1
|
Huang Q, Cai ZB, Li SL, Chen LJ, Ye Q, Tian YP. Synthesis, optical properties, and two-photon bioimaging evaluation of novel fluorescent cationic molecules with symmetrical long conjugated all- trans structures. Org Biomol Chem 2024; 22:9426-9438. [PMID: 39620349 DOI: 10.1039/d4ob01429d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Five novel fluorescent molecules (PPy, BOPPy, CNPPy, BPPy, and BPIm), which possess symmetrical long conjugated all-trans structures and are capped with hydroxyethyl-bonded pyridinium or benzimidazolium cations, were designed, synthesized, and characterized by 1H NMR, 13C NMR, and HRMS. The systematic investigations of their linear and nonlinear optical properties in different solvents indicate that all the target compounds exhibit large Stokes shifts (71-152 nm) and four of them (PPy, CNPPy, BPPy, and BPIm) have satisfactory two-photon action cross-sections (45.2-112.4 GM in DMSO). The fluorescence stability experiments reveal that their fluorescence emission is insensitive within the biologically relevant pH range of 4.0-8.0, which may enable applications in vivo to be possible. Cytotoxicity assessments, together with one- and two-photon excited fluorescence imaging studies in live cells were performed to evaluate their application values in bioimaging. It is found that PPy is not only endowed with low cytotoxicity and good cell membrane permeability, but also shows bright intracellular fluorescence signals. The high comprehensive performance enables PPy to have a promising application prospect in living cell imaging.
Collapse
Affiliation(s)
- Qiong Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Zhi-Bin Cai
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Sheng-Li Li
- Department of Chemistry, Anhui Province Key Laboratory of Functional Inorganic Materials, Anhui University, Hefei 230039, PR China
| | - Li-Jun Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Qing Ye
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Yu-Peng Tian
- Department of Chemistry, Anhui Province Key Laboratory of Functional Inorganic Materials, Anhui University, Hefei 230039, PR China
| |
Collapse
|
2
|
Bębenek E, Rzepka Z, Hermanowicz JM, Chrobak E, Surażyński A, Beberok A, Wrześniok D. Synthesis, Pharmacokinetic Profile, Anticancer Activity and Toxicity of the New Amides of Betulonic Acid-In Silico and In Vitro Study. Int J Mol Sci 2024; 25:4517. [PMID: 38674101 PMCID: PMC11050400 DOI: 10.3390/ijms25084517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Betulonic acid (B(O)A) is a pentacyclic lupane-type triterpenoid that widely exists in plants. There are scientific reports indicating anticancer activity of B(O)A, as well as the amides and esters of this triterpenoid. In the first step of the study, the synthesis of novel amide derivatives of B(O)A containing an acetylenic moiety was developed. Subsequently, the medium-soluble compounds (EB171 and EB173) and the parent compound, i.e., B(O)A, were investigated for potential cytotoxic activity against breast cancer (MCF-7 and MDA-MB-231) and melanoma (C32, COLO 829 and A375) cell lines, as well as normal human fibroblasts. Screening analysis using the WST-1 test was applied. Moreover, the lipophilicity and ADME parameters of the obtained derivatives were determined using experimental and in silico methods. The toxicity assay using zebrafish embryos and larvae was also performed. The study showed that the compound EB171 exhibited a significant cytotoxic effect on cancer cell lines: MCF-7, A-375 and COLO 829, while it did not affect the survival of normal cells. Moreover, studies on embryos and larvae showed no toxicity of EB171 in an animal model. Compared to EB171, the compound EB173 had a weaker effect on all tested cancer cell lines and produced less desirable effects against normal cells. The results of the WST-1 assay obtained for B(O)A revealed its strong cytotoxic activity on the examined cancer cell lines, but also on normal cells. In conclusion, this article describes new derivatives of betulonic acid-from synthesis to biological properties. The results allowed to indicate a promising direction for the functionalization of B(O)A to obtain derivatives with selective anticancer activity and low toxicity.
Collapse
Affiliation(s)
- Ewa Bębenek
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska, 41-200 Sosnowiec, Poland; (E.B.); (E.C.)
| | - Zuzanna Rzepka
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska, 41-200 Sosnowiec, Poland; (Z.R.); (A.B.)
| | - Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland;
- Department of Clinical Pharmacy, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| | - Elwira Chrobak
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska, 41-200 Sosnowiec, Poland; (E.B.); (E.C.)
| | - Arkadiusz Surażyński
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland;
| | - Artur Beberok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska, 41-200 Sosnowiec, Poland; (Z.R.); (A.B.)
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska, 41-200 Sosnowiec, Poland; (Z.R.); (A.B.)
| |
Collapse
|
3
|
Zhao M, Li H, Wang R, Lan S, Wang Y, Zhang Y, Sui H, Li W. Traditional Uses, Chemical Constituents and Pharmacological Activities of the Toona sinensis Plant. Molecules 2024; 29:718. [PMID: 38338461 PMCID: PMC10856474 DOI: 10.3390/molecules29030718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/21/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Toona sinensis (A. Juss.) Roem., which is widely distributed in China, is a homologous plant resource of medicine and food. The leaves, seeds, barks, buds and pericarps of T. sinensis can be used as medicine with traditional efficacy. Due to its extensive use in traditional medicine in the ancient world, the T. sinensis plant has significant development potential. In this review, 206 compounds, including triterpenoids (1-133), sesquiterpenoids (134-135), diterpenoids (136-142), sterols (143-147), phenols (148-167), flavonoids (168-186), phenylpropanoids (187-192) and others (193-206), are isolated from the T. sinensis plant. The mass spectrum cracking laws of representative compounds (64, 128, 129, 154-156, 175, 177, 179 and 183) are reviewed, which are conducive to the discovery of novel active substances. Modern pharmacological studies have shown that T. sinensis extracts and their compounds have antidiabetic, antidiabetic nephropathy, antioxidant, anti-inflammatory, antitumor, hepatoprotective, antiviral, antibacterial, immunopotentiation and other biological activities. The traditional uses, chemical constituents, compound cracking laws and pharmacological activities of different parts of T. sinensis are reviewed, laying the foundation for improving the development and utilization of its medicinal value.
Collapse
Affiliation(s)
- Mengyao Zhao
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (M.Z.); (H.L.); (R.W.); (S.L.); (Y.W.); (Y.Z.)
| | - Huiting Li
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (M.Z.); (H.L.); (R.W.); (S.L.); (Y.W.); (Y.Z.)
| | - Rongshen Wang
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (M.Z.); (H.L.); (R.W.); (S.L.); (Y.W.); (Y.Z.)
| | - Shuying Lan
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (M.Z.); (H.L.); (R.W.); (S.L.); (Y.W.); (Y.Z.)
| | - Yuxin Wang
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (M.Z.); (H.L.); (R.W.); (S.L.); (Y.W.); (Y.Z.)
| | - Yuhua Zhang
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (M.Z.); (H.L.); (R.W.); (S.L.); (Y.W.); (Y.Z.)
| | - Haishan Sui
- Weifang City Inspection and Testing Center, Weifang 261100, China
| | - Wanzhong Li
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (M.Z.); (H.L.); (R.W.); (S.L.); (Y.W.); (Y.Z.)
| |
Collapse
|
4
|
Lombrea A, Semenescu AD, Magyari-Pavel IZ, Turks M, Lugiņina J, Peipiņš U, Muntean D, Dehelean CA, Dinu S, Danciu C. Comparison of In Vitro Antimelanoma and Antimicrobial Activity of 2,3-Indolo-betulinic Acid and Its Glycine Conjugates. PLANTS (BASEL, SWITZERLAND) 2023; 12:1253. [PMID: 36986941 PMCID: PMC10058300 DOI: 10.3390/plants12061253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Malignant melanoma is one of the most pressing problems in the developing world. New therapeutic agents that might be effective in treating malignancies that have developed resistance to conventional medications are urgently required. Semisynthesis is an essential method for improving the biological activity and the therapeutic efficacy of natural product precursors. Semisynthetic derivatives of natural compounds are valuable sources of new drug candidates with a variety of pharmacological actions, including anticancer ones. Two novel semisynthetic derivatives of betulinic acid-N-(2,3-indolo-betulinoyl)diglycylglycine (BA1) and N-(2,3-indolo-betulinoyl)glycylglycine (BA2)-were designed and their antiproliferative, cytotoxic, and anti-migratory activity against A375 human melanoma cells was determined in comparison with known N-(2,3-indolo-betulinoyl)glycine (BA3), 2,3-indolo-betulinic acid (BA4) and naturally occurring betulinic acid (BI). A dose-dependent antiproliferative effect with IC50 values that ranged from 5.7 to 19.6 µM was observed in the series of all five compounds including betulinic acid. The novel compounds BA1 (IC50 = 5.7 µM) and BA2 (IC50 = 10.0 µM) were three times and two times more active than the parent cyclic structure B4 and natural BI. Additionally, compounds BA2, BA3, and BA4 possess antibacterial activity against Streptococcus pyogenes ATCC 19615 and Staphylococcus aureus ATCC 25923 with MIC values in the range of 13-16 µg/mL and 26-32 µg/mL, respectively. On the other hand, antifungal activity toward Candida albicans ATCC 10231 and Candida parapsilosis ATCC 22019 was found for compound BA3 with MIC 29 µg/mL. This is the first report of antibacterial and antifungal activity of 2,3-indolo-betulinic acid derivatives and also the first extended report on their anti-melanoma activity, which among others includes data on anti-migratory activity and shows the significance of amino acid side chain on the observed activity. The obtained data justify further research on the anti-melanoma and antimicrobial activity of 2,3-indolo-betulinic acid derivatives.
Collapse
Affiliation(s)
- Adelina Lombrea
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.L.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.-D.S.); (D.M.); (C.A.D.)
| | - Alexandra-Denisa Semenescu
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.-D.S.); (D.M.); (C.A.D.)
- Department of Toxicology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Ioana Zinuca Magyari-Pavel
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.L.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.-D.S.); (D.M.); (C.A.D.)
| | - Māris Turks
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia; (M.T.); (J.L.); (U.P.)
| | - Jevgeņija Lugiņina
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia; (M.T.); (J.L.); (U.P.)
| | - Uldis Peipiņš
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia; (M.T.); (J.L.); (U.P.)
- Nature Science Technologies Ltd., Rupnicu Str. 4, LV-2114 Olaine, Latvia
| | - Delia Muntean
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.-D.S.); (D.M.); (C.A.D.)
- Department of Microbiology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Cristina Adriana Dehelean
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.-D.S.); (D.M.); (C.A.D.)
- Department of Toxicology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Stefania Dinu
- Department of Pedodontics, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 9 No., Revolutiei Bv., 300041 Timisoara, Romania;
- Pediatric Dentistry Research Center, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 9 No., Revolutiei Bv., 300041 Timisoara, Romania
| | - Corina Danciu
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.L.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.-D.S.); (D.M.); (C.A.D.)
| |
Collapse
|
5
|
Son J, Cha H, Lee S, Bae Y, Ryou C, Lee SY. Ursonic acid inhibits migration and invasion of human osteosarcoma cells through the suppression of mitogen-activated protein kinases and matrix metalloproteinases. Mol Biol Rep 2023; 50:4029-4038. [PMID: 36848005 DOI: 10.1007/s11033-023-08333-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023]
Abstract
INTRODUCTION Osteosarcoma (OS) is the most common form of bone malignancy. Although contemporary chemotherapy and surgery have improved the prognosis of those with OS, developing new OS therapies has proven difficult for some time. The activation of the matrix metalloproteinase (MMP) and mitogen-activated protein kinase (MAPK) signaling pathways can induce metastasis, which is an obstacle to OS treatment. Ursonic acid (UNA) is a phytochemical with the potential to cure a variety of human ailments, including cancer. METHODS AND RESULTS In this study, we investigated the anti-tumor properties of UNA in MG63 cells. We conducted colony formation assay, wound healing assay, and Boyden chamber assays to investigate the anti-OS effects of UNA. UNA was found to significantly inhibit the proliferative, migratory, and invasive abilities of MG63 cells. This bioactivity of UNA was mediated by the inhibition of extracellular signal-regulated kinase (ERK) and p38 and reduction of MMP-2 transcriptional expression as observed in western blot analysis, gelatin zymography and RT-PCR. Anti-OS activities of UNA were also observed in Saos2 and U2OS cells, indicating that its anti-cancer properties are not specific to cell types. CONCLUSION Our findings suggest that UNA has the potential for use in anti-metastatic drugs in the treatment of OS.
Collapse
Affiliation(s)
- Juhyeon Son
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam, 13120, Gyeonggi, Korea
| | - Hansol Cha
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam, 13120, Gyeonggi, Korea
| | - Sungeun Lee
- Department of Pharmacy and Institute of Pharmaceutical Sciences and Technology, Hanyang University, Ansan, Gyeonggi, Korea
| | - Yongwoong Bae
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam, 13120, Gyeonggi, Korea
| | - Chongsuk Ryou
- Department of Pharmacy and Institute of Pharmaceutical Sciences and Technology, Hanyang University, Ansan, Gyeonggi, Korea
| | - Sang Yeol Lee
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam, 13120, Gyeonggi, Korea.
| |
Collapse
|
6
|
Haridevamuthu B, Manjunathan T, Wilson Alphonse CR, Kumar RS, Thanigaivel S, Chandra Kishore S, Sundaram V, Gopinath P, Arockiaraj J, Bellucci S. Functionalized Sulfur-Containing Heterocyclic Analogs Induce Sub-G1 Arrest and Apoptotic Cell Death of Laryngeal Carcinoma In Vitro. Molecules 2023; 28:1856. [PMID: 36838844 PMCID: PMC9963856 DOI: 10.3390/molecules28041856] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/17/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
In this study, we speculate that the hydroxyl-containing benzo[b]thiophene analogs, 1-(3-hydroxybenzo[b]thiophen-2-yl) ethanone (BP) and 1-(3-hydroxybenzo[b]thiophen-2-yl) propan-1-one hydrate (EP), might possess antiproliferative activity against cancer cells. Hydroxyl-containing BP and EP show selectivity towards laryngeal cancer cells (HEp2), with IC50 values of 27.02 ± 1.23 and 35.26 ± 2.15 µM, respectively. The hydroxyl group present in the third position is responsible for the anticancer activity and is completely abrogated when the hydroxyl group is masked. BP and EP enhance the antioxidant enzyme activity and reduce the ROS production, which are correlated with the antiproliferative effect in HEp-2 cells. An increase in the BAX/BCL-2 ratio occurs during the BP and EP treatment and activates the caspase cascade, resulting in apoptosis stimulation. It also arrests the cells in the Sub-G1 phase, indicating the induction of apoptosis. The molecular docking and simulation studies predicted a strong interaction between BP and the CYP1A2 protein, which could aid in combinational therapy by enhancing the bioavailability of the drugs. BP and EP possess an antioxidant property with low antiproliferative effects (~5.18 µg/mL and ~7.8 µg/mL) as a standalone drug, therefore, they can be combined with other drugs for effective chemotherapy that might trigger the effect of pro-oxidant drug on healthy cells.
Collapse
Affiliation(s)
- B. Haridevamuthu
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Tamilvelan Manjunathan
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Carlton Ranjith Wilson Alphonse
- Molecular and Nanomedicine Research Unit, Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Rajendran Saravana Kumar
- Chemistry Division, School of Advanced Sciences, VIT University, Chennai Campus, Chennai 600127, Tamil Nadu, India
| | - Sundaram Thanigaivel
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Somasundaram Chandra Kishore
- Department of Biomedical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Vickram Sundaram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Pushparathinam Gopinath
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | | |
Collapse
|
7
|
Chen LJ, Cai ZB, Li SL, Liu SS, Ding L, He QJ, Chen LJ, Ye Q, Tian YP. Novel red light-emitting two-photon absorption compounds with large Stokes shifts for living cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121660. [PMID: 35932604 DOI: 10.1016/j.saa.2022.121660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Three novel donor-π-acceptor two-photon absorption compounds (1PZPy, 2PZIm, 3CZPy) bearing the 10-butyl-10H-phenothiazine (9-butyl-9H-carbazole) donor, the pyridinium (benzimidazolium) acceptor, and the 2,5-divinylthiophene π-bridge were synthesized and fully characterized by 1H NMR, 13C NMR, FT-IR, and HRMS. The linear and nonlinear photophysical properties were systematically investigated. Their absorption properties show a strong solvent dependence, while the emission properties are nearly independent of solvent polarity. All of them possess large Stokes shifts (Δλ=149-190 nm in H2O). 1PZPy and 3CZPy exhibit red fluorescence emission centered at about 635 and 660 nm, respectively. The two-photon absorption cross-sections measured by the open aperture Z-scan technique are determined to be 486 (1PZPy), 601 (2PZIm), and 753 GM (3CZPy) in DMF. The density functional theory calculations were further carried out to reveal their electronic structures. All the target compounds are verified to have low cytotoxicity in the working solution and good capability for one- and two-photon excitation fluorescence imaging, suggesting their potential application in bioimaging. Moreover, they show the organelle targeting ability in living cells with the high Pearson's coefficients above 0.94 for the endoplasmic reticulum.
Collapse
Affiliation(s)
- Lin-Jie Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhi-Bin Cai
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Sheng-Li Li
- Department of Chemistry, Anhui Province Key Laboratory of Functional Inorganic Materials, Anhui University, Hefei 230039, PR China
| | - Shuang-Shuang Liu
- Core Facilities, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Ling Ding
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Qiao-Jun He
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Li-Jun Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Qing Ye
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yu-Peng Tian
- Department of Chemistry, Anhui Province Key Laboratory of Functional Inorganic Materials, Anhui University, Hefei 230039, PR China
| |
Collapse
|
8
|
Lu Y, Tang Y, Wu Y, Zhang X, Yi Y, Wang W, Wang A, Yang M, Fan B, Chen G. Microbial transformation of betulonic acid by Circinella muscae CGMCC 3.2695 and anti-neuroinflammatory activity of the products. PHYTOCHEMISTRY 2022; 204:113431. [PMID: 36100092 DOI: 10.1016/j.phytochem.2022.113431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Microbial transformation of betulonic acid with Circinella muscae CGMCC 3.2695 yielded nine undescribed metabolites and eight known compounds. The structures of the metabolites were established based on extensive NMR and HR-ESI-MS data analyses. It is shown that C. muscae could catalyze the regioselective hydroxylation at C-2, C-7, C-15, C-16, C-21, and C-30 along with carbonylation at C-2 and C-21. Furthermore, potential anti-neuroinflammatory activities of the obtained compounds in NO production were tested in lipopolysaccharides-induced BV-2 cells. Some of the metabolites exhibited pronounced inhibitory activities with IC50 values of 4.27-16.68 μM.
Collapse
Affiliation(s)
- Youjia Lu
- School of Pharmacy, Nantong University, Nantong, 226001, PR China
| | - Yifei Tang
- School of Pharmacy, Nantong University, Nantong, 226001, PR China; Department of Pharmacy, Shanghai Jiading District Anting Hospital, Shanghai, 201805, PR China
| | - Yanni Wu
- School of Pharmacy, Nantong University, Nantong, 226001, PR China
| | - Xueying Zhang
- School of Pharmacy, Nantong University, Nantong, 226001, PR China
| | - Ying Yi
- School of Pharmacy, Nantong University, Nantong, 226001, PR China
| | - Wenli Wang
- School of Pharmacy, Nantong University, Nantong, 226001, PR China.
| | - Andong Wang
- School of Pharmacy, Nantong University, Nantong, 226001, PR China
| | - Min Yang
- School of Pharmacy, Nantong University, Nantong, 226001, PR China
| | - Boyi Fan
- School of Pharmacy, Nantong University, Nantong, 226001, PR China.
| | - Guangtong Chen
- School of Pharmacy, Nantong University, Nantong, 226001, PR China.
| |
Collapse
|
9
|
Chen Y, Wang F, Ji C, Liu D, Liu X, Wang R, Li W. Chemical constituents of the pericarp of Toona sinensis and their chemotaxonomic significance. BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Zhang D, Li X, Song D, Chen S, Zhang Z, Cao S, Liu M. Atractylenolide III induces apoptosis by regulating the Bax/Bcl-2 signaling pathway in human colorectal cancer HCT-116 Cells in vitro and in vivo. Anticancer Drugs 2022; 33:30-47. [PMID: 34261915 DOI: 10.1097/cad.0000000000001136] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Atractylodes is the dry root of atractylodes macrocephala koidz and has been commonly used as a traditional Chinese medicine (TCM). Atractylenolide III, a main component of atractylodes, has displayed significant effects on anti-inflammation and anticancer. However, the effects of atractylenolide III on growth inhibition and apoptosis induction in colon cancer remain unclear. The results showed that atractylenolide III significantly inhibited the cell growth and induce cellular apoptosis in HCT-116 cells in a concentration dependence manner in vitro. Mechanistic studies further showed that atractylenolide III could regulate the Bax/Bcl-2 apoptotic signaling pathway through promoting the expression of proapoptotic related gene/proteins Bax, caspase-9 and caspase-3 but inhibiting the expression of antiapoptotic related gene/protein Bcl-2 in HCT-116 cells. Furthermore, atractylenolide III also significantly inhibited the tumor growth of HCT-116 tumor xenografts bearing in nude mice through inducing apoptosis by upregulation of the expressions of Bax, cleaved caspase-3 and p53 but downregulation of the expressions of Bcl-2 in HCT-116 tumor tissues in vivo. The studies may provide the scientific rationale for the understanding of the anticancer effect of atractylenolide III. Therefore, atractylenolide III may have the potential to be developed as a promising novel anticancer agent for the treatment of colorectal cancer clinically.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University
- Pharmaceutical Department of Traditional Chinese Medicine, School of Pharmacy, Southwest Medical University
| | - Xiaofang Li
- Department of Pharmacology, School of Pharmacy, Southwest Medical University
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Daqiang Song
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Siwei Chen
- Pharmaceutical Department of Traditional Chinese Medicine, School of Pharmacy, Southwest Medical University
| | - Zhuo Zhang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University
| | - Minghua Liu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University
| |
Collapse
|
11
|
Ramadoss DP, Sivalingam N. Vanillin extracted from proso and barnyard millets induces cell cycle inhibition and apoptotic cell death in MCF-7 cell line. J Cancer Res Ther 2021; 17:1425-1433. [PMID: 34916373 DOI: 10.4103/jcrt.jcrt_1128_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Context Consuming whole grain food has been motivated due to numerous health benefits arising from their bioactive components. Aims This study aims to study whether the active compound extracted from Proso and Barnyard millets inhibits cell proliferation and induces apoptotic cell death in MCF-7 cell line. Materials and Methods Cell proliferative effect was assessed by 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay using MCF-7 cell line. Cytotoxicity was determined by release of lactate dehydrogenase (LDH) enzyme from cells. Apoptotic morphological changes in MCF-7 cells were observe under fluorescence microscope using double staining of Hoeschst 33342/propidium iodide (PI). Induction of apoptosis was analyzed using Annexin V-fluorescein isothiocyanate/PI through flow cytometry. Results In this study, cell proliferative effect of the bioactive compounds from proso millet (Compound 1) and barnyard millet (Compound 2) was evaluated using MCF-7 cell line. Both the compounds significantly inhibited the proliferation of MCF-7 cells after treated with 250 μg/ml and 1000 μg/ml concentration for 48 h. Cytotoxic activity of compounds was assessed by the release of LDH showed that these extracted compounds were not toxic to the cells. Apoptosis was confirmed by Hoechst 33,342/PI dual-staining, Annexin V-FTIC/PI staining, and flow cytometry results of cell cycle analysis shows that there was a significant cell arrest in the G0/G1 phase and increased the apoptotic cells in sub-G0 phase in a dose-dependent manner. Conclusions This study suggests that the extracted vanillin compound from these millets have effectively induced apoptotic cell death in breast cancer cell line.
Collapse
Affiliation(s)
- Deepa Priya Ramadoss
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu, Chennai, Tamil Nadu, India
| | - Nageswaran Sivalingam
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu, Chennai, Tamil Nadu, India
| |
Collapse
|
12
|
Alhakamy NA, Badr-Eldin SM, Alharbi WS, Alfaleh MA, Al-hejaili OD, Aldawsari HM, Eid BG, Bakhaidar R, Drago F, Caraci F, Caruso G. Development of an Icariin-Loaded Bilosome-Melittin Formulation with Improved Anticancer Activity against Cancerous Pancreatic Cells. Pharmaceuticals (Basel) 2021; 14:1309. [PMID: 34959710 PMCID: PMC8703505 DOI: 10.3390/ph14121309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 12/22/2022] Open
Abstract
Pancreatic cancer currently represents a severe issue for the entire world. Therefore, much effort has been made to develop an effective treatment against it. Emerging evidence has shown that icariin, a flavonoid glycoside, is an effective anti-pancreatic cancer drug. Melittin, as a natural active biomolecule, has also shown to possess anticancer activities. In the present study, with the aim to increase its effectiveness against cancerous cells, icariin-loaded bilosome-melittin (ICA-BM) was developed. For the selection of an optimized ICA-BM, an experimental design was implemented, which provided an optimized formulation with a particle size equal to 158.4 nm. After estimation of the release pattern, the anti-pancreatic cancer efficacy of this new formulation was evaluated. The MTT assay was employed for the determination of half maximal inhibitory concentration (IC50), providing smaller IC50 for ICA-BM (2.79 ± 0.2 µM) compared to blank-BM and ICA-Raw (free drug) against PNAC1, a human pancreatic cancer cell line isolated from a pancreatic carcinoma of ductal cell origin. Additionally, cell cycle analysis for ICA-BM demonstrated cell arrest at the S-phase and pre-G1 phase, which indicated a pro-apoptotic behavior of the new developed formulation. The pro-apoptotic and anti-proliferative activity of the optimized ICA-BM against PNAC1 cells was also demonstrated through annexin V staining as well as estimation of caspase-3 and p53 protein levels. It can be concluded that the optimized ICA-BM formulation significantly improved the efficacy of icariin against cancerous pancreatic cells.
Collapse
Affiliation(s)
- Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (S.M.B.-E.); (W.S.A.); (M.A.A.); (O.D.A.-h.); (H.M.A.); (R.B.)
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shaimaa M. Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (S.M.B.-E.); (W.S.A.); (M.A.A.); (O.D.A.-h.); (H.M.A.); (R.B.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Waleed S. Alharbi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (S.M.B.-E.); (W.S.A.); (M.A.A.); (O.D.A.-h.); (H.M.A.); (R.B.)
| | - Mohamed A. Alfaleh
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (S.M.B.-E.); (W.S.A.); (M.A.A.); (O.D.A.-h.); (H.M.A.); (R.B.)
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Omar D. Al-hejaili
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (S.M.B.-E.); (W.S.A.); (M.A.A.); (O.D.A.-h.); (H.M.A.); (R.B.)
| | - Hibah M. Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (S.M.B.-E.); (W.S.A.); (M.A.A.); (O.D.A.-h.); (H.M.A.); (R.B.)
| | - Basma G. Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Rana Bakhaidar
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (S.M.B.-E.); (W.S.A.); (M.A.A.); (O.D.A.-h.); (H.M.A.); (R.B.)
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Oasi Research Institute—IRCCS, 94018 Troina, Italy
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| |
Collapse
|
13
|
Lombrea A, Scurtu AD, Avram S, Pavel IZ, Turks M, Lugiņina J, Peipiņš U, Dehelean CA, Soica C, Danciu C. Anticancer Potential of Betulonic Acid Derivatives. Int J Mol Sci 2021; 22:3676. [PMID: 33916089 PMCID: PMC8037575 DOI: 10.3390/ijms22073676] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022] Open
Abstract
Clinical trials have evidenced that several natural compounds, belonging to the phytochemical classes of alkaloids, terpenes, phenols and flavonoids, are effective for the management of various types of cancer. Latest research has proven that natural products and their semisynthetic variants may serve as a starting point for new drug candidates with a diversity of biological and pharmacological activities, designed to improve bioavailability, overcome cellular resistance, and enhance therapeutic efficacy. This review was designed to bring an update regarding the anticancer potential of betulonic acid and its semisynthetic derivatives. Chemical derivative structures of betulonic acid including amide, thiol, and piperidine groups, exert an amplification of the in vitro anticancer potential of betulonic acid. With the need for more mechanistic and in vivo data, some derivatives of betulonic acids may represent promising anticancer agents.
Collapse
Affiliation(s)
- Adelina Lombrea
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.L.); (S.A.); (I.Z.P.); (C.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (C.A.D.); (C.S.)
| | - Alexandra Denisa Scurtu
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (C.A.D.); (C.S.)
- Department of Toxicology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Stefana Avram
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.L.); (S.A.); (I.Z.P.); (C.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (C.A.D.); (C.S.)
| | - Ioana Zinuca Pavel
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.L.); (S.A.); (I.Z.P.); (C.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (C.A.D.); (C.S.)
| | - Māris Turks
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia; (M.T.); (J.L.)
| | - Jevgeņija Lugiņina
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia; (M.T.); (J.L.)
| | - Uldis Peipiņš
- Nature Science Technologies Ltd., Saules Str. 19, LV-3601 Ventspils, Latvia;
| | - Cristina Adriana Dehelean
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (C.A.D.); (C.S.)
- Department of Toxicology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Codruta Soica
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (C.A.D.); (C.S.)
- Department of Pharmaceutical Chemistry, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Corina Danciu
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.L.); (S.A.); (I.Z.P.); (C.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (C.A.D.); (C.S.)
| |
Collapse
|
14
|
Supported Silver Nanoparticles as Catalysts for Liquid-Phase Betulin Oxidation. NANOMATERIALS 2021; 11:nano11020469. [PMID: 33673079 PMCID: PMC7918243 DOI: 10.3390/nano11020469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/29/2021] [Accepted: 02/08/2021] [Indexed: 12/24/2022]
Abstract
Herein, it has been shown that betulin can be transformed into its biologically active oxo-derivatives (betulone, betulinic and betulonic aldehydes) by liquid-phase oxidation over supported silver catalysts under mild conditions. In order to identify the main factors determining the catalytic behavior of nanosilver catalysts in betulin oxidation, silver was deposited on various alumina supports (γ-alumina and boehmite) using deposition–precipitation with NaOH and incipient wetness impregnation methods, followed by treatment in H2 or O2. Silver catalysts and the corresponding supports were characterized by X-ray diffraction, nitrogen physisorption, inductively coupled plasma optical emission spectroscopy, photoelectron spectroscopy and transmission electron microscopy. It was found that the support nature, preparation and treatment methods predetermine not only the average Ag nanoparticles size and their distribution, but also the selectivity of betulin oxidation, and thereby, the catalytic behavior of Ag catalysts. In fact, the support nature had the most considerable effect. Betulin conversion, depending on the support, increased in the following order: Ag/boehmite < Ag/boehmite (calcined) < Ag/γ-alumina. However, in the same order, the share of side reactions catalyzed by strong Lewis acid centers of the support also increased. Poisoning of the latter by NaOH during catalysts preparation can reduce side reactions. Additionally, it was revealed that the betulin oxidation catalyzed by nanosilver catalysts is a structure-sensitive reaction.
Collapse
|
15
|
Turkez H, Cacciatore I, Marinelli L, Fornasari E, Aslan ME, Cadirci K, Kahraman CY, Caglar O, Tatar A, Di Biase G, Hacimuftuoglu A, Di Stefano A, Mardinoglu A. Glycyl-L-Prolyl-L-Glutamate Pseudotripeptides for Treatment of Alzheimer's Disease. Biomolecules 2021; 11:biom11010126. [PMID: 33478054 PMCID: PMC7835747 DOI: 10.3390/biom11010126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
So far, there is no effective disease-modifying therapies for Alzheimer’s Disease (AD) in clinical practice. In this context, glycine-L-proline-L-glutamate (GPE) and its analogs may open the way for developing a novel molecule for treating neurodegenerative disorders, including AD. In turn, this study was aimed to investigate the neuroprotective potentials exerted by three novel GPE peptidomimetics (GPE1, GPE2, and GPE3) using an in vitro AD model. Anti-Alzheimer potentials were determined using a wide array of techniques, such as measurements of mitochondrial viability (MTT) and lactate dehydrogenase (LDH) release assays, determination of acetylcholinesterase (AChE), α-secretase and β-secretase activities, comparisons of total antioxidant capacity (TAC) and total oxidative status (TOS) levels, flow cytometric and microscopic detection of apoptotic and necrotic neuronal death, and investigating gene expression responses via PCR arrays involving 64 critical genes related to 10 different pathways. Our analysis showed that GPE peptidomimetics modulate oxidative stress, ACh depletion, α-secretase inactivation, apoptotic, and necrotic cell death. In vitro results suggested that treatments with novel GPE analogs might be promising therapeutic agents for treatment and/or or prevention of AD.
Collapse
Affiliation(s)
- Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, 25240 Erzurum, Turkey
- Correspondence: (H.T.); (A.M.)
| | - Ivana Cacciatore
- Department of Pharmacy, Univerisity “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo, Chieti, Italy; (I.C.); (L.M.); (E.F.); (G.D.B.); (A.D.S.)
| | - Lisa Marinelli
- Department of Pharmacy, Univerisity “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo, Chieti, Italy; (I.C.); (L.M.); (E.F.); (G.D.B.); (A.D.S.)
| | - Erika Fornasari
- Department of Pharmacy, Univerisity “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo, Chieti, Italy; (I.C.); (L.M.); (E.F.); (G.D.B.); (A.D.S.)
| | - Mehmet Enes Aslan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25200 Erzurum, Turkey; (M.E.A.); (O.C.)
| | - Kenan Cadirci
- Department of Internal Medicine, Erzurum Regional Training and Research Hospital, Health Sciences University, 25200 Erzurum, Turkey;
| | - Cigdem Yuce Kahraman
- Department of Medical Genetics, Faculty of Medicine, Atatürk University, 25240 Erzurum, Turkey; (C.Y.K.); (A.T.)
| | - Ozge Caglar
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25200 Erzurum, Turkey; (M.E.A.); (O.C.)
| | - Abdulgani Tatar
- Department of Medical Genetics, Faculty of Medicine, Atatürk University, 25240 Erzurum, Turkey; (C.Y.K.); (A.T.)
| | - Giuseppe Di Biase
- Department of Pharmacy, Univerisity “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo, Chieti, Italy; (I.C.); (L.M.); (E.F.); (G.D.B.); (A.D.S.)
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, 25240 Erzurum, Turkey;
| | - Antonio Di Stefano
- Department of Pharmacy, Univerisity “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo, Chieti, Italy; (I.C.); (L.M.); (E.F.); (G.D.B.); (A.D.S.)
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH—Royal Institute of Technology, 24075 Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Dental Institute, King’s College London, London SE1 9RT, UK
- Correspondence: (H.T.); (A.M.)
| |
Collapse
|
16
|
Son J, Lee SY. Therapeutic Potential of Ursonic Acid: Comparison with Ursolic Acid. Biomolecules 2020; 10:E1505. [PMID: 33147723 PMCID: PMC7693102 DOI: 10.3390/biom10111505] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 12/12/2022] Open
Abstract
Plants have been used as drugs to treat human disease for centuries. Ursonic acid (UNA) is a naturally occurring pentacyclic triterpenoid extracted from certain medicinal herbs such as Ziziphus jujuba. Since the pharmacological effects and associated mechanisms of UNA are not well-known, in this work, we attempt to introduce the therapeutic potential of UNA with a comparison to ursolic acid (ULA), a well-known secondary metabolite, for beneficial effects. UNA has a keto group at the C-3 position, which may provide a critical difference for the varied biological activities between UNA and ULA. Several studies previously showed that UNA exerts pharmaceutical effects similar to, or stronger than, ULA, with UNA significantly decreasing the survival and proliferation of various types of cancer cells. UNA has potential to exert inhibitory effects in parasitic protozoa that cause several tropical diseases. UNA also exerts other potential effects, including antihyperglycemic, anti-inflammatory, antiviral, and antioxidant activities. Of note, a recent study highlighted the suppressive potential of UNA against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Molecular modifications of UNA may enhance bioavailability, which is crucial for in vivo and clinical studies. In conclusion, UNA has promising potential to be developed in anticancer and antiprotozoan pharmaceuticals. In-depth investigations may increase the possibility of UNA being developed as a novel reagent for chemotherapy.
Collapse
Affiliation(s)
| | - Sang Yeol Lee
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam, Gyeonggi 13120, Korea;
| |
Collapse
|
17
|
Cheng J, Zhao H, Wang J, Han Y, Yang X. Bioactive Natural Small Molecule-Tuned Coassembly of Photosensitive Drugs for Highly Efficient Synergistic and Enhanced Type I Photochemotherapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:43488-43500. [PMID: 32870657 DOI: 10.1021/acsami.0c13164] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Self-assembling natural small molecules (NSMs) with favorable anticancer activity are of increasing interest as novel drug delivery platforms without structural modification for biomedical applications. However, a lack of knowledge and practicability of NSMs as drug carriers limited their current biomedical application. Here, via a green and facile supramolecular coassembly strategy, we report and develop a series of carrier-free terpenoid natural small molecule-mediated coassembled photosensitive drugs for enhanced and synergistic chemo/photodynamic therapy. After screening 17 terpenoid NSMs, we identified 11 compounds that could form coassembled NSMs-Ce6 NPs with regulatable drug sizes. Analysis of the representative betulonic acid (BC)-mediated nano-coassemblies (BC-Ce6 NPs) reveals the high efficiency of the coassembly strategy and highlights the tremendous potential of NSMs as novel drug delivery platforms. Through molecular dynamics simulation and theoretical calculations, we elucidate the mystery of the coassembly process, indicating that the linear coplanar arrangement of BC dimeric units is primarily responsible for the formation of rod-like or spherical morphology. Meanwhile, we demonstrated that the reduced energy gap between the singlet and triplet excited states (ΔEST) facilitates efficient reactive oxygen species generation by promoting ·OH generation via a type I photoreaction mechanism. The assembled nanodrugs exhibit multiple favorable therapeutic features, ensuring a remarkably enhanced, synergistic, and secure combinatorial anticancer efficacy of 93.6% with highly efficient tumor ablation. This work not only expands the possibility of natural biodegradable materials for wide biological applications but also provides a new perspective for the construction of NSM-mediated nano-coassemblies for precision therapy.
Collapse
Affiliation(s)
- Jianjun Cheng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92, West Dazhi Street, Nangang District, Harbin 150001, China
| | - Haitian Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92, West Dazhi Street, Nangang District, Harbin 150001, China
| | - Jiacheng Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92, West Dazhi Street, Nangang District, Harbin 150001, China
| | - Ying Han
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92, West Dazhi Street, Nangang District, Harbin 150001, China
| | - Xin Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92, West Dazhi Street, Nangang District, Harbin 150001, China
| |
Collapse
|
18
|
Wang J, Qiao W, Zhao H, Yang X. Paclitaxel and betulonic acid synergistically enhance antitumor efficacy by forming co-assembled nanoparticles. Biochem Pharmacol 2020; 182:114232. [PMID: 32979350 DOI: 10.1016/j.bcp.2020.114232] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022]
Abstract
The side effects and low bioavailability of paclitaxel (PTX) limit its clinical application. The formation of self-assembled nanomedicines without structural modification is attractive for biomedical applications. Here, we constructed a supramolecular co-assembled nanoparticles (NPs), which is formed by betulonic acid (BTA) and PTX mainly through hydrogen bond interaction and hydrophobic interaction. It not only has the characteristics of NPs but also the activity of natural small molecules (NSMs). The results of in vitro and in vivo experiments showed that BTA-PTX NPs showed excellent synergistic enhancement of anti-tumor efficacy, because BTA and PTX have different anti-tumor mechanisms. What's more, BTA-PTX NPs showed excellent biosafety and low toxicity, because BTA has impressive biological activity and biosafety. This work provides an effective and simple method to construct high efficiency and minimize side effects of NPs, which provides more possibilities for the application of NSMs in drug delivery.
Collapse
Affiliation(s)
- Jiacheng Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92 West Dazhi Street, Nan Gang District, Harbin, Heilongjiang 150001, PR China
| | - Wenshu Qiao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92 West Dazhi Street, Nan Gang District, Harbin, Heilongjiang 150001, PR China
| | - Haitian Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92 West Dazhi Street, Nan Gang District, Harbin, Heilongjiang 150001, PR China.
| | - Xin Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92 West Dazhi Street, Nan Gang District, Harbin, Heilongjiang 150001, PR China.
| |
Collapse
|
19
|
Fang H, Ji H. Furanocoumarin A: A Novel Anticancer Agent on Human Lung Cancer A549 Cells from Fructus liquidambaris. Anticancer Agents Med Chem 2020; 19:2091-2096. [PMID: 31782355 DOI: 10.2174/1871520619666191010102526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/17/2019] [Accepted: 07/31/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVE The fruit of Fructus liquidambaris, which is recently being used for cancer treatment, has a history to be used as a traditional medicine in China for thousands of years. MATERIALS AND METHODS Ten kg of dried F. liquidambaris was obtained with 70% alcohol-water solution under reflux for three times. The condensed extract was obtained from petroleum ether, ethyl acetate and N-butyl alcohol, respectively. Ethyl acetate extract was subjected to silica gel column, Sephadex LH-20, ODS column chromatography and RP-HPLC column chromatography to yield a new compound (1). The structure was identified through intensive analysis of NMR and MS spectra. The antitumor mechanism of the furanocoumarin A on human lung cancer A549 cells was confirmed by detecting the apoptosis-related proteins. RESULTS Furanocoumarin A (1), a novel furanocoumarin constituent was isolated and identified from F. Liquidambaris. The IC50 value of furanocoumarin A on A549 cell lines was 65.28±5.36µM obtained by the method of MTT. The compound could induce the apoptosis of A549 cells by inducing 21.5% early apoptosis and 32.4% late apoptosis at the concentration of 60µmol/L. Western blot analysis indicated that protein expressions of p53, caspase 3 and Bax increased in a dose-dependent manner between the concentrations from 40 to 80µM. The protein expression of Bcl-2 decreased the concentration of 60 and 80µM. The ratio of Bcl-2 to Bax was inversely proportional to the dose concentration. CONCLUSION Furanocoumarin A could be a novel anticancer agent from herbal medicine.
Collapse
Affiliation(s)
- Hui Fang
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Hongmei Ji
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| |
Collapse
|
20
|
Dubinin MV, Semenova AA, Ilzorkina AI, Mikheeva IB, Yashin VA, Penkov NV, Vydrina VA, Ishmuratov GY, Sharapov VA, Khoroshavina EI, Gudkov SV, Belosludtsev KN. Effect of betulin and betulonic acid on isolated rat liver mitochondria and liposomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183383. [PMID: 32522531 DOI: 10.1016/j.bbamem.2020.183383] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 01/01/2023]
Abstract
The paper considers the effects of plant triterpenoid betulin and its derivative betulonic acid on rat liver mitochondria and liposomes. It was found that betulonic acid and, to a lesser extent, betulin, activate mitochondrial respiration in states 2 and 4 and inhibit ADP- and DNP-stimulated (uncoupled) respiration. The effect of betulonic acid resulted in a significant decrease of the respiratory control and ADP/O ratios and decrease in Δψ. The effects of both compounds were most pronounced in the case of succinate-fueled mitochondrial respiration. This may include both the possible protonophore effect of betulonic acid and the inhibition of respiratory chain complexes by both compounds. Both agents enhanced H2O2 production in succinate-fueled mitochondria, while betulonic acid exerted an antioxidant effect with NAD-dependent substrates. Betulin was found to induce mitochondrial aggregation, but had no effect on membrane permeability. A similar pattern was found on liposomes. As revealed by the laurdan generalized polarization (GP) technique, betulin increased laurdan GP in lecithin liposomes, indicating a decrease in membrane fluidity. Measurements of GP as a function of fluorescence excitation wavelength gave an ascending line for high concentrations of betulin, which can be interpreted as phase heterogeneity of the lipid/betulin system. High concentrations of betulin (> 60 mol%) was also demonstrated to cause permeabilization of lecithin liposomes. Betulonic acid was much less effective in inducing the aggregation of mitochondria and liposomes and had no effect on membrane permeability. The possible mechanisms of betulin and betulonic acid effect on rat liver mitochondria and liposomes are discussed.
Collapse
Affiliation(s)
- Mikhail V Dubinin
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El, 424001, Russia.
| | - Alena A Semenova
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El, 424001, Russia
| | - Anna I Ilzorkina
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El, 424001, Russia
| | - Irina B Mikheeva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, Moscow Region, 142290, Russia
| | - Valery A Yashin
- Institute of Cell Biophysics, Russian Academy of Sciences, PSCBR RAS, Institutskaya 3, Pushchino, Moscow Region, 142290, Russia
| | - Nikita V Penkov
- Institute of Cell Biophysics, Russian Academy of Sciences, PSCBR RAS, Institutskaya 3, Pushchino, Moscow Region, 142290, Russia
| | - Valentina A Vydrina
- Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, Prosp. Oktyabrya 71, Ufa, Republic of Bashkortostan, 450054, Russia
| | - Gumer Yu Ishmuratov
- Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, Prosp. Oktyabrya 71, Ufa, Republic of Bashkortostan, 450054, Russia
| | | | | | - Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova 38, Moscow, 119991, Russia
| | - Konstantin N Belosludtsev
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El, 424001, Russia; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
21
|
Turkez H, Cacciatore I, Arslan ME, Fornasari E, Marinelli L, Di Stefano A, Mardinoglu A. Histidyl-Proline Diketopiperazine Isomers as Multipotent Anti-Alzheimer Drug Candidates. Biomolecules 2020; 10:biom10050737. [PMID: 32397415 PMCID: PMC7277666 DOI: 10.3390/biom10050737] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/26/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
Cyclic dipeptides administered by both parenteral and oral routes are suggested as promising candidates for the treatment of neurodegeneration-related pathologies. In this study, we tested Cyclo (His-Pro) isomers (cHP1-4) for their anti-Alzheimer potential using a differentiated human neuroblastoma cell line (SH-SY5Y) as an Alzheimer’s disease (AD) experimental model. The SH-SY5Y cell line was differentiated by the application of all-trans retinoic acid (RA) to obtain mature neuron-like cells. Amyloid-beta 1-42 (Aβ1-42) peptides, the main effector in AD, were administered to the differentiated cell cultures to constitute the in vitro disease model. Next, we performed cell viability analyses 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) release assays) to investigate the neuroprotective concentrations of cyclodipeptides using the in vitro AD model. We evaluated acetylcholinesterase (AChE), α- and β-secretase activities (TACE and BACE1), antioxidant potency, and apoptotic/necrotic properties and performed global gene expression analysis to understand the main mechanism behind the neuroprotective features of cHP1-4. Moreover, we conducted sister chromatid exchange (SCE), micronucleus (MN), and 8-hydroxy-2′-deoxyguanosine (8-OHdG) analyses to evaluate the genotoxic damage potential after applications with cHP1-4 on cultured human lymphocytes. Our results revealed that cHP1-4 isomers provide a different degree of neuroprotection against Aβ1-42-induced cell death on the in vitro AD model. The applications with cHP1-4 isomers altered the activity of AChE but not the activity of TACE and BACE1. Our analysis indicated that the cHP1-4 increased the total antioxidant capacity without altering total oxidative status levels in the cellular AD model and that cHP1-4 modulated the alterations of gene expressions by Aβ1-42 exposure. We also observed that cHP1-4 exhibited noncytotoxic and non-genotoxic features in cultured human whole blood cells. In conclusion, cHP1-4 isomers, especially cHP4, have been explored as novel promising therapeutics against AD.
Collapse
Affiliation(s)
- Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, 25240 Erzurum, Turkey
- Correspondence: (H.T.); (A.M.)
| | - Ivana Cacciatore
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, via dei Vestini 31, 66100 Chieti Scalo (CH), Italy; (I.C.); (E.F.); (L.M.); (A.D.S.)
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25050 Erzurum, Turkey;
| | - Erika Fornasari
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, via dei Vestini 31, 66100 Chieti Scalo (CH), Italy; (I.C.); (E.F.); (L.M.); (A.D.S.)
| | - Lisa Marinelli
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, via dei Vestini 31, 66100 Chieti Scalo (CH), Italy; (I.C.); (E.F.); (L.M.); (A.D.S.)
| | - Antonio Di Stefano
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, via dei Vestini 31, 66100 Chieti Scalo (CH), Italy; (I.C.); (E.F.); (L.M.); (A.D.S.)
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121 Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK
- Correspondence: (H.T.); (A.M.)
| |
Collapse
|
22
|
Molodykh OP, Sorokina IV, Vinogradova EV, Kapustina VI, Khodakov AA. Ultrastructure of the Liver in Response to Cyclophosphamide and Triterpenoids. Bull Exp Biol Med 2020; 168:400-405. [PMID: 31938907 DOI: 10.1007/s10517-020-04718-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Indexed: 10/25/2022]
Abstract
Ultrastructural reorganization of liver cells after isolated injections of cyclophosphamide, betulonic acid or its β-alanylamide, and combined treatment with the cytostatic and each of the triterpenoids is studied. Cyclophosphamide causes significant ultrastructural changes in all intracellular compartments of hepatocytes. Both triterpenoids cause moderate cytotoxic and stimulatory effects on the liver cell populations (hepatocytes, sinusoidal endotheliocytes, and Kupffer cells), when used alone. The cytotoxic effect of betulonic acid manifests in modification of the fine structure of hepatocyte mitochondria, sequestration of glycogen, intensification of autophagic processes, emergence of necrobiotic changes in hepatocytes and endotheliocytes; betulonic acid amide actively modifies the mitochondrial fine structure (hypertrophic organelles, matrix rarefaction, uneven dilatation of cristae). The effects of combinations of cyclophosphamide with betulonic acid or its amide on liver are polytarget: the cytotoxic activity of the cytostatic is potentiated towards some cells, while in other cells the regeneratory reactions are stimulated. The common cytological cytoprotective effects of betulonic acid and its amide used alone and in combination with cytostatics include stimulation of the endocytotic (pinocytotic) activities of the cells and stimulation of intracellular regeneration processes in them.
Collapse
Affiliation(s)
- O P Molodykh
- Institute of Molecular Pathology and Pathomorphology, Novosibirsk, Russia.
| | - I V Sorokina
- N. N. Vorozhtsov Institute of Organic Chemistry, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E V Vinogradova
- Institute of Molecular Pathology and Pathomorphology, Novosibirsk, Russia
| | - V I Kapustina
- Institute of Molecular Pathology and Pathomorphology, Novosibirsk, Russia
| | - A A Khodakov
- N. N. Vorozhtsov Institute of Organic Chemistry, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
23
|
Wei Y, Li F, Li L, Huang L, Li Q. Genetic and Biochemical Characterization of an Exopolysaccharide With in vitro Antitumoral Activity Produced by Lactobacillus fermentum YL-11. Front Microbiol 2019; 10:2898. [PMID: 31921073 PMCID: PMC6929415 DOI: 10.3389/fmicb.2019.02898] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 12/02/2019] [Indexed: 12/20/2022] Open
Abstract
In the present study, the whole genome sequence of Lactobacillus fermentum YL-11, a novel exopolysaccharide (EPS)-producing lactic acid bacteria (LAB) strain isolated from fermented milk, was determined. Genetic information and the synthetic mechanism of the EPS in L. fermentum YL-11 were identified based on bioinformatic analysis of the complete genome. The purified EPS of YL-11 mainly comprised galactose (48.0%), glucose (30.3%), mannose (11.8%), and arabinose (6.0%). In vitro, the EPS from YL-11 exhibited inhibition activity against HT-29 and Caco-2 colon cancer cells, suggesting that EPS from strain YL-11 might be used as an antitumoral agent. EPS at 600 and 800 μg/mL achieved inhibition rates of 46.5 ± 3.5% and 45.6 ± 6.1% to HT-29 cells, respectively. The genomic information about L. fermentum YL-11 and the antitumoral activity of YL-11 EPS provide a theoretical foundation for the future application of EPS in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Yunlu Wei
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| | - Fei Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| | - Le Li
- Department of Environmental and Quality Inspection, Chongqing Chemical Industry Vocational College, Chongqing, China
| | - Linlin Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| | - Quanhong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| |
Collapse
|
24
|
Ursonic acid exerts inhibitory effects on matrix metalloproteinases via ERK signaling pathway. Chem Biol Interact 2019; 315:108910. [PMID: 31790661 DOI: 10.1016/j.cbi.2019.108910] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/23/2019] [Accepted: 11/27/2019] [Indexed: 01/01/2023]
Abstract
Ursonic acid is a pentacyclic triterpenoid compound that can be extracted from Ziziphus jujuba Mill., a traditional medicine. Matrix metalloproteinases (MMPs) are involved in cancer metastasis and skin aging. Regulation of various MMPs is closely associated with mitogen-activated protein kinases (MAPKs), including ERK, p38, and JNK MAPKs. In this study, we investigated the possibility of ursonic acid as an anti-cancer/anti-skin aging agent targeting MMPs. Cytotoxic effects of ursonic acid were analyzed by cell counting kit-8 (CCK-8) assay. Invasive abilities of ursonic acid-treated A549 and H1299 non-small cell lung cancer (NSCLC) cells were tested with Boyden chamber assay. Effects of ursonic acid on MMPs were analyzed by zymography assays and quantitative real time polymerase chain reaction (qRT-PCR). We also conducted flow cytometry and western blot analysis to elucidate the mechanisms of MMP regulation by ursonic acid. Our results revealed that ursonic acid inhibited transcriptional expression of gelatinases (MMP-2 and MMP-9) via inhibition of ERK and CREB signaling pathways in NSCLC cells. Moreover, ursonic acid reduced mRNA levels of collagenase (MMP-1) via suppression of ERK and c-Fos signaling pathways in HaCaT keratinocytes. These results suggest that ursonic acid could be a potential candidate for development of an effective novel anti-cancer and anti-wrinkle agent.
Collapse
|
25
|
Barnawi IO, Ali I. Anticancer Potential of Pulicaria crispa Extract on Human Breast Cancer MDA-MB-231 Cells. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180816666190712110224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Background:
Breast cancer is the common cause of deaths among women globally with
15% mortality globally.
Introduction:
Today, about 80% of the rural population depends on natural products as primary
health care. Pulicaria crispa (L., family Compositae) is utilized in traditional medicine for curing
colds, coughs, colic, and excessive sweating and as a carminative.
Methods:
The extracts of Pulicaria crispa; grown in Saudi Arabia; were assessed to measure the
cytotoxicity with MDA-MB-231 breast cancer cell lines. Soxhlet extraction was utilized for stem,
leaves and flower with 70% ethanol. The cytotoxicity of the extracts with MDA-MB-231 breast cancer
cells was evaluated by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT)
and lactate dehydrogenase (LDH) assays.
Results:
The apoptotic cellular morphological alterations were detected by fluorescence microscopes.
The results indicated that Pulicaria crispa exhibited a strong anticancer activity with a halfmaximal
inhibitory concentration (IC50) of 180 µg/mL against breast cancer cells. The loss in cell
integrity, shrinkage of cytoplasm, and cell detachment were seen in the extract treated with MDAMB-
231 cells. The cell death was due to membrane destruction.
Conclusion:
Pulicaria crispa extracts indicated significant cytotoxicity against human breast cancer
cells (MDA-MB-231 cells). The extract of this plant may be given to the patients having breast
cancer.
Collapse
Affiliation(s)
- Ibrahim Omar Barnawi
- Department of Biology, College of Sciences, Taibah University, Al-Medina Al-Munawara - 41477, India
| | - Imran Ali
- Department of Chemistry, College of Sciences, Taibah University, Al-Medina Al-Munawara - 41477, Saudi Arabia
| |
Collapse
|
26
|
Pleurotus highking Mushroom Induces Apoptosis by Altering the Balance of Proapoptotic and Antiapoptotic Genes in Breast Cancer Cells and Inhibits Tumor Sphere Formation. ACTA ACUST UNITED AC 2019; 55:medicina55110716. [PMID: 31661925 PMCID: PMC6915458 DOI: 10.3390/medicina55110716] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/15/2019] [Accepted: 10/22/2019] [Indexed: 01/06/2023]
Abstract
Background and objectives: Mushrooms that have medicinal properties are part of many traditional diets. The aim of the present study was to use the human breast cancer cell line MCF-7 to investigate the anticancer activity of Pleurotus highking mushroom purified extract fraction-III (PEF-III) and to elucidate the possible mechanism of that activity. Materials and Methods: The effects of PEF-III on cell proliferation and viability were evaluated by a colony formation assay and an MTT assay, respectively. Cell morphological changes, annexin-V phycoerythrin and propidium iodide (PI) staining, DNA fragmentation, and caspase 3/7 activity assays were performed to determine the induction of apoptosis by PEF-III. The genes responsible for regulation of apoptosis were analyzed by means of Western blot analysis. In vitro tumor sphere formation assay was performed using a 3D sphere culture system. Results: PEF-III significantly reduced the proliferation and viability of MCF-7 cells. Cell shrinkage and rounding, and annexin-V phycoerythrin and PI staining followed by flow cytometry indicated that the cell death was due to apoptosis. Additionally, a laddering DNA pattern and increased levels of caspase-3/7 enzyme also corroborated the notion of apoptosis-mediated cell death. This incidence was further confirmed by upregulation of proapoptotic genes (p53 and its target gene, Bax) and downregulation of the expression of an antiapoptotic gene (Bcl-2). PEF-III also reduced the size and number of the tumor spheres in 3D culture conditions. Conclusions: The anticancer activity of PEF-III is due to induction of apoptosis by a shift in the balance of proapoptotic and antiapoptotic genes. Therefore, the findings of the present study may open a path to exploring potential drug candidates from the P.highking mushroom for combating breast cancer.
Collapse
|
27
|
Ramadoss DP, Sivalingam N. Vanillin extracted from Proso and Barnyard millets induce apoptotic cell death in HT-29 human colon cancer cell line. Nutr Cancer 2019; 72:1422-1437. [PMID: 31604383 DOI: 10.1080/01635581.2019.1672763] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In the present study, we hypothesized that the active compound extracted from Proso and Barnyard millets inhibits cell proliferation and apoptosis induction in colon cancer cell line. The bioactive compounds from these millets were purified by supercritical fluid extraction and their structure was elucidated using spectroscopic methods. Extracted bioactive components from these millets were similar in chemical structure to the phenolic aldehyde-Vanillin [4-Hydroxy-3-methoxybenzaldehyde]. Cell proliferative effect was assessed by MTT assay using HT-29 cell line. Compound 1 significantly inhibited the proliferation of HT-29 cells when treated with concentrations of 250 µg/ml and 1,000 µg/ml for 48 h, while compound 2 moderately inhibited the proliferation of the HT-29 cell line at the same concentration and time period. Cytotoxic activity of extracted compounds by the release of lactate dehydrogenase confirms that these compounds were not toxic to the cells at 250 µg/ml of compounds 1 and 2. In addition, flow cytometry results show a significant cell arrest in the G0/G1 phase and increase in the apoptotic cells in sub G0 phase, in a dose-dependent manner when compared with the control. The conclusion of this study suggests that the anticancer property of these millets is mediated through the presence of vanillin.
Collapse
Affiliation(s)
- Deepa Priya Ramadoss
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Nageswaran Sivalingam
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
28
|
Sui J, Qu C, Yang J, Zhang W, Ji Y. Transcriptome changes in the phenylpropanoid pathway in senescing leaves of Toona sinensis. ACTA PHYSIOLOGIAE PLANTARUM 2019; 41:126. [PMID: 32214546 PMCID: PMC7088779 DOI: 10.1007/s11738-019-2915-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 05/27/2019] [Accepted: 06/03/2019] [Indexed: 05/04/2023]
Abstract
Toona sinensis is a deciduous tree native to eastern and southeastern Asia that has important culinary and cultural values. To expand current knowledge of the transcriptome and functional genomics in this species, a de novo transcriptome sequence analysis of young and mature leaf tissues of T. sinensis was performed using the Illumina platform. Over 8.1 Gb of data were generated, assembled into 64,541 unigenes, and annotated with known biological functions. Proteins involved in primary metabolite biosynthesis were identified based on similarities to known proteins, including some related to biosynthesis of carbohydrates, amino acids, lipids, and energy. Analysis of unigenes differentially expressed between young and mature leaves (transcriptomic libraries 'YL' and 'ML', respectively) showed that the KEGG pathways of phenylpropanoid, naringenin, lignin, cutin, suberin, and wax biosynthesis were significantly enriched in mature leaves. These results not only expand knowledge of transcriptome characteristics for this valuable species, but also provide a useful transcriptomic dataset to accelerate the researches on its metabolic mechanisms and functional genomics. This study can also further the understanding of unique aromatic metabolism and Chinese medicinal properties of T. sinensis.
Collapse
Affiliation(s)
- Juanjuan Sui
- Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine, Fuyang Normal University, Fuyang, 236037 Anhui China
| | - Changqing Qu
- Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine, Fuyang Normal University, Fuyang, 236037 Anhui China
| | - Jingxia Yang
- Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine, Fuyang Normal University, Fuyang, 236037 Anhui China
| | - Wenna Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 China
| | - Yuntao Ji
- Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine, Fuyang Normal University, Fuyang, 236037 Anhui China
| |
Collapse
|
29
|
Hussain S, Ullah F, Sadiq A, Ayaz M, Shah AUHA, Ali Shah SA, Shah SM, Nadhman A, Ullah F, Wadood A, El-Shazly M. Cytotoxicity of Anchusa arvensis Against HepG-2 Cell Lines: Mechanistic and Computational Approaches. Curr Top Med Chem 2019; 19:2805-2813. [PMID: 31702502 DOI: 10.2174/1568026619666191105103801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/02/2019] [Accepted: 09/25/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Liver cancer is a devastating cancer with increasing incidence and mortality rates worldwide. Plants possess numerous therapeutic properties, therefore the search for novel, naturally occurring cytotoxic compounds is urgently needed. METHODS The anticancer activity of plant extracts and isolated compounds from Anchusa arvensis (A. arvensis) were studied against the cell culture of HepG-2 (human hepatocellular carcinoma cell lines) using 3-(4,5-Dimethylthiazol-yl)-diphenyl tetrazoliumbromide (MTT) assay. Apoptosis was investigated by performing Acridine orange -ethidium bromide staining, styox green assay and DNA interaction study. We also used tools for computational chemistry studies of isolated compounds with the tyrosine kinase. RESULTS In MTT assay, the crude extract caused a significant cytotoxic effect with IC50 of 34.14 ± 0.9 μg/ml against HepG-2 cell lines. Upon fractionation, chloroform fraction (Aa.Chm) exhibited the highest antiproliferative activity with IC50 6.55 ± 1.2 μg/ml followed by ethyl acetate (Aa.Et) fraction (IC50, 24.59 ± 0.85 μg/ml) and n-hexane (Aa.Hex) fraction (IC50 29.53 ± 1.5μg/ml). However, the aqueous (Aa.Aq) fraction did not show any anti-proliferative activity. Bioactivity-guided isolation led to the isolation of two compounds which were characterized as para-methoxycatechol (1) and decane (2) through various spectroscopic techniques. Against HepG-2 cells, compound 1 showed marked potency with IC50 6.03 ± 0.75 μg/ml followed by 2 with IC50 18.52 ± 1.9 μg/ml. DMSO was used as a negative control and doxorubicin as a reference standard (IC50 1.3 ± 0.21 μg/ml). It was observed that compounds 1-2 caused apoptotic cell death evaluated by Acridine orange -ethidium bromide staining, styox green assay and DNA interaction study, therefore both compounds were tested for molecular docking studies against tyrosine kinase to support cytotoxic activity. CONCLUSION This study revealed that the plant extracts and isolated compounds possess promising antiproliferative activity against HepG-2 cell lines via apoptotic cell death.
Collapse
Affiliation(s)
- Sajid Hussain
- Department of Pharmacy, University of Malakand, Malakand, Pakistan
- Department of Pharmacy, Kohat University of Science & Technology, Kohat, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, University of Malakand, Malakand, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Malakand, Pakistan
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Malakand, Pakistan
| | | | - Syed Adnan Ali Shah
- Research Institute of Natural Products for Drug Discovery (RiND), Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Shah Alam, Malaysia
| | - Syed Majid Shah
- Department of Pharmacy, University of Malakand, Malakand, Pakistan
- Department of Pharmacy, Kohat University of Science & Technology, Kohat, Pakistan
| | - Akhtar Nadhman
- Institute of Integrative Biosciences IIB, CECOS University, Peshawar, Pakistan
| | - Farman Ullah
- Department of Pharmacy, Kohat University of Science & Technology, Kohat, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mohamed El-Shazly
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| |
Collapse
|
30
|
Toona sinensis: a comprehensive review on its traditional usages, phytochemisty, pharmacology and toxicology. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2018; 29:111-124. [PMID: 32287507 PMCID: PMC7103134 DOI: 10.1016/j.bjp.2018.07.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/09/2018] [Indexed: 02/06/2023]
Abstract
Toona sinensis (Juss.) M.Roem, Meliaceae, a deciduous plant native to eastern and southeastern Asia, is widely used in Traditional Chinese Medicine. This paper was aimed to summarize the current advances in traditional usage, phytochemistry, pharmacology and toxicology of T. sinensis. In this review, various types of data of T. sinensis are discussed in the corresponding parts of this paper, and perspectives for possible future studies of this plant are discussed. The main constituents of T. sinensis are terpenoids, phenylpropanoids and flavonoids, etc., and its pharmacological activities include anti-tumor effects, antioxidant activities, anti-diabetic effects and anti-inflammatory effects. Although a series of phytochemical and pharmacological researches of this plant have been conducted, the active constituents and action mechanism of these activities should be also further explored. Furthermore, the present review also indicates that T. sinensis has potentials to develop into drugs for treating various diseases with high efficacy and low toxicity, particularly in cancer, diabetes and inflammatory disorders. In conclusion, the paper provides a full-scale profile of the traditional usage, phytochemistry, pharmacology and toxicology of T. sinensis, and also provides potential therapeutic uses and drug development prospects of this plant.
Collapse
|
31
|
You L, Liu X, Fang Z, Xu Q, Zhang Q. Synthesis of multifunctional Fe 3O 4@PLGA-PEG nano-niosomes as a targeting carrier for treatment of cervical cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 94:291-302. [PMID: 30423711 DOI: 10.1016/j.msec.2018.09.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 05/25/2018] [Accepted: 09/15/2018] [Indexed: 11/27/2022]
Abstract
A new folic acid (FA)-conjugated poly (lactic-co-glycolicacid) (PLGA)-polyethylene glycol (PEG) nano-noisome was prepared. The noisome was employed as a drug delivery system to load curcumin (Cur) as a model drug and fluorescent probe for cervical cancer therapy and cell imaging. The Fe3O4@PLGA-PEG@FA noisomes were prepared through facile emulsion solvent evaporation and conjugation chemistry method, possessing the properties of high rapid magnetic separation and targeting character. X-ray photoelectron spectroscopy (XRD), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), thermogravimetric analysis (TGA), and vibrating sample magnetometer (VSM) were adopted to characterize the chemical structure and properties of these niosomes. MTT assay revealed that the blank noisomes exhibited excellent biocompatibility. The in vitro drug loading and release behavior studier showed the as prepared nano-noisome presented ultrahigh performance as drug carrier. The confocal laser scanning microscopy (CLSM) and flow cytometry (FCM) experiments demonstrated that Cur-loaded Fe3O4@PLGA-PEG@FA niosomes achieved significantly high targeting efficiency for cervical cancer. Additionally, the FA-targeted niosomes exhibited higher antitumor efficiency than free Cur. Cell morphology, the mitochondrial membrane potential and cell cycle changes indicated that Cur-loaded niosomes induced HeLa229 cells to apoptosis by destroying mitochondrion of cervical tumor cells, simultaneously changing nuclear morphology and blocking tumor cell proliferation. These results demonstrate that Fe3O4@PLGA-PEG@FA noisomes have promising applications as targeted drug delivery system for sustained drug release in cancer treatment.
Collapse
Affiliation(s)
- Lijun You
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350001, China.
| | - Xiaocui Liu
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350001, China
| | - Zhexiang Fang
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350001, China
| | - Qianhui Xu
- College of Oral Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qiqing Zhang
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350001, China.
| |
Collapse
|
32
|
Liu M, Zhao G, Zhang D, An W, Lai H, Li X, Cao S, Lin X. Active fraction of clove induces apoptosis via PI3K/Akt/mTOR-mediated autophagy in human colorectal cancer HCT-116 cells. Int J Oncol 2018; 53:1363-1373. [DOI: 10.3892/ijo.2018.4465] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/14/2018] [Indexed: 12/09/2022] Open
Affiliation(s)
- Minghua Liu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Ge Zhao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Dan Zhang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Weixiao An
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Honglin Lai
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xiaofang Li
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xiukun Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
33
|
Sudha A, Srinivasan P, Kanimozhi V, Palanivel K, Kadalmani B. Antiproliferative and apoptosis-induction studies of 5-hydroxy 3′,4′,7-trimethoxyflavone in human breast cancer cells MCF-7: an in vitro and in silico approach. J Recept Signal Transduct Res 2018; 38:179-190. [DOI: 10.1080/10799893.2018.1468780] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- A. Sudha
- Department of Bioinformatics, Alagappa University, Karaikudi, India
| | - P. Srinivasan
- Department of Animal Health and Management, Alagappa University, Karaikudi, India
| | - V. Kanimozhi
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - K. Palanivel
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - B. Kadalmani
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
34
|
Stojakowska A, Galanty A, Malarz J, Michalik M. Major terpenoids from Telekia speciosa flowers and their cytotoxic activity in vitro. Nat Prod Res 2018; 33:1804-1808. [PMID: 29430966 DOI: 10.1080/14786419.2018.1437431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In addition to known constituents of Telekia speciosa, an acetone extract from ray florets of the plant yielded: 5,5'-dibutoxy-2,2'-bifuran (1), 5,5'-diisobutoxy-2,2'-bifuran (2), α-tocopherol (3), β-tocopherol (4), loliolide palmitate (5), a mixture of calenduladiol esters - 16β-hydroxylupeol-3-O-palmitate (7) and 16β-hydroxylupeol-3-O-myristate (8), 1-epiinuviscolide (12), inuviscolide (13), 3-epiisotelekin (16), 4α-hydroxy-9β,10β-epoxy-1β(H)-11(13)-guaien-8α,12-olide (17), 4α-hydroxy-1β(H)-9(10),11(13)-guaiadien-8α,12-olide (18), loliolide (19) and 4β,10β-dihydroxy-1α(H),5α(H)-11(13)-guaien-8α,12-olide (20). Calenduladiol esters and asperilin (14) were the major constituents of the extract. Their cytotoxic effect on human normal prostate epithelial cells (PNT-2), human prostate carcinoma cell lines, human skin fibroblasts (HSF) and human melanoma cell lines was examined in vitro. Triterpene esters showed no cytotoxicity against nearly all cell lines tested, except for Du145 prostate carcinoma cells (IC50 - 62.0 μΜ). Asperilin displayed activity against the cell lines under study, especially against three tested lines of melanomas (A375, IC50 - 17.6 μΜ, WM793, IC50 - 28.2 μΜ and Hs 294T, IC50 - 29.5 μΜ).
Collapse
Affiliation(s)
- Anna Stojakowska
- a Department of Phytochemistry , Institute of Pharmacology, Polish Academy of Sciences , Kraków , Poland
| | - Agnieszka Galanty
- b Department of Pharmacognosy , Collegium Medicum, Jagiellonian University , Kraków , Poland
| | - Janusz Malarz
- a Department of Phytochemistry , Institute of Pharmacology, Polish Academy of Sciences , Kraków , Poland
| | - Marta Michalik
- c Faculty of Biotechnology, Department of Cell Biology , Jagiellonian University , Kraków , Poland
| |
Collapse
|
35
|
Song D, Jiang X, Liu Y, Sun Y, Cao S, Zhang Z. Asiaticoside Attenuates Cell Growth Inhibition and Apoptosis Induced by Aβ 1-42 via Inhibiting the TLR4/NF-κB Signaling Pathway in Human Brain Microvascular Endothelial Cells. Front Pharmacol 2018; 9:28. [PMID: 29441018 PMCID: PMC5797575 DOI: 10.3389/fphar.2018.00028] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/10/2018] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a very common progressive neurodegenerative disorder with the highest incidence in the world. Dysfunction of the blood-brain barrier (BBB) may be responsible for the pathogenesis and pathology of AD for abnormally transporting amyloid-β (Aβ, the main component of the senile plaques) from the sera into the central nervous system. Aβ peptides induce apoptosis in human brain microvascular endothelial cells (hBMECs), the main component of BBB. Apoptosis in neuronal cells plays a critical role in the pathogenesis of AD. Asiaticoside, a natural glycoside extracted from Centella asiatica (L.) Urban, has an anti-apoptotic effect on hBMECs but the molecule mechanism remains unclear. Therefore, we investigate the protective effect of asiaticoside on Aβ1-42-induced cytotoxicity and apoptosis as well as associated mechanism in hBMECs with commonly used in vitro methods for clinical development of asiaticoside as a novel anti-AD agent. In the present study, we investigated the effects of asiaticoside on cytotoxicity by Cell Counting Kit-8 assay, mitochondrial membrane potential by JC-1 fluorescence analysis, anti-apoptosis by Hoechst 33258 staining and Annexin V-FITC (fluorescein isothiocyanate) and propidium iodide (PI) analyses, the expressions of TNF-α and IL-6 by enzyme-linked immunosorbent assay (ELISA) and TLR4, MyD88, TRAF6, p-NF-κB p65, and total NF-κB p65 by Western blotting, and nuclear translocation of NF-κB p65 by immunofluorescence analysis in hBMECs. The results showed that pretreatment of asiaticoside (25, 50, and 100 μM) for 12 h significantly attenuated cell growth inhibition and apoptosis, and restored declined mitochondrial membrane potential induced by Aβ1-42 (50 μM) in hBMECs. Asiaticoside also significantly downregulated the elevated expressions of TNF-α, IL-6, TLR4, MyD88, TRAF6, and p-NF-κB p65, as well as inhibited NF-κB p65 translocation from cytoplasm to nucleus induced by Aβ1-42 in hBMECs in a concentration-dependent manner. The possible underlying molecular mechanism of asiaticoside may be through inhibiting the TLR4/NF-κB signaling pathway. Therefore, asiaticoside may be developed as a novel agent for the prevention and/or treatment of AD clinically.
Collapse
Affiliation(s)
- Daqiang Song
- Department of Pharmacology, Southwest Medical University, Luzhou, China
| | - Xian Jiang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yiliu Liu
- Department of Pharmacology, Southwest Medical University, Luzhou, China
| | - Yuhong Sun
- Department of Pharmacology, Southwest Medical University, Luzhou, China
| | - Shousong Cao
- Department of Pharmacology, Southwest Medical University, Luzhou, China
| | - Zhuo Zhang
- Department of Pharmacology, Southwest Medical University, Luzhou, China
| |
Collapse
|
36
|
Nguyen HT, Ho DV, Vo HQ, Le AT, Nguyen HM, Kodama T, Ito T, Morita H, Raal A. Antibacterial activities of chemical constituents from the aerial parts of Hedyotis pilulifera. PHARMACEUTICAL BIOLOGY 2017; 55:787-791. [PMID: 28103726 PMCID: PMC6130504 DOI: 10.1080/13880209.2017.1279673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
CONTEXT Hedyotis pilulifera (Pit.) T.N. Ninh (Rubiaceae) has been used in Vietnamese ethnomedicine; the methanol extract exhibited antibacterial activity in our preliminary screening. OBJECTIVES In this study, compounds from H. pilulifera were isolated and their antibacterial activity in vitro was evaluated. MATERIALS AND METHODS The aerial parts of H. pilulifera (1.4 kg) were extracted with MeOH, suspended in water and ethyl acetate extract was chromatographed on a silica gel column. The structures of isolated compounds were elucidated by the combination analyses of spectroscopy including 1D-, 2D-NMR, HRMS and in comparison with the reported NMR data in the literature. All isolated compounds were evaluated for inhibitory effect using the microdilution method toward Staphylococcus aureus, Bacillus subtilis and Mycobacterium smegmatis, and MIC values were determined. RESULTS Twenty compounds were isolated, including five triterpenoids, two steroids, two aromatic compounds, three fatty acids, one quinone derivative, one lignan glycoside, one ceramide and five glycolipids. Among these, oleanolic acid showed significant antibacterial activity against M. smegmatis with the MIC value of 2.5 μg/mL. Remarkably, rotungenic acid showed strong activity against S. aureus, B. subtilis, M. smegmatis with MIC values of 2.5, 2.5 and 1.25 μg/mL, respectively. Rotundic acid exhibited significant antibacterial activity against B. subtilis with the MIC value of 5 μg/mL. To the best of our knowledge, the antibacterial activity of rotungenic acid, stigmast-4-ene-3,6-dione and (2S,3S,4R,2'R)-2-(2'-hydroxytetracosanoylamino) octadecane-1,3,4-triol was reported for the first time. CONCLUSIONS Oleanolic acid, rotungenic acid, and rotundic acid were considered to be useful for developing new antimicrobial therapeutic agents for human.
Collapse
Affiliation(s)
- Hoai Thi Nguyen
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Duc Viet Ho
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Hung Quoc Vo
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Anh Tuan Le
- Quang Tri Center of Science and Technology, Mientrung Institute for Scientific Research, Quang Tri, Vietnam
| | - Hien Minh Nguyen
- Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Takeshi Kodama
- Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Takuya Ito
- Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Hiroyuki Morita
- Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Ain Raal
- Institute of Pharmacy, University of Tartu, Tartu, Estonia
- CONTACT Ain RaalInstitute of Pharmacy, University of Tartu, 1 Nooruse str., 50411Tartu, Estonia
| |
Collapse
|
37
|
Johnson W, Tchounwou PB, Yedjou CG. Therapeutic Mechanisms of Vernonia amygdalina Delile in the Treatment of Prostate Cancer. Molecules 2017; 22:E1594. [PMID: 28937624 PMCID: PMC5661957 DOI: 10.3390/molecules22101594] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer patients have been suffering from limited treatment options due to late diagnosis, poor drug tolerance, and multi-drug resistance to almost all the current drug treatments. Therefore, it is important to seek a new alternative therapeutic medicine that can effectively prevent the disease and even eradicate the progression and metastasis of prostate cancer. Vernonia amygdalina Delile (VAD) is a common edible vegetable in Cameroon that has been used as a traditional medicine for some human diseases. However, to the best of our knowledge, no previous reports have explored its therapeutic efficacy against human prostate cancer. The objective of the present study was to assess the anticancer activities of VAD methanolic extracts in the prevention and treatment of prostate cancer using human androgen-independent prostate cancer (PC-3) cells as a test model. To achieve our objective, PC-3 cells were treated with various doses of VAD for 48 h. Data generated from the trypan blue test and MTT assay demonstrated that VAD extracts exhibited significant growth-inhibitory effects on PC-3 cells. Collectively, we established for the first time the antiproliferative effects of VAD on PC-3 cells, with an IC50 value of about 196.6 µg/mL. Further experiments, including cell morphology, lipid peroxidation and comet assays, and apoptosis analysis showed that VAD caused growth-inhibitory effects on PC-3 cells through the induction of cell growth arrest, DNA damage, apoptosis, and necrosis in vitro and may provide protection from oxidative stress diseases as a result of its high antioxidant content. These results provide useful data on the anticancer activities of VAD for prostate cancer and demonstrate the novel possibilities of this medicinal plant for developing prostate cancer therapies.
Collapse
Affiliation(s)
- William Johnson
- Natural Chemotherapeutics Research Laboratory, NIH-RCMI Center for Environmental Health College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, P.O. Box 18540, Jackson, MS 39217, USA.
| | - Paul B Tchounwou
- Natural Chemotherapeutics Research Laboratory, NIH-RCMI Center for Environmental Health College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, P.O. Box 18540, Jackson, MS 39217, USA.
| | - Clement G Yedjou
- Natural Chemotherapeutics Research Laboratory, NIH-RCMI Center for Environmental Health College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, P.O. Box 18540, Jackson, MS 39217, USA.
| |
Collapse
|
38
|
Bhat J, Mondal S, Sengupta P, Chatterjee S. In Silico Screening and Binding Characterization of Small Molecules toward a G-Quadruplex Structure Formed in the Promoter Region of c-MYC Oncogene. ACS OMEGA 2017; 2:4382-4397. [PMID: 30023722 PMCID: PMC6044917 DOI: 10.1021/acsomega.6b00531] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/20/2017] [Indexed: 06/08/2023]
Abstract
Overexpression of c-MYC oncogene is associated with cancer pathology. Expression of c-MYC is regulated by the G-quadruplex structure formed in the G-rich segment of nuclease hypersensitive element (NHE III1), that is, "Pu27", which is localized in the promoter region. Ligand-induced stabilization of the Pu27 structure has been identified as a novel target for cancer therapeutics. Here, we have explored the library of synthetic compounds against the predefined binding site of Pu27. Three compounds were selected based on the docking analyses; they were further scrutinized using all atom molecular dynamics simulations in an explicit water model. Simulated trajectories were scrutinized for conformational stability and ligand binding free energy estimation; essential dynamic behavior was determined using principal component analysis. One of the molecules, "TPP (1-(3-(4-(1,2,3-thiadiazol-4-yl)phenoxy)-2-hydroxypropyl)-4-carbamoylpiperidinium)", with the best results was considered for further evaluation. The theoretical observations are supported well by biophysical analysis using circular dichroism, isothermal titration calorimetry, and high-resolution NMR spectroscopy indicating association of TPP with Pu27. The in vitro studies were then translated into c-MYC overexpression in the T47D breast cancer cell line. Biological evaluation through the MTT assay, flow cytometric assay, RT-PCR, and reporter luciferase assay suggests that TPP downregulates the expression of c-MYC oncogene by arresting its promoter region. In silico and in vitro observations cumulatively suggest that the novel skeleton of TPP could be a potential anticancer agent by stabilizing the G-quadruplex formed in the Pu27 and consequently downregulating the expression of c-MYC oncogene. Derivation of new molecules on its skeleton may confer anticancer therapeutics for the next generation.
Collapse
|
39
|
Poku RA, Salako OO, Amissah F, Nkembo AT, Ntantie E, Lamango NS. Polyisoprenylated cysteinyl amide inhibitors induce caspase 3/7- and 8-mediated apoptosis and inhibit migration and invasion of metastatic prostate cancer cells. Am J Cancer Res 2017; 7:1515-1527. [PMID: 28744401 PMCID: PMC5523032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/18/2016] [Indexed: 06/07/2023] Open
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) is the most aggressive and deadly form of prostate cancer. It is characterized by the overexpression of epidermal growth factor receptors whose signals are mediated by small monomeric G proteins of the Ras superfamily. These require polyisoprenylation for functional activity. Polyisoprenylated cysteinyl amide inhibitors (PCAIs) of polyisoprenylated methylated protein methyl esterase (PMPMEase) were developed as potential targeted therapies to mitigate excessive growth signaling in mCRPC either by inhibiting PMPMEase and/or perturbing the polyisoprenylation-dependent functional interactions. We investigated the effects of PCAIs on the viability of prostate cancer PC 3, DU 145, MDA PCa 2b, LNCaP and 22Rv1 cells, determined the effect of the PCAIs on PC 3 cell proliferation, survival and caspase-mediated apoptotic cell death. Metastatic PC 3 and DU 145 cell migration and invasion in the presence of NSL-BA-040 were determined using the scratch and matrigel invasion assays. We further investigated the effect of NSL-BA-040 on F-actin organization in TagRFP F-actin marker-transfected metastatic PC 3 cells. The PCAIs suppress mCRPC cell viability with EC50 values ranging from 1.3 to 4.0 µM for the most potent of the PCAIs against PC 3, DU 145, MDA PCa 2b, LNCaP and 22Rv cells. PCAIs induced apoptotic cell death in PC 3 and DU 145 cells as determined by annexin V/propidium iodide flow cytometry analysis through the activation of caspases 3 and 8 while also inhibiting migration and invasion through the disruption of F-actin organization. Taken together, our studies show the anti-cancer effects on mCRPC cells through induction of caspase-mediated apoptosis and F-actin-mediated inhibition of cell motility and invasion thereby indicating the anti-tumor and anti-metastatic potential of the PCAIs.
Collapse
Affiliation(s)
- Rosemary A Poku
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M UniversityTallahassee, Florida 32307, USA
| | - Olufisayo O Salako
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M UniversityTallahassee, Florida 32307, USA
| | - Felix Amissah
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M UniversityTallahassee, Florida 32307, USA
| | - Augustine T Nkembo
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M UniversityTallahassee, Florida 32307, USA
| | - Elizabeth Ntantie
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M UniversityTallahassee, Florida 32307, USA
| | - Nazarius S Lamango
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M UniversityTallahassee, Florida 32307, USA
| |
Collapse
|
40
|
Leong KH, Mahdzir MA, Din MFM, Awang K, Tanaka Y, Kulkeaw K, Ishitani T, Sugiyama D. Induction of intrinsic apoptosis in leukaemia stem cells and in vivo zebrafish model by betulonic acid isolated from Walsura pinnata Hassk (Meliaceae). PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 26:11-21. [PMID: 28257660 DOI: 10.1016/j.phymed.2016.12.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 12/13/2016] [Accepted: 12/21/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Leukaemia stem cells (LSC) have been associated with disease relapse and chemotherapy resistance. Betulonic acid (BA), a pentacyclic lupane-type triterpenoid, was reported to exhibit cytotoxicity toward various cancer cells and to be capable of inducing intrinsic apoptosis in solid tumours. However, the in vitro and in vivo apoptotic effects of BA against LSC remain unknown. HYPOTHESIS/PURPOSE We aimed to determine whether BA isolated from bark of Walsura pinnata Hassk (Meliaceae) has pro-apoptotic effects on LSC in in vitro and in vivo models. STUDY DESIGN/METHODS The population of high purity LSC was isolated from the Kasumi-1 cell line using magnetic sorting and characterised by flow cytometry. Cell viability was assessed using the MTS assay to examine dose- and time-dependent effects. The colony formation assay was performed in MethoCult® H4435 enriched media. Apoptosis was analysed using Annexin-V and propidium iodide staining, mitochondrial transmembrane potential was studied using JC-1 staining, and expression of apoptosis related genes (BAX, Bcl-2 and survivin) was evaluated by real time-polymerase chain reaction (RT-PCR). Caspase 3/7 and 9 activities were monitored through Promega Caspase-Glo® over a period of 24h. The in vivo antileukaemia activity was evaluated using LSC xenotransplanted zebrafish, observed for DNA fragmentation from apoptosis by TUNEL assay. RESULTS BA maintained its potency against the LSC population in comparison to parental Kasumi-1 cells (fold differences ≤ 1.94) over various treatment time points and significantly inhibited the formation of colonies by LSC. Apoptosis was triggered by BA through the upregulation of BAX and suppression of Bcl-2 and survivin genes with the loss of mitochondrial transmembrane potential, leading to the activation of caspase 9 followed by downstream caspase 3/7. BA was able to suppressed leukaemia formation and induced apoptosis in LSC xenotransplanted zebrafish. CONCLUSIONS The results demonstrate that BA inhibited the proliferative and colonogenic properties of LSC. BA induced apoptosis in LSC through the mitochondria pathway and was effective in the in vivo zebrafish model. Therefore, BA could be a lead compound for further development into a chemotherapy agent against LSC.
Collapse
Affiliation(s)
- Kok Hoong Leong
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia; Centre of Natural Products and Drug Discovery (CENAR), University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Mohamad Azrul Mahdzir
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mohd Fadzli Md Din
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Khalijah Awang
- Centre of Natural Products and Drug Discovery (CENAR), University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yuka Tanaka
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka, 812-8582, Japan
| | - Kasem Kulkeaw
- Department of Research and Development of Next Generation Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Tohru Ishitani
- Division of Cell Regulation Systems, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Daisuke Sugiyama
- Department of Clinical Study, Center for Advanced Medical Innovation, Kyushu University, Fukuoka, 812-8582, Japan; Center for Clinical and Translational Research, Kyushu University, Fukuoka, 812-84582, Japan
| |
Collapse
|
41
|
Alcoholic Extract of Eclipta alba Shows In Vitro Antioxidant and Anticancer Activity without Exhibiting Toxicological Effects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9094641. [PMID: 28250894 PMCID: PMC5307245 DOI: 10.1155/2017/9094641] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 09/05/2016] [Accepted: 10/04/2016] [Indexed: 12/30/2022]
Abstract
As per WHO estimates, 80% of people around the world use medicinal plants for the cure and prevention of various diseases including cancer owing to their easy availability and cost effectiveness. Eclipta alba has long been used in Ayurveda to treat liver diseases, eye ailments, and hair related disorders. The promising medicinal value of E. alba prompted us to study the antioxidant, nontoxic, and anticancer potential of its alcoholic extract. In the current study, we evaluated the in vitro cytotoxic and antioxidant effect of the alcoholic extract of Eclipta alba (AEEA) in multiple cancer cell lines along with control. We have also evaluated its effect on different in vivo toxicity parameters. Here, we found that AEEA was found to be most active in most of the cancer cell lines but it significantly induced apoptosis in human breast cancer cell lines by disrupting mitochondrial membrane potential and DNA damage. Moreover, AEEA treatment inhibited migration in both MCF 7 and MDA-MB-231 cells in a dose dependent manner. Further, AEEA possesses robust in vitro antioxidant activity along with high total phenolic and flavonoid contents. In summary, our results indicate that Eclipta alba has enormous potential in complementary and alternative medicine for the treatment of cancer.
Collapse
|
42
|
Regulation of miRNAs by herbal medicine: An emerging field in cancer therapies. Biomed Pharmacother 2016; 86:262-270. [PMID: 28006752 DOI: 10.1016/j.biopha.2016.12.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/29/2016] [Accepted: 12/05/2016] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs' expression profiles have recently gained major attention as far as cancer research is concerned. MicroRNAs are able to inhibit target gene expression via binding to the 3' UTR of target mRNA, resulting in target mRNA cleavage or translation inhibition. MicroRNAs play significant parts in a myriad of biological processes; studies have proven, on the other hand, that aberrant microRNA expression is, more often than not, associated with the growth and progression of cancers. MicroRNAs could act as oncogenes (oncomir) or tumor suppressors and can also be utilized as biomarkers for diagnosis, prognosis, and cancer therapy. Recent studies have shown that such herbal extracts as Shikonin, Sinomenium acutum, curcumin, Olea europaea, ginseng, and Coptidis Rhizoma could alter microRNA expression profiles through inhibiting cancer cell development, activating the apoptosis pathway, or increasing the efficacy of conventional cancer therapeutics. Such findings patently suggest that the novel specific targeting of microRNAs by herbal extracts could complete the restriction of tumors by killing the cancerous cells so as to recover survival results in patients diagnosed with malignancies. In this review, we summarized the current research about microRNA biogenesis, microRNAs in cancer, herbal compounds with anti-cancer effects and novel strategies for employing herbal extracts in order to target microRNAs for a better treatment of patients diagnosed with cancer.
Collapse
|
43
|
Chen CH, Li CJ, Tai IC, Lin XH, Hsu HK, Ho ML. The Fractionated Toona sinensis Leaf Extract Induces Apoptosis of Human Osteosarcoma Cells and Inhibits Tumor Growth in a Murine Xenograft Model. Integr Cancer Ther 2016; 16:397-405. [PMID: 27879376 PMCID: PMC5759936 DOI: 10.1177/1534735416675951] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Osteosarcoma is a malignant bone tumor prevalent in adolescents with poor prognosis. Toona sinensis showed potent antiproliferation effect on lung, melatonin, ovary, colon, and liver cancers. However, the effects of the species on osteosarcoma cells are rarely investigated. RESULTS In this study, we found fraction 1 of Toona sinensis leaf (TSL-1) resulted in inhibition of cell viability in MG-63, Saos-2, and U2OS osteosarcoma cell lines, while it only caused a moderate suppressive effect on normal osteoblasts. In addition, TSL-1 significantly elevated lactate dehydrogenase leakage and induced apoptosis and necrosis in Saos-2 cells. TSL-1 increased mRNA expression of pro-apoptotic factor Bad. Most important, TSL-1 significantly suppressed Saos-2 xenograft tumor growth in nude mice by increasing caspase-3. The IC-50 of TSL-1 for the 3 tested osteosarcoma cells is around 1/9 of that for lung cancer cells. CONCLUSION We demonstrated that TSL-1, a fractionated extract from TSL, caused significant cytotoxicity to osteosarcoma cells due to apoptosis. In vivo xenograft study showed that TSL-1 suppressed the growth of osteosarcoma cells at least in part by inducing apoptosis. Our results indicate that TSL-1 has potential to be a promising anti-osteosarcoma adjuvant functional plant extract.
Collapse
Affiliation(s)
- Chung-Hwan Chen
- 1 Kaohsiung Medical University, Kaohsiung, Taiwan.,2 Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,3 Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung City, Taiwan
| | - Ching-Ju Li
- 1 Kaohsiung Medical University, Kaohsiung, Taiwan
| | - I-Chun Tai
- 1 Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Xiao-Hui Lin
- 1 Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | - Mei-Ling Ho
- 1 Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
44
|
Dolai N, Islam A, Haldar PK. Methanolic extract of Anthocephalus cadamba induces apoptosis in Ehrlich ascites carcinoma cells in experimental mice. Indian J Pharmacol 2016; 48:445-449. [PMID: 27756959 PMCID: PMC4980936 DOI: 10.4103/0253-7613.186190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Objective: Anthocephalus cadamba (Roxb.) Miq. (Family: Rubiaceae), a folk medicine commonly known as “Kadam” in Bengali, has been used for the treatment of tumor. The methanolic extract of A. cadamba (MEAC) showing antitumor activity on Ehrlich ascites carcinoma (EAC) cells treated mice was already reported. This study was designed to study the apoptosis-inducing property of MEAC and its mechanism in EAC cells in mice. Materials and Methods: Apoptogenic morphology was determined by fluorescent DNA-binding double staining method using dyes acridine orange (AO)/ethidium bromide (EB). Comet assay was estimated to check the DNA damage. Flow cytometry (fluorescence-activated cell sorting [FACS]) was used to detect the apoptotic rate quantitatively by double labeling techniques using annexin V FITC/propidium iodide staining. Apoptotic protein expression was done using Western blotting assay method. Statistical Analysis: Results are expressed as mean ± standard deviation. Statistical analysis was performed using ANOVA followed by Dunnett's post hoc test of GraphPad Prism software. *P < 0.05, **P < 0.01 and ***P < 0.001 were considered statistically significant. Results: Apoptosis-inducing effect of MEAC on EAC cells was confirmed from AO/EB staining and FACS analysis. MEAC treatment showed dose-dependent induction of DNA damage. Apoptosis was induced by increasing the expression of multiple downstream factors such as pro-apoptotic protein p53 and p21 in EAC. Bax was up-regulated and anti-apoptotic protein Bcl-2 was down-regulated resulting in decrease of the Bcl-2/Bax ratio by MEAC treatment. Conclusion: Experimental results revealed that MEAC induces apoptosis by modulating the expression of some pro-apoptotic and anti-apoptotic proteins in EAC and thus exerts its anti-tumor activity.
Collapse
Affiliation(s)
- Narayan Dolai
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Aminul Islam
- Research and Development Centre, Natreon Inc., Salt Lake City, Kolkata, West Bengal, India
| | - Pallab Kanti Haldar
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| |
Collapse
|
45
|
De Novo Assembly and Comparative Transcriptome Analysis Provide Insight into Lysine Biosynthesis in Toona sinensis Roem. Int J Genomics 2016; 2016:6735209. [PMID: 27376077 PMCID: PMC4914729 DOI: 10.1155/2016/6735209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/07/2016] [Accepted: 05/05/2016] [Indexed: 11/17/2022] Open
Abstract
Toona sinensis Roem is a popular leafy vegetable in Chinese cuisine and is also used as a traditional Chinese medicine. In this study, leaf samples were collected from the same plant on two development stages and then used for high-throughput Illumina RNA-sequencing (RNA-Seq). 125,884 transcripts and 54,628 unigenes were obtained through de novo assembly. A total of 25,570 could be annotated with known biological functions, which indicated that the T. sinensis leaves and shoots were undergoing multiple developmental processes especially for active metabolic processes. Analysis of differentially expressed unigenes between the two libraries showed that the lysine biosynthesis was an enriched KEGG pathway, and candidate genes involved in the lysine biosynthesis pathway in T. sinensis leaves and shoots were identified. Our results provide a primary analysis of the gene expression files of T. sinensis leaf and shoot on different development stages and afford a valuable resource for genetic and genomic research on plant lysine biosynthesis.
Collapse
|
46
|
Sun X, Zhang L, Cao Y, Gu Q, Yang H, Tam JP. Quantitative Analysis and Comparison of Four Major Flavonol Glycosides in the Leaves of Toona sinensis (A. Juss.) Roemer (Chinese Toon) from Various Origins by High-Performance Liquid Chromatography-Diode Array Detector and Hierarchical Clustering Analysis. Pharmacogn Mag 2016; 12:S270-6. [PMID: 27279719 PMCID: PMC4883091 DOI: 10.4103/0973-1296.182160] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 07/22/2015] [Indexed: 12/20/2022] Open
Abstract
Background: Toona sinensis (A. Juss.) Roemer is an endemic species of Toona genus native to Asian area. Its dried leaves are applied in the treatment of many diseases; however, few investigations have been reported for the quantitative analysis and comparison of major bioactive flavonol glycosides in the leaves harvested from various origins. Objective: To quantitatively analyze four major flavonol glycosides including rutinoside, quercetin-3-O-β-D-glucoside, quercetin-3-O-α-L-rhamnoside, and kaempferol-3-O-α-L-rhamnoside in the leaves from different production sites and classify them according to the content of these glycosides. Materials and Methods: A high-performance liquid chromatography-diode array detector (HPLC-DAD) method for their simultaneous determination was developed and validated for linearity, precision, accuracy, stability, and repeatability. Moreover, the method established was then employed to explore the difference in the content of these four glycosides in raw materials. Finally, a hierarchical clustering analysis was performed to classify 11 voucher specimens. Results: The separation was performed on a Waters XBridge Shield RP18 column (150 mm × 4.6 mm, 3.5 μm) kept at 35°C, and acetonitrile and H2O containing 0.30% trifluoroacetic acid as mobile phase was driven at 1.0 mL/min during the analysis. Ten microliters of solution were injected and 254 nm was selected to monitor the separation. A strong linear relationship between the peak area and concentration of four analytes was observed. And, the method was also validated to be repeatable, stable, precise, and accurate. Conclusion: An efficient and reliable HPLC-DAD method was established and applied in the assays for the samples from 11 origins successfully. Moreover, the content of those flavonol glycosides varied much among different batches, and the flavonoids could be considered as biomarkers to control the quality of Chinese Toon. SUMMARY Four major flavonol glycosides in the leaves of Toona sinensis were determined by HPLC-DAD and their contents were compared among various origins by HCA.
Abbreviations used: HPLC-DAD: High-performance liquid chromatography-diode array detector, HCA: Hierarchical clustering analysis, MS: Mass spectrometry, RSD: Relative standard deviation.
Collapse
Affiliation(s)
- Xiaoxiang Sun
- Department of Pharmacy, Zhenjiang Hospital of Traditional Chinese Medicine, Zhenjiang, China; Department of Chinese Materia Medica, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Liting Zhang
- Department of Chinese Materia Medica, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Yaqi Cao
- Department of Chinese Materia Medica, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Qinying Gu
- Department of Chinese Materia Medica, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Huan Yang
- Department of Chinese Materia Medica, School of Pharmacy, Jiangsu University, Zhenjiang, China; Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, Singapore
| | - James P Tam
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
47
|
Ramalingam V, Revathidevi S, Shanmuganayagam T, Muthulakshmi L, Rajaram R. Biogenic gold nanoparticles induce cell cycle arrest through oxidative stress and sensitize mitochondrial membranes in A549 lung cancer cells. RSC Adv 2016. [DOI: 10.1039/c5ra26781a] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schematic representation of biogenic synthesized AuNPs have been proven to have excellent anticancer activity against A549 human lung cancer cells.
Collapse
Affiliation(s)
- V. Ramalingam
- DNA Barcoding and Marine Genomics Laboratory
- Department of Marine Science
- School of Marine Sciences
- Bharathidasan University
- Tiruchirappalli – 620 024
| | - S. Revathidevi
- Department of Genetics
- Institute of Basic Medical Sciences
- Madras University
- Chennai – 600 113
- India
| | | | | | - R. Rajaram
- DNA Barcoding and Marine Genomics Laboratory
- Department of Marine Science
- School of Marine Sciences
- Bharathidasan University
- Tiruchirappalli – 620 024
| |
Collapse
|
48
|
Dolai N, Islam A, Haldar PK. Antiproliferative Activity and Apoptosis Inducing Mechanism of Anthocephalus cadamba on Dalton's Lymphoma Ascites Cells. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2016; 15:505-514. [PMID: 27980586 PMCID: PMC5149038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The purpose of this investigation was to evaluate the antiproliferative and apoptogenic mechanistic studies of methanol extract of Anthocephalus cadamba (MEAC) on Dalton's lymphoma ascites (DLA) cells treated mice. Determination of antiproliferative activity was performed by using different DLA cells (2×106 cells, i.p.) inoculated mice groups (n = 12). Groups were treated for 14 consecutive days with MEAC at the doses of 200 and 400 mg/Kg b.w. respectively. The mechanism of antiproliferation activity of MEAC was investigated through morphological studies by acridine orange (AO)/ethidium bromide (EB) double staining method. Comet assay was estimated to check the DNA damage induced apoptosis property. Furthermore, flow cytometry (FACS) was used to quantitatively detect the apoptotic rate by double labeling techniques using Annexin-V FITC/propidium iodide staining analysis and apoptotic proteins expression done by western blotting assay method. MEAC exhibited significant (p<0.01) decrease the tumor volume, viable cell count, tumor weight and elevated the life span of DLA tumor bearing mice. Analysis of AO/EB staining and flow cytometry showed that MEAC possessed apoptosis induced antitumor activity on DLA cells in a dose dependant manner. Dose dependent induction of DNA damage on DLA cells were observed after MEAC treatment, which was evident from the appearance of comet tail length. Pro-apoptotic gene, Bax was up-regulated and down-regulation of the Bcl-2/Bax ratio, suggesting that Bcl-2 family involved in the control of apoptosis. Experimental results revealed that MEAC possess potent antitumor activity via induction of cancer cell apoptosis mechanism.
Collapse
Affiliation(s)
- Narayan Dolai
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India. ,Corresponding author: E-mail:
| | - Aminul Islam
- Research and Development Centre, Natreon Inc, Salt Lake City, Kolkata, India.
| | - Pallab Kanti Haldar
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India. ,Corresponding author: E-mail:
| |
Collapse
|
49
|
Pan P, Chen J, Fan T, Hu Y, Wu T, Zhang Q. Facile preparation of biphasic-induced magnetic icariin-loaded composite microcapsules by automated in situ click technology. Colloids Surf B Biointerfaces 2015; 140:50-59. [PMID: 26735894 DOI: 10.1016/j.colsurfb.2015.12.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/12/2015] [Accepted: 12/16/2015] [Indexed: 11/30/2022]
Abstract
This research aims to prepare the biphasic-induced magnetic composite microcapsules (BIMCM) as a promising environmental stimuli-responsive delivery vehicle to dispose the problem of drug burst effect. The paper presented a novel automated in situ click technology of magnetic chitosan/nano hydroxyapatite (CS/nHA) microcapsules. Fe3O4 magnetic nanoparticles (MNP) and nHA were simultaneously in situ crystallized by one-step process. Icariin (ICA), a plant-derived flavonol glycoside, was combined to study drug release properties of BIMCM. BIMCM were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and Thermal gravimetric analysis/Differential Scanning Calorimetry(TGA/DSC) in order to reveal their component and surface morphology as well as the role of the in situ generated Fe3O4 MNP and nHA. The magnetic test showed the BIMCM were super-paramagnetic. Both in situ generated Fe3O4 MNP and nHA serve as stable inorganic crosslinkers in BIMCM to form many intermolecular crosslinkages for the movability of the CS chains. This makes ICA loaded microcapsules take on a sustained release behavior and results in the self-adjusting of surface morphology, decreasing of swelling and degradation rates. In addition, in vitro tests were systematically carried out to examine the biocompatibility of the microcapsules by MTT test, Wright-Giemsa dying assay and AO/EB fluorescent staining method. These results demonstrated that successful introduction of the in situ click Fe3O4 MNP provided an alternative strategy because of magnetic sensitivity and sustained release. As such, the novel ICA loaded biphasic-induced magnetic CS/nHA/MNP microcapsules are expected to find potential applications in drug delivery system for bone repair.
Collapse
Affiliation(s)
- Panpan Pan
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China
| | - Jingdi Chen
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China.
| | - Tiantang Fan
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China
| | - Yimin Hu
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China
| | - Tao Wu
- Department of Emergency, Guangdong General Hospital of Chinese People's Armed Police Force, Guangzhou Medical University, Guangzhou 510507, China
| | - Qiqing Zhang
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China; Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
50
|
Solid-State Characterization and Biological Activity of Betulonic Acid Derivatives. Molecules 2015. [DOI: 10.3390/molecules201219876 and 21=21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|