1
|
Rodrigues BRA, Gasser CS, Pimenta S, Pereira MCT, Nietsche S. Seedless fruit in Annona squamosa L. is monogenic and conferred by INO locus deletion in multiple accessions. PLANT REPRODUCTION 2024; 37:71-84. [PMID: 37160783 PMCID: PMC11180160 DOI: 10.1007/s00497-023-00464-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/11/2023] [Indexed: 05/11/2023]
Abstract
KEY MESSAGE Inheritance of the presence/absence of seeds in Annona squamosa is mediated by a single fully recessive gene and is caused by a deletion of the INNER NO OUTER (INO) locus. For some fruits, seedless varieties are desirable for consumption and processing. In the sugar apple tree (Annona squamosa L.), the seedless trait in the Thai seedless (Ts) and Brazilian seedless (Bs) accessions was associated with defective ovules and an apparent deletion of the INNER NO OUTER (INO) ovule development gene locus. Segregation analysis of F2 and backcross descendants of crosses of Bs to fertile wild-type varieties in this species with a multi-year generation time showed that seedlessness was recessive and controlled by a single locus. Comparison of whole genome sequence of a wild-type plant and a third accession, Hawaiian seedless (Hs), identified a 16 kilobase deletion including INO in this line. Ts and Bs lines were shown to have an identical deletion, indicating a common origin from a single deletion event. Analysis of microsatellite markers could not preclude the possibility that all three seedless accessions are vegetatively propagated clones. The sequence of the deletion site enabled a codominant assay for the wild-type and mutant genes allowing observation of complete cosegregation of the seedless/defective ovule phenotype with the INO deletion, showing maximal separation of less than 3.5 cM. The observed deletion is the only significant difference between the wild-type and Hs line over 587 kilobases, likely encompassing much more than 3.5 cM, showing that the deletion is the cause of seedless trait. The codominant markers and obtained progenies will be useful for introgression of the seedless trait into elite sugar apple lines and into other Annonas through interspecific crossings.
Collapse
Affiliation(s)
| | - Charles S Gasser
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, 95616, USA.
| | - Samy Pimenta
- Department of Agricultural Sciences, State University of Montes Claros, Janaúba, MG, 39401-369, Brazil
| | | | - Silvia Nietsche
- Institute of Agricultural Science, Federal University of Minas Gerais, Montes Claros, Minas Gerais, 39404-547, Brazil.
| |
Collapse
|
2
|
Ahmad A, Li W, Zhang H, Wang H, Wang P, Jiao Y, Zhao C, Yang G, Hong D. Linkage and association mapping of ovule number per ovary (ON) in oilseed rape ( Brassica napus L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:11. [PMID: 37313129 PMCID: PMC10248604 DOI: 10.1007/s11032-023-01355-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/11/2023] [Indexed: 06/15/2023]
Abstract
Ovule number (ON) produced during flower development determines the maximum number of seeds per silique and thereby affects crop productivity; however, the genetic basis of ON remains poorly understood in oilseed rape (Brassica napus). In this study, we genetically dissected the ON variations in a double haploid (DH) population and in natural population (NP) by linkage mapping and genome-wide association analysis. Phenotypic analysis showed that ON displayed normal distribution in both populations with the broad-sense heritability of 0.861 (DH population) and 0.930 (natural population). Linkage mapping identified 5 QTLs related to ON, including qON-A03, qON-A07, qON-A07-2, qON-A10, and qON-C06. Genome-wide association studies (GWAS) revealed 214, 48, and 40 significant single-nucleotide polymorphisms (SNPs) by individually using the single-locus model GLM and the multiple-locus model MrMLM and FASTMrMLM. The phenotypic variation explained (PVE) by these QTLs and SNPs ranged from 2.00-17.40% to 5.03-7.33%, respectively. Integration of the results from both strategies identified four consensus genomic regions associated with ON from the chromosomes A03, A07, and A10. Our results preliminarily resolved the genetic basis of ON and provides useful molecular markers for plant yield improvement in B. napus. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01355-7.
Collapse
Affiliation(s)
- Ali Ahmad
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Wenhui Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Hui Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Hao Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Pengfei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Yushun Jiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Chenqi Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Guangsheng Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| |
Collapse
|
3
|
Skinner DJ, Dang T, Gasser CS. The Arabidopsis INNER NO OUTER ( INO) gene acts exclusively and quantitatively in regulation of ovule outer integument development. PLANT DIRECT 2023; 7:e485. [PMID: 36845169 PMCID: PMC9947456 DOI: 10.1002/pld3.485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/09/2023] [Accepted: 02/06/2023] [Indexed: 05/25/2023]
Abstract
The INNER NO OUTER (INO) gene is essential for formation of the outer integument of ovules in Arabidopsis thaliana. Initially described lesions in INO were missense mutations resulting in aberrant mRNA splicing. To determine the null mutant phenotype, we generated frameshift mutations and found, in confirmation of results on another recently identified frameshift mutation, that such mutants have a phenotype identical to the most severe splicing mutant (ino-1), with effects specific to outer integument development. We show that the altered protein of an ino mRNA splicing mutant with a less severe phenotype (ino-4) does not have INO activity, and the mutant is partial because it produces a small amount of correctly spliced INO mRNA. Screening for suppressors of ino-4 in a fast neutron-mutagenized population identified a translocated duplication of the ino-4 gene, leading to an increase in the amount of this mRNA. The increased expression led to a decrease in the severity of the mutant effects, indicating that the amount of INO activity quantitatively regulates outer integument growth. The results further confirm that the role of INO in Arabidopsis development is specific to the outer integument of ovules where it quantitatively affects the growth of this structure.
Collapse
Affiliation(s)
- Debra J. Skinner
- Dept. of Molecular and Cellular BiologyUniversity of California—DavisDavisCaliforniaUSA
- Present address:
Dept. of Plant BiologyUniversity of California—DavisDavisCaliforniaUSA
| | - Trang Dang
- Dept. of Molecular and Cellular BiologyUniversity of California—DavisDavisCaliforniaUSA
- Present address:
Lark Seeds InternationalDavisCaliforniaUSA
| | - Charles S. Gasser
- Dept. of Molecular and Cellular BiologyUniversity of California—DavisDavisCaliforniaUSA
| |
Collapse
|
4
|
Qadir M, Wang X, Shah SRU, Zhou XR, Shi J, Wang H. Molecular Network for Regulation of Ovule Number in Plants. Int J Mol Sci 2021; 22:ijms222312965. [PMID: 34884791 PMCID: PMC8657818 DOI: 10.3390/ijms222312965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
In seed-bearing plants, the ovule ("small egg") is the organ within the gynoecium that develops into a seed after fertilization. The gynoecium located in the inner compartment of the flower turns into a fruit. The number of ovules in the ovary determines the upper limit or the potential of seed number per fruit in plants, greatly affecting the final seed yield. Ovule number is an important adaptive characteristic for plant evolution and an agronomic trait for crop improvement. Therefore, understanding the mechanism and pathways of ovule number regulation becomes a significant research aspect in plant science. This review summarizes the ovule number regulators and their regulatory mechanisms and pathways. Specially, an integrated molecular network for ovule number regulation is constructed, in which phytohormones played a central role, followed by transcription factors, enzymes, other protein and micro-RNA. Of them, AUX, BR and CK are positive regulator of ovule number, whereas GA acts negatively on it. Interestingly, many ovule number regulators have conserved functions across several plant taxa, which should be the targets of genetic improvement via breeding or gene editing. Many ovule number regulators identified to date are involved in the diverse biological process, such as ovule primordia formation, ovule initiation, patterning, and morphogenesis. The relations between ovule number and related characteristics/traits especially of gynoecium/fruit size, ovule fertility, and final seed number, as well as upcoming research questions, are also discussed. In summary, this review provides a general overview of the present finding in ovule number regulation, which represents a more comprehensive and in-depth cognition on it.
Collapse
Affiliation(s)
- Muslim Qadir
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chines Academy of Agricultural Sciences, Wuhan 430062, China; (M.Q.); (X.W.)
- Department of Plant Breeding and Genetics, Faculty of Agriculture, Lasbela University of Agriculture Water and Marine Sciences (LUAWMS), Lasbela 74200, Pakistan;
| | - Xinfa Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chines Academy of Agricultural Sciences, Wuhan 430062, China; (M.Q.); (X.W.)
| | - Syed Rehmat Ullah Shah
- Department of Plant Breeding and Genetics, Faculty of Agriculture, Lasbela University of Agriculture Water and Marine Sciences (LUAWMS), Lasbela 74200, Pakistan;
- Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7080, SE-75007 Uppsala, Sweden
| | - Xue-Rong Zhou
- Commonwealth Scientific Industrial Research Organization (CSIRO) Agriculture Food, Canberra, ACT 2601, Australia;
| | - Jiaqin Shi
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chines Academy of Agricultural Sciences, Wuhan 430062, China; (M.Q.); (X.W.)
- Correspondence: (J.S.); (H.W.)
| | - Hanzhong Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chines Academy of Agricultural Sciences, Wuhan 430062, China; (M.Q.); (X.W.)
- Correspondence: (J.S.); (H.W.)
| |
Collapse
|
5
|
Yu SX, Zhou LW, Hu LQ, Jiang YT, Zhang YJ, Feng SL, Jiao Y, Xu L, Lin WH. Asynchrony of ovule primordia initiation in Arabidopsis. Development 2020; 147:226107. [PMID: 33234714 PMCID: PMC7774900 DOI: 10.1242/dev.196618] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/06/2020] [Indexed: 12/27/2022]
Abstract
Plant ovule initiation determines the maximum of ovule number and has a great impact on the seed number per fruit. The detailed processes of ovule initiation have not been accurately described, although two connected processes, gynoecium and ovule development, have been investigated. Here, we report that ovules initiate asynchronously. The first group of ovule primordia grows out, the placenta elongates, the boundaries of existing ovules enlarge and a new group of primordia initiates from the boundaries. The expression pattern of different marker genes during ovule development illustrates that this asynchronicity continues throughout whole ovule development. PIN-FORMED1 polar distribution and auxin response maxima correlate with ovule primordia asynchronous initiation. We have established computational modeling to show how auxin dynamics influence ovule primordia initiation. Brassinosteroid signaling positively regulates ovule number by promoting placentae size and ovule primordia initiation through strengthening auxin response. Transcriptomic analysis demonstrates numerous known regulators of ovule development and hormone signaling, and many new genes are identified that are involved in ovule development. Taken together, our results illustrate that the ovule primordia initiate asynchronously and the hormone signals are involved in the asynchrony. Summary: Ovule primordia initiation, which determines the maximum ovule number and subsequent seed number in Arabidopsis, is asynchronous and is regulated by PIN1 polar distribution and the auxin response.
Collapse
Affiliation(s)
- Shi-Xia Yu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lv-Wen Zhou
- Faculty of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Li-Qin Hu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu-Tong Jiang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan-Jie Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shi-Liang Feng
- Faculty of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Xu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wen-Hui Lin
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
6
|
Amkul K, Somta P, Laosatit K, Wang L. Identification of QTLs for Domestication-Related Traits in Zombi Pea [ Vigna vexillata (L.) A. Rich], a Lost Crop of Africa. Front Genet 2020; 11:803. [PMID: 33193562 PMCID: PMC7530282 DOI: 10.3389/fgene.2020.00803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/06/2020] [Indexed: 11/13/2022] Open
Abstract
Zombi pea [Vigna vexillata (L.) A. Rich] is a legume crop found in Africa. Wild zombi pea is widely distributed throughout the tropical and subtropical regions, whereas domesticated zombi pea is rarely cultivated. Plant domestication is an evolutionary process in which the phenotypes of wild species, including seed dormancy, pod shattering, organ size, and architectural and phenological characteristics, undergo changes. The molecular mechanism underlying the domestication of zombi pea is relatively unknown. In this study, the genetic basis of the following 13 domestication-related traits was investigated in an F2 population comprising 198 individuals derived from a cross between cultivated (var. macrosperma) and wild (var. vexillata) zombi pea accessions: seed dormancy, pod shattering, days-to-flowering, days-to-maturity, stem thickness, stem length, number of branches, leaf area, pod length, 100-seed weight, seed width, seed length, and seeds per pod. A genetic map containing 6,529 single nucleotide polymorphisms constructed for the F2 population was used to identify quantitative trait loci (QTLs) for these traits. A total of 62 QTLs were identified for the 13 traits, with 1-11 QTLs per trait. The major QTLs for days-to-flowering, stem length, number of branches, pod length, 100-seed weight, seed length, and seeds per pod were clustered in linkage group 5. In contrast, the major QTLs for seed dormancy and pod shattering belonged to linkage groups 3 and 11, respectively. A comparative genomic analysis with the cowpea [Vigna unguiculata (L.) Walp.] genome used as the reference sequence (i.e., the genome of the legume species most closely related to zombi pea) enabled the identification of candidate genes for the major QTLs. Thus, we revealed the genomic regions associated with domestication-related traits and the candidate genes controlling these traits in zombi pea. The data presented herein may be useful for breeding new varieties of zombi pea and other Vigna species.
Collapse
Affiliation(s)
- Kitiya Amkul
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - Prakit Somta
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand.,Center of Excellence on Agricultural Biotechnology: (AG-BIO/PERDO-CHE), Bangkok, Thailand
| | - Kularb Laosatit
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - Lixia Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Lora J, Laux T, Hormaza JI. The role of the integuments in pollen tube guidance in flowering plants. THE NEW PHYTOLOGIST 2019; 221:1074-1089. [PMID: 30169910 DOI: 10.1111/nph.15420] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/27/2018] [Indexed: 05/22/2023]
Abstract
In angiosperms, pollen tube entry into the ovule generally takes place through the micropyle, but the exact role of the micropyle in pollen tube guidance remains unclear. A limited number of studies have examined eudicots with bitegmic micropyles, but information is lacking in ovules of basal/early-divergent angiosperms with unitegmic micropyles. We have evaluated the role of the micropyle in pollen tube guidance in an early-divergent angiosperm (Annona cherimola) and the evolutionarily derived Arabidopsis thaliana by studying γ-aminobutyric acid (GABA) and arabinogalactan proteins (AGPs) in wild-type plants and integument-defective mutants. A conserved inhibitory role of GABA in pollen tube growth was shown in A. cherimola, in which AGPs surround the egg apparatus. In Arabidopsis, the micropyle formed only by the outer integument in wuschel-7 mutants caused a partial defect in pollen tube guidance. Moreover, pollen tubes were not observed in the micropyle of an inner no outer (ino) mutant in Arabidopsis, but were observed in homologous ino mutants in Annona. The similar distribution of GABA and AGPs observed in the micropyle of Arabidopsis and Annona, together with the anomalies from specific integument mutants, support the role of the inner integument in preventing multiple tube entrance (polytubey) in these two phylogenetically distant genera.
Collapse
Affiliation(s)
- Jorge Lora
- Department of Subtropical Fruit Crops, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), 29750, Algarrobo-Costa, Málaga, Spain
| | - Thomas Laux
- BIOSS Centre for Biological Signalling Studies, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - José I Hormaza
- Department of Subtropical Fruit Crops, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), 29750, Algarrobo-Costa, Málaga, Spain
| |
Collapse
|
8
|
Vaishak KP, Yadukrishnan P, Bakshi S, Kushwaha AK, Ramachandran H, Job N, Babu D, Datta S. The B-box bridge between light and hormones in plants. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 191:164-174. [PMID: 30640143 DOI: 10.1016/j.jphotobiol.2018.12.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/23/2018] [Accepted: 12/27/2018] [Indexed: 11/29/2022]
Abstract
Plant development is meticulously modulated by interactions between the surrounding environment and the endogenous phytohormones. Light, as an external signal coordinates with the extensive networks of hormones inside the plant to execute its effects on growth and development. Several proteins in plants have been identified for their crucial roles in mediating light regulated development. Among these are the B-box (BBX) family of transcription factors characterized by the presence of zinc-finger B-box domain in their N-terminal region. In Arabidopsis there are 32 BBX proteins that are divided into five structural groups on the basis of the domains present. Several BBX proteins play important roles in seedling photomorphogenesis, neighbourhood detection and photoperiodic regulation of flowering. There is increasing evidence that besides light signaling BBX proteins also play integral roles in several hormone signaling pathways in plants. Here we attempt to comprehensively integrate the roles of multiple BBX proteins in various light and hormone signaling pathways. We further discuss the role of the BBX proteins in mediating crosstalk between the two signaling pathways to harmonize plant growth and development. Finally, we try to analyse the conservation of BBX genes across species and discuss the role of BBX proteins in regulating economically important traits in crop plants.
Collapse
Affiliation(s)
- K P Vaishak
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India; School of Biological Sciences, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, India
| | - Premachandran Yadukrishnan
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Souvika Bakshi
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Amit Kumar Kushwaha
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Harshil Ramachandran
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Nikhil Job
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Dion Babu
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Sourav Datta
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India.
| |
Collapse
|
9
|
Shao J, Haider I, Xiong L, Zhu X, Hussain RMF, Övernäs E, Meijer AH, Zhang G, Wang M, Bouwmeester HJ, Ouwerkerk PBF. Functional analysis of the HD-Zip transcription factor genes Oshox12 and Oshox14 in rice. PLoS One 2018; 13:e0199248. [PMID: 30028850 PMCID: PMC6054374 DOI: 10.1371/journal.pone.0199248] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/04/2018] [Indexed: 12/19/2022] Open
Abstract
The homeodomain-leucine zipper (HD-Zip) transcription factor family plays vital roles in plant development and morphogenesis as well as responses to biotic and abiotic stresses. In barley, a recessive mutation in Vrs1 (HvHox1) changes two-rowed barley to six-rowed barley, which improves yield considerably. The Vrs1 gene encodes an HD-Zip subfamily I transcription factor. Phylogenetic analysis has shown that the rice HD-Zip I genes Oshox12 and Oshox14 are the closest homologues of Vrs1. Here, we show that Oshox12 and Oshox14 are ubiquitously expressed with higher levels in developing panicles. Trans-activation assays in yeast and rice protoplasts demonstrated that Oshox12 and Oshox14 can bind to a specific DNA sequence, AH1 (CAAT(A/T)ATTG), and activate reporter gene expression. Overexpression of Oshox12 and Oshox14 in rice resulted in reduced panicle length and a dwarf phenotype. In addition, Oshox14 overexpression lines showed a deficiency in panicle exsertion. Our findings suggest that Oshox12 and Oshox14 may be involved in the regulation of panicle development. This study provides a significant advancement in understanding the functions of HD-Zip transcription factors in rice.
Collapse
Affiliation(s)
- Jingxia Shao
- College of Life Sciences, Northwest A&F University, Shaanxi, People’s Republic of China
- Institute of Biology (IBL), Leiden University, Leiden, The Netherlands
| | - Imran Haider
- Institute of Biology (IBL), Leiden University, Leiden, The Netherlands
- Laboratory of Plant Physiology, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Xiaoyi Zhu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, People’s Republic of China
| | | | - Elin Övernäs
- Department of Physiological Botany, EBC, Uppsala University, Uppsala, Sweden
| | | | - Gaisheng Zhang
- College of Agronomy, Northwest A&F University, Shaanxi, People’s Republic of China
| | - Mei Wang
- Institute of Biology (IBL), Leiden University, Leiden, The Netherlands
- Leiden University European Center for Chinese Medicine and Natural Compounds, Leiden, The Netherlands
| | - Harro J. Bouwmeester
- Laboratory of Plant Physiology, Wageningen University and Research Centre, Wageningen, The Netherlands
| | | |
Collapse
|
10
|
Gomez MD, Barro-Trastoy D, Escoms E, Saura-Sánchez M, Sánchez I, Briones-Moreno A, Vera-Sirera F, Carrera E, Ripoll JJ, Yanofsky MF, Lopez-Diaz I, Alonso JM, Perez-Amador MA. Gibberellins negatively modulate ovule number in plants. Development 2018; 145:dev163865. [PMID: 29914969 PMCID: PMC6053663 DOI: 10.1242/dev.163865] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/04/2018] [Indexed: 01/06/2023]
Abstract
Ovule formation is a complex developmental process in plants, with a strong impact on the production of seeds. Ovule primordia initiation is controlled by a gene network, including components of the signaling pathways of auxin, brassinosteroids and cytokinins. By contrast, gibberellins (GAs) and DELLA proteins, the negative regulators of GA signaling, have never been shown to be involved in ovule initiation. Here, we provide molecular and genetic evidence that points to DELLA proteins as novel players in the determination of ovule number in Arabidopsis and in species of agronomic interest, such as tomato and rapeseed, adding a new layer of complexity to this important developmental process. DELLA activity correlates positively with ovule number, acting as a positive factor for ovule initiation. In addition, ectopic expression of a dominant DELLA in the placenta is sufficient to increase ovule number. The role of DELLA proteins in ovule number does not appear to be related to auxin transport or signaling in the ovule primordia. Possible crosstalk between DELLA proteins and the molecular and hormonal network controlling ovule initiation is also discussed.
Collapse
Affiliation(s)
- Maria D Gomez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia 46022, Spain
| | - Daniela Barro-Trastoy
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia 46022, Spain
| | - Ernesto Escoms
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia 46022, Spain
| | - Maite Saura-Sánchez
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1417DSE, Argentina
| | - Ines Sánchez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia 46022, Spain
| | - Asier Briones-Moreno
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia 46022, Spain
| | - Francisco Vera-Sirera
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia 46022, Spain
| | - Esther Carrera
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia 46022, Spain
| | - Juan-José Ripoll
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Martin F Yanofsky
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Isabel Lopez-Diaz
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia 46022, Spain
| | - José M Alonso
- Department of Plant and Microbial Biology, Genetics Graduate Program, North Carolina State University, Raleigh, NC 27607, USA
| | - Miguel A Perez-Amador
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia 46022, Spain
| |
Collapse
|
11
|
Integument Development in Arabidopsis Depends on Interaction of YABBY Protein INNER NO OUTER with Coactivators and Corepressors. Genetics 2017; 207:1489-1500. [PMID: 28971961 DOI: 10.1534/genetics.117.300140] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/28/2017] [Indexed: 01/28/2023] Open
Abstract
Arabidopsis thaliana INNER NO OUTER (INO) is a YABBY protein that is essential for the initiation and development of the outer integument of ovules. Other YABBY proteins have been shown to be involved in both negative and positive regulation of expression of putative target genes. YABBY proteins have also been shown to interact with the corepressor LEUNIG (LUG) in several systems. In support of a repressive role for INO, we confirm that INO interacts with LUG and also find that INO directly interacts with SEUSS (SEU), a known corepressive partner of LUG. Further, we find that INO can directly interact with ADA2b/PROPORZ1 (PRZ1), a transcriptional coactivator that is known to interact with the histone acetyltransferase GENERAL CONTROL NONREPRESSIBLE PROTEIN 5 (GCN5, also known as HAG1). Mutations in LUG, SEU, and ADA2b/PRZ1 all lead to pleiotropic effects including a deficiency in the extension of the outer integument. Additive and synergistic effects of ada2b/prz1 and lug mutations on outer integument formation indicate that these two genes function independently to promote outer integument growth. The ino mutation is epistatic to both lug and ada2b/prz1 in the outer integument, and all three proteins are present in the nuclei of a common set of outer integument cells. This is consistent with a model where INO utilizes these coregulator proteins to activate and repress separate sets of target genes. Other Arabidopsis YABBY proteins were shown to also form complexes with ADA2b/PRZ1, and have been previously shown to interact with SEU and LUG. Thus, interaction with these corepressors and coactivator may represent a general mechanism to explain the positive and negative activities of YABBY proteins in transcriptional regulation. The LUG, SEU, and ADA2b/PRZ1 proteins would also separately be recruited to targets of other transcription factors, consistent with their roles as general coregulators, explaining the pleiotropic effects not associated with YABBY function.
Collapse
|
12
|
Liu H, Able AJ, Able JA. Genotypic water-deficit stress responses in durum wheat: association between physiological traits, microRNA regulatory modules and yield components. FUNCTIONAL PLANT BIOLOGY : FPB 2017; 44:538-551. [PMID: 32480586 DOI: 10.1071/fp16294] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 02/07/2017] [Indexed: 06/11/2023]
Abstract
In Mediterranean environments, water-deficit stress that occurs before anthesis significantly limits durum wheat (Triticum turgidum L. ssp. durum) production. Stress tolerant and stress sensitive durum varieties exhibit genotypic differences in their response to pre-anthesis water-deficit stress as reflected by yield performance, but our knowledge of the mechanisms underlying tolerance is limited. We have previously identified stress responsive durum microRNAs (miRNAs) that could contribute to water-deficit stress tolerance by mediating post-transcriptional silencing of genes that lead to stress adaptation (e.g. miR160 and its targets ARF8 (auxin response factor 8) and ARF18). However, the temporal regulation pattern of miR160-ARFs after induction of pre-anthesis water-deficit stress in sensitive and tolerant varieties remains unknown. Here, the physiological responses of four durum genotypes are described by chlorophyll content, leaf relative water content, and stomatal conductance at seven time-points during water-deficit stress from booting to anthesis. qPCR examination of miR160, ARF8 and ARF18 at these time-points revealed a complex stress responsive regulatory pattern, in the flag leaf and the head, subject to genotype. Harvest components and morphological traits measured at maturity confirmed the stress tolerance level of these four varieties for agronomic performance, and their potential association with the physiological responses. In general, the distinct regulatory pattern of miR160-ARFs among stress tolerant and sensitive durum varieties suggests that miRNA-mediated molecular pathways may contribute to the genotypic differences in the physiological traits, ultimately affecting yield components (e.g. the maintenance of harvest index and grain number).
Collapse
Affiliation(s)
- Haipei Liu
- School of Agriculture, Food and Wine, University of Adelaide, Waite Research Institute, PMB 1, Glen Osmond, SA 5064, Australia
| | - Amanda J Able
- School of Agriculture, Food and Wine, University of Adelaide, Waite Research Institute, PMB 1, Glen Osmond, SA 5064, Australia
| | - Jason A Able
- School of Agriculture, Food and Wine, University of Adelaide, Waite Research Institute, PMB 1, Glen Osmond, SA 5064, Australia
| |
Collapse
|
13
|
Tedeschi F, Rizzo P, Rutten T, Altschmied L, Bäumlein H. RWP-RK domain-containing transcription factors control cell differentiation during female gametophyte development in Arabidopsis. THE NEW PHYTOLOGIST 2017; 213:1909-1924. [PMID: 27870062 DOI: 10.1111/nph.14293] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/17/2016] [Indexed: 05/02/2023]
Abstract
The formation of gametes is a prerequisite for any sexually reproducing organism in order to complete its life cycle. In plants, female gametes are formed in a multicellular tissue, the female gametophyte or embryo sac. Although the events leading to the formation of the female gametophyte have been morphologically characterized, the molecular control of embryo sac development remains elusive. We used single and double mutants as well as cell-specific marker lines to characterize a novel class of gene regulators in Arabidopsis thaliana, the RWP-RK domain-containing (RKD) transcription factors. Morphological and histological analyses were conducted using confocal laser scanning and differential interference contrast microscopy. Gene expression and transcriptome analyses were performed using quantitative reverse transcription-PCR and RNA sequencing, respectively. Our results showed that RKD genes are expressed during distinct stages of embryo sac development. Morphological analysis of the mutants revealed severe distortions in gametophyte polarity and cell differentiation. Transcriptome analysis revealed changes in the expression of several gametophyte-specific gene families (RKD2 and RKD3) and ovule development-specific genes (RKD3), and identified pleiotropic effects on phytohormone pathways (RKD5). Our data provide novel insight into the regulatory control of female gametophyte development. RKDs are involved in the control of cell differentiation and are required for normal gametophytic development.
Collapse
Affiliation(s)
- Francesca Tedeschi
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466, Seeland, OT Gatersleben, Germany
| | - Paride Rizzo
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466, Seeland, OT Gatersleben, Germany
| | - Twan Rutten
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466, Seeland, OT Gatersleben, Germany
| | - Lothar Altschmied
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466, Seeland, OT Gatersleben, Germany
| | - Helmut Bäumlein
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466, Seeland, OT Gatersleben, Germany
| |
Collapse
|
14
|
Barabasz A, Klimecka M, Kendziorek M, Weremczuk A, Ruszczyńska A, Bulska E, Antosiewicz DM. The ratio of Zn to Cd supply as a determinant of metal-homeostasis gene expression in tobacco and its modulation by overexpressing the metal exporter AtHMA4. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6201-6214. [PMID: 27811086 PMCID: PMC5100030 DOI: 10.1093/jxb/erw389] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This study links changes in the tobacco endogenous metal-homeostasis network caused by transgene expression with engineering of novel features. It also provides insight into the concentration-dependent mutual interactions between Zn and Cd, leading to differences in the metal partitioning between wild-type and transgenic plants. In tobacco, expression of the export protein AtHMA4 modified Zn/Cd root/shoot distribution, but the pattern depended on their concentrations in the medium. To address this phenomenon, the expression of genes identified by suppression subtractive hybridization and the Zn/Cd accumulation pattern were examined upon exposure to six variants of low/high Zn and Cd concentrations. Five tobacco metal-homeostasis genes were identified: NtZIP2, NtZIP4, NtIRT1-like, NtNAS, and NtVTL. In the wild type, their expression depended on combinations of low/high Zn and Cd concentrations; co-ordinated responses of NtZIP1, NtZIP2, and NtVTL were shown in medium containing 4 µM Cd, and at 0.5 µM versus 10 µM Zn. In transgenics, qualitative changes detected for NtZIP1, NtZIP4, NtIRT1-like, and NtVTL are considered crucial for modification of Zn/Cd supply-dependent Zn/Cd root/shoot distribution. Notwithstanding, NtVTL was the most responsive gene in wild-type and transgenic plants under all concentrations of Zn and Cd tested; thus it is a candidate gene for the regulation of metal cross-homeostasis processes involved in engineering new metal-related traits.
Collapse
Affiliation(s)
- Anna Barabasz
- University of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, Department of Plant Anatomy and Cytology, Miecznikowa str 1, 02-096 Warszawa, Poland
| | - Maria Klimecka
- University of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, Department of Plant Anatomy and Cytology, Miecznikowa str 1, 02-096 Warszawa, Poland
| | - Maria Kendziorek
- University of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, Department of Plant Anatomy and Cytology, Miecznikowa str 1, 02-096 Warszawa, Poland
| | - Aleksandra Weremczuk
- University of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, Department of Plant Anatomy and Cytology, Miecznikowa str 1, 02-096 Warszawa, Poland
| | - Anna Ruszczyńska
- University of Warsaw, Faculty of Chemistry, Pasteura str. 1, 02-093 Warszawa, Poland
| | - Ewa Bulska
- University of Warsaw, Faculty of Chemistry, Pasteura str. 1, 02-093 Warszawa, Poland
| | - Danuta Maria Antosiewicz
- University of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, Department of Plant Anatomy and Cytology, Miecznikowa str 1, 02-096 Warszawa, Poland
| |
Collapse
|
15
|
Skinner DJ, Brown RH, Kuzoff RK, Gasser CS. Conservation of the role of INNER NO OUTER in development of unitegmic ovules of the Solanaceae despite a divergence in protein function. BMC PLANT BIOLOGY 2016; 16:143. [PMID: 27350128 PMCID: PMC4924249 DOI: 10.1186/s12870-016-0835-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 06/20/2016] [Indexed: 05/22/2023]
Abstract
BACKGROUND The INNER NO OUTER (INO) gene is expressed in the outermost cell layer of the outer integument of bitegmic ovules and is essential for this organ's growth. The role and cross-species functional conservation of INO orthologs were examined in members of the Solanaceae, which have unitegmic ovules. Unitegmy has evolved several times in disparate angiosperm lineages. INO expression has been observed in the outermost cell layers of all examined unitegmic ovules, but the functional role of INO in unitegmic ovules has not previously been evaluated. RESULTS INO orthologs were unambiguously identified in tobacco and tomato by sequence homology. Expression of the tomato INO gene was limited to the outer cell layer of the single integument indicating that this single integument has properties of the outer integument. Expression occurred only after integument initiation, later than observed in ovules of other examined angiosperms. Virus-induced knock-down of expression of the INO ortholog in tobacco inhibited growth of the outer cell layer of the integument leading to a decrease in both integument extension and curvature of the ovule. The altered ovules closely resemble those of the aberrant testa shape (ats) ino mutant combination in Arabidopsis where we see the effect of the ino mutation on a single fused integument produced by the ats mutation. Despite significant sequence identity and similar expression patterns, the tomato INO coding region was not able to complement the Arabidopsis ino mutant. CONCLUSIONS The similarity of effects of ino mutations on the unitegmic ovules of tobacco and the fused integuments of the Arabidopsis ats mutant show that: 1) INO orthologs play the same role in promoting integument growth in ovules of tobacco and Arabidopsis; and 2) the unitegmic ovules of tobacco (and hence other solanaceous species) are most likely the result of a congenital fusion of two ancestral integuments. Our results further indicate that INO has a conserved role in growth of the outermost cell layer of integuments. The curvature of solanaceous ovules is driven by unequal growth of the outer layers of the single integument that likely correspond to an ancestral outer integument.
Collapse
Affiliation(s)
- Debra J. Skinner
- />Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616 USA
| | - Ryan H. Brown
- />Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616 USA
- />Present address: US Patent and Trademark Office, 400 Dulany St, Alexandria, VA 22314 USA
| | - Robert K. Kuzoff
- />Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616 USA
- />Present address: Department of Biological Sciences, University of Wisconsin-Whitewater, Whitewater, WI 53190 USA
| | - Charles S. Gasser
- />Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616 USA
| |
Collapse
|
16
|
Villarino GH, Hu Q, Manrique S, Flores-Vergara M, Sehra B, Robles L, Brumos J, Stepanova AN, Colombo L, Sundberg E, Heber S, Franks RG. Transcriptomic Signature of the SHATTERPROOF2 Expression Domain Reveals the Meristematic Nature of Arabidopsis Gynoecial Medial Domain. PLANT PHYSIOLOGY 2016; 171:42-61. [PMID: 26983993 PMCID: PMC4854683 DOI: 10.1104/pp.15.01845] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/14/2016] [Indexed: 05/24/2023]
Abstract
Plant meristems, like animal stem cell niches, maintain a pool of multipotent, undifferentiated cells that divide and differentiate to give rise to organs. In Arabidopsis (Arabidopsis thaliana), the carpel margin meristem is a vital meristematic structure that generates ovules from the medial domain of the gynoecium, the female floral reproductive structure. The molecular mechanisms that specify this meristematic region and regulate its organogenic potential are poorly understood. Here, we present a novel approach to analyze the transcriptional signature of the medial domain of the Arabidopsis gynoecium, highlighting the developmental stages that immediately proceed ovule initiation, the earliest stages of seed development. Using a floral synchronization system and a SHATTERPROOF2 (SHP2) domain-specific reporter, paired with FACS and RNA sequencing, we assayed the transcriptome of the gynoecial medial domain with temporal and spatial precision. This analysis reveals a set of genes that are differentially expressed within the SHP2 expression domain, including genes that have been shown previously to function during the development of medial domain-derived structures, including the ovules, thus validating our approach. Global analyses of the transcriptomic data set indicate a similarity of the pSHP2-expressing cell population to previously characterized meristematic domains, further supporting the meristematic nature of this gynoecial tissue. Our method identifies additional genes including novel isoforms, cis-natural antisense transcripts, and a previously unrecognized member of the REPRODUCTIVE MERISTEM family of transcriptional regulators that are potential novel regulators of medial domain development. This data set provides genome-wide transcriptional insight into the development of the carpel margin meristem in Arabidopsis.
Collapse
Affiliation(s)
- Gonzalo H Villarino
- Department of Plant and Microbial Biology (G.H.V., M.F.-V., B.S., L.R., J.B., A.N.S., R.G.F.) and Department of Computer Science and Bioinformatics Research Center (Q.H., S.H.), North Carolina State University, Raleigh, North Carolina 27606;Università degli Studi di Milano Dip. di BioScienze, Sezione di Botanica Generale, Milan, Italy 20133 (S.M., L.C.); andDepartment of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden 750 07 (E.S.)
| | - Qiwen Hu
- Department of Plant and Microbial Biology (G.H.V., M.F.-V., B.S., L.R., J.B., A.N.S., R.G.F.) and Department of Computer Science and Bioinformatics Research Center (Q.H., S.H.), North Carolina State University, Raleigh, North Carolina 27606;Università degli Studi di Milano Dip. di BioScienze, Sezione di Botanica Generale, Milan, Italy 20133 (S.M., L.C.); andDepartment of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden 750 07 (E.S.)
| | - Silvia Manrique
- Department of Plant and Microbial Biology (G.H.V., M.F.-V., B.S., L.R., J.B., A.N.S., R.G.F.) and Department of Computer Science and Bioinformatics Research Center (Q.H., S.H.), North Carolina State University, Raleigh, North Carolina 27606;Università degli Studi di Milano Dip. di BioScienze, Sezione di Botanica Generale, Milan, Italy 20133 (S.M., L.C.); andDepartment of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden 750 07 (E.S.)
| | - Miguel Flores-Vergara
- Department of Plant and Microbial Biology (G.H.V., M.F.-V., B.S., L.R., J.B., A.N.S., R.G.F.) and Department of Computer Science and Bioinformatics Research Center (Q.H., S.H.), North Carolina State University, Raleigh, North Carolina 27606;Università degli Studi di Milano Dip. di BioScienze, Sezione di Botanica Generale, Milan, Italy 20133 (S.M., L.C.); andDepartment of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden 750 07 (E.S.)
| | - Bhupinder Sehra
- Department of Plant and Microbial Biology (G.H.V., M.F.-V., B.S., L.R., J.B., A.N.S., R.G.F.) and Department of Computer Science and Bioinformatics Research Center (Q.H., S.H.), North Carolina State University, Raleigh, North Carolina 27606;Università degli Studi di Milano Dip. di BioScienze, Sezione di Botanica Generale, Milan, Italy 20133 (S.M., L.C.); andDepartment of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden 750 07 (E.S.)
| | - Linda Robles
- Department of Plant and Microbial Biology (G.H.V., M.F.-V., B.S., L.R., J.B., A.N.S., R.G.F.) and Department of Computer Science and Bioinformatics Research Center (Q.H., S.H.), North Carolina State University, Raleigh, North Carolina 27606;Università degli Studi di Milano Dip. di BioScienze, Sezione di Botanica Generale, Milan, Italy 20133 (S.M., L.C.); andDepartment of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden 750 07 (E.S.)
| | - Javier Brumos
- Department of Plant and Microbial Biology (G.H.V., M.F.-V., B.S., L.R., J.B., A.N.S., R.G.F.) and Department of Computer Science and Bioinformatics Research Center (Q.H., S.H.), North Carolina State University, Raleigh, North Carolina 27606;Università degli Studi di Milano Dip. di BioScienze, Sezione di Botanica Generale, Milan, Italy 20133 (S.M., L.C.); andDepartment of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden 750 07 (E.S.)
| | - Anna N Stepanova
- Department of Plant and Microbial Biology (G.H.V., M.F.-V., B.S., L.R., J.B., A.N.S., R.G.F.) and Department of Computer Science and Bioinformatics Research Center (Q.H., S.H.), North Carolina State University, Raleigh, North Carolina 27606;Università degli Studi di Milano Dip. di BioScienze, Sezione di Botanica Generale, Milan, Italy 20133 (S.M., L.C.); andDepartment of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden 750 07 (E.S.)
| | - Lucia Colombo
- Department of Plant and Microbial Biology (G.H.V., M.F.-V., B.S., L.R., J.B., A.N.S., R.G.F.) and Department of Computer Science and Bioinformatics Research Center (Q.H., S.H.), North Carolina State University, Raleigh, North Carolina 27606;Università degli Studi di Milano Dip. di BioScienze, Sezione di Botanica Generale, Milan, Italy 20133 (S.M., L.C.); andDepartment of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden 750 07 (E.S.)
| | - Eva Sundberg
- Department of Plant and Microbial Biology (G.H.V., M.F.-V., B.S., L.R., J.B., A.N.S., R.G.F.) and Department of Computer Science and Bioinformatics Research Center (Q.H., S.H.), North Carolina State University, Raleigh, North Carolina 27606;Università degli Studi di Milano Dip. di BioScienze, Sezione di Botanica Generale, Milan, Italy 20133 (S.M., L.C.); andDepartment of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden 750 07 (E.S.)
| | - Steffen Heber
- Department of Plant and Microbial Biology (G.H.V., M.F.-V., B.S., L.R., J.B., A.N.S., R.G.F.) and Department of Computer Science and Bioinformatics Research Center (Q.H., S.H.), North Carolina State University, Raleigh, North Carolina 27606;Università degli Studi di Milano Dip. di BioScienze, Sezione di Botanica Generale, Milan, Italy 20133 (S.M., L.C.); andDepartment of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden 750 07 (E.S.)
| | - Robert G Franks
- Department of Plant and Microbial Biology (G.H.V., M.F.-V., B.S., L.R., J.B., A.N.S., R.G.F.) and Department of Computer Science and Bioinformatics Research Center (Q.H., S.H.), North Carolina State University, Raleigh, North Carolina 27606;Università degli Studi di Milano Dip. di BioScienze, Sezione di Botanica Generale, Milan, Italy 20133 (S.M., L.C.); andDepartment of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden 750 07 (E.S.)
| |
Collapse
|
17
|
Lora J, Hormaza JI, Herrero M. The Diversity of the Pollen Tube Pathway in Plants: Toward an Increasing Control by the Sporophyte. FRONTIERS IN PLANT SCIENCE 2016; 7:107. [PMID: 26904071 PMCID: PMC4746263 DOI: 10.3389/fpls.2016.00107] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/20/2016] [Indexed: 05/06/2023]
Abstract
Plants, unlike animals, alternate multicellular diploid, and haploid generations in their life cycle. While this is widespread all along the plant kingdom, the size and autonomy of the diploid sporophyte and the haploid gametophyte generations vary along evolution. Vascular plants show an evolutionary trend toward a reduction of the gametophyte, reflected both in size and lifespan, together with an increasing dependence from the sporophyte. This has resulted in an overlooking of the importance of the gametophytic phase in the evolution of higher plants. This reliance on the sporophyte is most notorious along the pollen tube journey, where the male gametophytes have to travel a long way inside the sporophyte to reach the female gametophyte. Along evolution, there is a change in the scenery of the pollen tube pathway that favors pollen competition and selection. This trend, toward apparently making complicated what could be simple, appears to be related to an increasing control of the sporophyte over the gametophyte with implications for understanding plant evolution.
Collapse
Affiliation(s)
- Jorge Lora
- Department of Subtropical Fruit Crops, Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora – University of Málaga – Consejo Superior de Investigaciones CientíficasMálaga, Spain
| | - José I. Hormaza
- Department of Subtropical Fruit Crops, Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora – University of Málaga – Consejo Superior de Investigaciones CientíficasMálaga, Spain
| | - María Herrero
- Department of Pomology, Estación Experimental Aula Dei, Consejo Superior de Investigaciones CientíficasZaragoza, Spain
| |
Collapse
|
18
|
Mendes MA, Guerra RF, Castelnovo B, Velazquez YS, Morandini P, Manrique S, Baumann N, Groß-Hardt R, Dickinson H, Colombo L. Live and let die: a REM complex promotes fertilization through synergid cell death in Arabidopsis. Development 2016; 143:2780-90. [DOI: 10.1242/dev.134916] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 06/02/2016] [Indexed: 11/20/2022]
Abstract
Fertilization in flowering plants requires a complex series of coordinated events involving interaction between the male and female gametophyte. We report here molecular data on one of the key events underpinning this process – the death of the receptive synergid cell and the coincident bursting of the pollen tube inside the ovule to release the sperms.
We show that two REM transcription factors, VALKYRIE (VAL) and VERDANDI (VDD), both targets of the ovule identity MADS-box complex SEEDSTICK-SEPALLATA3, interact to control the death of the receptive synergid cell. In vdd_1/+ mutants and VAL_RNAi lines we find that GAMETOPHYTIC FACTOR 2 (GFA2), required for synergid degeneration, is down regulated, while FERONIA (FER) and MYB98 expression, necessary for pollen tube attraction and perception remain unaffected. We also demonstrate that the vdd_1/+ phenotype can be rescued by expressing VDD or GFA2 in the synergid cells. Taken together, our findings reveal that the death of the receptive synergid cell is essential for the maintenance of the following generations, and that a complex formed of VDD and VAL regulate this event.
Collapse
Affiliation(s)
- Marta Adelina Mendes
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milan, Italy
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Portugal
| | | | - Beatrice Castelnovo
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milan, Italy
| | | | - Piero Morandini
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Silvia Manrique
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Nadine Baumann
- Center for Plant Molecular Biology, University of Tübingen, Germany
| | - Rita Groß-Hardt
- Center for Biomolecular Interactions Bremen, University of Bremen, Germany
- Center for Plant Molecular Biology, University of Tübingen, Germany
| | - Hugh Dickinson
- Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB, UK
| | - Lucia Colombo
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
19
|
Lora J, Hormaza JI, Herrero M. Transition from two to one integument in Prunus species: expression pattern of INNER NO OUTER (INO), ABERRANT TESTA SHAPE (ATS) and ETTIN (ETT). THE NEW PHYTOLOGIST 2015; 208:584-95. [PMID: 25991552 DOI: 10.1111/nph.13460] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 04/15/2015] [Indexed: 05/05/2023]
Abstract
While gymnosperm ovules have one integument, in most angiosperms two integuments surround the ovules. Unitegmic ovules have arisen independently several times during the evolution of angiosperms, but the ultimate genetic cause of the presence of a single integument remains elusive. We compared species of the genus Prunus that have different numbers of integuments: bitegmic species, such as Prunus armeniaca (apricot) and Prunus persica (peach), and unitegmic species, such as Prunus incisa, analyzing the expression pattern of genes that are involved in integument development in Arabidopsis thaliana: INNER NO OUTER (INO), ABERRANT TESTA SHAPE (ATS) and ETTIN (ETT). Bitegmic and unitegmic species showed similar INO expression patterns, indicative of the conservation of an outer integument. However, expression of ETT, which occurs in the boundary of the outer and inner integuments, was altered in unitegmic ovules, which showed lack of ETT expression. These results strongly suggest that the presence of a single integument could be attributable to the amalgamation of two integuments and support the role of ETT in the fusion of the outer and inner integuments in unitegmic ovules, a situation that could be widespread in other unitegmic species of angiosperms.
Collapse
Affiliation(s)
- Jorge Lora
- Department of Pomology, Estación Experimental Aula Dei, CSIC, Apdo. 13034, 50080, Zaragoza, Spain
| | - José I Hormaza
- Department of Subtropical Fruit Crops, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), 29750, Algarrobo-Costa, Málaga, Spain
| | - Maria Herrero
- Department of Pomology, Estación Experimental Aula Dei, CSIC, Apdo. 13034, 50080, Zaragoza, Spain
| |
Collapse
|
20
|
Hijazi M, Roujol D, Nguyen-Kim H, Del Rocio Cisneros Castillo L, Saland E, Jamet E, Albenne C. Arabinogalactan protein 31 (AGP31), a putative network-forming protein in Arabidopsis thaliana cell walls? ANNALS OF BOTANY 2014; 114:1087-97. [PMID: 24685714 PMCID: PMC4195544 DOI: 10.1093/aob/mcu038] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 02/14/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Arabinogalactan protein 31 (AGP31) is a remarkable plant cell-wall protein displaying a multi-domain organization unique in Arabidopsis thaliana: it comprises a predicted signal peptide (SP), a short AGP domain of seven amino acids, a His-stretch, a Pro-rich domain and a PAC (PRP-AGP containing Cys) domain. AGP31 displays different O-glycosylation patterns with arabinogalactans on the AGP domain and Hyp-O-Gal/Ara-rich motifs on the Pro-rich domain. AGP31 has been identified as an abundant protein in cell walls of etiolated hypocotyls, but its function has not been investigated thus far. Literature data suggest that AGP31 may interact with cell-wall components. The purpose of the present study was to identify AGP31 partners to gain new insight into its function in cell walls. METHODS Nitrocellulose membranes were prepared by spotting different polysaccharides, which were either obtained commercially or extracted from cell walls of Arabidopsis thaliana and Brachypodium distachyon. After validation of the arrays, in vitro interaction assays were carried out by probing the membranes with purified native AGP31 or recombinant PAC-V5-6xHis. In addition, dynamic light scattering (DLS) analyses were carried out on an AGP31 purified fraction. KEY RESULTS It was demonstrated that AGP31 interacts through its PAC domain with galactans that are branches of rhamnogalacturonan I. This is the first experimental evidence that a PAC domain, also found as an entire protein or a domain of AGP31 homologues, can bind carbohydrates. AGP31 was also found to bind methylesterified polygalacturonic acid, possibly through its His-stretch. Finally, AGP31 was able to interact with itself in vitro through its PAC domain. DLS data showed that AGP31 forms aggregates in solution, corroborating the hypothesis of an auto-assembly. CONCLUSIONS These results allow the proposal of a model of interactions of AGP31 with different cell-wall components, in which AGP31 participates in complex supra-molecular scaffolds. Such scaffolds could contribute to the strengthening of cell walls of quickly growing organs such as etiolated hypocotyls.
Collapse
Affiliation(s)
- May Hijazi
- Université de Toulouse; UPS; UMR 5546, Laboratoire de Recherche en Sciences Végétales; BP 42617 Auzeville, F-31326 Castanet-Tolosan, France CNRS; UMR 5546; BP 42617, F-31326 Castanet-Tolosan, France
| | - David Roujol
- Université de Toulouse; UPS; UMR 5546, Laboratoire de Recherche en Sciences Végétales; BP 42617 Auzeville, F-31326 Castanet-Tolosan, France CNRS; UMR 5546; BP 42617, F-31326 Castanet-Tolosan, France
| | - Huan Nguyen-Kim
- Université de Toulouse; UPS; UMR 5546, Laboratoire de Recherche en Sciences Végétales; BP 42617 Auzeville, F-31326 Castanet-Tolosan, France CNRS; UMR 5546; BP 42617, F-31326 Castanet-Tolosan, France
| | | | - Estelle Saland
- Université de Toulouse; UPS; UMR 5546, Laboratoire de Recherche en Sciences Végétales; BP 42617 Auzeville, F-31326 Castanet-Tolosan, France CNRS; UMR 5546; BP 42617, F-31326 Castanet-Tolosan, France
| | - Elisabeth Jamet
- Université de Toulouse; UPS; UMR 5546, Laboratoire de Recherche en Sciences Végétales; BP 42617 Auzeville, F-31326 Castanet-Tolosan, France CNRS; UMR 5546; BP 42617, F-31326 Castanet-Tolosan, France
| | - Cécile Albenne
- Université de Toulouse; UPS; UMR 5546, Laboratoire de Recherche en Sciences Végétales; BP 42617 Auzeville, F-31326 Castanet-Tolosan, France CNRS; UMR 5546; BP 42617, F-31326 Castanet-Tolosan, France
| |
Collapse
|
21
|
Abstract
Amborella trichopoda is strongly supported as the single living species of the sister lineage to all other extant flowering plants, providing a unique reference for inferring the genome content and structure of the most recent common ancestor (MRCA) of living angiosperms. Sequencing the Amborella genome, we identified an ancient genome duplication predating angiosperm diversification, without evidence of subsequent, lineage-specific genome duplications. Comparisons between Amborella and other angiosperms facilitated reconstruction of the ancestral angiosperm gene content and gene order in the MRCA of core eudicots. We identify new gene families, gene duplications, and floral protein-protein interactions that first appeared in the ancestral angiosperm. Transposable elements in Amborella are ancient and highly divergent, with no recent transposon radiations. Population genomic analysis across Amborella's native range in New Caledonia reveals a recent genetic bottleneck and geographic structure with conservation implications.
Collapse
|
22
|
Enugutti B, Kirchhelle C, Schneitz K. On the genetic control of planar growth during tissue morphogenesis in plants. PROTOPLASMA 2013; 250:651-61. [PMID: 22983223 DOI: 10.1007/s00709-012-0452-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 09/05/2012] [Indexed: 05/15/2023]
Abstract
Tissue morphogenesis requires extensive intercellular communication. Plant organs are composites of distinct radial cell layers. A typical layer, such as the epidermis, is propagated by stereotypic anticlinal cell divisions. It is presently unclear what mechanisms coordinate cell divisions relative to the plane of a layer, resulting in planar growth and maintenance of the layer structure. Failure in the regulation of coordinated growth across a tissue may result in spatially restricted abnormal growth and the formation of a tumor-like protrusion. Therefore, one way to approach planar growth control is to look for genetic mutants that exhibit localized tumor-like outgrowths. Interestingly, plants appear to have evolved quite robust genetic mechanisms that govern these aspects of tissue morphogenesis. Here we provide a short summary of the current knowledge about the genetics of tumor formation in plants and relate it to the known control of coordinated cell behavior within a tissue layer. We further portray the integuments of Arabidopsis thaliana as an excellent model system to study the regulation of planar growth. The value of examining this process in integuments was established by the recent identification of the Arabidopsis AGC VIII kinase UNICORN as a novel growth suppressor involved in the regulation of planar growth and the inhibition of localized ectopic growth in integuments and other floral organs. An emerging insight is that misregulation of central determinants of adaxial-abaxial tissue polarity can lead to the formation of spatially restricted multicellular outgrowths in several tissues. Thus, there may exist a link between the mechanisms regulating adaxial-abaxial tissue polarity and planar growth in plants.
Collapse
Affiliation(s)
- Balaji Enugutti
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Emil-Ramann-Strasse 4, 85354, Freising, Germany.
| | | | | |
Collapse
|
23
|
Regulation of planar growth by the Arabidopsis AGC protein kinase UNICORN. Proc Natl Acad Sci U S A 2012; 109:15060-5. [PMID: 22927420 DOI: 10.1073/pnas.1205089109] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The spatial coordination of growth is of central importance for the regulation of plant tissue architecture. Individual layers, such as the epidermis, are clonally propagated and structurally maintained by symmetric cell divisions that are oriented along the plane of the layer. The developmental control of this process is poorly understood. The simple cellular basis and sheet-like structure of Arabidopsis integuments make them an attractive model system to address planar growth. Here we report on the characterization of the Arabidopsis UNICORN (UCN) gene. Analysis of ucn integuments reveals localized distortion of planar growth, eventually resulting in an ectopic multicellular protrusion. In addition, ucn mutants exhibit ectopic growth in filaments and petals, as well as aberrant embryogenesis. We further show that UCN encodes an active AGC VIII kinase. Genetic, biochemical, and cell biological data suggest that UCN suppresses ectopic growth in integuments by directly repressing the KANADI transcription factor ABERRANT TESTA SHAPE. Our findings indicate that UCN represents a unique plant growth regulator that maintains planar growth of integuments by repressing a developmental regulator involved in the control of early integument growth and polarity.
Collapse
|
24
|
Tucker MR, Okada T, Hu Y, Scholefield A, Taylor JM, Koltunow AMG. Somatic small RNA pathways promote the mitotic events of megagametogenesis during female reproductive development in Arabidopsis. Development 2012; 139:1399-404. [PMID: 22399683 DOI: 10.1242/dev.075390] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Female gamete development in Arabidopsis ovules comprises two phases. During megasporogenesis, a somatic ovule cell differentiates into a megaspore mother cell and undergoes meiosis to produce four haploid megaspores, three of which degrade. The surviving functional megaspore participates in megagametogenesis, undergoing syncytial mitosis and cellular differentiation to produce a multicellular female gametophyte containing the egg and central cell, progenitors of the embryo and endosperm of the seed. The transition between megasporogenesis and megagametogenesis is poorly characterised, partly owing to the inaccessibility of reproductive cells within the ovule. Here, laser capture microdissection was used to identify genes expressed in and/or around developing megaspores during the transition to megagametogenesis. ARGONAUTE5 (AGO5), a putative effector of small RNA (sRNA) silencing pathways, was found to be expressed around reproductive cells during megasporogenesis, and a novel semi-dominant ago5-4 insertion allele showed defects in the initiation of megagametogenesis. Expression of a viral RNAi suppressor, P1/Hc-Pro, driven by the WUSCHEL and AGO5 promoters in somatic cells flanking the megaspores resulted in a similar phenotype. This indicates that sRNA-dependent pathways acting in somatic ovule tissues promote the initiation of megagametogenesis in the functional megaspore. Notably, these pathways are independent of AGO9, which functions in somatic epidermal ovule cells to inhibit the formation of multiple megaspore-like cells. Therefore, one somatic sRNA pathway involving AGO9 restricts reproductive development to the functional megaspore and a second pathway, inhibited by ago5-4 and P1/Hc-Pro, promotes megagametogenesis.
Collapse
Affiliation(s)
- Matthew R Tucker
- CSIRO Plant Industry, Waite Campus, Hartley Grove, Urrbrae, SA 5064, Australia
| | | | | | | | | | | |
Collapse
|
25
|
Kelley DR, Arreola A, Gallagher TL, Gasser CS. ETTIN (ARF3) physically interacts with KANADI proteins to form a functional complex essential for integument development and polarity determination in Arabidopsis. Development 2012; 139:1105-9. [PMID: 22296848 DOI: 10.1242/dev.067918] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
KANADI (KAN) transcription factors promote abaxial cell fate throughout plant development and are required for organ formation during embryo, leaf, carpel and ovule development. ABERRANT TESTA SHAPE (ATS, or KAN4) is necessary during ovule development to maintain the boundary between the two ovule integuments and to promote inner integument growth. Yeast two-hybrid assays identified ETTIN (ETT, or AUXIN RESPONSE FACTOR 3) as a transcription factor that could physically interact with ATS. ATS and ETT were shown to physically interact in vivo in transiently transformed tobacco epidermal cells using bimolecular fluorescence complementation. ATS and ETT were found to share an overlapping expression pattern during Arabidopsis ovule development and loss of either gene resulted in congenital fusion of the integuments and altered seed morphology. We hypothesize that in wild-type ovules a physical interaction between ATS and ETT allows these proteins to act in concert to define the boundary between integument primordia. We further show protein-protein interaction in yeast between ETT and KAN1, a paralog of ATS. Thus, a direct physical association between ETT and KAN proteins underpins their previously described common role in polarity establishment and organogenesis. We propose that ETT-KAN protein complex(es) constitute part of an auxin-dependent regulatory module that plays a conserved role in a variety of developmental contexts.
Collapse
Affiliation(s)
- Dior R Kelley
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
26
|
Brenner WG, Ramireddy E, Heyl A, Schmülling T. Gene regulation by cytokinin in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2012; 3:8. [PMID: 22639635 PMCID: PMC3355611 DOI: 10.3389/fpls.2012.00008] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 01/06/2012] [Indexed: 05/18/2023]
Abstract
The plant hormone cytokinin realizes at least part of its signaling output through the regulation of gene expression. A great part of the early transcriptional regulation is mediated by type-B response regulators, which are transcription factors of the MYB family. Other transcription factors, such as the cytokinin response factors of the AP2/ERF family, have also been shown to be involved in this process. Additional transcription factors mediate distinct parts of the cytokinin response through tissue- and cell-specific downstream transcriptional cascades. In Arabidopsis, only a single cytokinin response element, to which type-B response regulators bind, has been clearly proven so far, which has 5'-GAT(T/C)-3' as a core sequence. This motif has served to construct a synthetic cytokinin-sensitive two-component system response element, which is useful for monitoring the cellular cytokinin status. Insight into the extent of transcriptional regulation has been gained by genome-wide gene expression analyses following cytokinin treatment and from plants having an altered cytokinin content or signaling. This review presents a meta analysis of such microarray data resulting in a core list of cytokinin response genes. Genes encoding type-A response regulators displayed the most stable response to cytokinin, but a number of cytokinin metabolism genes (CKX4, CKX5, CYP735A2, UGT76C2) also belong to them, indicating homeostatic mechanisms operating at the transcriptional level. The cytokinin core response genes are also the target of other hormones as well as biotic and abiotic stresses, documenting crosstalk of the cytokinin system with other hormonal and environmental signaling pathways. The multiple links of cytokinin to diverse functions, ranging from control of meristem activity, hormonal crosstalk, nutrient acquisition, and various stress responses, are also corroborated by a compilation of genes that have been repeatedly found by independent gene expression profiling studies. Such functions are, at least in part, supported by genetic studies.
Collapse
Affiliation(s)
- Wolfram G. Brenner
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität BerlinBerlin, Germany
| | - Eswar Ramireddy
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität BerlinBerlin, Germany
| | - Alexander Heyl
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität BerlinBerlin, Germany
- *Correspondence: Alexander Heyl and Thomas Schmülling, Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany. e-mail: ;
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität BerlinBerlin, Germany
- *Correspondence: Alexander Heyl and Thomas Schmülling, Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany. e-mail: ;
| |
Collapse
|
27
|
Dean G, Cao Y, Xiang D, Provart NJ, Ramsay L, Ahad A, White R, Selvaraj G, Datla R, Haughn G. Analysis of gene expression patterns during seed coat development in Arabidopsis. MOLECULAR PLANT 2011; 4:1074-91. [PMID: 21653281 DOI: 10.1093/mp/ssr040] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The seed coat is important for embryo protection, seed hydration, and dispersal. Seed coat composition is also of interest to the agricultural sector, since it impacts the nutritional value for humans and livestock alike. Although some seed coat genes have been identified, the developmental pathways controlling seed coat development are not completely elucidated, and a global genetic program associated with seed coat development has not been reported. This study uses a combination of genetic and genomic approaches in Arabidopsis thaliana to begin to address these knowledge gaps. Seed coat development is a complex process whereby the integuments of the ovule differentiate into specialized cell types. In Arabidopsis, the outermost layer of cells secretes mucilage into the apoplast and develops a secondary cell wall known as a columella. The layer beneath the epidermis, the palisade, synthesizes a secondary cell wall on its inner tangential side. The innermost layer (the pigmented layer or endothelium) produces proanthocyanidins that condense into tannins and oxidize, giving a brown color to mature seeds. Genetic separation of these cell layers was achieved using the ap2-7 and tt16-1 mutants, where the epidermis/palisade and the endothelium do not develop respectively. This genetic ablation was exploited to examine the developmental programs of these cell types by isolating and collecting seed coats at key transitions during development and performing global gene expression analysis. The data indicate that the developmental programs of the epidermis and the pigmented layer proceed relatively independently. Global expression datasets that can be used for identification of new gene candidates for seed coat development were generated. These dataset provide a comprehensive expression profile for developing seed coats in Arabidopsis, and should provide a useful resource and reference for other seed systems.
Collapse
Affiliation(s)
- Gillian Dean
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Transcriptomic characterization of a synergistic genetic interaction during carpel margin meristem development in Arabidopsis thaliana. PLoS One 2011; 6:e26231. [PMID: 22031826 PMCID: PMC3198736 DOI: 10.1371/journal.pone.0026231] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 09/22/2011] [Indexed: 11/19/2022] Open
Abstract
In flowering plants the gynoecium is the female reproductive structure. In Arabidopsis thaliana ovules initiate within the developing gynoecium from meristematic tissue located along the margins of the floral carpels. When fertilized the ovules will develop into seeds. SEUSS (SEU) and AINTEGUMENTA (ANT) encode transcriptional regulators that are critical for the proper formation of ovules from the carpel margin meristem (CMM). The synergistic loss of ovule initiation observed in the seu ant double mutant suggests that SEU and ANT share overlapping functions during CMM development. However the molecular mechanism underlying this synergistic interaction is unknown. Using the ATH1 transcriptomics platform we identified transcripts that were differentially expressed in seu ant double mutant relative to wild type and single mutant gynoecia. In particular we sought to identify transcripts whose expression was dependent on the coordinated activities of the SEU and ANT gene products. Our analysis identifies a diverse set of transcripts that display altered expression in the seu ant double mutant tissues. The analysis of overrepresented Gene Ontology classifications suggests a preponderance of transcriptional regulators including multiple members of the REPRODUCTIVE MERISTEMS (REM) and GROWTH-REGULATING FACTOR (GRF) families are mis-regulated in the seu ant gynoecia. Our in situ hybridization analyses indicate that many of these genes are preferentially expressed within the developing CMM. This study is the first step toward a detailed description of the transcriptional regulatory hierarchies that control the development of the CMM and ovule initiation. Understanding the regulatory hierarchy controlled by SEU and ANT will clarify the molecular mechanism of the functional redundancy of these two genes and illuminate the developmental and molecular events required for CMM development and ovule initiation.
Collapse
|
29
|
Harris JC, Hrmova M, Lopato S, Langridge P. Modulation of plant growth by HD-Zip class I and II transcription factors in response to environmental stimuli. THE NEW PHYTOLOGIST 2011; 190:823-837. [PMID: 21517872 DOI: 10.1111/j.1469-8137.2011.03733.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plant development is adapted to changing environmental conditions for optimizing growth. This developmental adaptation is influenced by signals from the environment, which act as stimuli and may include submergence and fluctuations in water status, light conditions, nutrient status, temperature and the concentrations of toxic compounds. The homeodomain-leucine zipper (HD-Zip) I and HD-Zip II transcription factor networks regulate these plant growth adaptation responses through integration of developmental and environmental cues. Evidence is emerging that these transcription factors are integrated with phytohormone-regulated developmental networks, enabling environmental stimuli to influence the genetically preprogrammed developmental progression. Dependent on the prevailing conditions, adaptation of mature and nascent organs is controlled by HD-Zip I and HD-Zip II transcription factors through suppression or promotion of cell multiplication, differentiation and expansion to regulate targeted growth. In vitro assays have shown that, within family I or family II, homo- and/or heterodimerization between leucine zipper domains is a prerequisite for DNA binding. Further, both families bind similar 9-bp pseudopalindromic cis elements, CAATNATTG, under in vitro conditions. However, the mechanisms that regulate the transcriptional activity of HD-Zip I and HD-Zip II transcription factors in vivo are largely unknown. The in planta implications of these protein-protein associations and the similarities in cis element binding are not clear.
Collapse
Affiliation(s)
- John C Harris
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA 5064, Australia
| | - Maria Hrmova
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA 5064, Australia
| | - Sergiy Lopato
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA 5064, Australia
| | - Peter Langridge
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA 5064, Australia
| |
Collapse
|
30
|
Endress PK. Angiosperm ovules: diversity, development, evolution. ANNALS OF BOTANY 2011; 107:1465-89. [PMID: 21606056 PMCID: PMC3108811 DOI: 10.1093/aob/mcr120] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 03/29/2011] [Accepted: 04/11/2011] [Indexed: 05/18/2023]
Abstract
BACKGROUND Ovules as developmental precursors of seeds are organs of central importance in angiosperm flowers and can be traced back in evolution to the earliest seed plants. Angiosperm ovules are diverse in their position in the ovary, nucellus thickness, number and thickness of integuments, degree and direction of curvature, and histological differentiations. There is a large body of literature on this diversity, and various views on its evolution have been proposed over the course of time. Most recently evo-devo studies have been concentrated on molecular developmental genetics in ovules of model plants. SCOPE The present review provides a synthetic treatment of several aspects of the sporophytic part of ovule diversity, development and evolution, based on extensive research on the vast original literature and on experience from my own comparative studies in a broad range of angiosperm clades. CONCLUSIONS In angiosperms the presence of an outer integument appears to be instrumental for ovule curvature, as indicated from studies on ovule diversity through the major clades of angiosperms, molecular developmental genetics in model species, abnormal ovules in a broad range of angiosperms, and comparison with gymnosperms with curved ovules. Lobation of integuments is not an atavism indicating evolution from telomes, but simply a morphogenetic constraint from the necessity of closure of the micropyle. Ovule shape is partly dependent on locule architecture, which is especially indicated by the occurrence of orthotropous ovules. Some ovule features are even more conservative than earlier assumed and thus of special interest in angiosperm macrosystematics.
Collapse
Affiliation(s)
- Peter K Endress
- Institute of Systematic Botany, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland.
| |
Collapse
|
31
|
Lora J, Hormaza JI, Herrero M, Gasser CS. Seedless fruits and the disruption of a conserved genetic pathway in angiosperm ovule development. Proc Natl Acad Sci U S A 2011; 108:5461-5. [PMID: 21402944 PMCID: PMC3069195 DOI: 10.1073/pnas.1014514108] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although the biological function of fruiting is the production and dissemination of seeds, humans have developed seedless fruits in a number of plant species to facilitate consumption. Here we describe a unique spontaneous seedless mutant (Thai seedless; Ts) of Annona squamosa (sugar apple), a member of the early-divergent magnoliid angiosperm clade. Ovules (seed precursors) of the mutant lack the outer of two normal integuments, a phenocopy of the inner no outer (ino) mutant of Arabidopsis thaliana. Cloning of the INO ortholog from A. squamosa confirmed conservation of the outer integument-specific expression pattern of this gene between the two species. All regions of the gene were detectable in wild-type A. squamosa and in other members of this genus. However, no region of the INO gene could be detected in Ts plants, indicating apparent deletion of the INO locus. These results provide a case of a candidate gene approach revealing the apparent molecular basis of a useful agronomic trait (seedless fruit) in a crop species, and indicate conservation of the role of a critical regulator of ovule development between eudicots and more ancient lineages of angiosperms. The outer integument is one synapomorphy of angiosperms separating them from other extant seed plants, and the results suggest that the evolution of this structure was contemporaneous with the derivation of INO from ancestral YABBY genes. Thus, a unique lateral structure appears to have coevolved with a novel gene family member essential for the structure's formation.
Collapse
Affiliation(s)
- Jorge Lora
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Consejo Superior de Investigaciones Cientificas (CSIC), 29750 Algarrobo-Costa, Málaga, Spain
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616; and
| | - José I. Hormaza
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Consejo Superior de Investigaciones Cientificas (CSIC), 29750 Algarrobo-Costa, Málaga, Spain
| | - María Herrero
- Departamento de Pomoligía, Estación Experimental “Aula Dei,” CSIC, 50080 Zaragoza, Spain
| | - Charles S. Gasser
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616; and
| |
Collapse
|
32
|
Shi DQ, Yang WC. Ovule development in Arabidopsis: progress and challenge. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:74-80. [PMID: 20884278 DOI: 10.1016/j.pbi.2010.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 08/31/2010] [Accepted: 09/01/2010] [Indexed: 05/18/2023]
Abstract
Female gametophyte, the central core of the ovule, is a simple seven-celled reproductive structure. Its stereotyped ontogeny provides a traceable model system to study mechanisms controlling cell growth, cell division, cell fate, pattern formation, and perhaps the function of essential genes in plants. An auxin concentration gradient was demonstrated for the first time in the embryo sac to control gametic cell fate. Mutant analysis also indicates a role of RNA processing in the mitotic progression of the gametophytic generation and cell fate determination in the embryo sac. Combined studies of genetics and transcriptome analysis revealed recently that epigenetic pathways play a critical role in female gametophyte development. In addition, the discovery that a large number of small secreted cysteine-rich proteins are enriched in embryo sac is of special interest. Except these insights and progresses, challenge ahead is to reveal the signaling pathways and their interactions that lead to the patterning of the female gametophyte.
Collapse
Affiliation(s)
- Dong-Qiao Shi
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing 100101, China.
| | | |
Collapse
|
33
|
Dwivedi KK, Roche D, Carman JG. Expression in Arabidopsis of a nucellus-specific promoter from watermelon (Citrullus lanatus). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2010; 179:549-552. [PMID: 21802614 DOI: 10.1016/j.plantsci.2010.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 07/19/2010] [Accepted: 07/23/2010] [Indexed: 05/31/2023]
Abstract
Though many tissue-specific promoters have been identified, few have been associated specifically with the angiospermous megasporangium (nucellus). In the present study the 2000-bp regulatory region upstream to the watermelon, Citrullus lanatus (Thunb.) Matsum & Nakai, gene WM403 (GenBank accession no. AF008925), which shows nucellus-specific expression, was cloned from watermelon gDNA and fused to the β-glucuronidase reporter gene (GUS). The resulting plasmid, WM403 Prom::GUS(+), which also contained NPTII, was transformed into Arabidopsis thaliana ecotype Co1-0. Seedlings were selected on kanamycin-containing medium, and transformants were confirmed by PCR. GUS assays of T(3) transformants revealed weak promoter activation in epidermal layers of the placenta and locule septum during premeiotic ovule development but strong activation in the nucellus, embryo sac and early embryo, from early embryo sac formation to early globular embryo formation. Expression in seeds was absent thereafter. These results indicate that the WM403 promoter may be useful in driving nucellus-specific gene expression in plants including candidate genes for important nucellus-specific traits such as apospory or adventitious embryony.
Collapse
Affiliation(s)
- Krishna K Dwivedi
- Caisson Laboratories, Inc., 1740 Research Park Way, North Logan, UT 84341, USA
| | | | | |
Collapse
|
34
|
Sundberg E, Østergaard L. Distinct and dynamic auxin activities during reproductive development. Cold Spring Harb Perspect Biol 2009; 1:a001628. [PMID: 20457563 PMCID: PMC2882118 DOI: 10.1101/cshperspect.a001628] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Flowering plants have evolved sophisticated and complicated reproductive structures to ensure optimal conditions for the next generation. Successful reproduction relies on careful timing and coordination of tissue development, which requires constant communication between these tissues. Work on flower and fruit development over the last decade places the phytohormone auxin in a key role as a master of patterning and tissue specification of reproductive organs. Although many questions still remain, it is now clear that auxin mediates its function in flowers and fruits through an integrated process of biosynthesis, transport, and signaling, as well as interaction with other hormonal pathways. In addition, the knowledge obtained so far about auxin function already allows researchers to develop tools for crop improvement and precision agriculture.
Collapse
Affiliation(s)
- Eva Sundberg
- Uppsala BioCenter, Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, S-750 07 Uppsala, Sweden
| | | |
Collapse
|
35
|
Ovule development: genetic trends and evolutionary considerations. ACTA ACUST UNITED AC 2009; 22:229-34. [PMID: 20033444 PMCID: PMC2796119 DOI: 10.1007/s00497-009-0107-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 07/20/2009] [Indexed: 12/02/2022]
Abstract
Much of our current understanding of ovule development in flowering pants is derived from genetic and molecular studies performed on Arabidopsis thaliana. Arabidopsis has bitegmic, anatropous ovules, representing both the most common and the putative ancestral state among angiosperms. These studies show that key genetic determinants that act to control morphogenesis during ovule development also play roles in vegetative organ formation, consistent with Goethe’s “everything is a leaf” concept. Additionally, the existence of a common set of genetic factors that underlie laminar growth in angiosperms fits well with hypotheses of homology between integuments and leaves. Utilizing Arabidopsis as a reference, researchers are now investigating taxa with varied ovule morphologies to uncover common and diverged mechanisms of ovule development.
Collapse
|