1
|
Nyberg H, Bogen IL, Duale N, Andersen JM. Prenatal exposure to methadone or buprenorphine alters transcriptional networks associated with synaptic signaling in newborn rats. Neuropharmacology 2025; 270:110368. [PMID: 39956318 DOI: 10.1016/j.neuropharm.2025.110368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
While the use of methadone or buprenorphine during pregnancy is beneficial for the mother's health compared to illicit opioid use, prenatal exposure to these medications may have adverse consequences for the unborn child. However, the underlying molecular mechanisms of prenatal opioid exposure on neurodevelopment remain poorly understood. Hence, this study aimed to investigate gene expression changes, focusing on synapse-related genes, in cerebral tissue from newborn rats prenatally exposed to methadone or buprenorphine. Female Sprague-Dawley rats were exposed to methadone (10 mg/kg/day), buprenorphine (1 mg/kg/day), or sterile water through osmotic minipumps during pregnancy. Total RNA was isolated from the cerebrum on postnatal day 2 and analyzed using RNA-sequencing. Analyses of differentially expressed genes (DEGs) and enriched biological processes were conducted to compare the gene expression profiles between treatment groups within each sex. Prenatal buprenorphine exposure resulted in 598 DEGs (333 up- and 265 downregulated) in males and 175 (75 up- and 100 downregulated) in females, while prenatal methadone exposure resulted in 335 DEGs (224 up- and 111 downregulated) in males and 201 (57 up- and 144 downregulated) in females. Gene ontology analyses demonstrated that enriched biological processes included synaptic signaling, immune responses, and apoptosis. Analysis of the DEGs using the synapse database SynGO revealed that males prenatally exposed to buprenorphine displayed the highest number of enriched synapse-related biological process terms. Understanding gene expression changes following prenatal methadone or buprenorphine exposure is crucial to uncover the mechanisms underlying behavioral alterations and to develop interventions to mitigate the impact of opioid exposure on neurodevelopment.
Collapse
Affiliation(s)
- Henriette Nyberg
- Section of Forensic Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway; Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Inger Lise Bogen
- Section of Forensic Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway; Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Nur Duale
- Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo, Norway
| | - Jannike Mørch Andersen
- Section of Forensic Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway; Department of Pharmacy, University of Oslo, Oslo, Norway.
| |
Collapse
|
2
|
Zhao Q, Pan Y, Zhang D, Zhou X, Sun L, Xu Z, Zhang Y. The active ingredient β-sitosterol in Ganoderma regulates CHRM2-mediated aerobic glycolysis to induce apoptosis of lung adenocarcinoma cells. Genes Genet Syst 2025; 100:n/a. [PMID: 39537174 DOI: 10.1266/ggs.24-00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
β-sitosterol is a natural plant steroidal compound with anti-cancer properties against various tumors. This work explored the inhibitory effect of β-sitosterol on the progression of lung adenocarcinoma (LUAD) and further analyzed its targets. We applied network pharmacology to obtain the components and targets of Ganoderma spore powder. The biological functions of β-sitosterol and CHRM2 were studied using the homograft mouse model and a series of in vitro experiments involving quantitative reverse transcription polymerase chain reaction, western blot, CCK-8, flow cytometry, immunohistochemistry and immunofluorescence. The regulatory influence of β-sitosterol on the glycolysis pathway was validated by measuring glucose consumption and lactate production, as well as the extracellular acidification rate and oxygen consumption rate. We found that CHRM2 binds directly to β-sitosterol. In vitro, CHRM2 overexpression repressed the apoptosis rate and expression of apoptosis-related proteins in LUAD cells, and promoted glycolysis, while the addition of lonidamine attenuated the apoptosis-inhibiting effect conferred by CHRM2 overexpression. Furthermore, β-sitosterol hindered glycolysis as well as the growth of tumors in vitro and in vivo. CHRM2 overexpression reversed the effect of β-sitosterol on the biological behavior of LUAD cells. Our results emphasize that CHRM2 is a direct target of β-sitosterol in LUAD cells. β-sitosterol can repress the glycolysis pathway, exerting an anti-tumor effect. These findings provide new support for the use of β-sitosterol as a therapeutic agent for LUAD.
Collapse
Affiliation(s)
- Qiong Zhao
- Department of Thoracic Oncology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College
| | - Yuting Pan
- Department of Thoracic Oncology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College
| | - Danjia Zhang
- Department of Traditional Chinese Medicine, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College
| | - Xiaolian Zhou
- Department of Thoracic Oncology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College
| | - Liangyun Sun
- Department of Thoracic Oncology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College
| | - Zihan Xu
- MPA, Cornell University, Brooks School
| | | |
Collapse
|
3
|
Xue M, Jia M, Qin Y, Francis F, Gu X. Toxicity of parental co-exposure of microplastic and bisphenol compounds on adult zebrafish: Multi-omics investigations on offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176897. [PMID: 39401590 DOI: 10.1016/j.scitotenv.2024.176897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/20/2024] [Accepted: 10/10/2024] [Indexed: 10/20/2024]
Abstract
In recent years, the widespread use of bisphenol compounds and microplastics (MP) have attracted attention due to their harmful effects. Here, individual and combined effects of MP and bisphenol compounds, were assessed on adult zebrafish after co-exposure of bisphenol A (BPA) or bisphenol S (BPS) and 25 μm polyethylene MP. Impacts on their offspring (the F1 generation) were also investigated. The reproductive toxicity in adult zebrafish impacted exerted by bisphenol compounds were aggravated by the co-presence of MP. Transcriptomics and metabolomics further showed single or co-exposure of bisphenol compounds and MP could together regulate apoptosis, calcium signaling pathway and glycerophospholipid signaling pathways. Our results also showed the different toxicity mechanisms on transcriptional and metabolic profiles in the combination effects of bisphenol compounds and MP. The co-exposure of BPA and MP predominantly influenced neurotoxicity via the MAPK signaling pathway and voltage-dependent calcium channels, whereas the co-exposure of BPS and MP principally affected visual development through phototransduction and retinol metabolism. The co-exposure of BPA and MP, as well as BPS and MP, specifically regulate lipid metabolism and carbohydrate metabolism in zebrafish offspring, respectively. Overall, this study provided a deep understanding of the toxicity differences between co-exposure and single exposure of bisphenol compound and MP in zebrafish, as well as the transgenerational effects and potential molecular mechanisms of bisphenol compounds and MP in zebrafish offspring.
Collapse
Affiliation(s)
- Moyong Xue
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium; Institute of Animal Science, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Ming Jia
- Feed Research Institute, Chinese Academy of Agricultural Science, Beijing, China
| | - Yuchang Qin
- Institute of Animal Science, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - Xu Gu
- Feed Research Institute, Chinese Academy of Agricultural Science, Beijing, China.
| |
Collapse
|
4
|
Baker CE, Marta AG, Zimmerman ND, Korade Z, Mathy NW, Wilton D, Simeone T, Kochvar A, Kramer KL, Stessman HAF, Shibata A. CPT2 Deficiency Modeled in Zebrafish: Abnormal Neural Development, Electrical Activity, Behavior, and Schizophrenia-Related Gene Expression. Biomolecules 2024; 14:914. [PMID: 39199302 PMCID: PMC11353230 DOI: 10.3390/biom14080914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
Carnitine palmitoyltransferase 2 (CPT2) is an inner mitochondrial membrane protein of the carnitine shuttle and is involved in the beta-oxidation of long chain fatty acids. Beta-oxidation provides an alternative pathway of energy production during early development and starvation. CPT2 deficiency is a genetic disorder that we recently showed can be associated with schizophrenia. We hypothesize that CPT2 deficiency during early brain development causes transcriptional, structural, and functional abnormalities that may contribute to a CNS environment that is susceptible to the emergence of schizophrenia. To investigate the effect of CPT2 deficiency on early vertebrate development and brain function, CPT2 was knocked down in a zebrafish model system. CPT2 knockdown resulted in abnormal lipid utilization and deposition, reduction in body size, and abnormal brain development. Axonal projections, neurotransmitter synthesis, electrical hyperactivity, and swimming behavior were disrupted in CPT2 knockdown zebrafish. RT-qPCR analyses showed significant increases in the expression of schizophrenia-associated genes in CPT2 knockdown compared to control zebrafish. Taken together, these data demonstrate that zebrafish are a useful model for studying the importance of beta-oxidation for early vertebrate development and brain function. This study also presents novel findings linking CPT2 deficiency to the regulation of schizophrenia and neurodegenerative disease-associated genes.
Collapse
Affiliation(s)
- Carly E. Baker
- Department of Biomedical Sciences, Creighton University, Omaha, NE 68178, USA; (C.E.B.); (K.L.K.)
| | - Aaron G. Marta
- Department of Biology, Creighton University, Omaha, NE 68178, USA; (A.G.M.); (N.D.Z.); (N.W.M.); (D.W.); (A.K.)
| | - Nathan D. Zimmerman
- Department of Biology, Creighton University, Omaha, NE 68178, USA; (A.G.M.); (N.D.Z.); (N.W.M.); (D.W.); (A.K.)
| | - Zeljka Korade
- Department of Pediatrics, Department of Biochemistry & Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68178, USA;
| | - Nicholas W. Mathy
- Department of Biology, Creighton University, Omaha, NE 68178, USA; (A.G.M.); (N.D.Z.); (N.W.M.); (D.W.); (A.K.)
| | - Delaney Wilton
- Department of Biology, Creighton University, Omaha, NE 68178, USA; (A.G.M.); (N.D.Z.); (N.W.M.); (D.W.); (A.K.)
| | - Timothy Simeone
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE 68178, USA; (T.S.); (H.A.F.S.)
| | - Andrew Kochvar
- Department of Biology, Creighton University, Omaha, NE 68178, USA; (A.G.M.); (N.D.Z.); (N.W.M.); (D.W.); (A.K.)
| | - Kenneth L. Kramer
- Department of Biomedical Sciences, Creighton University, Omaha, NE 68178, USA; (C.E.B.); (K.L.K.)
| | - Holly A. F. Stessman
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE 68178, USA; (T.S.); (H.A.F.S.)
| | - Annemarie Shibata
- Department of Biology, Creighton University, Omaha, NE 68178, USA; (A.G.M.); (N.D.Z.); (N.W.M.); (D.W.); (A.K.)
| |
Collapse
|
5
|
Lam YC, Hamchand R, Mucci NC, Kauffman SJ, Dudkina N, Reagle EV, Casanova-Torres ÁM, DeCuyper J, Chen H, Song D, Thomas MG, Palm NW, Goodrich-Blair H, Crawford JM. The Xenorhabdus nematophila LrhA transcriptional regulator modulates production of γ-keto- N-acyl amides with inhibitory activity against mutualistic host nematode egg hatching. Appl Environ Microbiol 2024; 90:e0052824. [PMID: 38916293 PMCID: PMC11267870 DOI: 10.1128/aem.00528-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/01/2024] [Indexed: 06/26/2024] Open
Abstract
Xenorhabdus nematophila is a symbiotic Gammaproteobacterium that produces diverse natural products that facilitate mutualistic and pathogenic interactions in their nematode and insect hosts, respectively. The interplay between X. nematophila secondary metabolism and symbiosis stage is tuned by various global regulators. An example of such a regulator is the LysR-type protein transcription factor LrhA, which regulates amino acid metabolism and is necessary for virulence in insects and normal nematode progeny production. Here, we utilized comparative metabolomics and molecular networking to identify small molecule factors regulated by LrhA and characterized a rare γ-ketoacid (GKA) and two new N-acyl amides, GKA-Arg (1) and GKA-Pro (2) which harbor a γ-keto acyl appendage. A lrhA null mutant produced elevated levels of compound 1 and reduced levels of compound 2 relative to wild type. N-acyl amides 1 and 2 were shown to be selective agonists for the human G-protein-coupled receptors (GPCRs) C3AR1 and CHRM2, respectively. The CHRM2 agonist 2 deleteriously affected the hatch rate and length of Steinernema nematodes. This work further highlights the utility of exploiting regulators of host-bacteria interactions for the identification of the bioactive small molecule signals that they control. IMPORTANCE Xenorhabdus bacteria are of interest due to their symbiotic relationship with Steinernema nematodes and their ability to produce a variety of natural bioactive compounds. Despite their importance, the regulatory hierarchy connecting specific natural products and their regulators is poorly understood. In this study, comparative metabolomic profiling was utilized to identify the secondary metabolites modulated by the X. nematophila global regulator LrhA. This analysis led to the discovery of three metabolites, including an N-acyl amide that inhibited the egg hatching rate and length of Steinernema carpocapsae nematodes. These findings support the notion that X. nematophila LrhA influences the symbiosis between X. nematophila and S. carpocapsae through N-acyl amide signaling. A deeper understanding of the regulatory hierarchy of these natural products could contribute to a better comprehension of the symbiotic relationship between X. nematophila and S. carpocapsae.
Collapse
Affiliation(s)
- Yick Chong Lam
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, Connecticut, USA
| | - Randy Hamchand
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, Connecticut, USA
| | - Nicholas C. Mucci
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Sarah J. Kauffman
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Natavan Dudkina
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, Connecticut, USA
| | - Emily V. Reagle
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, Connecticut, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Jessica DeCuyper
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Haiwei Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Deguang Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Michael G. Thomas
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Noah W. Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Heidi Goodrich-Blair
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jason M. Crawford
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, Connecticut, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
6
|
Isali I, McClellan P, Wong TR, Sun C, Stout AC, Schumacher FR, Markt S, Wilfred Wu CH, Penney KL, El-Nashar S, Hijaz A, Sheyn D. A systematic review and in silico study of potential genetic markers implicated in cases of overactive bladder. Am J Obstet Gynecol 2023; 228:36-47.e3. [PMID: 35932882 PMCID: PMC10152473 DOI: 10.1016/j.ajog.2022.07.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 01/26/2023]
Abstract
OBJECTIVE The contribution of genetic factors to the presence of an overactive bladder is recognized. This study aimed to (1) assemble and synthesize available data from studies assessing differential gene expression in patients with overactive bladder vs controls without overactive bladder and (2) determine possible correlations and functional pathways between genes. DATA SOURCES We searched PubMed, Ovid or Medline, and Wiley Cochrane Central Register of Controlled Trials databases between January 1, 2000, and December 15, 2021. STUDY ELIGIBILITY CRITERIA Studies were included if gene expression was detected and quantified using molecular approaches performed on human bladder tissue specimens directly and excluded if the gene expression analysis was carried out from blood and urine specimens alone. METHODS A systematic review was completed to identify publications that reported differently expressed gene candidates among patients with overactive bladder vs healthy individuals. Gene networking connections and pathway analysis were performed employing Metascape software, where inputs were identified from our systematic review of differentially expressed genes in overactive bladder. RESULTS A total of 9 studies were included in the final analysis and 11 genes were identified as being up-regulated (purinergic receptor P2X 2 [P2RX2], smoothelin [SMTN], growth-associated protein 43 [GAP43], transient receptor potential cation channel subfamily M member 8 [TRPM8], cadherin 11 [CDH1], gap junction protein gamma 1 [GJC1], cholinergic receptor muscarinic 2 [CHRM2], cholinergic receptor muscarinic 3 [CHRM3], and transient receptor potential cation channel subfamily V member 4 [TRPV4]) or down-regulated (purinergic receptor P2X 2 [P2RX3] and purinergic receptor P2X 5 [P2RX5]) in patients with overactive bladder. Gene network analysis showed that genes are involved in chemical synaptic transmission, smooth muscle contraction, blood circulation, and response to temperature stimulus. Network analysis demonstrated a significant genetic interaction between TRPV4, TRPM8, P2RX3, and PR2X2 genes. CONCLUSION Outcomes of this systematic review highlighted potential biomarkers for treatment efficacy and have laid the groundwork for developing future gene therapies for overactive bladder in clinical settings.
Collapse
Affiliation(s)
- Ilaha Isali
- Division of Female Pelvic Medicine and Reconstructive Surgery, Department of Urology, University Hospitals, Cleveland Medical Center, Cleveland, OH
| | - Phillip McClellan
- Division of Female Pelvic Medicine and Reconstructive Surgery, Department of Urology, University Hospitals, Cleveland Medical Center, Cleveland, OH
| | - Thomas R Wong
- Division of Female Pelvic Medicine and Reconstructive Surgery, Department of Urology, University Hospitals, Cleveland Medical Center, Cleveland, OH
| | - Clara Sun
- Division of Female Pelvic Medicine and Reconstructive Surgery, Department of Urology, University Hospitals, Cleveland Medical Center, Cleveland, OH
| | | | - Fredrick R Schumacher
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH
| | - Sarah Markt
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH
| | - Chen-Han Wilfred Wu
- Division of Female Pelvic Medicine and Reconstructive Surgery, Department of Urology, University Hospitals, Cleveland Medical Center, Cleveland, OH; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH
| | - Kathryn L Penney
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Sherif El-Nashar
- Department of Obstetrics and Gynecology, Mayo Clinic, Jacksonville, FL
| | - Adonis Hijaz
- Division of Female Pelvic Medicine and Reconstructive Surgery, Department of Urology, University Hospitals, Cleveland Medical Center, Cleveland, OH
| | - David Sheyn
- Division of Female Pelvic Medicine and Reconstructive Surgery, Department of Urology, University Hospitals, Cleveland Medical Center, Cleveland, OH.
| |
Collapse
|
7
|
Jansen van Rensburg M, Crous A, Abrahamse H. Promoting Immortalized Adipose-Derived Stem Cell Transdifferentiation and Proliferation into Neuronal-Like Cells through Consecutive 525 nm and 825 nm Photobiomodulation. Stem Cells Int 2022; 2022:2744789. [PMID: 36106176 PMCID: PMC9467736 DOI: 10.1155/2022/2744789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Neuronal cells can be generated from adipose-derived stem cells (ADSCs) through biological or chemical inducers. Research has shown that this process may be optimized by the introduction of laser irradiation in the form of photobiomodulation (PBM) to cells. This in vitro study is aimed at generating neuronal-like cells with inducers, chemical or biological, and at furthermore treating these transdifferentiating cells with consecutive PBM of a 525 nm green (G) laser and 825 nm near-infrared (NIR) laser light with a fluence of 10 J/cm2. Cells were exposed to induction type 1 (IT1): 3-isobutyl-1-methylxanthine (IBMX) (0.5 mM)+indomethacin (200 μM)+insulin (5 μg/ml) for 14 days, preinduced with β-mercaptoethanol (BME) (1 mM) for two days, and then incubated with IT2: β-hydroxyanisole (BHA) (100 μM)+retinoic acid (RA) (10-6 M)+epidermal growth factor (EGF) (10 ng/ml)+basic fibroblast growth factor (bFGF) (10 ng/ml) for 14 days and preinduced with β-mercaptoethanol (BME) (1 mM) for two days and then incubated with indomethacin (200 μM)+RA (1 μM)+forskolin (10 μM) for 14 days. The results were evaluated through morphological observations, viability, proliferation, and migration studies, 24 h, 48 h, and 7 days post-PBM. The protein detection of an early neuronal marker, neuron-specific enolase (NSE), and late, ciliary neurotrophic factor (CNTF), was determined with enzyme-linked immunosorbent assays (ELISAs). The genetic expression was also explored through real-time PCR. Results indicated differentiation in all experimental groups; however, cells that were preinduced showed higher proliferation and a higher differentiation rate than the group that was not preinduced. Within the preinduced groups, results indicated that cells treated with IT2 and consecutive PBM upregulated differentiation the most morphologically and physiologically.
Collapse
Affiliation(s)
- Madeleen Jansen van Rensburg
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, South Africa 2028
| | - Anine Crous
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, South Africa 2028
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, South Africa 2028
| |
Collapse
|
8
|
Nabulsi L, Farrell J, McPhilemy G, Kilmartin L, Dauvermann MR, Akudjedu TN, Najt P, Ambati S, Martyn FM, McLoughlin J, Gill M, Meaney J, Morris D, Frodl T, McDonald C, Hallahan B, Cannon DM. Normalization of impaired emotion inhibition in bipolar disorder mediated by cholinergic neurotransmission in the cingulate cortex. Neuropsychopharmacology 2022; 47:1643-1651. [PMID: 35046509 PMCID: PMC9283431 DOI: 10.1038/s41386-022-01268-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/13/2021] [Accepted: 01/04/2022] [Indexed: 11/25/2022]
Abstract
The muscarinic-cholinergic system is involved in the pathophysiology of bipolar disorder (BD), and contributes to attention and the top-down and bottom-up cognitive and affective mechanisms of emotional processing, functionally altered in BD. Emotion processing can be assessed by the ability to inhibit a response when the content of the image is emotional. Impaired regulatory capacity of cholinergic neurotransmission conferred by reduced M2-autoreceptor availability is hypothesized to play a role in elevated salience of negative emotional distractors in euthymic BD relative to individuals with no history of mood instability. Thirty-three euthymic BD type-I (DSM-V-TR) and 50 psychiatrically-healthy controls underwent functional magnetic resonance imaging (fMRI) and an emotion-inhibition paradigm before and after intravenous cholinergic challenge using the acetylcholinesterase inhibitor, physostigmine (1 mg), or placebo. Mood, accuracy, and reaction time on either recognizing or inhibiting a response associated with an image involving emotion and regional functional activation were examined for effects of cholinergic challenge physostigmine relative to placebo, prioritizing any interaction with the diagnostic group. Analyses revealed that (1) at baseline, impaired behavioral performance was associated with lower activation in the anterior cingulate cortex in BD relative to controls during emotion processing; (2) physostigmine (vs. placebo) affected behavioral performance during the inhibition of negative emotions, without altering mood, and increased activation in the posterior cingulate cortex in BD (vs. controls); (3) In BD, lower accuracy observed during emotion inhibition of negative emotions was remediated by physostigmine and was associated with cingulate cortex overactivation. Our findings implicate abnormal regulation of cholinergic neurotransmission in the cingulate cortices in BD, which may mediate exaggerated emotional salience processing, a core feature of BD.
Collapse
Affiliation(s)
- Leila Nabulsi
- Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Lab, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, H91 TK33, Galway, Ireland. .,Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, University of Southern California, Marina del Rey, CA, 90292, USA.
| | - Jennifer Farrell
- grid.6142.10000 0004 0488 0789Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Lab, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Genevieve McPhilemy
- grid.6142.10000 0004 0488 0789Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Lab, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Liam Kilmartin
- grid.6142.10000 0004 0488 0789College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland
| | - Maria R. Dauvermann
- grid.6142.10000 0004 0488 0789Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Lab, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland ,grid.13097.3c0000 0001 2322 6764Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, SE5 8AF UK
| | - Theophilus N. Akudjedu
- grid.6142.10000 0004 0488 0789Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Lab, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland ,grid.17236.310000 0001 0728 4630Institute of Medical Imaging & Visualisation, Bournemouth University, Bournemouth Gateway Building, St Paul’s Lane, Dorset, BH12 5BB UK
| | - Pablo Najt
- grid.6142.10000 0004 0488 0789Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Lab, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Srinath Ambati
- grid.6142.10000 0004 0488 0789Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Lab, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Fiona M. Martyn
- grid.6142.10000 0004 0488 0789Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Lab, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - James McLoughlin
- grid.6142.10000 0004 0488 0789Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Lab, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Michael Gill
- grid.8217.c0000 0004 1936 9705Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - James Meaney
- grid.8217.c0000 0004 1936 9705Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Derek Morris
- grid.6142.10000 0004 0488 0789Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Lab, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Thomas Frodl
- grid.8217.c0000 0004 1936 9705Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland ,Department of Psychiatry and Psychotherapy, Otto-von-Guericke-Universität Magdeburg, University Hospital Magdeburg, Magdeburg, Germany
| | - Colm McDonald
- grid.6142.10000 0004 0488 0789Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Lab, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Brian Hallahan
- grid.6142.10000 0004 0488 0789Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Lab, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Dara M. Cannon
- grid.6142.10000 0004 0488 0789Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Lab, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland
| |
Collapse
|
9
|
Cataloging the potential SNPs (single nucleotide polymorphisms) associated with quantitative traits, viz. BMI (body mass index), IQ (intelligence quotient) and BP (blood pressure): an updated review. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00266-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Single nucleotide polymorphism (SNP) variants are abundant, persistent and widely distributed across the genome and are frequently linked to the development of genetic diseases. Identifying SNPs that underpin complex diseases can aid scientists in the discovery of disease-related genes by allowing for early detection, effective medication and eventually disease prevention.
Main body
Various SNP or polymorphism-based studies were used to categorize different SNPs potentially related to three quantitative traits: body mass index (BMI), intelligence quotient (IQ) and blood pressure, and then uncovered common SNPs for these three traits. We employed SNPedia, RefSNP Report, GWAS Catalog, Gene Cards (Data Bases), PubMed and Google Scholar search engines to find relevant material on SNPs associated with three quantitative traits. As a result, we detected three common SNPs for all three quantitative traits in global populations: SNP rs6265 of the BDNF gene on chromosome 11p14.1, SNP rs131070325 of the SL39A8 gene on chromosome 4p24 and SNP rs4680 of the COMT gene on chromosome 22q11.21.
Conclusion
In our review, we focused on the prevalent SNPs and gene expression activities that influence these three quantitative traits. These SNPs have been used to detect and map complex, common illnesses in communities for homogeneity testing and pharmacogenetic studies. High blood pressure, diabetes and heart disease, as well as BMI, schizophrenia and IQ, can all be predicted using common SNPs. Finally, the results of our work can be used to find common SNPs and genes that regulate these three quantitative features across the genome.
Collapse
|
10
|
Matar E, Ehgoetz Martens KA, Phillips JR, Wainstein G, Halliday GM, Lewis SJG, Shine JM. Dynamic network impairments underlie cognitive fluctuations in Lewy body dementia. NPJ Parkinsons Dis 2022; 8:16. [PMID: 35177652 PMCID: PMC8854384 DOI: 10.1038/s41531-022-00279-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 01/12/2022] [Indexed: 11/10/2022] Open
Abstract
Cognitive fluctuations are a characteristic and distressing disturbance of attention and consciousness seen in patients with Dementia with Lewy bodies and Parkinson's disease dementia. It has been proposed that fluctuations result from disruption of key neuromodulatory systems supporting states of attention and wakefulness which are normally characterised by temporally variable and highly integrated functional network architectures. In this study, patients with DLB (n = 25) and age-matched controls (n = 49) were assessed using dynamic resting state fMRI. A dynamic network signature of reduced temporal variability and integration was identified in DLB patients compared to controls. Reduced temporal variability correlated significantly with fluctuation-related measures using a sustained attention task. A less integrated (more segregated) functional network architecture was seen in DLB patients compared to the control group, with regions of reduced integration observed across dorsal and ventral attention, sensorimotor, visual, cingulo-opercular and cingulo-parietal networks. Reduced network integration correlated positively with subjective and objective measures of fluctuations. Regions of reduced integration and unstable regional assignments significantly matched areas of expression of specific classes of noradrenergic and cholinergic receptors across the cerebral cortex. Correlating topological measures with maps of neurotransmitter/neuromodulator receptor gene expression, we found that regions of reduced integration and unstable modular assignments correlated significantly with the pattern of expression of subclasses of noradrenergic and cholinergic receptors across the cerebral cortex. Altogether, these findings demonstrate that cognitive fluctuations are associated with an imaging signature of dynamic network impairment linked to specific neurotransmitters/neuromodulators within the ascending arousal system, highlighting novel potential diagnostic and therapeutic approaches for this troubling symptom.
Collapse
Affiliation(s)
- Elie Matar
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia. .,Forefront Parkinson's Disease Research Clinic, Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia. .,Forefront Research Team, Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.
| | - Kaylena A Ehgoetz Martens
- Forefront Parkinson's Disease Research Clinic, Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| | - Joseph R Phillips
- Forefront Parkinson's Disease Research Clinic, Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,School of Social Sciences and Psychology, Western Sydney University, Sydney, NSW, Australia
| | - Gabriel Wainstein
- Forefront Parkinson's Disease Research Clinic, Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Centro de Investigaciones Médicas, Pontifical Catholic University of Chile, Santiago, Chile
| | - Glenda M Halliday
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Forefront Research Team, Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Simon J G Lewis
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Forefront Parkinson's Disease Research Clinic, Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - James M Shine
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Forefront Parkinson's Disease Research Clinic, Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Forefront Research Team, Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
11
|
Antonelli F, Casciati A, Belles M, Serra N, Linares-Vidal MV, Marino C, Mancuso M, Pazzaglia S. Long-Term Effects of Ionizing Radiation on the Hippocampus: Linking Effects of the Sonic Hedgehog Pathway Activation with Radiation Response. Int J Mol Sci 2021; 22:ijms222212605. [PMID: 34830484 PMCID: PMC8624704 DOI: 10.3390/ijms222212605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/04/2021] [Accepted: 11/17/2021] [Indexed: 12/29/2022] Open
Abstract
Radiation therapy represents one of the primary treatment modalities for primary and metastatic brain tumors. Although recent advances in radiation techniques, that allow the delivery of higher radiation doses to the target volume, reduce the toxicity to normal tissues, long-term neurocognitive decline is still a detrimental factor significantly affecting quality of life, particularly in pediatric patients. This imposes the need for the development of prevention strategies. Based on recent evidence, showing that manipulation of the Shh pathway carries therapeutic potential for brain repair and functional recovery after injury, here we evaluate how radiation-induced hippocampal alterations are modulated by the constitutive activation of the Shh signaling pathway in Patched 1 heterozygous mice (Ptch1+/-). Our results show, for the first time, an overall protective effect of constitutive Shh pathway activation on hippocampal radiation injury. This activation, through modulation of the proneural gene network, leads to a long-term reduction of hippocampal deficits in the stem cell and new neuron compartments and to the mitigation of radio-induced astrogliosis, despite some behavioral alterations still being detected in Ptch1+/- mice. A better understanding of the pathogenic mechanisms responsible for the neural decline following irradiation is essential for identifying prevention measures to contain the harmful consequences of irradiation. Our data have important translational implications as they suggest a role for Shh pathway manipulation to provide the therapeutic possibility of improving brain repair and functional recovery after radio-induced injury.
Collapse
Affiliation(s)
- Francesca Antonelli
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (A.C.); (C.M.); (M.M.)
- Correspondence: (F.A.); (S.P.)
| | - Arianna Casciati
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (A.C.); (C.M.); (M.M.)
| | - Montserrat Belles
- Physiology Unit, School of Medicine, Rovira I Virgili University (URV), 43007 Reus, Spain; (M.B.); (N.S.); (M.V.L.-V.)
| | - Noemi Serra
- Physiology Unit, School of Medicine, Rovira I Virgili University (URV), 43007 Reus, Spain; (M.B.); (N.S.); (M.V.L.-V.)
| | - Maria Victoria Linares-Vidal
- Physiology Unit, School of Medicine, Rovira I Virgili University (URV), 43007 Reus, Spain; (M.B.); (N.S.); (M.V.L.-V.)
| | - Carmela Marino
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (A.C.); (C.M.); (M.M.)
| | - Mariateresa Mancuso
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (A.C.); (C.M.); (M.M.)
| | - Simonetta Pazzaglia
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (A.C.); (C.M.); (M.M.)
- Correspondence: (F.A.); (S.P.)
| |
Collapse
|
12
|
Bountress KE, Vladimirov V, McMichael G, Taylor ZN, Hardiman G, Chung D, Adams ZW, Danielson CK, Amstadter AB. Gene Expression Differences Between Young Adults Based on Trauma History and Post-traumatic Stress Disorder. Front Psychiatry 2021; 12:581093. [PMID: 33897478 PMCID: PMC8060466 DOI: 10.3389/fpsyt.2021.581093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 03/15/2021] [Indexed: 11/29/2022] Open
Abstract
Background: The purpose of this study was to identify gene expression differences associated with post-traumatic stress disorder (PTSD) and trauma exposure (TE) in a three-group study design comprised of those with and without trauma exposure and PTSD. Methods: We conducted gene expression and gene network analyses in a sample (n = 45) composed of female subjects of European Ancestry (EA) with PTSD, TE without PTSD, and controls. Results: We identified 283 genes differentially expressed between PTSD-TE groups. In an independent sample of Veterans (n = 78) a small minority of these genes were also differentially expressed. We identified 7 gene network modules significantly associated with PTSD and TE (Bonferroni corrected p ≤ 0.05), which at a false discovery rate (FDR) of q ≤ 0.2, were significantly enriched for biological pathways involved in focal adhesion, neuroactive ligand receptor interaction, and immune related processes among others. Conclusions: This study uses gene network analyses to identify significant gene modules associated with PTSD, TE, and controls. On an individual gene level, we identified a large number of differentially expressed genes between PTSD-TE groups, a minority of which were also differentially expressed in the independent sample. We also demonstrate a lack of network module preservation between PTSD and TE, suggesting that the molecular signature of PTSD and trauma are likely independent of each other. Our results provide a basis for the identification of likely disease pathways and biomarkers involved in the etiology of PTSD.
Collapse
Affiliation(s)
- Kaitlin E. Bountress
- Virginia Institute for Psychiatry and Behavioral Genetics, Virginia Commonwealth University (VCU), Richmond, VA, United States
| | - Vladimir Vladimirov
- Department of Psychiatry and Behavioral Sciences, College of Medicine Texas A&M University, Richmond, VA, United States
- Lieber Institute for Brain Development, Johns Hopkins University, Baltimore, MD, United States
| | - Gowon McMichael
- Virginia Institute for Psychiatry and Behavioral Genetics, Virginia Commonwealth University (VCU), Richmond, VA, United States
| | - Z. Nathan Taylor
- Virginia Institute for Psychiatry and Behavioral Genetics, Virginia Commonwealth University (VCU), Richmond, VA, United States
| | - Gary Hardiman
- Institute for Global Food Security, Queens University Belfast, Belfast, United Kingdom
| | - Dongjun Chung
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Zachary W. Adams
- Department of Psychiatry, Indiana University of Medicine, Indianapolis, IN, United States
| | - Carla Kmett Danielson
- National Crime Victim Research and Treatment Center, Medical University of South Carolina, Charleston, SC, United States
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Ananda B. Amstadter
- Virginia Institute for Psychiatry and Behavioral Genetics, Virginia Commonwealth University (VCU), Richmond, VA, United States
| |
Collapse
|
13
|
Dietary Oligofructose Alone or in Combination with 2'-Fucosyllactose Differentially Improves Recognition Memory and Hippocampal mRNA Expression. Nutrients 2020; 12:nu12072131. [PMID: 32709093 PMCID: PMC7400822 DOI: 10.3390/nu12072131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022] Open
Abstract
Mounting evidence suggests that dietary oligosaccharides promote brain development. This study assessed the capacity of oligofructose (OF) alone or in combination with 2'-fucosyllactose (2'-FL) to alter recognition memory, structural brain development, and hippocampal gene expression. Beginning on postnatal day (PND) 2, male pigs received one of three milk replacers formulated to contain OF, OF + 2'-FL, or no oligosaccharides (CON). Pigs were tested on the novel object recognition task using delays of 1 or 48 h at PND 22. At PND 32-33, magnetic resonance imaging (MRI) procedures were used to assess structural brain development and hippocampal tissue was collected for analysis of mRNA expression. Pigs that consumed the OF diet demonstrated increased recognition memory after a 1 h delay, whereas those consuming diets containing OF + 2'-FL displayed increased recognition memory after a 48 h delay. Pigs fed OF or OF + 2'-FL exhibited a larger relative volume of the olfactory bulbs compared with CON pigs. Provision of OF or OF + 2'-FL altered gene expression related to dopaminergic, GABAergic, cholinergic, cell adhesion, and chromatin remodeling processes. Collectively, these data indicate that dietary OF and OF + 2'-FL differentially improve cognitive performance and affect olfactory bulb structural development and hippocampal gene expression.
Collapse
|
14
|
Bauer LO, Covault JM. GRM8 genotype is associated with externalizing disorders and greater inter-trial variability in brain activation during a response inhibition task. Clin Neurophysiol 2020; 131:1180-1186. [PMID: 32299001 PMCID: PMC7198333 DOI: 10.1016/j.clinph.2020.02.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/13/2020] [Accepted: 02/25/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The present investigation tested the association of a novel measure of brain activation recorded during a simple motor inhibition task with a GRM8 genetic locus implicated in risk for substance dependence. METHODS 122 European-American adults were genotyped at rs1361995 and evaluated against DSM-IV criteria for Alcohol Dependence, Cocaine Dependence, Conduct Disorder, and Antisocial Personality Disorder. Also, their brain activity was recorded in response to rare, so-called "No-Go" stimuli presented during a continuous performance test. Brain activity was quantified with two indices: (1) the amplitude of the No-Go P300 electroencephalographic response averaged across trials; and (2) the inter-trial variability of the response. RESULTS The absence of the minor allele at the candidate locus was associated with all of the evaluated diagnoses. In comparison to minor allele carriers, major allele homozygotes also demonstrated increased inter-trial variability in No-Go P300 response amplitude but no difference in average amplitude. CONCLUSIONS GRM8 genotype is associated with Alcohol and Cocaine Dependence as well as personality risk factors for dependence. The association may be mediated through an inherited instability in brain function that affects cognitive control. SIGNIFICANCE The present study focuses on a metric and brain mechanism not typically considered or theorized in studies of patients with substance use disorders.
Collapse
Affiliation(s)
- Lance O Bauer
- Department of Psychiatry, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06030-1410, USA.
| | - Jonathan M Covault
- Department of Psychiatry, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06030-1410, USA
| |
Collapse
|
15
|
You JS, Li CY, Chen W, Wu XL, Huang LJ, Li RK, Gao F, Zhang MY, Liu HL, Qu WL. A network pharmacology-based study on Alzheimer disease prevention and treatment of Qiong Yu Gao. BioData Min 2020; 13:2. [PMID: 32351618 PMCID: PMC7183652 DOI: 10.1186/s13040-020-00212-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/15/2020] [Indexed: 12/26/2022] Open
Abstract
Background and objective As the pathological mechanisms of AD are complex, increasing evidence have demonstrated Chinese Medicine with multi-ingredients and multi-targets may be more suitable for the treatment of diseases with complex pathogenesis. Therefore, the study was to preliminarily decipher the bioactive compounds and potential mechanisms of Qiong Yu Gao (QYG) for AD prevention and treatment by an integrated network pharmacology approach. Methods Putative ingredients of QYG and significant genes of AD were retrieved from public database after screening. Then QYG ingredients target proteins/genes were obtained by target fishing. Compound-target-disease network was constructed using Cytoscape to decipher the mechanism of QYG for AD. KEGG pathway and GO enrichment analysis were performed to investigate the molecular mechanisms and pathways related to QYG for AD treatments. Results Finally, 70 compounds and 511 relative drug targets were collected. In which, 17 representative direct targets were found. Gene ontology enrichment analysis revealed that the adenylate cyclase-inhibiting G-protein coupled acetylcholine receptor signaling pathway was the key biological processes and were regulated simultaneously by the 17 direct targets. The KEGG pathway enrichment analysis found that three signaling pathways were closely related to AD prevention and treatment by QYG, including PI3K-Akt signaling pathway, regulation of actin cytoskeleton pathway and insulin resistance pathway. Conclusion This study demonstrated that QYG exerted the effect of preventing and treating AD by regulating multi-targets with multi-components. Furthermore, the study demonstrated that a network pharmacology-based approach was useful for elucidation of the interrelationship between complex diseases and interventions of Chinese herbal medicines.
Collapse
Affiliation(s)
- Jie-Shu You
- 1School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province China
| | - Chen-Yue Li
- 1School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province China
| | - Wei Chen
- 1School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province China
| | - Xia-Lin Wu
- 2The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province China
| | - Li-Jie Huang
- 1School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province China
| | - Ren-Kai Li
- 3Department of Pharmacology and Pharmacy, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Fei Gao
- 4College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province China
| | - Ming-Yue Zhang
- 5Division of Hematology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Huan-Lan Liu
- 1School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province China
| | - Wei-Ling Qu
- 1School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province China
| |
Collapse
|
16
|
Al-Eitan LN, Al-Dalalah IM, Mustafa MM, Alghamdi MA, Elshammari AK, Khreisat WH, Al-Quasmi MN, Aljamal HA. Genetic polymorphisms of CYP3A5, CHRM2, and ZNF498 and their association with epilepsy susceptibility: a pharmacogenetic and case-control study. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2019; 12:225-233. [PMID: 31564953 PMCID: PMC6732506 DOI: 10.2147/pgpm.s212433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/22/2019] [Indexed: 01/30/2023]
Abstract
Background A total of 50 million persons were diagnosed worldwide with epilepsy. One-third of them are experiencing debilitating seizures despite optimum anti-epileptic drugs (AEDs) treatment. Several studies have suggested that CYP3A5, CHRM2, and ZNF498 influence the pharmacokinetics of AEDs. Therefore, the severity of the disease as well as the degree of response to the AEDs could be affected by the genetic polymorphisms within these genes. Objectives In this study, we assessed the effect of certain single nucleotide polymorphisms (SNPs) within CYP3A5, CHRM2, and ZNF498 genes on the susceptibility to develop epilepsy and the responsiveness to AEDs treatment. Methods A case-control and pharmacogenetic study was conducted on samples of 299 healthy individuals in addition to 296 epileptic patients. Genotypic, allelic, and clinical data association were performed for the selected polymorphisms within the (rs324649, rs420817, rs15524, and rs1859690) in the Jordanian population. Results The analysis revealed no significant association of the investigated SNPs with epilepsy in general, partial and generalized epilepsy as well as drug responsiveness. CYP3A5 and ZNF498 were associated with family history (P=0.003 and P=0.002, respectively) and the classification of epilepsy for the ZNF498 variant (P=0.009). On the other hand, CHRM2 was not linked to either disease severity or treatment responsiveness. Conclusion Our results failed to confirm the association of CYP3A5, ZNF498, and CHRM2 variants with either disease development or treatment response. Clinical pharmacogenetic studies may contribute to treatment personalization, appropriate drug dose selection, minimizing drug adverse reactions, increasing drug efficacy, and reducing the costive burdens.
Collapse
Affiliation(s)
- Laith N Al-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid, Jordan.,Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Islam M Al-Dalalah
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohamed M Mustafa
- Department of Neuroscience, Jordan University of Science and Technology, Irbid, Jordan
| | - Mansour A Alghamdi
- Anatomy Department, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Afrah K Elshammari
- Department of Pediatric Neurology, Queen Rania Hospital for Children, King Hussein Medical Center, Royal Medical Services, Amman, Jordan
| | - Wael H Khreisat
- Department of Pediatric Neurology, Queen Rania Hospital for Children, King Hussein Medical Center, Royal Medical Services, Amman, Jordan
| | - Mohammed N Al-Quasmi
- Department of Medical Laboratory, King Abdullah University Hospital, Irbid, Jordan
| | - Hanan A Aljamal
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
17
|
The exploration of novel Alzheimer's therapeutic agents from the pool of FDA approved medicines using drug repositioning, enzyme inhibition and kinetic mechanism approaches. Biomed Pharmacother 2018; 109:2513-2526. [PMID: 30551512 DOI: 10.1016/j.biopha.2018.11.115] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/19/2018] [Accepted: 11/25/2018] [Indexed: 12/11/2022] Open
Abstract
Novel drug development is onerous, time consuming and overpriced process with particularly low success and relatively high enfeebling rates. To overcome this burden, drug repositioning approach is being used to predict the possible therapeutic effects of FDA approved drugs in different diseases. Herein, we designed a computational and enzyme inhibitory mechanistic approach to fetch the promising drugs from the pool of FDA approved drugs against AD. The binding interaction patterns and conformations of screened drugs within active region of AChE were confirmed through molecular docking profiles. The possible associations of selected drugs with AD genes were predicted by pharmacogenomics analysis and confirmed through data mining. The stability behaviour of docked complexes (Drugs-AChE) were checked by MD simulations. The possible therapeutic potential of repositioned drugs against AChE were checked by in vitro analysis. Taken together, Cinitapride displayed a comparable results with standard and can be used as possible therapeutic agent in the treatment of AD.
Collapse
|
18
|
Murphy E, Benítez-Burraco A. Toward the Language Oscillogenome. Front Psychol 2018; 9:1999. [PMID: 30405489 PMCID: PMC6206218 DOI: 10.3389/fpsyg.2018.01999] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/28/2018] [Indexed: 12/20/2022] Open
Abstract
Language has been argued to arise, both ontogenetically and phylogenetically, from specific patterns of brain wiring. We argue that it can further be shown that core features of language processing emerge from particular phasal and cross-frequency coupling properties of neural oscillations; what has been referred to as the language ‘oscillome.’ It is expected that basic aspects of the language oscillome result from genetic guidance, what we will here call the language ‘oscillogenome,’ for which we will put forward a list of candidate genes. We have considered genes for altered brain rhythmicity in conditions involving language deficits: autism spectrum disorders, schizophrenia, specific language impairment and dyslexia. These selected genes map on to aspects of brain function, particularly on to neurotransmitter function. We stress that caution should be adopted in the construction of any oscillogenome, given the range of potential roles particular localized frequency bands have in cognition. Our aim is to propose a set of genome-to-language linking hypotheses that, given testing, would grant explanatory power to brain rhythms with respect to language processing and evolution.
Collapse
Affiliation(s)
- Elliot Murphy
- Division of Psychology and Language Sciences, University College London, London, United Kingdom.,Department of Psychology, University of Westminster, London, United Kingdom
| | - Antonio Benítez-Burraco
- Department of Spanish Language, Linguistics and Literary Theory, University of Seville, Seville, Spain
| |
Collapse
|
19
|
Chee LY, Cumming A. Polymorphisms in the Cholinergic Receptors Muscarinic (CHRM2 and CHRM3) Genes and Alzheimer's Disease. Avicenna J Med Biotechnol 2018; 10:196-199. [PMID: 30090216 PMCID: PMC6064004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/17/2017] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Disruption of the cholinergic neurotransmitter pathway which is important for cognition, memory and learning abilities has been reported in Alzheimer's Disease (AD) patients. The receptors involved include the Cholinergic Receptors Muscarinic (CHRM). CHRM2 gene has been associated with intelligence, personality traits, substance dependence and depression. CHRM3 has been found to heterodimerize with CHRM2. METHODS DNA samples from 240 AD patients with SNPs rs6962027 of CHRM2 gene and rs7511970 of CHRM3 gene were amplified using PCR and genotyped using Restriction Fragment Length Polymorphism (RFLP). Chi-squared test was done to check if the genes are in Hardy-Weinberg equilibrium. RESULTS AND CONCLUSION Although the results did not show significant associations, these data denote plausible interaction between TT in SNP rs6962027 in CHRM2 gene and TT in SNP rs7511970 in CHRM3 gene affecting AD risk. SNP rs7511970 of CHRM3 gene may also exert an influence on late-onset AD.
Collapse
Affiliation(s)
- Lim Ya Chee
- Pengiran Anak Puteri Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, BE 1410, Gadong, Brunei Darussalam
| | - Alaistair Cumming
- Pengiran Anak Puteri Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, BE 1410, Gadong, Brunei Darussalam
| |
Collapse
|
20
|
McFarland DJ. How neuroscience can inform the study of individual differences in cognitive abilities. Rev Neurosci 2018; 28:343-362. [PMID: 28195556 DOI: 10.1515/revneuro-2016-0073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/17/2016] [Indexed: 02/06/2023]
Abstract
Theories of human mental abilities should be consistent with what is known in neuroscience. Currently, tests of human mental abilities are modeled by cognitive constructs such as attention, working memory, and speed of information processing. These constructs are in turn related to a single general ability. However, brains are very complex systems and whether most of the variability between the operations of different brains can be ascribed to a single factor is questionable. Research in neuroscience suggests that psychological processes such as perception, attention, decision, and executive control are emergent properties of interacting distributed networks. The modules that make up these networks use similar computational processes that involve multiple forms of neural plasticity, each having different time constants. Accordingly, these networks might best be characterized in terms of the information they process rather than in terms of abstract psychological processes such as working memory and executive control.
Collapse
|
21
|
O'Hern PJ, do Carmo G Gonçalves I, Brecht J, López Soto EJ, Simon J, Chapkis N, Lipscombe D, Kye MJ, Hart AC. Decreased microRNA levels lead to deleterious increases in neuronal M2 muscarinic receptors in Spinal Muscular Atrophy models. eLife 2017; 6. [PMID: 28463115 PMCID: PMC5413352 DOI: 10.7554/elife.20752] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 04/01/2017] [Indexed: 12/17/2022] Open
Abstract
Spinal Muscular Atrophy (SMA) is caused by diminished Survival of Motor Neuron (SMN) protein, leading to neuromuscular junction (NMJ) dysfunction and spinal motor neuron (MN) loss. Here, we report that reduced SMN function impacts the action of a pertinent microRNA and its mRNA target in MNs. Loss of the C. elegans SMN ortholog, SMN-1, causes NMJ defects. We found that increased levels of the C. elegans Gemin3 ortholog, MEL-46, ameliorates these defects. Increased MEL-46 levels also restored perturbed microRNA (miR-2) function in smn-1(lf) animals. We determined that miR-2 regulates expression of the C. elegans M2 muscarinic receptor (m2R) ortholog, GAR-2. GAR-2 loss ameliorated smn-1(lf) and mel-46(lf) synaptic defects. In an SMA mouse model, m2R levels were increased and pharmacological inhibition of m2R rescued MN process defects. Collectively, these results suggest decreased SMN leads to defective microRNA function via MEL-46 misregulation, followed by increased m2R expression, and neuronal dysfunction in SMA. DOI:http://dx.doi.org/10.7554/eLife.20752.001 Spinal muscular atrophy is a genetic disease that causes muscles to gradually weaken. In people with the disease, the nerve cells that control the movement of muscles – called motor neurons – deteriorate over time, hindering the person’s mobility and shortening their life expectancy. Spinal muscular atrophy is usually caused by genetic faults affecting a protein called SMN (which is short for “Survival of motor neuron”) and recent research suggested that disrupting this protein alters the function of short pieces of genetic material called microRNAs. However, the precise role that microRNAs play in the disease and their connection to the SMN protein was not clear. MicroRNAs interfere with the production of proteins by disrupting molecules called messenger RNAs, which are temporary strings of genetic code that carry the instructions for making protein. By disrupting messenger RNAs, microRNAs can delay or halt the production of specific proteins. This is an important part of the normal behavior of a cell, but disturbing the activity of microRNAs can lead to an unwanted rise or fall in crucial proteins. O’Hern et al. made use of engineered nematode worms and mice that share genetic features with spinal muscular atrophy patients, including disruption of the gene responsible for producing the SMN protein. These animal models of the disease were used to examine the relationship between decreased SMN levels and microRNAs in motor neurons. The experiments showed that reduced SMN activity affects a specific microRNA, which in turn causes motor neurons to produce more of a protein called m2R. This protein is a receptor for a molecule, called acetylcholine, which motor neurons use to send signals to muscle cells. Increased m2R may be detrimental to motor neurons. As such, O’Hern et al. decreased m2R protein activity to determine whether this could reverse the defects in motor neurons that arise in the animal models of the disease. Indeed, blocking this receptor rescued some of the defects seen in the animal models, supporting the link to spinal muscular atrophy. Several treatments that block m2R are already available to treat other conditions. As such, the next step is to determine whether these existing treatments are able to protect mice models of spinal muscular atrophy against muscle deterioration or increase their lifespan. If successful, this could open new avenues for the development of treatments in people. DOI:http://dx.doi.org/10.7554/eLife.20752.002
Collapse
Affiliation(s)
- Patrick J O'Hern
- Department of Neuroscience, Brown University, Providence, United States
| | | | - Johanna Brecht
- Institute of Human Genetics, University of Cologne, Cologne, Germany
| | | | - Jonah Simon
- Department of Neuroscience, Brown University, Providence, United States
| | - Natalie Chapkis
- Department of Neuroscience, Brown University, Providence, United States
| | - Diane Lipscombe
- Department of Neuroscience, Brown University, Providence, United States.,Brown Institute for Brain Science, Providence, United States
| | - Min Jeong Kye
- Institute of Human Genetics, University of Cologne, Cologne, Germany
| | - Anne C Hart
- Department of Neuroscience, Brown University, Providence, United States
| |
Collapse
|
22
|
Ramsay L, Marchetto MC, Caron M, Chen SH, Busche S, Kwan T, Pastinen T, Gage FH, Bourque G. Conserved expression of transposon-derived non-coding transcripts in primate stem cells. BMC Genomics 2017; 18:214. [PMID: 28245871 PMCID: PMC5331655 DOI: 10.1186/s12864-017-3568-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 02/07/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND A significant portion of expressed non-coding RNAs in human cells is derived from transposable elements (TEs). Moreover, it has been shown that various long non-coding RNAs (lncRNAs), which come from the human endogenous retrovirus subfamily H (HERVH), are not only expressed but required for pluripotency in human embryonic stem cells (hESCs). RESULTS To identify additional TE-derived functional non-coding transcripts, we generated RNA-seq data from induced pluripotent stem cells (iPSCs) of four primate species (human, chimpanzee, gorilla, and rhesus) and searched for transcripts whose expression was conserved. We observed that about 30% of TE instances expressed in human iPSCs had orthologous TE instances that were also expressed in chimpanzee and gorilla. Notably, our analysis revealed a number of repeat families with highly conserved expression profiles including HERVH but also MER53, which is known to be the source of a placental-specific family of microRNAs (miRNAs). We also identified a number of repeat families from all classes of TEs, including MLT1-type and Tigger families, that contributed a significant amount of sequence to primate lncRNAs whose expression was conserved. CONCLUSIONS Together, these results describe TE families and TE-derived lncRNAs whose conserved expression patterns can be used to identify what are likely functional TE-derived non-coding transcripts in primate iPSCs.
Collapse
Affiliation(s)
- LeeAnn Ramsay
- Department of Human Genetics, McGill University, Dr Penfield Avenue, Montreal, H3A 1B1, Canada
| | - Maria C Marchetto
- Lab of Genetics, Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Maxime Caron
- Department of Human Genetics, McGill University, Dr Penfield Avenue, Montreal, H3A 1B1, Canada
- McGill University and Genome Quebec Innovation Centre, 740 Dr Penfield Avenue, Montreal, H3A 1A4, Canada
| | - Shu-Huang Chen
- McGill University and Genome Quebec Innovation Centre, 740 Dr Penfield Avenue, Montreal, H3A 1A4, Canada
| | - Stephan Busche
- McGill University and Genome Quebec Innovation Centre, 740 Dr Penfield Avenue, Montreal, H3A 1A4, Canada
| | - Tony Kwan
- Department of Human Genetics, McGill University, Dr Penfield Avenue, Montreal, H3A 1B1, Canada
- McGill University and Genome Quebec Innovation Centre, 740 Dr Penfield Avenue, Montreal, H3A 1A4, Canada
| | - Tomi Pastinen
- Department of Human Genetics, McGill University, Dr Penfield Avenue, Montreal, H3A 1B1, Canada
- McGill University and Genome Quebec Innovation Centre, 740 Dr Penfield Avenue, Montreal, H3A 1A4, Canada
| | - Fred H Gage
- Lab of Genetics, Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Dr Penfield Avenue, Montreal, H3A 1B1, Canada.
- McGill University and Genome Quebec Innovation Centre, 740 Dr Penfield Avenue, Montreal, H3A 1A4, Canada.
| |
Collapse
|
23
|
Variants Near CCK Receptors are Associated With Electrophysiological Responses to Pre-pulse Startle Stimuli in a Mexican American Cohort. Twin Res Hum Genet 2015; 18:727-37. [PMID: 26608796 DOI: 10.1017/thg.2015.77] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Neurophysiological measurements of the response to pre-pulse and startle stimuli have been suggested to represent an important endophenotype for both substance dependence and other select psychiatric disorders. We have previously shown, in young adult Mexican Americans (MA), that presentation of a short delay acoustic pre-pulse, prior to the startle stimuli can elicit a late negative component at about 400 msec (N4S), in the event-related potential (ERP), recorded from frontal cortical areas. In the present study, we investigated whether genetic factors associated with this endophenotype could be identified. The study included 420 (age 18-30 years) MA men (n = 170), and women (n = 250). DNA was genotyped using an Affymetrix Axiom Exome1A chip. An association analysis revealed that the CCKAR and CCKBR (cholecystokinin A and B receptor) genes each had a nearby variant that showed suggestive significance with the amplitude of the N4S component to pre-pulse stimuli. The neurotransmitter cholecystokinin (CCK), along with its receptors, CCKAR and CCKBR, have been previously associated with psychiatric disorders, suggesting that variants near these genes may play a role in the pre-pulse/startle response in this cohort.
Collapse
|
24
|
Abstract
A wide range of polymorphisms have been reported in muscarinic receptor subtype genes, mostly in M₁ and M₂ and, to a lesser extent, M₃ receptors. Most studies linking such genetic variability to phenotype have been performed for brain functions, but a more limited amount of information is also available for cardiac and airway function. Unfortunately, for none of the phenotypes under investigation a robust association with genotype has emerged. Moreover, it remains mostly unclear whether a reported association indicates a causative role of the polymorphism under investigation or merely a role as indicator of other polymorphisms affecting expression and/or function of the receptor. Also, most data on genotype-phenotype associations of muscarinic receptor subtypes are based on cross-sectional samples. Mechanistic studies linking polymorphisms to molecular, cellular, and tissue functions are largely missing. Finally, studies on a possible impact of muscarinic receptor polymorphisms on drug responsiveness are also largely missing. Thus, the field of genomics of muscarinic receptor subtypes is still in an early stage and a considerably greater number of studies will be required to judge the role of muscarinic receptor gene variability in physiology, pathophysiology, and drug treatment.
Collapse
Affiliation(s)
- Martin C Michel
- Department of Pharmacology and Pharmacotherapy, Academic Medical Center, University of Amsterdam, The Netherlands.
| | | |
Collapse
|
25
|
Hendershot CS, Bryan AD, Ewing SWF, Claus ED, Hutchison KE. Preliminary evidence for associations of CHRM2 with substance use and disinhibition in adolescence. JOURNAL OF ABNORMAL CHILD PSYCHOLOGY 2011; 39:671-81. [PMID: 21494862 DOI: 10.1007/s10802-011-9511-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Evidence for shared heritable influences across domains of substance use suggests that some genetic variants influence broad risk for externalizing behaviors. Theories of externalizing psychopathology also suggest that genetic liability for substance use manifests as temperamental risk factors, particularly those related to behavioral disinhibition, during adolescence. The cholinergic muscarinic receptor 2 gene (CHRM2) is a promising candidate for studying genetic influences on broad-based risk for externalizing traits. This study examined a candidate CHRM2 polymorphism (rs1455858) in relation to substance use and personality measures of disinhibition in a sample of high-risk adolescents (n = 124). Bivariate analyses and structural equation modeling (SEM) evaluated associations of rs1455858 with measures of drug involvement (alcohol, tobacco and marijuana) and disinhibition (indexed by impulsivity and sensation seeking scores). Bivariate analyses showed significant associations of CHRM2 with several behavioral phenotypes. In SEM analyses CHRM2 related significantly to latent measures of substance use and disinhibition; additionally, disinhibition mediated the association of CHRM2 with substance use. These results suggest that CHRM2 variants are potentially relevant for adolescent substance use and that temperamental risk factors could contribute to these associations.
Collapse
|
26
|
Strat YL, Ramoz N, Schumann G, Gorwood P. Molecular genetics of alcohol dependence and related endophenotypes. Curr Genomics 2011; 9:444-51. [PMID: 19506733 PMCID: PMC2691669 DOI: 10.2174/138920208786241252] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 06/11/2008] [Accepted: 06/12/2008] [Indexed: 11/22/2022] Open
Abstract
Alcohol dependence is a worldwide public health problem, and involves both environmental and genetic vulnerability factors. The heritability of alcohol dependence is rather high, ranging between 50% and 60%, although alcohol dependence is a polygenic, complex disorder. Genome-wide scans on large cohorts of multiplex families, including the collaborative study on genetics of alcoholism (COGA), emphasized the role of many chromosome regions and some candidate genes. The genes encoding the alcohol-metabolizing enzymes, or those involved in brain reward pathways, have been involved. Since dopamine is the main neurotransmitter in the reward circuit, genes involved in the dopaminergic pathway represent candidates of interest. Furthermore, gamma-amino-butyric acid (GABA) neurotransmitter mediates the acute actions of alcohol and is involved in withdrawal symptomatology. Numerous studies showed an association between variants within GABA receptors genes and the risk of alcohol dependence. In accordance with the complexity of the “alcohol dependence” phenotype, another field of research, related to the concept of endophenotypes, received more recent attention. The role of vulnerability genes in alcohol dependence is therefore re-assessed focusing on different phenotypes and endophenotypes. The latter include brain oscillations, EEG alpha and beta variants and alpha power, and amplitude of P300 amplitude elicited from a visual oddball task. Recent enhancement on global characterizations of the genome by high-throughput approach for genotyping of polymorphisms and studies of transcriptomics and proteomics in alcohol dependence is also reviewed.
Collapse
Affiliation(s)
- Yann L Strat
- INSERM U675, IFR02, Université Paris 7, 16 Rue Henri Huchard, 75018 Paris, France
| | | | | | | |
Collapse
|
27
|
Bradley BJ, Lawler RR. Linking genotypes, phenotypes, and fitness in wild primate populations. Evol Anthropol 2011; 20:104-19. [DOI: 10.1002/evan.20306] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
28
|
Genetic variation in cholinergic muscarinic-2 receptor gene modulates M2 receptor binding in vivo and accounts for reduced binding in bipolar disorder. Mol Psychiatry 2011; 16:407-18. [PMID: 20351719 PMCID: PMC2895691 DOI: 10.1038/mp.2010.24] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Genetic variation in the cholinergic muscarinic-2 (M(2)) receptor gene (CHRM2) has been associated with the risk for developing depression. We previously reported that M(2)-receptor distribution volume (V(T)) was reduced in depressed subjects with bipolar disorder (BD) relative to depressed subjects with major depressive disorder (MDD) and healthy controls (HCs). In this study, we investigated the effects of six single-nucleotide polymorphisms (SNPs) for CHRM2 on M(2)-receptor binding to test the hypotheses that genetic variation in CHRM2 influences M(2)-receptor binding and that a CHRM2 polymorphism underlies the deficits in M(2)-receptor V(T) observed in BD. The M(2)-receptor V(T) was measured using positron emission tomography and [(18)F]FP-TZTP in unmedicated, depressed subjects with BD (n=16) or MDD (n=24) and HCs (n=25), and the effect of genotype on V(T) was assessed. In the controls, one SNP (with identifier rs324650, in which the ancestral allele adenine (A) is replaced with one or two copies of thymine (T), showed a significant allelic effect on V(T) in the pregenual and subgenual anterior cingulate cortices in the direction AA<AT<TT. In contrast, in BD subjects with the TT genotype, V(T) was significantly lower than in BD subjects with the AT genotype in these regions. The BD subjects homozygous for the T -allele also showed markedly lower V(T) (by 27 to 37% across regions) than HCs of the same genotype. Post hoc analyses suggested that T homozygosity was associated with a more severe illness course, as manifested by lower socioeconomic function, poorer spatial recognition memory and a greater likelihood of having attempted suicide. These data represent novel preliminary evidence that reduced M(2)-receptor V(T) in BD is associated with genetic variation within CHRM2. The differential impact of the M(2)-receptor polymorphism at rs324650 in the BD and HC samples suggests interactive effects with an unidentified vulnerability factor for BD.
Collapse
|
29
|
Petrin AL, Giacheti CM, Maximino LP, Abramides DVM, Zanchetta S, Rossi NF, Richieri-Costa A, Murray JC. Identification of a microdeletion at the 7q33-q35 disrupting the CNTNAP2 gene in a Brazilian stuttering case. Am J Med Genet A 2011; 152A:3164-72. [PMID: 21108403 DOI: 10.1002/ajmg.a.33749] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Speech and language disorders are some of the most common referral reasons to child development centers accounting for approximately 40% of cases. Stuttering is a disorder in which involuntary repetition, prolongation, or cessation of the sound precludes the flow of speech. About 5% of individuals in the general population have a stuttering problem, and about 80% of the affected children recover naturally. The causal factors of stuttering remain uncertain in most cases; studies suggest that genetic factors are responsible for 70% of the variance in liability for stuttering, whereas the remaining 30% is due to environmental effects supporting a complex cause of the disorder. The use of high-resolution genome wide array comparative genomic hybridization has proven to be a powerful strategy to narrow down candidate regions for complex disorders. We report on a case with a complex set of speech and language difficulties including stuttering who presented with a 10 Mb deletion of chromosome region 7q33-35 causing the deletion of several genes and the disruption of CNTNAP2 by deleting the first three exons of the gene. CNTNAP2 is known to be involved in the cause of language and speech disorders and autism spectrum disorder and is in the same pathway as FOXP2, another important language gene, which makes it a candidate gene for causal studies speech and language disorders such as stuttering.
Collapse
Affiliation(s)
- Aline L Petrin
- Department of Pediatrics, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Rizzi TS, Arias-Vasquez A, Rommelse N, Kuntsi J, Anney R, Asherson P, Buitelaar J, Banaschewski T, Ebstein R, Ruano D, Van der Sluis S, Markunas CA, Garrett ME, Ashley-Koch AE, Kollins SH, Anastopoulos AD, Hansell NK, Wright MJ, Montgomery GW, Martin NG, Harris SE, Davies G, Tenesa A, Porteous DJ, Starr JM, Deary IJ, St Pourcain B, Davey Smith G, Timpson NJ, Evans DM, Gill M, Miranda A, Mulas F, Oades RD, Roeyers H, Rothenberger A, Sergeant J, Sonuga-Barke E, Steinhausen HC, Taylor E, Faraone SV, Franke B, Posthuma D. The ATXN1 and TRIM31 genes are related to intelligence in an ADHD background: evidence from a large collaborative study totaling 4,963 subjects. Am J Med Genet B Neuropsychiatr Genet 2011; 156:145-57. [PMID: 21302343 PMCID: PMC3085124 DOI: 10.1002/ajmg.b.31149] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 10/26/2010] [Indexed: 11/30/2022]
Abstract
Intelligence is a highly heritable trait for which it has proven difficult to identify the actual genes. In the past decade, five whole-genome linkage scans have suggested genomic regions important to human intelligence; however, so far none of the responsible genes or variants in those regions have been identified. Apart from these regions, a handful of candidate genes have been identified, although most of these are in need of replication. The recent growth in publicly available data sets that contain both whole genome association data and a wealth of phenotypic data, serves as an excellent resource for fine mapping and candidate gene replication. We used the publicly available data of 947 families participating in the International Multi-Centre ADHD Genetics (IMAGE) study to conduct an in silico fine mapping study of previously associated genomic locations, and to attempt replication of previously reported candidate genes for intelligence. Although this sample was ascertained for attention deficit/hyperactivity disorder (ADHD), intelligence quotient (IQ) scores were distributed normally. We tested 667 single nucleotide polymorphisms (SNPs) within 15 previously reported candidate genes for intelligence and 29451 SNPs in five genomic loci previously identified through whole genome linkage and association analyses. Significant SNPs were tested in four independent samples (4,357 subjects), one ascertained for ADHD, and three population-based samples. Associations between intelligence and SNPs in the ATXN1 and TRIM31 genes and in three genomic locations showed replicated association, but only in the samples ascertained for ADHD, suggesting that these genetic variants become particularly relevant to IQ on the background of a psychiatric disorder.
Collapse
Affiliation(s)
- Thais S Rizzi
- Department of Functional Genomics, CNCR, Neuroscience Campus Amsterdam, VU University and VU Medical Center, Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Jagannathan K, Calhoun VD, Gelernter J, Stevens MC, Liu J, Bolognani F, Windemuth A, Ruaño G, Assaf M, Pearlson GD. Genetic associations of brain structural networks in schizophrenia: a preliminary study. Biol Psychiatry 2010; 68:657-66. [PMID: 20691427 PMCID: PMC2990476 DOI: 10.1016/j.biopsych.2010.06.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Revised: 05/25/2010] [Accepted: 06/03/2010] [Indexed: 11/29/2022]
Abstract
BACKGROUND Schizophrenia is a complex genetic disorder, with multiple putative risk genes and many reports of reduced cortical gray matter. Identifying the genetic loci contributing to these structural alterations in schizophrenia (and likely also to normal structural gray matter patterns) could aid understanding of schizophrenia's pathophysiology. We used structural parameters as potential intermediate illness markers to investigate genomic factors derived from single nucleotide polymorphism (SNP) arrays. METHOD We used research quality structural magnetic resonance imaging (sMRI) scans from European American subjects including 33 healthy control subjects and 18 schizophrenia patients. All subjects were genotyped for 367 SNPs. Linked sMRI and genetic (SNP) components were extracted to reveal relationships between brain structure and SNPs, using parallel independent component analysis, a novel multivariate approach that operates effectively in small sample sizes. RESULTS We identified an sMRI component that significantly correlated with a genetic component (r = -.536, p < .00005); components also distinguished groups. In the sMRI component, schizophrenia gray matter deficits were in brain regions consistently implicated in previous reports, including frontal and temporal lobes and thalamus (p < .01). These deficits were related to SNPs from 16 genes, several previously associated with schizophrenia risk and/or involved in normal central nervous system development, including AKT, PI3K, SLC6A4, DRD2, CHRM2, and ADORA2A. CONCLUSIONS Despite the small sample size, this novel analysis method identified an sMRI component including brain areas previously reported to be abnormal in schizophrenia and an associated genetic component containing several putative schizophrenia risk genes. Thus, we identified multiple genes potentially underlying specific structural brain abnormalities in schizophrenia.
Collapse
Affiliation(s)
- Kanchana Jagannathan
- Olin Neuropsychiatry Research Center, Institute of Living/Hartford Hospital, Hartford, Connecticut 06106, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The Allen Brain Atlas, a Web-based, genome-wide atlas of gene expression in the adult mouse brain, was an experiment on a massive scale. The development of the atlas faced a combination of great technical challenges and a non-traditional open research model, and it encountered many hurdles on the path to completion and community adoption. Having overcome these challenges, it is now a fundamental tool for neuroscientists worldwide and has set the stage for the creation of other similar open resources. Nevertheless, there are many untapped opportunities for exploration.
Collapse
|
33
|
Payton A. The Impact of Genetic Research on our Understanding of Normal Cognitive Ageing: 1995 to 2009. Neuropsychol Rev 2009; 19:451-77. [DOI: 10.1007/s11065-009-9116-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 08/17/2009] [Indexed: 12/11/2022]
|
34
|
Gilmore CS, Malone SM, Bernat EM, Iacono WG. Relationship between the P3 event-related potential, its associated time-frequency components, and externalizing psychopathology. Psychophysiology 2009; 47:123-32. [PMID: 19674392 DOI: 10.1111/j.1469-8986.2009.00876.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
P3 amplitude reduction (P3-AR) is associated with biological vulnerability to a spectrum of externalizing disorders, such as ADHD, conduct disorder, and substance use disorders. P3, however, is generally characterized as a broad activation involving multiple neurophysiological processes. One approach to separating P3-related processes is time-frequency (TF) analysis. The current study used a novel PCA-based TF analysis method to investigate relationships between P3, its associated TF components, and externalizing in a community-based sample of adolescent males. Results showed that 1) alone, P3 and each TF-PCA derived component could successfully discriminate diagnostic groups from controls, and 2) delta components in specific time ranges accounted for variance beyond that accounted for by P3. One delta component was associated with all diagnostic groups, suggesting it may represent a more parsimonious endophenotype for externalizing than P3-AR.
Collapse
Affiliation(s)
- Casey S Gilmore
- Department of Psychology, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | |
Collapse
|
35
|
No association between Cholinergic Muscarinic Receptor 2 (CHRM2) genetic variation and cognitive abilities in three independent samples. Behav Genet 2009; 39:513-23. [PMID: 19418213 DOI: 10.1007/s10519-009-9274-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Accepted: 04/18/2009] [Indexed: 10/20/2022]
Abstract
Cognitive ability has a substantial genetic component and more than 15 candidate genes have been identified over the past 8 years. One gene that has been associated with general cognitive ability is the cholinergic muscarinic 2 receptor (CHRM2). In an attempt to replicate this finding we typed marker rs8191992 (the originally reported CHRM2 SNP) in two population based cohorts-one Scottish aged over 50 years (N = 2,091) and the other English comprising non-demented elderly participants (N = 758)-and a family-based Australian adolescent sample (N = 1,537). An additional 29 SNPs in CHRM2 were typed in the Australian sample and a further seven in the English cohort. No significant association was found between CHRM2 and diverse measures of cognitive ability in any of the samples. In conclusion, this study does not support a role for CHRM2 in cognitive ability.
Collapse
|
36
|
Deary IJ, Johnson W, Houlihan LM. Genetic foundations of human intelligence. Hum Genet 2009; 126:215-32. [DOI: 10.1007/s00439-009-0655-4] [Citation(s) in RCA: 259] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 03/08/2009] [Indexed: 02/07/2023]
|
37
|
Rangaswamy M, Porjesz B. Uncovering genes for cognitive (dys)function and predisposition for alcoholism spectrum disorders: a review of human brain oscillations as effective endophenotypes. Brain Res 2008; 1235:153-71. [PMID: 18634760 DOI: 10.1016/j.brainres.2008.06.053] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 06/10/2008] [Indexed: 10/21/2022]
Abstract
Brain oscillations provide a rich source of potentially useful endophenotypes (intermediate phenotypes) for psychiatric genetics, as they represent important correlates of human information processing and are associated with fundamental processes from perception to cognition. These oscillations are highly heritable, are modulated by genes controlling neurotransmitters in the brain, and provide links to associative and integrative brain functions. These endophenotypes represent traits that are less complex and more proximal to gene function than either diagnostic labels or traditional cognitive measures, providing a powerful strategy in searching for genes in psychiatric disorders. These intermediate phenotypes identify both affected and unaffected members of an affected family, including offspring at risk, providing a more direct connection with underlying biological vulnerability. Our group has utilized heritable neurophysiological features (i.e., brain oscillations) as endophenotypes, making it possible to identify susceptibility genes that may be difficult to detect with diagnosis alone. We have discussed our findings of significant linkage and association between brain oscillations and genes in GABAergic, cholinergic and glutamatergic systems (GABRA2, CHRM2, and GRM8). We have also shown that some oscillatory indices from both resting and active cognitive states have revealed a common subset of genetic foci that are shared with the diagnosis of alcoholism and related disorders. Implications of our findings have been discussed in the context of physiological and pharmacological studies on receptor function. These findings underscore the utility of quantitative neurophysiological endophenotypes in the study of the genetics of brain function and the genetic diathesis underlying complex psychiatric disorders.
Collapse
Affiliation(s)
- Madhavi Rangaswamy
- Henri Begleiter Neurodynamics Laboratory, Department of Psychiatry and Behavioral Sciences, SUNY Downstate Medical Center, Box 1203, 450 Clarkson Avenue, Brooklyn, NY 11203, USA.
| | | |
Collapse
|