1
|
Charles EJ, Elsawwah JK, Nemeth LE, Stepanyan A, Nemeth ZH. Letter Regarding "Plasmas From Patients With Burn Injury Induce Endotheliopathy Through Different Pathways". J Surg Res 2025:S0022-4804(25)00207-0. [PMID: 40312235 DOI: 10.1016/j.jss.2025.02.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 02/22/2025] [Indexed: 05/03/2025]
Affiliation(s)
- Eric J Charles
- Department of Surgery, Morristown Medical Center, Morristown, New Jersey
| | - Jana K Elsawwah
- Department of Surgery, Morristown Medical Center, Morristown, New Jersey
| | - Laura E Nemeth
- Department of Surgery, Morristown Medical Center, Morristown, New Jersey
| | - Anahit Stepanyan
- Department of Surgery, Morristown Medical Center, Morristown, New Jersey
| | - Zoltan H Nemeth
- Department of Surgery, Morristown Medical Center, Morristown, New Jersey.
| |
Collapse
|
2
|
Grego A, Fernandes C, Fonseca I, Dias-Neto M, Costa R, Leite-Moreira A, Oliveira SM, Trindade F, Nogueira-Ferreira R. Endothelial dysfunction in cardiovascular diseases: mechanisms and in vitro models. Mol Cell Biochem 2025:10.1007/s11010-025-05289-w. [PMID: 40259179 DOI: 10.1007/s11010-025-05289-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 04/08/2025] [Indexed: 04/23/2025]
Abstract
Endothelial cells (ECs) are arranged side-by-side to create a semi-permeable monolayer, forming the inner lining of every blood vessel (micro and macrocirculation). Serving as the first barrier for circulating molecules and cells, ECs represent the main regulators of vascular homeostasis being able to respond to environmental changes, either physical or chemical signals, by producing several factors that regulate vascular tone and cellular adhesion. Healthy endothelium has anticoagulant properties that prevent the adhesion of leukocytes and platelets to the vessel walls, contributing to resistance to thrombus formation, and regulating inflammation, and vascular smooth muscle cell proliferation. Many risk factors of cardiovascular diseases (CVDs) promote the endothelial expression of chemokines, cytokines, and adhesion molecules. The resultant endothelial activation can lead to endothelial cell dysfunction (ECD). In vitro models of ECD allow the study of cellular and molecular mechanisms of disease and provide a research platform for screening potential therapeutic agents. Even though alternative models are available, such as animal models or ex vivo models, in vitro models offer higher experimental flexibility and reproducibility, making them a valuable tool for the understanding of pathophysiological mechanisms of several diseases, such as CVDs. Therefore, this review aims to synthesize the currently available in vitro models regarding ECD, emphasizing CVDs. This work will focus on 2D cell culture models (endothelial cell lines and primary ECs), 3D cell culture systems (scaffold-free and scaffold-based), and 3D cell culture models (such as organ-on-a-chip). We will dissect the role of external stimuli-chemical and mechanical-in triggering ECD.
Collapse
Affiliation(s)
- Ana Grego
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Cristiana Fernandes
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ivo Fonseca
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Marina Dias-Neto
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
- Department of Angiology and Vascular Surgery, Unidade Local de Saúde de São João, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Raquel Costa
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Adelino Leite-Moreira
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
- Department of Cardiothoracic Surgery, Unidade Local de Saúde de São João, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Sandra Marisa Oliveira
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Fábio Trindade
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Rita Nogueira-Ferreira
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.
| |
Collapse
|
3
|
Ahmadi M, Ghafouri-Fard S, Najari-Hanjani P, Morshedzadeh F, Malakoutian T, Abbasi M, Akbari H, Amoli MM, Saffarzadeh N. "Hyperglycemic Memory": Observational Evidence to Experimental Inference. Curr Diabetes Rev 2025; 21:64-78. [PMID: 38369731 DOI: 10.2174/0115733998279869231227091944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/01/2023] [Accepted: 11/29/2023] [Indexed: 02/20/2024]
Abstract
Several epidemiological studies have appreciated the impact of "duration" and "level" of hyperglycemia on the initiation and development of chronic complications of diabetes. However, glycemic profiles could not fully explain the presence/absence and severity of diabetic complications. Genetic issues and concepts of "hyperglycemic memory" have been introduced as additional influential factors involved in the pathobiology of late complications of diabetes. In the extended phase of significant diabetes randomized, controlled clinical trials, including DCCT/EDIC and UKPDS, studies have concluded that the quality of glycemic or metabolic control at the early time around the diabetes onset could maintain its protective or detrimental impact throughout the following diabetes course. There is no reliable indication of the mechanism by which the transient exposure to a given glucose concentration level could evoke a consistent cellular response at target tissues at the molecular levels. Some biological phenomena, such as the production and the concentration of advanced glycation end products (AGEs), reactive oxygen species (ROS) and protein kinase C (PKC) pathway activations, epigenetic changes, and finally, the miRNAs-mediated pathways, may be accountable for the development of hyperglycemic memory. This work summarizes evidence from previous experiments that may substantiate the hyperglycemic memory soundness by its justification in molecular terms.
Collapse
Affiliation(s)
- Mohsen Ahmadi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Najari-Hanjani
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Firouzeh Morshedzadeh
- Department of Genetics, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Tahereh Malakoutian
- Department of Nephrology, Hasheminejad Kidney Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Abbasi
- Department of Emergency Medicine, Iran University of Medical Sciences, Tehran, Iran
- Hasheminejad Kidney Centre, Iran University of Medical Sciences, Anesthesiology Section, Tehran, Iran
| | - Hounaz Akbari
- Department of Nephrology, Hasheminejad Kidney Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Mohammad Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Negin Saffarzadeh
- Department of Nephrology, Hasheminejad Kidney Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Song L, Ying J, Li M, Weng C, Jia S, Ying L, Li Z. Association between stress hyperglycemia ratio and mortality in patients with heart failure complicated by sepsis. Sci Rep 2024; 14:31380. [PMID: 39733142 PMCID: PMC11682349 DOI: 10.1038/s41598-024-82890-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/10/2024] [Indexed: 12/30/2024] Open
Abstract
Individuals afflicted with heart failure complicated by sepsis often experience a surge in blood glucose levels, a phenomenon known as stress hyperglycemia. However, the correlation between this condition and overall mortality remains unclear. 869 individuals with heart failure complicated by sepsis were identified from the Medical Information Mart for Intensive Care-IV (MIMIC-IV) database and categorized into five cohorts based on their stress hyperglycemia ratio (SHR). The primary endpoints evaluated were mortality within the intensive care unit (ICU), all-cause mortality within 28 days, and all-cause mortality during hospitalization. Cox proportional hazards regression and restricted cubic spline analyses were employed to unravel the association between SHR and mortality. The ICU mortality, in-hospital mortality, and 28-day all-cause mortality were 10.01%, 13.69%, and 16.46%, respectively. Multivariable Cox proportional hazards regression analysis revealed a significant association between elevated SHR and all-cause mortality. After adjusting for confounding variables, elevated SHR was significantly associated with increased risk of ICU mortality (hazard ratio [HR] = 1.67; 95% confidence interval [CI], 1.03-2.70)), in-hospital mortality (HR = 1.53; 95% CI, 1.00-2.33)), and 28-day all-cause mortality (HR = 1.49; 95% CI, 1.02-2.17)). Restricted cubic spline analysis demonstrated a significant U-shaped relationship between SHR and the risk of all-cause mortality. This study revealed that stress hyperglycemia ratio is an independent prognostic factor in patients with heart failure complicated by sepsis. Notably, both very high and very low SHR values were associated with increased mortality risk.
Collapse
Affiliation(s)
- Lijun Song
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China, 322000.
| | - Jianjun Ying
- Department of General Medicine, Yiwu Traditional Chinese Medicine Hospital, Yiwu, Zhejiang, China, 322000
| | - Min Li
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China, 322000
| | - Chenxi Weng
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China, 322000
| | - Shengwei Jia
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China, 322000
| | - Lan Ying
- Department of Emergency Medicine, Second Affiliated Hospitall, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China, 310000
| | - Zhiyu Li
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing, China, 214000
| |
Collapse
|
5
|
Chen H, Chen E, Cao T, Feng F, Lin M, Wang X, Xu Y. Integrative analysis of PANoptosis-related genes in diabetic retinopathy: machine learning identification and experimental validation. Front Immunol 2024; 15:1486251. [PMID: 39697326 PMCID: PMC11652367 DOI: 10.3389/fimmu.2024.1486251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024] Open
Abstract
Background Diabetic retinopathy (DR) is a major complication of diabetes, leading to severe vision impairment. Understanding the molecular mechanisms, particularly PANoptosis, underlying DR is crucial for identifying potential biomarkers and therapeutic targets. This study aims to identify differentially expressed PANoptosis-related genes (DE-PRGs) in DR, offering insights into the disease's pathogenesis and potential diagnostic tools. Methods DR datasets were obtained from the Gene Expression Omnibus (GEO) database, while PANoptosis-related genes were sourced from the GeneCards database. Differentially expressed genes (DEGs) were identified using the DESeq2 package, followed by functional enrichment analysis through DAVID and Metascape tools. Three machine learning algorithms-LASSO regression, Random Forest, and SVM-RFE-were employed to identify hub genes. A diagnostic nomogram was constructed and its performance assessed via ROC analysis. The CIBERSORT algorithm analyzed immune cell infiltration. Hub genes were validated through RT-qPCR, Western blotting, immunohistochemistry, and publicly available datasets. Additionally, the impact of FASN and PLSCR3 knockdown on HUVECs behavior was validated through in vitro experiments. Results Differential expression analysis identified 1,418 DEGs in the GSE221521 dataset, with 39 overlapping DE-PRGs (29 upregulated, 10 downregulated). Functional enrichment indicated that DE-PRGs are involved in apoptosis, signal transduction, and inflammatory responses, with key pathways such as MAPK and TNF signaling. Machine learning algorithms identified six PANoptosis-related hub genes (BEX2, CASP2, CD36, FASN, OSMR, and PLSCR3) as potential biomarkers. A diagnostic nomogram based on these hub genes showed high diagnostic accuracy. Immune cell infiltration analysis revealed significant differences in immune cell patterns between control and DR groups, especially in Activated CD4 Memory T Cells and Monocytes. Validation confirmed the diagnostic efficiency and expression patterns of the PANoptosis-related hub genes, supported by in vitro and the GSE60436 dataset analysis. Furthermore, experiments demonstrated that knocking down FASN and PLSCR3 impacted HUVECs behavior. Conclusion This study provides valuable insights into the molecular mechanisms of DR, particularly highlighting PANoptosis-related pathways, and identifies potential biomarkers and therapeutic targets for the disease.
Collapse
Affiliation(s)
- Han Chen
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Enguang Chen
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Cao
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Feifan Feng
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Min Lin
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuan Wang
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Xu
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Geng XF, Shang WY, Qi ZW, Zhang C, Li WX, Yan ZP, Fan XB, Zhang JP. The mechanism and promising therapeutic strategy of diabetic cardiomyopathy dysfunctions: Focus on pyroptosis. J Diabetes Complications 2024; 38:108848. [PMID: 39178624 DOI: 10.1016/j.jdiacomp.2024.108848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 08/26/2024]
Abstract
Diabetes is a major risk factor for cardiovascular diseases, and myocardial damage caused by hyperglycemia is the main cause of heart failure. However, there is still a lack of systematic understanding of myocardial damage caused by diabetes. At present, we believe that the cellular inflammatory damage caused by hyperglycemia is one of the causes of diabetic cardiomyopathy. Pyroptosis, as a proinflammatory form of cell death, is closely related to the occurrence and development of diabetic cardiomyopathy. Therefore, this paper focuses on the important role of inflammation in the occurrence and development of diabetic cardiomyopathy. From the perspective of pyroptosis, we summarize the pyroptosis of different types of cells in diabetic cardiomyopathy and its related signaling pathways. It also summarizes the treatment of diabetic cardiomyopathy, hoping to provide methods for the prevention and treatment of diabetic cardiomyopathy by inhibiting pyroptosis.
Collapse
Affiliation(s)
- Xiao-Fei Geng
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Wen-Yu Shang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Zhong-Wen Qi
- Postdoctoral Research Station of China Academy of Chinese Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Chi Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Wen-Xiu Li
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Zhi-Peng Yan
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Xin-Biao Fan
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Jun-Ping Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| |
Collapse
|
7
|
Kushwaha K, Garg SS, Mandal D, Khurana N, Gupta J. Screening of natural epigenetic modifiers for managing glycemic memory and diabetic nephropathy. J Drug Target 2024; 32:807-819. [PMID: 38749010 DOI: 10.1080/1061186x.2024.2356737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/03/2024] [Accepted: 05/10/2024] [Indexed: 05/28/2024]
Abstract
Short hyperglycaemic episodes trigger metabolic memory (MM) in which managing hyperglycaemia alone is not enough to tackle the progression of Diabetic nephropathy on the epigenetic axis. We used a structural similarity search approach to identify phytochemicals similar to natural epigenetic modifiers and docked with SIRT1 protein and did ADME studies. We found that UMB was 84.3% similar to esculetin. Upon docking, we found that UMB had a binding energy of -9.2 kcal/mol while the standard ligand had -11.8 kcal/mol. ADME showed UMB to be a good lead. 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay showed it to be a good antioxidant with IC50 of 107 µg/mL and MTT stands for 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) showed that it does not promote cell death. Oxidative biomarkers in vitro showed UMB was able to ameliorate glycemic memory induced by high glucose. Western blot revealed decreased histone acetylation under hyperglycaemic conditions and upon treatment with UMB along with DR, its levels increased. This led us to check our hypothesis of whether concomitant diet reversal (DR) together with UMB can alleviate high-fat diet-induced metabolic memory and diabetic nephropathy (DN) in SD rats. UMB was able to decrease blood glucose, lipid, renal, and liver profile concluding UMB was able to ameliorate DN and MM by increasing the histone acetylation level.
Collapse
Affiliation(s)
- Kriti Kushwaha
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sourbh Suren Garg
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Debojyoti Mandal
- Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Navneet Khurana
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Jeena Gupta
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
8
|
Vuong CK, Fukushige M, Ngo NH, Yamashita T, Obata-Yasuoka M, Hamada H, Osaka M, Tsukada T, Hiramatsu Y, Ohneda O. Extracellular Vesicles Derived from Type 2 Diabetic Mesenchymal Stem Cells Induce Endothelial Mesenchymal Transition under High Glucose Conditions Through the TGFβ/Smad3 Signaling Pathway. Stem Cells Dev 2024; 33:262-275. [PMID: 38717965 DOI: 10.1089/scd.2023.0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is associated with endothelial dysfunction, which results in delayed wound healing. Mesenchymal stem cells (MSCs) play a vital role in supporting endothelial cells (ECs) and promoting wound healing by paracrine effects through their secretome-containing extracellular vesicles. We previously reported the impaired wound healing ability of adipose tissue-derived MSC from T2DM donors; however, whether extracellular vesicles isolated from T2DM adipose tissue-derived MSCs (dEVs) exhibit altered functions in comparison to those derived from healthy donors (nEVs) is still unclear. In this study, we found that nEVs induced EC survival and angiogenesis, whereas dEVs lost these abilities. In addition, under high glucose conditions, nEV protected ECs from endothelial-mesenchymal transition (EndMT), whereas dEV significantly induced EndMT by activating the transforming growth factor-β/Smad3 signaling pathway, which impaired the tube formation and in vivo wound healing abilities of ECs. Interestingly, the treatment of dEV-internalized ECs with nEVs rescued the induced EndMT effects. Of note, the internalization of nEV into T2DM adipose tissue-derived MSC resulted in the production of an altered n-dEV, which inhibited EndMT and supported the survival of T2DM db/db mice from severe wounds. Taken together, our findings suggest the role of dEV in endothelial dysfunction and delayed wound healing in T2DM by the promotion of EndMT. Moreover, nEV treatment can be considered a promising candidate for cell-free therapy to protect ECs in T2DM.
Collapse
Affiliation(s)
- Cat-Khanh Vuong
- Graduate School of Comprehensive Human Science, Laboratory of Regenerative Medicine and Stem Cell Biology, University of Tsukuba, Tsukuba, Japan
| | - Mizuho Fukushige
- Graduate School of Comprehensive Human Science, Laboratory of Regenerative Medicine and Stem Cell Biology, University of Tsukuba, Tsukuba, Japan
| | - Nhat-Hoang Ngo
- Graduate School of Comprehensive Human Science, Laboratory of Regenerative Medicine and Stem Cell Biology, University of Tsukuba, Tsukuba, Japan
- PhD Program in Human Biology, University of Tsukuba, Tsukuba, Japan
| | - Toshiharu Yamashita
- Graduate School of Comprehensive Human Science, Laboratory of Regenerative Medicine and Stem Cell Biology, University of Tsukuba, Tsukuba, Japan
| | | | - Hiromi Hamada
- Department of Obstetrics and Gynecology, University of Tsukuba
| | - Motoo Osaka
- Department of Cardiovascular Surgery, University of Tsukuba, Tsukuba, Japan
| | - Toru Tsukada
- Department of Cardiovascular Surgery, University of Tsukuba, Tsukuba, Japan
| | - Yuji Hiramatsu
- Department of Cardiovascular Surgery, University of Tsukuba, Tsukuba, Japan
| | - Osamu Ohneda
- Graduate School of Comprehensive Human Science, Laboratory of Regenerative Medicine and Stem Cell Biology, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
9
|
Lu L, Jang S, Zhu J, Qin Q, Sun L, Sun J. Nur77 mitigates endothelial dysfunction through activation of both nitric oxide production and anti-oxidant pathways. Redox Biol 2024; 70:103056. [PMID: 38290383 PMCID: PMC10844745 DOI: 10.1016/j.redox.2024.103056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/05/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Nur77 belongs to the member of orphan nuclear receptor 4A family that plays critical roles in maintaining vascular homeostasis. This study aims to determine whether Nur77 plays a role in attenuating vascular dysfunction, and if so, to determine the molecular mechanisms involved. METHODS Both Nur77 knockout (Nur77 KO) and Nur77 endothelial specific transgenic mice (Nur77-Tg) were employed to examine the functional significance of Nur77 in vascular endothelium in vivo. Endothelium-dependent vasodilatation to acetylcholine (Ach) and reactive oxygen species (ROS) production was determined under inflammatory and high glucose conditions. Expression of genes was determined by real-time PCR and western blot analysis. RESULTS In response to tumor necrosis factor alpha (TNF-α) treatment and diabetes, the endothelium-dependent vasodilatation to Ach was significantly impaired in aorta from Nur77 KO as compared with those from the wild-type (WT) mice. Endothelial specific overexpression of Nur77 markedly prevented both TNF-α- and high glucose-induced endothelial dysfunction. Compared with WT mice, after TNF-α and high glucose treatment, ROS production in aorta was significantly increased in Nur77 KO mice, but it was inhibited in Nur77-Tg mice, as determined by dihydroethidium (DHE) staining. Furthermore, we demonstrated that Nur77 overexpression substantially increased the expression of several key enzymes involved in nitric oxide (NO) production and ROS scavenging, including endothelial nitric oxide synthase (eNOS), guanosine triphosphate cyclohydrolase 1 (GCH-1), glutathione peroxidase-1 (GPx-1), and superoxide dismutases (SODs). Mechanistically, we found that Nur77 increased GCH1 mRNA stability by inhibiting the expression of microRNA-133a, while Nur77 upregulated SOD1 expression through directly binding to the human SOD1 promoter in vascular endothelial cells. CONCLUSION Our results suggest that Nur77 plays an essential role in attenuating endothelial dysfunction through activating NO production and anti-oxidant pathways in vascular endothelium. Targeted activation of Nur77 may provide a novel therapeutic approach for the treatment of cardiovascular diseases associated with endothelial dysfunction.
Collapse
Affiliation(s)
- Lin Lu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Soohwa Jang
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Jiaqi Zhu
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Qing Qin
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Lijun Sun
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Jianxin Sun
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
10
|
Sone K, Sakamaki Y, Hirose S, Inagaki M, Tachikawa M, Yoshino D, Funamoto K. Hypoxia suppresses glucose-induced increases in collective cell migration in vascular endothelial cell monolayers. Sci Rep 2024; 14:5164. [PMID: 38431674 PMCID: PMC10908842 DOI: 10.1038/s41598-024-55706-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/27/2024] [Indexed: 03/05/2024] Open
Abstract
Blood glucose levels fluctuate during daily life, and the oxygen concentration is low compared to the atmosphere. Vascular endothelial cells (ECs) maintain vascular homeostasis by sensing changes in glucose and oxygen concentrations, resulting in collective migration. However, the behaviors of ECs in response to high-glucose and hypoxic environments and the underlying mechanisms remain unclear. In this study, we investigated the collective migration of ECs simultaneously stimulated by changes in glucose and oxygen concentrations. Cell migration in EC monolayer formed inside the media channels of microfluidic devices was observed while varying the glucose and oxygen concentrations. The cell migration increased with increasing glucose concentration under normoxic condition but decreased under hypoxic condition, even in the presence of high glucose levels. In addition, inhibition of mitochondrial function reduced the cell migration regardless of glucose and oxygen concentrations. Thus, oxygen had a greater impact on cell migration than glucose, and aerobic energy production in mitochondria plays an important mechanistic role. These results provide new insights regarding vascular homeostasis relative to glucose and oxygen concentration changes.
Collapse
Affiliation(s)
- Kazuki Sone
- Graduate School of Biomedical Engineering, Tohoku University, 6-6-12 Aramaki-aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Yuka Sakamaki
- Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima, Tokushima, 770-8505, Japan
| | - Satomi Hirose
- Graduate School of Biomedical Engineering, Tohoku University, 6-6-12 Aramaki-aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Mai Inagaki
- Graduate School of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima, Tokushima, 770-8505, Japan
| | - Masanori Tachikawa
- Graduate School of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima, Tokushima, 770-8505, Japan
| | - Daisuke Yoshino
- Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kenichi Funamoto
- Graduate School of Biomedical Engineering, Tohoku University, 6-6-12 Aramaki-aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8579, Japan.
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan.
- Graduate School of Engineering, Tohoku University, 6-6-1 Aramaki-aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8597, Japan.
| |
Collapse
|
11
|
Sharma P, Aggarwal K, Awasthi R, Kulkarni GT, Sharma B. Behavioral and biochemical investigations to explore the efficacy of quercetin and folacin in experimental diabetes induced vascular endothelium dysfunction and associated dementia in rats. J Basic Clin Physiol Pharmacol 2023; 34:603-615. [PMID: 34161695 DOI: 10.1515/jbcpp-2020-0159] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 04/16/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Vascular dementia (VaD), being strongly associated with metabolic conditions is a major health concern around the world. Diabetes is a major risk factor for the development of VaD. This study investigates the efficacy of quercetin and folacin in diabetes induced vascular endothelium dysfunction and related dementia. METHODS Single dose streptozotocin (STZ) (50 mg/kg i.p) was administered to albino Wistar rats (male, 200-250 g) by dissolving in citrate buffer. Morris water maze (MWM) and attentional set shifting tests were used to assess the spatial learning, memory, reversal learning, and executive functioning in animals. Body weight, serum glucose, serum nitrite/nitrate, vascular endothelial function, aortic superoxide anion, brains' oxidative markers (thiobarbituric acid reactive species-TBARS, reduced glutathione-GSH, superoxide dismutase-SOD, and catalase-CAT), mitochondrial enzyme complex (I, II, and IV), inflammatory markers (interleukin-IL-6, IL-10, tumor necrosis factor-TNF-α, and myeloperoxidase-MPO), and acetylcholinesterase activity-AChE were also assessed. Quercetin (30 mg kg-1/60 mg kg-1) and folacin (30 mg kg-1/60 mg kg-1) were used as the treatment drugs. Donepezil (0.5 mg kg-1) was used as a positive control. RESULTS STZ administered rats showed reduction in learning, memory, reversal learning, executive functioning, impairment in endothelial function, increase in brains' oxidative stress; inflammation; AChE activity, and decrease in mitochondrial complex (I, II, and IV) activity. Administration of quercetin and folacin in two different doses, significantly attenuated the STZ induced diabetes induced impairments in the behavioral, endothelial, and biochemical parameters. CONCLUSIONS STZ administration caused diabetes and VaD which was attenuated by the administration of quercetin and folacin. Therefore, these agents may be studied further for the assessment of their full potential in diabetes induced VaD conditions.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Khushboo Aggarwal
- Department of Pharmacology, School of Pharmacy, Bharat Institute of Technology, Meerut, India
| | - Rajendra Awasthi
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Giriraj T Kulkarni
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
- CNS Pharmacology, Conscience Research, Delhi, India
| |
Collapse
|
12
|
Bahadoran Z, Mirmiran P, Kashfi K, Ghasemi A. Vascular nitric oxide resistance in type 2 diabetes. Cell Death Dis 2023; 14:410. [PMID: 37433795 PMCID: PMC10336063 DOI: 10.1038/s41419-023-05935-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/18/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023]
Abstract
Vascular nitric oxide (NO•) resistance, manifested by an impaired vasodilator function of NO• in both the macro- and microvessels, is a common state in type 2 diabetes (T2D) associated with developing cardiovascular events and death. Here, we summarize experimental and human evidence of vascular NO• resistance in T2D and discuss its underlying mechanisms. Human studies indicate a ~ 13-94% decrease in the endothelium (ET)-dependent vascular smooth muscle (VSM) relaxation and a 6-42% reduced response to NO• donors, i.e., sodium nitroprusside (SNP) and glyceryl trinitrate (GTN), in patients with T2D. A decreased vascular NO• production, NO• inactivation, and impaired responsiveness of VSM to NO• [occurred due to quenching NO• activity, desensitization of its receptor soluble guanylate cyclase (sGC), and/or impairment of its downstream pathway, cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG)] are the known mechanisms underlying the vascular NO• resistance in T2D. Hyperglycemia-induced overproduction of reactive oxygen species (ROS) and vascular insulin resistance are key players in this state. Therefore, upregulating vascular NO• availability, re-sensitizing or bypassing the non-responsive pathways to NO•, and targeting key vascular sources of ROS production may be clinically relevant pharmacological approaches to circumvent T2D-induced vascular NO• resistance.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Department of Clinical Nutrition, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Najjar RS. The Impacts of Animal-Based Diets in Cardiovascular Disease Development: A Cellular and Physiological Overview. J Cardiovasc Dev Dis 2023; 10:282. [PMID: 37504538 PMCID: PMC10380617 DOI: 10.3390/jcdd10070282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the United States, and diet plays an instrumental role in CVD development. Plant-based diets have been strongly tied to a reduction in CVD incidence. In contrast, animal food consumption may increase CVD risk. While increased serum low-density lipoprotein (LDL) cholesterol concentrations are an established risk factor which may partially explain the positive association with animal foods and CVD, numerous other biochemical factors are also at play. Thus, the aim of this review is to summarize the major cellular and molecular effects of animal food consumption in relation to CVD development. Animal-food-centered diets may (1) increase cardiovascular toll-like receptor (TLR) signaling, due to increased serum endotoxins and oxidized LDL cholesterol, (2) increase cardiovascular lipotoxicity, (3) increase renin-angiotensin system components and subsequent angiotensin II type-1 receptor (AT1R) signaling and (4) increase serum trimethylamine-N-oxide concentrations. These nutritionally mediated factors independently increase cardiovascular oxidative stress and inflammation and are all independently tied to CVD development. Public policy efforts should continue to advocate for the consumption of a mostly plant-based diet, with the minimization of animal-based foods.
Collapse
Affiliation(s)
- Rami Salim Najjar
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
14
|
Pandey S, Mangmool S, Madreiter-Sokolowski CT, Wichaiyo S, Luangmonkong T, Parichatikanond W. Exendin-4 protects against high glucose-induced mitochondrial dysfunction and oxidative stress in SH-SY5Y neuroblastoma cells through GLP-1 receptor/Epac/Akt signaling. Eur J Pharmacol 2023:175896. [PMID: 37391007 DOI: 10.1016/j.ejphar.2023.175896] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/02/2023]
Abstract
Mitochondrial dysfunction under diabetic condition leads to the development and progression of neurodegenerative complications. Recently, the beneficial effects of glucagon-like peptide-1 (GLP-1) receptor agonists on diabetic neuropathies have been widely recognized. However, molecular mechanisms underlying the neuroprotective effects of GLP-1 receptor agonists against high glucose (HG)-induced neuronal damages is not completely elucidated. Here, we investigated the underlying mechanisms of GLP-1 receptor agonist treatment against oxidative stress, mitochondrial dysfunction, and neuronal damages under HG-conditions mimicking a diabetic hyperglycemic state in SH-SY5Y neuroblastoma cells. We revealed that treatment with exendin-4, a GLP-1 receptor agonist, not only increased the expression of survival markers, phospho-Akt/Akt and Bcl-2, but also decreased the expression of pro-apoptotic marker, Bax, and reduced the levels of reactive oxygen species (ROS) defense markers (catalase, SOD-2, and HO-1) under HG conditions. The expressions of mitochondrial function associated genes, MCU and UCP3, and mitochondrial fission genes, DRP1 and FIS1, were decreased by exendin-4 compared to non-treated levels, while the protein expression levels of mitochondrial homeostasis regulators, Parkin and PINK1, were enhanced. In addition, blockade of Epac and Akt activities was able to antagonize these neuroprotective effects of exendin-4. Collectively, we demonstrated that stimulation of GLP-1 receptor propagates a neuroprotective cascade against the oxidative stresses and mitochondrial dysfunctions as well as augments survival through the Epac/Akt-dependent pathway. Therefore, the revealed mechanisms underlying GLP-1 receptor pathway by preserving mitochondrial homeostasis would be a therapeutic candidate to alleviate neuronal dysfunctions and delay the progression of diabetic neuropathies.
Collapse
Affiliation(s)
- Sudhir Pandey
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Supachoke Mangmool
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Corina T Madreiter-Sokolowski
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, 8010, Austria
| | - Surasak Wichaiyo
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Theerut Luangmonkong
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | | |
Collapse
|
15
|
Othman NS, Aminuddin A, Zainal Abidin S, Syafruddin SE, Ahmad MF, Mohd Mokhtar N, Kumar J, Hamid AA, Ugusman A. Profiling of Differentially Expressed MicroRNAs in Human Umbilical Vein Endothelial Cells Exposed to Hyperglycemia via RNA Sequencing. Life (Basel) 2023; 13:1296. [PMID: 37374078 DOI: 10.3390/life13061296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Hyperglycemia is the hallmark of diabetes mellitus that results in oxidative stress, apoptosis, and diabetic vascular endothelial dysfunction. An increasing number of microRNAs (miRNAs) have been found to be involved in the pathogenesis of diabetic vascular complications. However, there is a limited number of studies that characterize the miRNA profile of endothelial cells exposed to hyperglycemia. Therefore, this study aims to analyze the miRNA profile of human umbilical-vein endothelial cells (HUVECs) exposed to hyperglycemia. HUVECs were divided into two groups: the control (treated with 5.5 mM glucose) and hyperglycemia (treated with 33.3 mM glucose) groups. RNA sequencing identified 17 differentially expressed miRNAs between the groups (p < 0.05). Of these, 4 miRNAs were upregulated, and 13 miRNAs were downregulated. Two of the most differentially expressed miRNAs (novel miR-1133 and miR-1225) were successfully validated with stem-loop qPCR. Collectively, the findings show that there is a differential expression pattern of miRNAs in HUVEC following exposure to hyperglycemia. These 17 differentially expressed miRNAs are involved in regulating cellular functions and pathways related to oxidative stress and apoptosis that may contribute to diabetic vascular endothelial dysfunction. The findings provide new clues on the role of miRNAs in the development of diabetic vascular endothelial dysfunction, which could be useful in future targeted therapy.
Collapse
Affiliation(s)
- Nur Syakirah Othman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Amilia Aminuddin
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Shahidee Zainal Abidin
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia
| | - Saiful Effendi Syafruddin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mohd Faizal Ahmad
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Norfilza Mohd Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Adila A Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
16
|
Yu H, Song YY, Li XH. Early diabetic kidney disease: Focus on the glycocalyx. World J Diabetes 2023; 14:460-480. [PMID: 37273258 PMCID: PMC10236994 DOI: 10.4239/wjd.v14.i5.460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/10/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023] Open
Abstract
The incidence of diabetic kidney disease (DKD) is sharply increasing worldwide. Microalbuminuria is the primary clinical marker used to identify DKD, and its initiating step in diabetes is glomerular endothelial cell dysfunction, particularly glycocalyx impairment. The glycocalyx found on the surface of glomerular endothelial cells, is a dynamic hydrated layer structure composed of pro-teoglycans, glycoproteins, and some adsorbed soluble components. It reinforces the negative charge barrier, transduces the shear stress, and mediates the interaction of blood corpuscles and podocytes with endothelial cells. In the high-glucose environment of diabetes, excessive reactive oxygen species and proinflammatory cytokines can damage the endothelial glycocalyx (EG) both directly and indirectly, which induces the production of microalbuminuria. Further research is required to elucidate the role of the podocyte glycocalyx, which may, together with endothelial cells, form a line of defense against albumin filtration. Interestingly, recent research has confirmed that the negative charge barrier function of the glycocalyx found in the glomerular basement membrane and its repulsion effect on albumin is limited. Therefore, to improve the early diagnosis and treatment of DKD, the potential mechanisms of EG degradation must be analyzed and more responsive and controllable targets must be explored. The content of this review will provide insights for future research.
Collapse
Affiliation(s)
- Hui Yu
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Yi-Yun Song
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Xian-Hua Li
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
17
|
Sunartvanichkul T, Arayapisit T, Sangkhamanee SS, Chaweewannakorn C, Iwasaki K, Klaihmon P, Sritanaudomchai H. Stem cell-derived exosomes from human exfoliated deciduous teeth promote angiogenesis in hyperglycemic-induced human umbilical vein endothelial cells. J Appl Oral Sci 2023; 31:e20220427. [PMID: 37042872 PMCID: PMC10118382 DOI: 10.1590/1678-7757-2022-0427] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/12/2023] [Accepted: 02/07/2023] [Indexed: 04/13/2023] Open
Abstract
OBJECTIVE To investigate the angiogenesis in human umbilical vein endothelial cells (HUVEC) under high glucose concentration, treated with exosomes derived from stem cells from human exfoliated deciduous teeth (SHED). METHODOLOGY SHED-derived exosomes were isolated by differential centrifugation and were characterized by nanoparticle tracking analysis, transmission electron microscopy, and flow cytometric assays. We conducted in vitro experiments to examine the angiogenesis in HUVEC under high glucose concentration. Cell Counting Kit-8, migration assay, tube formation assay, quantitative real-time PCR, and immunostaining were performed to study the role of SHED-derived exosomes in cell proliferation, migration, and angiogenic activities. RESULTS The characterization confirmed SHED-derived exosomes: size ranged from 60-150 nm with a mode of 134 nm, cup-shaped morphology, and stained positively for CD9, CD63, and CD81. SHED-exosome significantly enhanced the proliferation and migration of high glucose-treated HUVEC. A significant reduction was observed in tube formation and a weak CD31 staining compared to the untreated-hyperglycemic-induced group. Interestingly, exosome treatment improved tube formation qualitatively and demonstrated a significant increase in tube formation in the covered area, total branching points, total tube length, and total loop parameters. Moreover, SHED-exosome upregulates angiogenesis-related factors, including the GATA2 gene and CD31 protein. CONCLUSIONS Our data suggest that the use of SHED-derived exosomes potentially increases angiogenesis in HUVEC under hyperglycemic conditions, which includes increased cell proliferation, migration, tubular structures formation, GATA2 gene, and CD31 protein expression. SHED-exosome usage may provide a new treatment strategy for periodontal patients with diabetes mellitus.
Collapse
Affiliation(s)
| | - Tawepong Arayapisit
- Mahidol University, Faculty of Dentistry, Department of Anatomy, Bangkok, Thailand
| | | | | | - Kengo Iwasaki
- Osaka Dental University, Advanced Medical Research Center, Translational Research Institute for Medical Innovation, Osaka, Japan
| | - Phatchanat Klaihmon
- Mahidol University, Faculty of Medicine Siriraj Hospital, Siriraj Center of Excellence for Stem Cell Research, Bangkok, Thailand
| | | |
Collapse
|
18
|
Zajda A, Sikora J, Hynninen M, Tampio J, Huttunen KM, Markowicz-Piasecka M. Substituent effects of sulfonamide derivatives of metformin that can dually improve cellular glucose utilization and anti-coagulation. Chem Biol Interact 2023; 373:110381. [PMID: 36746201 DOI: 10.1016/j.cbi.2023.110381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/03/2023] [Indexed: 02/07/2023]
Abstract
Metformin, the most frequently prescribed medicine for the management of type 2 diabetes, has been shown to reduce cardiovascular events in diabetic patients in pre-clinical and clinical studies. The present work reports the design, synthesis, and biological assessment of the impact of six benzenesulfonamide biguanides on various aspects of hemostasis, cell function, red blood cell integrity (RBC), and their ability to uptake glucose in human umbilical endothelial cells (HUVECs). It was found that all synthesized o- and m-benzenesulfonamides, particularly derivatives with nitro (3) and amino groups (4), are characterized by a good safety profile in HUVECs, which was further confirmed in the cellular integrity studies. The biguanide analogues with methoxy group (1, 2) and an amino substituent (5, 6) significantly increased glucose utilization in HUVECs, similarly to the parent drug. Intriguingly, compounds 1, 3, and 6 favourably influenced some of the coagulation parameters. Furthermore, derivative 3 also slowed the process of fibrin polymerization, indicating more beneficial anti-coagulant properties than metformin. None of the novel metformin analogues interact strongly with the erythrocyte lipid-protein bilayer. Our findings indicate that derivative 3 has highly desirable anti-coagulant properties, and compounds 1 and 6 have potential dual-action activity, including anti-hyperglycaemic properties and anti-coagulant activity. As such, these derivatives can be used as lead molecules for further development of anti-diabetic agents with a beneficial effect on hypercoagulability.
Collapse
Affiliation(s)
- Agnieszka Zajda
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego1, 90-151, Lodz, Poland.
| | - Joanna Sikora
- Department of Bioinorganic Chemistry, Medical University of Lodz, ul. Muszyńskiego1, 90-151, Lodz, Poland.
| | - Mira Hynninen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Janne Tampio
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Kristiina M Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Magdalena Markowicz-Piasecka
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego1, 90-151, Lodz, Poland.
| |
Collapse
|
19
|
Feenstra L, Kutikhin AG, Shishkova DK, Buikema H, Zeper LW, Bourgonje AR, Krenning G, Hillebrands JL. Calciprotein Particles Induce Endothelial Dysfunction by Impairing Endothelial Nitric Oxide Metabolism. Arterioscler Thromb Vasc Biol 2023; 43:443-455. [PMID: 36727521 PMCID: PMC9944758 DOI: 10.1161/atvbaha.122.318420] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Calciprotein particles (CPPs) are associated with the development of vascular calcifications in chronic kidney disease. The role of endothelial cells (ECs) in this process is unknown. Here, we investigated the interaction of CPPs and ECs, thereby focusing on endothelial nitric oxide metabolism and oxidative stress. METHODS CPPs were generated in calcium- and phosphate-enriched medium. Human umbilical vein endothelial cells were exposed to different concentrations of CPPs (0-100 µg/mL) for 24 or 72 hours. Ex vivo porcine coronary artery rings were used to measure endothelial cell-dependent vascular smooth muscle cell relaxation after CPP exposure. Serum samples from an early chronic kidney disease cohort (n=245) were analyzed for calcification propensity (measure for CPP formation) and nitrate and nitrite levels (NOx). RESULTS CPP exposure for 24 hours reduced eNOS (endothelial nitric oxide synthase) mRNA expression and decreased nitrite production, indicating reduced nitric oxide bioavailability. Also, 24-hour CPP exposure caused increased mitochondria-derived superoxide generation, together with nitrotyrosine protein residue formation. Long-term (72 hours) exposure of human umbilical vein endothelial cells to CPPs induced eNOS uncoupling and decreased eNOS protein expression, indicating further impairment of the nitric oxide pathway. The ex vivo porcine coronary artery model showed a significant reduction in endothelial-dependent vascular smooth muscle cell relaxation after CPP exposure. A negative association was observed between NOx levels and calcification propensity (r=-0.136; P=0.049) in sera of (early) chronic kidney disease patients. CONCLUSIONS CPPs cause endothelial cell dysfunction by impairing nitric oxide metabolism and generating oxidative stress. Our findings provide new evidence for direct effects of CPPs on ECs and pathways involved.
Collapse
Affiliation(s)
- Lian Feenstra
- Department of Pathology and Medical Biology (L.F., G.K., J.-L.H.), University of Groningen, University Medical Center Groningen, The Netherlands
| | - Anton G. Kutikhin
- Laboratory for Molecular, Translational and Digital Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation (A.G.K., D.K.S.)
| | - Daria K. Shishkova
- Laboratory for Molecular, Translational and Digital Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation (A.G.K., D.K.S.)
| | - Hendrik Buikema
- Department of Clinical Pharmacy and Pharmacology (H.B., G.K.), University of Groningen, University Medical Center Groningen, The Netherlands
| | - Lara W. Zeper
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (L.W.Z.)
| | - Arno R. Bourgonje
- Department of Gastroenterology and Hepatology (A.R.B.), University of Groningen, University Medical Center Groningen, The Netherlands
| | - Guido Krenning
- Department of Pathology and Medical Biology (L.F., G.K., J.-L.H.), University of Groningen, University Medical Center Groningen, The Netherlands.,Department of Clinical Pharmacy and Pharmacology (H.B., G.K.), University of Groningen, University Medical Center Groningen, The Netherlands
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology (L.F., G.K., J.-L.H.), University of Groningen, University Medical Center Groningen, The Netherlands
| |
Collapse
|
20
|
Kennon AM, Stewart JA. Paracrine Signals in Calcified Conditioned Media Elicited Differential Responses in Primary Aortic Vascular Smooth Muscle Cells and in Adventitial Fibroblasts. Int J Mol Sci 2023; 24:ijms24043599. [PMID: 36835011 PMCID: PMC9961433 DOI: 10.3390/ijms24043599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Our goal was to determine if paracrine signals from different aortic layers can impact other cell types in the diabetic microenvironment, specifically medial vascular smooth muscle cells (VSMCs) and adventitial fibroblasts (AFBs). The diabetic hyperglycemic aorta undergoes mineral dysregulation, causing cells to be more responsive to chemical messengers eliciting vascular calcification. Advanced glycation end-products (AGEs)/AGE receptors (RAGEs) signaling has been implicated in diabetes-mediated vascular calcification. To elucidate responses shared between cell types, pre-conditioned calcified media from diabetic and non-diabetic VSMCs and AFBs were collected to treat cultured murine diabetic, non-diabetic, diabetic RAGE knockout (RKO), and non-diabetic RKO VSMCs and AFBs. Calcium assays, western blots, and semi-quantitative cytokine/chemokine profile kits were used to determine signaling responses. VSMCs responded to non-diabetic more than diabetic AFB calcified pre-conditioned media. AFB calcification was not significantly altered when VSMC pre-conditioned media was used. No significant changes in VSMCs signaling markers due to treatments were reported; however, genotypic differences existed. Losses in AFB α-smooth muscle actin were observed with diabetic pre-conditioned VSMC media treatment. Superoxide dismutase-2 (SOD-2) increased with non-diabetic calcified + AGE pre-conditioned VSMC media, while same treatment decreased diabetic AFBs levels. Overall, non-diabetic and diabetic pre-conditioned media elicited different responses from VSMCs and AFBs.
Collapse
Affiliation(s)
- Amber M. Kennon
- Department of Investigational Cancer, Division of Cancer Medicine, U.T.M.D Anderson Cancer Center, Houston, TX 77030, USA
| | - James A. Stewart
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
- Correspondence: ; Tel.: +1-(662)-915-2309
| |
Collapse
|
21
|
Yan J, Deng J, Cheng F, Zhang T, Deng Y, Cai Y, Cong W. Thioredoxin-Interacting Protein Inhibited Vascular Endothelial Cell-Induced HREC Angiogenesis Treatment of Diabetic Retinopathy. Appl Biochem Biotechnol 2023; 195:1268-1283. [PMID: 36346561 DOI: 10.1007/s12010-022-04191-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2022] [Indexed: 11/10/2022]
Abstract
Diabetic retinopathy is the most common reason for blindness among employed adults worldwide. Hyperglycemia and the overaccumulation of vascular endothelial growth factor (VEGF) lead to diabetic retinopathy, pathological angiogenesis in diabetic retinopathy, and consequent visual impairment. Expression levels of thioredoxin-interacting protein (TXNIP) substantially increase in retinal endothelial cells in diabetic circumstances. The part of TXNIP in retinal angiogenesis combined with diabetes remains unclear. This study examined the effect of reduced TXNIP expression levels and determined how it affects diabetic retinal angiogenesis. Display of human retinal vascular endothelial cells (HRECs) to moderately high glucose (MHG) encouraged tube formation and cell migration, not cell proliferation. In response to MHG conditions, in HRECs, TXNIP knockdown inhibited the production of reactive oxygen species (ROS), cell migration, tube formation, and the Akt/mTOR activation pathway. In addition, gene silencing of TXNIP decreased the VEGF-triggered angiogenic response in HRECs by preventing activation of both VEGF receptor 2 and the downstream components of the Akt/mTOR pathway signaling. Furthermore, TXNIP knockout mice reduced VEGF-induced or VEGF- and MHG-triggered ex vivo retinal angiogenesis compared to wild-type mice. Finally, our findings revealed that TXNIP knockdown suppressed VEGF- and MHG-triggered angiogenic responses in HRECs and mouse retinas, indicating that TXNIP is a promising therapeutic window against the proliferation of diabetic patients' retinopathy.
Collapse
Affiliation(s)
- Jian Yan
- Ophthalmology Department, Guangdong Province, Longgang District Central Hospital of Shenzhen, Shenzhen, 518117, China
| | - Jiantao Deng
- Ophthalmology Department, Guangdong Province, Longgang District Central Hospital of Shenzhen, Shenzhen, 518117, China
| | - Fang Cheng
- Ophthalmology Department, Guangdong Province, Longgang District Central Hospital of Shenzhen, Shenzhen, 518117, China
| | - Tao Zhang
- Ophthalmology Department, Guangdong Province, Longgang District Central Hospital of Shenzhen, Shenzhen, 518117, China
| | - Yixuan Deng
- Ophthalmology Department, Guangdong Province, Longgang District Central Hospital of Shenzhen, Shenzhen, 518117, China
| | - Yulian Cai
- Ophthalmology Department, Guangdong Province, Longgang District Central Hospital of Shenzhen, Shenzhen, 518117, China
| | - Wendong Cong
- Department of Neurology, Guangdong Province, Longgang District Central Hospital, Longgang Road, Shenzhen, 6082518117, No, China.
| |
Collapse
|
22
|
Oost LJ, Tack CJ, de Baaij JHF. Hypomagnesemia and Cardiovascular Risk in Type 2 Diabetes. Endocr Rev 2022; 44:357-378. [PMID: 36346820 PMCID: PMC10166267 DOI: 10.1210/endrev/bnac028] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/22/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Hypomagnesemia is tenfold more common in individuals with type 2 diabetes (T2D), compared to the healthy population. Factors that are involved in this high prevalence are low Mg2+ intake, gut microbiome composition, medication use and presumably genetics. Hypomagnesemia is associated with insulin resistance, which subsequently increases the risk to develop T2D or deteriorates glycaemic control in existing diabetes. Mg2+ supplementation decreases T2D associated features like dyslipidaemia and inflammation; which are important risk factors for cardiovascular disease (CVD). Epidemiological studies have shown an inverse association between serum Mg2+ and the risk to develop heart failure (HF), atrial fibrillation (AF) and microvascular disease in T2D. The potential protective effect of Mg2+ on HF and AF may be explained by reduced oxidative stress, fibrosis and electrical remodeling in the heart. In microvascular disease, Mg2+ reduces the detrimental effects of hyperglycemia and improves endothelial dysfunction. Though, clinical studies assessing the effect of long-term Mg2+ supplementation on CVD incidents are lacking and gaps remain on how Mg2+ may reduce CVD risk in T2D. Despite the high prevalence of hypomagnesemia in people with T2D, routine screening of Mg2+ deficiency to provide Mg2+ supplementation when needed is not implemented in clinical care as sufficient clinical evidence is lacking. In conclusion, hypomagnesemia is common in people with T2D and is both involved as cause, probably through molecular mechanisms leading to insulin resistance, and consequence and is prospectively associated with development of HF, AF and microvascular complications. Whether long-term supplementation of Mg2+ is beneficial, however, remains to be determined.
Collapse
Affiliation(s)
- Lynette J Oost
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cees J Tack
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jeroen H F de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
23
|
Yang ML, Kibbey RG, Mamula MJ. Biomarkers of autoimmunity and beta cell metabolism in type 1 diabetes. Front Immunol 2022; 13:1028130. [PMID: 36389721 PMCID: PMC9647083 DOI: 10.3389/fimmu.2022.1028130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/13/2022] [Indexed: 09/10/2023] Open
Abstract
Posttranslational protein modifications (PTMs) are an inherent response to physiological changes causing altered protein structure and potentially modulating important biological functions of the modified protein. Besides cellular metabolic pathways that may be dictated by PTMs, the subtle change of proteins also may provoke immune attack in numerous autoimmune diseases. Type 1 diabetes (T1D) is a chronic autoimmune disease destroying insulin-producing beta cells within the pancreatic islets, a result of tissue inflammation to specific autoantigens. This review summarizes how PTMs arise and the potential pathological consequence of PTMs, with particular focus on specific autoimmunity to pancreatic beta cells and cellular metabolic dysfunction in T1D. Moreover, we review PTM-associated biomarkers in the prediction, diagnosis and in monitoring disease activity in T1D. Finally, we will discuss potential preventive and therapeutic approaches of targeting PTMs in repairing or restoring normal metabolic pathways in pancreatic islets.
Collapse
Affiliation(s)
- Mei-Ling Yang
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Richard G. Kibbey
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Mark J. Mamula
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
24
|
Aihara S, Nakano T, Torisu K, Kitazono T. Glucose degradation products in peritoneal dialysis solution impair angiogenesis by dysregulating angiogenetic factors in endothelial and vascular smooth muscle cells. Clin Exp Nephrol 2022; 26:1160-1169. [PMID: 36070106 DOI: 10.1007/s10157-022-02272-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/25/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND The accumulation of glucose degradation products (GDPs) during peritoneal dialysis (PD) can lead to immature angiogenesis in the peritoneum. However, the effect of GDPs on angiogenesis, at concentrations observed in dialysate effluent, has not been widely investigated. We do not know how the inflammation observed in PD-related peritonitis affects angiogenesis of the peritoneum. METHODS Human umbilical vessel endothelial cells (HUVEC) and human umbilical aortic smooth muscle cells (HUASMC) were used to examine the response to the three main GDPs found in peritoneal dialysate (methylglyoxal (MGO), 3-deoxyglucosone (3-DG), and 5-hydroxymethylfurfural (5-HMF). Supernatant from lipopolysaccharide (LPS)-activated murine macrophage cell lines (RAW 264.7 cells) were used to stimulate angiogenesis in the peritoneum. Changes in the expression of vascular endothelial growth factor-A (VEGF-A) and platelet-derived growth factor B (PDGFB) in HUVEC, and PDGF-receptor beta (PDGF-Rβ) in HUASMC, were examined by real-time PCR, Western blot, and ELISA. RESULTS In HUVECs, the expression of PDGFB mRNA and protein were decreased by exposure to MGO, 3-DG, and 5-HMF at concentrations observed in dialysate effluent. A subsequent decrease in secreted PDGF-BB was observed. In HUASMCs, MGO and 5-HMF increased the expression of VEGF-A mRNA and protein, while 5-HMF decreased the expression of PDGF-Rβ. VEGF-A is upregulated, and PDGF-Rβ is downregulated, by conditioned medium of LPS-stimulated macrophages in HUASMCs. CONCLUSIONS The GDPs of PD effluent cause an imbalance of angiogenic factors in endothelial cells and vascular smooth muscle cells that may lead to immature angiogenesis in the peritoneum.
Collapse
Affiliation(s)
- Seishi Aihara
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Toshiaki Nakano
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Kumiko Torisu
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
25
|
Yang ML, Connolly SE, Gee RJ, Lam TT, Kanyo J, Peng J, Guyer P, Syed F, Tse HM, Clarke SG, Clarke CF, James EA, Speake C, Evans-Molina C, Arvan P, Herold KC, Wen L, Mamula MJ. Carbonyl Posttranslational Modification Associated With Early-Onset Type 1 Diabetes Autoimmunity. Diabetes 2022; 71:1979-1993. [PMID: 35730902 PMCID: PMC9450849 DOI: 10.2337/db21-0989] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/15/2022] [Indexed: 11/13/2022]
Abstract
Inflammation and oxidative stress in pancreatic islets amplify the appearance of various posttranslational modifications to self-proteins. In this study, we identified a select group of carbonylated islet proteins arising before the onset of hyperglycemia in NOD mice. Of interest, we identified carbonyl modification of the prolyl-4-hydroxylase β subunit (P4Hb) that is responsible for proinsulin folding and trafficking as an autoantigen in both human and murine type 1 diabetes. We found that carbonylated P4Hb is amplified in stressed islets coincident with decreased glucose-stimulated insulin secretion and altered proinsulin-to-insulin ratios. Autoantibodies against P4Hb were detected in prediabetic NOD mice and in early human type 1 diabetes prior to the onset of anti-insulin autoimmunity. Moreover, we identify autoreactive CD4+ T-cell responses toward carbonyl-P4Hb epitopes in the circulation of patients with type 1 diabetes. Our studies provide mechanistic insight into the pathways of proinsulin metabolism and in creating autoantigenic forms of insulin in type 1 diabetes.
Collapse
Affiliation(s)
- Mei-Ling Yang
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT
| | - Sean E. Connolly
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT
| | - Renelle J. Gee
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT
| | - TuKiet T. Lam
- Mass Spectrometry & Proteomics Resource, W.M. Keck Foundation Biotechnology Resource Laboratory, New Haven
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
| | - Jean Kanyo
- Mass Spectrometry & Proteomics Resource, W.M. Keck Foundation Biotechnology Resource Laboratory, New Haven
| | - Jian Peng
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT
| | - Perrin Guyer
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA
| | - Farooq Syed
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
| | - Hubert M. Tse
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL
| | - Steven G. Clarke
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA
| | - Catherine F. Clarke
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA
| | - Eddie A. James
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
| | - Peter Arvan
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Kevan C. Herold
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT
- Department of Immunobiology, Yale University, New Haven, CT
| | - Li Wen
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT
| | - Mark J. Mamula
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT
| |
Collapse
|
26
|
Hu W, Yu H, Zhou X, Li M, Xiao L, Ruan Q, Huang X, Li L, Xie W, Guo X, Yao P. Topical administration of pterostilbene accelerates burn wound healing in diabetes through activation of the HIF1α signaling pathway. Burns 2022; 48:1452-1461. [PMID: 34903412 DOI: 10.1016/j.burns.2021.10.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/23/2021] [Accepted: 10/29/2021] [Indexed: 12/16/2022]
Abstract
Impaired wound healing is one of a variety of severe diabetic complications and involves many factors, including consistent oxidative stress, prolonged inflammation, impaired angiogenesis, and delayed re-epithelialization. Despite the severe negative impacts that impaired wound healing has on patients' lives, detailed mechanisms and effective therapies are still not fully developed. In this study, we aim to investigate the potential effects and mechanisms of topical administration of pterostilbene and resveratrol on burn wound healing in diabetes. Our in vitro experiments in human umbilical vein endothelial cells showed that long term exposure of hyperglycemia induces oxidative stress and suppression of hypoxia inducible factor1α (HIF1α) signaling pathway, and pterostilbene treatment completely, while resveratrol treatment partly, reversed this effect. Further in vivo experiments in diabetic rats showed that topical administration of pterostilbene exhibited stronger efficacy than resveratrol in normalizing oxidative stress, HIF1α activity, and accelerating burn wound healing in diabetes. We conclude that topical administration of pterostilbene accelerates burn wound healing in diabetes through activation of the HIF1α signaling pathway; thus, pterostilbene may be a potential candidate for clinical treatment of burn wound healing in diabetes.
Collapse
Affiliation(s)
- Weigang Hu
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, PR China
| | - Hong Yu
- Department of Pediatrics, Foshan Maternity and Child Health Care Hospital, Foshan 528041, PR China
| | - Xueqing Zhou
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, PR China
| | - Min Li
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, PR China
| | - Li Xiao
- Department of Pediatrics, Foshan Maternity and Child Health Care Hospital, Foshan 528041, PR China
| | - Qiongfang Ruan
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, PR China
| | - Xiaodong Huang
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, PR China
| | - Ling Li
- Hainan Women and Children's Medical Center, Haikou 570206, PR China
| | - Weiguo Xie
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, PR China.
| | - Xiaoling Guo
- Department of Pediatrics, Foshan Maternity and Child Health Care Hospital, Foshan 528041, PR China.
| | - Paul Yao
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, PR China; Department of Pediatrics, Foshan Maternity and Child Health Care Hospital, Foshan 528041, PR China.
| |
Collapse
|
27
|
Multi-omics study identifies novel signatures of DNA/RNA, amino acid, peptide, and lipid metabolism by simulated diabetes on coronary endothelial cells. Sci Rep 2022; 12:12027. [PMID: 35835939 PMCID: PMC9283518 DOI: 10.1038/s41598-022-16300-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/07/2022] [Indexed: 12/14/2022] Open
Abstract
Coronary artery endothelial cells (CAEC) exert an important role in the development of cardiovascular disease. Dysfunction of CAEC is associated with cardiovascular disease in subjects with type 2 diabetes mellitus (T2DM). However, comprehensive studies of the effects that a diabetic environment exerts on this cellular type are scarce. The present study characterized the molecular perturbations occurring on cultured bovine CAEC subjected to a prolonged diabetic environment (high glucose and high insulin). Changes at the metabolite and peptide level were assessed by Liquid Chromatography–Mass Spectrometry (LC–MS2) and chemoinformatics. The results were integrated with published LC–MS2-based quantitative proteomics on the same in vitro model. Our findings were consistent with reports on other endothelial cell types and identified novel signatures of DNA/RNA, amino acid, peptide, and lipid metabolism in cells under a diabetic environment. Manual data inspection revealed disturbances on tryptophan catabolism and biosynthesis of phenylalanine-based, glutathione-based, and proline-based peptide metabolites. Fluorescence microscopy detected an increase in binucleation in cells under treatment that also occurred when human CAEC were used. This multi-omics study identified particular molecular perturbations in an induced diabetic environment that could help unravel the mechanisms underlying the development of cardiovascular disease in subjects with T2DM.
Collapse
|
28
|
Grismaldo A, Sobrevia L, Morales L. Role of platelet-derived growth factor c on endothelial dysfunction in cardiovascular diseases. Biochim Biophys Acta Gen Subj 2022; 1866:130188. [PMID: 35691459 DOI: 10.1016/j.bbagen.2022.130188] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 01/01/2023]
Abstract
Loss of endothelial function is a common feature to all cardiovascular diseases (CVDs). One of the risk factors associated with the development of CVDs is the hyperglycaemia that occurs in patients with metabolic disorders such as Type 1 and Type 2 diabetes mellitus. Hyperglycaemia causes endothelial dysfunction through increased production of reactive oxygen species (ROS) from different cellular sources leading to oxidative stress. Vascular endothelial growth factor (VEGF) is essential in the stimulation and maintenance of endothelial functional aspects and, although it can mitigate the impact of ROS, VEGF-mediated signalling is partially inhibited in diabetes mellitus. The search for therapeutic strategies that preserve, protect and improve the functions of the endothelium is of great relevance in the investigation of CVDs associated with hyperglycaemia. Platelet-derived growth factor C (PDGF-C) is a peptide with angiogenic properties, independent of VEGF, that stimulates angiogenesis and revascularization of ischemic tissue. In a diabetic mouse model, PDGF-C stimulates mature endothelial cell migration, angiogenesis, endothelial progenitor cell mobilization, and increased neovascularization, and protects blood vessels in a retinal degeneration model activating anti-apoptosis and proliferation signalling pathways in endothelial cells. This review summarizes the information on the damage that high d-glucose causes on endothelial function and the beneficial effects that PDGF-CC could exert in this condition.
Collapse
Affiliation(s)
- Adriana Grismaldo
- Experimental and Computational Biochemistry Group, Faculty of Sciences, Nutrition and Biochemistry Department, Pontificia Universidad Javeriana, Bogotá, DC, Colombia; Cellular and Molecular Physiology Laboratory, Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory, Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; Medical School (Faculty of Medicine), Sao Paulo State University (UNESP), Brazil; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029, Australia; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713GZ Groningen, the Netherlands; Tecnologico de Monterrey, Eutra, The Institute for Obesity Research (IOR), School of Medicine and Health Sciences, Monterrey, Nuevo León. Mexico..
| | - Ludis Morales
- Experimental and Computational Biochemistry Group, Faculty of Sciences, Nutrition and Biochemistry Department, Pontificia Universidad Javeriana, Bogotá, DC, Colombia.
| |
Collapse
|
29
|
Curcumin, Polydatin and Quercetin Synergistic Activity Protects from High-Glucose-Induced Inflammation and Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11061037. [PMID: 35739934 PMCID: PMC9220232 DOI: 10.3390/antiox11061037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022] Open
Abstract
Chronic hyperglycemia, the diagnostic biomarker of Type 2 Diabetes Mellitus (T2DM), is a condition that fosters oxidative stress and proinflammatory signals, both involved in the promotion of cellular senescence. Senescent cells acquire a proinflammatory secretory phenotype, called SASP, exacerbating and perpetuating the detrimental effects of hyperglycemia. Bioactive compounds can exert antioxidant and anti-inflammatory properties. However, the synergistic anti-inflammatory and antioxidant effects of the most extensively investigated natural compounds have not been confirmed yet in senescent cells and in hyperglycemic conditions. Here, we exposed young and replicative senescent HUVEC (yHUVEC and sHUVEC) to a high-glucose (HG) condition (45 mM) and treated them with Polydatin (POL), Curcumin (CUR) and Quercetin (QRC), alone or in combination (MIX), to mirror the anti-inflammatory component OxiDefTM contained in the novel nutraceutical GlicefenTM (Mivell, Italy). In both yHUVEC and sHUVEC, the MIX significantly decreased the expression levels of inflammatory markers, such as MCP-1, IL-1β and IL-8, and ROS production. Importantly, in sHUVEC, a synergistic effect of the MIX was observed, suggesting its senomorphic activity. Moreover, the MIX was able to reduce the expression level of RAGE, a receptor involved in the activation of proinflammatory signaling. Overall, our data suggest that the consumption of nutraceuticals containing different natural compounds could be an adjuvant supplement to counteract proinflammatory and pro-oxidative signals induced by both hyperglycemic and senescence conditions.
Collapse
|
30
|
Grismaldo Rodríguez A, Zamudio Rodríguez JA, Mendieta CV, Quijano Gómez S, Sanabria Barrera S, Morales Álvarez L. Effect of Platelet-Derived Growth Factor C on Mitochondrial Oxidative Stress Induced by High d-Glucose in Human Aortic Endothelial Cells. Pharmaceuticals (Basel) 2022; 15:ph15050639. [PMID: 35631465 PMCID: PMC9143891 DOI: 10.3390/ph15050639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/10/2022] Open
Abstract
Endothelial dysfunction is an early marker for cardiovascular diseases. Hyperglycemia induces endothelial dysfunction, increasing the production of reactive oxygen species. Platelet-derived growth factor C stimulates angiogenesis and revascularization in ischemic tissues of diabetic mice and promotes the migration of progenitors and mature ECs to injury sites; however, the molecular mechanisms of its actions are not described yet. Here, we evaluated the effect of PDGF-C on oxidative stress induced by HG. Human aortic endothelial cells were grown in glucose concentrations ranging from 5 mmol/L to 35 mmol/L for 1 to 24 h. Treatment with 50 ng/mL PDGF-C was done for 1 to 3 h. Cytosolic and mitochondrial ROS were measured by fluorometry, and the expression of antioxidant enzymes was evaluated by Western blot. Nrf2 and Keap1 expression was assessed by real-time PCR. High glucose induced mitochondrial ROS production. PDGF-C diminished the oxidative stress induced by high glucose, increasing SOD2 expression and SOD activity, and modulating the Keap1 expression gene. These results give new evidence about the mitochondrial antioxidant effect that PDGF-C could exert on endothelial cells exposed to high glucose and its considerable role as a therapeutic target in diabetes.
Collapse
Affiliation(s)
- Adriana Grismaldo Rodríguez
- Experimental and Computational Biochemistry Group, Faculty of Sciences, Nutrition and Biochemistry Department, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (J.A.Z.R.); (C.V.M.)
- Correspondence: (A.G.R.); (L.M.Á.); Tel.: +57-3114566976 (A.G.R.); +57-3132107272 (L.M.Á.)
| | - Jairo A. Zamudio Rodríguez
- Experimental and Computational Biochemistry Group, Faculty of Sciences, Nutrition and Biochemistry Department, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (J.A.Z.R.); (C.V.M.)
| | - Cindy V. Mendieta
- Experimental and Computational Biochemistry Group, Faculty of Sciences, Nutrition and Biochemistry Department, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (J.A.Z.R.); (C.V.M.)
- Department of Clinical Epidemiology and Biostatistics, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Sandra Quijano Gómez
- Immunology and Cell Biology Group, Faculty of Sciences, Microbiology Department, Pontificia Universidad Javeriana, Bogotá 110231, Colombia;
| | - Sandra Sanabria Barrera
- Traslational Biomedical Research Group, Fundación Cardiovascular de Colombia, Floridablanca 680004, Colombia;
| | - Ludis Morales Álvarez
- Experimental and Computational Biochemistry Group, Faculty of Sciences, Nutrition and Biochemistry Department, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (J.A.Z.R.); (C.V.M.)
- Correspondence: (A.G.R.); (L.M.Á.); Tel.: +57-3114566976 (A.G.R.); +57-3132107272 (L.M.Á.)
| |
Collapse
|
31
|
Neurobehavioral and neurobiochemical effect of atomoxetine and N-acetylcysteine in streptozotocin diabetes induced endothelial dysfunction and related dementia. Physiol Behav 2022; 249:113767. [PMID: 35245527 DOI: 10.1016/j.physbeh.2022.113767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 01/22/2022] [Accepted: 02/28/2022] [Indexed: 11/20/2022]
Abstract
Metabolic conditions like diabetes, is a major risk factor for the development of dementia of vascular origin. This study investigates the efficacy of atomoxetine (ATX) and N-acetylcysteine (NAC) in streptozotocin (STZ) diabetes induced vascular endothelium dysfunction and related dementia. Single dose STZ (50 mg/kg i.p) was administered to Albino Wistar rats (male, 200-250 g) by dissolving in citrate buffer. Morris water maze (MWM) and attentional set shifting tests (ASST) were used to assess the spatial learning, memory, reversal learning, and executive functioning in animals. Body weight, serum glucose, serum nitrite/nitrate, vascular endothelial function, aortic superoxide anion, brains' oxidative markers (thiobarbituric acid reactive species-TBARS, reduced glutathione-GSH, superoxide dismutase-SOD, and catalase-CAT), inflammatory markers (IL-6, IL-10, TNF-α, and myeloperoxidase-MPO), acetylcholinesterase activity-AChE and histopathological changes were also assessed. Atomoxetine - ATX (2 mg kg-1/ 4 mg kg-1) and N-acetylcysteine- NAC (250 mg kg-1/ 500 mg kg-1) were used alone as well as in combination, as the treatment drugs. Donepezil (0.5 mg kg-1) was used as a positive control. STZ administered rats showed increase in serum glucose levels and decrease in body weight. Rats administered with STZ also showed reduction in learning, memory, reversal learning, executive functioning, impairment in endothelial function, increase in brains' oxidative stress, inflammation, AChE activity and histopathological changes. Administration of ATX and NAC in two different doses as well as in combination, significantly attenuated the STZ induced diabetes induced impairments in the behavioral, endothelial, biochemical parameters and histopathological changes. Co-treatment of ATX and NAC was better in comparison to the doses when given alone. Hence, STZ administration caused diabetes induced dementia of vascular origin which was attenuated by the administration of ATX and NAC. Therefore, these agents may be studied further for the assessment of their full potential in diabetes induced dementia of vascular origin conditions.
Collapse
|
32
|
Wang Q, Zhang C, Yang C, Sun Y, Chen K, Lu Y. Capsaicin Alleviates Vascular Endothelial Dysfunction and Cardiomyopathy via TRPV1/eNOS Pathway in Diabetic Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6482363. [PMID: 35602097 PMCID: PMC9119751 DOI: 10.1155/2022/6482363] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/26/2022] [Indexed: 01/03/2023]
Abstract
Background Endothelial dysfunction and cardiomyopathy are considered to be important vascular complications associated with diabetes. This study was designed to investigate whether capsaicin (CAP), a selective TRPV1 agonist, could prevent diabetes-induced endothelial dysfunction and cardiomyopathy. Methods Male Sprague Dawley rats aged 8 weeks were injected intraperitoneally with streptozotocin (STZ, 50 mg/kg) to establish the diabetes model. The diabetic rats were randomly divided into the untreated diabetes group (DM, 10/group) and diabetes plus CAP treatment group (DM+CAP, 10/group); meanwhile, the nondiabetic healthy rats were used as normal controls (10/group). DM+CAP group were treated with CAP by gavage for 8 weeks. The cultured mouse vascular endothelial cells were exposed to different concentrations of glucose in the presence or absence of CAP treatment. The TRPV1 inhibitor capsazepine (CPZ) and eNOS inhibitor L-NAME were used in vivo and in vitro experiment. Results CAP treatment significantly decreased the serum total cholesterol (TC) and total triglyceride (TG) and ameliorated the pathogenesis and fibrosis in the heart, while did not significantly improve plasma glucose level and the body weights of diabetic rats. In addition, CAP enhanced the expression of TRPV1 and eNOS in the heart and normalized the vascular permeability under diabetic state. Similarly, CAP treatment also increased nitric oxide and reduced reactive oxygen species. The same results were observed in cultured mouse vascular endothelial cells by CAP treatment. These beneficial effects of CAP were abolished by either CPZ or L-NAME. Conclusions CAP might protect against hyperglycemia-induced endothelial dysfunction and diabetic cardiomyopathy through TRPV1/eNOS pathway.
Collapse
Affiliation(s)
- Qiuyue Wang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Caihui Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Chen Yang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yue Sun
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Keyang Chen
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Yao Lu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Ambulatory Surgery Center, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| |
Collapse
|
33
|
Pawar A, Russo M, Rani I, Goswami K, Russo GL, Pal A. A critical evaluation of risk to reward ratio of quercetin supplementation for COVID-19 and associated comorbid conditions. Phytother Res 2022; 36:2394-2415. [PMID: 35393674 PMCID: PMC9111035 DOI: 10.1002/ptr.7461] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 03/19/2022] [Accepted: 03/26/2022] [Indexed: 01/08/2023]
Abstract
The interim results of the large, multinational trials on coronavirus disease 2019 (COVID‐19) using a combination of antiviral drugs appear to have little to no effect on the 28‐day mortality or the in‐hospital course. Therefore, there is a still vivid interest in finding alternate re‐purposed drugs and nutrition supplements, which can halt or slow the disease severity. We review here the multiple preclinical studies, partially supported by clinical evidence showing the quercetin's possible therapeutic/prophylaxis efficacy against severe acute respiratory syndrome coronavirus (SARS‐CoV) as well as comorbidities like chronic obstructive pulmonary disease (COPD), diabetes mellitus, obesity, coagulopathy, and hypertension. Currently, 14 interventional clinical trials are underway assessing the efficacy of quercetin along with other antiviral drugs/nutritional supplements as prophylaxis/treatment option against COVID‐19. The present review is tempting to suggest that, based on circumstantial scientific evidence and preliminary clinical data, the flavonoid quercetin can ameliorate COVID‐19 infection and symptoms acting in concert on two parallel and independent paths: inhibiting key factors responsible for SARS‐CoV‐2 infections and mitigating the clinical manifestations of the disease in patients with comorbid conditions. Despite the broad therapeutic properties of quercetin, further high power randomized clinical trials are needed to firmly establish its clinical efficacy against COVID‐19.
Collapse
Affiliation(s)
- Anil Pawar
- Department of Zoology, DAV University, Jalandhar, India
| | - Maria Russo
- National Research Council, Institute of Food Sciences, Avellino, Italy
| | - Isha Rani
- Department of Biochemistry, Maharishi Markandeshwar Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Ambala, India
| | | | - Gian Luigi Russo
- National Research Council, Institute of Food Sciences, Avellino, Italy
| | - Amit Pal
- Department of Biochemistry, AIIMS, Kalyani, India
| |
Collapse
|
34
|
Han D, Xu C, Ren XH, Peng Y, Xu B, Song JL, Chen J, Cheng SX. In Situ Detection of Nanotoxicity in Living Cells Based on Multiple miRNAs Probed by a Peptide Functionalized Nanoprobe. Anal Chem 2022; 94:2399-2407. [PMID: 35099175 DOI: 10.1021/acs.analchem.1c03950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The potential toxicity of nanoparticles, especially for clinically applicable ones, has become a critical concern. Technologies that can in situ-evaluate the toxicity of nanoparticles with high sensitivity are urgently needed. In this study, a facile strategy was developed for sensitive detection on the nanotoxicity of nanoparticles with low toxicity or a low dose. A functional nanoprobe loaded with molecular beacons was constructed to realize in situ evaluation of the nanotoxicity through probing multiple miRNAs in nanoparticle-exposed living cells. Being composed of protamine complexed with molecular beacons for miRNA detection and decorated by TAT and KALA peptides, the dual-peptide functionalized nanoprobe can efficiently deliver molecular beacons into living cells to realize the real-time monitoring of early biomarkers (miR-21 and miR-221) to evaluate nanotoxicity. Using mesoporous silica nanoparticles (MSNs) with different surface modifications as typical representatives of low toxic nanoparticles, we demonstrate that our nanoprobe can sensitively detect miRNA changes in cells under diverse exposure conditions, that is, MSN-NH2 exhibits the strongest capability to upregulate miR-21 and miR-221, and the upregulation is exposure dose- and time-dependent. Our approach is much more sensitive as compared with conventional methods to study cytotoxicity such as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cell morphology observation, and reactive oxygen species (ROS) assay. This study paves a path for effective and facile nanotoxicity evaluation and provides insights into the biological impacts of MSNs.
Collapse
Affiliation(s)
- Di Han
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Chang Xu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xiao-He Ren
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Yan Peng
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Bin Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Jun-Long Song
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Jing Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
35
|
Old and New Biomarkers Associated with Endothelial Dysfunction in Chronic Hyperglycemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2021:7887426. [PMID: 34987703 PMCID: PMC8723873 DOI: 10.1155/2021/7887426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 11/18/2022]
Abstract
Chronic hyperglycemia and vascular damage are strictly related. Biomarkers of vascular damage have been intensively studied in the recent years in the quest of reliable cardiovascular risk assessment tools able to facilitate risk stratification and early detection of vascular impairment. The present study is a narrative review with the aim of revising the available evidence on current and novel markers of hyperglycemia-induced vascular damage. After a discussion of classic tools used to investigate endothelial dysfunction, we provide an in-depth description of novel circulating biomarkers (chemokines, extracellular vesicles, and epigenetic and metabolomic biomarkers). Appropriate use of a single as well as a cluster of the discussed biomarkers might enable in a near future (a) the prompt identification of targeted and customized treatment strategies and (b) the follow-up of cardiovascular treatment efficacy over time in clinical research and/or in clinical practice.
Collapse
|
36
|
Crocin Improves Diabetes-Induced Oxidative Stress via Downregulating the Nox-4 in Myocardium of Diabetic Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1328:275-285. [PMID: 34981484 DOI: 10.1007/978-3-030-73234-9_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Oxidative stress has a crucial role in the pathophysiology of cardiac dysfunction in the diabetic milieu. Crocin is a natural compound that acts as an antioxidant which could potentially ameliorate oxidative damages in various tissues. The potential role of crocin in the myocardial tissue is not clear yet. This study was aimed to evaluate the possible antioxidative properties of crocin in the myocardium of diabetic rats. MATERIALS AND METHODS Male Wistar rats were randomly divided into four groups as normal, normal-treated, diabetic, and diabetic-treated. Diabetes was induced by a single intravenous injection of STZ (40 mg/kg). Two treated groups of animals (diabetic and non-diabetic) were treated with crocin daily for 8 weeks (40 mg/kg/IP). At the end of day 56, animals were sacrificed under deep anesthesia, and blood and tissue samples were collected. After tissue preparation, the level of nitrate, malondialdehyde, and glutathione and the activity of superoxide dismutase and catalase enzymes were measured via standard protocols. In addition, the level of Nox-4 mRNA expression was examined by RT-PCR method. The data were analyzed via one-way ANOVA, and P < 0.05 was considered as a significant difference. RESULTS Diabetes induces oxidative damages by upregulating the Nox-4 enzyme and increasing nitrate and malondialdehyde levels in the myocardium. Diabetes reduced the superoxide dismutase, catalase, and glutathione activities in the myocardial tissues. Treatment with crocin reversed these changes, reduced Nox-4 mRNA expression, and reduced the nitrate and malondialdehyde content in the myocardium of diabetic rats. CONCLUSION Diabetes induces oxidative stress in myocardium via the upregulating Nox-4 enzyme, and the treatment with crocin reversed these changes. Thus, crocin could be considered as a novel agent for potentially protecting myocardial tissues against diabetes-induced oxidative damages.
Collapse
|
37
|
Wang M, Li Y, Li S, Lv J. Endothelial Dysfunction and Diabetic Cardiomyopathy. Front Endocrinol (Lausanne) 2022; 13:851941. [PMID: 35464057 PMCID: PMC9021409 DOI: 10.3389/fendo.2022.851941] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/14/2022] [Indexed: 12/22/2022] Open
Abstract
The cardiovascular complications contribute to a majority of diabetes associated morbidity and mortality, accounting for 44% of death in those patients with type 1 diabetes mellitus (DM) and 52% of deaths in type 2 DM. Diabetes elicits cardiovascular dysfunction through 2 major mechanisms: ischemic and non-ischemic. Non-ischemic injury is usually under-recognized although common in DM patients, and also a pathogenic factor of heart failure in those diabetic individuals complicated with ischemic heart disease. Diabetic cardiomyopathy (DCM) is defined as a heart disease in which the myocardium is structurally and functionally abnormal in the absence of coronary artery disease, hypertensive, valvular, or congenital heart disorders in diabetic patients, theoretically caused by non-ischemic injury solely. Current therapeutic strategies targeting DCM mainly address the increased blood glucose levels, however, the effects on heart function are disappointed. Accumulating data indicate endothelial dysfunction plays a critical role in the initiation and development of DCM. Hyperglycemia, hyperinsulinemia, and insulin resistance cause the damages of endothelial function, including barrier dysfunction, impaired nitric oxide (NO) activity, excessive reactive oxygen species (ROS) production, oxidative stress, and inflammatory dysregulation. In turn, endothelial dysfunction promotes impaired myocardial metabolism, intracellular Ca2+ mishandling, endoplasmic reticulum (ER) stress, mitochondrial defect, accumulation of advanced glycation end products, and extracellular matrix (ECM) deposit, leads to cardiac stiffness, fibrosis, and remodeling, eventually results in cardiac diastolic dysfunction, systolic dysfunction, and heart failure. While endothelial dysfunction is closely related to cardiac dysfunction and heart failure seen in DCM, clinical strategies for restoring endothelial function are still missing. This review summarizes the timely findings related to the effects of endothelial dysfunction on the disorder of myocardium as well as cardiac function, provides mechanical insights in pathogenesis and pathophysiology of DCM developing, and highlights potential therapeutic targets.
Collapse
Affiliation(s)
- Moran Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongsheng Li
- Department of Emergency, Tongji Hospital, Tongji Medical College, Science and Technology, Huazhong University, Wuhan, China
- *Correspondence: Yongsheng Li, ; Sheng Li, ;
| | - Sheng Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yongsheng Li, ; Sheng Li, ;
| | - Jiagao Lv
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
38
|
Golikov MV, Karpenko IL, Lipatova AV, Ivanova ON, Fedyakina IT, Larichev VF, Zakirova NF, Leonova OG, Popenko VI, Bartosch B, Kochetkov SN, Smirnova OA, Ivanov AV. Cultivation of Cells in a Physiological Plasmax Medium Increases Mitochondrial Respiratory Capacity and Reduces Replication Levels of RNA Viruses. Antioxidants (Basel) 2021; 11:97. [PMID: 35052601 PMCID: PMC8772912 DOI: 10.3390/antiox11010097] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022] Open
Abstract
Changes in metabolic pathways are often associated with the development of various pathologies including cancer, inflammatory diseases, obesity and metabolic syndrome. Identification of the particular metabolic events that are dysregulated may yield strategies for pharmacologic intervention. However, such studies are hampered by the use of classic cell media that do not reflect the metabolite composition that exists in blood plasma and which cause non-physiological adaptations in cultured cells. In recent years two groups presented media that aim to reflect the composition of human plasma, namely human plasma-like medium (HPLM) and Plasmax. Here we describe that, in four different mammalian cell lines, Plasmax enhances mitochondrial respiration. This is associated with the formation of vast mitochondrial networks and enhanced production of reactive oxygen species (ROS). Interestingly, cells cultivated in Plasmax displayed significantly less lysosomes than when any standard media were used. Finally, cells cultivated in Plasmax support replication of various RNA viruses, such as hepatitis C virus (HCV) influenza A virus (IAV), severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) and several others, albeit at lower levels and with delayed kinetics. In conclusion, studies of metabolism in the context of viral infections, especially those concerning mitochondria, lysosomes, or redox systems, should be performed in Plasmax medium.
Collapse
Affiliation(s)
- Michail V. Golikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.V.G.); (I.L.K.); (A.V.L.); (O.N.I.); (N.F.Z.); (O.G.L.); (V.I.P.); (S.N.K.)
| | - Inna L. Karpenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.V.G.); (I.L.K.); (A.V.L.); (O.N.I.); (N.F.Z.); (O.G.L.); (V.I.P.); (S.N.K.)
| | - Anastasiya V. Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.V.G.); (I.L.K.); (A.V.L.); (O.N.I.); (N.F.Z.); (O.G.L.); (V.I.P.); (S.N.K.)
| | - Olga N. Ivanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.V.G.); (I.L.K.); (A.V.L.); (O.N.I.); (N.F.Z.); (O.G.L.); (V.I.P.); (S.N.K.)
| | - Irina T. Fedyakina
- Gamaleya National Research Centre for Epidemiology and Microbiology of the Ministry of Russia, 132098 Moscow, Russia; (I.T.F.); (V.F.L.)
| | - Viktor F. Larichev
- Gamaleya National Research Centre for Epidemiology and Microbiology of the Ministry of Russia, 132098 Moscow, Russia; (I.T.F.); (V.F.L.)
| | - Natalia F. Zakirova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.V.G.); (I.L.K.); (A.V.L.); (O.N.I.); (N.F.Z.); (O.G.L.); (V.I.P.); (S.N.K.)
| | - Olga G. Leonova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.V.G.); (I.L.K.); (A.V.L.); (O.N.I.); (N.F.Z.); (O.G.L.); (V.I.P.); (S.N.K.)
| | - Vladimir I. Popenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.V.G.); (I.L.K.); (A.V.L.); (O.N.I.); (N.F.Z.); (O.G.L.); (V.I.P.); (S.N.K.)
| | - Birke Bartosch
- Inserm U1052, Cancer Research Center Lyon, University of Lyon, 69000 Lyon, France;
| | - Sergey N. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.V.G.); (I.L.K.); (A.V.L.); (O.N.I.); (N.F.Z.); (O.G.L.); (V.I.P.); (S.N.K.)
| | - Olga A. Smirnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.V.G.); (I.L.K.); (A.V.L.); (O.N.I.); (N.F.Z.); (O.G.L.); (V.I.P.); (S.N.K.)
| | - Alexander V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.V.G.); (I.L.K.); (A.V.L.); (O.N.I.); (N.F.Z.); (O.G.L.); (V.I.P.); (S.N.K.)
| |
Collapse
|
39
|
The vascular endothelial growth factor trap aflibercept induces vascular dysfunction and hypertension via attenuation of eNOS/NO signaling in mice. Acta Pharmacol Sin 2021; 42:1437-1448. [PMID: 33303990 PMCID: PMC8379246 DOI: 10.1038/s41401-020-00569-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/29/2020] [Indexed: 12/22/2022]
Abstract
Aflibercept, as a soluble decoy vascular endothelial growth factor receptor, Which has been used as a first-line monotherapy for cancers. Aflibercept often causes cardiovascular toxicities including hypertension, but the mechanisms underlying aflibercept-induced hypertension remain unknown. In this study we investigated the effect of short-term and long-term administration of aflibercept on blood pressure (BP), vascular function, NO bioavailability, oxidative stress and endothelin 1 (ET-1) in mice and cultured endothelial cells. We showed that injection of a single-dose of aflibercept (18.2, 36.4 mg/kg, iv) rapidly and dose-dependently elevated BP in mice. Aflibercept treatment markedly impaired endothelial-dependent relaxation (EDR) and resulted in NADPH oxidases 1 (NOX1)- and NADPH oxidases 4 (NOX4)-mediated generation of ROS, decreased the activation of protein kinase B (Akt) and endothelial nitric oxide synthase (eNOS) concurrently with a reduction in nitric oxide (NO) production and elevation of ET-1 levels in mouse aortas; these effects were greatly attenuated by supplementation of L-arginine (L-arg, 0.5 or 1.0 g/kg, bid, ig) before aflibercept injection. Similar results were observed in L-arg-pretreated cultured endothelial cells, showing markedly decreased ROS accumulation and AKT/eNOS/NO signaling impairment induced by aflibercept. In order to assess the effects of long-term aflibercept on hypertension and to evaluate the beneficial effects of L-arg supplementation, we administered these two drugs to WT mice for up to 14 days (at an interval of two days). Long-term administration of aflibercept resulted in a sustained increase in BP and a severely impaired EDR, which are associated with NOX1/NOX4-mediated production of ROS, increase in ET-1, inhibition of AKT/eNOS/NO signaling and a decreased expression of cationic amino acid transporter (CAT-1). The effects caused by long-term administration were greatly attenuated by L-arg supplementation in a dose-dependent manner. We conclude that aflibercept leads to vascular dysfunction and hypertension by inhibiting CAT-1/AKT/eNOS/NO signaling, increasing ET-1, and activating NOX1/NOX4-mediated oxidative stress, which can be suppressed by supplementation of L-arg. Therefore, L-arg could be a potential therapeutic agent for aflibercept-induced hypertension.
Collapse
|
40
|
Sharma P, Kaushik P, Jain S, Sharma BM, Awasthi R, Kulkarni GT, Sharma B. Efficacy of Ulinastatin and Sulforaphane Alone or in Combination in Rat Model of Streptozotocin Diabetes Induced Vascular Dementia. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2021; 19:470-489. [PMID: 34294616 PMCID: PMC8316668 DOI: 10.9758/cpn.2021.19.3.470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/25/2020] [Accepted: 12/11/2020] [Indexed: 11/22/2022]
Abstract
Objective Vascular Dementia (VaD), is associated with metabolic conditions. Diabetes is a major risk factor for the development of VaD. This study investigates the efficacy of ulinastatin (UTI) and sulforaphane (SUL) in streptozotocin (STZ)-diabetes induced vascular endothelium dysfunction and related dementia. Methods Single dose STZ (50 mg/kg i.p.) was administered to Albino Wistar rats (male, 200−250 g). Morris water maze and attentional set shifting tests were used to assess the spatial learning, memory, reversal learning, and executive functioning in animals. Body weight, serum glucose, serum nitrite/nitrate, vascular endothelial function, aortic superoxide anion, brains’ oxidative markers (thiobarbituric acid reactive species-TBARS, reduced glutathione-GSH, superoxide dismutase-SOD, and catalase-CAT), inflammatory markers (IL-6, IL-10, TNF-a, and myeloperoxidase-MPO), acetylcholinesterase activity-AChE, blood brain barrier (BBB) permeability and histopathological changes were also assessed. UTI (10,000 U/kg) and SUL (25 mg/kg) were used alone as well as in combination, as the treatment drugs. Donepezil (0.5 mg/kg) was used as a positive control. Results STZ-administered rats showed reduction in body weight, learning, memory, reversal learning, executive functioning, impairment in endothelial function, BBB permeability, increase in serum glucose, brains’ oxidative stress, inflammation, AChE-activity, BBB permeability and histopathological changes. Administration of UTI and SUL alone as well as in combination, significantly and dose dependently attenuated the STZ-diabetes-induced impairments in the behavioral, endothelial, and biochemical parameters. Conclusion STZ administration caused diabetes and VaD which was attenuated by the administration of UTI and SUL. Therefore, these agents may be studied further for the assessment of their full potential in diabetes induced VaD.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Prachi Kaushik
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Swati Jain
- Department of Pharmacology, School of Pharmacy, BIT, Meerut, India
| | | | - Rajendra Awasthi
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | | | - Bhupesh Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India.,CNS and CVS Pharmacology, Conscience Research, Delhi, India
| |
Collapse
|
41
|
Abubakar A, Nazifi AB, Maje IM, Tanko Y, Anuka JA, Abdurahman EM. Chlorophytum alismifolium mitigates microvascular complications of type 2 diabetes mellitus: the involvement of oxidative stress and aldose reductase. Drug Metab Pers Ther 2021; 37:69-80. [PMID: 35385895 DOI: 10.1515/dmpt-2021-0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/28/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVES Chlorophytum alismifolium (C. alismifolium) tubers are used in the management of diabetes. This research evaluated the effect of ethylacetate extract of C. alismifolium (EACA) on microvascular complications and the possible association of oxidative stress and aldose reductase in type 2 diabetic rats. METHODS C. alismifolium tubers were subjected to sequential extraction until ethylacetate extract was obtained using a soxhlet apparatus. The LD50 was determined using the OECD 425 guideline. The animals were placed on high fat diet for 42 days and then induced with hyperglycaemia using 40 mg/kg of streptozotocin. Diabetic neuropathy was evaluated using thermal and mechanical methods. Serum was used for the assessment of oxidative stress markers and biochemical markers of retinopathy and nephropathy. Serum aldose reductase was investigated by utilizing the principle of enzyme-linked immunosorbent assay. RESULTS The median lethal dose of EACA was assessed to be above 5,000 mg/kg and it caused no mortality. Treatment with EACA significantly reduced the withdrawal times in both thermal and mechanical hyperalgesic methods (p<0.05). EACA also significantly reduced the levels of urea (p<0.001), albumin (p<0.05) and uric acid (p<0.001) in hyperglycaemic rats. EACA significantly decreased the amounts of low density lipoprotein and triglycerides (p<0.001). There was a remarkable elevation in the levels of high density lipoprotein (p<0.05). A significant (p<0.05) increase in the levels of magnesium was observed in the EACA-treated groups. EACA significantly increased catalase (p<0.05) and reduced malondialdehyde levels (p<0.05). The levels of aldose reductase was significantly (p<0.001) reduced by EACA compared to the hyperglycaemic control. CONCLUSIONS The ethylacetate extract of C. alismifolium has beneficial effects in alleviating microvascular complications of diabetes through the inhibition of oxidative stress and aldose reductase in diabetic rats.
Collapse
Affiliation(s)
- Abdulhakim Abubakar
- Department of Pharmacology and Therapeutics, Ahmadu Bello University, Zaria, Nigeria
| | | | - Idris Mohammed Maje
- Department of Pharmacology and Therapeutics, Ahmadu Bello University, Zaria, Nigeria
| | - Yusuf Tanko
- Department of Human Physiology, Ahmadu Bello University, Zaria, Nigeria
| | - Joseph Akpojo Anuka
- Department of Pharmacology and Therapeutics, Ahmadu Bello University, Zaria, Nigeria
| | | |
Collapse
|
42
|
Abubakar A, Nazifi AB, Maje IM, Tanko Y, Anuka JA, Abdurahman EM. Chlorophytum alismifolium mitigates microvascular complications of type 2 diabetes mellitus: the involvement of oxidative stress and aldose reductase. Drug Metab Pers Ther 2021; 0:dmdi-2021-0129. [PMID: 34392635 DOI: 10.1515/dmdi-2021-0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES Chlorophytum alismifolium (C. alismifolium) tubers are used in the management of diabetes. This research evaluated the effect of ethylacetate extract of C. alismifolium (EACA) on microvascular complications and the possible association of oxidative stress and aldose reductase in type 2 diabetic rats. METHODS C. alismifolium tubers were subjected to sequential extraction until ethylacetate extract was obtained using a soxhlet apparatus. The LD50 was determined using the OECD 425 guideline. The animals were placed on high fat diet for 42 days and then induced with hyperglycaemia using 40 mg/kg of streptozotocin. Diabetic neuropathy was evaluated using thermal and mechanical methods. Serum was used for the assessment of oxidative stress markers and biochemical markers of retinopathy and nephropathy. Serum aldose reductase was investigated by utilizing the principle of enzyme-linked immunosorbent assay. RESULTS The median lethal dose of EACA was assessed to be above 5,000 mg/kg and it caused no mortality. Treatment with EACA significantly reduced the withdrawal times in both thermal and mechanical hyperalgesic methods (p<0.05). EACA also significantly reduced the levels of urea (p<0.001), albumin (p<0.05) and uric acid (p<0.001) in hyperglycaemic rats. EACA significantly decreased the amounts of low density lipoprotein and triglycerides (p<0.001). There was a remarkable elevation in the levels of high density lipoprotein (p<0.05). A significant (p<0.05) increase in the levels of magnesium was observed in the EACA-treated groups. EACA significantly increased catalase (p<0.05) and reduced malondialdehyde levels (p<0.05). The levels of aldose reductase was significantly (p<0.001) reduced by EACA compared to the hyperglycaemic control. CONCLUSIONS The ethylacetate extract of C. alismifolium has beneficial effects in alleviating microvascular complications of diabetes through the inhibition of oxidative stress and aldose reductase in diabetic rats.
Collapse
Affiliation(s)
- Abdulhakim Abubakar
- Department of Pharmacology and Therapeutics, Ahmadu Bello University, Zaria, Nigeria
| | | | - Idris Mohammed Maje
- Department of Pharmacology and Therapeutics, Ahmadu Bello University, Zaria, Nigeria
| | - Yusuf Tanko
- Department of Human Physiology, Ahmadu Bello University, Zaria, Nigeria
| | - Joseph Akpojo Anuka
- Department of Pharmacology and Therapeutics, Ahmadu Bello University, Zaria, Nigeria
| | | |
Collapse
|
43
|
Kennon AM, Stewart JA. RAGE Differentially Altered in vitro Responses in Vascular Smooth Muscle Cells and Adventitial Fibroblasts in Diabetes-Induced Vascular Calcification. Front Physiol 2021; 12:676727. [PMID: 34163373 PMCID: PMC8215351 DOI: 10.3389/fphys.2021.676727] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
The Advanced Glycation End-Products (AGE)/Receptor for AGEs (RAGE) signaling pathway exacerbates diabetes-mediated vascular calcification (VC) in vascular smooth muscle cells (VSMCs). Other cell types are involved in VC, such as adventitial fibroblasts (AFBs). We hope to elucidate some of the mechanisms responsible for differential signaling in diabetes-mediated VC with this work. This work utilizes RAGE knockout animals and in vitro calcification to measure calcification and protein responses. Our calcification data revealed that VSMCs calcification was AGE/RAGE dependent, yet AFBs calcification was not an AGE-mediated RAGE response. Protein expression data showed VSMCs lost their phenotype marker, α-smooth muscle actin, and had a higher RAGE expression over non-diabetics. RAGE knockout (RKO) VSMCs did not show changes in phenotype markers. P38 MAPK, a downstream RAGE-associated signaling molecule, had significantly increased activation with calcification in both diabetic and diabetic RKO VSMCs. AFBs showed a loss in myofibroblast marker, α-SMA, due to calcification treatment. RAGE expression decreased in calcified diabetic AFBs, and P38 MAPK activation significantly increased in diabetic and diabetic RKO AFBs. These findings point to potentially an alternate receptor mediating the calcification response in the absence of RAGE. Overall, VSMCs and AFBs respond differently to calcification and the application of AGEs.
Collapse
Affiliation(s)
- Amber M Kennon
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Mississippi, MS, United States
| | - James A Stewart
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Mississippi, MS, United States
| |
Collapse
|
44
|
Doghmane A, Aouacheri O, Laouaichia R, Saka S. The investigation of the efficacy ratio of cress seeds supplementation to moderate hyperglycemia and hepatotoxicity in streptozotocin-induced diabetic rats. J Diabetes Metab Disord 2021; 20:447-459. [PMID: 34178850 PMCID: PMC8212251 DOI: 10.1007/s40200-021-00764-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Oxidative stress resulting from chronic hyperglycemia induced many complications in diabetes and led to disorders and dysfunctions in different organs. This study aimed to evaluate the hepatoprotective rate of cress seeds (CS) or Lepidium sativum seeds in the diet on lowering hyperglycemia and oxidative stress damaging. METHODS Diabetes was induced by a single intraperitoneal injection of 60 mg/kg of streptozotocin (STZ). Forty-eight male rats were randomly divided into six groups : (D-0) and (ND-0) diabetic, and non-diabetic groups were fed with a normal diet, (ND-CS2) and (ND-CS5) non-diabetic groups were fed with diet containing 2 % and 5 % of cress seeds respectively, (D-CS2) and (D-CS5) diabetic groups were fed with diet containing 2 % and 5 % of cress seeds respectively. After 28 days of treatment, biochemical, histological, and oxidative parameters were determined. Hepatic and pancreatic histological sections were developed. RESULTS STZ-injection caused hyperglycemia accompanied by a disturbance in biochemical parameters and intensified oxidative stress status compared to the (ND-0) group. Hepatic and pancreatic histological sections of diabetic rats showed a disrupted architecture. However, the cress seeds-diet revealed a significant decrease of hyperglycemia and a reduction of the intensity of oxidative stress induced by diabetes compared to the (D-0) group, remarked by a decreased level of Malondialdehyde (MDA) and high levels of glutathione (GSH) and the antioxidant enzymes, led to the decrease of the majority of parameters principally hepatic and lipid profile with histological regeneration. CONCLUSIONS Cress seeds supplementation confirmed their potential anti-diabetic and antioxidant activities with higher efficacy of 5 % dose than the lower dose of 2 %. Therefore, 5 % of cress seeds administration seems to be the excellent rate recommended in controlling diabetes and its complications.
Collapse
Affiliation(s)
- Amina Doghmane
- Laboratory of Applied Biochemistry and Microbiology, Department of Biochemistry, University of Badji Mokhtar, Annaba, Algeria
| | - Ouassila Aouacheri
- Laboratory of Applied Biochemistry and Microbiology, Department of Biochemistry, University of Badji Mokhtar, Annaba, Algeria
- Laboratory of Animal Ecophysiology, Department of Biology, University of Badji Mokhtar, Annaba, Algeria
| | - Rania Laouaichia
- Laboratory of Applied Biochemistry and Microbiology, Department of Biochemistry, University of Badji Mokhtar, Annaba, Algeria
| | - Saad Saka
- Laboratory of Applied Biochemistry and Microbiology, Department of Biochemistry, University of Badji Mokhtar, Annaba, Algeria
- Laboratory of Animal Ecophysiology, Department of Biology, University of Badji Mokhtar, Annaba, Algeria
| |
Collapse
|
45
|
Di Tomo P, Alessio N, Falone S, Pietrangelo L, Lanuti P, Cordone V, Santini SJ, Di Pietrantonio N, Marchisio M, Protasi F, Di Pietro N, Formoso G, Amicarelli F, Galderisi U, Pandolfi A. Endothelial cells from umbilical cord of women affected by gestational diabetes: A suitable in vitro model to study mechanisms of early vascular senescence in diabetes. FASEB J 2021; 35:e21662. [PMID: 34046935 DOI: 10.1096/fj.202002072rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022]
Abstract
Human umbilical cord endothelial cells (HUVECs) obtained from women affected by gestational diabetes (GD-HUVECs) display durable pro-atherogenic modifications and might be considered a valid in vitro model for studying chronic hyperglycemia effects on early endothelial senescence. Here, we demonstrated that GD- compared to C-HUVECs (controls) exhibited oxidative stress, altered both mitochondrial membrane potential and antioxidant response, significant increase of senescent cells characterized by a reduced NAD-dependent deacetylase sirtuin-1 (SIRT1) activity together with an increase in cyclin-dependent kinase inhibitor-2A (P16), cyclin-dependent kinase inhibitor-1 (P21), and tumor protein p53 (P53) acetylation. This was associated with the p300 activation, and its silencing significantly reduced the GD-HUVECs increased protein levels of P300 and Ac-P53 thus indicating a persistent endothelial senescence via SIRT1/P300/P53/P21 pathway. Overall, our data suggest that GD-HUVECs can represent an "endothelial hyperglycemic memory" model to investigate in vitro the early endothelium senescence in cells chronically exposed to hyperglycemia in vivo.
Collapse
Affiliation(s)
- Pamela Di Tomo
- Department of Medical and Oral Sciences and Biotechnologies, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology - CAST (ex CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Nicola Alessio
- Department of Experimental Medicine, University of Campania "L. Vanvitelli", Napoli, Italy
| | - Stefano Falone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Laura Pietrangelo
- Center for Advanced Studies and Technology - CAST (ex CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, Italy
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Paola Lanuti
- Center for Advanced Studies and Technology - CAST (ex CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, Italy
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Valeria Cordone
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Silvano Junior Santini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Nadia Di Pietrantonio
- Department of Medical and Oral Sciences and Biotechnologies, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology - CAST (ex CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Marco Marchisio
- Center for Advanced Studies and Technology - CAST (ex CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, Italy
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Feliciano Protasi
- Center for Advanced Studies and Technology - CAST (ex CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, Italy
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Natalia Di Pietro
- Department of Medical and Oral Sciences and Biotechnologies, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology - CAST (ex CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Gloria Formoso
- Center for Advanced Studies and Technology - CAST (ex CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, Italy
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Fernanda Amicarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Umberto Galderisi
- Department of Experimental Medicine, University of Campania "L. Vanvitelli", Napoli, Italy
| | - Assunta Pandolfi
- Department of Medical and Oral Sciences and Biotechnologies, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology - CAST (ex CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, Italy
| |
Collapse
|
46
|
Williamson G. Protection against developing type 2 diabetes by coffee consumption: assessment of the role of chlorogenic acid and metabolites on glycaemic responses. Food Funct 2021; 11:4826-4833. [PMID: 32484174 DOI: 10.1039/d0fo01168a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epidemiological studies show a convincing long-term and dose-dependent protection of coffee and decaffeinated coffee against developing type 2 diabetes. The mechanisms of this effect are still not understood even though several have been proposed, including a potential effect on blood glucose by chlorogenic acids. However, there is minimal effect of decaffeinated coffee on postprandial blood glucose and insulin when consumed with carbohydrates, although there may be effects on incretin hormones, but these have been measured in only a few studies. Although chlorogenic acids do not affect carbohydrate digestion directly, they may affect glucose absorption and subsequent utilisation, the latter through metabolites derived from endogenous pathways or action of the gut microbiota. To advance understanding of the protective effect of coffee chlorogenic acids, more chronic intervention studies are needed on decaffeinated coffee, coupled with mechanistic studies in vitro using more realistic concentrations of the relevant chlorogenic acid metabolites.
Collapse
Affiliation(s)
- Gary Williamson
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, BASE Facility, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia.
| |
Collapse
|
47
|
Gerardi G, Cavia-Saiz M, Rivero-Pérez MD, González-SanJosé ML, Muñiz P. The protective effects of wine pomace products on the vascular endothelial barrier function. Food Funct 2021; 11:7878-7891. [PMID: 32812564 DOI: 10.1039/d0fo01199a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Endothelial dysfunction is associated with cardiovascular diseases and involves a chronic inflammatory process that together with oxidative stress increases the permeability of the vascular endothelium. The aim of this study was to evaluate the role of red and white wine pomace products (rWPPs and wWPPs) in the maintenance of endothelial integrity in hyperglycemia of EA.hy926 endothelial cells. EA.hy926 endothelial cells exposed to hyperglycemia were treated with the in vitro digested fractions of rWPPs and wWPPs. A Real Time Cellular Analysis (RTCA) system was used to evaluate the endothelial monolayer integrity after INF-γ stimulation of pre-treated endothelial cells with the digested fractions. The changes in cell viability, NO, ROS and NOX4 were recorded and actin cytoskeleton and E-cadherin junctions were evaluated by immunofluorescence. All digested fractions prevent the hyperglycemic actions in the cell viability and NO/ROS balance. The inflammatory mediator INF-γ and hyperglycemia caused a decrease in RTCA adhesion of the EA.hy926 endothelial cell monolayer. Pre-treatment with all digested fractions enhanced the EA.hy926 endothelial monolayer integrity and maintained actin cytoskeleton and E-cadherin junctions. These in vitro studies elucidate that the anti-hyperglycemic and anti-inflammatory actions of wine pomace products involve a decrease in ROS production and the stabilization of junction proteins via modulation of VE-cadherin and actin cytoskeleton suggesting a potential prevention of endothelial damage by these natural products.
Collapse
Affiliation(s)
- Gisela Gerardi
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001, Burgos, Spain.
| | - Mónica Cavia-Saiz
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001, Burgos, Spain.
| | - María D Rivero-Pérez
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001, Burgos, Spain.
| | - María L González-SanJosé
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001, Burgos, Spain.
| | - Pilar Muñiz
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001, Burgos, Spain.
| |
Collapse
|
48
|
Gerardi G, Cavia-Saiz M, Muñiz P. From winery by-product to healthy product: bioavailability, redox signaling and oxidative stress modulation by wine pomace product. Crit Rev Food Sci Nutr 2021; 62:7427-7448. [PMID: 33951976 DOI: 10.1080/10408398.2021.1914542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The wine pomace is the main winery by-products that suppose an economic and environmental problem and their use as a functional ingredient are being increasingly recognized as a good and inexpensive source of bioactive compounds. In this sense, it is known the potential health properties of wine pomace products in the prevention of disorders associated with oxidative stress and inflammation such as endothelial dysfunction, hypertension, hyperglycemia, diabetes, obesity. Those effects are due to the bioactive compounds of wine pomace and the mechanisms concern especially modulation of antioxidant/prooxidant activity, improvement of nitric oxide bioavailability, reduction of pro-inflammatory cytokines and modulation of antioxidant/inflammatory signal pathways. This review mainly summarizes the mechanisms of wine pomace products as modulators of oxidative status involved in cell pathologies as well as their potential therapeutic use for cardiovascular diseases. For this purpose, the review provides an overview of the findings related to the wine pomace bioactive compounds profile, their bioavailability and the action mechanisms for maintaining the redox cell balance involved in health benefits. The review suggests an important role for wine pomace product in cardiovascular diseases prevention and their regular food intake may attenuate the development and progression of comorbidities associated with cardiovascular diseases.
Collapse
Affiliation(s)
- Gisela Gerardi
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Burgos, Spain
| | - Mónica Cavia-Saiz
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Burgos, Spain
| | - Pilar Muñiz
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Burgos, Spain
| |
Collapse
|
49
|
Anastasiou IA, Eleftheriadou I, Tentolouris A, Koliaki C, Kosta OA, Tentolouris N. CDATA[The Effect of Oxidative Stress and Antioxidant Therapies on Pancreatic β-cell Dysfunction: Results from in Vitro and in Vivo Studies. Curr Med Chem 2021; 28:1328-1346. [PMID: 32452321 DOI: 10.2174/0929867327666200526135642] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/07/2020] [Accepted: 04/25/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Oxidative stress is a hallmark of many diseases. A growing body of evidence suggests that hyperglycemia-induced oxidative stress plays an important role in pancreatic β-cells dysfunction and apoptosis, as well as in the development and progression of diabetic complications. Considering the vulnerability of pancreatic β-cells to oxidative damage, the induction of endogenous antioxidant enzymes or exogenous antioxidant administration has been proposed to protect pancreatic β-cells from damage. OBJECTIVES The present review aims to provide evidence of the effect of oxidative stress and antioxidant therapies on pancreatic β-cell function, based on in vitro and in vivo studies. METHODS The MEDLINE and EMBASE databases were searched to retrieve available data. RESULTS Due to poor endogenous antioxidant mechanisms, pancreatic β-cells are extremely sensitive to Reactive Oxygen Species (ROS). Many natural extracts have been tested in vitro in pancreatic β-cell lines in terms of their antioxidant and diabetes mellitus ameliorating effects, and the majority of them have shown a dose-dependent protective role. On the other hand, there is relatively limited evidence regarding the in vitro antioxidant effects of antidiabetic drugs on pancreatic β -cells. Concerning in vivo studies, several natural extracts have shown beneficial effects in the setting of diabetes by decreasing blood glucose and lipid levels, increasing insulin sensitivity, and by up-regulating intrinsic antioxidant enzyme activity. However, there is limited evidence obtained from in vivo studies regarding antidiabetic drugs. CONCLUSION Antioxidants hold promise for developing strategies aimed at the prevention or treatment of diabetes mellitus associated with pancreatic β-cells dysfunction, as supported by in vitro and in vivo studies. However, more in vitro studies are required for drugs.
Collapse
Affiliation(s)
- Ioanna A Anastasiou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 17 AgiouThoma St., 11527 Athens, Greece
| | - Ioanna Eleftheriadou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 17 AgiouThoma St., 11527 Athens, Greece
| | - Anastasios Tentolouris
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 17 AgiouThoma St., 11527 Athens, Greece
| | - Chrysi Koliaki
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 17 AgiouThoma St., 11527 Athens, Greece
| | - Ourania A Kosta
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 17 AgiouThoma St., 11527 Athens, Greece
| | - Nikolaos Tentolouris
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 17 AgiouThoma St., 11527 Athens, Greece
| |
Collapse
|
50
|
Panday S, Kar S, Kavdia M. How does ascorbate improve endothelial dysfunction? - A computational analysis. Free Radic Biol Med 2021; 165:111-126. [PMID: 33497797 DOI: 10.1016/j.freeradbiomed.2021.01.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/23/2020] [Accepted: 01/14/2021] [Indexed: 01/02/2023]
Abstract
Low levels of ascorbate (Asc) are observed in cardiovascular and neurovascular diseases. Asc has therapeutic potential for the treatment of endothelial dysfunction, which is characterized by a reduction in nitric oxide (NO) bioavailability and increased oxidative stress in the vasculature. However, the potential mechanisms remain poorly understood for the Asc mitigation of endothelial dysfunction. In this study, we developed an endothelial cell based computational model integrating endothelial cell nitric oxide synthase (eNOS) biochemical pathway with downstream reactions and interactions of oxidative stress, tetrahydrobiopterin (BH4) synthesis and biopterin ratio ([BH4]/[TBP]), Asc and glutathione (GSH). We quantitatively analyzed three Asc mediated mechanisms that are reported to improve/maintain endothelial cell function. The mechanisms include the reduction of •BH3 to BH4, direct scavenging of superoxide (O2•-) and peroxynitrite (ONOO-) and increasing eNOS activity. The model predicted that Asc at 0.1-100 μM concentrations improved endothelial cell NO production, total biopterin and biopterin ratio in a dose dependent manner and the extent of cellular oxidative stress. Asc increased BH4 availability and restored eNOS coupling under oxidative stress conditions. Asc at concentrations of 1-10 mM reduced O2•- and ONOO- levels and could act as an antioxidant. We predicted that glutathione peroxidase and peroxiredoxin in combination with GSH and Asc can restore eNOS coupling and NO production under oxidative stress conditions. Asc supplementation may be used as an effective therapeutic strategy when BH4 levels are depleted. This study provides detailed understanding of the mechanism responsible and the optimal cellular Asc levels for improvement in endothelial dysfunction.
Collapse
Affiliation(s)
- Sheetal Panday
- Department of Biomedical Engineering, Wayne State University, Detroit, 48202, MI, USA
| | - Saptarshi Kar
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Mahendra Kavdia
- Department of Biomedical Engineering, Wayne State University, Detroit, 48202, MI, USA.
| |
Collapse
|