1
|
Barman K, Goswami P. Recent Advances in Diagnostics and Therapeutic Interventions for Drug-Resistant Malaria. ACS Infect Dis 2025. [PMID: 40326084 DOI: 10.1021/acsinfecdis.4c00962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
The emergence of drug-resistant malarial parasites has been a growing challenge to medical science to safeguard public health in the malaria-endemic regions of the globe. With time, the parasite develops newer resistance mechanisms to defunct the drug's action one after another. Genetic mutation is the prime weapon parasites rely upon to initiate the resistance mechanism in a case-specific manner, following various strategies such as structural changes in the target protein, metabolic alterations, and tweaking the drug-transported channels. In order to combat these resistances, different approaches have evolved among these developing inhibitors against critical parasite enzymes and metabolic pathways, combinatorial/hybrid drug therapies, exploring new drug targets and analogues of existing drugs, use of resistance-reversal agents, drug-repurposing, gene blocking/altering using RNA interference and CRISPR/Cas systems are prominent. However, the effectiveness of these approaches needs to be earnestly monitored for better management of the disease, which demands the development of a reliable diagnosis technique. Several methodologies have been investigated in search of a suitable diagnosis technique, such as in vivo, in vitro, ex vivo drug efficacy studies, and molecular techniques. A parallel effort to transform the efficient method into an inexpensive and portable diagnosis tool for rapid screening of drug resistance malaria among masses in the societal landscape is advocated. This review gives an insight into the historical perspectives of drug-resistant malaria and the recent developments in malaria diagnosis and antimalarial drug discovery. Efforts have been made to update recent strategies formulated to combat and diagnose drug-resistant malaria. Finally, a concluding remark with a future perspective on the subject has been forwarded.
Collapse
Affiliation(s)
- Kangkana Barman
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
2
|
Zhu H, Zhu D, Wu K, He W, Li L, Li T, Liu L, Liu Z, Song X, Cheng W, Mo J, Yao Y, Li J. Establishment and evaluation of a qPCR method for the detection of pfmdr1 mutations in Plasmodium falciparum, the causal agent of fatal malaria. Diagn Microbiol Infect Dis 2024; 110:116400. [PMID: 38909426 DOI: 10.1016/j.diagmicrobio.2024.116400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024]
Abstract
Drug resistance surveillance is a major integral part of malaria control programs. Molecular methods play a pivotal role in drug resistance detection and related molecular research. This study aimed to develop a rapid and accurate detection method for drug resistance of Plasmodium falciparum (P. falciparum). A quantitative real-time PCR (qPCR) assay has been developed that identifies the mutation at locus A256T in the P.falciparum multi-drug resistance(pfmdr1) gene producing amino acid change at position 86. The results of 198 samples detected by qPCR were consistent with nested PCR and sequencing, giving an accuracy of 94.3%. The sensitivity, specificity, positive and negative predictive value of qPCR were 85.7%, 97.6%, 90.0% and 96.4%, respectively. The results of qPCR are basically consistent with the nested PCR, which is expected to replace the nested PCR as a new molecular biological method for drug resistance detection, providing reliable technical support for global malaria prevention and control.
Collapse
Affiliation(s)
- Huiyin Zhu
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China; Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, PR China
| | - Daiqian Zhu
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China
| | - Kai Wu
- Wuhan Centers for Disease Prevention and Control, Wuhan 430024, PR China
| | - Wei He
- Jiangnan University, Wuxi 442000, PR China
| | - Liugen Li
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China
| | - Tongfei Li
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China
| | - Long Liu
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China
| | - Zhixin Liu
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China
| | - Xiaonan Song
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China
| | - Weijia Cheng
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China
| | - Jinyu Mo
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China
| | - Yi Yao
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, PR China
| | - Jian Li
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China.
| |
Collapse
|
3
|
Schäfer TM, Pessanha de Carvalho L, Inoue J, Kreidenweiss A, Held J. The problem of antimalarial resistance and its implications for drug discovery. Expert Opin Drug Discov 2024; 19:209-224. [PMID: 38108082 DOI: 10.1080/17460441.2023.2284820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
INTRODUCTION Malaria remains a devastating infectious disease with hundreds of thousands of casualties each year. Antimalarial drug resistance has been a threat to malaria control and elimination for many decades and is still of concern today. Despite the continued effectiveness of current first-line treatments, namely artemisinin-based combination therapies, the emergence of drug-resistant parasites in Southeast Asia and even more alarmingly the occurrence of resistance mutations in Africa is of great concern and requires immediate attention. AREAS COVERED A comprehensive overview of the mechanisms underlying the acquisition of drug resistance in Plasmodium falciparum is given. Understanding these processes provides valuable insights that can be harnessed for the development and selection of novel antimalarials with reduced resistance potential. Additionally, strategies to mitigate resistance to antimalarial compounds on the short term by using approved drugs are discussed. EXPERT OPINION While employing strategies that utilize already approved drugs may offer a prompt and cost-effective approach to counter antimalarial drug resistance, it is crucial to recognize that only continuous efforts into the development of novel antimalarial drugs can ensure the successful treatment of malaria in the future. Incorporating resistance propensity assessment during this developmental process will increase the likelihood of effective and enduring malaria treatments.
Collapse
Affiliation(s)
| | | | - Juliana Inoue
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Andrea Kreidenweiss
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- German Center for Infection Research (DZIF), Tübingen, Germany
| | - Jana Held
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- German Center for Infection Research (DZIF), Tübingen, Germany
| |
Collapse
|
4
|
Kay K, Goodwin J, Ehrlich H, Ou J, Freeman T, Wang K, Li F, Wade M, French J, Huang L, Aweeka F, Mwebaza N, Kajubi R, Riggs M, Ruiz-Garcia A, Parikh S. Impact of Drug Exposure on Resistance Selection Following Artemether-Lumefantrine Treatment for Malaria in Children With and Without HIV in Uganda. Clin Pharmacol Ther 2023; 113:660-669. [PMID: 36260349 PMCID: PMC9981240 DOI: 10.1002/cpt.2768] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022]
Abstract
Artemisinin-based combination therapies (ACTs) are the primary treatment for malaria. It is essential to characterize the pharmacokinetics (PKs) and pharmacodynamics (PDs) of ACTs in vulnerable populations at risk of suboptimal dosing. We developed a population PK/PD model using data from our previous study of artemether-lumefantrine in HIV-uninfected and HIV-infected children living in a high-transmission region of Uganda. HIV-infected children were on efavirenz-, nevirapine-, or lopinavir-ritonavir-based antiretroviral regimens, with daily trimethoprim-sulfamethoxazole prophylaxis. We assessed selection for resistance in two key parasite transporters, pfcrt and pfmdr1, over 42-day follow-up and incorporated genotyping into a time-to-event model to ascertain how resistance genotype in relation to drug exposure impacts recurrence risk. Two hundred seventy-seven children contributed 364 episodes to the model (186 HIV-uninfected and 178 HIV-infected), with recurrent microscopy-detectable parasitemia detected in 176 episodes by day 42. The final model was a two-compartment model with first-order absorption and an estimated age effect on bioavailability. Systemic lumefantrine exposure was highest with lopinavir-ritonavir, lowest with efavirenz, and equivalent with nevirapine and HIV-uninfected children. HIV status and lumefantrine concentration were significant factors associated with recurrence risk. Significant selection was demonstrated for pfmdr1 N86 and pfcrt K76 in recurrent infections, with no evidence of selection for pfmdr1 Y184F. Less sensitive parasites were able to tolerate lumefantrine concentrations ~ 3.5-fold higher than more sensitive parasites. This is the first population PK model of lumefantrine in HIV-infected children and demonstrates selection for reduced lumefantrine susceptibility, a concern as we confront the threat to ACTs posed by emerging artemisinin resistance in Africa.
Collapse
Affiliation(s)
- Katherine Kay
- Metrum Research Group, Tariffville, Connecticut, USA
| | - Justin Goodwin
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Yale School of Medicine, New Haven, Connecticut, USA
| | - Hanna Ehrlich
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Joyce Ou
- Yale University, New Haven, Connecticut, USA
| | | | - Kaicheng Wang
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Fangyong Li
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Martina Wade
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | | | - Liusheng Huang
- University of California, San Francisco, San Francisco, California, USA
| | - Francesca Aweeka
- University of California, San Francisco, San Francisco, California, USA
| | - Norah Mwebaza
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Richard Kajubi
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Matthew Riggs
- Metrum Research Group, Tariffville, Connecticut, USA
| | | | - Sunil Parikh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
5
|
Yin M, Nie Y, Liu H, Liu L, Tang L, Dong Y, Hu C, Wang H. Development of a europium nanoparticles lateral flow immunoassay for NGAL detection in urine and diagnosis of acute kidney injury. BMC Nephrol 2022; 23:30. [PMID: 35031018 PMCID: PMC8758895 DOI: 10.1186/s12882-021-02493-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/02/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AKI is related to severe adverse outcomes and mortality with Coronavirus Disease 2019 (COVID-19) patients, that early diagnosed and intervened is imperative. Neutrophil gelatinase-associated lipocalin (NGAL) is one of the most promising biomarkers for detection of acute kidney injury (AKI), but current detection methods are inadequacy, so more rapid, convenient and accuracy methods are needed to detect NGAL for early diagnosis of AKI. Herein, we established a rapid, reliable and accuracy lateral flow immunoassay (LFIA) based on europium nanoparticles (EU-NPS) for the detection of NGAL in human urine specimens. METHODS A double-antibody sandwich immunofluorescent assay using europium doped nanoparticles was employed and the NGAL monoclonal antibodies (MAbs) conjugate as labels were generated by optimizing electric fusion parameters. Eighty-three urine samples were used to evaluate the clinical application efficiency of this method. RESULTS The quantitative detection range of NGAL in AKI was 1-3000 ng/mL, and the detection sensitization was 0.36 ng/mL. The coefficient of variation (CV) of intra-assay and inter-assay were 2.57-4.98 % and 4.11-7.83 %, respectively. Meanwhile, the correlation coefficient between europium nanoparticles-based lateral fluorescence immunoassays (EU-NPS-LFIA) and ARCHITECT analyzer was significant (R2 = 0.9829, n = 83, p < 0.01). CONCLUSIONS Thus, a faster and easier operation quantitative assay of NGAL for AKI has been established, which is very important and meaningful to diagnose the early AKI, suggesting that the assay can provide an early warning of final outcome of disease.
Collapse
Affiliation(s)
- Moli Yin
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, 132013, Jilin, PR China
| | - Yuanwang Nie
- Academy of laboratory, Jilin Medical University, 132013, Jilin, PR China
| | - Hao Liu
- Academy of laboratory, Jilin Medical University, 132013, Jilin, PR China
| | - Lei Liu
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, 132013, Jilin, PR China
| | - Lu Tang
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, 132013, Jilin, PR China
| | - Yuan Dong
- Academy of laboratory, Jilin Medical University, 132013, Jilin, PR China
| | - Chuanmin Hu
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, 132013, Jilin, PR China
| | - Huiyan Wang
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, 132013, Jilin, PR China.
| |
Collapse
|
6
|
Diagnosing the drug resistance signature in Plasmodium falciparum: a review from contemporary methods to novel approaches. J Parasit Dis 2021; 45:869-876. [PMID: 34475670 DOI: 10.1007/s12639-020-01333-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 12/01/2020] [Indexed: 10/22/2022] Open
Abstract
The genome sequence project of the human malaria parasite Plasmodium falciparum reveal variations in the parasite DNA sequence. Most of these variations are single nucleotide polymorphism (SNP). A high frequency of single nucleotide polymorphism (SNP) in the Plasmodium falciparum population is usually a benchmark for anti-malarial resistance which allows parasites to be elusive to the chemotherapeutic agents, vaccine and vector control strategies, resulting in the leading cause of morbidity and mortality globally. The high density of drug resistance signature markers such as pfcrt,pfmdr1, pfdhps, pfdhfr, pfkelch13, pfatpase6 and pfmrp1 in the genome opens up a scope for the study of the genetic basis of this elusive parasite. The precise and prompt diagnosis of resistance strains of parasite plays vital role in malaria elimination program.This review probably shed light on contemporary SNP diagnostic tools used in molecular surveillance of Plasmodium falciparum drug resistance in terms of mechanism, reaction modalities, and development with their virtues and shortcomings.
Collapse
|
7
|
Slater L, Betson M, Ashraf S, Sargison N, Chaudhry U. Current methods for the detection of antimalarial drug resistance in Plasmodium parasites infecting humans. Acta Trop 2021; 216:105828. [PMID: 33465353 DOI: 10.1016/j.actatropica.2021.105828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 12/19/2022]
Abstract
Malaria is the world's deadliest parasitic disease. Great progress has been made in the fight against malaria over the past two decades, but this has recently begun to plateau, in part due to the global development of antimalarial drug resistance. The ability to track drug resistance is necessary to achieve progress in treatment, disease surveillance and epidemiology, which has prompted the development of advanced diagnostic methods. These new methods provide unprecedented access to information that can help to guide public health policies. Development of new technologies increases the potential for high throughput and reduced costs of diagnostic tests; improving the accessibility of tools to investigate the forces driving disease dynamics and, ultimately, clinical outcomes for malaria patients and public health. This literature review provides a summary of the methods currently available for the detection of antimalarial drug resistance from the examination of patients' blood samples. While no single method is perfect for every application, many of the newly developed methods give promise for more reliable and efficient characterisation of Plasmodium resistance in a range of settings. By exploiting the strengths of the tools available, we can develop a deeper understanding of the evolutionary and spatiotemporal dynamics of this disease. This will translate into more effective disease control, better-informed policy, and more timely and successful treatment for malaria patients.
Collapse
|
8
|
Sibley CH. Prevalence of Antimalarial Resistance Mediators. J Infect Dis 2021; 223:927-929. [PMID: 33146721 DOI: 10.1093/infdis/jiaa688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Carol Hopkins Sibley
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
9
|
Rizwan HM, Abbas H, Sajid MS, Maqbool M, Jones MK, Ullah MI, Ijaz N. Drug Resistance in Protozoal Infections. BIOCHEMISTRY OF DRUG RESISTANCE 2021:95-142. [DOI: 10.1007/978-3-030-76320-6_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Somé FA, Bazié T, Ehrlich HY, Goodwin J, Lehane A, Neya C, Zachari K, Wade M, Ouattara JM, Foy BD, Dabiré RK, Parikh S, Ouédraogo JB. Investigating selected host and parasite factors potentially impacting upon seasonal malaria chemoprevention in Bama, Burkina Faso. Malar J 2020; 19:238. [PMID: 32631416 PMCID: PMC7339464 DOI: 10.1186/s12936-020-03311-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/26/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Since 2014, seasonal malaria chemoprevention (SMC) with amodiaquine-sulfadoxine-pyrimethamine (AQ-SP) has been implemented on a large scale during the high malaria transmission season in Burkina Faso. This paper reports the prevalence of microscopic and submicroscopic malaria infection at the outset and after the first round of SMC in children under 5 years old in Bama, Burkina Faso, as well as host and parasite factors involved in mediating the efficacy and tolerability of SMC. METHODS Two sequential cross-sectional surveys were conducted in late July and August 2017 during the first month of SMC in a rural area in southwest Burkina Faso. Blood smears and dried blood spots were collected from 106 to 93 children under five, respectively, at the start of SMC and again 3 weeks later. Malaria infection was detected by microscopy and by PCR from dried blood spots. For all children, day 7 plasma concentrations of desethylamodiaquine (DEAQ) were measured and CYP2C8 genetic variants influencing AQ metabolism were genotyped. Samples were additionally genotyped for pfcrt K76T and pfmdr1 N86Y, molecular markers associated with reduced amodiaquine susceptibility. RESULTS 2.8% (3/106) of children were positive for Plasmodium falciparum infection by microscopy and 13.2% (14/106) by nested PCR within 2 days of SMC administration. Three weeks after SMC administration, in the same households, 4.3% (4/93) of samples were positive by microscopy and 14.0% (13/93) by PCR (p = 0.0007). CYP2C8*2, associated with impaired amodiaquine metabolism, was common with an allelic frequency of 17.1% (95% CI 10.0-24.2). Day 7 concentration of DEAQ ranged from 0.48 to 362.80 ng/mL with a median concentration of 56.34 ng/mL. Pfmdr1 N86 predominated at both time points, whilst a non-significant trend towards a higher prevalence of pfcrt 76T was seen at week 3. CONCLUSION This study showed a moderate prevalence of low-level malaria parasitaemia in children 3 weeks following SMC during the first month of administration. Day 7 concentrations of the active DEAQ metabolite varied widely, likely reflecting variability in adherence and possibly metabolism. These findings highlight factors that may contribute to the effectiveness of SMC in children in a high transmission setting.
Collapse
Affiliation(s)
- Fabrice A Somé
- Institut de Recherche en Sciences de la Santé, Direction Régionale de l'Ouest, 399 Avenue de la Liberté, 01, BP 545, Bobo-Dioulasso 01, Burkina Faso.
| | - Thomas Bazié
- Institut de Recherche en Sciences de la Santé, Direction Régionale de l'Ouest, 399 Avenue de la Liberté, 01, BP 545, Bobo-Dioulasso 01, Burkina Faso
| | - Hanna Y Ehrlich
- Yale Schools of Public Health and Medicine, Laboratory of Epidemiology and Public Health, 60 College Street, Room 724, New Haven, CT, 06520, USA
| | - Justin Goodwin
- Yale Schools of Public Health and Medicine, Laboratory of Epidemiology and Public Health, 60 College Street, Room 724, New Haven, CT, 06520, USA
| | - Aine Lehane
- Yale Schools of Public Health and Medicine, Laboratory of Epidemiology and Public Health, 60 College Street, Room 724, New Haven, CT, 06520, USA
| | - Catherine Neya
- Institut de Recherche en Sciences de la Santé, Direction Régionale de l'Ouest, 399 Avenue de la Liberté, 01, BP 545, Bobo-Dioulasso 01, Burkina Faso
| | - Kabré Zachari
- Institut de Recherche en Sciences de la Santé, Direction Régionale de l'Ouest, 399 Avenue de la Liberté, 01, BP 545, Bobo-Dioulasso 01, Burkina Faso
| | - Martina Wade
- Yale Schools of Public Health and Medicine, Laboratory of Epidemiology and Public Health, 60 College Street, Room 724, New Haven, CT, 06520, USA
| | - Jean-Marie Ouattara
- Institut de Recherche en Sciences de la Santé, Direction Régionale de l'Ouest, 399 Avenue de la Liberté, 01, BP 545, Bobo-Dioulasso 01, Burkina Faso
| | - Brian D Foy
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Roch K Dabiré
- Institut de Recherche en Sciences de la Santé, Direction Régionale de l'Ouest, 399 Avenue de la Liberté, 01, BP 545, Bobo-Dioulasso 01, Burkina Faso
| | - Sunil Parikh
- Yale Schools of Public Health and Medicine, Laboratory of Epidemiology and Public Health, 60 College Street, Room 724, New Haven, CT, 06520, USA
| | - Jean-Bosco Ouédraogo
- Institut de Recherche en Sciences de la Santé, Direction Régionale de l'Ouest, 399 Avenue de la Liberté, 01, BP 545, Bobo-Dioulasso 01, Burkina Faso
| |
Collapse
|
11
|
Mensah BA, Aydemir O, Myers-Hansen JL, Opoku M, Hathaway NJ, Marsh PW, Anto F, Bailey J, Abuaku B, Ghansah A. Antimalarial Drug Resistance Profiling of Plasmodium falciparum Infections in Ghana Using Molecular Inversion Probes and Next-Generation Sequencing. Antimicrob Agents Chemother 2020; 64:e01423-19. [PMID: 31932374 PMCID: PMC7179265 DOI: 10.1128/aac.01423-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/19/2019] [Indexed: 01/24/2023] Open
Abstract
A key drawback to monitoring the emergence and spread of antimalarial drug resistance in sub-Saharan Africa is early detection and containment. Next-generation sequencing methods offer the resolution, sensitivity, and scale required to fill this gap by surveilling for molecular markers of drug resistance. We performed targeted sequencing using molecular inversion probes to interrogate five Plasmodium falciparum genes (pfcrt, pfmdr1, pfdhps, pfdhfr, and pfk13) implicated in chloroquine, sulfadoxine-pyrimethamine (SP), and artemisinin resistance in two sites in Ghana. A total of 803 dried blood spots from children aged between 6 months and 14 years presenting with uncomplicated P. falciparum malaria at the Begoro District Hospital in Begoro and the Ewim Polyclinic in Cape Coast, Ghana, from 2014 to 2017 were prepared on filter paper. Thirteen years after the removal of drug pressure, chloroquine-sensitive parasite strains with pfcrt K76 have increased nearly to fixation in Begoro, in the forest area (prevalence = 95%), but at a lower rate in Cape Coast, in the coastal region (prevalence = 71%, Z = -3.5, P < 0.001). In addition, pfmdr1 184F-bearing parasites are under strong selection. The pfdhfr/pfdhps quadruple genotype ( IRNG K), associated with SP resistance, is near saturation. Our study identified at a 2 to 10% prevalence pfdhps 581G, which is a sulfadoxine resistance marker that correlates with the failure of SP prophylaxis in pregnancy and which has not been observed in Ghana. The differences in the reexpansion of chloroquine-sensitive strains observed at the two study sites, the stronger SP resistance, and the high prevalence of pfmdr1 184F should be further monitored to inform malaria control strategies in Ghana.
Collapse
Affiliation(s)
- Benedicta A Mensah
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- School of Public Health, University of Ghana, Accra, Ghana
| | - Ozkan Aydemir
- Program in Bioinformatics and Integrative Biology, University of Massachusetts, Worcester, Massachusetts, USA
| | - James L Myers-Hansen
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Millicent Opoku
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Nicholas J Hathaway
- Program in Bioinformatics and Integrative Biology, University of Massachusetts, Worcester, Massachusetts, USA
| | - Patrick W Marsh
- Program in Bioinformatics and Integrative Biology, University of Massachusetts, Worcester, Massachusetts, USA
| | - Francis Anto
- School of Public Health, University of Ghana, Accra, Ghana
| | - Jeffrey Bailey
- Program in Bioinformatics and Integrative Biology, University of Massachusetts, Worcester, Massachusetts, USA
- Division of Transfusion Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Benjamin Abuaku
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Anita Ghansah
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
12
|
Chen E, Xu Y, Ma B, Cui H, Sun C, Zhang M. Carboxyl-Functionalized, Europium Nanoparticle-Based Fluorescent Immunochromatographic Assay for Sensitive Detection of Citrinin in Monascus Fermented Food. Toxins (Basel) 2019; 11:toxins11100605. [PMID: 31627364 PMCID: PMC6832703 DOI: 10.3390/toxins11100605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/03/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022] Open
Abstract
A fluorescent immunochromatographic test strip (FICTS) based on the use of europium nanoparticles (EuNPs) was developed and applied to detect citrinin (CIT) in Monascus fermented food. The sensitivity of the immunoassay to detect CIT was greatly improved by the use of a specific monoclonal antibody to attach EuNPs to form a probe. Under optimum conditions, the visual detection limit was 2.5 ng/mL, and the detection limit of the instrument was 0.05 ng/mL. According to the results, the IC50 was 0.4 ng/mL. Matrix interference from various Monascus fermented foods was investigated in food sample detection. The immunosensor also demonstrated high recoveries (86.8-113.0%) and low relative standard deviations (RSDs) (1.8-15.3%) when testing spiked Monascus fermented food. The detection results of this method showed a good correlation (R2 > 0.98) with high-performance liquid chromatography (HPLC). The results showed that the FICTS method could be used as a rapid, sensitive method to detect CIT in Monascus fermented food.
Collapse
Affiliation(s)
- Erjing Chen
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China.
| | - Ying Xu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China.
| | - Biao Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China.
| | - Haifeng Cui
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China.
| | - Chuanxin Sun
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Science (SLU), P.O. Box 7080, SE-75007 Uppsala, Sweden.
| | - Mingzhou Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
13
|
Otienoburu SD, Suay I, Garcia S, Thomas NV, Srisutham S, Björkman A, Humphreys GS. An online mapping database of molecular markers of drug resistance in Plasmodium falciparum: the ACT Partner Drug Molecular Surveyor. Malar J 2019; 18:12. [PMID: 30658642 PMCID: PMC6339428 DOI: 10.1186/s12936-019-2645-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/10/2019] [Indexed: 01/14/2023] Open
Abstract
Background Prior to this project, only a handful of online visualizations existed for exploring the published literature on molecular markers of antimalarial drug resistance, and none specifically for the markers associated with Plasmodium falciparum resistance to the partner drugs in artemisinin-based combination therapy (ACT). Molecular information is collected in studies with different designs, using a variety of molecular methodologies and data analysis strategies, making it difficult to compare across studies. The purpose of this project was to develop a free online tool, which visualizes the widely published data on molecular markers of antimalarial drug resistance, starting with the two genes pfcrt and pfmdr-1, associated with resistance to the three most common partner drugs; amodiaquine, lumefantrine and mefloquine. Methods A literature review was conducted, and a standardized method was used to extract data from publications, and critical decisions on visualization were made. A global geospatial database was developed of specific pfmdr1 and pfcrt single nucleotide polymorphisms and pfmdr1 copy number variation. An informatics framework was developed that allowed flexibility in development of the tool over time and efficient adaptation to different source data. Results The database discussed in this paper has pfmdr1 and pfcrt marker prevalence information, from 579 geographic sites in 76 different countries, including results from over 86,000 samples from 456 articles published January 2001–May 2017. The ACT Partner Drugs Molecular Surveyor was launched by the WorldWide Antimalarial Resistance Network (WWARN) in March 2015 and it has attracted over 3000 unique visitors since then. Presented here is a demonstration of how the Surveyor database can be explored to monitor local, temporal changes in the prevalence of molecular markers. Here publications up to May 2017 were included, however the online ACT partner drug Molecular Surveyor is continuously updated with new data and relevant markers. Conclusions The WWARN ACT Partner Drugs Molecular Surveyor summarizes data on resistance markers in the pfmdr1 and pfcrt genes. The database is fully accessible, providing users with a rich resource to explore and analyze, and thus utilize a centralized, standardized database for different purposes. This open-source software framework can be adapted to other data, as demonstrated by the subsequent launch of the Artemisinin Molecular Surveyor and the Vivax Surveyor. Electronic supplementary material The online version of this article (10.1186/s12936-019-2645-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sabina Dahlström Otienoburu
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK.,Department of Computer Science and Engineering, Johnson C. Smith University, Charlotte, NC, USA
| | - Ignacio Suay
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK
| | - Steven Garcia
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK
| | - Nigel V Thomas
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK
| | - Suttipat Srisutham
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Anders Björkman
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
14
|
Detection of SNPs of T2DM susceptibility genes by a ligase detection reaction–fluorescent nanosphere technique. Anal Biochem 2018; 540-541:38-44. [DOI: 10.1016/j.ab.2017.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/27/2017] [Accepted: 11/07/2017] [Indexed: 01/10/2023]
|
15
|
Abstract
Since the turn of the century, a remarkable expansion has been achieved in the range and effectiveness of products and strategies available to prevent, treat, and control malaria, including advances in diagnostics, drugs, vaccines, and vector control. These advances have once again put malaria elimination on the agenda. However, it is clear that even with the means available today, malaria control and elimination pose a formidable challenge in many settings. Thus, currently available resources must be used more effectively, and new products and approaches likely to achieve these goals must be developed. This paper considers tools (both those available and others that may be required) to achieve and maintain malaria elimination. New diagnostics are needed to direct treatment and detect transmission potential; new drugs and vaccines to overcome existing resistance and protect against clinical and severe disease, as well as block transmission and prevent relapses; and new vector control measures to overcome insecticide resistance and more powerfully interrupt transmission. It is also essential that strategies for combining new and existing approaches are developed for different settings to maximise their longevity and effectiveness in areas with continuing transmission and receptivity. For areas where local elimination has been recently achieved, understanding which measures are needed to maintain elimination is necessary to prevent rebound and the reestablishment of transmission. This becomes increasingly important as more countries move towards elimination.
Collapse
|
16
|
Nag S, Dalgaard MD, Kofoed PE, Ursing J, Crespo M, Andersen LO, Aarestrup FM, Lund O, Alifrangis M. High throughput resistance profiling of Plasmodium falciparum infections based on custom dual indexing and Illumina next generation sequencing-technology. Sci Rep 2017; 7:2398. [PMID: 28546554 PMCID: PMC5445084 DOI: 10.1038/s41598-017-02724-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/18/2017] [Indexed: 01/10/2023] Open
Abstract
Genetic polymorphisms in P. falciparum can be used to indicate the parasite's susceptibility to antimalarial drugs as well as its geographical origin. Both of these factors are key to monitoring development and spread of antimalarial drug resistance. In this study, we combine multiplex PCR, custom designed dual indexing and Miseq sequencing for high throughput SNP-profiling of 457 malaria infections from Guinea-Bissau, at the cost of 10 USD per sample. By amplifying and sequencing 15 genetic fragments, we cover 20 resistance-conferring SNPs occurring in pfcrt, pfmdr1, pfdhfr, pfdhps, as well as the entire length of pfK13, and the mitochondrial barcode for parasite origin. SNPs of interest were sequenced with an average depth of 2,043 reads, and bases were called for the various SNP-positions with a p-value below 0.05, for 89.8-100% of samples. The SNP data indicates that artemisinin resistance-conferring SNPs in pfK13 are absent from the studied area of Guinea-Bissau, while the pfmdr1 86 N allele is found at a high prevalence. The mitochondrial barcodes are unanimous and accommodate a West African origin of the parasites. With this method, very reliable high throughput surveillance of antimalarial drug resistance becomes more affordable than ever before.
Collapse
Affiliation(s)
- Sidsel Nag
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, 1356, Copenhagen K, Denmark.
- Department of Infectious Diseases, Copenhagen University Hospital, 2200, Copenhagen N, Denmark.
| | - Marlene D Dalgaard
- Department of Systems Biology, Technical University of Denmark, Kemitorvet Building 208, 2800, Kgs. Lyngby, Denmark
| | - Poul-Erik Kofoed
- Department of Paediatrics, Kolding Hospital, University of Southern Denmark, 6000, Kolding, Denmark
- Bandim Health Project, Bissau, Guinea-Bissau
| | - Johan Ursing
- Bandim Health Project, Bissau, Guinea-Bissau
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Marina Crespo
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, 1356, Copenhagen K, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, 2200, Copenhagen N, Denmark
| | - Lee O'Brien Andersen
- Department of Microbiology and Infection Control, Statens Serum Institut, 2300, Copenhagen S, Denmark
| | | | - Ole Lund
- Department of Systems Biology, Technical University of Denmark, Kemitorvet Building 208, 2800, Kgs. Lyngby, Denmark
| | - Michael Alifrangis
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, 1356, Copenhagen K, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, 2200, Copenhagen N, Denmark
| |
Collapse
|
17
|
Wu C, Hu L, Xia J, Xu G, Luo K, Liu D, Duan H, Cheng S, Xiong Y, Lai W. Comparison of immunochromatographic assays based on fluorescent microsphere and quantum-dot submicrobead for quantitative detection of aflatoxin M1 in milk. J Dairy Sci 2017; 100:2501-2511. [DOI: 10.3168/jds.2016-12065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/12/2016] [Indexed: 12/14/2022]
|
18
|
Liu M, Zeng LF, Yang YJ, Hu LM, Lai WH. Fluorescent microsphere immunochromatographic assays for detecting bone alkaline phosphatase based on biolayer interferometry-selected antibody. RSC Adv 2017. [DOI: 10.1039/c7ra03756b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A convenient, reliable, highly sensitive, and competitive fluorescent microsphere-lateral flow immunochromatographic assay (FM-LFIA) was developed for the quantitative detection of BAP for the first time.
Collapse
Affiliation(s)
- Miao Liu
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Li-Feng Zeng
- Department of Clinical Laboratory
- Jiangxi Provincial People's Hospital
- Nanchang 330006
- China
| | - Ya-Jie Yang
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Li-Ming Hu
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Wei-Hua Lai
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| |
Collapse
|
19
|
Kateera F, Nsobya SL, Tukwasibwe S, Hakizimana E, Mutesa L, Mens PF, Grobusch MP, van Vugt M, Kumar N. Molecular surveillance of Plasmodium falciparum drug resistance markers reveals partial recovery of chloroquine susceptibility but sustained sulfadoxine-pyrimethamine resistance at two sites of different malaria transmission intensities in Rwanda. Acta Trop 2016; 164:329-336. [PMID: 27647575 PMCID: PMC10600949 DOI: 10.1016/j.actatropica.2016.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 09/01/2016] [Accepted: 09/05/2016] [Indexed: 12/23/2022]
Abstract
Faced with intense levels of chloroquine (CQ) resistance in Plasmodium falciparum malaria, Rwanda replaced CQ with amodiaquine (AQ)+sulfadoxine-pyrimethamine (SP) in 2001, and subsequently with artemether-lumefantrine (AL) in 2006, as first-line treatments for uncomplicated malaria. Following years of discontinuation of CQ use, re-emergence of CQ-susceptible parasites has been reported in countries including Malawi, Kenya and Tanzania. In contrast, high levels of SP resistant mutant parasites continue to be reported even in countries of presumed reduced SP drug selection pressure. The prevalence and distributions of genetic polymorphisms linked with CQ and SP resistance at two sites of different malaria transmission intensities are described here to better understand drug-related genomic adaptations over time and exposure to varying drug pressures in Rwanda. Using filter paper blood isolates collected from P. falciparum infected patients, DNA was extracted and a nested PCR performed to identify resistance-mediating polymorphisms in the pfcrt, pfmdr1, pfdhps and pfdhfr genes. Amplicons from a total of 399 genotyped samples were analysed by ligase detection reaction fluorescent microsphere assay. CQ susceptible pfcrt 76K and pfmdr1 86N wild-type parasites were found in about 50% and 81% of isolates, respectively. Concurrently, SP susceptible pfdhps double (437G-540E), pfdhfr triple (108N-51I-59R), quintuple pfdhps 437G-540E/pfdhfr 51I-59R-108N and sextuple haplotypes were found in about 84%, 85%, 74% and 18% of isolates, respectively. High-level SP resistance associated pfdhfr 164L and pfdhps 581G mutant prevalences were noted to decline. Mutations pfcrt 76T, pfdhfr 59R and pfdhfr 164L were found differentially distributed between the two study sites with the pfdhfr 164L mutants found only at Ruhuha site, eastern Rwanda. Overall, sustained intense levels of SP resistance mutations and a recovery of CQ susceptible parasites were found in this study following 7 years and 14 years of drug withdrawal from use, respectively. Most likely, the sustained high prevalence of resistant parasites is due to the use of DHFR/DHPS inhibitors like trimethoprim-sulfamethoxazole (TS) for the treatment of and prophylaxis against bacterial infections among HIV infected individuals as well as the continued use of IPTp-SP within the East and Central African regions for malaria prevention among pregnant women. With regard to CQ, the slow recovery of CQ susceptible parasites may have been caused partly by the continued use of CQ and/or CQ mimicking antimalarial drugs like AQ in spite of policies to withdraw it from Rwanda and the neighbouring countries of Uganda and Tanzania. Continued surveillance of P. falciparum CQ and SP associated polymorphisms is recommended for guiding future rational drug policy-making and mitigation of future risk of anti-malaria drug resistance development.
Collapse
Affiliation(s)
- Fredrick Kateera
- Medical Research Centre Division, Rwanda Biomedical Centre, PO Box 7162, Kigali, Rwanda; Centre of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands.
| | - Sam L Nsobya
- Molecular Research Laboratory, Infectious Disease Research Collaboration (IDRC), New Mulago Hospital Complex, PO Box 7051, Kampala, Uganda; School of Biomedical Science, College of Medicine, Makerere University, Uganda.
| | - Steven Tukwasibwe
- Molecular Research Laboratory, Infectious Disease Research Collaboration (IDRC), New Mulago Hospital Complex, PO Box 7051, Kampala, Uganda.
| | - Emmanuel Hakizimana
- Medical Research Centre Division, Rwanda Biomedical Centre, PO Box 7162, Kigali, Rwanda; Malaria & Other Parasitic Diseases Division, Rwanda Biomedical Centre, Kigali, Rwanda.
| | - Leon Mutesa
- College of Medicine & Health Sciences, University of Rwanda, PO Box 3286, Kigali, Rwanda.
| | - Petra F Mens
- Centre of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands; Royal Tropical Institute/Koninklijk Instituutvoor de Tropen, KIT Biomedical Research, Meibergdreef 39, 1105 AZ, Amsterdam, The Netherlands.
| | - Martin P Grobusch
- Centre of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands.
| | - Michèle van Vugt
- Centre of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands.
| | - Nirbhay Kumar
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Vector-Borne Infectious Disease Research Centre, Tulane University, 333S Liberty Street, Mail code 8317, New Orleans, LA 70112, United States.
| |
Collapse
|
20
|
A Method for Amplicon Deep Sequencing of Drug Resistance Genes in Plasmodium falciparum Clinical Isolates from India. J Clin Microbiol 2016; 54:1500-1511. [PMID: 27008882 PMCID: PMC4879288 DOI: 10.1128/jcm.00235-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/20/2016] [Indexed: 11/20/2022] Open
Abstract
A major challenge to global malaria control and elimination is early detection and containment of emerging drug resistance. Next-generation sequencing (NGS) methods provide the resolution, scalability, and sensitivity required for high-throughput surveillance of molecular markers of drug resistance. We have developed an amplicon sequencing method on the Ion Torrent PGM platform for targeted resequencing of a panel of six Plasmodium falciparum genes implicated in resistance to first-line antimalarial therapy, including artemisinin combination therapy, chloroquine, and sulfadoxine-pyrimethamine. The protocol was optimized using 12 geographically diverse P. falciparum reference strains and successfully applied to multiplexed sequencing of 16 clinical isolates from India. The sequencing results from the reference strains showed 100% concordance with previously reported drug resistance-associated mutations. Single-nucleotide polymorphisms (SNPs) in clinical isolates revealed a number of known resistance-associated mutations and other nonsynonymous mutations that have not been implicated in drug resistance. SNP positions containing multiple allelic variants were used to identify three clinical samples containing mixed genotypes indicative of multiclonal infections. The amplicon sequencing protocol has been designed for the benchtop Ion Torrent PGM platform and can be operated with minimal bioinformatics infrastructure, making it ideal for use in countries that are endemic for the disease to facilitate routine large-scale surveillance of the emergence of drug resistance and to ensure continued success of the malaria treatment policy.
Collapse
|
21
|
Zhang X, Wen K, Wang Z, Jiang H, Beier RC, Shen J. An ultra-sensitive monoclonal antibody-based fluorescent microsphere immunochromatographic test strip assay for detecting aflatoxin M 1 in milk. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.08.040] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Cui L, Mharakurwa S, Ndiaye D, Rathod PK, Rosenthal PJ. Antimalarial Drug Resistance: Literature Review and Activities and Findings of the ICEMR Network. Am J Trop Med Hyg 2015; 93:57-68. [PMID: 26259943 PMCID: PMC4574275 DOI: 10.4269/ajtmh.15-0007] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 04/27/2015] [Indexed: 11/07/2022] Open
Abstract
Antimalarial drugs are key tools for the control and elimination of malaria. Recent decreases in the global malaria burden are likely due, in part, to the deployment of artemisinin-based combination therapies. Therefore, the emergence and potential spread of artemisinin-resistant parasites in southeast Asia and changes in sensitivities to artemisinin partner drugs have raised concerns. In recognition of this urgent threat, the International Centers of Excellence for Malaria Research (ICEMRs) are closely monitoring antimalarial drug efficacy and studying the mechanisms underlying drug resistance. At multiple sentinel sites of the global ICEMR network, research activities include clinical studies to track the efficacies of antimalarial drugs, ex vivo/in vitro assays to measure drug susceptibilities of parasite isolates, and characterization of resistance-mediating parasite polymorphisms. Taken together, these efforts offer an increasingly comprehensive assessment of the efficacies of antimalarial therapies, and enable us to predict the emergence of drug resistance and to guide local antimalarial drug policies. Here we briefly review worldwide antimalarial drug resistance concerns, summarize research activities of the ICEMRs related to drug resistance, and assess the global impacts of the ICEMR programs.
Collapse
Affiliation(s)
- Liwang Cui
- *Address correspondence to Liwang Cui, Department of Entomology, Pennsylvania State University, 501 ASI Building, University Park, PA 16802, E-mail: or Philip J. Rosenthal, Department of Medicine, Box 0811, University of California, San Francisco, CA 94110. E-mail:
| | | | | | | | - Philip J. Rosenthal
- *Address correspondence to Liwang Cui, Department of Entomology, Pennsylvania State University, 501 ASI Building, University Park, PA 16802, E-mail: or Philip J. Rosenthal, Department of Medicine, Box 0811, University of California, San Francisco, CA 94110. E-mail:
| |
Collapse
|
23
|
Boncy PJ, Adrien P, Lemoine JF, Existe A, Henry PJ, Raccurt C, Brasseur P, Fenelon N, Dame JB, Okech BA, Kaljee L, Baxa D, Prieur E, El Badry MA, Tagliamonte MS, Mulligan CJ, Carter TE, Beau de Rochars VM, Lutz C, Parke DM, Zervos MJ. Malaria elimination in Haiti by the year 2020: an achievable goal? Malar J 2015; 14:237. [PMID: 26043728 PMCID: PMC4464116 DOI: 10.1186/s12936-015-0753-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 05/27/2015] [Indexed: 12/25/2022] Open
Abstract
Haiti and the Dominican Republic, which share the island of Hispaniola, are the last locations in the Caribbean where malaria still persists. Malaria is an important public health concern in Haiti with 17,094 reported cases in 2014. Further, on January 12, 2010, a record earthquake devastated densely populated areas in Haiti including many healthcare and laboratory facilities. Weakened infrastructure provided fertile reservoirs for uncontrolled transmission of infectious pathogens. This situation results in unique challenges for malaria epidemiology and elimination efforts. To help Haiti achieve its malaria elimination goals by year 2020, the Laboratoire National de Santé Publique and Henry Ford Health System, in close collaboration with the Direction d’Épidémiologie, de Laboratoire et de Recherches and the Programme National de Contrôle de la Malaria, hosted a scientific meeting on “Elimination Strategies for Malaria in Haiti” on January 29-30, 2015 at the National Laboratory in Port-au-Prince, Haiti. The meeting brought together laboratory personnel, researchers, clinicians, academics, public health professionals, and other stakeholders to discuss main stakes and perspectives on malaria elimination. Several themes and recommendations emerged during discussions at this meeting. First, more information and research on malaria transmission in Haiti are needed including information from active surveillance of cases and vectors. Second, many healthcare personnel need additional training and critical resources on how to properly identify malaria cases so as to improve accurate and timely case reporting. Third, it is necessary to continue studies genotyping strains of Plasmodium falciparum in different sites with active transmission to evaluate for drug resistance and impacts on health. Fourth, elimination strategies outlined in this report will continue to incorporate use of primaquine in addition to chloroquine and active surveillance of cases. Elimination of malaria in Haiti will require collaborative multidisciplinary approaches, sound strategic planning, and strong ownership of strategies by the Haiti Ministère de la Santé Publique et de la Population.
Collapse
Affiliation(s)
- Paul Jacques Boncy
- Laboratoire National de Santé Publique, Rue Chardonnier #2 and Delmas 33, Port-au-Prince, Haiti.
| | - Paul Adrien
- Direction d'Épidémiologie, de Laboratoire et de Recherches, Port-au-Prince, Haiti.
| | | | - Alexandre Existe
- Laboratoire National de Santé Publique, Rue Chardonnier #2 and Delmas 33, Port-au-Prince, Haiti.
| | - Patricia Jean Henry
- Point focal OHMaSS/Programme National de Contrôle de la Malaria, Port-au-Prince, Haiti.
| | - Christian Raccurt
- Laboratoire National de Santé Publique, Rue Chardonnier #2 and Delmas 33, Port-au-Prince, Haiti.
| | | | - Natael Fenelon
- Direction d'Épidémiologie, de Laboratoire et de Recherches, Port-au-Prince, Haiti.
| | - John B Dame
- University of Florida, Gainesville, FL, 32611, USA.
| | | | - Linda Kaljee
- Henry Ford Health System, 2799 W. Grand Blvd, Detroit, MI, 48202, USA. .,Wayne State University, Detroit, MI, 48201, USA.
| | - Dwayne Baxa
- Henry Ford Health System, 2799 W. Grand Blvd, Detroit, MI, 48202, USA. .,Oakland University William Beaumont School of Medicine, Rocheste, MI, 48309, USA.
| | - Eric Prieur
- Laboratoire Vac4All, Hôpital Cochin, 75014, Paris, France.
| | | | | | | | | | | | - Chelsea Lutz
- University of Florida, Gainesville, FL, 32611, USA.
| | - Dana M Parke
- Henry Ford Health System, 2799 W. Grand Blvd, Detroit, MI, 48202, USA.
| | - Marcus J Zervos
- Henry Ford Health System, 2799 W. Grand Blvd, Detroit, MI, 48202, USA. .,Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
24
|
Huijben S, Chan BHK, Read AF. Relevance of undetectably rare resistant malaria parasites in treatment failure: experimental evidence from Plasmodium chabaudi. Am J Trop Med Hyg 2015; 92:1214-21. [PMID: 25940195 DOI: 10.4269/ajtmh.15-0036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/25/2015] [Indexed: 01/24/2023] Open
Abstract
Resistant malaria parasites are frequently found in mixed infections with drug-sensitive parasites. Particularly early in the evolutionary process, the frequency of these resistant mutants can be extremely low and below the level of molecular detection. We tested whether the rarity of resistance in infections impacted the health outcomes of treatment failure and the potential for onward transmission of resistance. Mixed infections of different ratios of resistant and susceptible Plasmodium chabaudi parasites were inoculated in laboratory mice and dynamics tracked during the course of infection using highly sensitive genotype-specific quantitative polymerase chain reaction (qPCR). Frequencies of resistant parasites ranged from 10% to 0.003% at the onset of treatment. We found that the rarer the resistant parasites were, the lower the likelihood of their onward transmission, but the worse the treatment failure was in terms of parasite numbers and disease severity. Strikingly, drug resistant parasites had the biggest impact on health outcomes when they were too rare to be detected by any molecular methods currently available for field samples. Indeed, in the field, these treatment failures would not even have been attributed to resistance.
Collapse
Affiliation(s)
- Silvie Huijben
- Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, University Park, Pennsylvania; ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic Universitat de Barcelona, Barcelona, Spain; Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom; Fogarty International Center, National Institutes of Health, Bethesda, Maryland
| | - Brian H K Chan
- Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, University Park, Pennsylvania; ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic Universitat de Barcelona, Barcelona, Spain; Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom; Fogarty International Center, National Institutes of Health, Bethesda, Maryland
| | - Andrew F Read
- Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, University Park, Pennsylvania; ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic Universitat de Barcelona, Barcelona, Spain; Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom; Fogarty International Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
25
|
Abdul-Ghani R, Al-Maktari MT, Al-Shibani LA, Allam AF. A better resolution for integrating methods for monitoring Plasmodium falciparum resistance to antimalarial drugs. Acta Trop 2014; 137:44-57. [PMID: 24801884 DOI: 10.1016/j.actatropica.2014.04.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/25/2014] [Accepted: 04/27/2014] [Indexed: 12/16/2022]
Abstract
Effective chemotherapy is the mainstay of malaria control. However, resistance of falciparum malaria to antimalarial drugs compromised the efforts to eliminate the disease and led to the resurgence of malaria epidemics. Three main approaches are used to monitor antimalarial drug efficacy and drug resistance; namely, in vivo trials, in vitro/ex vivo assays and molecular markers of drug resistance. Each approach has its implications of use as well as its advantages and drawbacks. Therefore, there is a need to use an integrated approach that would give the utmost effect to detect resistance as early as its emergence and to track it once spread. Such integration becomes increasingly needed in the era of artemisinin-based combination therapy as a forward action to deter resistance. The existence of regional and global networks for the standardization of methodology, provision of high quality reagents for the assessment of antimalarial drug resistance and dissemination of open-access data would help in approaching an integrated resistance surveillance system on a global scale.
Collapse
|