1
|
Wang Y, Zhang TJ, Zhang LC, Xu ZJ, Chu MQ, Zhao YJ, Lin J, Qian J, Zhou JD. Overexpression and oncogenic role of RIPK3 in acute myeloid leukemia associated with specific subtypes and treatment outcome. BMC Cancer 2025; 25:253. [PMID: 39948488 PMCID: PMC11827379 DOI: 10.1186/s12885-025-13613-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Receptor-interacting protein kinase 3 (RIPK3) has been implicated in the pathogenesis of diverse human cancers. However, the role of RIPK3 in acute myeloid leukemia (AML) is not fully understood, which needs further research and clarification. METHODS We first identified the expression and clinical prognostic value of RIPK3 in AML through a public database and further validated in our research cohort. In addition, the biological function of RIPK3 in leukemic development was further verified through in vitro experiments. RESULTS Based on the GEPIA database, we screened that RIPK3 overexpression among RIPK family was associated with poor prognosis in AML. Afterwards, another independent cohort from our research center further confirmed the expression pattern of RIPK3 in AML patients. Clinically, increased RIPK3 expression was closely related to specific subtypes of AML, such as FAB-M4/M5, normal karyotype and NPM1 mutation. The significant association of RIPK3 overexpression with FAB-M4/M5 was further validated in AML cell lines. Notably, AML patients with RIPK3 overexpression received transplantation presented a markedly longer survival than those just receiving chemotherapy, whereas those with RIPK3 underexpression showed similar survival between transplantation and chemotherapy group. Bioinformatics analysis showed the significant association of RIPK3 expression with diverse oncogenes/tumor suppressor genes and tumor-related biological processes in AML. Subsequently, we further performed functional experiments in vitro confirmed the potential oncogenic role of RIPK3 in AML. CONCLUSIONS Overexpression of RIPK3 was associated with specific subtypes of AML, such as FAB-M4/M5, normal karyotype and NPM1 mutation, and may facilitate the leukemic development. Moreover, RIPK3 overexpression was associated poor prognosis, and may guide treatment choice in AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
- Receptor-Interacting Protein Serine-Threonine Kinases/genetics
- Male
- Prognosis
- Female
- Middle Aged
- Nucleophosmin
- Treatment Outcome
- Cell Line, Tumor
- Adult
- Mutation
- Aged
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- Gene Expression Regulation, Leukemic
Collapse
Affiliation(s)
- Yun Wang
- Department of Hematology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
- Institute of Hematology, Jiangsu University, Zhenjiang, Jiangsu, 212002, China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, 212002, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, 212002, China
| | - Ting-Juan Zhang
- Department of Hematology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
- Institute of Hematology, Jiangsu University, Zhenjiang, Jiangsu, 212002, China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, 212002, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, 212002, China
| | - Liu-Chao Zhang
- Medical Laboratory, The Affiliated Qidong Hospital of Nantong University Qidong People's Hospital Qidong Liver Cancer Institute, Qidong, Jiangsu, 226200, China
| | - Zi-Jun Xu
- Institute of Hematology, Jiangsu University, Zhenjiang, Jiangsu, 212002, China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, 212002, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, 212002, China
- Laboratory Center, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Ming-Qiang Chu
- Department of Hematology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
- Institute of Hematology, Jiangsu University, Zhenjiang, Jiangsu, 212002, China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, 212002, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, 212002, China
| | - Yang-Jing Zhao
- Department of Hematology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
- Institute of Hematology, Jiangsu University, Zhenjiang, Jiangsu, 212002, China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, 212002, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, 212002, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jiang Lin
- Institute of Hematology, Jiangsu University, Zhenjiang, Jiangsu, 212002, China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, 212002, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, 212002, China
- Laboratory Center, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Jun Qian
- Department of Hematology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
- Institute of Hematology, Jiangsu University, Zhenjiang, Jiangsu, 212002, China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, 212002, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, 212002, China
| | - Jing-Dong Zhou
- Department of Hematology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China.
- Institute of Hematology, Jiangsu University, Zhenjiang, Jiangsu, 212002, China.
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, 212002, China.
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, 212002, China.
| |
Collapse
|
2
|
Xie F, Zhang TJ, Zhang XL, Xu ZJ, Qiao L, Wang Y, Zhao YJ, Qian J, Zhou JD. Identification of HOXA9 methylation as an epigenetic biomarker predicting prognosis and guiding treatment choice in acute myeloid leukemia. BMC Cancer 2025; 25:215. [PMID: 39920624 PMCID: PMC11806540 DOI: 10.1186/s12885-025-13633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/03/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND The homeobox (HOX) genes especially for HOXA cluster play crucial roles in leukemogenesis. HOXA overexpression caused by genetic alterations, such as KMT2A rearrangements, NUP98- fusions and FLT3-ITD mutations, is frequently identified in AML. However, very few studies determined the DNA methylation-mediated epigenetic regulation of the HOXA cluster genes in AML. METHODS We systematically first screened the prognostic value of HOXA cluster genes methylation in AML from The Cancer Genome Atlas (TCGA) datasets. Afterwards, the candidate prognosis-related gene HOXA9 were selected for clinical relevance analysis and were further validated in another independent cohort from our research center. RESULTS The methylation of HOXA9, among HOXA cluster genes, negatively correlated with adverse prognosis and expression were screened and identified in AML among TCGA datasets. Clinically, HOXA9 hypomethylation was positively correlated with specific subtypes of AML, such as French-American-British (FAB)-M5/M7, normal karyotype and FLT3, NPM1 and DNMT3A mutation, whereas negatively associated with FAB-M3, t(15;17), t(8;21) and t(16;16). Importantly, AML patients with HOXA9 hypomethylation may profit from transplantation, whereas AML patients with HOXA9 hypermethylation could not, suggesting that HOXA9 methylation may be used to guide therapeutic selection between transplantation and chemotherapy. Bioinformatics analysis demonstrated the association of HOXA9 expression with diverse leukemia-related genes (HOXAs, SOSTDC1, MEG3, miR-10a, miR-381 and miR-193b) and signaling pathways (PI3K-Akt signaling) in AML. Subsequently, we further validate the hypomethylation pattern of HOXA9 in AML patients and the epigenetic regulation of HOXA9 methylation in AML cell-lines. CONCLUSIONS HOXA9 methylation linked to HOXA9 expression correlates with diverse genetic abnormalities of AML, such as normal karyotype, t(15;17), t(8;21), t(16;16) and FLT3, NPM1 and DNMT3A mutations. Moreover, HOXA9 hypomethylation may be associated with adverse prognosis, and may guide treatment choice in AML.
Collapse
Affiliation(s)
- Fei Xie
- Department of Hematology, The Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, Zhenjiang, 212002, Jiangsu, China
- Institute of Hematology, Jiangsu University, Zhenjiang, 212002, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, 212002, Jiangsu, China
| | - Ting-Juan Zhang
- Department of Hematology, The Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, Zhenjiang, 212002, Jiangsu, China
- Institute of Hematology, Jiangsu University, Zhenjiang, 212002, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, 212002, Jiangsu, China
| | - Xin-Long Zhang
- Department of Hematology, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, 212300, Jiangsu, China
| | - Zi-Jun Xu
- Department of Hematology, The Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, Zhenjiang, 212002, Jiangsu, China
- Institute of Hematology, Jiangsu University, Zhenjiang, 212002, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, 212002, Jiangsu, China
- Laboratory Center, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China
| | - Liang Qiao
- Department of Hematology, The Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, Zhenjiang, 212002, Jiangsu, China
- Institute of Hematology, Jiangsu University, Zhenjiang, 212002, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, 212002, Jiangsu, China
| | - Yun Wang
- Department of Hematology, The Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, Zhenjiang, 212002, Jiangsu, China
- Institute of Hematology, Jiangsu University, Zhenjiang, 212002, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, 212002, Jiangsu, China
| | - Yang-Jing Zhao
- Department of Hematology, The Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, Zhenjiang, 212002, Jiangsu, China
- Institute of Hematology, Jiangsu University, Zhenjiang, 212002, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, 212002, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Jun Qian
- Department of Hematology, The Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, Zhenjiang, 212002, Jiangsu, China
- Institute of Hematology, Jiangsu University, Zhenjiang, 212002, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, 212002, Jiangsu, China
| | - Jing-Dong Zhou
- Department of Hematology, The Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, Zhenjiang, 212002, Jiangsu, China.
- Institute of Hematology, Jiangsu University, Zhenjiang, 212002, Jiangsu, China.
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, China.
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, 212002, Jiangsu, China.
| |
Collapse
|
3
|
Andrysik Z, Espinosa JM. Harnessing p53 for targeted cancer therapy: new advances and future directions. Transcription 2025; 16:3-46. [PMID: 40031988 PMCID: PMC11970777 DOI: 10.1080/21541264.2025.2452711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 03/05/2025] Open
Abstract
The transcription factor p53 is the most frequently impaired tumor suppressor in human cancers. In response to various stress stimuli, p53 activates transcription of genes that mediate its tumor-suppressive functions. Distinctive characteristics of p53 outlined here enable a well-defined program of genes involved in cell cycle arrest, apoptosis, senescence, differentiation, metabolism, autophagy, DNA repair, anti-viral response, and anti-metastatic functions, as well as facilitating autoregulation within the p53 network. This versatile, anti-cancer network governed chiefly by a single protein represents an immense opportunity for targeted cancer treatment, since about half of human tumors retain unmutated p53. During the last two decades, numerous compounds have been developed to block the interaction of p53 with the main negative regulator MDM2. However, small molecule inhibitors of MDM2 only induce a therapeutically desirable apoptotic response in a limited number of cancer types. Moreover, clinical trials of the MDM2 inhibitors as monotherapies have not met expectations and have revealed hematological toxicity as a characteristic adverse effect across this drug class. Currently, combination treatments are the leading strategy for enhancing efficacy and reducing adverse effects of MDM2 inhibitors. This review summarizes efforts to identify and test therapeutics that work synergistically with MDM2 inhibitors. Two main types of drugs have emerged among compounds used in the following combination treatments: first, modulators of the p53-regulated transcriptome (including chromatin modifiers), translatome, and proteome, and second, drugs targeting the downstream pathways such as apoptosis, cell cycle arrest, DNA repair, metabolic stress response, immune response, ferroptosis, and growth factor signaling. Here, we review the current literature in this field, while also highlighting overarching principles that could guide target selection in future combination treatments.
Collapse
Affiliation(s)
- Zdenek Andrysik
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joaquin M. Espinosa
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
4
|
Das PJ, Kour A, Bhati J, Mishra DC, Sarkar M. Genomic and transcriptomic evaluations of infertile or subfertile Arunachali yak sperm. ZYGOTE 2024; 32:341-347. [PMID: 39417303 DOI: 10.1017/s0967199424000194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Sperm infertility or subfertility is detrimental to the precious highland germplasm like yak whose population has been gradually declining in India. Understanding the 'omic' landscape of infertile or subfertile yak sperm can reveal some interesting insights. In an attempt to do the same, this study considered the semen of infertile or subfertile yak bulls for whole-genome and transcriptome evaluations. DNA sequencing revealed that the yak sperm genome contains the necessary genes to carry out all the important biological processes related to the growth, development, survival and multiplication of an organism. Interestingly, RNA Seq results highlighted that genes like VAMP7, MYLK, ARAP2 and MARCH6 showed increased expression, while biological processes related to immune response (GO:0043308, GO:0002447, GO:0002278, GO:0043307, GO:0043312, GO:0002283, GO:0043299 and GO:0002446) were significantly overrepresented. These findings hint at a possible role played by immune system in regulating infertility or subfertility in yaks. Further, in-depth studies can validate these findings and help in improving our biological understanding in this area.
Collapse
Affiliation(s)
- Pranab Jyoti Das
- ICAR-National Research Centre on Yak, Dirang, Arunachal Pradesh, India
- ICAR-National Research Centre on Pig, Guwahati, Assam, India
| | - Aneet Kour
- ICAR-National Research Centre on Yak, Dirang, Arunachal Pradesh, India
- ICAR-Directorate of Poultry Research, Hyderabad, Telangana, India
| | - Jyotika Bhati
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Mihir Sarkar
- ICAR-National Research Centre on Yak, Dirang, Arunachal Pradesh, India
| |
Collapse
|
5
|
Wang W, Albadari N, Du Y, Fowler JF, Sang HT, Xian W, McKeon F, Li W, Zhou J, Zhang R. MDM2 Inhibitors for Cancer Therapy: The Past, Present, and Future. Pharmacol Rev 2024; 76:414-453. [PMID: 38697854 PMCID: PMC11068841 DOI: 10.1124/pharmrev.123.001026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/28/2023] [Accepted: 01/16/2024] [Indexed: 05/05/2024] Open
Abstract
Since its discovery over 35 years ago, MDM2 has emerged as an attractive target for the development of cancer therapy. MDM2's activities extend from carcinogenesis to immunity to the response to various cancer therapies. Since the report of the first MDM2 inhibitor more than 30 years ago, various approaches to inhibit MDM2 have been attempted, with hundreds of small-molecule inhibitors evaluated in preclinical studies and numerous molecules tested in clinical trials. Although many MDM2 inhibitors and degraders have been evaluated in clinical trials, there is currently no Food and Drug Administration (FDA)-approved MDM2 inhibitor on the market. Nevertheless, there are several current clinical trials of promising agents that may overcome the past failures, including agents granted FDA orphan drug or fast-track status. We herein summarize the research efforts to discover and develop MDM2 inhibitors, focusing on those that induce MDM2 degradation and exert anticancer activity, regardless of the p53 status of the cancer. We also describe how preclinical and clinical investigations have moved toward combining MDM2 inhibitors with other agents, including immune checkpoint inhibitors. Finally, we discuss the current challenges and future directions to accelerate the clinical application of MDM2 inhibitors. In conclusion, targeting MDM2 remains a promising treatment approach, and targeting MDM2 for protein degradation represents a novel strategy to downregulate MDM2 without the side effects of the existing agents blocking p53-MDM2 binding. Additional preclinical and clinical investigations are needed to finally realize the full potential of MDM2 inhibition in treating cancer and other chronic diseases where MDM2 has been implicated. SIGNIFICANCE STATEMENT: Overexpression/amplification of the MDM2 oncogene has been detected in various human cancers and is associated with disease progression, treatment resistance, and poor patient outcomes. This article reviews the previous, current, and emerging MDM2-targeted therapies and summarizes the preclinical and clinical studies combining MDM2 inhibitors with chemotherapy and immunotherapy regimens. The findings of these contemporary studies may lead to safer and more effective treatments for patients with cancers overexpressing MDM2.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Najah Albadari
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Yi Du
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Josef F Fowler
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Hannah T Sang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Wa Xian
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Frank McKeon
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Wei Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Jia Zhou
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Ruiwen Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| |
Collapse
|
6
|
Mahajan A, Hong J, Krukovets I, Shin J, Tkachenko S, Espinosa-Diez C, Owens GK, Cherepanova OA. Integrative analysis of the lncRNA-miRNA-mRNA interactions in smooth muscle cell phenotypic transitions. Front Genet 2024; 15:1356558. [PMID: 38660676 PMCID: PMC11039880 DOI: 10.3389/fgene.2024.1356558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Objectives: We previously found that the pluripotency factor OCT4 is reactivated in smooth muscle cells (SMC) in human and mouse atherosclerotic plaques and plays an atheroprotective role. Loss of OCT4 in SMC in vitro was associated with decreases in SMC migration. However, molecular mechanisms responsible for atheroprotective SMC-OCT4-dependent effects remain unknown. Methods: Since studies in embryonic stem cells demonstrated that OCT4 regulates long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), making them candidates for OCT4 effect mediators, we applied an in vitro approach to investigate the interactions between OCT4-regulated lncRNAs, mRNAs, and miRNAs in SMC. We used OCT4 deficient mouse aortic SMC (MASMC) treated with the pro-atherogenic oxidized phospholipid POVPC, which, as we previously demonstrated, suppresses SMC contractile markers and induces SMC migration. Differential expression of lncRNAs, mRNAs, and miRNAs was obtained by lncRNA/mRNA expression array and small-RNA microarray. Long non-coding RNA to mRNA associations were predicted based on their genomic proximity and association with vascular diseases. Given a recently discovered crosstalk between miRNA and lncRNA, we also investigated the association of miRNAs with upregulated/downregulated lncRNA-mRNA pairs. Results: POVPC treatment in SMC resulted in upregulating genes related to the axon guidance and focal adhesion pathways. Knockdown of Oct4 resulted in differential regulation of pathways associated with phagocytosis. Importantly, these results were consistent with our data showing that OCT4 deficiency attenuated POVPC-induced SMC migration and led to increased phagocytosis. Next, we identified several up- or downregulated lncRNA associated with upregulation of the specific mRNA unique for the OCT4 deficient SMC, including upregulation of ENSMUST00000140952-Hoxb5/6 and ENSMUST00000155531-Zfp652 along with downregulation of ENSMUST00000173605-Parp9 and, ENSMUST00000137236-Zmym1. Finally, we found that many of the downregulated miRNAs were associated with cell migration, including miR-196a-1 and miR-10a, targets of upregulated ENSMUST00000140952, and miR-155 and miR-122, targets of upregulated ENSMUST00000155531. Oppositely, the upregulated miRNAs were anti-migratory and pro-phagocytic, such as miR-10a/b and miR-15a/b, targets of downregulated ENSMUST00000173605, and miR-146a/b and miR-15b targets of ENSMUST00000137236. Conclusion: Our integrative analyses of the lncRNA-miRNA-mRNA interactions in SMC indicated novel potential OCT4-dependent mechanisms that may play a role in SMC phenotypic transitions.
Collapse
Affiliation(s)
- Aatish Mahajan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Junyoung Hong
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Irene Krukovets
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Junchul Shin
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Svyatoslav Tkachenko
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Cristina Espinosa-Diez
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Gary K. Owens
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
| | - Olga A. Cherepanova
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
7
|
Reina-Ortiz C, Mozas MP, Ovelleiro D, Gao F, Villalba M, Anel A. Dynamic Changes in miRNA Expression during the Generation of Expanded and Activated NK Cells. Int J Mol Sci 2023; 24:13556. [PMID: 37686362 PMCID: PMC10488243 DOI: 10.3390/ijms241713556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Therapies based on allogenic Natural Killer (NK) cells are becoming increasingly relevant, and our laboratory has produced expanded and activated NK (eNK) cells that are highly cytotoxic against several hematological cancers when used alone or in combination with currently approved therapeutic monoclonal antibodies. In order to produce eNK cells, healthy human donor NK cells undergo a 20-day expansion protocol with IL-2, IL-15 and Epstein-Barr virus (EBV)-transformed lymphoblastoid feeder cells. In order to produce an even more potent eNK-based therapy, we must elucidate the changes our protocol produces within healthy NK cells. To understand the post-transcriptional changes responsible for the increased cytolytic abilities of eNK cells, we performed microRNA (miRNA) expression analysis on purified NK cells from day 0 and day 20 of the protocol using quantitative reverse transcription PCR (RT-qPCR). Of the 384 miRNAs profiled, we observed changes in the expression of 64 miRNAs, with especially significant changes in 7 of them. The up-regulated miRNAs of note were miRs-146a, -124, -34a, and -10a, which are key in the regulation of cell survival through the modulation of pro-apoptotic genes such as PUMA. The down-regulation of miRs-199a, -223, and -340 was also detected and is associated with the promotion of NK cell cytotoxicity. We validated our analysis using immunoblot and flow cytometry studies on specific downstream targets of both up- and down-regulated miRNAs such as PUMA and Granzyme B. These results corroborate the functional importance of the described miRNA expression patterns and show the wide variety of changes that occur in eNK cells at day 20.
Collapse
Affiliation(s)
- Chantal Reina-Ortiz
- Apoptosis, Immunity and Cancer Group, Department Biochemistry and Molecular and Cell Biology, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, 50009 Zaragoza, Spain; (C.R.-O.); (M.P.M.)
| | - Mª Pilar Mozas
- Apoptosis, Immunity and Cancer Group, Department Biochemistry and Molecular and Cell Biology, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, 50009 Zaragoza, Spain; (C.R.-O.); (M.P.M.)
| | - David Ovelleiro
- Peripheral Nervous System, Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain;
| | - Fei Gao
- Institute of Regenerative Medicine and Biotherapy, University of Montpellier, INSERM, CNRS, University Hospital Center Montpellier, 34000 Montpellier, France; (F.G.); (M.V.)
- Immuno-Oncology Laboratory, School of Basic Medicine, Central South University, Changsha 410017, China
| | - Martín Villalba
- Institute of Regenerative Medicine and Biotherapy, University of Montpellier, INSERM, CNRS, University Hospital Center Montpellier, 34000 Montpellier, France; (F.G.); (M.V.)
| | - Alberto Anel
- Apoptosis, Immunity and Cancer Group, Department Biochemistry and Molecular and Cell Biology, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, 50009 Zaragoza, Spain; (C.R.-O.); (M.P.M.)
| |
Collapse
|
8
|
Mao M, Song S, Li X, Lu J, Li J, Zhao W, Liu H, Liu J, Zeng B. Advances in epigenetic modifications of autophagic process in pulmonary hypertension. Front Immunol 2023; 14:1206406. [PMID: 37398657 PMCID: PMC10313199 DOI: 10.3389/fimmu.2023.1206406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Pulmonary hypertension is characterized by pulmonary arterial remodeling that results in increased pulmonary vascular resistance, right ventricular failure, and premature death. It is a threat to public health globally. Autophagy, as a highly conserved self-digestion process, plays crucial roles with autophagy-related (ATG) proteins in various diseases. The components of autophagy in the cytoplasm have been studied for decades and multiple studies have provided evidence of the importance of autophagic dysfunction in pulmonary hypertension. The status of autophagy plays a dynamic suppressive or promotive role in different contexts and stages of pulmonary hypertension development. Although the components of autophagy have been well studied, the molecular basis for the epigenetic regulation of autophagy is less understood and has drawn increasing attention in recent years. Epigenetic mechanisms include histone modifications, chromatin modifications, DNA methylation, RNA alternative splicing, and non-coding RNAs, which control gene activity and the development of an organism. In this review, we summarize the current research progress on epigenetic modifications in the autophagic process, which have the potential to be crucial and powerful therapeutic targets against the autophagic process in pulmonary hypertension development.
Collapse
Affiliation(s)
- Min Mao
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- National Health Commission (NHC) Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shasha Song
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Xin Li
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- National Health Commission (NHC) Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jiayao Lu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Jie Li
- Marketing Department, Shenzhen Reyson Biotechnology Co., Ltd, Shenzhen, China
- Nanjing Evertop Electronics Ltd., Nanjing, China
| | - Weifang Zhao
- Quality Management Department International Registration, North China Pharmaceutical Co., Ltd. (NCPC), Hebei Huamin Pharmaceutical Co., Ltd., Shijiazhuang, China
| | - Hanmin Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- National Health Commission (NHC) Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jingxin Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Bin Zeng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
9
|
Brazane M, Dimitrova DG, Pigeon J, Paolantoni C, Ye T, Marchand V, Da Silva B, Schaefer E, Angelova MT, Stark Z, Delatycki M, Dudding-Byth T, Gecz J, Plaçais PY, Teysset L, Préat T, Piton A, Hassan BA, Roignant JY, Motorin Y, Carré C. The ribose methylation enzyme FTSJ1 has a conserved role in neuron morphology and learning performance. Life Sci Alliance 2023; 6:e202201877. [PMID: 36720500 PMCID: PMC9889914 DOI: 10.26508/lsa.202201877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 02/02/2023] Open
Abstract
FTSJ1 is a conserved human 2'-O-methyltransferase (Nm-MTase) that modifies several tRNAs at position 32 and the wobble position 34 in the anticodon loop. Its loss of function has been linked to X-linked intellectual disability (XLID), and more recently to cancers. However, the molecular mechanisms underlying these pathologies are currently unclear. Here, we report a novel FTSJ1 pathogenic variant from an X-linked intellectual disability patient. Using blood cells derived from this patient and other affected individuals carrying FTSJ1 mutations, we performed an unbiased and comprehensive RiboMethSeq analysis to map the ribose methylation on all human tRNAs and identify novel targets. In addition, we performed a transcriptome analysis in these cells and found that several genes previously associated with intellectual disability and cancers were deregulated. We also found changes in the miRNA population that suggest potential cross-regulation of some miRNAs with these key mRNA targets. Finally, we show that differentiation of FTSJ1-depleted human neural progenitor cells into neurons displays long and thin spine neurites compared with control cells. These defects are also observed in Drosophila and are associated with long-term memory deficits. Altogether, our study adds insight into FTSJ1 pathologies in humans and flies by the identification of novel FTSJ1 targets and the defect in neuron morphology.
Collapse
Affiliation(s)
- Mira Brazane
- Transgenerational Epigenetics & Small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, Paris, France
| | - Dilyana G Dimitrova
- Transgenerational Epigenetics & Small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, Paris, France
| | - Julien Pigeon
- Paris Brain Institute-Institut du Cerveau (ICM), Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Chiara Paolantoni
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Tao Ye
- Institute of Genetics and Molecular and Cellular Biology, Strasbourg University, CNRS UMR7104, INSERM U1258, Illkirch, France
| | - Virginie Marchand
- Université de Lorraine, CNRS, INSERM, EpiRNASeq Core Facility, UMS2008/US40 IBSLor,Nancy, France
| | - Bruno Da Silva
- Transgenerational Epigenetics & Small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, Paris, France
| | - Elise Schaefer
- Service de Génétique Médicale, Hôpitaux Universitaires de Strasbourg, Institut de Génétique Médicale d'Alsace, Strasbourg, France
| | - Margarita T Angelova
- Transgenerational Epigenetics & Small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, Paris, France
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Martin Delatycki
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | | | - Jozef Gecz
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide; South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Pierre-Yves Plaçais
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Laure Teysset
- Transgenerational Epigenetics & Small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, Paris, France
| | - Thomas Préat
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Amélie Piton
- Institute of Genetics and Molecular and Cellular Biology, Strasbourg University, CNRS UMR7104, INSERM U1258, Illkirch, France
| | - Bassem A Hassan
- Paris Brain Institute-Institut du Cerveau (ICM), Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jean-Yves Roignant
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Yuri Motorin
- Université de Lorraine, CNRS, UMR7365 IMoPA, Nancy, France
| | - Clément Carré
- Transgenerational Epigenetics & Small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, Paris, France
| |
Collapse
|
10
|
Wu J, Zhang Y, Li X, Ren J, Chen L, Chen J, Cao Y. Exosomes from bone marrow mesenchymal stem cells decrease chemosensitivity of acute myeloid leukemia cells via delivering miR-10a. Biochem Biophys Res Commun 2022; 622:149-156. [PMID: 35863089 DOI: 10.1016/j.bbrc.2022.07.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 11/02/2022]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) are an integral part of the acute myeloid leukemia (AML) bone marrow microenvironment and contribute to AML progression. In this study, we explored the communication between BMSCs and AML cells via exosomes. The AML cells co-cultured with BMSCs-Exos were found to have lower chemosensitivity exposed to cytarabine, suggesting that BMSCs-Exos could protect AML cells from cytarabine. Interestingly, miR-10a was elevated in BMSCs-Exos derived from AML (AML-BMSCs-Exos) compared with that from healthy donor. The expression levels of miR-10a in AML cells was significantly up-regulated after co-culture with BMSCs-Exos. Furthermore, the up-regulated miR-10a was an crucial factor contributing to the chemoresistance of leukemia cells. Down-regulation of miR-10a substantially increase chemosensitivity of AML cells treated with BMSCs-Exos. Chemosensitivity of AML cells was also decreased through down-regulating RPRD1A by miR-10a that ultimately lead to the stimulation of the Wnt/β-catenin signaling pathway. Collectively, our findings demonstrated that AML-BMSCs could deliver miR-10a to AML cells via exosomes, which could target RPRD1A and activate Wnt/β-catenin signaling pathway that subsequently decreased chemosensitivity of AML cells.
Collapse
Affiliation(s)
- Juan Wu
- Department of Laboratory Medicine, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, 350004, PR China
| | - Yaqin Zhang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoyu Li
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jingyi Ren
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ling Chen
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jiadi Chen
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Yingping Cao
- Department of Laboratory Medicine, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, 350004, PR China; Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
11
|
Mead EA, Boulghassoul-Pietrzykowska N, Wang Y, Anees O, Kinstlinger NS, Lee M, Hamza S, Feng Y, Pietrzykowski AZ. Non-Invasive microRNA Profiling in Saliva can Serve as a Biomarker of Alcohol Exposure and Its Effects in Humans. Front Genet 2022; 12:804222. [PMID: 35126468 PMCID: PMC8812725 DOI: 10.3389/fgene.2021.804222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Alcohol Use Disorder (AUD) is one of the most prevalent mental disorders worldwide. Considering the widespread occurrence of AUD, a reliable, cheap, non-invasive biomarker of alcohol consumption is desired by healthcare providers, clinicians, researchers, public health and criminal justice officials. microRNAs could serve as such biomarkers. They are easily detectable in saliva, which can be sampled from individuals in a non-invasive manner. Moreover, microRNAs expression is dynamically regulated by environmental factors, including alcohol. Since excessive alcohol consumption is a hallmark of alcohol abuse, we have profiled microRNA expression in the saliva of chronic, heavy alcohol abusers using microRNA microarrays. We observed significant changes in salivary microRNA expression caused by excessive alcohol consumption. These changes fell into three categories: downregulated microRNAs, upregulated microRNAs, and microRNAs upregulated de novo. Analysis of these combinatorial changes in microRNA expression suggests dysregulation of specific biological pathways leading to impairment of the immune system and development of several types of epithelial cancer. Moreover, some of the altered microRNAs are also modulators of inflammation, suggesting their contribution to pro-inflammatory mechanisms of alcohol actions. Establishment of the cellular source of microRNAs in saliva corroborated these results. We determined that most of the microRNAs in saliva come from two types of cells: leukocytes involved in immune responses and inflammation, and buccal cells, involved in development of epithelial, oral cancers. In summary, we propose that microRNA profiling in saliva can be a useful, non-invasive biomarker allowing the monitoring of alcohol abuse, as well as alcohol-related inflammation and early detection of cancer.
Collapse
Affiliation(s)
- Edward A. Mead
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers University, New Brunswick, NJ, United States
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nadia Boulghassoul-Pietrzykowska
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers University, New Brunswick, NJ, United States
- Mayo Clinic Health System, NWWI, Barron, WI, United States
- Department of Medicine, Capital Health, Trenton, NJ, United States
- Weight and Life MD, Hamilton, NJ, United States
| | - Yongping Wang
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers University, New Brunswick, NJ, United States
- Holmdel Township School, Holmdel, NJ, United States
| | - Onaiza Anees
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers University, New Brunswick, NJ, United States
- Virginia Commonwealth University Health, CMH Behavioral Health, South Hill, VA, United States
| | - Noah S. Kinstlinger
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers University, New Brunswick, NJ, United States
- Albert Einstein College of Medicine, Bronx, NY, United States
| | - Maximillian Lee
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers University, New Brunswick, NJ, United States
- George Washington University, School of Medicine and Health Sciences, Washington DC, MA, United States
| | - Shireen Hamza
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers University, New Brunswick, NJ, United States
- Department of the History of Science, Harvard University, Cambridge, MA, United States
| | - Yaping Feng
- Waksman Genomics Core Facility, Rutgers University, Piscataway, NJ, United States
- Bioinformatics Department, Admera Health, South Plainfield, NJ, United States
| | - Andrzej Z. Pietrzykowski
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers University, New Brunswick, NJ, United States
- Weight and Life MD, Hamilton, NJ, United States
| |
Collapse
|
12
|
Chu MQ, Zhang LC, Yuan Q, Zhang TJ, Zhou JD. Distinct associations of NEDD4L expression with genetic abnormalities and prognosis in acute myeloid leukemia. Cancer Cell Int 2021; 21:615. [PMID: 34809620 PMCID: PMC8607698 DOI: 10.1186/s12935-021-02327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/10/2021] [Indexed: 12/03/2022] Open
Abstract
Background There is mounting evidence that demonstrated the association of aberrant NEDD4L expression with diverse human cancers. However, the expression pattern and clinical implication of NEDD4L in acute myeloid leukemia (AML) remains poorly defined. Methods We systemically determined NEDD4L expression with its clinical significance in AML by both public data and our research cohort. Moreover, biological functions of NEDD4L in leukemogenesis were further tested by in vitro experiments. Results By the public data, we identified that low NEDD4L expression was correlated with AML among diverse human cancers. Expression of NEDD4L was remarkably decreased in AML compared with controls, and was confirmed by our research cohort. Clinically, low expression of NEDD4L was correlated with greatly lower age, higher white blood cells, and higher bone marrow/peripheral blood blasts. Moreover, NEDD4L underexpression was positively correlated with normal karyotype, FLT3 and NPM1 mutations, but negatively associated with complex karyotype and TP53 mutations. Importantly, the association between NEDD4L expression and survival was also discovered in cytogenetically normal AML patients. Finally, a number of 1024 RNAs and 91 microRNAs were identified to be linked to NEDD4L expression in AML. Among the negatively correlated microRNAs, miR-10a was also discovered as a microRNA that may directly target NEDD4L. Further functional studies revealed that NEDD4L exhibited anti-proliferative and pro-apoptotic effects in leukemic cell line K562. Conclusions Our findings indicated that NEDD4L underexpression, as a frequent event in AML, was associated with genetic abnormalities and prognosis in AML. Moreover, NEDD4L expression may be involved in leukemogenesis with potential therapeutic target value. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02327-7.
Collapse
Affiliation(s)
- Ming-Qiang Chu
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Liu-Chao Zhang
- Medical Laboratory, Qidong People's Hospital, Qidong, Jiangsu, People's Republic of China
| | - Qian Yuan
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Ting-Juan Zhang
- Department of Oncology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China.
| | - Jing-Dong Zhou
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China.
| |
Collapse
|
13
|
Ouyang X, Becker E, Bone NB, Johnson MS, Craver J, Zong WX, Darley-Usmar VM, Zmijewski JW, Zhang J. ZKSCAN3 in severe bacterial lung infection and sepsis-induced immunosuppression. J Transl Med 2021; 101:1467-1474. [PMID: 34504306 PMCID: PMC8868012 DOI: 10.1038/s41374-021-00660-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/22/2022] Open
Abstract
The mortality rates among patients who initially survive sepsis are, in part, associated with a high risk of secondary lung infections and respiratory failure. Given that phagolysosomes are important for intracellular killing of pathogenic microbes, we investigated how severe lung infections associated with post-sepsis immunosuppression affect phagolysosome biogenesis. In mice with P. aeruginosa-induced pneumonia, we found a depletion of both phagosomes and lysosomes, as evidenced by decreased amounts of microtubule associated protein light chain 3-II (LC3-II) and lysosomal-associated membrane protein (LAMP1). We also found a loss of transcription factor E3 (TFE3) and transcription factor EB (TFEB), which are important activators for transcription of genes encoding autophagy and lysosomal proteins. These events were associated with increased expression of ZKSCAN3, a repressor for transcription of genes encoding autophagy and lysosomal proteins. Zkscan3-/- mice had increased expression of genes involved in the autophagy-lysosomal pathway along with enhanced killing of P. aeruginosa in the lungs, as compared to wild-type mice. These findings highlight the involvement of ZKSCAN3 in response to severe lung infection, including susceptibility to secondary bacterial infections due to immunosuppression.
Collapse
Affiliation(s)
- Xiaosen Ouyang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eugene Becker
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nathaniel B Bone
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michelle S Johnson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jason Craver
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Wei-Xing Zong
- Department of Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - Victor M Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jaroslaw W Zmijewski
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
14
|
Horvath S, Zoller JA, Haghani A, Jasinska AJ, Raj K, Breeze CE, Ernst J, Vaughan KL, Mattison JA. Epigenetic clock and methylation studies in the rhesus macaque. GeroScience 2021; 43:2441-2453. [PMID: 34487267 PMCID: PMC8599607 DOI: 10.1007/s11357-021-00429-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/01/2021] [Indexed: 11/28/2022] Open
Abstract
Methylation levels at specific CpG positions in the genome have been used to develop accurate estimators of chronological age in humans, mice, and other species. Although epigenetic clocks are generally species-specific, the principles underpinning them appear to be conserved at least across the mammalian class. This is exemplified by the successful development of epigenetic clocks for mice and several other mammalian species. Here, we describe epigenetic clocks for the rhesus macaque (Macaca mulatta), the most widely used nonhuman primate in biological research. Using a custom methylation array (HorvathMammalMethylChip40), we profiled n = 281 tissue samples (blood, skin, adipose, kidney, liver, lung, muscle, and cerebral cortex). From these data, we generated five epigenetic clocks for macaques. These clocks differ with regard to applicability to different tissue types (pan-tissue, blood, skin), species (macaque only or both humans and macaques), and measure of age (chronological age versus relative age). Additionally, the age-based human-macaque clock exhibits a high age correlation (R = 0.89) with the vervet monkey (Chlorocebus sabaeus), another Old World species. Four CpGs within the KLF14 promoter were consistently altered with age in four tissues (adipose, blood, cerebral cortex, skin). Future studies will be needed to evaluate whether these epigenetic clocks predict age-related conditions in the rhesus macaque.
Collapse
Affiliation(s)
- Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA USA
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA USA
| | - Joseph A. Zoller
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA USA
| | - Amin Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA USA
| | - Anna J. Jasinska
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA Los Angeles, USA
| | - Ken Raj
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, , Didcot, UK
| | | | - Jason Ernst
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Kelli L. Vaughan
- Translational Gerontology Branch, National Institute on Aging Intramural Research Program, National Institutes of Health, 16701 Elmer School Rd., MD 20842 Dickerson, USA
| | - Julie A. Mattison
- Translational Gerontology Branch, National Institute on Aging Intramural Research Program, National Institutes of Health, 16701 Elmer School Rd., MD 20842 Dickerson, USA
| |
Collapse
|
15
|
Epigenetic clock and methylation studies in vervet monkeys. GeroScience 2021; 44:699-717. [PMID: 34591235 PMCID: PMC9135907 DOI: 10.1007/s11357-021-00466-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/20/2021] [Indexed: 11/26/2022] Open
Abstract
DNA methylation-based biomarkers of aging have been developed for many mammals but not yet for the vervet monkey (Chlorocebus sabaeus), which is a valuable non-human primate model for biomedical studies. We generated novel DNA methylation data from vervet cerebral cortex, blood, and liver using highly conserved mammalian CpGs represented on a custom array (HorvathMammalMethylChip40). We present six DNA methylation-based estimators of age: vervet multi-tissue epigenetic clock and tissue-specific clocks for brain cortex, blood, and liver. In addition, we developed two dual species clocks (human-vervet clocks) for measuring chronological age and relative age, respectively. Relative age was defined as ratio of chronological age to maximum lifespan to address the species differences in maximum lifespan. The high accuracy of the human-vervet clocks demonstrates that epigenetic aging processes are evolutionary conserved in primates. When applying these vervet clocks to tissue samples from another primate species, rhesus macaque, we observed high age correlations but strong offsets. We characterized CpGs that correlate significantly with age in the vervet. CpG probes that gain methylation with age across tissues were located near the targets of Polycomb proteins SUZ12 and EED and genes possessing the trimethylated H3K27 mark in their promoters. The epigenetic clocks are expected to be useful for anti-aging studies in vervets.
Collapse
|
16
|
Peng Y, Song X, Lan J, Wang X, Wang M. Bone marrow stromal cells derived exosomal miR-10a and miR-16 may be involved in progression of patients with multiple myeloma by regulating EPHA8 or IGF1R/CCND1. Medicine (Baltimore) 2021; 100:e23447. [PMID: 33530159 PMCID: PMC7850735 DOI: 10.1097/md.0000000000023447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 10/23/2020] [Indexed: 11/25/2022] Open
Abstract
Interaction with bone marrow stromal cells (BMSCs) has been suggested as an important mechanism for the progression of multiple myeloma (MM) cells, while exosomes are crucial mediators for cell-to-cell communication. The study was to investigate the miRNA profile changes in exosomes released by BMSCs of MM patients and explore their possible function roles.The microarray datasets of exosomal miRNAs in BMSCs were downloaded from the Gene Expression Omnibus database (GSE110271: 6 MM patients, 2 healthy donors; GSE78865: 4 donors and 2 MM patients; GSE39571: 7 MM patients and 4 controls). The differentially expressed miRNAs (DEMs) were identified using the LIMMA method. The target genes of DEMs were predicted by the miRwalk 2.0 database and the hub genes were screened by constructing the protein-protein interaction (PPI) network, module analysis and overlapping with the differentially expressed genes (DEGs) after overexpression or knockout of miRNAs.Three downregulated DEMs were found to distinguish MM from normal and MM-MGUS controls in the GSE39571 dataset; one downregulated and one upregulated DEMs (hsa-miR-10a) could differentiate MM from normal and MM-MGUS controls in the GSE110271-GSE78865 merged dataset. Furthermore, 11 downregulated (hsa-miR-16) and 1 upregulated DEMs were shared between GSE39571 and merged dataset when comparing MM with normal samples. The target genes were predicted for these 17 DEMs. PPI with module analysis showed IGF1R and CCND1 were hub genes and regulated by hsa-miR-16. Furthermore, EPHA8 was identified as a DEG that was downregulated in MM cells when the use of has-miR-10a mimics; while IGF1R, CCND1, CUL3, and ELAVL1 were also screened as DEGs that were upregulated in MM cells when silencing of hsa-miR-16.BMSCs-derived exosomal miR-10a and miR-16 may be involved in MM progression by regulating EPHA8 or IGF1R/CCND1/CUL3/ELAVL1, respectively. These exosomal miRNAs or genes may represent potential biomarkers for diagnosis of MM and prediction of progression and targets for developing therapeutic drugs.
Collapse
|
17
|
miR-10a as a therapeutic target and predictive biomarker for MDM2 inhibition in acute myeloid leukemia. Leukemia 2021; 35:1933-1948. [PMID: 33262524 PMCID: PMC8257503 DOI: 10.1038/s41375-020-01095-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/12/2020] [Accepted: 11/10/2020] [Indexed: 02/01/2023]
Abstract
Pharmacological inhibition of MDM2/4, which activates the critical tumor suppressor p53, has been gaining increasing interest as a strategy for the treatment of acute myeloid leukemia (AML). While clinical trials of MDM2 inhibitors have shown promise, responses have been confined to largely molecularly undefined patients, indicating that new biomarkers and optimized treatment strategies are needed. We previously reported that the microRNA miR-10a is strongly overexpressed in some AML, and demonstrate here that it modulates several key members of the p53/Rb network, including p53 regulator MDM4, Rb regulator RB1CC1, p21 regulator TFAP2C, and p53 itself. The expression of both miR-10a and its downstream targets were strongly predictive of MDM2 inhibitor sensitivity in cell lines, primary AML specimens, and correlated to response in patients treated with both MDM2 inhibitors and cytarabine. Furthermore, miR-10a inhibition induced synergy between MDM2 inhibitor Nutlin-3a and cytarabine in both in vitro and in vivo AML models. Mechanistically this synergism primarily occurs via the p53-mediated activation of cytotoxic apoptosis at the expense of cytoprotective autophagy. Together these findings demonstrate that miR-10a may be useful as both a biomarker to identify patients most likely to respond to cytarabine+MDM2 inhibition and also a druggable target to increase their efficacy.
Collapse
|
18
|
Borran S, Ahmadi G, Rezaei S, Anari MM, Modabberi M, Azarash Z, Razaviyan J, Derakhshan M, Akhbari M, Mirzaei H. Circular RNAs: New players in thyroid cancer. Pathol Res Pract 2020; 216:153217. [PMID: 32987339 DOI: 10.1016/j.prp.2020.153217] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/02/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022]
Abstract
The prevalence of thyroid cancer the most frequent endocrine malignancy, is rapidly increasing. Most of thyroid cancers are relatively indolent, however, some cases still possess a risk of developing into lethal types of thyroid cancer. Regarding its multistep tumorigenesis, the determination of the underlying mechanisms is a vital issue for thyroid cancer therapy. Circular RNAs (circRNAs) are a type of non-coding RNAs with a closed loop structure. Numerous circRNAs have been identified in cancerous tissues. Mounting data recommends that the biological activities of circRNAs, such as serving as microRNA or ceRNAs sponges, interacting with proteins, modulating gene translation and transcription, suggesting that circRNAs will be potential targets as well as agents for the prognosis and diagnosis of diseases, including cancer. Given that circular RNAs acts as oncogenes or tumor suppressors in the thyroid cancer. Several studies documented that circular RNAs via microRNA and protein sponges could regulate a sequences of cellular and molecular mechanisms e.g., apoptosis, angiogenesis, tumor growth, and invasion that are involved in thyroid cancer pathogenesis. Herein, we summarized the role of circular RNAs as therapeutic and diagnostic biomarkers in the thyroid cancer. Moreover, we highlighted the role of these molecules in the pathogenesis of various cancers.
Collapse
Affiliation(s)
- Sarina Borran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gelavizh Ahmadi
- Department of Biotechnology, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Samaneh Rezaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical, Sciences, Mashhad, Iran
| | | | - Mohsen Modabberi
- Physical Medicine and Rehabilitation Department and Research Center, Shohada-e-Tajrish Hospital, Shahid Beheshti University of Medical Sciences, School of Medicine, Tehran, Iran
| | - Ziba Azarash
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Razaviyan
- Student Research Committee, School of Medicine Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Derakhshan
- Department of Pathology, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Masoume Akhbari
- Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran.
| |
Collapse
|
19
|
Induction of multiple myeloma bone marrow stromal cell apoptosis by inhibiting extracellular vesicle miR-10a secretion. Blood Adv 2020; 3:3228-3240. [PMID: 31698453 DOI: 10.1182/bloodadvances.2019000403] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/22/2019] [Indexed: 02/08/2023] Open
Abstract
Bone marrow stromal cells (BMSCs) interact with multiple myeloma (MM) cells in the bone marrow and create a permissive microenvironment for MM cell proliferation and survival. In this study, we investigated the role of extracellular vesicles (EVs) from BMSCs derived from patients with MM (MM-BMSCs). EV-encapsulated miR-10a expression was high while intracellular miR-10a was low in MM-BMSCs. We therefore hypothesized that miR-10a was packaged into EVs that were actively released into the extracellular space. Inhibition of EV release resulted in accumulation of intracellular miR-10a, inhibition of cell proliferation, and induction of apoptosis in MM-BMSCs. In contrast, proliferation and apoptosis of BMSCs derived from healthy individuals were unaffected by inhibition of EV release. Furthermore, miR-10a derived from MM-BMSCs was transferred into MM cells via EVs and enhanced their proliferation. These results suggest that inhibition of EV release induced apoptosis in MM-BMSCs and inhibited MM cell proliferation, indicating a possible role for MM-BMSC-targeted therapy.
Collapse
|
20
|
Wan C, Wen J, Huang Y, Li H, Wu W, Xie Q, Liang X, Tang Z, Zhao W, Cheng P, Liu Z. Microarray analysis of differentially expressed microRNAs in myelodysplastic syndromes. Medicine (Baltimore) 2020; 99:e20904. [PMID: 32629683 PMCID: PMC7337584 DOI: 10.1097/md.0000000000020904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Our study aimed to analyze differential microRNA expression between myelodysplastic syndromes (MDS) and normal bone marrow, and to identify novel microRNAs relevant to MDS pathogenesis. METHODS MiRNA microarray analysis was used to profile microRNA expression levels in MDS and normal bone marrow. Quantitative real-time polymerase chain reaction was employed to verify differentially expressed microRNAs. RESULTS MiRNA microarray analysis showed 96 significantly upregulated (eg, miR-146a-5p, miR-151a-3p, miR-125b-5p) and 198 significantly downregulated (eg, miR-181a-2-3p, miR-124-3p, miR-550a-3p) microRNAs in MDS compared with normal bone marrow. The quantitative real-time polymerase chain reaction confirmed the microarray analysis: expression of six microRNAs (miR-155-5p, miR-146a-5p, miR-151a-3p, miR-221-3p, miR-125b-5p, and miR-10a-5p) was significantly higher in MDS, while 3 microRNAs (miR-181a-2-3p, miR-124-3p, and miR-550a-3p) were significantly downregulated in MDS. Bioinformatics analysis demonstrated that differentially expressed microRNAs might participate in MDS pathogenesis by regulating hematopoiesis, leukocyte migration, leukocyte apoptotic process, and hematopoietic cell lineage. CONCLUSIONS Our study indicates that differentially expressed microRNAs might play a key role in MDS pathogenesis by regulating potential relevant functional and signaling pathways. Targeting these microRNAs may provide new treatment modalities for MDS.
Collapse
Affiliation(s)
- Chengyao Wan
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi
| | - Jing Wen
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi
| | - Ying Huang
- Department of Hematology, Hainan General Hospital, Haikou, Hainan
| | - Hongying Li
- Department of Hematology, The First People's Hospital of Nanning, Nanning, Guangxi, China
| | - Wenqi Wu
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi
| | - Qiongni Xie
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi
| | - Xiaolin Liang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi
| | - Zhongyuan Tang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi
| | - Weihua Zhao
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi
| | - Peng Cheng
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi
| | - Zhenfang Liu
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi
| |
Collapse
|
21
|
Huang T, Ren K, Ding G, Yang L, Wen Y, Peng B, Wang G, Wang Z. miR‑10a increases the cisplatin resistance of lung adenocarcinoma circulating tumor cells via targeting PIK3CA in the PI3K/Akt pathway. Oncol Rep 2020; 43:1906-1914. [PMID: 32186774 PMCID: PMC7160533 DOI: 10.3892/or.2020.7547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 12/13/2019] [Indexed: 12/28/2022] Open
Abstract
Circulating tumor cells (CTCs) that are shed from the primary tumor invade the blood stream or surrounding parenchyma to form new tumors. The present study aimed to explore the underlying mechanism of cisplatin resistance in lung adenocarcinoma CTCs and provide clinical treatment guidance for lung cancer treatment. CTCs from the blood samples of 6 lung adenocarcinoma patients were treated with different concentrations of cisplatin along with A549 and H1299 cells. The sensitivity of CTCs to cisplatin was explored by detecting the inhibitory rate via CCK‑8 assay. The related molecular mechanism was investigated by western blot analysis. miR‑10a expression was detected using quantitative real‑time PCR (RT‑qPCR). The relationship between miR‑10a and phosphatidylinositol‑4,5‑bisphosphate 3‑kinase catalytic subunit α (PIK3CA) was verified and further confirmed by luciferase reporter assay, western blotting and RT‑qPCR assay. The results revealed that CTCs exhibited lower cisplatin sensitivity than A549 and H1299 cells. Moreover, CTCs treated with cisplatin demonstrated higher miR‑10a expression and lower PIK3CA expression than that in A549 and H1299 cells (P<0.01). Expression of phosphoinositide 3‑kinase (PI3K) and protein kinase B (Akt) phosphorylation were also decreased in A549 and H1299 cells compared with CTCs after cisplatin treatment. PIK3CA is a target of miR‑10a, and both miR‑10a overexpression and PIK3CA knockdown obviously decreased the sensitivity of A549 and H1299 cells to cisplatin as well as the expression of PI3K and phosphorylation of Akt. PIK3CA overexpression attenuated the cisplatin resistance of A549 and H1299 cells induced by miR‑10a. In conclusion, miR‑10a suppressed the PI3K/Akt pathway to strengthen the resistance of CTCs to cisplatin via targeting PIK3CA, providing a new therapeutic target for lung cancer treatment.
Collapse
Affiliation(s)
- Tonghai Huang
- Department of Thoracic Surgery, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, Guangdong 518020, P.R. China
| | - Kangqi Ren
- Department of Thoracic Surgery, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, Guangdong 518020, P.R. China
| | - Guanggui Ding
- Department of Thoracic Surgery, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, Guangdong 518020, P.R. China
| | - Lin Yang
- Department of Thoracic Surgery, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, Guangdong 518020, P.R. China
| | - Yuxin Wen
- Department of Thoracic Surgery, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, Guangdong 518020, P.R. China
| | - Bin Peng
- Department of Thoracic Surgery, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, Guangdong 518020, P.R. China
| | - Guangsuo Wang
- Department of Thoracic Surgery, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, Guangdong 518020, P.R. China
| | - Zheng Wang
- Department of Thoracic Surgery, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, Guangdong 518020, P.R. China
| |
Collapse
|
22
|
Yuan Z, Wang W. LncRNA SNHG4 regulates miR-10a/PTEN to inhibit the proliferation of acute myeloid leukemia cells. Hematology 2020; 25:160-164. [PMID: 32319862 DOI: 10.1080/16078454.2020.1754636] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Zhongtao Yuan
- Department of Hematology, The 920 Hospital of People’s Liberation Army, Kunming City, People’s Republic of China
| | - Wei Wang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Kunming Medical University, Kunming City, People’s Republic of China
| |
Collapse
|
23
|
Gadewal N, Kumar R, Aher S, Gardane A, Gaur T, Varma AK, Khattry N, Hasan SK. miRNA-mRNA Profiling Reveals Prognostic Impact of SMC1A Expression in Acute Myeloid Leukemia. Oncol Res 2020; 28:321-330. [PMID: 32059753 PMCID: PMC7851519 DOI: 10.3727/096504020x15816752427321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Acute myeloid leukemia (AML) with NPM1 mutation is a disease driving genetic alteration with good prognosis. Although it has been suggested that NPM1 mutation induces chemosensitivity in leukemic cells, the underlying cause for the better survival of NPM1 mutated patients is still not clear. Mutant NPM1 AML has a unique microRNA and their target gene (mRNA) signature compared to wild-type NPM1. Dynamic regulation of miRNA–mRNA has been reported to influence the prognostic outcome. In the present study, in silico expression data of miRNA and mRNA in AML patients was retrieved from genome data commons, and differentially expressed miRNA and mRNA among NPM1 mutated (n = 21) and NPM1 wild-type (n = 162) cases were identified to establish a dynamic association at the molecular level. In vitro experiments using high-throughput RNA sequencing were performed on human AML cells carrying NPM1 mutated and wild-type allele. The comparison of in vitro transcriptomics data with in silico miRNA–mRNA expression network data revealed downregulation of SMC1A. On establishing miRNA–mRNA interactive pairs, it has been observed that hsa-mir-215-5p (logFC: 0.957; p = 0.0189) is involved in the downregulation of SMC1A (logFC: –0.481; p = 0.0464) in NPM1 mutated AML. We demonstrated that transient expression of NPM1 mutation upregulates miR-215-5p, which results in downregulation of SMC1A. We have also shown using a rescue experiment that neutralizing miR-215-5p reverses the effect of NPM1 mutation on SMC1A. Using the leukemic blasts from AML patients, we observed higher expression of miR-215-5p and lower expression of SMC1A in NPM1 mutated patients compared to wild-type cases. The overall survival of AML patients was significantly inferior in SMC1A high expressers compared to low expressers (20.3% vs. 58.5%, p = 0.018). The data suggest that dynamic miR-215-SMC1A regulation is potentially modulated by NPM1 mutation, which might serve as an explanation for the better outcome in NPM1 mutated AML.
Collapse
Affiliation(s)
- Nikhil Gadewal
- Bioinformatics Centre, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC)Navi MumbaiIndia
| | - Rohit Kumar
- Cell and Tumor Biology Group, Advanced Centre for Treatment, Research and Education in CancerNavi MumbaiIndia
| | - Swapnil Aher
- Cell and Tumor Biology Group, Advanced Centre for Treatment, Research and Education in CancerNavi MumbaiIndia
| | - Anagha Gardane
- Cell and Tumor Biology Group, Advanced Centre for Treatment, Research and Education in CancerNavi MumbaiIndia
| | - Tarang Gaur
- Cell and Tumor Biology Group, Advanced Centre for Treatment, Research and Education in CancerNavi MumbaiIndia
| | - Ashok K Varma
- Bioinformatics Centre, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC)Navi MumbaiIndia
| | - Navin Khattry
- Adult Hemato-lymphoid Disease Management Group, Tata Memorial HospitalMumbaiIndia
| | - Syed K Hasan
- Cell and Tumor Biology Group, Advanced Centre for Treatment, Research and Education in CancerNavi MumbaiIndia
| |
Collapse
|
24
|
Xu P, Zhou D, Yan G, Ouyang J, Chen B. Correlation of miR-181a and three HOXA genes as useful biomarkers in acute myeloid leukemia. Int J Lab Hematol 2019; 42:16-22. [PMID: 31670914 DOI: 10.1111/ijlh.13116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 09/16/2019] [Accepted: 09/21/2019] [Indexed: 01/23/2023]
Abstract
INTRODUCTION MiR-181a is a small, noncoding RNA that plays important roles in the pathogenesis and prognosis of acute myeloid leukemia (AML). A group of HOXA genes, including HOXA7, HOXA9, and HOXA11, has been established as an independent predictor for AML prognosis. In this study, we aimed to investigate the association between miR-181a and HOXA7, HOXA9, and HOXA11 and explore their roles in predicting prognosis in AML. PATIENTS AND METHODS Bone marrow samples of 46 untreated AML patients and 9 healthy donors were collected. Mononuclear cells were purified using density-gradient centrifugation in Ficoll, and quantitative real-time PCR was used to detect miR-181a and HOXA gene expression level. RESULTS HOXA7, HOXA9, and HOXA11 were negatively correlated with miR-181a, and their expression levels varied among AML subtypes, karyotypes, and risk status. Higher miR-181a and lower HOXA gene expressions were significantly associated with lower risk status and better response to chemotherapy. CONCLUSION In our study, we found miR-181a expression was negatively correlated with three HOXA genes and they were associated with AML risk status and prognosis in granulocytic AML. It further supported that miR-181a could be a useful marker for AML prognosis and possibly worked by regulating HOXA gene clusters.
Collapse
Affiliation(s)
- Peipei Xu
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Di Zhou
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Guijun Yan
- Department of Reproductive Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jian Ouyang
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Bing Chen
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
25
|
Zhou Y, Guo X, Chen W, Liu J. Angelica polysaccharide mitigates lipopolysaccharide-evoked inflammatory injury by regulating microRNA-10a in neuronal cell line HT22. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:3194-3201. [PMID: 31353963 DOI: 10.1080/21691401.2019.1614595] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Yuni Zhou
- Department of Neurology, Jining Psychiatric Hospital, Jining, China
| | - Xiaoqian Guo
- Department of Neurology, Jining No.1 People’s Hospital, Jining, China
| | - Weimei Chen
- Department of Neurology, Jining No.1 People’s Hospital, Jining, China
| | - Jun Liu
- Department of Neurosurgery, Jining No.1 People’s Hospital, Jining, China
| |
Collapse
|
26
|
Teng F, Xu J, Zhang M, Liu S, Gu Y, Zhang M, Wang X, Ni J, Qian B, Shen R, Jia X. Comprehensive circular RNA expression profiles and the tumor-suppressive function of circHIPK3 in ovarian cancer. Int J Biochem Cell Biol 2019; 112:8-17. [DOI: 10.1016/j.biocel.2019.04.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/25/2019] [Accepted: 04/22/2019] [Indexed: 01/28/2023]
|
27
|
Park CS, Lewis A, Chen T, Lacorazza D. Concise Review: Regulation of Self-Renewal in Normal and Malignant Hematopoietic Stem Cells by Krüppel-Like Factor 4. Stem Cells Transl Med 2019; 8:568-574. [PMID: 30790473 PMCID: PMC6525558 DOI: 10.1002/sctm.18-0249] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/07/2019] [Indexed: 12/11/2022] Open
Abstract
Pluripotent and tissue‐specific stem cells, such as blood‐forming stem cells, are maintained through a balance of quiescence, self‐renewal, and differentiation. Self‐renewal is a specialized cell division that generates daughter cells with the same features as the parental stem cell. Although many factors are involved in the regulation of self‐renewal, perhaps the most well‐known factors are members of the Krüppel‐like factor (KLF) family, especially KLF4, because of the landmark discovery that this protein is required to reprogram somatic cells into induced pluripotent stem cells. Because KLF4 regulates gene expression through transcriptional activation or repression via either DNA binding or protein‐to‐protein interactions, the outcome of KLF4‐mediated regulation largely depends on the cellular context, cell cycle regulation, chromatin structure, and the presence of oncogenic drivers. This study first summarizes the current understanding of the regulation of self‐renewal by KLF proteins in embryonic stem cells through a KLF circuitry and then delves into the potential function of KLF4 in normal hematopoietic stem cells and its emerging role in leukemia‐initiating cells from pediatric patients with T‐cell acute lymphoblastic leukemia via repression of the mitogen‐activated protein kinase 7 pathway. stem cells translational medicine2019;8:568–574
Collapse
Affiliation(s)
- Chun S Park
- Department Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Andrew Lewis
- Department Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Taylor Chen
- Department Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Daniel Lacorazza
- Department Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
28
|
Dumas PY, Mansier O, Prouzet-Mauleon V, Koya J, Villacreces A, Brunet de la Grange P, Luque Paz D, Bidet A, Pasquet JM, Praloran V, Salin F, Kurokawa M, Mahon FX, Cardinaud B, Lippert E. MiR-10a and HOXB4 are overexpressed in atypical myeloproliferative neoplasms. BMC Cancer 2018; 18:1098. [PMID: 30419846 PMCID: PMC6233495 DOI: 10.1186/s12885-018-4993-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 10/24/2018] [Indexed: 11/19/2022] Open
Abstract
Background Atypical Myeloproliferative Neoplasms (aMPN) share characteristics of MPN and Myelodysplastic Syndromes. Although abnormalities in cytokine signaling are common in MPN, the pathophysiology of atypical MPN still remains elusive. Since deregulation of microRNAs is involved in the biology of various cancers, we studied the miRNome of aMPN patients. Methods MiRNome and mutations in epigenetic regulator genes ASXL1, TET2, DNMT3A, EZH2 and IDH1/2 were explored in aMPN patients. Epigenetic regulation of miR-10a and HOXB4 expression was investigated by treating hematopoietic cell lines with 5-aza-2’deoxycytidine, valproic acid and retinoic acid. Functional effects of miR-10a overexpression on cell proliferation, differentiation and self-renewal were studied by transducing CD34+ cells with lentiviral vectors encoding the pri-miR-10a precursor. Results MiR-10a was identified as the most significantly up-regulated microRNA in aMPN. MiR-10a expression correlated with that of HOXB4, sitting in the same genomic locus. The transcription of these two genes was increased by DNA demethylation and histone acetylation, both necessary for optimal expression induction by retinoic acid. Moreover, miR-10a and HOXB4 overexpression seemed associated with DNMT3A mutation in hematological malignancies. However, overexpression of miR-10a had no effect on proliferation, differentiation or self-renewal of normal hematopoietic progenitors. Conclusions MiR-10a and HOXB4 are overexpressed in aMPN. This overexpression seems to be the result of abnormalities in epigenetic regulation mechanisms. Our data suggest that miR-10a could represent a simple marker of transcription at this genomic locus including HOXB4, widely recognized as involved in stem cell expansion. Electronic supplementary material The online version of this article (10.1186/s12885-018-4993-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pierre-Yves Dumas
- CHU de Bordeaux, Hématologie Clinique et Thérapie Cellulaire, F-33000, Bordeaux, France.,INSERM U1035, Université de Bordeaux, Bordeaux, France
| | - Olivier Mansier
- INSERM U1218, Université de Bordeaux, Bordeaux, France.,CHU de Bordeaux, Laboratoire d'Hématologie, F-33000, Bordeaux, France
| | | | - Junji Koya
- Department of Hematology and Oncology, Graduate School of Medicine, University of Tokyo, 7-3-1, Hongo, bunkyo-ku, Tokyo, 113-8655, Japan
| | | | - Philippe Brunet de la Grange
- Etablissement Français du Sang - Aquitaine Limousin, Laboratoire R&D d'Ingénierie Cellulaire, Université de Bordeaux, Bordeaux, France
| | | | - Audrey Bidet
- CHU de Bordeaux, Laboratoire d'Hématologie, F-33000, Bordeaux, France
| | | | - Vincent Praloran
- INSERM U1035, Université de Bordeaux, Bordeaux, France.,CHU de Bordeaux, Laboratoire d'Hématologie, F-33000, Bordeaux, France
| | - Franck Salin
- INRA, Plateforme Génome Transcriptome de Bordeaux, BIOGECO, UMR 1202, F-33610, Cestas, France
| | - Mineo Kurokawa
- Department of Hematology and Oncology, Graduate School of Medicine, University of Tokyo, 7-3-1, Hongo, bunkyo-ku, Tokyo, 113-8655, Japan
| | - François-Xavier Mahon
- INSERM U1218, Université de Bordeaux, Bordeaux, France.,Institut Bergonié, Bordeaux, France
| | - Bruno Cardinaud
- INSERM U1218, Université de Bordeaux, Bordeaux, France.,Bordeaux Institut National Polytechnique, F-33000, Bordeaux, France
| | - Eric Lippert
- INSERM U1035, Université de Bordeaux, Bordeaux, France. .,CHU de Bordeaux, Laboratoire d'Hématologie, F-33000, Bordeaux, France. .,CHRU de Brest, Service d'Hématologie Biologique et INSERM U1078, Université de Bretagne Occidentale, Brest, France.
| |
Collapse
|
29
|
Balatti V, Oghumu S, Bottoni A, Maharry K, Cascione L, Fadda P, Parwani A, Croce C, Iwenofu OH. MicroRNA Profiling of Salivary Duct Carcinoma Versus Her2/Neu Overexpressing Breast Carcinoma Identify miR-10a as a Putative Breast Related Oncogene. Head Neck Pathol 2018; 13:344-354. [PMID: 30259272 PMCID: PMC6684709 DOI: 10.1007/s12105-018-0971-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/20/2018] [Indexed: 12/19/2022]
Abstract
Salivary duct carcinomas (SDC) and Her2/Neu3-overexpressing invasive breast carcinomas (HNPIBC/IBC) are histologically indistinguishable. We investigated whether common histopathologic and immunophenotypic features of SDC and IBC are mirrored by a similar microRNA (miRNA) profile. MiRNA profiling of 5 SDCs, 6 IBCs Her2/Neu3+, and 5 high-grade ductal breast carcinoma in situ (DCIS) was performed by NanoString platform. Selected miRNAs and HOXA1 gene were validated by RT-PCR. We observed similar miRNA expression profiles between IBC and SDC with the exception of 2 miRNAs, miR-10a and miR-142-3p, which were higher in IBC tumors. DCIS tumors displayed increased expression of miR-10a, miR-99a, miR-331-3p and miR-335, and decreased expression of miR-15a, miR-16 and miR-19b compared to SDC. The normal salivary gland and breast tissues also showed similar expression profiles. Interestingly, miR-10a was selectively increased in both IBC and normal breast tissue compared to SDC and normal salivary gland tissue. Moreover, our NanoString and RT-PCR data confirmed that miR-10a was upregulated in IBC and DCIS compared to SDC. Finally, we show downregulation of HOXA1, a miR-10 target, in IBC tumors compared to normal breast tissue. Taken together, our data demonstrates that, based on miRNA profiling, SDC is closely related to HNPIBC. Our results also suggest that miR-10a is differentially expressed in IBC compared to SDC and may have potential utility as a diagnostic biomarker in synchronous or metachronous malignant epithelial malignancies involving both organs. In addition, miR-10a could be playing an important role as a mammary-specific oncogene, involved in breast cancer initiation (DCIS) and progression (IBC), through mechanisms that include modulation of HOXA1 gene expression.
Collapse
Affiliation(s)
- Veronica Balatti
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, USA
| | - Steve Oghumu
- Department of Pathology and Laboratory Medicine, The Ohio State University, Columbus, USA
| | - Arianna Bottoni
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, USA
| | - Kati Maharry
- Department of Epidemiology, College of Public Health, The Ohio State University, Columbus, USA
| | - Luciano Cascione
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, USA ,Institute of Oncology Research, Bellinzona, Switzerland
| | - Paolo Fadda
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, USA
| | - Anil Parwani
- Department of Pathology and Laboratory Medicine, The Ohio State University, Columbus, USA
| | - Carlo Croce
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, USA
| | - O. Hans Iwenofu
- Department of Pathology and Laboratory Medicine, The Ohio State University, Columbus, USA
| |
Collapse
|
30
|
He C, Luo B, Jiang N, Liang Y, He Y, Zeng J, Liu J, Zheng X. OncomiR or antioncomiR: Role of miRNAs in Acute Myeloid Leukemia. Leuk Lymphoma 2018; 60:284-294. [PMID: 30187809 DOI: 10.1080/10428194.2018.1480769] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Acute Myeloid Leukemia (AML) is a hematopoietic progenitor/stem cell disorder in which neoplastic myeloblasts are stopped at an immature stage of differentiation and lost the normal ability of proliferation and apoptosis. MicroRNAs (miRNAs) are small noncoding, single-stranded RNA molecules that can mediate the expression of target genes. While miRNAs mean to contribute the developments of normal functions, abnormal expression of miRNAs and regulations on their corresponding targets have often been found in the developments of AML and described in recent years. In leukemia, miRNAs may function as regulatory molecules, acting as oncogenes or tumor suppressors. Overexpression of miRNAs can down-regulate tumor suppressors or other genes involved in cell differentiation, thereby contributing to AML formation. Similarly, miRNAs can down-regulate different proteins with oncogenic activity as tumor suppressors. We herein review the current data on miRNAs, specifically their targets and their biological function based on apoptosis in the development of AML.
Collapse
Affiliation(s)
- Chengcheng He
- a People's Hospital of Zhongjiang , Deyang , Sichuan , P. R. China.,b College of Preclinical Medicine , Southwest Medical University , Luzhou , Sichuan , P. R. China
| | - Bo Luo
- b College of Preclinical Medicine , Southwest Medical University , Luzhou , Sichuan , P. R. China
| | - Nan Jiang
- b College of Preclinical Medicine , Southwest Medical University , Luzhou , Sichuan , P. R. China
| | - Yu Liang
- b College of Preclinical Medicine , Southwest Medical University , Luzhou , Sichuan , P. R. China
| | - Yancheng He
- b College of Preclinical Medicine , Southwest Medical University , Luzhou , Sichuan , P. R. China
| | - Jingyuan Zeng
- b College of Preclinical Medicine , Southwest Medical University , Luzhou , Sichuan , P. R. China
| | - Jiajia Liu
- b College of Preclinical Medicine , Southwest Medical University , Luzhou , Sichuan , P. R. China
| | - Xiaoli Zheng
- b College of Preclinical Medicine , Southwest Medical University , Luzhou , Sichuan , P. R. China
| |
Collapse
|
31
|
Dong J, Zhang Z, Huang H, Mo P, Cheng C, Liu J, Huang W, Tian C, Zhang C, Li J. miR-10a rejuvenates aged human mesenchymal stem cells and improves heart function after myocardial infarction through KLF4. Stem Cell Res Ther 2018; 9:151. [PMID: 29848383 PMCID: PMC5977543 DOI: 10.1186/s13287-018-0895-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/19/2018] [Accepted: 05/02/2018] [Indexed: 01/08/2023] Open
Abstract
Background Aging is one of the key factors that regulate the function of human bone marrow mesenchymal stem cells (hBM-MSCs) and related changes in microRNA (miRNA) expression. However, data reported on aging-related miRNA changes in hBM-MSCs are limited. Methods We demonstrated previously that miR-10a is significantly decreased in aged hBM-MSCs and restoration of the miR-10a level attenuated cell senescence and increased the differentiation capacity of aged hBM-MSCs by repressing Krüpple-like factor 4 (KLF4). In the present study, miR-10a was overexpressed or KLF4 was downregulated in old hBM-MSCs by lentiviral transduction. The hypoxia-induced apoptosis, cell survival, and cell paracrine function of aged hBM-MSCs were investigated in vitro. In vivo, miR-10a-overexpressed or KLF4-downregulated old hBM-MSCs were implanted into infarcted mouse hearts after myocardial infarction (MI). The mouse cardiac function of cardiac angiogenesis was measured and cell survival of aged hBM-MSCs was investigated. Results Through lentivirus-mediated upregulation of miR-10a and downregulation of KLF4 in aged hBM-MSCs in vitro, we revealed that miR-10a decreased hypoxia-induced cell apoptosis and increased cell survival of aged hBM-MSCs by repressing the KLF4–BAX/BCL2 pathway. In vivo, transplantation of miR-10a-overexpressed aged hBM-MSCs promoted implanted stem cell survival and improved cardiac function after MI. Mechanistic studies revealed that overexpression of miR-10a in aged hBM-MSCs activated Akt and stimulated the expression of angiogenic factors, thus increasing angiogenesis in ischemic mouse hearts. Conclusions miR-10a rejuvenated aged hBM-MSCs which improved angiogenesis and cardiac function in injured mouse hearts. Electronic supplementary material The online version of this article (10.1186/s13287-018-0895-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun Dong
- Guangzhou Institute of Cardiovascular Disease, Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Department of Oncology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhenhui Zhang
- Guangzhou Institute of Cardiovascular Disease, Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Department of Intensive Care Unit, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongshen Huang
- Guangzhou Institute of Cardiovascular Disease, Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Pei Mo
- Guangzhou Institute of Cardiovascular Disease, Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Chuanfan Cheng
- Guangzhou Institute of Cardiovascular Disease, Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Jianwei Liu
- Guangzhou Institute of Cardiovascular Disease, Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Weizhao Huang
- Guangzhou Institute of Cardiovascular Disease, Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Chaowei Tian
- Guangzhou Institute of Cardiovascular Disease, Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Chongyu Zhang
- Guangzhou Institute of Cardiovascular Disease, Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Toronto General Research Institute, University Health Network, Toronto, Canada
| | - Jiao Li
- Guangzhou Institute of Cardiovascular Disease, Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China. .,Toronto General Research Institute, University Health Network, Toronto, Canada.
| |
Collapse
|
32
|
Rajasekhar M, Schmitz U, Flamant S, Wong JJL, Bailey CG, Ritchie W, Holst J, Rasko JEJ. Identifying microRNA determinants of human myelopoiesis. Sci Rep 2018; 8:7264. [PMID: 29739970 PMCID: PMC5940821 DOI: 10.1038/s41598-018-24203-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/23/2018] [Indexed: 01/05/2023] Open
Abstract
Myelopoiesis involves differentiation of hematopoietic stem cells to cellular populations that are restricted in their self-renewal capacity, beginning with the common myeloid progenitor (CMP) and leading to mature cells including monocytes and granulocytes. This complex process is regulated by various extracellular and intracellular signals including microRNAs (miRNAs). We characterised the miRNA profile of human CD34+CD38+ myeloid progenitor cells, and mature monocytes and granulocytes isolated from cord blood using TaqMan Low Density Arrays. We identified 19 miRNAs that increased in both cell types relative to the CMP and 27 that decreased. miR-125b and miR-10a were decreased by 10-fold and 100-fold respectively in the mature cells. Using in vitro granulopoietic differentiation of human CD34+ cells we show that decreases in both miR-125b and miR-10a correlate with a loss of CD34 expression and gain of CD11b and CD15 expression. Candidate target mRNAs were identified by co-incident predictions between the miRanda algorithm and genes with increased expression during differentiation. Using luciferase assays we confirmed MCL1 and FUT4 as targets of miR-125b and the transcription factor KLF4 as a target of miR-10a. Together, our data identify miRNAs with differential expression during myeloid development and reveal some relevant miRNA-target pairs that may contribute to physiological differentiation.
Collapse
Affiliation(s)
- Megha Rajasekhar
- Gene & Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, 2050, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Ulf Schmitz
- Gene & Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, 2050, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Stephane Flamant
- Gene & Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, 2050, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Justin J-L Wong
- Gene & Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, 2050, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia.,Gene Regulation in Cancer Laboratory, Centenary Institute, University of Sydney, Camperdown, 2050, Australia
| | - Charles G Bailey
- Gene & Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, 2050, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - William Ritchie
- Gene & Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, 2050, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Jeff Holst
- Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia.,Origins of Cancer Program, Centenary Institute, University of Sydney, Camperdown, 2050, Australia
| | - John E J Rasko
- Gene & Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, 2050, Australia. .,Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia. .,Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, 2050, Australia.
| |
Collapse
|
33
|
Kunchala P, Kuravi S, Jensen R, McGuirk J, Balusu R. When the good go bad: Mutant NPM1 in acute myeloid leukemia. Blood Rev 2018; 32:167-183. [DOI: 10.1016/j.blre.2017.11.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 10/19/2017] [Accepted: 11/02/2017] [Indexed: 12/26/2022]
|
34
|
The interplay between critical transcription factors and microRNAs in the control of normal and malignant myelopoiesis. Cancer Lett 2018; 427:28-37. [PMID: 29673909 DOI: 10.1016/j.canlet.2018.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 01/04/2023]
Abstract
Myelopoiesis is a complex process driven by essential transcription factors, including C/EBPα, PU.1, RUNX1, KLF4 and IRF8. Together, these factors are critical for the control of myeloid progenitor cell expansion and lineage determination in the development of granulocytes and monocytes/macrophages. MicroRNAs (miRNAs) are expressed in a cell type and lineage specific manner. There is increasing evidence that miRNAs fine-tune the expression of hematopoietic lineage-specific transcription factors and drive the lineage decisions of hematopoietic progenitor cells. In this review, we discuss recently discovered self-activating and feed-back mechanisms in which transcription factors and miRNAs interact during myeloid cell development. Furthermore, we delineate how some of these mechanisms are affected in acute myeloid leukemia (AML) and how disrupted transcription factor-miRNA interplays contribute to leukemogenesis.
Collapse
|
35
|
|
36
|
Obulkasim A, Katsman-Kuipers JE, Verboon L, Sanders M, Touw I, Jongen-Lavrencic M, Pieters R, Klusmann JH, Michel Zwaan C, van den Heuvel-Eibrink MM, Fornerod M. Classification of pediatric acute myeloid leukemia based on miRNA expression profiles. Oncotarget 2018; 8:33078-33085. [PMID: 28380436 PMCID: PMC5464851 DOI: 10.18632/oncotarget.16525] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/01/2017] [Indexed: 12/28/2022] Open
Abstract
Pediatric acute myeloid leukemia (AML) is a heterogeneous disease with respect to biology as well as outcome. In this study, we investigated whether known biological subgroups of pediatric AML are reflected by a common microRNA (miRNA) expression pattern. We assayed 665 miRNAs on 165 pediatric AML samples. First, unsupervised clustering was performed to identify patient clusters with common miRNA expression profiles. Our analysis unraveled 14 clusters, seven of which had a known (cyto-)genetic denominator. Finally, a robust classifier was constructed to discriminate six molecular aberration groups: 11q23-rearrangements, t(8;21)(q22;q22), inv(16)(p13q22), t(15;17) (q21;q22), NPM1 and CEBPA mutations. The classifier achieved accuracies of 89%, 95%, 95%, 98%, 91% and 96%, respectively. Although lower sensitivities were obtained for the NPM1 and CEBPA (32% and 66%), relatively high sensitivities (84%−94%) were attained for the rest. Specificity was high in all groups (87%−100%). Due to a robust double-loop cross validation procedure employed, the classifier only employed 47 miRNAs to achieve the aforementioned accuracies. To validate the 47 miRNA signatures, we applied them to a publicly available adult AML dataset. Albeit partial overlap of the array platforms and molecular differences between pediatric and adult AML, the signatures performed reasonably well. This corroborates our claim that the identified miRNA signatures are not dominated by sample size bias in the pediatric AML dataset. In conclusion, cytogenetic subtypes of pediatric AML have distinct miRNA expression patterns. Reproducibility of the miRNA signatures in adult dataset suggests that the respective aberrations have a similar biology both in pediatric and adult AML.
Collapse
Affiliation(s)
- Askar Obulkasim
- Pediatric Oncology-Hematology, Erasmus MC, Sophia Children's Hospital, The Netherlands
| | | | - Lonneke Verboon
- Pediatric Oncology-Hematology, Erasmus MC, Sophia Children's Hospital, The Netherlands
| | - Mathijs Sanders
- Department of Hematology, ErasmusMC, Rotterdam, The Netherlands
| | - Ivo Touw
- Department of Hematology, ErasmusMC, Rotterdam, The Netherlands
| | | | - Rob Pieters
- Pediatric Oncology-Hematology, Erasmus MC, Sophia Children's Hospital, The Netherlands.,Prinses Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Jan-Henning Klusmann
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, German
| | - C Michel Zwaan
- Pediatric Oncology-Hematology, Erasmus MC, Sophia Children's Hospital, The Netherlands
| | - Marry M van den Heuvel-Eibrink
- Pediatric Oncology-Hematology, Erasmus MC, Sophia Children's Hospital, The Netherlands.,Prinses Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Maarten Fornerod
- Pediatric Oncology-Hematology, Erasmus MC, Sophia Children's Hospital, The Netherlands
| |
Collapse
|
37
|
Bi L, Sun L, Jin Z, Zhang S, Shen Z. MicroRNA-10a/b are regulators of myeloid differentiation and acute myeloid leukemia. Oncol Lett 2018; 15:5611-5619. [PMID: 29552198 PMCID: PMC5840650 DOI: 10.3892/ol.2018.8050] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 09/07/2017] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRs) have been demonstrated to perform important roles in normal hematopoiesis and leukemogenesis. Accumulating evidence suggests that miR-10a and miR-10b may behave as novel oncogenes or tumor suppressors in human cancer. The present study reported the function of the miR-10 family in myeloid differentiation and acute myeloid leukemia (AML). The levels of miR-10a/b expression were increased in AML cases compared with normal controls, particularly in M1, M2 and M3 subtypes. The levels of miR-10a/b expression were also upregulated in patients with nucleophosmin-mutated AML and AML patients with t(8;21) and t(9;11), compared with the normal control. In addition, the role of miR-10a/b in regulating myeloid differentiation and leukemogenesis was investigated. The results indicated that miR-10a/b expression was able to promote the proliferation of human promyelocytic leukemia cells, while suppressing the granulocytic and monocytic differentiation of the leukemia cells. These findings suggested that abnormal high expression of miR-10a/b may result in unlimited proliferation of immature blood progenitors and repression of mature blood cell differentiation and maturation, thus leading to the occurrence of AML. miR-10a/b may be developed as novel therapeutic targets for the treatment of AML.
Collapse
Affiliation(s)
- Laixi Bi
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Lan Sun
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhenlin Jin
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Shenghui Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhijian Shen
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
38
|
Bao M, Pan S, Yang W, Chen S, Shan Y, Shi H. Serum miR-10a-5p and miR-196a-5p as non-invasive biomarkers in non-small cell lung cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:773-780. [PMID: 31938164 PMCID: PMC6958018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 12/16/2017] [Indexed: 06/10/2023]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, accounting for about 85% of all cases. MicroRNAs are stable molecules in the blood and can be used as biomarkers for early diagnosis of various malignancies. The aim of this study was to evaluate expression of miR-10a-5p and miR-196a-5p in tissue and serum of patients with NSCLC and to explore its relationship with clinicopathological characteristics. METHODS A total of 20 pairs of tissues and 80 serum samples were obtained from NSCLC patients. Seventy-five serum samples from healthy individuals of the same age and gender were also collected. The expression level of miR-10a-5p and miR-196a-5p was detected by quantitative real-time PCR. The relationship between miR-10a-5p and miR-196a-5p expression level in NSCLC tissues and serum and clinicopathological characteristics was estimated respectively. The diagnostic value of miRNA-10a-5p and miR-196a-5p in NSCLC was assessed by the Receiver-operating characteristic (ROC) curve method. RESULTS We found that miRNA-10a-5p and miR-196a-5p expression levels were increased significantly in NSCLC tissues compared with non-tumor adjacent normal tissues. Serum miR-10a-5p and miR-196-5p were over-expressed in NSCLC patients compared with healthy controls. The higher miR-10a-5p or miR-196-5p expression levels were positively correlated with advanced tumor stage and positive lymph node metastasis. The area under the curve (AUC) of serum miR-10a-5p and miR-196-5p to diagnose NSCLC were 0.709 and 0.785. Optimal sensitivity and specificity were 65.98% and 72.71%, 67.86% and 77.57%, respectively in differentiating NSCLC patients from healthy controls. The combination of these two miRNAs with carcinoembryonic antigen (CEA) further increased the diagnostic value, with an area under the curve (AUC) of 0.801 (sensitivity, 76.34%; specificity, 79.26%) using logistic regression model analysis. CONCLUSIONS Serum miR-10a-5p and miR-196a-5p may be useful noninvasive biomarkers for the clinical diagnosis of NSCLC.
Collapse
Affiliation(s)
- Min Bao
- Department of Cardiothoracic Surgery, Clinical College of Yangzhou UniversityYangzhou 225001, China
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu ProvinceYangzhou 225001, China
- Center of Translational Medicine, Yangzhou UniversityYangzhou 225001, China
- Anhui Medical CollegeHefei 230000, China
| | - Shu Pan
- Department of Cardiothoracic Surgery, Clinical College of Yangzhou UniversityYangzhou 225001, China
- Center of Translational Medicine, Yangzhou UniversityYangzhou 225001, China
| | - Wenlong Yang
- Department of Cardiothoracic Surgery, Clinical College of Yangzhou UniversityYangzhou 225001, China
| | - Shuai Chen
- Department of Cardiothoracic Surgery, Clinical College of Yangzhou UniversityYangzhou 225001, China
| | - Yibo Shan
- Department of Cardiothoracic Surgery, Clinical College of Yangzhou UniversityYangzhou 225001, China
| | - Hongcan Shi
- Department of Cardiothoracic Surgery, Clinical College of Yangzhou UniversityYangzhou 225001, China
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu ProvinceYangzhou 225001, China
- Center of Translational Medicine, Yangzhou UniversityYangzhou 225001, China
| |
Collapse
|
39
|
|
40
|
Zhang TJ, Guo H, Zhou JD, Li XX, Zhang W, Ma JC, Wen XM, Yao XY, Lin J, Qian J. Bone marrow miR-10a overexpression is associated with genetic events but not affects clinical outcome in acute myeloid leukemia. Pathol Res Pract 2017; 214:169-173. [PMID: 29254789 DOI: 10.1016/j.prp.2017.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/09/2017] [Accepted: 11/28/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND Accumulating studies have linked the disruptions of microRNA-10 (miR-10) to acute myeloid leukemia (AML) with NPM1 mutation. However, miR-10 expression and its clinical implication in AML remain poorly defined. Although a recent report showed high serum level of miR-10a was associated with adverse prognosis in AML, herein, we found bone marrow (BM) miR-10 overexpression was not a prognostic biomarker in AML. METHODS BM miR-10 expression was examined by real-time quantitative PCR in BM mononuclear cells in 115 de novo AML patients and 45 controls. RESULTS BM miR-10 (miR-10a/b) expression was significantly up-regulated in AML patients, and was positively correlated with each other. Overexpression of miR-10a was associated with lower percentage of BM blasts, whereas miR-10b overexpression tended to correlate with higher percentage of BM blasts. Importantly, miR-10a overexpression was significantly associated with FAB-M3/t(15;17) subtypes and NPM1 mutation, meanwhile, overexpression of miR-10b was correlated with NPM1 and DNMT3A mutations. However, miR-10a/b overexpression was not associated with complete remission rate, and did not have an impact on both leukemia free survival and overall survival time in non-M3 AML patients without NPM1 mutation. CONCLUSIONS BM miR-10 overexpression is associated with genetic events but not affects clinical outcome in AML.
Collapse
Affiliation(s)
- Ting-Juan Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China; The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China; School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Hong Guo
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China; The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Jing-Dong Zhou
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China; The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China; School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Xi-Xi Li
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China; The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China; School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Wei Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China; The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Ji-Chun Ma
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China; The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Xiang-Mei Wen
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China; The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Xin-Yu Yao
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China; School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Jiang Lin
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China; The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.
| | - Jun Qian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China; The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.
| |
Collapse
|
41
|
Wang X, Chen H, Bai J, He A. MicroRNA: an important regulator in acute myeloid leukemia. Cell Biol Int 2017; 41:936-945. [PMID: 28370893 DOI: 10.1002/cbin.10770] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 03/26/2017] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are a general class of endogenous non-coding RNAs with a length of 22 nucleotides, widely existing in diverse species and playing important roles in malignancies initiation and progression. MiRNAs are essential to many in vivo biological processes such as cell proliferation, apoptosis, immune response, and tumorigenesis. Significant progress till date has been made in understanding the roles of microRNAs in normal hematopoiesis and hematopoietic malignant diseases. In this review, we summarize the particular signatures of microRNAs in acute myeloid leukemia (AML) patients with specific karyotype and the clinical significance of microRNAs in early diagnosis and treatment. MicroRNAs hypermethylation was also proved to correlate with the pathogenesis of AML. However, the target genes and exact pathways of microRNAs participating in these processes are still unknown and more efforts need to be made in the near future.
Collapse
Affiliation(s)
- Xiaman Wang
- Department of Clinical Hematology, Second Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi Province 710004, P.R. China
| | - Hongli Chen
- Department of Clinical Hematology, Second Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi Province 710004, P.R. China
| | - Ju Bai
- Department of Clinical Hematology, Second Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi Province 710004, P.R. China
| | - Aili He
- Department of Clinical Hematology, Second Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi Province 710004, P.R. China.,National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Xi'an, P.R. China
| |
Collapse
|
42
|
Differential regulated microRNA by wild type and mutant p53 in induced pluripotent stem cells. Cell Death Dis 2016; 7:e2567. [PMID: 28032868 PMCID: PMC5260988 DOI: 10.1038/cddis.2016.419] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 01/08/2023]
Abstract
The tumour suppressor p53 plays an important role in somatic cell reprogramming. While wild-type p53 reduces reprogramming efficiency, mutant p53 exerts a gain of function activity that leads to increased reprogramming efficiency. Furthermore, induced pluripotent stem cells expressing mutant p53 lose their pluripotency in vivo and form malignant tumours when injected in mice. It is therefore of great interest to identify targets of p53 (wild type and mutant) that are responsible for this phenotype during reprogramming, as these could be exploited for therapeutic use, that is, formation of induced pluripotent stem cells with high reprogramming efficiency, but no oncogenic potential. Here we studied the transcriptional changes of microRNA in a series of mouse embryonic fibroblasts that have undergone transition to induced pluripotent stem cells with wild type, knock out or mutant p53 status in order to identify microRNAs whose expression during reprogramming is dependent on p53. We identified a number of microRNAs, with known functions in differentiation and carcinogenesis, the expression of which was dependent on the p53 status of the cells. Furthermore, we detected several uncharacterised microRNAs that were regulated differentially in the different p53 backgrounds, suggesting a novel role of these microRNAs in reprogramming and pluripotency.
Collapse
|
43
|
Mancikova V, Montero-Conde C, Perales-Paton J, Fernandez A, Santacana M, Jodkowska K, Inglada-Pérez L, Castelblanco E, Borrego S, Encinas M, Matias-Guiu X, Fraga M, Robledo M. Multilayer OMIC Data in Medullary Thyroid Carcinoma Identifies the STAT3 Pathway as a Potential Therapeutic Target in RETM918T Tumors. Clin Cancer Res 2016; 23:1334-1345. [PMID: 27620278 DOI: 10.1158/1078-0432.ccr-16-0947] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/05/2016] [Accepted: 08/24/2016] [Indexed: 11/16/2022]
Abstract
Purpose: Medullary thyroid carcinoma (MTC) is a rare disease with few genetic drivers, and the etiology specific to each known susceptibility mutation remains unknown. Exploiting multilayer genomic data, we focused our interest on the role of aberrant DNA methylation in MTC development.Experimental Design: We performed genome-wide DNA methylation profiling assessing more than 27,000 CpGs in the largest MTC series reported to date, comprising 48 molecularly characterized tumors. mRNA and miRNA expression data were available for 33 and 31 tumors, respectively. Two human MTC cell lines and 101 paraffin-embedded MTCs were used for validation.Results: The most distinctive methylome was observed for RETM918T-related tumors. Integration of methylation data with mRNA and miRNA expression data identified genes negatively regulated by promoter methylation. These in silico findings were confirmed in vitro for PLCB2, DKK4, MMP20, and miR-10a, -30a, and -200c. The mutation-specific aberrant methylation of PLCB2, DKK4, and MMP20 was validated in 25 independent MTCs by bisulfite pyrosequencing. The methylome and transcriptome data underscored JAK/Stat pathway involvement in RETM918T MTCs. Immunostaining [immunohistochemistry (IHC)] for the active form of signaling effector STAT3 was performed in a series of 101 MTCs. As expected, positive IHC was associated with RETM918T-bearing tumors (P < 0.02). Pharmacologic inhibition of STAT3 activity increased the sensitivity to vandetanib of the RETM918T-positive MTC cell line, MZ-CRC-1.Conclusions: Multilayer OMIC data analysis uncovered methylation hallmarks in genetically defined MTCs and revealed JAK/Stat signaling effector STAT3 as a potential therapeutic target for the treatment of RETM918T MTCs. Clin Cancer Res; 23(5); 1334-45. ©2016 AACR.
Collapse
Affiliation(s)
- Veronika Mancikova
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Cristina Montero-Conde
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Javier Perales-Paton
- Translational Bioinformatics Unit, Clinical Research Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Agustin Fernandez
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), HUCA, University of Oviedo, Asturias, Spain
| | - María Santacana
- Department of Endocrinology and Nutrition, University Hospital Arnau de Vilanova, IRBLLEIDA, Lleida, Spain
| | - Karolina Jodkowska
- DNA Replication Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Lucia Inglada-Pérez
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Esmeralda Castelblanco
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Hospital, Health Sciences Research Institute of the "Germans Trias i Pujol" Foundation (IGTP), Badalona, Spain.,Centre for Biomedical Research on Diabetes and Associated Metabolic Diseases (CIBERDEM), ISCIII, Spain
| | | | - Mario Encinas
- Department of Endocrinology and Nutrition, University Hospital Arnau de Vilanova, IRBLLEIDA, Lleida, Spain
| | - Xavier Matias-Guiu
- Department of Endocrinology and Nutrition, University Hospital Arnau de Vilanova, IRBLLEIDA, Lleida, Spain.,Department of Pathology, Hospital Universitari de Bellvitge, IDIBELL, Barcelona
| | - Mario Fraga
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), HUCA, University of Oviedo, Asturias, Spain
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. .,ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain
| |
Collapse
|
44
|
Yu Z, Li D, Ju XL. CD4+ T cells from patients with acute myeloid leukemia inhibit the proliferation of bone marrow-derived mesenchymal stem cells by secretion of miR-10a. J Cancer Res Clin Oncol 2016; 142:733-40. [PMID: 26590574 DOI: 10.1007/s00432-015-2076-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/08/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND The abnormality of bone marrow-derived mesenchymal stem cells (BM-MSCs) has been reported to contribute to the pathogenesis of acute myeloid leukemia (AML). T cell immunodeficiencies play important roles in the progression of leukemia. This study investigated the effect of CD4+ T cells from AML patients on the proliferation of BM-MSCs. METHODS The growth rate of BM-MSCs from AML patients and healthy donor was compared. CD4+ T cells were separated and identified from AML patients. Through co-culturing CD4+ T cells from AML patients and BM-MSCs from healthy, we detected the proliferation of BM-MSCs from healthy by MTT assay. qRT-PCR was performed to examine the expression of miR-10a. Luciferase reporter assay was used to analyze the regulation of miR-10a on the expression of BCL6. RESULTS Here, we observed that BM-MSC from AML patients grew slower than that from healthy. CD4+ T cells from AML patients inhibited the proliferation of BM-MSCs through secreting miR-10a. In addition, miR-10a was found to target BCL6 and regulated its expression in transcription and translation levels. Correlation analysis revealed that the level of miR-10a in serum of AML patients was negatively correlated with BCL6 in BM-MSC. CONCLUSION This study provides evidence that CD4+ T cells from AML patients suppress the proliferation of BM-MSCs via secreting miR-10a.
Collapse
Affiliation(s)
- Zhen Yu
- Department of Pediatrics, Qilu Hospital, Shandong University, 107 Wen Hua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Dong Li
- Department of Pediatrics, Qilu Hospital, Shandong University, 107 Wen Hua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Xiu-li Ju
- Department of Pediatrics, Qilu Hospital, Shandong University, 107 Wen Hua Xi Road, Jinan, Shandong, 250012, People's Republic of China.
| |
Collapse
|
45
|
Lou Z, Casali P, Xu Z. Regulation of B Cell Differentiation by Intracellular Membrane-Associated Proteins and microRNAs: Role in the Antibody Response. Front Immunol 2015; 6:537. [PMID: 26579118 PMCID: PMC4620719 DOI: 10.3389/fimmu.2015.00537] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/07/2015] [Indexed: 12/17/2022] Open
Abstract
B cells are central to adaptive immunity and their functions in antibody responses are exquisitely regulated. As suggested by recent findings, B cell differentiation is mediated by intracellular membrane structures (including endosomes, lysosomes, and autophagosomes) and protein factors specifically associated with these membranes, including Rab7, Atg5, and Atg7. These factors participate in vesicle formation/trafficking, signal transduction and induction of gene expression to promote antigen presentation, class switch DNA recombination (CSR)/somatic hypermutation (SHM), and generation/maintenance of plasma cells and memory B cells. Their expression is induced in B cells activated to differentiate and further fine-tuned by immune-modulating microRNAs, which coordinates CSR/SHM, plasma cell differentiation, and memory B cell differentiation. These short non-coding RNAs would individually target multiple factors associated with the same intracellular membrane compartments and collaboratively target a single factor in addition to regulating AID and Blimp-1. These, together with regulation of microRNA biogenesis and activities by endosomes and autophagosomes, show that intracellular membranes and microRNAs, two broadly relevant cell constituents, play important roles in balancing gene expression to specify B cell differentiation processes for optimal antibody responses.
Collapse
Affiliation(s)
- Zheng Lou
- Department of Microbiology and Immunology, School of Medicine, The University of Texas Health Science Center , San Antonio, TX , USA
| | - Paolo Casali
- Department of Microbiology and Immunology, School of Medicine, The University of Texas Health Science Center , San Antonio, TX , USA
| | - Zhenming Xu
- Department of Microbiology and Immunology, School of Medicine, The University of Texas Health Science Center , San Antonio, TX , USA
| |
Collapse
|
46
|
Seipel K, Marques MT, Bozzini MA, Meinken C, Mueller BU, Pabst T. Inactivation of the p53-KLF4-CEBPA Axis in Acute Myeloid Leukemia. Clin Cancer Res 2015; 22:746-56. [PMID: 26408402 DOI: 10.1158/1078-0432.ccr-15-1054] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 09/20/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE In acute myeloid leukemia (AML), the transcription factors CEBPA and KLF4 as well as the universal tumor suppressor p53 are frequently deregulated. Here, we investigated the extent of dysregulation, the molecular interactions, and the mechanisms involved. EXPERIMENTAL DESIGN One hundred ten AML patient samples were analyzed for protein levels of CEBPA, KLF4, p53, and p53 modulators. Regulation of CEBPA gene expression by KLF4 and p53 or by chemical p53 activators was characterized in AML cell lines. RESULTS We found that CEBPA gene transcription can be directly activated by p53 and KLF4, suggesting a p53-KLF4-CEBPA axis. In AML patient cells, we observed a prominent loss of p53 function and concomitant reduction of KLF4 and CEBPA protein levels. Assessment of cellular p53 modulator proteins indicated that p53 inactivation in leukemic cells correlated with elevated levels of the nuclear export protein XPO1/CRM1 and increase of the p53 inhibitors MDM2 and CUL9/PARC in the cytoplasm. Finally, restoring p53 function following treatment with cytotoxic chemotherapy compounds and p53 restoring non-genotoxic agents induced CEBPA gene expression, myeloid differentiation, and cell-cycle arrest in AML cells. CONCLUSIONS The p53-KLF4-CEBPA axis is deregulated in AML but can be functionally restored by conventional chemotherapy and novel p53 activating treatments.
Collapse
Affiliation(s)
- Katja Seipel
- Department of Clinical Research, University and University Hospital of Berne, Berne, Switzerland. Department of Medical Oncology, University and University Hospital of Berne, Berne, Switzerland
| | - Miguel Teixera Marques
- Department of Clinical Research, University and University Hospital of Berne, Berne, Switzerland
| | - Marie-Ange Bozzini
- Department of Clinical Research, University and University Hospital of Berne, Berne, Switzerland
| | - Christina Meinken
- Department of Clinical Research, University and University Hospital of Berne, Berne, Switzerland
| | - Beatrice U Mueller
- Department of Clinical Research, University and University Hospital of Berne, Berne, Switzerland
| | - Thomas Pabst
- Department of Medical Oncology, University and University Hospital of Berne, Berne, Switzerland.
| |
Collapse
|
47
|
Serum level of miR-10-5p as a prognostic biomarker for acute myeloid leukemia. Int J Hematol 2015; 102:296-303. [PMID: 26134365 DOI: 10.1007/s12185-015-1829-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 06/11/2015] [Accepted: 06/18/2015] [Indexed: 10/23/2022]
Abstract
MicroRNAs (miRNAs) are a type of small non-coding RNA molecule that play important roles in tumor initiation, chemotherapy response, promotion, and progression by negatively interfering with gene expression. The aim of the present study was to investigate the serum expression status and explore the prognostic significance of miR-10a-5p in acute myeloid leukemia (AML). The serum expression level of miR-10a-5p in de novo AML was significantly higher, compared with that in controls. The area under the receiver operator characteristic (ROC) curve was of 0.831 in the diagnostic value of miR-10a-5p. In the complete remission (CR) group, the serum expression level of miR-10a-5p was similar to that of healthy subjects and demonstrated a significant downtrend when compared to that on the day of diagnosis. Nevertheless, miR-10a-5p expression was found to significantly increase in cases of relapsed AML when compared individually to the CR population. On analysis of the association of miR-10a-5p expression with the clinical characteristics at diagnosis in AML patients, lower CR rates occurred more frequently in the high-expression group. In addition, high miR-10a-5p expression was associated with poorer overall survival (OS). These data suggest that miR-10a-5p may serve as a biomarker useful to improving the management of AML patients.
Collapse
|
48
|
Alfano D, Gorrasi A, Li Santi A, Ricci P, Montuori N, Selleri C, Ragno P. Urokinase receptor and CXCR4 are regulated by common microRNAs in leukaemia cells. J Cell Mol Med 2015; 19:2262-72. [PMID: 26082201 PMCID: PMC4568930 DOI: 10.1111/jcmm.12617] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/15/2015] [Indexed: 12/28/2022] Open
Abstract
The urokinase-type plasminogen activator (uPA) receptor (uPAR) focuses uPA proteolytic activity on the cell membrane, promoting localized degradation of extracellular matrix (ECM), and binds vitronectin (VN), mediating cell adhesion to the ECM. uPAR-bound uPA and VN induce proteolysis-independent intracellular signalling, regulating cell adhesion, migration, survival and proliferation. uPAR cross-talks with CXCR4, the receptor for the stroma-derived factor 1 chemokine. CXCR4 is crucial in the trafficking of hematopoietic stem cells from/to the bone marrow, which involves also uPAR. Both uPAR and CXCR4 are expressed in acute myeloid leukaemia (AML), with a lower expression in undifferentiated and myeloid subsets, and higher expression in myelomonocytic and promyelocytic subsets. We hypothesized a microRNA (miR)-mediated co-regulation of uPAR and CXCR4 expression, which could allow their cross-talk at the cell surface. We identified three miRs, miR-146a, miR-335 and miR-622, regulating the expression of both uPAR and CXCR4 in AML cell lines. Indeed, these miRs directly target the 3'untranslated region of both uPAR- and CXCR4-mRNAs; accordingly, uPAR/CXCR4 expression is reduced by their overexpression in AML cells and increased by their specific inhibitors. Overexpression of all three miRs impairs migration, invasion and proliferation of myelomonocytic cells. Interestingly, we observed an inverse relationship between uPAR/CXCR4 expression and miR-146a and miR-335 levels in AML blasts, suggesting their possible role in the regulation of uPAR/CXCR4 expression also in vivo.
Collapse
Affiliation(s)
- Daniela Alfano
- Department of Chemistry and Biology, University of Salerno, Salerno, Italy
| | - Anna Gorrasi
- Department of Chemistry and Biology, University of Salerno, Salerno, Italy
| | - Anna Li Santi
- Department of Chemistry and Biology, University of Salerno, Salerno, Italy
| | - Patrizia Ricci
- Department of Clinical Medicine and Surgery, "Federico II" University, Naples, Italy
| | - Nunzia Montuori
- Department of Translational Medical Sciences, "Federico II" University, Naples, Italy
| | - Carmine Selleri
- Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Pia Ragno
- Department of Chemistry and Biology, University of Salerno, Salerno, Italy
| |
Collapse
|
49
|
Feng Y, Yao Z, Klionsky DJ. How to control self-digestion: transcriptional, post-transcriptional, and post-translational regulation of autophagy. Trends Cell Biol 2015; 25:354-63. [PMID: 25759175 DOI: 10.1016/j.tcb.2015.02.002] [Citation(s) in RCA: 255] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 01/23/2023]
Abstract
Macroautophagy (hereafter autophagy), literally defined as a type of self-eating, is a dynamic cellular process in which cytoplasm is sequestered within a unique compartment termed the phagophore. Upon completion, the phagophore matures into a double-membrane autophagosome that fuses with the lysosome or vacuole, allowing degradation of the cargo. Nonselective autophagy is primarily a cytoprotective response to various types of stress; however, the process can also be highly selective. Autophagy is involved in various aspects of cell physiology, and its dysregulation is associated with a range of diseases. The regulation of autophagy is complex, and the process must be properly modulated to maintain cellular homeostasis. In this review, we focus on the current state of knowledge concerning transcriptional, post-transcriptional, and post-translational regulation of autophagy in yeast and mammals.
Collapse
Affiliation(s)
- Yuchen Feng
- Life Sciences Institute and the Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Zhiyuan Yao
- Life Sciences Institute and the Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel J Klionsky
- Life Sciences Institute and the Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
50
|
Genome-wide uncovering of STAT3-mediated miRNA expression profiles in colorectal cancer cell lines. BIOMED RESEARCH INTERNATIONAL 2014; 2014:187105. [PMID: 25126546 PMCID: PMC4121995 DOI: 10.1155/2014/187105] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 06/19/2014] [Indexed: 12/18/2022]
Abstract
Colorectal cancer (CRC) is one of the most common malignancies resulting in high mortality worldwide. Signal transducer and activator of transcription 3 (STAT3) is an oncogenic transcription factor which is frequently activated and aberrantly expressed in CRC. MicroRNAs (miRNAs) are a class of small noncoding RNAs which play important roles in many cancers. However, little is known about the global miRNA profiles mediated by STAT3 in CRC cells. In the present study, we applied RNA interference to inhibit STAT3 expression and profiled the miRNA expression levels regulated by STAT3 in CRC cell lines with deep sequencing. We found that 26 and 21 known miRNAs were significantly overexpressed and downexpressed, respectively, in the STAT3-knockdown CRC cell line SW480 (SW480/STAT3-siRNA) compared to SW480 transfected with scrambled siRNAs (SW480/siRNA-control). The miRNA expression profiling was then validated by quantitative real-time PCR for selected known miRNAs. We further predicted the putative target genes for the dysregulated miRNAs and carried out functional annotation including GO enrichment and KEGG pathway analysis for selected miRNA targets. This study directly depicts STAT3-mediated miRNA profiles in CRC cells, which provides a possible way to discover biomarkers for CRC therapy.
Collapse
|