treated flies. CO and Vi were both able to disrupt the symbiotic association between OLF and its symbiotic bacteria, determining a significant reduction in the endosymbiont and gut microbiota load as well as a decrease in OLF fitness. CO had a direct negative effect on OLF adults. Conversely, exposure to Vi significantly undermined larval development of the treated female's progeny but did not show any toxicity in OLF adults. CONCLUSIONS These results provide new insights into the symbiotic control of OLF and pave the way for the development of more sustainable strategies of pest control based on the use of natural compounds with antimicrobial activity. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Martina Sinno
- Department of Agricultural Sciences, University of Naples Federico II, Portici (NA), Italy
| | - Annie Bézier
- Research Institute for the Biology of Insect (IRBI) - UMR 7261 CNRS/Université de Tours, Tours, France
| | - Francesco Vinale
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
- CNR Institute for Sustainable Plant Protection, Portici (NA), Italy
| | - David Giron
- Research Institute for the Biology of Insect (IRBI) - UMR 7261 CNRS/Université de Tours, Tours, France
| | - Stefania Laudonia
- Department of Agricultural Sciences, University of Naples Federico II, Portici (NA), Italy
| | - Antonio P Garonna
- Department of Agricultural Sciences, University of Naples Federico II, Portici (NA), Italy
| | - Francesco Pennacchio
- Department of Agricultural Sciences, University of Naples Federico II, Portici (NA), Italy
| |
Collapse
|
13
|
Transcriptome and Hormone Analyses Revealed Insights into Hormonal and Vesicle Trafficking Regulation among Olea europaea Fruit Tissues in Late Development. Int J Mol Sci 2020; 21:ijms21144819. [PMID: 32650402 PMCID: PMC7404322 DOI: 10.3390/ijms21144819] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 01/23/2023] Open
Abstract
Fruit ripening and abscission are the results of the cell wall modification concerning different components of the signaling network. However, molecular-genetic information on the cross-talk between ripe fruit and their abscission zone (AZ) remains limited. In this study, we investigated transcriptional and hormonal changes in olive (Olea europaea L. cv Picual) pericarp and AZ tissues of fruit at the last stage of ripening, when fruit abscission occurs, to establish distinct tissue-specific expression patterns related to cell-wall modification, plant-hormone, and vesicle trafficking in combination with data on hormonal content. In this case, transcriptome profiling reveals that gene encoding members of the α-galactosidase and β-hexosaminidase families associated with up-regulation of RabB, RabD, and RabH classes of Rab-GTPases were exclusively transcribed in ripe fruit enriched in ABA, whereas genes of the arabinogalactan protein, laccase, lyase, endo-β-mannanase, ramnose synthase, and xyloglucan endotransglucosylase/hydrolase families associated with up-regulation of RabC, RabE, and RabG classes of Rab-GTPases were exclusively transcribed in AZ-enriched mainly in JA, which provide the first insights into the functional divergences among these protein families. The enrichment of these protein families in different tissues in combination with data on transcript abundance offer a tenable set of key genes of the regulatory network between olive fruit tissues in late development.
Collapse
|
14
|
Coppola M, Di Lelio I, Romanelli A, Gualtieri L, Molisso D, Ruocco M, Avitabile C, Natale R, Cascone P, Guerrieri E, Pennacchio F, Rao R. Tomato Plants Treated with Systemin Peptide Show Enhanced Levels of Direct and Indirect Defense Associated with Increased Expression of Defense-Related Genes. PLANTS 2019; 8:plants8100395. [PMID: 31623335 PMCID: PMC6843623 DOI: 10.3390/plants8100395] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/25/2019] [Accepted: 10/01/2019] [Indexed: 01/11/2023]
Abstract
Plant defense peptides represent an important class of compounds active against pathogens and insects. These molecules controlling immune barriers can potentially be used as novel tools for plant protection, which mimic natural defense mechanisms against invaders. The constitutive expression in tomato plants of the precursor of the defense peptide systemin was previously demonstrated to increase tolerance against moth larvae and aphids and to hamper the colonization by phytopathogenic fungi, through the expression of a wealth of defense-related genes. In this work we studied the impact of the exogenous supply of systemin to tomato plants on pests to evaluate the use of the peptide as a tool for crop protection in non-transgenic approaches. By combining gene expression studies and bioassays with different pests we demonstrate that the exogenous supply of systemin to tomato plants enhances both direct and indirect defense barriers. Experimental plants, exposed to this peptide by foliar spotting or root uptake through hydroponic culture, impaired larval growth and development of the noctuid moth Spodoptera littoralis, even across generations, reduced the leaf colonization by the fungal pathogen Botrytis cinerea and were more attractive towards natural herbivore antagonists. The induction of these defense responses was found to be associated with molecular and biochemical changes under control of the systemin signalling cascade. Our results indicate that the direct delivery of systemin, likely characterized by a null effect on non-target organisms, represents an interesting tool for the sustainable protection of tomato plants.
Collapse
Affiliation(s)
- Mariangela Coppola
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici, Italy; (M.C.); (I.D.L.); (D.M.)
| | - Ilaria Di Lelio
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici, Italy; (M.C.); (I.D.L.); (D.M.)
| | - Alessandra Romanelli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Venezian 21, 20133 Milano, Italy;
| | | | - Donata Molisso
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici, Italy; (M.C.); (I.D.L.); (D.M.)
| | - Michelina Ruocco
- CNR-IPSP, Via Università 133, 80055 Portici, Italy; (L.G.); (M.R.)
| | | | - Roberto Natale
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici, Italy; (M.C.); (I.D.L.); (D.M.)
| | - Pasquale Cascone
- CNR-IPSP, Via Università 133, 80055 Portici, Italy; (L.G.); (M.R.)
| | - Emilio Guerrieri
- CNR-IPSP, Via Università 133, 80055 Portici, Italy; (L.G.); (M.R.)
| | - Francesco Pennacchio
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici, Italy; (M.C.); (I.D.L.); (D.M.)
| | - Rosa Rao
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici, Italy; (M.C.); (I.D.L.); (D.M.)
- Correspondence: ; Tel.: +39-081-2539204
| |
Collapse
|
15
|
Salzano AM, Renzone G, Sobolev AP, Carbone V, Petriccione M, Capitani D, Vitale M, Novi G, Zambrano N, Pasquariello MS, Mannina L, Scaloni A. Unveiling Kiwifruit Metabolite and Protein Changes in the Course of Postharvest Cold Storage. FRONTIERS IN PLANT SCIENCE 2019; 10:71. [PMID: 30778366 PMCID: PMC6369206 DOI: 10.3389/fpls.2019.00071] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/17/2019] [Indexed: 05/07/2023]
Abstract
Actinidia deliciosa cv. Hayward fruit is renowned for its micro- and macronutrients, which vary in their levels during berry physiological development and postharvest processing. In this context, we have recently described metabolic pathways/molecular effectors in fruit outer endocarp characterizing the different stages of berry physiological maturation. Here, we report on the kiwifruit postharvest phase through an integrated approach consisting of pomological analysis combined with NMR/LC-UV/ESI-IT-MSn- and 2D-DIGE/nanoLC-ESI-LIT-MS/MS-based proteometabolomic measurements. Kiwifruit samples stored under conventional, cold-based postharvest conditions not involving the use of dedicated chemicals were sampled at four stages (from fruit harvest to pre-commercialization) and analyzed in comparison for pomological features, and outer endocarp metabolite and protein content. About 42 metabolites were quantified, together with corresponding proteomic changes. Proteomics showed that proteins associated with disease/defense, energy, protein destination/storage, cell structure and metabolism functions were affected at precise fruit postharvest times, providing a justification to corresponding pomological/metabolite content characteristics. Bioinformatic analysis of variably represented proteins revealed a central network of interacting species, modulating metabolite level variations during postharvest fruit storage. Kiwifruit allergens were also quantified, demonstrating in some cases their highest levels at the fruit pre-commercialization stage. By lining up kiwifruit postharvest processing to a proteometabolomic depiction, this study integrates previous observations on metabolite and protein content in postharvest berries treated with specific chemical additives, and provides a reference framework for further studies on the optimization of fruit storage before its commercialization.
Collapse
Affiliation(s)
- Anna Maria Salzano
- Proteomics & Mass Spectrometry Laboratory, Istituto per il Sistema Produzione Animale In Ambiente Mediterraneo, National Research Council, Naples, Italy
| | - Giovanni Renzone
- Proteomics & Mass Spectrometry Laboratory, Istituto per il Sistema Produzione Animale In Ambiente Mediterraneo, National Research Council, Naples, Italy
| | - Anatoly P. Sobolev
- Magnetic Resonance Laboratory “Annalaura Segre”, Institute of Chemical Methodologies, National Research Council, Monterotondo, Italy
| | - Virginia Carbone
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Milena Petriccione
- Centro di Ricerca per Olivicoltura, Frutticoltura e Agrumicoltura, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Caserta, Italy
| | - Donatella Capitani
- Magnetic Resonance Laboratory “Annalaura Segre”, Institute of Chemical Methodologies, National Research Council, Monterotondo, Italy
| | - Monica Vitale
- Proteomics & Mass Spectrometry Laboratory, Istituto per il Sistema Produzione Animale In Ambiente Mediterraneo, National Research Council, Naples, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Gianfranco Novi
- Proteomics & Mass Spectrometry Laboratory, Istituto per il Sistema Produzione Animale In Ambiente Mediterraneo, National Research Council, Naples, Italy
| | - Nicola Zambrano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
- Ceinge Biotecnologie Avanzate S. C. a R. L., Naples, Italy
| | - Maria Silvia Pasquariello
- Centro di Ricerca per Olivicoltura, Frutticoltura e Agrumicoltura, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Caserta, Italy
| | - Luisa Mannina
- Magnetic Resonance Laboratory “Annalaura Segre”, Institute of Chemical Methodologies, National Research Council, Monterotondo, Italy
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Rome, Italy
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, Istituto per il Sistema Produzione Animale In Ambiente Mediterraneo, National Research Council, Naples, Italy
| |
Collapse
|
16
|
Malheiro R, Casal S, Pinheiro L, Baptista P, Pereira JA. Olive cultivar and maturation process on the oviposition preference of Bactrocera oleae (Rossi) (Diptera: Tephritidae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2019; 109:43-53. [PMID: 29463321 DOI: 10.1017/s0007485318000135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The olive fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), is a key-pest in the main olives producing areas worldwide, and displays distinct preference to different olive cultivars. The present work intended to study oviposition preference towards three Portuguese cultivars (Cobrançosa, Madural, and Verdeal Transmontana) at different maturation indexes. Multiple oviposition bioassays (multiple-choice and no-choice) were conducted to assess cultivar preference. No-choice bioassays were conducted to assess the influence of different maturation indexes (MI 2; MI 3, and MI 4) in single cultivars. The longevity of olive fly adults according to the cultivar in which its larvae developed was also evaluated through survival assays.Cultivar and maturation are crucial aspects in olive fly preference. Field and laboratory assays revealed a preference towards cv. Verdeal Transmontana olives and a lower susceptibility to cv. Cobrançosa olives. A higher preference was observed for olives at MI 2 and MI 3. The slower maturation process in cv. Verdeal Transmontana (still green while the other cultivars are reddish or at black stage) seems to have an attractive effect on olive fly females, thus increasing its infestation levels. Olive fly adults from both sexes live longer if emerged from pupae developed from cv. Verdeal Transmontana fruits and live less if emerged from cv. Cobrançosa. Therefore, olive cultivar and maturation process are crucial aspects in olive fly preference, also influencing the longevity of adults.
Collapse
Affiliation(s)
- R Malheiro
- Centro de Investigação de Montanha (CIMO), ESA, Instituto Politécnico de Bragança,Campus de Santa Apolónia, 5300-253 Bragança,Portugal
| | - S Casal
- REQUIMTE/LAQV/Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia,Universidade do Porto,Porto,Portugal
| | - L Pinheiro
- Centro de Investigação de Montanha (CIMO), ESA, Instituto Politécnico de Bragança,Campus de Santa Apolónia, 5300-253 Bragança,Portugal
| | - P Baptista
- Centro de Investigação de Montanha (CIMO), ESA, Instituto Politécnico de Bragança,Campus de Santa Apolónia, 5300-253 Bragança,Portugal
| | - J A Pereira
- Centro de Investigação de Montanha (CIMO), ESA, Instituto Politécnico de Bragança,Campus de Santa Apolónia, 5300-253 Bragança,Portugal
| |
Collapse
|
17
|
Hernández ML, Sicardo MD, Alfonso M, Martínez-Rivas JM. Transcriptional Regulation of Stearoyl-Acyl Carrier Protein Desaturase Genes in Response to Abiotic Stresses Leads to Changes in the Unsaturated Fatty Acids Composition of Olive Mesocarp. FRONTIERS IN PLANT SCIENCE 2019; 10:251. [PMID: 30891055 PMCID: PMC6411816 DOI: 10.3389/fpls.2019.00251] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/15/2019] [Indexed: 05/21/2023]
Abstract
In higher plants, the stearoyl-acyl carrier protein desaturase (SAD) catalyzes the first desaturation step leading to oleic acid, which can be further desaturated to linoleic and α-linolenic acids. Therefore, SAD plays an essential role in determining the overall content of unsaturated fatty acids (UFA). We have investigated how SAD genes expression and UFA composition are regulated in olive (Olea europaea) mesocarp tissue from Picual and Arbequina cultivars in response to different abiotic stresses. The results showed that olive SAD genes are transcriptionally regulated by temperature, darkness and wounding. The increase in SAD genes expression levels observed in Picual mesocarp exposed to low temperature brought about a modification in the UFA content of microsomal membrane lipids. In addition, darkness caused the down-regulation of SAD genes transcripts, together with a decrease in the UFA content of chloroplast lipids. The differential role of olive SAD genes in the wounding response was also demonstrated. These data point out that different environmental stresses can modify the UFA composition of olive mesocarp through the transcriptional regulation of SAD genes, affecting olive oil quality.
Collapse
Affiliation(s)
- M. Luisa Hernández
- Instituto de la Grasa (IG-CSIC), Seville, Spain
- Estación Experimental de Aula Dei (EEAD-CSIC), Zaragoza, Spain
- *Correspondence: M. Luisa Hernández, ;
| | | | - Miguel Alfonso
- Estación Experimental de Aula Dei (EEAD-CSIC), Zaragoza, Spain
| | | |
Collapse
|
18
|
Besnard G, Terral JF, Cornille A. On the origins and domestication of the olive: a review and perspectives. ANNALS OF BOTANY 2018; 121:385-403. [PMID: 29293871 PMCID: PMC5838823 DOI: 10.1093/aob/mcx145] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 10/12/2017] [Indexed: 05/18/2023]
Abstract
Background Unravelling domestication processes is crucial for understanding how species respond to anthropogenic pressures, forecasting crop responses to future global changes and improving breeding programmes. Domestication processes for clonally propagated perennials differ markedly from those for seed-propagated annual crops, mostly due to long generation times, clonal propagation and recurrent admixture with local forms, leading to a limited number of generations of selection from wild ancestors. However, additional case studies are required to document this process more fully. Scope The olive is an iconic species in Mediterranean cultural history. Its multiple uses and omnipresence in traditional agrosystems have made this species an economic pillar and cornerstone of Mediterranean agriculture. However, major questions about the domestication history of the olive remain unanswered. New paleobotanical, archeological, historical and molecular data have recently accumulated for olive, making it timely to carry out a critical re-evaluation of the biogeography of wild olives and the history of their cultivation. We review here the chronological history of wild olives and discuss the questions that remain unanswered, or even unasked, about their domestication history in the Mediterranean Basin. We argue that more detailed ecological genomics studies of wild and cultivated olives are crucial to improve our understanding of olive domestication. Multidisciplinary research integrating genomics, metagenomics and community ecology will make it possible to decipher the evolutionary ecology of one of the most iconic domesticated fruit trees worldwide. Conclusion The olive is a relevant model for improving our knowledge of domestication processes in clonally propagated perennial crops, particularly those of the Mediterranean Basin. Future studies on the ecological and genomic shifts linked to domestication in olive and its associated community will provide insight into the phenotypic and molecular bases of crop adaptation to human uses.
Collapse
Affiliation(s)
- Guillaume Besnard
- CNRS-UPS-ENSFEA-IRD, EDB, UMR 5174, Université Paul Sabatier, Toulouse Cedex , France
| | - Jean-Frédéric Terral
- ISEM, UMR 5554, CNRS-Université de Montpellier-IRD-EPHE, Equipe Dynamique de la Biodiversité, Anthropo-écologie, Montpellier Cedex, France
- International Associated Laboratory (LIA, CNRS) EVOLea, Zürich, Switzerland
| | - Amandine Cornille
- Center for Adaptation to a Changing Environment, ETH Zürich, Zürich, Switzerland
- GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
19
|
Sabella E, Luvisi A, Aprile A, Negro C, Vergine M, Nicolì F, Miceli A, De Bellis L. Xylella fastidiosa induces differential expression of lignification related-genes and lignin accumulation in tolerant olive trees cv. Leccino. JOURNAL OF PLANT PHYSIOLOGY 2018; 220:60-68. [PMID: 29149645 DOI: 10.1016/j.jplph.2017.10.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 05/04/2023]
Abstract
Recently, Xylella fastidiosa was reported in Italy, associated with the "Olive Quick Decline Syndrome". The cv. Leccino exhibits an evident tolerance with a slow disease progression compared with the other cultivars. Between the mechanisms proposed to explain the putative tolerance of some hosts to X. fastidiosa diseases, lignin deposition plays an important role. Analysis of phenolic compounds in healthy and infected Leccino and Cellina di Nardò leaves showed, in the two cultivars, a reduction of hydroxytyrosol glucoside (usually associated with drought and cold stress) and, only in Leccino, an increase of quinic acid, precursor of lignin. To determine if lignin biosynthesis is involved in defence response, we investigated the expression of genes coding for entry-point enzymes in different branches of the phenylpropanoid pathway. In stems of Cellina di Nardò infected plants, Cinnamate-4-Hydroxylase (C4H) and 4-Coumarate:CoA Ligase (4CL) resulted strongly down-regulated, indicating a plant disease response since the inhibition of C4H is reported to promote the accumulation of benzoic acid and salicylic acid as defence signals. Instead, in the cv. Leccino, Cinnamoyl-CoA Reductase (CCR, reported to be strongly induced during the formation of lignin defence response associated) was up-regulated in the stem of infected plants; moreover, Polyphenol oxidase (PPO), coding for an enzyme involved in the hydroxytyrosol biosynthesis, was down-regulated. The quantification of lignin in healthy and infected branches of both cultivars, showed a significant increase of total lignin in infected Leccino compared with the sensitive cultivar; moreover, histochemical observations of stem sections exhibited a different lignin distribution in the sclerenchyma and in the xylem tissue of infected Leccino plants compared to sections of healthy ones. Results suggest a critical role for lignin in X. fastidiosa tolerance of cv. Leccino.
Collapse
Affiliation(s)
- Erika Sabella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov.le Monteroni 165, 73100 Lecce, Italy
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov.le Monteroni 165, 73100 Lecce, Italy.
| | - Alessio Aprile
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov.le Monteroni 165, 73100 Lecce, Italy
| | - Carmine Negro
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov.le Monteroni 165, 73100 Lecce, Italy
| | - Marzia Vergine
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov.le Monteroni 165, 73100 Lecce, Italy
| | - Francesca Nicolì
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov.le Monteroni 165, 73100 Lecce, Italy
| | - Antonio Miceli
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov.le Monteroni 165, 73100 Lecce, Italy
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov.le Monteroni 165, 73100 Lecce, Italy
| |
Collapse
|
20
|
Buonanno M, Coppola M, Di Lelio I, Molisso D, Leone M, Pennacchio F, Langella E, Rao R, Monti SM. Prosystemin, a prohormone that modulates plant defense barriers, is an intrinsically disordered protein. Protein Sci 2017; 27:620-632. [PMID: 29168260 DOI: 10.1002/pro.3348] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/09/2017] [Accepted: 11/11/2017] [Indexed: 11/09/2022]
Abstract
Prosystemin, originally isolated from Lycopersicon esculentum, is a tomato pro-hormone of 200 aminoacid residues which releases a bioactive peptide of 18 aminoacids called Systemin. This signaling peptide is involved in the activation of defense genes in solanaceous plants in response to herbivore feeding damage. Using biochemical, biophysical and bioinformatics approaches we characterized Prosystemin, showing that it is an intrinsically disordered protein possessing a few secondary structure elements within the sequence. Plant treatment with recombinant Prosystemin promotes early and late plant defense genes, which limit the development and survival of Spodoptera littoralis larvae fed with treated plants.
Collapse
Affiliation(s)
| | - Mariangela Coppola
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Portici, NA, Italy
| | - Ilaria Di Lelio
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Portici, NA, Italy
| | - Donata Molisso
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Portici, NA, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, CNR, Naples, Italy
| | - Francesco Pennacchio
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Portici, NA, Italy
| | - Emma Langella
- Institute of Biostructures and Bioimaging, CNR, Naples, Italy
| | - Rosa Rao
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Portici, NA, Italy
| | | |
Collapse
|
21
|
Coppola M, Cascone P, Madonna V, Di Lelio I, Esposito F, Avitabile C, Romanelli A, Guerrieri E, Vitiello A, Pennacchio F, Rao R, Corrado G. Plant-to-plant communication triggered by systemin primes anti-herbivore resistance in tomato. Sci Rep 2017; 7:15522. [PMID: 29138416 PMCID: PMC5686165 DOI: 10.1038/s41598-017-15481-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 10/27/2017] [Indexed: 11/09/2022] Open
Abstract
Plants actively respond to herbivory by inducing various defense mechanisms in both damaged (locally) and non-damaged tissues (systemically). In addition, it is currently widely accepted that plant-to-plant communication allows specific neighbors to be warned of likely incoming stress (defense priming). Systemin is a plant peptide hormone promoting the systemic response to herbivory in tomato. This 18-aa peptide is also able to induce the release of bioactive Volatile Organic Compounds, thus also promoting the interaction between the tomato and the third trophic level (e.g. predators and parasitoids of insect pests). In this work, using a combination of gene expression (RNA-Seq and qRT-PCR), behavioral and chemical approaches, we demonstrate that systemin triggers metabolic changes of the plant that are capable of inducing a primed state in neighboring unchallenged plants. At the molecular level, the primed state is mainly associated with an elevated transcription of pattern -recognition receptors, signaling enzymes and transcription factors. Compared to naïve plants, systemin-primed plants were significantly more resistant to herbivorous pests, more attractive to parasitoids and showed an increased response to wounding. Small peptides are nowadays considered fundamental signaling molecules in many plant processes and this work extends the range of downstream effects of this class of molecules to intraspecific plant-to-plant communication.
Collapse
Affiliation(s)
- Mariangela Coppola
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055, Portici, NA, Italy
| | - Pasquale Cascone
- Istituto per la Protezione Sostenibile delle Piante, CNR, Via Università 133, Portici, NA, Italy
| | - Valentina Madonna
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055, Portici, NA, Italy
| | - Ilaria Di Lelio
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055, Portici, NA, Italy
| | - Francesco Esposito
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055, Portici, NA, Italy
| | - Concetta Avitabile
- Istituto di Biostrutture e Bioimmagini (CNR), via Mezzocannone 16, 80134, Napoli, Italy
| | - Alessandra Romanelli
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano, 49, 80131, Napoli, NA, Italy
| | - Emilio Guerrieri
- Istituto per la Protezione Sostenibile delle Piante, CNR, Via Università 133, Portici, NA, Italy
| | - Alessia Vitiello
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055, Portici, NA, Italy
| | - Francesco Pennacchio
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055, Portici, NA, Italy
| | - Rosa Rao
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055, Portici, NA, Italy.
| | - Giandomenico Corrado
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055, Portici, NA, Italy.
| |
Collapse
|
22
|
Velázquez-Palmero D, Romero-Segura C, García-Rodríguez R, Hernández ML, Vaistij FE, Graham IA, Pérez AG, Martínez-Rivas JM. An Oleuropein β-Glucosidase from Olive Fruit Is Involved in Determining the Phenolic Composition of Virgin Olive Oil. FRONTIERS IN PLANT SCIENCE 2017; 8:1902. [PMID: 29163620 PMCID: PMC5682033 DOI: 10.3389/fpls.2017.01902] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/20/2017] [Indexed: 05/08/2023]
Abstract
Phenolic composition of virgin olive oil is determined by the enzymatic and/or chemical reactions that take place during olive fruit processing. Of these enzymes, β-glucosidase activity plays a relevant role in the transformation of the phenolic glycosides present in the olive fruit, generating different secoiridoid derivatives. The main goal of the present study was to characterize olive fruit β-glucosidase genes and enzymes responsible for the phenolic composition of virgin olive oil. To achieve that, we have isolated an olive β-glucosidase gene from cultivar Picual (OepGLU), expressed in Nicotiana benthamiana leaves and purified its corresponding recombinant enzyme. Western blot analysis showed that recombinant OepGLU protein is detected by an antibody raised against the purified native olive mesocarp β-glucosidase enzyme, and exhibits a deduced molecular mass of 65.0 kDa. The recombinant OepGLU enzyme showed activity on the major olive phenolic glycosides, with the highest levels with respect to oleuropein, followed by ligstroside and demethyloleuropein. In addition, expression analysis showed that olive GLU transcript level in olive fruit is spatially and temporally regulated in a cultivar-dependent manner. Furthermore, temperature, light and water regime regulate olive GLU gene expression in olive fruit mesocarp. All these data are consistent with the involvement of OepGLU enzyme in the formation of the major phenolic compounds present in virgin olive oil.
Collapse
Affiliation(s)
- David Velázquez-Palmero
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (CSIC), Sevilla, Spain
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, United Kingdom
| | - Carmen Romero-Segura
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (CSIC), Sevilla, Spain
| | - Rosa García-Rodríguez
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (CSIC), Sevilla, Spain
| | - María L. Hernández
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (CSIC), Sevilla, Spain
| | - Fabián E. Vaistij
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, United Kingdom
| | - Ian A. Graham
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, United Kingdom
| | - Ana G. Pérez
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (CSIC), Sevilla, Spain
| | - José M. Martínez-Rivas
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (CSIC), Sevilla, Spain
| |
Collapse
|
23
|
Grasso F, Coppola M, Carbone F, Baldoni L, Alagna F, Perrotta G, Pérez-Pulido AJ, Garonna A, Facella P, Daddiego L, Lopez L, Vitiello A, Rao R, Corrado G. The transcriptional response to the olive fruit fly (Bactrocera oleae) reveals extended differences between tolerant and susceptible olive (Olea europaea L.) varieties. PLoS One 2017; 12:e0183050. [PMID: 28797083 PMCID: PMC5552259 DOI: 10.1371/journal.pone.0183050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/30/2017] [Indexed: 11/23/2022] Open
Abstract
The olive fruit fly Bactrocera oleae (Diptera: Tephritidae) is the most devastating pest of cultivated olive (Olea europaea L.). Intraspecific variation in plant resistance to B. oleae has been described only at phenotypic level. In this work, we used a transcriptomic approach to study the molecular response to the olive fruit fly in two olive cultivars with contrasting level of susceptibility. Using next-generation pyrosequencing, we first generated a catalogue of more than 80,000 sequences expressed in drupes from approximately 700k reads. The assembled sequences were used to develop a microarray layout with over 60,000 olive-specific probes. The differential gene expression analysis between infested (i.e. with II or III instar larvae) and control drupes indicated a significant intraspecific variation between the more tolerant and susceptible cultivar. Around 2500 genes were differentially regulated in infested drupes of the tolerant variety. The GO annotation of the differentially expressed genes implies that the inducible resistance to the olive fruit fly involves a number of biological functions, cellular processes and metabolic pathways, including those with a known role in defence, oxidative stress responses, cellular structure, hormone signalling, and primary and secondary metabolism. The difference in the induced transcriptional changes between the cultivars suggests a strong genetic role in the olive inducible defence, which can ultimately lead to the discovery of factors associated with a higher level of tolerance to B. oleae.
Collapse
Affiliation(s)
- Filomena Grasso
- Dipartimento di Agraria, Università degli Studi di Napoli “Federico II”, Portici (NA), Italy
| | - Mariangela Coppola
- Dipartimento di Agraria, Università degli Studi di Napoli “Federico II”, Portici (NA), Italy
| | - Fabrizio Carbone
- Centro di Ricerca per l’Olivicoltura e l’Industria Olearia, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Rende (CS), Italy
| | - Luciana Baldoni
- Institute of Biosciences and Bioresources (IBBR), CNR, Perugia, Italy
| | - Fiammetta Alagna
- Institute of Biosciences and Bioresources (IBBR), CNR, Perugia, Italy
| | - Gaetano Perrotta
- Trisaia Research Center, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rotondella (MT), Italy
| | - Antonio J. Pérez-Pulido
- Departamento Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Antonio Garonna
- Dipartimento di Agraria, Università degli Studi di Napoli “Federico II”, Portici (NA), Italy
| | - Paolo Facella
- Trisaia Research Center, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rotondella (MT), Italy
| | - Loretta Daddiego
- Trisaia Research Center, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rotondella (MT), Italy
| | - Loredana Lopez
- Trisaia Research Center, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rotondella (MT), Italy
| | - Alessia Vitiello
- Dipartimento di Agraria, Università degli Studi di Napoli “Federico II”, Portici (NA), Italy
| | - Rosa Rao
- Dipartimento di Agraria, Università degli Studi di Napoli “Federico II”, Portici (NA), Italy
- * E-mail: (RR); (CG)
| | - Giandomenico Corrado
- Dipartimento di Agraria, Università degli Studi di Napoli “Federico II”, Portici (NA), Italy
- * E-mail: (RR); (CG)
| |
Collapse
|
24
|
Transcriptomic responses of the olive fruit fly Bactrocera oleae and its symbiont Candidatus Erwinia dacicola to olive feeding. Sci Rep 2017; 7:42633. [PMID: 28225009 PMCID: PMC5320501 DOI: 10.1038/srep42633] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 01/13/2017] [Indexed: 11/17/2022] Open
Abstract
The olive fruit fly, Bactrocera oleae, is the most destructive pest of olive orchards worldwide. The monophagous larva has the unique capability of feeding on olive mesocarp, coping with high levels of phenolic compounds and utilizing non-hydrolyzed proteins present, particularly in the unripe, green olives. On the molecular level, the interaction between B. oleae and olives has not been investigated as yet. Nevertheless, it has been associated with the gut obligate symbiotic bacterium Candidatus Erwinia dacicola. Here, we used a B.oleae microarray to analyze the gene expression of larvae during their development in artificial diet, unripe (green) and ripe (black) olives. The expression profiles of Ca. E. dacicola were analyzed in parallel, using the Illumina platform. Several genes were found overexpressed in the olive fly larvae when feeding in green olives. Among these, a number of genes encoding detoxification and digestive enzymes, indicating a potential association with the ability of B. oleae to cope with green olives. In addition, a number of biological processes seem to be activated in Ca. E. dacicola during the development of larvae in olives, with the most notable being the activation of amino-acid metabolism.
Collapse
|
25
|
Cirilli M, Caruso G, Gennai C, Urbani S, Frioni E, Ruzzi M, Servili M, Gucci R, Poerio E, Muleo R. The Role of Polyphenoloxidase, Peroxidase, and β-Glucosidase in Phenolics Accumulation in Olea europaea L. Fruits under Different Water Regimes. FRONTIERS IN PLANT SCIENCE 2017; 8:717. [PMID: 28536589 PMCID: PMC5422556 DOI: 10.3389/fpls.2017.00717] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/19/2017] [Indexed: 05/14/2023]
Abstract
Olive fruits and oils contain an array of compounds that contribute to their sensory and nutritional properties. Phenolic compounds in virgin oil and olive-derived products have been proven to be highly beneficial for human health, eliciting increasing attention from the food industry and consumers. Although phenolic compounds in olive fruit and oil have been extensively investigated, allowing the identification of the main classes of metabolites and their accumulation patterns, knowledge of the molecular and biochemical mechanisms regulating phenolic metabolism remains scarce. We focused on the role of polyphenoloxidase (PPO), peroxidase (PRX) and β-glucosidase (β-GLU) gene families and their enzyme activities in the accumulation of phenolic compounds during olive fruit development (35-146 days after full bloom), under either full irrigation (FI) or rain-fed (RF) conditions. The irrigation regime affected yield, maturation index, mesocarp oil content, fruit size, and pulp-to-pit ratio. Accumulation of fruit phenolics was higher in RF drupes than in FI ones. Members of each gene family were developmentally regulated, affected by water regime, and their transcript levels were correlated with the respective enzyme activities. During the early phase of drupe growth (35-43 days after full bloom), phenolic composition appeared to be linked to β-GLU and PRX activities, probably through their effects on oleuropein catabolism. Interestingly, a higher β-GLU activity was measured in immature RF drupes, as well as a higher content of the oleuropein derivate 3,4-DHPEA-EDA and verbascoside. Activity of PPO enzymes was slightly affected by the water status of trees during ripening (from 120 days after full bloom), but was not correlated with phenolics content. Overall, the main changes in phenolics content appeared soon after the supply of irrigation water and remained thereafter almost unchanged until maturity, despite fruit growth and the progressive decrease in pre-dawn leaf water potential. We suggest that enzymes involved in phenolic catabolism in the olive fruit have a differential sensitivity to soil water availability depending on fruit developmental stage.
Collapse
Affiliation(s)
- Marco Cirilli
- Laboratorio di Ecofisiologia Molecolare delle Piante Arboree, Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della TusciaViterbo, Italy
| | - Giovanni Caruso
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di PisaPisa, Italy
| | - Clizia Gennai
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di PisaPisa, Italy
| | - Stefania Urbani
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università degli studi di PerugiaPerugia, Italy
| | - Eleonora Frioni
- Laboratorio di Ecofisiologia Molecolare delle Piante Arboree, Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della TusciaViterbo, Italy
| | - Maurizio Ruzzi
- Dipartimento per la Innovazione nei Sistemi Biologici, Agro-alimentari e Forestali, Università degli Studi della TusciaViterbo, Italy
| | - Maurizio Servili
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università degli studi di PerugiaPerugia, Italy
| | - Riccardo Gucci
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di PisaPisa, Italy
| | - Elia Poerio
- Dipartimento per la Innovazione nei Sistemi Biologici, Agro-alimentari e Forestali, Università degli Studi della TusciaViterbo, Italy
| | - Rosario Muleo
- Laboratorio di Ecofisiologia Molecolare delle Piante Arboree, Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della TusciaViterbo, Italy
- Tree and Timber Institute, National Research Council of ItalySesto Fiorentino, Italy
- *Correspondence: Rosario Muleo,
| |
Collapse
|
26
|
Zafra A, Carmona R, Traverso JA, Hancock JT, Goldman MHS, Claros MG, Hiscock SJ, Alche JD. Identification and Functional Annotation of Genes Differentially Expressed in the Reproductive Tissues of the Olive Tree ( Olea europaea L.) through the Generation of Subtractive Libraries. FRONTIERS IN PLANT SCIENCE 2017; 8:1576. [PMID: 28955364 PMCID: PMC5601413 DOI: 10.3389/fpls.2017.01576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/28/2017] [Indexed: 05/07/2023]
Abstract
The olive tree is a crop of high socio-economical importance in the Mediterranean area. Sexual reproduction in this plant is an essential process, which determines the yield. Successful fertilization is mainly favored and sometimes needed of the presence of pollen grains from a different cultivar as the olive seizes a self-incompatibility system allegedly determined of the sporophytic type. The purpose of the present study was to identify key gene products involved in the function of olive pollen and pistil, in order to help elucidate the events and signaling processes, which happen during the courtship, pollen grain germination, and fertilization in olive. The use of subtractive SSH libraries constructed using, on the one hand one specific stage of the pistil development with germinating pollen grains, and on the other hand mature pollen grains may help to reveal the specific transcripts involved in the cited events. Such libraries have also been created by subtracting vegetative mRNAs (from leaves), in order to identify reproductive sequences only. A variety of transcripts have been identified in the mature pollen grains and in the pistil at the receptive stage. Among them, those related to defense, transport and oxidative metabolism are highlighted mainly in the pistil libraries where transcripts related to stress, and response to biotic and abiotic stimulus have a prominent position. Extensive lists containing information as regard to the specific transcripts determined for each stage and tissue are provided, as well as functional classifications of these gene products. Such lists were faced up to two recent datasets obtained in olive after transcriptomic and genomic approaches. The sequences and the differential expression level of the SSH-transcripts identified here, highly matched the transcriptomic information. Moreover, the unique presence of a representative number of these transcripts has been validated by means of qPCR approaches. The construction of SSH libraries using pistil and pollen, considering the high interaction between male-female counterparts, allowed the identification of transcripts with important roles in stigma physiology. The functions of many of the transcripts obtained are intimately related, and most of them are of pivotal importance in defense, pollen-stigma interaction and signaling.
Collapse
Affiliation(s)
- Adoración Zafra
- Plant Reproductive Biology Laboratory, Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Rosario Carmona
- Plant Reproductive Biology Laboratory, Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - José A. Traverso
- Plant Reproductive Biology Laboratory, Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - John T. Hancock
- Faculty of Health and Life Sciences, University of the West of EnglandBristol, United Kingdom
| | - Maria H. S. Goldman
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São PauloSão Paulo, Brazil
| | - M. Gonzalo Claros
- Departamento de Biología Molecular y Bioquímica, Universidad de MálagaMálaga, Spain
| | - Simon J. Hiscock
- School of Biological Sciences, University of BristolBristol, United Kingdom
| | - Juan D. Alche
- Plant Reproductive Biology Laboratory, Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
- *Correspondence: Juan D. Alche
| |
Collapse
|
27
|
Rossi L, Borghi M, Francini A, Lin X, Xie DY, Sebastiani L. Salt stress induces differential regulation of the phenylpropanoid pathway in Olea europaea cultivars Frantoio (salt-tolerant) and Leccino (salt-sensitive). JOURNAL OF PLANT PHYSIOLOGY 2016; 204:8-15. [PMID: 27497740 DOI: 10.1016/j.jplph.2016.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/20/2016] [Accepted: 07/20/2016] [Indexed: 06/06/2023]
Abstract
Olive tree (Olea europaea L.) is an important crop in the Mediterranean Basin where drought and salinity are two of the main factors affecting plant productivity. Despite several studies have reported different responses of various olive tree cultivars to salt stress, the mechanisms that convey tolerance and sensitivity remain largely unknown. To investigate this issue, potted olive plants of Leccino (salt-sensitive) and Frantoio (salt-tolerant) cultivars were grown in a phytotron chamber and treated with 0, 60 and 120mM NaCl. After forty days of treatment, growth analysis was performed and the concentration of sodium in root, stem and leaves was measured by atomic absorption spectroscopy. Phenolic compounds were extracted using methanol, hydrolyzed with butanol-HCl, and quercetin and kaempferol quantified via high performance liquid-chromatography-electrospray-mass spectrometry (HPLC-ESI-MS) and HPLC-q-Time of Flight-MS analyses. In addition, the transcripts levels of five key genes of the phenylpropanoid pathway were measured by quantitative Real-Time PCR. The results of this study corroborate the previous observations, which showed that Frantoio and Leccino differ in allocating sodium in root and leaves. This study also revealed that phenolic compounds remain stable or are strongly depleted under long-time treatment with sodium in Leccino, despite a strong up-regulation of key genes of the phenylpropanoid pathway was observed. Frantoio instead, showed a less intense up-regulation of the phenylpropanoid genes but overall higher content of phenolic compounds. These data suggest that Frantoio copes with the toxicity imposed by elevated sodium not only with mechanisms of Na+ exclusion, but also promptly allocating effective and adequate antioxidant compounds to more sensitive organs.
Collapse
Affiliation(s)
- Lorenzo Rossi
- BioLabs, Institute of Life Sciences, Scuola Superiore Sant'Anna, I-56127 Pisa, Italy; Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Monica Borghi
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Alessandra Francini
- BioLabs, Institute of Life Sciences, Scuola Superiore Sant'Anna, I-56127 Pisa, Italy
| | - Xiuli Lin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - De-Yu Xie
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Luca Sebastiani
- BioLabs, Institute of Life Sciences, Scuola Superiore Sant'Anna, I-56127 Pisa, Italy.
| |
Collapse
|
28
|
Rigsby CM, Herms DA, Bonello P, Cipollini D. Higher Activities of Defense-Associated Enzymes may Contribute to Greater Resistance of Manchurian Ash to Emerald Ash Borer Than A closely Related and Susceptible Congener. J Chem Ecol 2016; 42:782-792. [PMID: 27484881 DOI: 10.1007/s10886-016-0736-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 06/18/2016] [Accepted: 06/22/2016] [Indexed: 11/25/2022]
Abstract
Emerald ash borer (EAB) is an invasive beetle native to Asia that infests and kills ash (Fraxinus spp.) in North America. Previous experiments indicated that larvae feeding on co-evolved, resistant Manchurian ash (F. mandshurica) have increased antioxidant and quinone-protective enzyme activities compared to larvae feeding on susceptible North American species. Here, we examined mechanisms of host-generated oxidative and quinone-based stress and other putative defenses in Manchurian ash and the closely related and chemically similar, but susceptible, black ash (F. nigra), with and without exogenous application of methyl jasmonate (MeJA) to induce resistance mechanisms. Peroxidase activities were 4.6-13.3 times higher in Manchurian than black ash, although both species appeared to express the same three peroxidase isozymes. Additionally, peroxidase-mediated protein cross-linking activity was stronger in Manchurian ash. Polyphenol oxidase, β-glucosidase, chitinase, and lipoxygenase activities also were greater in Manchurian ash, but only lipoxygenase activity increased with MeJA application. Phloem H2O2 levels were similar and were increased by MeJA application in both species. Lastly, trypsin inhibitor activity was detected in methanol and water extracts that were not allowed to oxidize, indicating the presence of phenolic-based trypsin inhibitors. However, no proteinaceous trypsin inhibitor activity was detected in either species. In response to MeJA application, Manchurian ash had higher trypsin inhibitor activity than black ash using the unoxidized water extracts, but no treatment effects were detected using methanol extracts. Based on these results we hypothesize that peroxidases, lignin polymerization, and quinone generation contribute to the greater resistance to EAB displayed by Manchurian ash.
Collapse
Affiliation(s)
- Chad M Rigsby
- Department of Biological Sciences and Environmental Sciences PhD Program, Wright State University, Dayton, OH, 45435, USA.
- Department of Biological Sciences, The University of Rhode Island, Kingston, RI, 02881, USA.
| | - Daniel A Herms
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, 44691, USA
| | - Pierluigi Bonello
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Don Cipollini
- Department of Biological Sciences and Environmental Sciences PhD Program, Wright State University, Dayton, OH, 45435, USA
| |
Collapse
|
29
|
Alagna F, Kallenbach M, Pompa A, De Marchis F, Rao R, Baldwin IT, Bonaventure G, Baldoni L. Olive fruits infested with olive fly larvae respond with an ethylene burst and the emission of specific volatiles. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:413-25. [PMID: 25727685 DOI: 10.1111/jipb.12343] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/25/2015] [Indexed: 05/20/2023]
Abstract
Olive fly (Bactrocera oleae R.) is the most harmful insect pest of olive (Olea europaea L.) which strongly affects fruits and oil production. Despite the expanding economic importance of olive cultivation, up to now, only limited information on plant responses to B. oleae is available. Here, we demonstrate that olive fruits respond to B. oleae attack by producing changes in an array of different defensive compounds including phytohormones, volatile organic compounds (VOCs), and defense proteins. Bactrocera oleae-infested fruits induced a strong ethylene burst and transcript levels of several putative ethylene-responsive transcription factors became significantly upregulated. Moreover, infested fruits induced significant changes in the levels of 12-oxo-phytodienoic acid and C12 derivatives of the hydroperoxide lyase. The emission of VOCs was also changed quantitatively and qualitatively in insect-damaged fruits, indicating that B. oleae larval feeding can specifically affect the volatile blend of fruits. Finally, we show that larval infestation maintained high levels of trypsin protease inhibitors in ripe fruits, probably by affecting post-transcriptional mechanisms. Our results provide novel and important information to understand the response of the olive fruit to B. oleae attack; information that can shed light onto potential new strategies to combat this pest.
Collapse
Affiliation(s)
- Fiammetta Alagna
- CNR-Institute of Biosciences and Bioresources (IBBR), Perugia, 06128, Italy
| | - Mario Kallenbach
- Department of Molecular Ecology, Max Planck Institute of Chemical Ecology, Jena, 07745, Germany
| | - Andrea Pompa
- CNR-Institute of Biosciences and Bioresources (IBBR), Perugia, 06128, Italy
| | | | - Rosa Rao
- Department of Agronomy, University of Naples "Federico II", 80055, Portici, Italy
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute of Chemical Ecology, Jena, 07745, Germany
| | - Gustavo Bonaventure
- Department of Molecular Ecology, Max Planck Institute of Chemical Ecology, Jena, 07745, Germany
| | - Luciana Baldoni
- CNR-Institute of Biosciences and Bioresources (IBBR), Perugia, 06128, Italy
| |
Collapse
|
30
|
Medjkouh L, Tamendjari A, Keciri S, Santos J, Nunes MA, Oliveira MBPP. The effect of the olive fruit fly (Bactrocera oleae) on quality parameters, and antioxidant and antibacterial activities of olive oil. Food Funct 2016; 7:2780-8. [DOI: 10.1039/c6fo00295a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This study shows the importance of controlling the fly attack because it causes a decrease in the beneficial health effects of olive oils.
Collapse
Affiliation(s)
- Lynda Medjkouh
- Laboratoire de Biochimie Appliquée
- Faculté des Sciences de la Nature et de la Vie
- Université de Bejaia
- Algérie
| | - Abderezak Tamendjari
- Laboratoire de Biochimie Appliquée
- Faculté des Sciences de la Nature et de la Vie
- Université de Bejaia
- Algérie
| | - Sonia Keciri
- Technical Institute of Arboriculture of Fruits and Vine (TIAFV)
- Bejaia
- Algeria
| | - Joana Santos
- REQUIMTE/LAQV
- Department of Chemical Sciences
- Faculty of Pharmacy
- University of Porto
- Portugal
| | - M. Antónia Nunes
- REQUIMTE/LAQV
- Department of Chemical Sciences
- Faculty of Pharmacy
- University of Porto
- Portugal
| | - M. B. P. P. Oliveira
- REQUIMTE/LAQV
- Department of Chemical Sciences
- Faculty of Pharmacy
- University of Porto
- Portugal
| |
Collapse
|
31
|
Malheiro R, Casal S, Cunha SC, Baptista P, Pereira JA. Identification of leaf volatiles from olive (Olea europaea) and their possible role in the ovipositional preferences of olive fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae). PHYTOCHEMISTRY 2016; 121:11-19. [PMID: 26603276 DOI: 10.1016/j.phytochem.2015.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/08/2015] [Accepted: 10/16/2015] [Indexed: 06/05/2023]
Abstract
The olive fly, Bactrocera oleae (Rossi), is a monophagous pest that displays an oviposition preference among cultivars of olive (Olea europaea L.). To clarify the oviposition preference, the olive leaf volatiles of three olive cultivars (Cobrançosa, Madural and Verdeal Transmontana) were assessed by headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC/MS) at six different periods of olive fruit maturation and degrees of infestation. A total of 39 volatiles were identified, mainly esters and alcohols, with a minor percentage of aldehydes, ketones and terpenic compounds, including sesquiterpenes. At sampling dates with higher degrees of infestation, cv. Cobrançosa had, simultaneously, significantly lower infestation degrees and higher volatile amounts than the other two cultivars, with a probable deterrent effect for oviposition. The green leaf volatiles (GLVs) (Z)-3-hexen-1-ol and (Z)-3-hexen-1-ol acetate) were the main compounds identified in all cultivars, together with toluene. The abundance of GLVs decreased significantly throughout maturation, without significant differences among cultivars, while toluene showed a general increase and positive correlation with olive fly infestation levels. The results obtained could broaden our understanding of the roles of various types and amounts of olive volatiles in the environment, especially in olive fly host selection and cultivar preference.
Collapse
Affiliation(s)
- Ricardo Malheiro
- Mountain Research Centre (CIMO), School of Agriculture, Polytechnic Institute of Bragança, Campus de Santa Apolónia, Apartado 1172, 5301-855 Bragança, Portugal; REQUIMTE/Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Susana Casal
- REQUIMTE/Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Sara C Cunha
- REQUIMTE/Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Paula Baptista
- Mountain Research Centre (CIMO), School of Agriculture, Polytechnic Institute of Bragança, Campus de Santa Apolónia, Apartado 1172, 5301-855 Bragança, Portugal
| | - José Alberto Pereira
- Mountain Research Centre (CIMO), School of Agriculture, Polytechnic Institute of Bragança, Campus de Santa Apolónia, Apartado 1172, 5301-855 Bragança, Portugal.
| |
Collapse
|
32
|
Gómez-Lama Cabanás C, Schilirò E, Valverde-Corredor A, Mercado-Blanco J. Systemic responses in a tolerant olive (Olea europaea L.) cultivar upon root colonization by the vascular pathogen Verticillium dahliae. Front Microbiol 2015; 6:928. [PMID: 26441865 PMCID: PMC4584997 DOI: 10.3389/fmicb.2015.00928] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/24/2015] [Indexed: 12/12/2022] Open
Abstract
Verticillium wilt of olive (VWO) is caused by the vascular pathogen Verticillium dahliae. One of the best VWO management measures is the use of tolerant cultivars; however, our knowledge on VWO tolerance/resistance genetics is very limited. A transcriptomic analysis was conducted to (i) identify systemic defense responses induced/repressed in aerial tissues of the tolerant cultivar Frantoio upon root colonization by V. dahliae, and (ii) determine the expression pattern of selected defense genes in olive cultivars showing differential susceptibility to VWO. Two suppression subtractive hybridization cDNA libraries, enriched in up-regulated (FU) and down-regulated (FD) genes respectively, were generated from "Frantoio" aerial tissues. Results showed that broad systemic transcriptomic changes are taking place during V. dahliae-"Frantoio" interaction. A total of 585 FU and 381 FD unigenes were identified, many of them involved in defense response to (a)biotic stresses. Selected genes were then used to validate libraries and evaluate their temporal expression pattern in "Frantoio." Four defense genes were analyzed in cultivars Changlot Real (tolerant) and Picual (susceptible). An association between GRAS1 and DRR2 gene expression patterns and susceptibility to VWO was observed, suggesting that these transcripts could be further evaluated as markers of the tolerance level of olive cultivars to V. dahliae.
Collapse
Affiliation(s)
| | | | | | - Jesús Mercado-Blanco
- Department of Crop Protection, Institute for Sustainable Agriculture, Consejo Superior de Investigaciones CientíficasCórdoba, Spain
| |
Collapse
|
33
|
Coppola M, Corrado G, Coppola V, Cascone P, Martinelli R, Digilio MC, Pennacchio F, Rao R. Prosystemin Overexpression in Tomato Enhances Resistance to Different Biotic Stresses by Activating Genes of Multiple Signaling Pathways. PLANT MOLECULAR BIOLOGY REPORTER 2015; 33:1270-1285. [PMID: 26339120 PMCID: PMC4551541 DOI: 10.1007/s11105-014-0834-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Systemin is a signal peptide that promotes the response to wounding and herbivore attack in tomato. This 18-amino acid peptide is released from a larger precursor, prosystemin. To study the role of systemin as a modulator of defense signaling, we generated tomato (Solanum lycopersicum) transgenic plants that overexpress the prosystemin cDNA. We carried out a transcriptomic analysis comparing two different transgenic events with the untransformed control. The Gene Ontology categories of the 503 differentially expressed genes indicated that several biological functions were affected. Systemin promotes the expression of an array of defense genes that are dependent on different signaling pathways and it downregulates genes connected with carbon fixation and carbohydrate metabolism. These alterations present a degree of overlap with the response programs that are classically associated to pathogen defense or abiotic stress protection, implying that end products of the systemin signaling pathway may be more diverse than expected. We show also that the observed transcriptional modifications have a relevant functional outcome, since transgenic lines were more resistant against very different biotic stressors such as aphids (Macrosiphum euphorbiae), phytopathogenic fungi (Botrytis cinerea and Alternaria alternata) and phytophagous larvae (Spodoptera littoralis). Our work demonstrated that in tomato the modulation of a single gene is sufficient to provide a wide resistance against stress by boosting endogenous defense pathways. Overall, the data provided evidence that the systemin peptide might serve as DAMP signal in tomato, acting as a broad indicator of tissue integrity.
Collapse
Affiliation(s)
- Mariangela Coppola
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, 80055 Portici, NA Italy
| | - Giandomenico Corrado
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, 80055 Portici, NA Italy
| | - Valentina Coppola
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, 80055 Portici, NA Italy
| | | | | | - Maria Cristina Digilio
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, 80055 Portici, NA Italy
| | - Francesco Pennacchio
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, 80055 Portici, NA Italy
| | - Rosa Rao
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, 80055 Portici, NA Italy
| |
Collapse
|
34
|
Malheiro R, Casal S, Baptista P, Pereira JA. A review of Bactrocera oleae (Rossi) impact in olive products: From the tree to the table. Trends Food Sci Technol 2015. [DOI: 10.1016/j.tifs.2015.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
35
|
Koudounas K, Banilas G, Michaelidis C, Demoliou C, Rigas S, Hatzopoulos P. A defence-related Olea europaea β-glucosidase hydrolyses and activates oleuropein into a potent protein cross-linking agent. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2093-106. [PMID: 25697790 PMCID: PMC4669557 DOI: 10.1093/jxb/erv002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Oleuropein, the major secoiridoid compound in olive, is involved in a sophisticated two-component defence system comprising a β-glucosidase enzyme that activates oleuropein into a toxic glutaraldehyde-like structure. Although oleuropein deglycosylation studies have been monitored extensively, an oleuropein β-glucosidase gene has not been characterized as yet. Here, we report the isolation of OeGLU cDNA from olive encoding a β-glucosidase belonging to the defence-related group of terpenoid-specific glucosidases. In planta recombinant protein expression assays showed that OeGLU deglycosylated and activated oleuropein into a strong protein cross-linker. Homology and docking modelling predicted that OeGLU has a characteristic (β/α)8 TIM barrel conformation and a typical construction of a pocket-shaped substrate recognition domain composed of conserved amino acids supporting the β-glucosidase activity and non-conserved residues associated with aglycon specificity. Transcriptional analysis in various olive organs revealed that the gene was developmentally regulated, with its transcript levels coinciding well with the spatiotemporal patterns of oleuropein degradation and aglycon accumulation in drupes. OeGLU upregulation in young organs reflects its prominent role in oleuropein-mediated defence system. High gene expression during drupe maturation implies an additional role in olive secondary metabolism, through the degradation of oleuropein and reutilization of hydrolysis products.
Collapse
Affiliation(s)
| | - Georgios Banilas
- Department of Biotechnology, Agricultural University of Athens, 118 55 Athens, Greece Department of Oenology and Beverage Technology, Technological Educational Institute of Athens, 12210 Athens, Greece
| | - Christos Michaelidis
- Department of Biotechnology, Agricultural University of Athens, 118 55 Athens, Greece University of Nicosia Research Foundation, University of Nicosia, 1700 Nicosia, Cyprus
| | - Catherine Demoliou
- University of Nicosia Research Foundation, University of Nicosia, 1700 Nicosia, Cyprus
| | - Stamatis Rigas
- Department of Biotechnology, Agricultural University of Athens, 118 55 Athens, Greece
| | | |
Collapse
|
36
|
Samperi R, Capriotti AL, Cavaliere C, Colapicchioni V, Chiozzi RZ, Laganà A. Food Proteins and Peptides. ADVANCED MASS SPECTROMETRY FOR FOOD SAFETY AND QUALITY 2015. [DOI: 10.1016/b978-0-444-63340-8.00006-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
37
|
Isolation, molecular characterization and functional analysis of OeMT2, an olive metallothionein with a bioremediation potential. Mol Genet Genomics 2014; 290:187-99. [PMID: 25204791 DOI: 10.1007/s00438-014-0908-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 08/23/2014] [Indexed: 10/24/2022]
Abstract
Metallothioneins are essential in plants for metal detoxification in addition to their other roles in plant life cycle. This study reports the characterization of an olive (Olea europaea L. cv. Ayvalik) metallothionein with respect to molecular and functional properties. A cDNA encoding a type 2 metallothionein from olive was isolated from a leaf cDNA library, characterized and named OeMT2 after its molecular and functional properties. OeMT2 was expressed in Escherichia coli, and a single protein band was confirmed by protein gel blot analysis. Metal tolerance ability of bacterial cells expressing OeMT2 was determined against 0.2 mM CdCl2, 0.4 mM CdCl2 and 1 mM CuSO4 in the growth medium. Metal ion contents of bacterial cells expressing OeMT2 were measured by ICP. Metal tolerance assays and ICP measurements suggested that OeMT2 effectively binds Cu and Cd. Molecular analysis of OeMT2 revealed two introns, three exons, a short 3' UTR and a long 5' UTR. Comparing the genomic sequences from 14 olive cultivars revealed OeMT2 had both intron and exon polymorphisms dividing the cultivars into three groups. Real-time PCR analysis demonstrated that OeMT2 expresses more or less the same amounts in all tissues of the olive tree examined. The genomic copy number of OeMT2 was also determined employing real-time PCR which suggested a single copy gene in the olive genome while three other MT2 members were determined from the draft olive genome sequences of Ayvalik cultivar and that of wild olive. This is the first report on molecular and functional characterization of an olive metallothionein and shows that OeMT2 expressed in E. coli has the capability of effectively binding toxic heavy metals. This may suggest that OeMT2 plays an important role in metal homeostasis in addition to a good potential for environmental and industrial usage.
Collapse
|
38
|
Petriccione M, Salzano AM, Di Cecco I, Scaloni A, Scortichini M. Proteomic analysis of the Actinidia deliciosa leaf apoplast during biotrophic colonization by Pseudomonas syringae pv. actinidiae. J Proteomics 2014; 101:43-62. [DOI: 10.1016/j.jprot.2014.01.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 01/20/2014] [Accepted: 01/29/2014] [Indexed: 11/25/2022]
|
39
|
Pavlidi N, Dermauw W, Rombauts S, Chrisargiris A, Van Leeuwen T, Vontas J. Analysis of the Olive Fruit Fly Bactrocera oleae Transcriptome and Phylogenetic Classification of the Major Detoxification Gene Families. PLoS One 2013; 8:e66533. [PMID: 23824998 PMCID: PMC3688913 DOI: 10.1371/journal.pone.0066533] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 05/06/2013] [Indexed: 12/23/2022] Open
Abstract
The olive fruit fly Bactrocera oleae has a unique ability to cope with olive flesh, and is the most destructive pest of olives worldwide. Its control has been largely based on the use of chemical insecticides, however, the selection of insecticide resistance against several insecticides has evolved. The study of detoxification mechanisms, which allow the olive fruit fly to defend against insecticides, and/or phytotoxins possibly present in the mesocarp, has been hampered by the lack of genomic information in this species. In the NCBI database less than 1,000 nucleotide sequences have been deposited, with less than 10 detoxification gene homologues in total. We used 454 pyrosequencing to produce, for the first time, a large transcriptome dataset for B. oleae. A total of 482,790 reads were assembled into 14,204 contigs. More than 60% of those contigs (8,630) were larger than 500 base pairs, and almost half of them matched with genes of the order of the Diptera. Analysis of the Gene Ontology (GO) distribution of unique contigs, suggests that, compared to other insects, the assembly is broadly representative for the B. oleae transcriptome. Furthermore, the transcriptome was found to contain 55 P450, 43 GST-, 15 CCE- and 18 ABC transporter-genes. Several of those detoxification genes, may putatively be involved in the ability of the olive fruit fly to deal with xenobiotics, such as plant phytotoxins and insecticides. In summary, our study has generated new data and genomic resources, which will substantially facilitate molecular studies in B. oleae, including elucidation of detoxification mechanisms of xenobiotic, as well as other important aspects of olive fruit fly biology.
Collapse
Affiliation(s)
- Nena Pavlidi
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Wannes Dermauw
- Department of Crop Protection, Ghent University, Ghent, Belgium
| | - Stephane Rombauts
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | | | | | - John Vontas
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- * E-mail:
| |
Collapse
|
40
|
Bianco L, Alagna F, Baldoni L, Finnie C, Svensson B, Perrotta G. Proteome regulation during Olea europaea fruit development. PLoS One 2013; 8:e53563. [PMID: 23349718 PMCID: PMC3547947 DOI: 10.1371/journal.pone.0053563] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 11/29/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Widespread in the Mediterranean basin, Olea europaea trees are gaining worldwide popularity for the nutritional and cancer-protective properties of the oil, mechanically extracted from ripe fruits. Fruit development is a physiological process with remarkable impact on the modulation of the biosynthesis of compounds affecting the quality of the drupes as well as the final composition of the olive oil. Proteomics offers the possibility to dig deeper into the major changes during fruit development, including the important phase of ripening, and to classify temporal patterns of protein accumulation occurring during these complex physiological processes. METHODOLOGY/PRINCIPAL FINDINGS In this work, we started monitoring the proteome variations associated with olive fruit development by using comparative proteomics coupled to mass spectrometry. Proteins extracted from drupes at three different developmental stages were separated on 2-DE and subjected to image analysis. 247 protein spots were revealed as differentially accumulated. Proteins were identified from a total of 121 spots and discussed in relation to olive drupe metabolic changes occurring during fruit development. In order to evaluate if changes observed at the protein level were consistent with changes of mRNAs, proteomic data produced in the present work were compared with transcriptomic data elaborated during previous studies. CONCLUSIONS/SIGNIFICANCE This study identifies a number of proteins responsible for quality traits of cv. Coratina, with particular regard to proteins associated to the metabolism of fatty acids, phenolic and aroma compounds. Proteins involved in fruit photosynthesis have been also identified and their pivotal contribution in oleogenesis has been discussed. To date, this study represents the first characterization of the olive fruit proteome during development, providing new insights into fruit metabolism and oil accumulation process.
Collapse
Affiliation(s)
- Linda Bianco
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), TRISAIA Research Center, Rotondella (Matera), Italy
| | | | | | - Christine Finnie
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Gaetano Perrotta
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), TRISAIA Research Center, Rotondella (Matera), Italy
- * E-mail:
| |
Collapse
|
41
|
Petriccione M, Di Cecco I, Arena S, Scaloni A, Scortichini M. Proteomic changes in Actinidia chinensis shoot during systemic infection with a pandemic Pseudomonas syringae pv. actinidiae strain. J Proteomics 2013; 78:461-76. [DOI: 10.1016/j.jprot.2012.10.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/10/2012] [Accepted: 10/14/2012] [Indexed: 10/27/2022]
|