1
|
Adugna T, Niu Q, Guan G, Du J, Yang J, Tian Z, Yin H. Advancements in nanoparticle-based vaccine development against Japanese encephalitis virus: a systematic review. Front Immunol 2024; 15:1505612. [PMID: 39759527 PMCID: PMC11695416 DOI: 10.3389/fimmu.2024.1505612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/25/2024] [Indexed: 01/07/2025] Open
Abstract
Vaccination remains the sole effective strategy for combating Japanese encephalitis (JE). Both inactivated and live attenuated vaccines exhibit robust immunogenicity. However, the production of these conventional vaccine modalities necessitates extensive cultivation of the pathogen, incurring substantial costs and presenting significant biosafety risks. Moreover, the administration of live pathogens poses potential hazards for individuals or animals with compromised immune systems or other health vulnerabilities. Subsequently, ongoing research endeavors are focused on the development of next-generation JE vaccines utilizing nanoparticle (NP) platforms. This systematic review seeks to aggregate the research findings pertaining to NP-based vaccine development against JE. A thorough literature search was conducted across established English-language databases for research articles on JE NP vaccine development published between 2000 and 2023. A total of twenty-eight published studies were selected for detailed analysis in this review. Of these, 16 studies (57.14%) concentrated on virus-like particles (VLPs) employing various structural proteins. Other approaches, including sub-viral particles (SVPs), biopolymers, and both synthetic and inorganic NP platforms, were utilized to a lesser extent. The results of these investigations indicated that, despite variations in the usage of adjuvants, dosages, NP types, antigenic proteins, and animal models employed across different studies, the candidate NP vaccines developed were capable of eliciting enhanced humoral and cellular adaptive immune responses, providing effective protection (70-100%) for immunized mice against lethal challenges posed by virulent Japanese encephalitis virus (JEV). In conclusion, prospective next-generation JE vaccines for humans and animals may emerge from these candidate formulations following further evaluation in subsequent vaccine development phases.
Collapse
Affiliation(s)
- Takele Adugna
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, State Key Laboratory of Veterinary Etiological Biology Project, Yangzhou, China
- College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Qingli Niu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, State Key Laboratory of Veterinary Etiological Biology Project, Yangzhou, China
| | - Guiquan Guan
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, State Key Laboratory of Veterinary Etiological Biology Project, Yangzhou, China
| | - Junzheng Du
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, State Key Laboratory of Veterinary Etiological Biology Project, Yangzhou, China
| | - Jifei Yang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, State Key Laboratory of Veterinary Etiological Biology Project, Yangzhou, China
| | - Zhancheng Tian
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, State Key Laboratory of Veterinary Etiological Biology Project, Yangzhou, China
| | - Hong Yin
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, State Key Laboratory of Veterinary Etiological Biology Project, Yangzhou, China
| |
Collapse
|
2
|
Zhang SJ, Niu B, Liu SM, Bu ZG, Hua RH. Identification of linear B cell epitopes on the E146L protein of African swine fever virus with monoclonal antibodies. Virol J 2024; 21:286. [PMID: 39533386 PMCID: PMC11558817 DOI: 10.1186/s12985-024-02570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
The outbreak and spread of African swine fever virus (ASFV) have caused considerable economic losses to the pig industry worldwide. Currently, to promote the development of effective ASF vaccines, especially subunit vaccines, more antigenic protein targets are urgently needed. In this work, six transmembrane proteins (I329L, E146L, C257L, EP153R, I177L, and F165R) were expressed in mammalian cell lines and screened with pig anti-ASFV serum. It was found that the E146L protein was an immunodominant protein antigen among the six selected proteins. Moreover, the E146L protein induced antibody responses in all immunized pigs. To gain insight into the antigenic characteristics of the E146L protein, three monoclonal antibodies (mAbs; 12H12, 15G1, and 15H10) were generated by immunizing BALB/c mice with the purified E146L protein. The epitopes of the mAbs were further finely mapped through a peptide fusion protein expression strategy. Finally, the epitopes of the mAbs were identified as 48PDESSIAYMRFRN61 of the mAb 12H12, 138TLTGLQRII146 of the mAb 15G1, and 30GWSPFKYSKGNT41 of the mAb 15H10. Furthermore, the epitope of mAb 15H10 was validated as the immunodominant epitope with ASFV-infected pig sera. The chemically synthesized mAb 15H10 epitope peptide (EP1) exhibited the most extensive immunoreactivity with artificially or naturally ASFV-infected pig sera. The epitope 15H10 is located on the surface of the E146L protein and is highly conserved. These findings provide insight into the structure and function of the E146L protein of ASFV.
Collapse
Affiliation(s)
- Shu-Jian Zhang
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Bei Niu
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Shi-Meng Liu
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Zhi-Gao Bu
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Rong-Hong Hua
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| |
Collapse
|
3
|
Zhang SJ, Niu B, Liu SM, Zhu YM, Zhao DM, Bu ZG, Hua RH. Identification of Two Linear Epitopes on MGF_110-13L Protein of African Swine Fever Virus with Monoclonal Antibodies. Animals (Basel) 2024; 14:1951. [PMID: 38998063 PMCID: PMC11240426 DOI: 10.3390/ani14131951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/24/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024] Open
Abstract
African swine fever caused by African swine fever virus (ASFV) is an acute, highly contagious swine disease with high mortality. To facilitate effective vaccine development and find more serodiagnostic targets, fully exploring the ASFV antigenic proteins is urgently needed. In this study, the MGF_110-13L was identified as an immunodominant antigen among the seven transmembrane proteins. The main outer-membrane domain of MGF_110-13L was expressed and purified. Two monoclonal antibodies (mAbs; 8C3, and 10E4) against MGF_110-13L were generated. The epitopes of two mAbs were preliminary mapped with the peptide fusion proteins after probing with mAbs by enzyme-linked immunosorbent assay (ELISA) and Western blot. And the two target epitopes were fine-mapped using further truncated peptide fusion protein strategy. Finally, the core sequences of mAbs 8C3 and 10E4 were identified as 48WDCQDGICKNKITESRFIDS67, and 122GDHQQLSIKQ131, respectively. The peptides of epitopes were synthesized and probed with ASFV antibody positive pig sera by a dot blot assay, and the results showed that epitope 10E4 was an antigenic epitope. The epitope 10E4 peptide was further evaluated as a potential antigen for detecting ASFV antibodies. To our knowledge, this is the first report of antigenic epitope information on the antigenic MGF_110-13L protein of ASFV.
Collapse
Affiliation(s)
- Shu-Jian Zhang
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Bei Niu
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Shi-Meng Liu
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yuan-Mao Zhu
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Dong-Ming Zhao
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Zhi-Gao Bu
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Rong-Hong Hua
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
4
|
Hua RH, Zhang SJ, Niu B, Ge JY, Lan T, Bu ZG. A Novel Conserved Linear Neutralizing Epitope on the Receptor-Binding Domain of the SARS-CoV-2 Spike Protein. Microbiol Spectr 2023; 11:e0119023. [PMID: 37306579 PMCID: PMC10433833 DOI: 10.1128/spectrum.01190-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/23/2023] [Indexed: 06/13/2023] Open
Abstract
The continuous emergence of new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has made it challenging to develop broad-spectrum prophylactic vaccines and therapeutic antibodies. Here, we have identified a broad-spectrum neutralizing antibody and its highly conserved epitope in the receptor-binding domain (RBD) of the spike protein (S) S1 subunit of SARS-CoV-2. First, nine monoclonal antibodies (MAbs) against the RBD or S1 were generated; of these, one RBD-specific MAb, 22.9-1, was selected for its broad RBD-binding abilities and neutralizing activities against SARS-CoV-2 variants. An epitope of 22.9-1 was fine-mapped with overlapping and truncated peptide fusion proteins. The core sequence of the epitope, 405D(N)EVR(S)QIAPGQ414, was identified on the internal surface of the up-state RBD. The epitope was conserved in nearly all variants of concern of SARS-CoV-2. MAb 22.9-1 and its novel epitope could be beneficial for research on broad-spectrum prophylactic vaccines and therapeutic antibody drugs. IMPORTANCE The continuous emergence of new variants of SARS-CoV-2 has caused great challenge in vaccine design and therapeutic antibody development. In this study, we selected a broad-spectrum neutralizing mouse monoclonal antibody which recognized a conserved linear B-cell epitope located on the internal surface of RBD. This MAb could neutralize all variants until now. The epitope was conserved in all variants. This work provides new insights in developing broad-spectrum prophylactic vaccines and therapeutic antibodies.
Collapse
Affiliation(s)
- Rong-Hong Hua
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shu-Jian Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Bei Niu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jin-Ying Ge
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ting Lan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhi-Gao Bu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
5
|
Hua RH, Liu J, Zhang SJ, Liu RQ, Zhang XF, He XJ, Zhao DM, Bu ZG. Mammalian Cell-Line-Expressed CD2v Protein of African Swine Fever Virus Provides Partial Protection against the HLJ/18 Strain in the Early Infection Stage. Viruses 2023; 15:1467. [PMID: 37515155 PMCID: PMC10383863 DOI: 10.3390/v15071467] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
A cell line expressing the CD2v protein of ASFV was generated. The efficient expression of CD2v protein was determined by immunofluorescence and Western blotting. The CD2v protein was Ni-affinity purified from the supernatant of cell cultures. The CD2v-expressing cells showed properties of hemadsorption, and the secreted CD2v protein exhibited hemagglutinating activity. The antigenicity and immunoprotection ability of CD2v were evaluated by immunizing pigs alone, combined with a cell-line-expressed p30 protein or triple combined with p30 and K205R protein. Immunized pigs were challenged with the highly virulent ASFV strain HLJ/18. Virus challenge results showed that CD2v immunization alone could provide partial protection at the early infection stage. Protein p30 did not show synergistic protection effects in immunization combined with CD2v. Interestingly, immunization with the triple combination of CD2V, p30 and K205R reversed the protection effect. The viremia onset time was delayed, and one pig out of three recovered after the challenge. The pig recovered from ASFV clinical symptoms, the rectal temperature returned to normal levels and the viremia was cleared. The mechanism of this protection effect warrants further investigation.
Collapse
Affiliation(s)
- Rong-Hong Hua
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Jing Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Shu-Jian Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Ren-Qiang Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xian-Feng Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xi-Jun He
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Dong-Ming Zhao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Zhi-Gao Bu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| |
Collapse
|
6
|
Zhang SJ, Liu J, Niu B, Zhu YM, Zhao DM, Chen WY, Liu RQ, Bu ZG, Hua RH. Comprehensive mapping of antigenic linear B-cell epitopes on K205R protein of African swine fever virus with monoclonal antibodies. Virus Res 2023; 328:199085. [PMID: 36889544 DOI: 10.1016/j.virusres.2023.199085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023]
Abstract
African swine fever virus causes an acute, highly contagious swine disease with high mortality, leading to enormous losses in the pig industry. The K205R, a nonstructural protein of African swine fever virus, is abundantly expressed in the cytoplasm of infected cells at the early stage of infection and induces a strong immune response. However, to date, the antigenic epitopes of this immunodeterminant have not been characterized. In the present study, the K205R protein was expressed in a mammalian cell line and purified using Ni-affinity chromatography. Furthermore, three monoclonal antibodies (mAbs; 5D6, 7A8, and 7H10) against K205R were generated. Indirect immunofluorescence assay and western blot results showed that all three mAbs recognized native and denatured K205R in African swine fever virus (ASFV)-infected cells. To identify the epitopes of the mAbs, a series of overlapping short peptides were designed and expressed as fusion proteins with maltose-binding protein. Subsequently, the peptide fusion proteins were probed with monoclonal antibodies using western blot and enzyme-linked immunosorbent assay. The three target epitopes were fine-mapped; the core sequences of recognized by the mAbs 5D6, 7A8, and 7H10 were identified as 157FLTPEIQAILDE168, 154REKFLTP160, and 136PTNAMFFTRSEWA148, respectively. Probing with sera from ASFV-infected pigs in a dot blot assay demonstrated that epitope 7H10 was the immunodominant epitope of K205R. Sequence alignment showed that all epitopes were conserved across ASFV strains and genotypes. To our knowledge, this is the first study to characterize the epitopes of the antigenic K205R protein of ASFV. These findings may serve as a basis for the development of serological diagnostic methods and subunit vaccines.
Collapse
Affiliation(s)
- Shu-Jian Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jing Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Bei Niu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yuan-Mao Zhu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Dong-Ming Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Wei-Ye Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Ren-Qiang Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Zhi-Gao Bu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Rong-Hong Hua
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| |
Collapse
|
7
|
Zhang JW, Wang H, Liu J, Ma L, Hua RH, Bu ZG. Generation of A Stable GFP-reporter Zika Virus System for High-throughput Screening of Zika Virus Inhibitors. Virol Sin 2021; 36:476-489. [PMID: 33231855 PMCID: PMC8257822 DOI: 10.1007/s12250-020-00316-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/18/2020] [Indexed: 01/15/2023] Open
Abstract
Zika virus (ZIKV) is associated with severe birth defects and Guillain-Barré syndrome and no approved vaccines or specific therapies to combat ZIKV infection are currently available. To accelerate anti-ZIKV therapeutics research, we developed a stable ZIKV GFP-reporter virus system with considerably improved GFP visibility and stability. In this system a BHK-21 cell line expressing DC-SIGNR was established to facilitate the proliferation of GFP-reporter ZIKV. Using this reporter virus system, we established a high-throughput screening assay and screened a selected plant-sourced compounds library for their ability to block ZIKV infection. More than 31 out of 974 tested compounds effectively decreased ZIKV reporter infection. Four selected compounds, homoharringtonine (HHT), bruceine D (BD), dihydroartemisinin (DHA) and digitonin (DGT), were further validated to inhibit wild-type ZIKV infection in cells of BHK-21 and human cell line A549. The FDA-approved chronic myeloid leukemia treatment drug HHT and BD were identified as broad-spectrum flavivirus inhibitors. DHA, another FDA-approved antimalarial drug effectively inhibited ZIKV infection in BHK-21 cells. HHT, BD and DHA inhibited ZIKV infection at a post-entry stage. Digitonin was found to have inhibitory activity in the early stage of viral infection. Our research provides an efficient high-throughput screening assay for ZIKV inhibitors. The active compounds identified in this study represent potential therapies for the treatment of ZIKV infection.
Collapse
Affiliation(s)
- Jing-Wei Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Han Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Jing Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Le Ma
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Rong-Hong Hua
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Zhi-Gao Bu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
- Jiangsu Co-Innovation Centre for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
8
|
Battagliotti JM, Fontana D, Etcheverrigaray M, Kratje R, Prieto C. Characterization of hepatitis B virus surface antigen particles expressed in stably transformed mammalian cell lines containing the large, middle and small surface protein. Antiviral Res 2020; 183:104936. [PMID: 32979402 DOI: 10.1016/j.antiviral.2020.104936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 12/24/2022]
Abstract
Vaccination still represents the most efficient and inexpensive strategy in the control of hepatitis B virus (HBV) infection. However, about 10% of the population vaccinated with the current yeast derived vaccine, consisting of the non-glycosylated form of the small envelope protein (S) of the HBV, fail to display an adequate immune response. Therefore, there is a need for the development of new vaccines with enhanced immunogenicity. On this regard, new generation vaccines containing L and preS2-containing HBV surface proteins in addition to S, have proven to be able to bypass the lack of response of the standard vaccine. In this work, we describe the development of stable recombinant CHO-K1 and HEK293 cell lines able to produce and secrete hepatitis B subviral envelope particles (HBV-SVPs) composed by the three surface proteins of the HBV. In turn, we demonstrated that these particles induced a specific humoral immune response in experimental animals and triggered the production of antibodies with the ability to recognize the binding site of HBV with the hepatocyte. Thus, these HBV-SVPs represent a promising candidate as a new generation vaccine in order to enhance the immunogenicity of the conventional yeast derived HBV vaccine.
Collapse
Affiliation(s)
- Juan Manuel Battagliotti
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Cell Culture Laboratory, Ciudad Universitaria, Ruta Nacional 168, Km 472.4, C.C. 242, S3000ZAA, Santa Fe, Argentina
| | - Diego Fontana
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Cell Culture Laboratory, Ciudad Universitaria, Ruta Nacional 168, Km 472.4, C.C. 242, S3000ZAA, Santa Fe, Argentina; UNL, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Biotechnological Development Laboratory, Ciudad Universitaria, Ruta Nacional 168, Km 472.4, C.C. 242, S3000ZAA, Santa Fe, Argentina
| | - Marina Etcheverrigaray
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Cell Culture Laboratory, Ciudad Universitaria, Ruta Nacional 168, Km 472.4, C.C. 242, S3000ZAA, Santa Fe, Argentina
| | - Ricardo Kratje
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Cell Culture Laboratory, Ciudad Universitaria, Ruta Nacional 168, Km 472.4, C.C. 242, S3000ZAA, Santa Fe, Argentina
| | - Claudio Prieto
- UNL, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Biotechnological Development Laboratory, Ciudad Universitaria, Ruta Nacional 168, Km 472.4, C.C. 242, S3000ZAA, Santa Fe, Argentina; Cellargen Biotech S.R.L., Antonia Godoy 6369, S3000ZAA, Santa Fe, Argentina.
| |
Collapse
|
9
|
Zhang N, Li C, Jiang S, Du L. Recent Advances in the Development of Virus-Like Particle-Based Flavivirus Vaccines. Vaccines (Basel) 2020; 8:vaccines8030481. [PMID: 32867194 PMCID: PMC7565697 DOI: 10.3390/vaccines8030481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 01/07/2023] Open
Abstract
Flaviviruses include several medically important viruses, such as Zika virus (ZIKV), Dengue virus (DENV), West Nile virus (WNV) and Japanese encephalitis virus (JEV). They have expanded in geographic distribution and refocused international attention in recent years. Vaccination is one of the most effective public health strategies for combating flavivirus infections. In this review, we summarized virus-like particle (VLP)-based vaccines against the above four mentioned flaviviruses. Potential strategies to improve the efficacy of VLP-based flavivirus vaccines were also illustrated. The applications of flavivirus VLPs as tools for viral detection and antiviral drug screening were finally proposed.
Collapse
Affiliation(s)
- Naru Zhang
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China; (N.Z.); (C.L.)
| | - Chaoqun Li
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China; (N.Z.); (C.L.)
| | - Shibo Jiang
- School of Basic Medical Sciences, Fudan University, Shanghai 200433, China
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
- Correspondence: (S.J.); (L.D.)
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
- Correspondence: (S.J.); (L.D.)
| |
Collapse
|
10
|
Chang YH, Chiao DJ, Hsu YL, Lin CC, Wu HL, Shu PY, Chang SF, Chang JH, Kuo SC. Mosquito Cell-Derived Japanese Encephalitis Virus-Like Particles Induce Specific Humoral and Cellular Immune Responses in Mice. Viruses 2020; 12:v12030336. [PMID: 32204533 PMCID: PMC7150764 DOI: 10.3390/v12030336] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/12/2020] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
The Japanese encephalitis virus (JEV) is the major cause of an acute encephalitis syndrome in many Asian countries, despite the fact that an effective vaccine has been developed. Virus-like particles (VLPs) are self-assembled multi-subunit protein structures which possess specific epitope antigenicities related to corresponding native viruses. These properties mean that VLPs are considered safe antigens that can be used in clinical applications. In this study, we developed a novel baculovirus/mosquito (BacMos) expression system which potentially enables the scalable production of JEV genotype III (GIII) VLPs (which are secreted from mosquito cells). The mosquito-cell-derived JEV VLPs comprised 30-nm spherical particles as well as precursor membrane protein (prM) and envelope (E) proteins with densities that ranged from 30% to 55% across a sucrose gradient. We used IgM antibody-capture enzyme-linked immunosorbent assays to assess the resemblance between VLPs and authentic virions and thereby characterized the epitope specific antigenicity of VLPs. VLP immunization was found to elicit a specific immune response toward a balanced IgG2a/IgG1 ratio. This response effectively neutralized both JEV GI and GIII and elicited a mixed Th1/Th2 response in mice. This study supports the development of mosquito cell-derived JEV VLPs to serve as candidate vaccines against JEV.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Cell Line
- Culicidae/virology
- Cytokines/metabolism
- Disease Models, Animal
- Encephalitis Virus, Japanese/immunology
- Encephalitis Virus, Japanese/ultrastructure
- Encephalitis, Japanese/immunology
- Encephalitis, Japanese/virology
- Enzyme-Linked Immunosorbent Assay
- Epitopes/immunology
- Fluorescent Antibody Technique
- Immunity, Cellular
- Immunity, Humoral
- Mice
- Neutralization Tests
- Vaccines, Virus-Like Particle/immunology
- Virion
Collapse
Affiliation(s)
- Yu-Hsiu Chang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-H.C.); (D.-J.C.); (Y.-L.H.); (C.-C.L.); (H.-L.W.); (J.-H.C.)
| | - Der-Jiang Chiao
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-H.C.); (D.-J.C.); (Y.-L.H.); (C.-C.L.); (H.-L.W.); (J.-H.C.)
| | - Yu-Lin Hsu
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-H.C.); (D.-J.C.); (Y.-L.H.); (C.-C.L.); (H.-L.W.); (J.-H.C.)
| | - Chang-Chi Lin
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-H.C.); (D.-J.C.); (Y.-L.H.); (C.-C.L.); (H.-L.W.); (J.-H.C.)
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 11490, Taiwan
| | - Hsueh-Ling Wu
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-H.C.); (D.-J.C.); (Y.-L.H.); (C.-C.L.); (H.-L.W.); (J.-H.C.)
| | - Pei-Yun Shu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei 11561, Taiwan; (P.-Y.S.); (S.-F.C.)
| | - Shu-Fen Chang
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei 11561, Taiwan; (P.-Y.S.); (S.-F.C.)
| | - Jui-Huan Chang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-H.C.); (D.-J.C.); (Y.-L.H.); (C.-C.L.); (H.-L.W.); (J.-H.C.)
| | - Szu-Cheng Kuo
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-H.C.); (D.-J.C.); (Y.-L.H.); (C.-C.L.); (H.-L.W.); (J.-H.C.)
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 11490, Taiwan
- Correspondence: ; Tel.: +886-2-8177-7038 (ext. 19946)
| |
Collapse
|
11
|
Virus-Like Particle Systems for Vaccine Development against Viruses in the Flaviviridae Family. Vaccines (Basel) 2019; 7:vaccines7040123. [PMID: 31547131 PMCID: PMC6963367 DOI: 10.3390/vaccines7040123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/07/2019] [Accepted: 09/13/2019] [Indexed: 01/07/2023] Open
Abstract
Viruses in the Flaviviridae family are important human and animal pathogens that impose serious threats to global public health. This family of viruses includes emerging and re-emerging viruses, most of which are transmitted by infected mosquito or tick bites. Currently, there is no protective vaccine or effective antiviral treatment against the majority of these viruses, and due to their growing spread, several strategies have been employed to manufacture prophylactic vaccines against these infectious agents including virus-like particle (VLP) subunit vaccines. VLPs are genomeless viral particles that resemble authentic viruses and contain critical repetitive conformational structures on their surface that can trigger the induction of both humoral and cellular responses, making them safe and ideal vaccine candidates against these viruses. In this review, we focus on the potential of the VLP platform in the current vaccine development against the medically important viruses in the Flaviviridae family.
Collapse
|
12
|
Hansoongnern P, Kaewborisuth C, Wasanasuk K, Chankeeree P, Poonsuk S, Lekcharoensuk C, Lekcharoensuk P. The immunogenicity of the secretory GΔTM protein of bovine ephemeral fever virus stably expressed by mammalian cells. Vet Microbiol 2019; 233:113-117. [PMID: 31176396 DOI: 10.1016/j.vetmic.2019.04.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/22/2019] [Accepted: 04/27/2019] [Indexed: 02/04/2023]
Abstract
Bovine ephemeral fever virus (BEFV) causes an acute febrile disease in cattle and water buffalo. The disease has an impact on dairy and beef production in tropical and subtropical countries. Vaccination is used for disease prevention and control. In this study, we developed a recombinant lentivirus to produce mammalian stable cells expressing histidine-tagged BEFV G protein with a deleted transmembrane domain (GΔTM) as a secretory protein. In addition, guinea pigs were immunised with the purified GΔTM protein and booster immunised at a 3-week interval. The mammalian stable cells were able to continuously produce GΔTM protein for a minimum of 25 passages. All of the mammalian stable cells expressing GΔTM protein could react specifically with a BEFV convalescent bovine serum. Serum samples from the immunised guinea pigs could react strongly and specifically with the purified GΔTM protein. Moreover, post-immunised guinea pig sera contained antibodies that could neutralise BEFV. These results indicate that the G protein without a transmembrane domain can be used as a subunit vaccine for the prevention and control of BEFV. The availability of the mammalian stable cells, which constitutively express GΔTM protein, could facilitate the potential use of the secretory protein for BEFV diagnosis and vaccine development.
Collapse
Affiliation(s)
- Payuda Hansoongnern
- Interdisciplinary Graduate Program in Genetic Engineering, The Graduate School, Kasetsart University, Bangkok, 10900, Thailand
| | - Challika Kaewborisuth
- Center for Advance Studies in Agriculture and Food, KU Institute Studies, Kasetsart University, Bangkok, 10900, Thailand
| | - Ketkaew Wasanasuk
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Penpitcha Chankeeree
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Sukontip Poonsuk
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Chalermpol Lekcharoensuk
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Porntippa Lekcharoensuk
- Interdisciplinary Graduate Program in Genetic Engineering, The Graduate School, Kasetsart University, Bangkok, 10900, Thailand; Center for Advance Studies in Agriculture and Food, KU Institute Studies, Kasetsart University, Bangkok, 10900, Thailand; Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
13
|
Krol E, Brzuska G, Szewczyk B. Production and Biomedical Application of Flavivirus-like Particles. Trends Biotechnol 2019; 37:1202-1216. [PMID: 31003718 DOI: 10.1016/j.tibtech.2019.03.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/14/2019] [Accepted: 03/20/2019] [Indexed: 01/13/2023]
Abstract
Many viruses belonging to the Flaviviridae family are transmitted by invertebrate vectors. Among those transmitted by mosquitos, there are many human pathogens of great medical importance, such as Japanese encephalitis virus, West Nile virus, dengue virus, Zika virus, or yellow fever virus. Millions of people contract mosquito-borne diseases each year, leading to thousands of deaths. Co-circulation of genetically similar flaviviruses in the same areas result in the generation of crossreactive antibodies, which is of serious concern for the development of effective vaccines and diagnostic tests. This review provides comprehensive insight into the potential use of virus-like particles as safe and effective antigens in both diagnostics tests, as well as in the development of vaccines against several mosquito-borne flaviviruses.
Collapse
Affiliation(s)
- Ewelina Krol
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Gabriela Brzuska
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Boguslaw Szewczyk
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| |
Collapse
|
14
|
Nerome K, Yamaguchi R, Fuke N, Izzati UZ, Maegawa K, Sugita S, Kawasaki K, Kuroda K, Nerome R. Development of a Japanese encephalitis virus genotype V virus-like particle vaccine in silkworms. J Gen Virol 2018; 99:897-907. [PMID: 29877787 DOI: 10.1099/jgv.0.001081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
To counter the spread of multiple Japanese encephalitis virus (JEV) variants harboured in alternative host species and highly neurotoxic variants with new antigenicity, such as genotype V (Muar), methods for developing more effective and low-cost vaccines against a variety of epidemic JEV strains are required. Here, we successfully synthesized large amounts of a Muar virus-like particle (MVLP) vaccine for JEV in silkworm pupae by using a Bombyx mori nuclear polyhedrosis virus recombinant consisting of JEV codon-optimized envelope (E) DNA. In particular, histopathological examination suggested that MVLP was efficiently synthesized in body fat tissues as well as epithelial cells. Quantitative analysis indicated that one silkworm pupa produced 724.8 µg of E protein in the MVLP vaccine. Electron microscopic examination of purified MVLP vaccine defined a typical MVLP morphological structure. Detailed MVLP antigen assessment by immune-electron microscopy revealed that the majority of MVLPs were covered with approximately 10 nm projections. Boosted immunization with MVLP antigens in mice and rabbits tended to show improved plaque inhibition potency against homologous Muar and heterologous Nakayama, but less potency to Beijing-1 strains. Notably, mixed immune rabbit antisera against Nakayama and Muar VLP antigens led to an increase in the low antibody reaction to Beijing-1. Additionally, a stopgap divalent JEV vaccine consisting of MVLP and Nakayama VLP and its immune mouse serum significantly increased plaque inhibition titre against Muar, Nakayama and Beijing-1 strains. These findings suggested that low-cost MVLP vaccines prepared in silkworm pupae are suitable for providing simultaneous protection of individuals in developing countries against various JEV strains.
Collapse
Affiliation(s)
| | - Ryoji Yamaguchi
- Laboratory of Veterinary Pathology, Department of Veterinary, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Naoyuki Fuke
- Laboratory of Veterinary Pathology, Department of Veterinary, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Uda Zahli Izzati
- Laboratory of Veterinary Pathology, Department of Veterinary, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | | | - Shigeo Sugita
- Equine Research Institute, Japan Racing Association, Tochigi, Japan
| | - Kazunori Kawasaki
- National Institute of Advanced Science and Technology (AIST), Osaka, Japan
| | - Kazumichi Kuroda
- Division of Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Reiko Nerome
- The Institute of Biological Resources, Okinawa, Japan
| |
Collapse
|
15
|
Host Factor SPCS1 Regulates the Replication of Japanese Encephalitis Virus through Interactions with Transmembrane Domains of NS2B. J Virol 2018; 92:JVI.00197-18. [PMID: 29593046 DOI: 10.1128/jvi.00197-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/22/2018] [Indexed: 01/04/2023] Open
Abstract
Signal peptidase complex subunit 1 (SPCS1) is a newly identified host factor that regulates flavivirus replication, but the molecular mechanism is not fully understood. Here, using Japanese encephalitis virus (JEV) as a model, we investigated the mechanism through which the host factor SPCS1 regulates the replication of flaviviruses. We first validated the regulatory function of SPCS1 in JEV propagation by knocking down and knocking out endogenous SPCS1. The loss of SPCS1 function markedly reduced intracellular virion assembly and the production of infectious JEV particles but did not affect cell entry, RNA replication, or translation of the virus. SPCS1 was found to interact with nonstructural protein 2B (NS2B), which is involved in posttranslational protein processing and virus assembly. Serial deletion mutation of the JEV NS2B protein revealed that two transmembrane domains, NS2B(1-49) and NS2B(84-131), interact with SPCS1. Further mutagenesis analysis of conserved flavivirus residues in two SPCS1 interaction domains of NS2B demonstrated that G12A, G37A, and G47A in NS2B(1-49) and P112A in NS2B(84-131) weakened the interaction with SPCS1. Deletion mutation of SPCS1 revealed that SPCS1(91-169), which contains two transmembrane domains, was involved in interactions with both NS2B(1-49) and NS2B(84-131). Taken together, these results demonstrate that SPCS1 affects viral replication by interacting with NS2B, thereby influencing the posttranslational processing of JEV proteins and the assembly of virions.IMPORTANCE Understanding virus-host interactions is important for elucidating the molecular mechanisms of virus propagation and identifying potential antiviral targets. Previous reports demonstrated that SPCS1 is involved in the flavivirus life cycle, but the mechanism remains unknown. In this study, we confirmed that SPCS1 participates in the posttranslational protein processing and viral assembly stages of the JEV life cycle but not in the cell entry, genome RNA replication, or translation stages. Furthermore, we found that SPCS1 interacts with two independent transmembrane domains of the flavivirus NS2B protein. NS2B also interacts with NS2A, which is proposed to mediate virus assembly. Therefore, we propose a protein-protein interaction model showing how SPCS1 participates in the assembly of JEV particles. These findings expand our understanding of how host factors participate in the flavivirus replication life cycle and identify potential antiviral targets for combating flavivirus infection.
Collapse
|
16
|
Abstract
This brief review discusses some recent advances in vaccine technologies with particular reference to their application within veterinary medicine. It highlights some of the key inactivated/killed approaches to vaccination, including natural split-product and subunit vaccines, recombinant subunit and protein vaccines, and peptide vaccines. It also covers live/attenuated vaccine strategies, including modified live marker/differentiating infected from vaccinated animals vaccines, live vector vaccines, and nucleic acid vaccines.
Collapse
Affiliation(s)
- Michael James Francis
- BioVacc Consulting Ltd, The Red House, 10 Market Square, Amersham, Buckinghamshire HP7 0DQ, UK.
| |
Collapse
|
17
|
Ramphan S, Suksathan S, Wikan N, Ounjai P, Boonthaworn K, Rimthong P, Kanjanapruthipong T, Worawichawong S, Jongkaewwattana A, Wongsiriroj N, Smith DR. Oleic acid Enhances Dengue Virus But Not Dengue Virus-Like Particle Production from Mammalian Cells. Mol Biotechnol 2017; 59:385-393. [PMID: 28791613 DOI: 10.1007/s12033-017-0029-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Despite the recent introduction of a commercial vaccine, the mosquito-transmitted dengue virus is still a worldwide public health problem. Based on the live attenuated vaccine strategy, the commercial vaccine has a less than optimal protective profile. Virus-like particles (VLPs) offer an attractive alternate vaccination strategy due to the effectively native presentation of epitopes in the absence of any infectious genetic material. However, the production of amounts of VLP in a platform that can support commercial development remains a major obstacle. This study generated two DENV 2 VLPs [codon-optimized and chimeric DENV/Japanese encephalitis virus (JEV)] and directly compared yields of these constructs by western blotting and dot blot hybridization. The effect of oleic acid supplementation, a process known to increase DENV production in natural infection, was also investigated. Results showed that the chimeric construct gave a two- to threefold higher yield than the codon-optimized construct and that while oleic acid increased DENV virion production in natural infection, it inhibited VLP production. These results suggest that further optimization of DENV VLP expression is possible, but it will require more understanding of how native DENV infection remodels the host cell machinery.
Collapse
Affiliation(s)
- Suwipa Ramphan
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, 25/25 Phuttamonton Sai 4, Salaya, Nakorn Pathom, 73170, Thailand
| | - Sathiporn Suksathan
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, 25/25 Phuttamonton Sai 4, Salaya, Nakorn Pathom, 73170, Thailand
| | - Nitwara Wikan
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, 25/25 Phuttamonton Sai 4, Salaya, Nakorn Pathom, 73170, Thailand
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Kanpong Boonthaworn
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Poramate Rimthong
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Tapanee Kanjanapruthipong
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Suchin Worawichawong
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Anan Jongkaewwattana
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Nuttaporn Wongsiriroj
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, 25/25 Phuttamonton Sai 4, Salaya, Nakorn Pathom, 73170, Thailand
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, 25/25 Phuttamonton Sai 4, Salaya, Nakorn Pathom, 73170, Thailand.
| |
Collapse
|
18
|
Li W, Ma L, Guo LP, Wang XL, Zhang JW, Bu ZG, Hua RH. West Nile virus infectious replicon particles generated using a packaging-restricted cell line is a safe reporter system. Sci Rep 2017; 7:3286. [PMID: 28607390 PMCID: PMC5468312 DOI: 10.1038/s41598-017-03670-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/03/2017] [Indexed: 11/09/2022] Open
Abstract
West Nile virus (WNV) is a neurotropic pathogen which causes zoonotic disease in humans. Recently, there have been an increasing number of infected cases and there are no clinically approved vaccines or effective drugs to treat WNV infections in humans. The purpose of this study was to facilitate vaccine and antiviral drug discovery by developing a packaging cell line-restricted WNV infectious replicon particle system. We constructed a DNA-based WNV replicon lacking the C-prM-E coding region and replaced it with a GFP coding sequence. To produce WNV replicon particles, cell lines stably-expressing prM-E and C-prM-E were constructed. When the WNV replicon plasmid was co-transfected with a WNV C-expressing plasmid into the prM-E-expressing cell line or directly transfected the C-prM-E expressing cell line, the replicon particle was able to replicate, form green fluorescence foci, and exhibit cytopathic plaques similar to that induced by the wild type virus. The infectious capacity of the replicon particles was restricted to the packaging cell line as the replicons demonstrated only one round of infection in other permissive cells. Thus, this system provides a safe and convenient reporter WNV manipulating tool which can be used to study WNV viral invasion mechanisms, neutralizing antibodies and antiviral efficacy.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150001, China
| | - Le Ma
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150001, China
| | - Li-Ping Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150001, China
| | - Xiao-Lei Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150001, China
| | - Jing-Wei Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150001, China
| | - Zhi-Gao Bu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Rong-Hong Hua
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| |
Collapse
|
19
|
Matsuda S, Nerome R, Maegawa K, Kotaki A, Sugita S, Kawasaki K, Kuroda K, Yamaguchi R, Takasaki T, Nerome K. Development of a Japanese encephalitis virus-like particle vaccine in silkworms using codon-optimised prM and envelope genes. Heliyon 2017; 3:e00286. [PMID: 28435908 PMCID: PMC5390689 DOI: 10.1016/j.heliyon.2017.e00286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/03/2017] [Accepted: 03/28/2017] [Indexed: 11/29/2022] Open
Abstract
We have successfully prepared a Japanese encephalitis virus (JEV) - Nakayama virus like particle (NVLP) vaccine using synthetic codon-optimized prM and E genes. The expression of the recombinant JEV Nakayama-BmNPV (JEV-NNPV) virus was determined in infected silkworm Bm-N cells by fluorescence and Western blot analysis. The recombinant was inoculated into silkworm pupae and the yield of Nakayama VLP (NVLP) reached a peak in the homogenates after 3 days. Additionally, in the peptide analysis of infected pupae homogenate, it appeared approximately 300-500 μg E protein/pupa were produced. When purified the above eluates on the discontinuous sucrose density gradient centrifugation, NVLP showed a strong hemagglutination (HA) activity by using chicken red blood cell in phosphate-buffered saline (PBS) free from Mg++ and Ca++ ions. The immune antisera against NVLP strain could efficiently neutralize the plaque formation of Nakayama, Beijing-1 and Muar strains, showing tendency of much higher reaction with heterologous Muar strain than homologous Nakayama strain. Our findings suggest that the JEV-NVLP may be useful for JEV epidemic control in many endemic areas of Asian countries as a widely effective and less expensive JE vaccine.
Collapse
Affiliation(s)
- Sayaka Matsuda
- The Institute of Biological Resources, 893-2, Nakayama, Nago-shi, Okinawa 905-0004, Japan
| | - Reiko Nerome
- The Institute of Biological Resources, 893-2, Nakayama, Nago-shi, Okinawa 905-0004, Japan
| | - Kenichi Maegawa
- The Institute of Biological Resources, 893-2, Nakayama, Nago-shi, Okinawa 905-0004, Japan
| | - Akira Kotaki
- The Institute of Biological Resources, 893-2, Nakayama, Nago-shi, Okinawa 905-0004, Japan
| | - Shigeo Sugita
- Equine Research Institute, Japan Racing Association, 1400-4, Shiba, Shimotsuke-shi, Tochigi 329-0412, Japan
| | - Kazunori Kawasaki
- National Institute of Advanced Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Kazumichi Kuroda
- Division of Microbiology, Nihon University School of Medicine, 30-1, Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Ryoji Yamaguchi
- Laboratory of Veterinary Pathology, Department of Veterinary, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki 889-2192, Japan
| | - Tomohiko Takasaki
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kuniaki Nerome
- The Institute of Biological Resources, 893-2, Nakayama, Nago-shi, Okinawa 905-0004, Japan
| |
Collapse
|
20
|
Zhang J, Liu W, Chen W, Li C, Xie M, Bu Z. Development of an Immunoperoxidase Monolayer Assay for the Detection of Antibodies against Peste des Petits Ruminants Virus Based on BHK-21 Cell Line Stably Expressing the Goat Signaling Lymphocyte Activation Molecule. PLoS One 2016; 11:e0165088. [PMID: 27768770 PMCID: PMC5074545 DOI: 10.1371/journal.pone.0165088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/26/2016] [Indexed: 11/19/2022] Open
Abstract
From 2013 to 2015, peste des petits ruminants (PPR) broke out in more than half of the provinces of China; thus, the application and development of diagnostic methods are very important for the control of PPR. Here, an immunoperoxidase monolayer assay (IPMA) was developed to detect antibodies against PPR. However, during IPMA development, we found that Vero cells were not the appropriate choice because staining results were not easily observed. Therefore, we first established a baby hamster kidney-goat signaling lymphocyte activation molecule (BHK-SLAM) cell line that could stably express goat SLAM for at least 20 generations. Compared with Vero cells, the PPR-mediated cytopathic effect occurred earlier in BHK-SLAM cells, and large syncytia appeared after virus infection. Based on this cell line and recombinant PPR virus expressing the green fluorescent protein (GFP) (rPPRV-GFP), an IPMA for PPR diagnosis was developed. One hundred and ninety-eight PPR serum samples from goats or sheep were tested by the IPMA and virus neutralization test (VNT). Compared with the VNT, the sensitivity and specificity of the IPMA were 91% and 100%, respectively, and the coincidence rate of the two methods was 95.5%. The IPMA assay could be completed in 4 h, compared with more than 6 d for the VNT using rPPRV-GFP, and it is easily performed, as the staining results can be observed under a microscope. Additionally, unlike the VNT, the IPMA does not require antigen purification, which will reduce its cost. In conclusion, the established IPMA will be an alternative method that replaces the VNT for detecting antibodies against PPRV in the field.
Collapse
Affiliation(s)
- Jialin Zhang
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| | - Wenxing Liu
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| | - Weiye Chen
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
- * E-mail: (WYC); (ZGB)
| | - Cuicui Li
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| | - Meimei Xie
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| | - Zhigao Bu
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
- * E-mail: (WYC); (ZGB)
| |
Collapse
|
21
|
Liu H, Wu R, Liu K, Yuan L, Huang X, Wen Y, Ma X, Yan Q, Zhao Q, Wen X, Cao S. Enhanced immune responses against Japanese encephalitis virus using recombinant adenoviruses coexpressing Japanese encephalitis virus envelope and porcine interleukin-6 proteins in mice. Virus Res 2016; 222:34-40. [DOI: 10.1016/j.virusres.2016.05.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 04/24/2016] [Accepted: 05/24/2016] [Indexed: 12/23/2022]
|
22
|
Fontana D, Etcheverrigaray M, Kratje R, Prieto C. Development of Rabies Virus-Like Particles for Vaccine Applications: Production, Characterization, and Protection Studies. Methods Mol Biol 2016; 1403:155-66. [PMID: 27076129 DOI: 10.1007/978-1-4939-3387-7_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Rabies is a viral infection of the central nervous system for which vaccination is the only treatment possible. Besides preexposure, vaccination is highly recommended for people living in endemic areas, veterinarians, and laboratory workers. Our group has developed rabies virus-like particles (RV-VLPs) with immunogenic features expressed in mammalian cells for vaccine applications. In this chapter the methods to obtain and characterize a stable HEK293 cell line expressing RV-VLPs are detailed. Further, analytical ultracentrifugation steps to purify the obtained VLPs are developed, as well as western blot, dynamic light scattering, and immunogold electron microscopy to analyze the size, distribution, shape, and antigenic conformation of the purified particles. Finally, immunization protocols are described to study the immunogenicity of RV-VLPs.
Collapse
Affiliation(s)
- Diego Fontana
- Cell Culture Laboratory, Biochemistry and Biological Sciences School, Universidad Nacional del Litoral, Bv. Pellegrini 2750, Santa Fe, 3000, Argentina.
- Biotechnological Development Laboratory, Biochemistry and Biological Sciences School, Universidad Nacional del Litoral, Santa Fe, Argentina.
| | - Marina Etcheverrigaray
- Cell Culture Laboratory, Biochemistry and Biological Sciences School, Universidad Nacional del Litoral, Bv. Pellegrini 2750, Santa Fe, 3000, Argentina
| | - Ricardo Kratje
- Cell Culture Laboratory, Biochemistry and Biological Sciences School, Universidad Nacional del Litoral, Bv. Pellegrini 2750, Santa Fe, 3000, Argentina
| | - Claudio Prieto
- Cell Culture Laboratory, Biochemistry and Biological Sciences School, Universidad Nacional del Litoral, Bv. Pellegrini 2750, Santa Fe, 3000, Argentina
- Biotechnological Development Laboratory, Biochemistry and Biological Sciences School, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
23
|
Rodrigues AF, Soares HR, Guerreiro MR, Alves PM, Coroadinha AS. Viral vaccines and their manufacturing cell substrates: New trends and designs in modern vaccinology. Biotechnol J 2015. [PMID: 26212697 PMCID: PMC7161866 DOI: 10.1002/biot.201400387] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vaccination is one of the most effective interventions in global health. The worldwide vaccination programs significantly reduced the number of deaths caused by infectious agents. A successful example was the eradication of smallpox in 1979 after two centuries of vaccination campaigns. Since the first variolation administrations until today, the knowledge on immunology has increased substantially. This knowledge combined with the introduction of cell culture and DNA recombinant technologies revolutionized vaccine design. This review will focus on vaccines against human viral pathogens, recent developments on vaccine design and cell substrates used for their manufacture. While the production of attenuated and inactivated vaccines requires the use of the respective permissible cell substrates, the production of recombinant antigens, virus‐like particles, vectored vaccines and chimeric vaccines requires the use – and often the development – of specific cell lines. Indeed, the development of novel modern viral vaccine designs combined with, the stringent safety requirements for manufacture, and the better understanding on animal cell metabolism and physiology are increasing the awareness on the importance of cell line development and engineering areas. A new era of modern vaccinology is arriving, offering an extensive toolbox to materialize novel and creative ideas in vaccine design and its manufacture.
Collapse
Affiliation(s)
- Ana F Rodrigues
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Hugo R Soares
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Miguel R Guerreiro
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana S Coroadinha
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal. .,Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|