1
|
Ashoka Sreeja H, Couso-Queiruga E, Raabe C, Chappuis V, Asparuhova MB. Biofunctionalization of Collagen Barrier Membranes with Bone-Conditioned Medium, as a Natural Source of Growth Factors, Enhances Osteoblastic Cell Behavior. Int J Mol Sci 2025; 26:1610. [PMID: 40004074 PMCID: PMC11855076 DOI: 10.3390/ijms26041610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
A key principle of guided bone regeneration (GBR) is the use of a barrier membrane to prevent cells from non-osteogenic tissues from interfering with bone regeneration in patients with hard tissue deficiencies. The aim of the study was to investigate whether the osteoinductive properties of bone-conditioned medium (BCM) obtained from cortical bone chips harvested at the surgical site can be transferred to a native bilayer collagen membrane (nbCM). BCM extracted within 20 or 40 min, which corresponds to a typical implant surgical procedure, and BCM extracted within 24 h, which corresponds to BCM released from the autologous bone chips in situ, contained significant and comparable amounts of TGF-β1, IGF-1, FGF-2, VEGF-A, and IL-11. Significant (p < 0.001) quantities of BMP-2 were only detected in the 24-h BCM preparation. The bioactive substances contained in the BCM were adsorbed to the nbCMs with almost 100% efficiency. A fast but sequential release of all investigated proteins occurred within 6-72 h, reflecting their stepwise involvement in the natural regeneration process. BCM-coated nbCM significantly (p < 0.05) increased the migratory, adhesive, and proliferative capacity of primary human bone-derived cells (hBC), primary human periodontal ligament cells (hPDLC), and an osteosarcoma-derived osteoblastic cell line (MG-63) compared to cells cultured on BCM-free nbCM. The high proliferative rates of MG-63 cells cultured on BCM-free nbCM were not further potentiated by BCM, indicating that BCM-coated nbCM has no detrimental effects on cancer cell growth. BCM-coated nbCM caused significant (p < 0.05) induction of early osteogenic marker gene expression and alkaline phosphatase activity, suggesting an important role of BCM-functionalized nbCM in the initiation of osteogenesis. The 24-h BCM loaded on the nbCM was the only BCM preparation that caused significant induction of late osteogenic marker gene expression. Altogether, our data define the pre-activation of collagen membranes with short-term-extracted BCM as a potential superior modality for treating hard tissue deficiencies via GBR.
Collapse
Affiliation(s)
- Harshitha Ashoka Sreeja
- Laboratory of Oral Cell Biology, Dental Research Center, School of Dental Medicine, University of Bern, Freiburgstrasse 3, 3010 Bern, Switzerland
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland
| | - Emilio Couso-Queiruga
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland
| | - Clemens Raabe
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland
| | - Vivianne Chappuis
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland
| | - Maria B. Asparuhova
- Laboratory of Oral Cell Biology, Dental Research Center, School of Dental Medicine, University of Bern, Freiburgstrasse 3, 3010 Bern, Switzerland
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland
| |
Collapse
|
2
|
Chawla P, Sharma I, Gau D, Eder I, Chen F, Yu V, Welling N, Boone D, Taboas J, Lee AV, Larregina A, Galson DL, Roy P. Breast cancer cells promote osteoclast differentiation in an MRTF-dependent paracrine manner. Mol Biol Cell 2025; 36:ar8. [PMID: 39630611 PMCID: PMC11742114 DOI: 10.1091/mbc.e24-06-0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/07/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
Bone is a frequent site for breast cancer metastasis. The vast majority of breast cancer-associated metastasis is osteolytic in nature, and RANKL (receptor activator for nuclear factor κB)-induced differentiation of bone marrow-derived macrophages to osteoclasts (OCLs) is a key requirement for osteolytic metastatic growth of cancer cells. In this study, we demonstrate that Myocardin-related transcription factor (MRTF) in breast cancer cells plays an important role in paracrine modulation of RANKL-induced OCL differentiation. This is partly attributed to MRTFs' critical role in maintaining the basal cellular expression of connective tissue growth factor (CTGF), findings that align with a strong positive correlation between CTGF expression and MRTF-A gene signature in the human disease context. Luminex analyses reveal that MRTF depletion in breast cancer cells has a broad impact on OCL-regulatory cell-secreted factors that extend beyond CTGF. Experimental metastasis studies demonstrate that MRTF depletion diminishes OCL abundance and bone colonization of breast cancer cells in vivo, suggesting that MRTF inhibition could be an effective strategy to diminish OCL formation and skeletal involvement in breast cancer. In summary, this study highlights a novel tumor-extrinsic function of MRTF relevant to breast cancer metastasis.
Collapse
Affiliation(s)
- Pooja Chawla
- Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219
| | - Ishani Sharma
- Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219
| | - David Gau
- Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219
- Pathology, University of Pittsburgh, Pittsburgh, PA 15213
| | - Ian Eder
- Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219
| | - Fangyuan Chen
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Virginia Yu
- Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219
| | - Niharika Welling
- Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213
| | - David Boone
- Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15206
| | - Juan Taboas
- Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219
- School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Adrian V. Lee
- Pharmacology, University of Pittsburgh, Pittsburgh, PA 15213
| | | | - Deborah L. Galson
- Hematology-Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Partha Roy
- Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219
- Pathology, University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
3
|
Chawla P, Sharma I, Gau D, Eder I, Chen F, Yu V, Welling N, Boone D, Taboas J, Lee AV, Larregina A, Galson DL, Roy P. Breast cancer cells promote osteoclast differentiation in an MRTF-dependent paracrine manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.06.570453. [PMID: 38106226 PMCID: PMC10723471 DOI: 10.1101/2023.12.06.570453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Bone is a frequent site for breast cancer metastasis. The vast majority of breast cancer-associated metastasis is osteolytic in nature, and RANKL (receptor activator for nuclear factor κB)-induced differentiation of bone marrow-derived macrophages (BMDMs) to osteoclasts (OCLs) is a key requirement for osteolytic metastatic growth of cancer cells. In this study, we demonstrate that Myocardin-related transcription factor (MRTF) in breast cancer cells plays an important role in paracrine modulation of RANKL-induced osteoclast differentiation. This is partly attributed to MRTF's critical role in maintaining the basal cellular expression of connective tissue growth factor (CTGF), findings that align with a strong positive correlation between CTGF expression and MRTF-A gene signature in the human disease context. Luminex analyses reveal that MRTF depletion in breast cancer cells has a broad impact on OCL-regulatory cell-secreted factors that extend beyond CTGF. Experimental metastasis studies demonstrate that MRTF depletion diminishes OCL abundance and bone colonization breast cancer cells in vivo , suggesting that MRTF inhibition could be an effective strategy to diminish OCL formation and skeletal involvement in breast cancer. In summary, this study highlights a novel tumor-extrinsic function of MRTF relevant to breast cancer metastasis. SIGNIFICANCE STATEMENT MRTF, a transcriptional coactivator of SRF, is known to promote breast cancer progression through its tumor-cell-intrinsic function. Whether and how MRTF activity in tumor cells modulates other types of cells in the tumor microenvironment are not clearly understood.This study uncovers a novel tumor-cell-extrinsic function of MRTF in breast cancer cells in promoting osteoclast differentiation partly through CTGF regulation, and further demonstrates MRTF's requirement for bone colonization of breast cancer cells in vivo.Our studies suggest that MRTF inhibition could be an effective strategy to diminish osteoclast formation and skeletal involvement in metastatic breast cancer.
Collapse
|
4
|
Eder I, Yu V, Antonello J, Chen F, Gau D, Chawla P, Joy M, Lucas PC, Boone D, Lee AV, Roy P. mDia2 is an important mediator of MRTF-A-dependent regulation of breast cancer cell migration. Mol Biol Cell 2024; 35:ar133. [PMID: 39196658 PMCID: PMC11481706 DOI: 10.1091/mbc.e24-01-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/31/2024] [Accepted: 08/21/2024] [Indexed: 08/30/2024] Open
Abstract
Dysregulated actin cytoskeleton gives rise to aberrant cell motility and metastatic spread of tumor cells. This study evaluates the effect of overexpression of wild-type versus functional mutants of MRTF-A on migration and invasion of breast cancer (BC) cells. Our studies indicate that SRF's interaction is critical for MRTF-A-induced promotion of both two-dimensional and three-dimensional cell migration, while the SAP-domain function is important selectively for three-dimensional cell migration. Increased MRTF-A activity is associated with more effective membrane protrusion, a phenotype that is attributed predominantly to SRF's interaction with MRTF. We demonstrate formin-family protein mDia2 as an important mediator of MRTF-stimulated actin polymerization at the leading edge and cell migration. Multiplexed quantitative immunohistochemistry and transcriptome analyses of clinical BC specimens further demonstrate a positive correlation between nuclear localization of MRTF with malignant traits of cancer cells and enrichment of MRTF-SRF gene signature in pair-matched distant metastases versus primary tumors. In conclusion, this study establishes a novel mechanism of MRTF-dependent regulation of cell migration and provides evidence for the association between MRTF activity and increased malignancy in human BC, justifying future development of specific small molecule inhibitors of the MRTF-SRF transcriptional complex as potential therapeutic agents in BC.
Collapse
Affiliation(s)
- Ian Eder
- Bioengineering, University of Pittsburgh, PA 15219
| | - Virginia Yu
- Bioengineering, University of Pittsburgh, PA 15219
| | | | - Fangyuan Chen
- School of Medicine, University of Pittsburgh, PA 15261
- School of Medicine, Tsinghua University, China, Beijing 100084
| | - David Gau
- Bioengineering, University of Pittsburgh, PA 15219
| | - Pooja Chawla
- Bioengineering, University of Pittsburgh, PA 15219
| | - Marion Joy
- Hillman Cancer Center, University of Pittsburgh, PA 15232
| | - Peter C. Lucas
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905
| | - David Boone
- Biomedical Informatics, University of Pittsburgh, PA 15206
| | | | - Partha Roy
- Bioengineering, University of Pittsburgh, PA 15219
- Pathology, University of Pittsburgh, PA 15213
| |
Collapse
|
5
|
Eder I, Yu V, Antonello J, Chen F, Gau D, Chawla P, Joy M, Lucas P, Boone D, Lee AV, Roy P. mDia2 is an important mediator of MRTF-A-dependent regulation of breast cancer cell migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.21.572883. [PMID: 38187641 PMCID: PMC10769385 DOI: 10.1101/2023.12.21.572883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Dysregulated actin cytoskeleton gives rise to aberrant cell motility and metastatic spread of tumor cells. This study evaluates the effect of overexpression of wild-type vs functional mutants of MRTF-A on migration and invasion of breast cancer (BC) cells. Our studies indicate that SRF's interaction is critical for MRTF-A-induced promotion of both 2D and 3D cell migration, while the SAP-domain function is important selectively for 3D cell migration. Increased MRTF-A activity is associated with more effective membrane protrusion, a phenotype that is attributed predominantly to SRF's interaction of MRTF. We demonstrate formin-family protein mDia2 as an important mediator of MRTF-stimulated actin polymerization at the leading edge and cell migration. Multiplexed quantitative immunohistochemistry and transcriptome analyses of clinical BC specimens further demonstrate a positive correlation between nuclear localization of MRTF with malignant traits of cancer cells and enrichment of MRTF-SRF gene signature in pair-matched distant metastases vs primary tumors. In conclusion, this study establishes a novel mechanism of MRTF-dependent regulation of cell migration and provides evidence for the association between MRTF activity and increased malignancy in human breast cancer, justifying future development of a specific small molecule inhibitor of the MRTF-SRF transcriptional complex as a potential therapeutic agent in breast cancer. SIGNIFICANCE Actin cytoskeletal dysregulation gives rise to metastatic dissemination of cancer cells. This study mechanistically investigates the impact of specific functional disruption of MRTF (a transcriptional co-factor of SRF) on breast cancer cell migration.This study establishes a novel mechanism linking mDia2 to MRTF-dependent regulation of cell migration and provides clinical evidence for the association between MRTF activity and increased malignancy in human breast cancer.Findings from these studies justify future exploration of specific small molecule inhibitor of the MRTF-SRF transcriptional complex as a potential therapeutic agent in breast cancer.
Collapse
|
6
|
Asparuhova MB, Song X, Riedwyl D, van Geest G, Bosshardt DD, Sculean A. Differential molecular profiles and associated functionalities characterize connective tissue grafts obtained at different locations and depths in the human palate. Int J Oral Sci 2023; 15:57. [PMID: 38072943 PMCID: PMC10711016 DOI: 10.1038/s41368-023-00260-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
The present study aimed to assess the molecular profiles of subepithelial connective tissue grafts (CTGs) obtained at different locations and depths in the human palate. Sixty-four CTGs belonging to anterior deep (AD), anterior superficial (AS), posterior deep (PD), and posterior superficial (PS) groups were subjected to RNA-Sequencing and their transcriptomes were analyzed computationally. Functional correlations characterizing the CTG groups were validated by cell biological experiments using primary human palatal fibroblasts (HPFs) extracted from the CTGs. A clearly more pronounced location-dependent than depth-dependent difference between the grafts, with a minimal number of genes (4) showing no dependence on the location, was revealed. Epithelial, endothelial, and monocytic cell migration was strongly (P < 0.001) potentiated by AD- and PS-HPFs. Moreover, significantly increased expression of genes encoding C-C and C-X-C motif chemokine ligands as well as significantly (P < 0.01) activated p38 signaling suggested immunomodulatory phenotype for AD- and PS-HPFs. Increased growth factor gene expression and significantly activated (P < 0.001) Erk and Akt signaling in HPFs originating from A-CTGs implied their involvement in cell survival, proliferation, and motility. Prominent collagen-rich expression profile contributing to high mechanical stability, increased osteogenesis-related gene expression, and strongly activated (P < 0.001) Smad1/5/8 signaling characterized HPFs originating from P-CTGs. The present data indicate that in humans, differences between palatal CTGs harvested from different locations and depths appear to be location- rather than depth-dependent. Our findings provide the basis for future personalization of the therapeutic strategy by selecting an optimal graft type depending on the clinical indications.
Collapse
Affiliation(s)
- Maria B Asparuhova
- Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Bern, Switzerland.
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.
| | - Xiaoqing Song
- Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Bern, Switzerland
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Dominic Riedwyl
- Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Bern, Switzerland
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Geert van Geest
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
| | - Dieter D Bosshardt
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
- Robert K. Schenk Laboratory of Oral Histology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Zhou LY, Jin CX, Wang WX, Song L, Shin JB, Du TT, Wu H. Differential regulation of hair cell actin cytoskeleton mediated by SRF and MRTFB. eLife 2023; 12:e90155. [PMID: 37982489 PMCID: PMC10703445 DOI: 10.7554/elife.90155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/17/2023] [Indexed: 11/21/2023] Open
Abstract
The MRTF-SRF pathway has been extensively studied for its crucial role in driving the expression of a large number of genes involved in actin cytoskeleton of various cell types. However, the specific contribution of MRTF-SRF in hair cells remains unknown. In this study, we showed that hair cell-specific deletion of Srf or Mrtfb, but not Mrtfa, leads to similar defects in the development of stereocilia dimensions and the maintenance of cuticular plate integrity. We used fluorescence-activated cell sorting-based hair cell RNA-Seq analysis to investigate the mechanistic underpinnings of the changes observed in Srf and Mrtfb mutants, respectively. Interestingly, the transcriptome analysis revealed distinct profiles of genes regulated by Srf and Mrtfb, suggesting different transcriptional regulation mechanisms of actin cytoskeleton activities mediated by Srf and Mrtfb. Exogenous delivery of calponin 2 using Adeno-associated virus transduction in Srf mutants partially rescued the impairments of stereocilia dimensions and the F-actin intensity of cuticular plate, suggesting the involvement of Cnn2, as an Srf downstream target, in regulating the hair bundle morphology and cuticular plate actin cytoskeleton organization. Our study uncovers, for the first time, the unexpected differential transcriptional regulation of actin cytoskeleton mediated by Srf and Mrtfb in hair cells, and also demonstrates the critical role of SRF-CNN2 in modulating actin dynamics of the stereocilia and cuticular plate, providing new insights into the molecular mechanism underlying hair cell development and maintenance.
Collapse
Affiliation(s)
- Ling-Yun Zhou
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
| | - Chen-Xi Jin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
| | - Wen-Xiao Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
| | - Lei Song
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
| | - Jung-Bum Shin
- Department of Neuroscience, University of VirginiaCharlottesvilleUnited States
| | - Ting-Ting Du
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
| |
Collapse
|
8
|
Asparuhova MB, Riedwyl D, Aizawa R, Raabe C, Couso-Queiruga E, Chappuis V. Local Concentrations of TGF-β1 and IGF-1 Appear Determinant in Regulating Bone Regeneration in Human Postextraction Tooth Sockets. Int J Mol Sci 2023; 24:ijms24098239. [PMID: 37175951 PMCID: PMC10179638 DOI: 10.3390/ijms24098239] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Healing after tooth extraction involves a series of reparative processes affecting both alveolar bone and soft tissues. The aim of the present study was to investigate whether activation of molecular signals during the healing process confers a regenerative advantage to the extraction socket soft tissue (ESsT) at 8 weeks of healing. Compared to subepithelial connective tissue graft (CTG), qRT-PCR analyses revealed a dramatic enrichment of the ESsT in osteogenic differentiation markers. However, ESsT and CTG shared characteristics of nonspecialized soft connective tissue by expressing comparable levels of genes encoding abundant extracellular matrix (ECM) proteins. Genes encoding the transforming growth factor-β1 (TGF-β1) and its receptors were strongly enriched in the CTG, whereas the transcript for the insulin-like growth factor-1 (IGF-1) showed significantly high and comparable expression in both tissues. Mechanical stimulation, by the means of cyclic strain or matrix stiffness applied to primary ESsT cells (ESsT-C) and CTG fibroblasts (CTG-F) extracted from the tissue samples, revealed that stress-induced TGF-β1 not exceeding 2.3 ng/mL, as measured by ELISA, in combination with IGF-1 up to 2.5 ng/mL was able to induce the osteogenic potential of ESsT-Cs. However, stiff matrices (50 kPa), upregulating the TGF-β1 expression up to 6.6 ng/mL, caused downregulation of osteogenic gene expression in the ESsT-Cs. In CTG-Fs, endogenous or stress-induced TGF-β1 ≥ 4.6 ng/mL was likely responsible for the complete lack of osteogenesis. Treatment of ESsT-Cs with TGF-β1 and IGF-1 proved that, at specific concentrations, the two growth factors exhibited either an inductive-synergistic or a suppressive activity, thus determining the osteogenic and mineralization potential of ESsT-Cs. Taken together, our data strongly warrant the clinical exploration of ESsT as a graft in augmentative procedures during dental implant placement surgeries.
Collapse
Affiliation(s)
- Maria B Asparuhova
- Laboratory of Oral Cell Biology, Dental Research Center, School of Dental Medicine, University of Bern, Freiburgstrasse 3, 3010 Bern, Switzerland
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland
| | - Dominic Riedwyl
- Laboratory of Oral Cell Biology, Dental Research Center, School of Dental Medicine, University of Bern, Freiburgstrasse 3, 3010 Bern, Switzerland
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland
| | - Ryo Aizawa
- Laboratory of Oral Cell Biology, Dental Research Center, School of Dental Medicine, University of Bern, Freiburgstrasse 3, 3010 Bern, Switzerland
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland
- Department of Periodontology, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ohta-ku, Tokyo 145-8515, Japan
| | - Clemens Raabe
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland
| | - Emilio Couso-Queiruga
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland
| | - Vivianne Chappuis
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland
| |
Collapse
|
9
|
Faria L, Canato S, Jesus TT, Gonçalves M, Guerreiro PS, Lopes CS, Meireles I, Morais-de-Sá E, Paredes J, Janody F. Activation of an actin signaling pathway in pre-malignant mammary epithelial cells by P-cadherin is essential for transformation. Dis Model Mech 2023; 16:dmm049652. [PMID: 36808468 PMCID: PMC9983776 DOI: 10.1242/dmm.049652] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 01/19/2023] [Indexed: 02/23/2023] Open
Abstract
Alterations in the expression or function of cell adhesion molecules have been implicated in all steps of tumor progression. Among those, P-cadherin is highly enriched in basal-like breast carcinomas, playing a central role in cancer cell self-renewal, collective cell migration and invasion. To establish a clinically relevant platform for functional exploration of P-cadherin effectors in vivo, we generated a humanized P-cadherin Drosophila model. We report that actin nucleators, Mrtf and Srf, are main P-cadherin effectors in fly. We validated these findings in a human mammary epithelial cell line with conditional activation of the SRC oncogene. We show that, prior to promoting malignant phenotypes, SRC induces a transient increase in P-cadherin expression, which correlates with MRTF-A accumulation, its nuclear translocation and the upregulation of SRF target genes. Moreover, knocking down P-cadherin, or preventing F-actin polymerization, impairs SRF transcriptional activity. Furthermore, blocking MRTF-A nuclear translocation hampers proliferation, self-renewal and invasion. Thus, in addition to sustaining malignant phenotypes, P-cadherin can also play a major role in the early stages of breast carcinogenesis by promoting a transient boost of MRTF-A-SRF signaling through actin regulation.
Collapse
Affiliation(s)
- Lídia Faria
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), Rua Júlio Amaral de Carvalho, n 45, 4200-135 Porto, Portugal
- Master Programme in Oncology, School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Sara Canato
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), Rua Júlio Amaral de Carvalho, n 45, 4200-135 Porto, Portugal
- Physiology and Cancer Program, Champalimaud Foundation, Avenida de Brasília, 1400-038 Lisboa, Portugal
| | - Tito T. Jesus
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), Rua Júlio Amaral de Carvalho, n 45, 4200-135 Porto, Portugal
| | - Margarida Gonçalves
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Patrícia S. Guerreiro
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), Rua Júlio Amaral de Carvalho, n 45, 4200-135 Porto, Portugal
- Vector B2B - Drug Developing - Associação Para Investigação em Biotecnologia, Av. Prof. Egas Moniz, Edifício Egas Moniz, 1649-028 Lisboa, Portugal
| | - Carla S. Lopes
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Isabel Meireles
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), Rua Júlio Amaral de Carvalho, n 45, 4200-135 Porto, Portugal
| | - Eurico Morais-de-Sá
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Joana Paredes
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), Rua Júlio Amaral de Carvalho, n 45, 4200-135 Porto, Portugal
- FMUP, Medical Faculty of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Florence Janody
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), Rua Júlio Amaral de Carvalho, n 45, 4200-135 Porto, Portugal
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, P-2780-156 Oeiras, Portugal
| |
Collapse
|
10
|
MKL-1-induced PINK1-AS overexpression contributes to the malignant progression of hepatocellular carcinoma via ALDOA-mediated glycolysis. Sci Rep 2022; 12:21283. [PMID: 36494481 PMCID: PMC9734095 DOI: 10.1038/s41598-022-24023-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 11/08/2022] [Indexed: 12/13/2022] Open
Abstract
Aldolase A (ALDOA), an important metabolic enzyme in the glycolytic pathway, plays an important role in regulating tumour metabolism. In this study, we investigated the expression pattern of ALDOA in hepatocellular carcinoma (HCC) and its biological role in tumour progression. Bioinformatics analysis, western blot (WB) and RT-qPCR were performed to detect the relative expression of ALDOA in HCC tissues and cell lines. A loss-of-function approach was used to investigate the biological function of ALDOA. The role of ALDOA on glycolysis was assessed by WB, glucose and lactate assay kits and a nude mouse xenograft model. Luciferase reporter experiment, chromatin immunoprecipitation and WB were performed to elucidate the underlying molecular. The expression level of ALODA was up-regulated in HCC tissues and cell lines. High ALDOA levels were associated with poorer patient overall survival. Mechanistic studies suggest that ALDOA is a direct target of miR-34a-5p, which can inhibit glycolysis in hepatocellular carcinoma cells by targeting the 3'UTR of ALDOA. PINK1 antisense RNA (PINK1-AS) competitively sponged miR-34a-5p to increase ALDOA expression by antagonizing miR-34a-5p-mediated ALDOA inhibition. MKL-1 acted as a transcription factor to promote the expression of PINK1-AS and ALDOA, thus promoting the deterioration of HCC cells. This study shows that high expression of ALDOA contributes to the development and poor prognosis of hepatocellular carcinoma and will be a target and potential prognostic biomarker for the treatment of HCC.
Collapse
|
11
|
Yilmaz A, Loustau T, Salomé N, Poilil Surendran S, Li C, Tucker RP, Izzi V, Lamba R, Koch M, Orend G. Advances on the roles of tenascin-C in cancer. J Cell Sci 2022; 135:276631. [PMID: 36102918 PMCID: PMC9584351 DOI: 10.1242/jcs.260244] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The roles of the extracellular matrix molecule tenascin-C (TNC) in health and disease have been extensively reviewed since its discovery over 40 years ago. Here, we will describe recent insights into the roles of TNC in tumorigenesis, angiogenesis, immunity and metastasis. In addition to high levels of expression in tumors, and during chronic inflammation, and bacterial and viral infection, TNC is also expressed in lymphoid organs. This supports potential roles for TNC in immunity control. Advances using murine models with engineered TNC levels were instrumental in the discovery of important functions of TNC as a danger-associated molecular pattern (DAMP) molecule in tissue repair and revealed multiple TNC actions in tumor progression. TNC acts through distinct mechanisms on many different cell types with immune cells coming into focus as important targets of TNC in cancer. We will describe how this knowledge could be exploited for cancer disease management, in particular for immune (checkpoint) therapies.
Collapse
Affiliation(s)
- Alev Yilmaz
- The Tumor Microenvironment Laboratory, INSERM U1109, Hôpital Civil, Institut d'Hématologie et d'Immunologie 1 , 1 Place de l'Hôpital, 67091 Strasbourg , France
- Université Strasbourg 2 , 67000 Strasbourg , France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS) 3 , 67000 Strasbourg , France
| | - Thomas Loustau
- The Tumor Microenvironment Laboratory, INSERM U1109, Hôpital Civil, Institut d'Hématologie et d'Immunologie 1 , 1 Place de l'Hôpital, 67091 Strasbourg , France
- Université Strasbourg 2 , 67000 Strasbourg , France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS) 3 , 67000 Strasbourg , France
| | - Nathalie Salomé
- The Tumor Microenvironment Laboratory, INSERM U1109, Hôpital Civil, Institut d'Hématologie et d'Immunologie 1 , 1 Place de l'Hôpital, 67091 Strasbourg , France
- Université Strasbourg 2 , 67000 Strasbourg , France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS) 3 , 67000 Strasbourg , France
| | - Suchithra Poilil Surendran
- The Tumor Microenvironment Laboratory, INSERM U1109, Hôpital Civil, Institut d'Hématologie et d'Immunologie 1 , 1 Place de l'Hôpital, 67091 Strasbourg , France
- Université Strasbourg 2 , 67000 Strasbourg , France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS) 3 , 67000 Strasbourg , France
| | - Chengbei Li
- The Tumor Microenvironment Laboratory, INSERM U1109, Hôpital Civil, Institut d'Hématologie et d'Immunologie 1 , 1 Place de l'Hôpital, 67091 Strasbourg , France
- Université Strasbourg 2 , 67000 Strasbourg , France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS) 3 , 67000 Strasbourg , France
| | - Richard P. Tucker
- University of California at Davis 4 Department of Cell Biology and Human Anatomy , , 95616 Davis, CA , USA
| | - Valerio Izzi
- University of Oulu 5 Faculty of Biochemistry and Molecular Medicine , , FI-90014 Oulu , Finland
- University of Oulu 6 Faculty of Medicine , , FI-90014 Oulu , Finland
| | - Rijuta Lamba
- University of Oulu 5 Faculty of Biochemistry and Molecular Medicine , , FI-90014 Oulu , Finland
- University of Oulu 6 Faculty of Medicine , , FI-90014 Oulu , Finland
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Research, Center for Biochemistry, Center for Molecular Medicine Cologne (CMMC) 7 , Faculty of Medicine and , Joseph-Stelzmann-Str. 52, 50931 Cologne , Germany
- University Hospital Cologne, University of Cologne 7 , Faculty of Medicine and , Joseph-Stelzmann-Str. 52, 50931 Cologne , Germany
| | - Gertraud Orend
- The Tumor Microenvironment Laboratory, INSERM U1109, Hôpital Civil, Institut d'Hématologie et d'Immunologie 1 , 1 Place de l'Hôpital, 67091 Strasbourg , France
- Université Strasbourg 2 , 67000 Strasbourg , France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS) 3 , 67000 Strasbourg , France
| |
Collapse
|
12
|
Gau D, Chawla P, Eder I, Roy P. Myocardin-related transcription factor's interaction with serum-response factor is critical for outgrowth initiation, progression, and metastatic colonization of breast cancer cells. FASEB Bioadv 2022; 4:509-523. [PMID: 35949508 PMCID: PMC9353439 DOI: 10.1096/fba.2021-00113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/18/2022] [Accepted: 04/04/2022] [Indexed: 12/02/2022] Open
Abstract
Breast cancer (BC)-related mortality primarily results from metastatic colonization of disseminated cells. Actin polymerization plays an important role in driving post-extravasation metastatic outgrowth of tumor cells. This study examines the role of myocardin-related transcription factor (MRTF)/serum-response (SRF), a transcription system well known for regulation of cytoskeletal genes, in metastatic colonization of BC cells. We demonstrated that co-depletion of MRTF isoforms (MRTF-A and MRTF-B) dramatically impairs single-cell outgrowth ability of BC cells as well as retards growth progression of pre-established BC cell colonies in three-dimensional (3D) cultures. Conversely, overexpression of MRTF-A promotes initiation and progression of tumor-cell outgrowth in vitro, primary tumor formation, and metastatic outgrowth of seeded BC cells in vivo, and these changes can be dramatically blocked by molecular disruption of MRTF-A's interaction with SRF. Correlated with the outgrowth phenotypes, we further demonstrate MRTF's ability to augment the intrinsic cellular ability to polymerize actin and formation of F-actin-based protrusive structures requiring SRF's interaction. Pharmacological proof-of-concept studies show that small molecules capable of interfering with MRTF/SRF signaling robustly suppresses single-cell outgrowth and progression of pre-established outgrowth of BC cells in vitro as well as experimental metastatic burden of BC cells in vivo. Based on these data, we conclude that MRTF activity potentiates metastatic colonization of BC cells and therefore, targeting MRTF may be a promising strategy to diminish metastatic burden in BC.
Collapse
Affiliation(s)
- David Gau
- Department of BioengineeringPittsburghPennsylvaniaUSA
| | - Pooja Chawla
- Department of BioengineeringPittsburghPennsylvaniaUSA
| | - Ian Eder
- Department of BioengineeringPittsburghPennsylvaniaUSA
| | - Partha Roy
- Department of BioengineeringPittsburghPennsylvaniaUSA
- Department of Pathology at the University of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
13
|
Fang F, Xu W, Zhang J, Gu J, Yang G. Ultrasound microbubble-mediated RNA interference targeting WNT1 inducible signaling pathway protein 1(WISP1) suppresses the proliferation and metastasis of breast cancer cells. Bioengineered 2022; 13:11050-11060. [PMID: 35481425 PMCID: PMC9208516 DOI: 10.1080/21655979.2022.2068738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
In the context of relatively sufficient research that annotated WNT1 inducible signaling pathway protein 1 (WISP1) as a promoting factor in tumor progression of breast cancer, and identified the effects of ultrasound microbubble technology on enhancing the transfection efficiency and achieving better gene interference, this study managed to investigate the effects of ultrasound microbubble-mediated siWISP1 transfection on proliferation and metastasis of breast cancer cells. To achieve our research objectives, the expression of WISP1 in breast cancer tissues was retrieved from GEPIA website, and the viability of breast cancer cells (SK-BR-3 and MCF7) was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay for ultrasound intensity screening. After the transfection of siWISP1 by ultrasound microbubble or lipofectamine 6000, the content of WISP1 secreted by cells was detected through Enzyme-linked immunosorbent assay (ELISA), and WISP1 expression in cells was determined by quantitative reverse transcription polymerase-chain reaction (qRT-PCR). Besides, the cell invasion, migration, and proliferation were evaluated by wound healing, transwell, and EdU assays, respectively. In accordance with experimental results, WISP1 was highly expressed in breast cancer tissues, and the 1 W/cm2 intensity was the onset of a notable decrease in cell viability. Compared with lipofectamine 6000 transfection, the transfection of siWISP1 mediated by ultrasound microbubble further reduced the expression of WISP1, and meanwhile suppressed cell invasion, migration, and proliferation. Collectively, ultrasound microbubble-mediated transfection of siWISP1 worked rather effectively in improving transfection efficiency and inhibiting the progression of breast cancer.
Collapse
Affiliation(s)
- Faying Fang
- Department of Special Examination, Maternal and Child Health Hospital of Chun'an County, Hangzhou, Zhejiang, China
| | - Weizhi Xu
- Department of Ultrasound, Sanmen People's Hospital, Taizhou, Zhejiang, China
| | - Jian Zhang
- Department of Ultrasound, Pingyi County Hospital of Traditional Chinese Medicine, Linyi, Shandong, China
| | - Jin Gu
- Department of Ultrasound, Chongqing Public Health Medical Center, Chongqing, Shandong, China
| | - Gaoyi Yang
- Department of Ultrasound, Sanmen People's Hospital, Taizhou, Zhejiang, China
| |
Collapse
|
14
|
Sidorenko E, Sokolova M, Pennanen AP, Kyheröinen S, Posern G, Foisner R, Vartiainen MK. Lamina-associated polypeptide 2α is required for intranuclear MRTF-A activity. Sci Rep 2022; 12:2306. [PMID: 35145145 PMCID: PMC8831594 DOI: 10.1038/s41598-022-06135-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/18/2022] [Indexed: 12/16/2022] Open
Abstract
Myocardin-related transcription factor A (MRTF-A), a coactivator of serum response factor (SRF), regulates the expression of many cytoskeletal genes in response to cytoplasmic and nuclear actin dynamics. Here we describe a novel mechanism to regulate MRTF-A activity within the nucleus by showing that lamina-associated polypeptide 2α (Lap2α), the nucleoplasmic isoform of Lap2, is a direct binding partner of MRTF-A, and required for the efficient expression of MRTF-A/SRF target genes. Mechanistically, Lap2α is not required for MRTF-A nuclear localization, unlike most other MRTF-A regulators, but is required for efficient recruitment of MRTF-A to its target genes. This regulatory step takes place prior to MRTF-A chromatin binding, because Lap2α neither interacts with, nor specifically influences active histone marks on MRTF-A/SRF target genes. Phenotypically, Lap2α is required for serum-induced cell migration, and deregulated MRTF-A activity may also contribute to muscle and proliferation phenotypes associated with loss of Lap2α. Our studies therefore add another regulatory layer to the control of MRTF-A-SRF-mediated gene expression, and broaden the role of Lap2α in transcriptional regulation.
Collapse
Affiliation(s)
| | - Maria Sokolova
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Antti P Pennanen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Salla Kyheröinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Guido Posern
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Roland Foisner
- Max Perutz Labs, Center for Medical Biochemistry, Medical University of Vienna, Vienna Biocenter Campus (VBC), Vienna, Austria
| | | |
Collapse
|
15
|
Lin Z, Nica C, Sculean A, Asparuhova MB. Positive Effects of Three-Dimensional Collagen-Based Matrices on the Behavior of Osteoprogenitors. Front Bioeng Biotechnol 2021; 9:708830. [PMID: 34368101 PMCID: PMC8334008 DOI: 10.3389/fbioe.2021.708830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/05/2021] [Indexed: 12/22/2022] Open
Abstract
Recent research has demonstrated that reinforced three-dimensional (3D) collagen matrices can provide a stable scaffold for restoring the lost volume of a deficient alveolar bone. In the present study, we aimed to comparatively investigate the migratory, adhesive, proliferative, and differentiation potential of mesenchymal stromal ST2 and pre-osteoblastic MC3T3-E1 cells in response to four 3D collagen-based matrices. Dried acellular dermal matrix (DADM), hydrated acellular dermal matrix (HADM), non-crosslinked collagen matrix (NCM), and crosslinked collagen matrix (CCM) did all enhance the motility of the osteoprogenitor cells. Compared to DADM and NCM, HADM and CCM triggered stronger migratory response. While cells grown on DADM and NCM demonstrated proliferative rates comparable to control cells grown in the absence of a biomaterial, cells grown on HADM and CCM proliferated significantly faster. The pro-proliferative effects of the two matrices were supported by upregulated expression of genes regulating cell division. Increased expression of genes encoding the adhesive molecules fibronectin, vinculin, CD44 antigen, and the intracellular adhesive molecule-1 was detected in cells grown on each of the scaffolds, suggesting excellent adhesive properties of the investigated biomaterials. In contrast to genes encoding the bone matrix proteins collagen type I (Col1a1) and osteopontin (Spp1) induced by all matrices, the expression of the osteogenic differentiation markers Runx2, Alpl, Dlx5, Ibsp, Bglap2, and Phex was significantly increased in cells grown on HADM and CCM only. Short/clinically relevant pre-coating of the 3D biomaterials with enamel matrix derivative (EMD) or recombinant bone morphogenetic protein-2 (rBMP-2) significantly boosted the osteogenic differentiation of both osteoprogenitor lines on all matrices, including DADM and NCM, indicating that EMD and BMP-2 retained their biological activity after being released from the matrices. Whereas EMD triggered the expression of all osteogenesis-related genes, rBMP-2 upregulated early, intermediate, and late osteogenic differentiation markers except for Col1a1 and Spp1. Altogether, our results support favorable influence of HADM and CCM on the recruitment, growth, and osteogenic differentiation of the osteoprogenitor cell types. Furthermore, our data strongly support the biofunctionalization of the collagen-based matrices with EMD or rBMP-2 as a potential treatment modality for bone defects in the clinical practice.
Collapse
Affiliation(s)
- Zhikai Lin
- Laboratory of Oral Cell Biology, Dental Research Center, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Cristina Nica
- Laboratory of Oral Cell Biology, Dental Research Center, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Maria B Asparuhova
- Laboratory of Oral Cell Biology, Dental Research Center, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
16
|
Jehanno C, Percevault F, Boujrad N, Le Goff P, Fontaine C, Arnal JF, Primig M, Pakdel F, Michel D, Métivier R, Flouriot G. Nuclear translocation of MRTFA in MCF7 breast cancer cells shifts ERα nuclear/genomic to extra-nuclear/non genomic actions. Mol Cell Endocrinol 2021; 530:111282. [PMID: 33894309 DOI: 10.1016/j.mce.2021.111282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 01/15/2021] [Accepted: 04/11/2021] [Indexed: 01/22/2023]
Abstract
The Myocardin-related transcription factor A [MRTFA, also known as Megakaryoblastic Leukemia 1 (MKL1))] is a major actor in the epithelial to mesenchymal transition (EMT). We have previously shown that activation and nuclear accumulation of MRTFA mediate endocrine resistance of estrogen receptor alpha (ERα) positive breast cancers by initiating a partial transition from luminal to basal-like phenotype and impairing ERα cistrome and transcriptome. In the present study, we deepen our understanding of the mechanism by monitoring functional changes in the receptor's activity. We demonstrate that MRTFA nuclear accumulation down-regulates the expression of the unliganded (Apo-)ERα and causes a redistribution of the protein localization from its normal nuclear place to the entire cell volume. This phenomenon is accompanied by a shift in Apo-ERα monomer/dimer ratio towards the monomeric state, leading to significant functional consequences on ERα activities. In particular, the association of Apo-ERα with chromatin is drastically decreased, and the remaining ERα binding sites are substantially less enriched in ERE motifs than in control conditions. Monitored by proximity Ligation Assay, ERα interactions with P160 family coactivators are partly impacted when MRTFA accumulates in the nucleus, and those with SMRT and NCOR1 corepressors are abolished. Finally, ERα interactions with kinases such as c-src and PI3K are increased, thereby enhancing MAP Kinase and AKT activities. In conclusion, the activation and nuclear accumulation of MRTFA in ERα positive breast cancer cells remodels both ERα location and functions by shifting its activity from nuclear genome regulation to extra-nuclear non-genomic signaling.
Collapse
Affiliation(s)
- Charly Jehanno
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France; University Hospital Basel, University of Basel, Basel, Switzerland
| | - Frédéric Percevault
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Noureddine Boujrad
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Pascale Le Goff
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Coralie Fontaine
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Jean-François Arnal
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Michael Primig
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Farzad Pakdel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Denis Michel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Raphaël Métivier
- Univ Rennes, Institut de Génétique et Développement de Rennes, UMR 6290 CNRS, Rennes, France
| | - Gilles Flouriot
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France.
| |
Collapse
|
17
|
Sun P, Lu Q, Li Z, Qin N, Jiang Y, Ma H, Jin G, Yu H, Dai J. Assessment of prognostic prediction models for gastric cancer using genomic and transcriptomic profiles. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
18
|
Asparuhova MB, Stähli A, Guldener K, Sculean A. A Novel Volume-Stable Collagen Matrix Induces Changes in the Behavior of Primary Human Oral Fibroblasts, Periodontal Ligament, and Endothelial Cells. Int J Mol Sci 2021; 22:ijms22084051. [PMID: 33919968 PMCID: PMC8070954 DOI: 10.3390/ijms22084051] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 01/03/2023] Open
Abstract
The aim of the present study was to investigate the influence of a novel volume-stable collagen matrix (vCM) on early wound healing events including cellular migration and adhesion, protein adsorption and release, and the dynamics of the hemostatic system. For this purpose, we utilized transwell migration and crystal violet adhesion assays, ELISAs for quantification of adsorbed and released from the matrix growth factors, and qRT-PCR for quantification of gene expression in cells grown on the matrix. Our results demonstrated that primary human oral fibroblasts, periodontal ligament, and endothelial cells exhibited increased migration toward vCM compared to control cells that migrated in the absence of the matrix. Cellular adhesive properties on vCM were significantly increased compared to controls. Growth factors TGF-β1, PDGF-BB, FGF-2, and GDF-5 were adsorbed on vCM with great efficiency and continuously delivered in the medium after an initial burst release within hours. We observed statistically significant upregulation of genes encoding the antifibrinolytic thrombomodulin, plasminogen activator inhibitor type 1, thrombospondin 1, and thromboplastin, as well as strong downregulation of genes encoding the profibrinolytic tissue plasminogen activator, urokinase-type plasminogen activator, its receptor, and the matrix metalloproteinase 14 in cells grown on vCM. As a general trend, the stimulatory effect of the vCM on the expression of antifibrinolytic genes was synergistically enhanced by TGF-β1, PDGF-BB, or FGF-2, whereas the strong inhibitory effect of the vCM on the expression of profibrinolytic genes was reversed by PDGF-BB, FGF-2, or GDF-5. Taken together, our data strongly support the effect of the novel vCM on fibrin clot stabilization and coagulation/fibrinolysis equilibrium, thus facilitating progression to the next stages of the soft tissue healing process.
Collapse
Affiliation(s)
- Maria B. Asparuhova
- Dental Research Center, Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland; (A.S.); (K.G.); (A.S.)
- Correspondence:
| | - Alexandra Stähli
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland; (A.S.); (K.G.); (A.S.)
| | - Kevin Guldener
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland; (A.S.); (K.G.); (A.S.)
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland; (A.S.); (K.G.); (A.S.)
| |
Collapse
|
19
|
Xia XD, Yu XH, Chen LY, Xie SL, Feng YG, Yang RZ, Zhao ZW, Li H, Wang G, Tang CK. Myocardin suppression increases lipid retention and atherosclerosis via downregulation of ABCA1 in vascular smooth muscle cells. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158824. [PMID: 33035679 DOI: 10.1016/j.bbalip.2020.158824] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/16/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022]
Abstract
Myocardin (MYOCD) plays an important role in cardiovascular disease. However, its underlying impact on atherosclerosis remains to be elucidated. ATP binding cassette transporter A1 (ABCA1), a key membrane-associated lipid transporter which maintains intracellular lipid homeostasis, has a protective function in atherosclerosis progress. The purpose of this study was to investigate whether and how the effect of MYOCD on atherosclerosis is associated with ABCA1 in vascular smooth muscle cells (VSMCs). We found both MYOCD and ABCA1 expression were dramatically decreased in atherosclerotic patient aortas compared to control. MYOCD knockdown inhibited ABCA1 expression in human aortic vascular smooth muscle cells (HAVSMCs), leading to reduced cholesterol efflux and increased intracellular cholesterol contents. MYOCD overexpression exerted the opposite effect. Mechanistically, MYOCD regulates ABCA1 expression in an SRF-dependent manner. Consistently, apolipoprotein E-deficient mice treated with MYOCD shRNA developed more plaques in the aortic sinus, which is associated with reduced ABCA1 expression, increased cholesterol retention in the aorta, and decreased high-density lipoprotein cholesterol levels in the plasma. Our data suggest that MYOCD deficiency exacerbates atherosclerosis by downregulating ABCA1 dependent cholesterol efflux from VSMCs, thereby providing a novel strategy for the therapeutic treatment of atherosclerotic cardiovascular disease.
Collapse
MESH Headings
- ATP Binding Cassette Transporter 1/genetics
- ATP Binding Cassette Transporter 1/metabolism
- Aged
- Aged, 80 and over
- Animals
- Aorta/cytology
- Aorta/metabolism
- Aorta/pathology
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Cells, Cultured
- Down-Regulation
- Female
- Humans
- Lipid Metabolism
- Male
- Mice, Knockout, ApoE
- Middle Aged
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Mice
Collapse
Affiliation(s)
- Xiao-Dan Xia
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangdong Province, Qingyuan 511518, China; Department of Microsurgery, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 460106, China
| | - Ling-Yan Chen
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Song-Lin Xie
- Department of Microsurgery, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yao-Guang Feng
- Department of Cardiothoracic Surgery, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Rui-Zhe Yang
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, Canada
| | - Zhen-Wang Zhao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Heng Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Gang Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
20
|
Rippe C, Morén B, Liu L, Stenkula KG, Mustaniemi J, Wennström M, Swärd K. NG2/CSPG4, CD146/MCAM and VAP1/AOC3 are regulated by myocardin-related transcription factors in smooth muscle cells. Sci Rep 2021; 11:5955. [PMID: 33727640 PMCID: PMC7966398 DOI: 10.1038/s41598-021-85335-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 02/26/2021] [Indexed: 12/28/2022] Open
Abstract
The present work addressed the hypothesis that NG2/CSPG4, CD146/MCAM, and VAP1/AOC3 are target genes of myocardin-related transcription factors (MRTFs: myocardin/MYOCD, MRTF-A/MKL1, MRTF-B/MKL2) and serum response factor (SRF). Using a bioinformatics approach, we found that CSPG4, MCAM, and AOC3 correlate with MYOCD, MRTF-A/MKL1, and SRF across human tissues. No other transcription factor correlated as strongly with these transcripts as SRF. Overexpression of MRTFs increased both mRNA and protein levels of CSPG4, MCAM, and AOC3 in cultured human smooth muscle cells (SMCs). Imaging confirmed increased staining for CSPG4, MCAM, and AOC3 in MRTF-A/MKL1-transduced cells. MRTFs exert their effects through SRF, and the MCAM and AOC3 gene loci contained binding sites for SRF. SRF silencing reduced the transcript levels of these genes, and time-courses of induction paralleled the direct target ACTA2. MRTF-A/MKL1 increased the activity of promoter reporters for MCAM and AOC3, and transcriptional activation further depended on the chromatin remodeling enzyme KDM3A. CSPG4, MCAM, and AOC3 responded to the MRTF-SRF inhibitor CCG-1423, to actin dynamics, and to ternary complex factors. Coincidental detection of these proteins should reflect MRTF-SRF activity, and beyond SMCs, we observed co-expression of CD146/MCAM, NG2/CSPG4, and VAP1/AOC3 in pericytes and endothelial cells in the human brain. This work identifies highly responsive vascular target genes of MRTF-SRF signaling that are regulated via a mechanism involving KDM3A.
Collapse
Affiliation(s)
- Catarina Rippe
- Department of Experimental Medical Science, BMC D12, Lund University, 22184, Lund, Sweden
| | - Björn Morén
- Department of Experimental Medical Science, BMC D12, Lund University, 22184, Lund, Sweden
| | - Li Liu
- Department of Experimental Medical Science, BMC D12, Lund University, 22184, Lund, Sweden.,Department of Urology, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Karin G Stenkula
- Department of Experimental Medical Science, BMC D12, Lund University, 22184, Lund, Sweden
| | - Johan Mustaniemi
- Department of Experimental Medical Science, BMC D12, Lund University, 22184, Lund, Sweden
| | - Malin Wennström
- Department of Clinical Sciences, Malmö, Lund University, 221 84, Lund, Sweden
| | - Karl Swärd
- Department of Experimental Medical Science, BMC D12, Lund University, 22184, Lund, Sweden.
| |
Collapse
|
21
|
Reed F, Larsuel ST, Mayday MY, Scanlon V, Krause DS. MRTFA: A critical protein in normal and malignant hematopoiesis and beyond. J Biol Chem 2021; 296:100543. [PMID: 33722605 PMCID: PMC8079280 DOI: 10.1016/j.jbc.2021.100543] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/03/2022] Open
Abstract
Myocardin-related transcription factor A (MRTFA) is a coactivator of serum response factor, a transcription factor that participates in several critical cellular functions including cell growth and apoptosis. MRTFA couples transcriptional regulation to actin cytoskeleton dynamics, and the transcriptional targets of the MRTFA–serum response factor complex include genes encoding cytoskeletal proteins as well as immediate early genes. Previous work has shown that MRTFA promotes the differentiation of many cell types, including various types of muscle cells and hematopoietic cells, and MRTFA's interactions with other protein partners broaden its cellular roles. However, despite being first identified as part of the recurrent t(1;22) chromosomal translocation in acute megakaryoblastic leukemia, the mechanisms by which MRTFA functions in malignant hematopoiesis have yet to be defined. In this review, we provide an in-depth examination of the structure, regulation, and known functions of MRTFA with a focus on hematopoiesis. We conclude by identifying areas of study that merit further investigation.
Collapse
Affiliation(s)
- Fiona Reed
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Shannon T Larsuel
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Madeline Y Mayday
- Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut, USA; Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Vanessa Scanlon
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Diane S Krause
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut, USA; Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
22
|
Cellular responses to deproteinized bovine bone mineral biofunctionalized with bone-conditioned medium. Clin Oral Investig 2020; 25:2159-2173. [PMID: 32870390 PMCID: PMC7966141 DOI: 10.1007/s00784-020-03528-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/13/2020] [Indexed: 01/30/2023]
Abstract
OBJECTIVES The aim of the study was to investigate whether the osteoinductive properties of bone-conditioned medium (BCM) harvested from cortical bone chips within a clinically relevant short-term period can enhance the biologic characteristics of deproteinized bovine bone mineral (DBBM) in vitro. MATERIALS AND METHODS To assess the biofunctionalization of DBBM, the adhesive, proliferative, and differentiation properties of mesenchymal stromal ST2, pre-osteoblastic MC3T3-E1, and primary bone-derived cells grown on BCM-coated DBBM were examined by crystal violet staining of adherent cells, BrdU ELISA, and qRT-PCR, respectively. RESULTS BCM extracted within 20 min or 24 h in either Ringer's solution (BCM-RS) or RS mixed with autologous serum (BCM-RS + S) increased the adhesive properties of all three cell types seeded on DBBM. The 20-min BCM-RS preparation appeared more potent than the 24-h preparation. BCM-RS made within 20 min or 24 h had strong pro-proliferative effects on all cell types grown on DBBM. RS + S alone exhibited a considerable pro-proliferative effect, suggesting an impact of the serum on cellular growth. DBBM coated with BCM-RS or BCM-RS + S, made within 20 min or 24 h each, caused a significant induction of osteogenic differentiation marker expression with a higher potency of the BCM-RS + S. Finally, a strong additive effect of fresh bone chips combined with BCM-coated DBBM on the osteogenic differentiation of the three cell types was observed. CONCLUSIONS Altogether, the data strongly support the biofunctionalization of DBBM with BCM extracted within a clinically relevant time window of 20 min. CLINICAL RELEVANCE Pre-activation of non-osteoinductive biomaterials with BCM, prepared from autologous bone chips during a guided bone regeneration (GBR) procedure, bears the potential of an optimal treatment modality for bone defects in daily practice.
Collapse
|
23
|
Enhanced Wound Healing Potential of Primary Human Oral Fibroblasts and Periodontal Ligament Cells Cultured on Four Different Porcine-Derived Collagen Matrices. MATERIALS 2020; 13:ma13173819. [PMID: 32872458 PMCID: PMC7504420 DOI: 10.3390/ma13173819] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/17/2020] [Accepted: 08/26/2020] [Indexed: 01/09/2023]
Abstract
Xenogenic collagen-based matrices represent an alternative to subepithelial palatal connective tissue autografts in periodontal and peri-implant soft tissue reconstructions. In the present study, we aimed to investigate the migratory, adhesive, proliferative, and wound-healing potential of primary human oral fibroblasts (hOF) and periodontal ligament cells (hPDL) in response to four commercially available collagen matrices. Non-crosslinked collagen matrix (NCM), crosslinked collagen matrix (CCM), dried acellular dermal matrix (DADM), and hydrated acellular dermal matrix (HADM) were all able to significantly enhance the ability of hPDL and hOF cells to directionally migrate toward the matrices as well as to efficiently repopulate an artificially generated wound gap covered by the matrices. Compared to NCM and DADM, CCM and HADM triggered stronger migratory response. Cells grown on CCM and HADM demonstrated significantly higher proliferative rates compared to cells grown on cell culture plastic, NCM, or DADM. The pro-proliferative effect of the matrices was supported by expression analysis of proliferative markers regulating cell cycle progression. Upregulated expression of genes encoding the adhesive molecules fibronectin, vinculin, CD44 antigen, and the intracellular adhesive molecule-1 was detected in hPDL and hOF cells cultured on each of the four matrices. This may be considered as a prerequisite for good adhesive properties of the four scaffolds ensuring proper cell–matrix and cell–cell interactions. Upregulated expression of genes encoding TGF-β1 and EGF growth factors as well as MMPs in cells grown on each of the four matrices provided support for their pro-proliferative and pro-migratory abilities. The expression of genes encoding the angiogenic factors FGF-2 and VEGF-A was dramatically increased in cells grown on DADM and HADM only, suggesting a good basis for accelerated vascularization of the latter. Altogether, our results support favorable influence of the investigated collagen matrices on the recruitment, attachment, and growth of cell types implicated in oral soft tissue regeneration. Among the four matrices, HADM has consistently exhibited stronger positive effects on the oral cellular behavior. Our data provide solid basis for future investigations on the clinical application of the collagen-based matrices in surgical periodontal therapy.
Collapse
|
24
|
Tang J, Zou J, Zhang X, Fan M, Tian Q, Fu S, Gao S, Fan S. PretiMeth: precise prediction models for DNA methylation based on single methylation mark. BMC Genomics 2020; 21:364. [PMID: 32414326 PMCID: PMC7227319 DOI: 10.1186/s12864-020-6768-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/04/2020] [Indexed: 11/29/2022] Open
Abstract
Background The computational prediction of methylation levels at single CpG resolution is promising to explore the methylation levels of CpGs uncovered by existing array techniques, especially for the 450 K beadchip array data with huge reserves. General prediction models concentrate on improving the overall prediction accuracy for the bulk of CpG loci while neglecting whether each locus is precisely predicted. This leads to the limited application of the prediction results, especially when performing downstream analysis with high precision requirements. Results Here we reported PretiMeth, a method for constructing precise prediction models for each single CpG locus. PretiMeth used a logistic regression algorithm to build a prediction model for each interested locus. Only one DNA methylation feature that shared the most similar methylation pattern with the CpG locus to be predicted was applied in the model. We found that PretiMeth outperformed other algorithms in the prediction accuracy, and kept robust across platforms and cell types. Furthermore, PretiMeth was applied to The Cancer Genome Atlas data (TCGA), the intensive analysis based on precise prediction results showed that several CpG loci and genes (differentially methylated between the tumor and normal samples) were worthy for further biological validation. Conclusion The precise prediction of single CpG locus is important for both methylation array data expansion and downstream analysis of prediction results. PretiMeth achieved precise modeling for each CpG locus by using only one significant feature, which also suggested that our precise prediction models could be probably used for reference in the probe set design when the DNA methylation beadchip update. PretiMeth is provided as an open source tool via https://github.com/JxTang-bioinformatics/PretiMeth.
Collapse
Affiliation(s)
- Jianxiong Tang
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Jianxiao Zou
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xiaoran Zhang
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China.,Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Mei Fan
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qi Tian
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Shuyao Fu
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Shihong Gao
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Shicai Fan
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China. .,Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
25
|
Asparuhova MB, Chappuis V, Stähli A, Buser D, Sculean A. Role of hyaluronan in regulating self-renewal and osteogenic differentiation of mesenchymal stromal cells and pre-osteoblasts. Clin Oral Investig 2020; 24:3923-3937. [PMID: 32236725 PMCID: PMC7544712 DOI: 10.1007/s00784-020-03259-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
Objectives The aim of the study was to investigate the impact of two hyaluronan (HA) formulations on the osteogenic potential of osteoblast precursors. Materials and methods Proliferation rates of HA-treated mesenchymal stromal ST2 and pre-osteoblastic MC3T3-E1 cells were determined by 5-bromo-20-deoxyuridine (BrdU) assay. Expression of genes encoding osteogenic differentiation markers, critical growth, and stemness factors as well as activation of downstream signaling pathways in the HA-treated cells were analyzed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and immunoblot techniques. Results The investigated HAs strongly stimulated the growth of the osteoprogenitor lines and enhanced the expression of genes encoding bone matrix proteins. However, expression of late osteogenic differentiation markers was significantly inhibited, accompanied by decreased bone morphogenetic protein (BMP) signaling. The expression of genes encoding transforming growth factor-β1 (TGF-β1) and fibroblast growth factor-1 (FGF-1) as well as the phosphorylation of the downstream signaling molecules Smad2 and Erk1/2 were enhanced upon HA treatment. We observed significant upregulation of the transcription factor Sox2 and its direct transcription targets and critical stemness genes, Yap1 and Bmi1, in HA-treated cells. Moreover, prominent targets of the canonical Wnt signaling pathway showed reduced expression, whereas inhibitors of the pathway were considerably upregulated. We detected decrease of active β-catenin levels in HA-treated cells due to β-catenin being phosphorylated and, thus, targeted for degradation. Conclusions HA strongly induces the growth of osteoprogenitors and maintains their stemness, thus potentially regulating the balance between self-renewal and differentiation during bone regeneration following reconstructive oral surgeries. Clinical relevance Addition of HA to deficient bone or bony defects during implant or reconstructive periodontal surgeries may be a viable approach for expanding adult stem cells without losing their replicative and differentiation capabilities. Electronic supplementary material The online version of this article (10.1007/s00784-020-03259-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria B Asparuhova
- Laboratory of Oral Cell Biology, Dental Research Center, School of Dental Medicine, University of Bern, Freiburgstrasse 3, 3010, Bern, Switzerland. .,Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010, Bern, Switzerland. .,Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010, Bern, Switzerland.
| | - Vivianne Chappuis
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010, Bern, Switzerland
| | - Alexandra Stähli
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010, Bern, Switzerland
| | - Daniel Buser
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010, Bern, Switzerland
| |
Collapse
|
26
|
Jehanno C, Fernandez-Calero T, Habauzit D, Avner S, Percevault F, Jullion E, Le Goff P, Coissieux MM, Muenst S, Marin M, Michel D, Métivier R, Flouriot G. Nuclear accumulation of MKL1 in luminal breast cancer cells impairs genomic activity of ERα and is associated with endocrine resistance. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194507. [PMID: 32113984 DOI: 10.1016/j.bbagrm.2020.194507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/31/2020] [Accepted: 02/13/2020] [Indexed: 12/30/2022]
Abstract
Estrogen receptor (ERα) is central in driving the development of hormone-dependent breast cancers. A major challenge in treating these cancers is to understand and overcome endocrine resistance. The Megakaryoblastic Leukemia 1 (MKL1, MRTFA) protein is a master regulator of actin dynamic and cellular motile functions, whose nuclear translocation favors epithelial-mesenchymal transition. We previously demonstrated that nuclear accumulation of MKL1 in estrogen-responsive breast cancer cell lines promotes hormonal escape. In the present study, we confirm through tissue microarray analysis that nuclear immunostaining of MKL1 is associated with endocrine resistance in a cohort of breast cancers and we decipher the underlining mechanisms using cell line models. We show through gene expression microarray analysis that the nuclear accumulation of MKL1 induces dedifferentiation leading to a mixed luminal/basal phenotype and suppresses estrogen-mediated control of gene expression. Chromatin immunoprecipitation of DNA coupled to high-throughput sequencing (ChIP-Seq) shows a profound reprogramming in ERα cistrome associated with a massive loss of ERα binding sites (ERBSs) generally associated with lower ERα-binding levels. Novel ERBSs appear to be associated with EGF and RAS signaling pathways. Collectively, these results highlight a major role of MKL1 in the loss of ERα transcriptional activity observed in certain cases of endocrine resistances, thereby contributing to breast tumor cells malignancy.
Collapse
Affiliation(s)
- Charly Jehanno
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France; University Hospital Basel, University of Basel, Basel, Switzerland
| | - Tamara Fernandez-Calero
- Biochemistry-Molecular Biology, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay; Bioinformatics Unit, Institut Pasteur Montevideo, Mataojo 2020, 11400 Montevideo, Uruguay; Departamento de Ciencias Exactas y Naturales, Universidad Católica del Uruguay, Montevideo, Uruguay
| | - Denis Habauzit
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
| | - Stephane Avner
- Univ Rennes, Institut de Génétique et Développement de Rennes, UMR 6290 CNRS, Rennes, France
| | - Frederic Percevault
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
| | - Emmanuelle Jullion
- Univ Rennes, Institut de Génétique et Développement de Rennes, UMR 6290 CNRS, Rennes, France
| | - Pascale Le Goff
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
| | | | - Simone Muenst
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Monica Marin
- Biochemistry-Molecular Biology, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Denis Michel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
| | - Raphaël Métivier
- Univ Rennes, Institut de Génétique et Développement de Rennes, UMR 6290 CNRS, Rennes, France
| | - Gilles Flouriot
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France.
| |
Collapse
|
27
|
Swärd K, Krawczyk KK, Morén B, Zhu B, Matic L, Holmberg J, Hedin U, Uvelius B, Stenkula K, Rippe C. Identification of the intermediate filament protein synemin/SYNM as a target of myocardin family coactivators. Am J Physiol Cell Physiol 2019; 317:C1128-C1142. [PMID: 31461342 DOI: 10.1152/ajpcell.00047.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Myocardin (MYOCD) is a critical regulator of smooth muscle cell (SMC) differentiation, but its transcriptional targets remain to be exhaustively characterized, especially at the protein level. Here we leveraged human RNA and protein expression data to identify novel potential MYOCD targets. Using correlation analyses we found several targets that we could confirm at the protein level, including SORBS1, SLMAP, SYNM, and MCAM. We focused on SYNM, which encodes the intermediate filament protein synemin. SYNM rivalled smooth muscle myosin (MYH11) for SMC specificity and was controlled at the mRNA and protein levels by all myocardin-related transcription factors (MRTFs: MYOCD, MRTF-A/MKL1, and MRTF-B/MKL2). MRTF activity is regulated by the ratio of filamentous to globular actin, and SYNM was accordingly reduced by interventions that depolymerize actin, such as latrunculin treatment and overexpression of constitutively active cofilin. Many MRTF target genes depend on serum response factor (SRF), but SYNM lacked SRF-binding motifs in its proximal promoter, which was not directly regulated by MYOCD. Furthermore, SYNM resisted SRF silencing, yet the time course of induction closely paralleled that of the SRF-dependent target gene ACTA2. SYNM was repressed by the ternary complex factor (TCF) FLI1 and was increased in mouse embryonic fibroblasts lacking three classical TCFs (ELK1, ELK3, and ELK4). Imaging showed colocalization of SYNM with the intermediate filament proteins desmin and vimentin, and MRTF-A/MKL1 increased SYNM-containing intermediate filaments in SMCs. These studies identify SYNM as a novel SRF-independent target of myocardin that is abundantly expressed in all SMCs.
Collapse
Affiliation(s)
- Karl Swärd
- Department of Experimental Medical Science, Lund, Sweden
| | | | - Björn Morén
- Department of Experimental Medical Science, Lund, Sweden
| | - Baoyi Zhu
- Department of Experimental Medical Science, Lund, Sweden.,Department of Urology, the Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People's Hospital), Guangdong, China
| | - Ljubica Matic
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Johan Holmberg
- Department of Experimental Medical Science, Lund, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Uvelius
- Department of Clinical Science, Lund, Lund University, Lund, Sweden
| | - Karin Stenkula
- Department of Experimental Medical Science, Lund, Sweden
| | - Catarina Rippe
- Department of Experimental Medical Science, Lund, Sweden
| |
Collapse
|
28
|
Li JP, Liao XH, Xiang Y, Yao A, Fan LJ, Li H, Zhang ZJ, Huang F, Dai ZT, Zhang TC. MKL1/miR34a/FOXP3 axis regulates cell proliferation in gastric cancer. J Cell Biochem 2019; 120:7814-7824. [PMID: 30426547 DOI: 10.1002/jcb.28056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/22/2018] [Indexed: 01/24/2023]
Abstract
Megakaryoblastic leukemia 1 (MKL1) was closely related to the pathogenesis of various human malignant cancers. MiR34a was reported to be closely related to cancer cell proliferation. Forkhead box protein 3 (FOXP3) was a transcription factor that played a different role in different cancer types. CDK6 was involved in cell cycle progression and was upregulated in several types of cancers. The present study investigated the effects of MKL1/miR34a/FOXP3 axis on cell proliferation in MGC803 gastric cancer cells. Our results demonstrated that overexpression of MKL1 promoted proliferation of MGC80-3 cells, MKL1 directly binding to the promoter of CDK6 to increase its expression. Knockdown of FOXP3 promoted proliferation of MGC80-3 cells and MKL1 inhibited the expression of FOXP3 via miR-34a. The finding can contribute to elucidating the regulatory mechanism involved in the cell cycle progression of gastric cancer cells and may aid in screening potential gene targets for the biological therapy of gastric cancer.
Collapse
Affiliation(s)
- Jia-Peng Li
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei, China
| | - Xing-Hua Liao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei, China
| | - Yuan Xiang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei, China
| | - Ao Yao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei, China
| | - Li-Juan Fan
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei, China
| | - Hui Li
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei, China
| | - Zi-Jian Zhang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei, China
| | - Feng Huang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei, China
| | - Zhou-Tong Dai
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei, China
| | - Tong-Cun Zhang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei, China.,Key Laboratory of Industrial Fermentation Microbiology, Minwastry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
29
|
Gau D, Roy P. SRF'ing and SAP'ing - the role of MRTF proteins in cell migration. J Cell Sci 2018; 131:131/19/jcs218222. [PMID: 30309957 DOI: 10.1242/jcs.218222] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Actin-based cell migration is a fundamental cellular activity that plays a crucial role in a wide range of physiological and pathological processes. An essential feature of the remodeling of actin cytoskeleton during cell motility is the de novo synthesis of factors involved in the regulation of the actin cytoskeleton and cell adhesion in response to growth-factor signaling, and this aspect of cell migration is critically regulated by serum-response factor (SRF)-mediated gene transcription. Myocardin-related transcription factors (MRTFs) are key coactivators of SRF that link actin dynamics to SRF-mediated gene transcription. In this Review, we provide a comprehensive overview of the role of MRTF in both normal and cancer cell migration by discussing its canonical SRF-dependent as well as its recently emerged SRF-independent functions, exerted through its SAP domain, in the context of cell migration. We conclude by highlighting outstanding questions for future research in this field.
Collapse
Affiliation(s)
- David Gau
- Department of Bioengineering, University of Pittsburgh, PA 15213, USA
| | - Partha Roy
- Department of Bioengineering, University of Pittsburgh, PA 15213, USA .,Department of Pathology, University of Pittsburgh, PA, 15213, USA
| |
Collapse
|
30
|
Asparuhova MB, Kiryak D, Eliezer M, Mihov D, Sculean A. Activity of two hyaluronan preparations on primary human oral fibroblasts. J Periodontal Res 2018; 54:33-45. [PMID: 30264516 PMCID: PMC6586051 DOI: 10.1111/jre.12602] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/20/2018] [Accepted: 08/02/2018] [Indexed: 01/09/2023]
Abstract
Background and Objective The potential benefit of using hyaluronan (HA) in reconstructive periodontal surgery is still a matter of debate. The aim of the present study was to evaluate the effects of two HA formulations on human oral fibroblasts involved in soft tissue wound healing/regeneration. Material and Methods Metabolic, proliferative and migratory abilities of primary human palatal and gingival fibroblasts were examined upon HA treatment. To uncover the mechanisms whereby HA influences cellular behavior, wound healing‐related gene expression and activation of signaling kinases were analyzed by qRT‐PCR and immunoblotting, respectively. Results The investigated HA formulations maintained the viability of oral fibroblasts and increased their proliferative and migratory abilities. They enhanced expression of genes encoding type III collagen and transforming growth factor‐β3, characteristic of scarless wound healing. The HAs upregulated the expression of genes encoding pro‐proliferative, pro‐migratory, and pro‐inflammatory factors, with only a moderate effect on the latter in gingival fibroblasts. In palatal but not gingival fibroblasts, an indirect effect of HA on the expression of matrix metalloproteinases 2 and 3 was detected, potentially exerted through induction of pro‐inflammatory cytokines. Finally, our data pointed on Akt, Erk1/2 and p38 as the signaling molecules whereby the HAs exert their effects on oral fibroblasts. Conclusion Both investigated HA formulations are biocompatible and enhance the proliferative, migratory and wound healing properties of cell types involved in soft tissue wound healing following regenerative periodontal surgery. Our data further suggest that in gingival tissues, the HAs are not likely to impair the healing process by prolonging inflammation or causing excessive MMP expression at the repair site.
Collapse
Affiliation(s)
- Maria B Asparuhova
- Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Deniz Kiryak
- Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Meizi Eliezer
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Deyan Mihov
- Biozentrum, University of Basel, Basel, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
31
|
Asparuhova MB, Caballé-Serrano J, Buser D, Chappuis V. Bone-conditioned medium contributes to initiation and progression of osteogenesis by exhibiting synergistic TGF-β1/BMP-2 activity. Int J Oral Sci 2018; 10:20. [PMID: 29895828 PMCID: PMC5997631 DOI: 10.1038/s41368-018-0021-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 03/23/2018] [Indexed: 11/21/2022] Open
Abstract
Guided bone regeneration (GBR) often utilizes a combination of autologous bone grafts, deproteinized bovine bone mineral (DBBM), and collagen membranes. DBBM and collagen membranes pre-coated with bone-conditioned medium (BCM) extracted from locally harvested autologous bone chips have shown great regenerative potential in GBR. However, the underlying molecular mechanism remains largely unknown. Here, we investigated the composition of BCM and its activity on the osteogenic potential of mesenchymal stromal cells. We detected a fast and significant (P < 0.001) release of transforming growth factor-β1 (TGF-β1) from autologous bone within 10 min versus a delayed bone morphogenetic protein-2 (BMP-2) release from 40 min onwards. BCMs harvested within short time periods (10, 20, or 40 min), corresponding to the time of a typical surgical procedure, significantly increased the proliferative activity and collagen matrix production of BCM-treated cells. Long-term (1, 3, or 6 days)-extracted BCMs promoted the later stages of osteoblast differentiation and maturation. Short-term-extracted BCMs, in which TGF-β1 but no BMP-2 was detected, reduced the expression of the late differentiation marker osteocalcin. However, when both growth factors were present simultaneously in the BCM, no inhibitory effects on osteoblast differentiation were observed, suggesting a synergistic TGF-β1/BMP-2 activity. Consequently, in cells that were co-stimulated with recombinant TGF-β1 and BMP-2, we showed a significant stimulatory and dose-dependent effect of TGF-β1 on BMP-2-induced osteoblast differentiation due to prolonged BMP signaling and reduced expression of the BMP-2 antagonist noggin. Altogether, our data provide new insights into the molecular mechanisms underlying the favorable outcome from GBR procedures using BCM, derived from autologous bone grafts. ‘Bone-conditioned medium’ could improve oral bone regeneration therapy by promoting the proliferation and maturation of bone-forming cells. Building on recent research demonstrating the benefits of using cell culture medium prepared with bone chips (BCM) in such treatments, researchers led by Maria Asparuhova of the University of Bern, Switzerland, set out to elucidate the medium’s mechanisms. The team found that BCM incubated with bone chips for short periods—as little as ten minutes—contained heightened levels of signaling protein TGF-β1, which enhanced mouse bone marrow cell proliferation while downregulating maturation. BCM incubated for longer periods also generated increased levels of another protein, BMP-2, which boosted the maturation of bone-forming cells. This study reveals a sequential role of these two factors in oral bone development, and the potential physiological actions of BCM when used in regenerative therapies.
Collapse
Affiliation(s)
- Maria B Asparuhova
- Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Bern, Switzerland.
| | - Jordi Caballé-Serrano
- Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Daniel Buser
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Vivianne Chappuis
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
32
|
Li K, Deng J, Jin H, Yang X, Fan X, Li L, Zhao Y, Guan Z, Wu Y, Zhang L, Yang Z. Chemical modification improves the stability of the DNA aptamer GBI-10 and its affinity towards tenascin-C. Org Biomol Chem 2018; 15:1174-1182. [PMID: 28084479 DOI: 10.1039/c6ob02577c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aptamers are useful tools in molecular imaging due to their numerous attractive properties, such as excellent affinity and selectivity to diverse types of target molecules and biocompatibility. We carried out structure-activity relationship studies with the tenascin-C (TN-C) binding aptamer GBI-10, which is a promising candidate in tumor imaging. To increase the tumor targeting ability and nuclease resistance under physiological conditions, systematic modifications of GBI-10 with single and multiple 2'-deoxyinosine (2'-dI) or d-/l-isonucleoside (d-/l-isoNA) were performed. Results indicated that sector 3 of the proposed secondary structure is the most important region for specific binding with TN-C. By correlating the affinity of eighty-four GBI-10 derivatives with their predicted secondary structure by Zuker Mfold, we first validated the preferred secondary structure at 37 °C. We found that d-/l-isoNA modified GBI-10 derivatives exhibited improved affinity to the target as well as plasma stability. Affinity measurement and confocal imaging analysis highlighted one potent compound: 4AL/26TL/32TL, which possessed a significantly increased targeting ability to tumor cells. These results revealed the types of modified nucleotides, and the position and number of substituents in GBI-10 that were critical to the TN-C binding ability. Stabilized TN-C-binding DNA aptamers were prepared and they could be further developed for tumor imaging. Our strategy to introduce 2'-dI and d-/l-isoNA modifications after the selection process is likely to be generally applicable to improve the in vivo stability of aptamers without compromising their binding ability.
Collapse
Affiliation(s)
- Kunfeng Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China. # #
| | - Jiali Deng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China. # #
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China. # #
| | - Xiantao Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China. # #
| | - Xinmeng Fan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China. # #
| | - Liyu Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China. # #
| | - Yi Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China. # #
| | - Zhu Guan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China. # #
| | - Yun Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China. # #
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China. # #
| | - Zhenjun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China. # #
| |
Collapse
|
33
|
Morita T, Hayashi K. Tumor Progression Is Mediated by Thymosin-β4 through a TGFβ/MRTF Signaling Axis. Mol Cancer Res 2018; 16:880-893. [DOI: 10.1158/1541-7786.mcr-17-0715] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/21/2017] [Accepted: 12/26/2017] [Indexed: 11/16/2022]
|
34
|
Sun Z, Schwenzer A, Rupp T, Murdamoothoo D, Vegliante R, Lefebvre O, Klein A, Hussenet T, Orend G. Tenascin-C Promotes Tumor Cell Migration and Metastasis through Integrin α9β1-Mediated YAP Inhibition. Cancer Res 2017; 78:950-961. [PMID: 29259017 DOI: 10.1158/0008-5472.can-17-1597] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/24/2017] [Accepted: 12/11/2017] [Indexed: 12/26/2022]
Abstract
Tenascin-C is an extracellular matrix molecule that drives progression of many types of human cancer, but the basis for its actions remains obscure. In this study, we describe a cell-autonomous signaling mechanism explaining how tenascin-C promotes cancer cell migration in the tumor microenvironment. In a murine xenograft model of advanced human osteosarcoma, tenascin-C and its receptor integrin α9β1 were determined to be essential for lung metastasis of tumor cells. We determined that activation of this pathway also reduced tumor cell-autonomous expression of target genes for the transcription factor YAP. In clinical specimens, a genetic signature comprising four YAP target genes represents prognostic impact. Taken together, our results illuminate how tumor cell deposition of tenascin-C in the tumor microenvironment promotes invasive migration and metastatic progression.Significance: These results illuminate how the extracellular matrix glycoprotein tenascin-C in the tumor microenvironment promotes invasive migration and metastatic progression by employing integrin α9β1, abolishing actin stress fiber formation, inhibiting YAP and its target gene expression, with potential implications for cancer prognosis and therapy. Cancer Res; 78(4); 950-61. ©2017 AACR.
Collapse
Affiliation(s)
- Zhen Sun
- INSERM U1109 - MN3T, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Hôpital Civil, Institut d'Hématologie et d'Immunologie, Strasbourg, France.,Université de Strasbourg, Strasbourg, France.,LabEx Medalis, Université de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Anja Schwenzer
- INSERM U1109 - MN3T, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Hôpital Civil, Institut d'Hématologie et d'Immunologie, Strasbourg, France.,Université de Strasbourg, Strasbourg, France.,LabEx Medalis, Université de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Tristan Rupp
- INSERM U1109 - MN3T, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Hôpital Civil, Institut d'Hématologie et d'Immunologie, Strasbourg, France.,Université de Strasbourg, Strasbourg, France.,LabEx Medalis, Université de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Devadarssen Murdamoothoo
- INSERM U1109 - MN3T, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Hôpital Civil, Institut d'Hématologie et d'Immunologie, Strasbourg, France.,Université de Strasbourg, Strasbourg, France.,LabEx Medalis, Université de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Rolando Vegliante
- INSERM U1109 - MN3T, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Hôpital Civil, Institut d'Hématologie et d'Immunologie, Strasbourg, France.,Université de Strasbourg, Strasbourg, France.,LabEx Medalis, Université de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Olivier Lefebvre
- INSERM U1109 - MN3T, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Hôpital Civil, Institut d'Hématologie et d'Immunologie, Strasbourg, France.,Université de Strasbourg, Strasbourg, France.,LabEx Medalis, Université de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Annick Klein
- INSERM U1109 - MN3T, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Hôpital Civil, Institut d'Hématologie et d'Immunologie, Strasbourg, France.,Université de Strasbourg, Strasbourg, France.,LabEx Medalis, Université de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Thomas Hussenet
- INSERM U1109 - MN3T, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Hôpital Civil, Institut d'Hématologie et d'Immunologie, Strasbourg, France.,Université de Strasbourg, Strasbourg, France.,LabEx Medalis, Université de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Gertraud Orend
- INSERM U1109 - MN3T, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Hôpital Civil, Institut d'Hématologie et d'Immunologie, Strasbourg, France. .,Université de Strasbourg, Strasbourg, France.,LabEx Medalis, Université de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| |
Collapse
|
35
|
Krawczyk KM, Hansson J, Nilsson H, Krawczyk KK, Swärd K, Johansson ME. Injury induced expression of caveolar proteins in human kidney tubules - role of megakaryoblastic leukemia 1. BMC Nephrol 2017; 18:320. [PMID: 29065889 PMCID: PMC5655893 DOI: 10.1186/s12882-017-0738-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 09/25/2017] [Indexed: 11/17/2022] Open
Abstract
Background Caveolae are membrane invaginations measuring 50–100 nm. These organelles, composed of caveolin and cavin proteins, are important for cellular signaling and survival. Caveolae play incompletely defined roles in human kidneys. Induction of caveolin-1/CAV1 in diseased tubules has been described previously, but the responsible mechanism remains to be defined. Methods Healthy and atrophying human kidneys were stained for caveolar proteins, (caveolin 1–3 and cavin 1–4) and examined by electron microscopy. Induction of caveolar proteins was studied in isolated proximal tubules and primary renal epithelial cells. These cells were challenged with hypoxia or H2O2. Primary tubular cells were also subjected to viral overexpression of megakaryoblastic leukemia 1 (MKL1) and MKL1 inhibition by the MKL1 inhibitor CCG-1423. Putative coregulators of MKL1 activity were investigated by Western blotting for suppressor of cancer cell invasion (SCAI) and filamin A (FLNA). Finally, correlative bioinformatic studies of mRNA expression of caveolar proteins and MKL1 were performed. Results In healthy kidneys, caveolar proteins were expressed by the parietal epithelial cells (PECs) of Bowman’s capsule, endothelial cells and vascular smooth muscle. Electron microscopy confirmed caveolae in the PECs. No expression was seen in proximal tubules. In contrast, caveolar proteins were expressed in proximal tubules undergoing atrophy. Caveolar proteins were also induced in cultures of primary epithelial tubular cells. Expression was not enhanced by hypoxia or free radical stress (H2O2), but proved sensitive to inhibition of MKL1. Viral overexpression of MKL1 induced caveolin-1/CAV1, caveolin-2/CAV2 and SDPR/CAVIN2. In kidney tissue, the mRNA level of MKL1 correlated with the mRNA levels for caveolin-1/CAV1, caveolin-2/CAV2 and the archetypal MKL1 target tenascin C (TNC), as did the MKL1 coactivator FLNA. Costaining for TNC as readout for MKL1 activity demonstrated overlap with caveolin-1/CAV1 expression in PECs as well as in atrophic segments of proximal tubules. Conclusions Our findings support the view that MKL1 contributes to the expression of caveolar proteins in healthy kidneys and orchestrates the induction of tubular caveolar proteins in renal injury. Electronic supplementary material The online version of this article (10.1186/s12882-017-0738-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Krzysztof M Krawczyk
- Department of Translational Medicine, Clinical Pathology, Lund University, SUS Malmö, Jan Waldenströms gata 59, SE-20502, Malmö, Sweden
| | - Jennifer Hansson
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Helén Nilsson
- Department of Translational Medicine, Clinical Pathology, Lund University, SUS Malmö, Jan Waldenströms gata 59, SE-20502, Malmö, Sweden
| | | | - Karl Swärd
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Martin E Johansson
- Department of Translational Medicine, Clinical Pathology, Lund University, SUS Malmö, Jan Waldenströms gata 59, SE-20502, Malmö, Sweden.
| |
Collapse
|
36
|
Abstract
AIM to establish a relationship between the main markers tumor stem cells (TSCs), CD44, and CD24, the level of tenascin C production, and chemoresistance in triple-negative breast cancer (BC). SUBJECTS AND METHODS Thirty biopsy specimens from triple-negative BC patients who had conventionally received preoperative chemotherapy followed by surgery were selected in the investigation. All the selected patients were conventionally assigned to neoadjuvant polychemotherapy (PCT) with paclitaxel and carboplatin. The surgical specimens were analyzed in relation to the degree of a tumor morphological response to PCT. The magnitude of the health-promoting effect of neoadjuvant therapy was evaluated according to the residual cancer burden (RCB) system using an on-line calculator; RCB was categorized into classes (from RCB-0 to RCB-III). The markers CD44, СD24, and tenascin C were identified by the standard immunoperoxidase method in the primary biopsies. RESULTS Varying morphological responses of triple-negative breast cancer to PCT were revealed, which showed resistance in 60% of the cases. The chemoresistance found in most (87%) cases coincided with the identification of the CD44+/CD24low/- profile. The detection of the higher production of the extracellular matrix tenascin C participating in the formation of the TSC niche fully combined with the CD44+/CD24low/- phenotype; while the maximum response to tenascin C was noted in the cases differing in not only a lack of responses to PCTs, but also in the most aggressive course in conjunction with metastatic disease. CONCLUSION Immunohistochemical analysis shows that the unique association between the CD44+/CD24low/- phenotype and the pronounced production of tenascin C may have a prognostic potential, prospectively indicating the inefficiency of neoadjuvant PCT, in particular that with platinum derivatives, which is used for the standard treatment of triple-negative BC. Taking into account the role of tenascin C in invasion, metastasis, and chemoresistance, it per se may be considered as a promising target for the targeted and/or combined therapy of triple-negative BC.
Collapse
Affiliation(s)
- O P Popova
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - S Yu Bogomazova
- Treatment and Rehabilitation Center, Ministry of Health of Russia, Moscow, Russia
| | - A A Ivanov
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
37
|
Joy M, Gau D, Castellucci N, Prywes R, Roy P. The myocardin-related transcription factor MKL co-regulates the cellular levels of two profilin isoforms. J Biol Chem 2017; 292:11777-11791. [PMID: 28546428 DOI: 10.1074/jbc.m117.781104] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/24/2017] [Indexed: 12/26/2022] Open
Abstract
Megakaryoblastic leukemia (MKL)/serum-response factor (SRF)-mediated gene transcription is a highly conserved mechanism that connects dynamic reorganization of the actin cytoskeleton to regulation of expression of a wide range of genes, including SRF itself and many important structural and regulatory components of the actin cytoskeleton. In this study, we examined the possible role of MKL/SRF in the context of regulation of profilin (Pfn), a major controller of actin dynamics and actin cytoskeletal remodeling in cells. We demonstrated that despite being located on different genomic loci, two major isoforms of Pfn (Pfn1 and Pfn2) are co-regulated by a common mechanism involving the action of MKL that is independent of its SRF-related activity. We found that MKL co-regulates the expression of Pfn isoforms indirectly by modulating signal transducer and activator of transcription 1 (STAT1) and utilizing its SAP-domain function. Unexpectedly, our studies revealed that cellular externalization, rather than transcription of Pfn1, is affected by the perturbations of MKL. We further demonstrated that MKL can influence cell migration by modulating Pfn1 expression, indicating a functional connection between MKL and Pfn1 in actin-dependent cellular processes. Finally, we provide initial evidence supporting the ability of Pfn to influence MKL and SRF expression. Collectively, these findings suggest that Pfn may play a role in a possible feedback loop of the actin/MKL/SRF signaling circuit.
Collapse
Affiliation(s)
- Marion Joy
- Departments of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| | - David Gau
- Departments of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| | - Nevin Castellucci
- Departments of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| | - Ron Prywes
- Department of Biological Sciences, Columbia University, New York, New York 10027
| | - Partha Roy
- Departments of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219; Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15219; Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15219.
| |
Collapse
|
38
|
Zhu B, Rippe C, Thi Hien T, Zeng J, Albinsson S, Stenkula KG, Uvelius B, Swärd K. Similar regulatory mechanisms of caveolins and cavins by myocardin family coactivators in arterial and bladder smooth muscle. PLoS One 2017; 12:e0176759. [PMID: 28542204 PMCID: PMC5444588 DOI: 10.1371/journal.pone.0176759] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 04/17/2017] [Indexed: 12/22/2022] Open
Abstract
Caveolae are membrane invaginations present at high densities in muscle and fat. Recent work has demonstrated that myocardin family coactivators (MYOCD, MKL1), which are important for contractile differentiation and cell motility, increase caveolin (CAV1, CAV2, CAV3) and cavin (CAVIN1, CAVIN2, CAVIN3) transcription, but several aspects of this control mechanism remain to be investigated. Here, using promoter reporter assays we found that both MKL1/MRTF-A and MKL2/MRTF-B control caveolins and cavins via their proximal promoter sequences. Silencing of MKL1 and MKL2 in smooth muscle cells moreover reduced CAV1 and CAVIN1 mRNA levels by well over 50%, as did treatment with second generation inhibitors of MKL activity. GATA6, which modulates expression of smooth muscle-specific genes, reduced CAV1 and CAV2, whereas the cavins were unaffected or increased. Viral overexpression of MKL1 and myocardin induced caveolin and cavin expression in bladder smooth muscle cells from rats and humans and MYOCD correlated tightly with CAV1 and CAVIN1 in human bladder specimens. A recently described activator of MKL-driven transcription (ISX) failed to induce CAV1/CAVIN1 which may be due to an unusual transactivation mechanism. In all, these findings further support the view that myocardin family coactivators are important transcriptional drivers of caveolins and cavins in smooth muscle.
Collapse
Affiliation(s)
- Baoyi Zhu
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Department of Urology, the Sixth Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Catarina Rippe
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Tran Thi Hien
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Jianwen Zeng
- Department of Urology, the Sixth Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | | | - Karin G. Stenkula
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Bengt Uvelius
- Department of Urology, Clinical Sciences, Lund University, Lund, Sweden
| | - Karl Swärd
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
39
|
Lee E, Moon A. Identification of Biomarkers for Breast Cancer Using Databases. J Cancer Prev 2016; 21:235-242. [PMID: 28053957 PMCID: PMC5207607 DOI: 10.15430/jcp.2016.21.4.235] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 12/15/2016] [Accepted: 12/15/2016] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is one of the major causes of cancer death in women. Many studies have sought to identify specific molecules involved in breast cancer and understand their characteristics. Many biomarkers which are easily measurable, dependable, and inexpensive, with a high sensitivity and specificity have been identified. The rapidly increasing technology development and availability of epigenetic informations play critical roles in cancer. The accumulated data have been collected, stored, and analyzed in various types of databases. It is important to acknowledge useful and available data and retrieve them from databases. Nowadays, many researches utilize the databases, including The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), Surveillance, Epidemiology and End Results (SEER), and Embase, to find useful informations on biomarkers for breast cancer. This review summarizes the current databases which have been utilized for identification of biomarkers for breast cancer. The information provided by this review would be beneficial to seeking appropriate strategies for diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Eunhye Lee
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, Korea
| | - Aree Moon
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, Korea
| |
Collapse
|
40
|
Finch-Edmondson M, Sudol M. Framework to function: mechanosensitive regulators of gene transcription. Cell Mol Biol Lett 2016; 21:28. [PMID: 28536630 PMCID: PMC5415767 DOI: 10.1186/s11658-016-0028-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/16/2016] [Indexed: 01/06/2023] Open
Abstract
Mechanobiology has shifted our understanding of fundamental cellular and physiological functions. Changes to the stiffness of the extracellular matrix, cell rigidity, or shape of the cell environment were considered in the past to be a consequence of aging or pathological processes. We now understand that these factors can actually be causative biological mediators of cell growth to control organ size. Mechanical cues are known to trigger a relatively fast translocation of specific transcriptional co-factors such as MRTFs, YAP and TAZ from the cytoplasm to the cell nucleus to initiate discrete transcriptional programs. The focus of this review is the molecular mechanisms by which biophysical stimuli that induce changes in cytoplasmic actin dynamics are communicated within cells to elicit gene-specific transcription via nuclear localisation or activation of specialized transcription factors, namely MRTFs and the Hippo pathway effectors YAP and TAZ. We propose here that MRTFs, YAP and TAZ closely collaborate as mechano-effectors.
Collapse
Affiliation(s)
- Megan Finch-Edmondson
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411 Singapore, Singapore.,Department of Physiology, National University of Singapore, Yong Loo Lin School of Medicine, 2 Medical Drive, 117597 Singapore, Singapore
| | - Marius Sudol
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411 Singapore, Singapore.,Department of Physiology, National University of Singapore, Yong Loo Lin School of Medicine, 2 Medical Drive, 117597 Singapore, Singapore
| |
Collapse
|
41
|
Swärd K, Stenkula KG, Rippe C, Alajbegovic A, Gomez MF, Albinsson S. Emerging roles of the myocardin family of proteins in lipid and glucose metabolism. J Physiol 2016; 594:4741-52. [PMID: 27060572 DOI: 10.1113/jp271913] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/17/2016] [Indexed: 12/20/2022] Open
Abstract
Members of the myocardin family bind to the transcription factor serum response factor (SRF) and act as coactivators controlling genes of relevance for myogenic differentiation and motile function. Binding of SRF to DNA is mediated by genetic elements called CArG boxes, found often but not exclusively in muscle and growth controlling genes. Studies aimed at defining the full spectrum of these CArG elements in the genome (i.e. the CArGome) have in recent years, unveiled unexpected roles of the myocardin family proteins in lipid and glucose homeostasis. This coactivator family includes the protein myocardin (MYOCD), the myocardin-related transcription factors A and B (MRTF-A/MKL1 and MRTF-B/MKL2) and MASTR (MAMSTR). Here we discuss growing evidence that SRF-driven transcription is controlled by extracellular glucose through activation of the Rho-kinase pathway and actin polymerization. We also describe data showing that adipogenesis is influenced by MLK activity through actions upstream of peroxisome proliferator-activated receptor γ with consequences for whole body fat mass and insulin sensitivity. The recently demonstrated involvement of myocardin coactivators in the biogenesis of caveolae, Ω-shaped membrane invaginations of importance for lipid and glucose metabolism, is finally discussed. These novel roles of myocardin proteins may open the way for new unexplored strategies to combat metabolic diseases such as diabetes, which, at the current incidence, is expected to reach 333 million people worldwide by 2025. This review highlights newly discovered roles of myocardin-related transcription factors in lipid and glucose metabolism as well as novel insights into their well-established role as mediators of stretch-dependent effects in smooth muscle. As co-factors for serum response factor (SRF), MKLs regulates transcription of genes involved in the contractile function of smooth muscle cells. In addition to mechanical stimuli, this regulation has now been found to be promoted by extracellular glucose levels in smooth muscle. Recent reports also suggest that MKLs can regulate a subset of genes involved in the formation of lipid-rich invaginations in the cell membrane called caveolae. Finally, a potential role of MKLs in non-muscle cells has been discovered as they negatively influence adipocyte differentiation.
Collapse
Affiliation(s)
- Karl Swärd
- Department of Experimental Medical Science, BMC D12, Lund University, Lund, Sweden
| | - Karin G Stenkula
- Department of Experimental Medical Science, BMC D12, Lund University, Lund, Sweden
| | - Catarina Rippe
- Department of Experimental Medical Science, BMC D12, Lund University, Lund, Sweden
| | - Azra Alajbegovic
- Department of Experimental Medical Science, BMC D12, Lund University, Lund, Sweden
| | - Maria F Gomez
- Department of Clinical Sciences, CRC, Lund University, Malmö, Sweden
| | - Sebastian Albinsson
- Department of Experimental Medical Science, BMC D12, Lund University, Lund, Sweden
| |
Collapse
|
42
|
Abstract
Extracellular matrix proteins of the tenascin family resemble each other in their domain structure, and also share functions in modulating cell adhesion and cellular responses to growth factors. Despite these common features, the 4 vertebrate tenascins exhibit vastly different expression patterns. Tenascin-R is specific to the central nervous system. Tenascin-C is an “oncofetal” protein controlled by many stimuli (growth factors, cytokines, mechanical stress), but with restricted occurrence in space and time. In contrast, tenascin-X is a constituitive component of connective tissues, and its level is barely affected by external factors. Finally, the expression of tenascin-W is similar to that of tenascin-C but even more limited. In accordance with their highly regulated expression, the promoters of the tenascin-C and -W genes contain TATA boxes, whereas those of the other 2 tenascins do not. This article summarizes what is currently known about the complex transcriptional regulation of the 4 tenascin genes in development and disease.
Collapse
Key Words
- AKT, v-akt murine thymoma viral oncogene homolog
- ALK, anaplastic lymphoma kinase
- AP-1, activator protein-1
- ATF, activating transcription factor
- BMP, bone morphogenetic protein
- CBP, CREB binding protein
- CREB, cAMP response element-binding protein
- CREB-RP, CREB-related protein
- CYP21A2, cytochrome P450 family 21 subfamily A polypeptide 2
- ChIP, chromatin immunoprecipitation
- EBS, Ets binding site
- ECM, extracellular matrix
- EGF, epidermal growth factor
- ERK1/2, extracellular signal-regulated kinase 1/2
- ETS, E26 transformation-specific
- EWS-ETS, Ewing sarcoma-Ets fusion protein
- Evx1, even skipped homeobox 1
- FGF, fibroblast growth factor
- HBS, homeodomain binding sequence
- IL, interleukin
- ILK, integrin-linked kinase
- JAK, Janus kinase
- JNK, c-Jun N-terminal kinase
- MHCIII, major histocompatibility complex class III
- MKL1, megakaryoblastic leukemia-1
- NFκB, nuclear factor kappa B
- NGF, nerve growth factor; NFAT, nuclear factor of activated T-cells
- OTX2, orthodenticle homolog 2
- PDGF, platelet-derived growth factor
- PI3K, phosphatidylinositol 3-kinase
- POU3F2, POU domain class 3 transcription factor 2
- PRRX1, paired-related homeobox 1
- RBPJk, recombining binding protein suppressor of hairless
- ROCK, Rho-associated, coiled-coil-containing protein kinase
- RhoA, ras homolog gene family member A
- SAP, SAF-A/B, Acinus, and PIAS
- SCX, scleraxix
- SEAP, secreted alkaline phosphatase
- SMAD, small body size - mothers against decapentaplegic
- SOX4, sex determining region Y-box 4
- SRE, serum response element
- SRF, serum response factor
- STAT, signal transducer and activator of transcription
- TGF-β, transforming growth factor-β
- TNC, tenascin-C
- TNF-α, tumor necrosis factor-α
- TNR, tenascin-R
- TNW, tenascin-W
- TNX, tenascin-X
- TSS, transcription start site
- UTR, untranslated region
- WNT, wingless-related integration site
- cancer
- cytokine
- development
- extracellular matrix
- gene promoter
- gene regulation
- glucocorticoid
- growth factor
- homeobox gene
- matricellular
- mechanical stress
- miR, micro RNA
- p38 MAPK, p38 mitogen activated protein kinase
- tenascin
- transcription factor
Collapse
Affiliation(s)
- Francesca Chiovaro
- a Friedrich Miescher Institute for Biomedical Research ; Basel , Switzerland
| | | | | |
Collapse
|
43
|
Abstract
The extracellular matrix protein tenascin C (TNC) is a large glycoprotein expressed in connective tissues and stem cell niches. TNC over-expression is repeatedly observed in cancer, often at the invasive tumor front, and is associated with poor clinical outcome in several malignancies. The link between TNC expression and poor survival in cancer patients suggests a role for TNC in metastatic progression, which is responsible for the majority of cancer related deaths. Indeed, functional studies using mouse models are revealing new roles of TNC in cancer progression and underscore its important contribution to the development of metastasis. TNC has a pleiotropic role in advancing metastasis by promoting migratory and invasive cell behavior, angiogenesis and cancer cell viability under stress. TNC is an essential component of the metastatic niche and modulates stem cell signaling within the niche. This may be crucial for the fitness of disseminated cancer cells confronted with a foreign environment in secondary organs, that can exert a strong selective pressure on invading cells. TNC is a compelling example of how an extracellular matrix protein can provide a molecular context that is imperative to cancer cell fitness in metastasis.
Collapse
Affiliation(s)
- Camille M Lowy
- a Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH) ; Heidelberg , Germany
| | | |
Collapse
|
44
|
Stewart EL, Mascaux C, Pham NA, Sakashita S, Sykes J, Kim L, Yanagawa N, Allo G, Ishizawa K, Wang D, Zhu CQ, Li M, Ng C, Liu N, Pintilie M, Martin P, John T, Jurisica I, Leighl NB, Neel BG, Waddell TK, Shepherd FA, Liu G, Tsao MS. Clinical Utility of Patient-Derived Xenografts to Determine Biomarkers of Prognosis and Map Resistance Pathways in EGFR-Mutant Lung Adenocarcinoma. J Clin Oncol 2015; 33:2472-80. [PMID: 26124487 DOI: 10.1200/jco.2014.60.1492] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Although epidermal growth factor receptor (EGFR) -mutated adenocarcinomas initially have high response rates to EGFR tyrosine kinase inhibitors (TKIs), most patients eventually develop resistance. Patient-derived xenografts (PDXs) are considered preferred preclinical models to study the biology of patient tumors. EGFR-mutant PDX models may be valuable tools to study the biology of these tumors and to elucidate mechanisms of resistance to EGFR-targeted therapies. METHODS Surgically resected early-stage non-small-cell lung carcinoma (NSCLC) tumors were implanted into nonobese diabetic severe combined immune deficient (NOD-SCID) mice. EGFR TKI treatment was initiated at tumor volumes of 150 μL. Gene expression analysis was performed using a microarray platform. RESULTS Of 33 lung adenocarcinomas with EGFR activating mutations, only 6 (18%) engrafted and could be propagated beyond passage one. Engraftment was associated with upregulation of genes involved in mitotic checkpoint and cell proliferation. A differentially expressed gene set between engrafting and nonengrafting patients could identify patients harboring EGFR-mutant tumor with significantly different prognoses in The Cancer Genome Atlas Lung Adenocarcinoma datasets. The PDXs included models with variable sensitivity to first- and second-generation EGFR TKIs and the monoclonal antibody cetuximab. All EGFR-mutant NSCLC PDXs studied closely recapitulated their corresponding patient tumor phenotype and clinical course, including response pattern to EGFR TKIs. CONCLUSION PDX models closely recapitulate primary tumor biology and clinical outcome. They may serve as important laboratory models to investigate mechanisms of resistance to targeted therapies, and for preclinical testing of novel treatment strategies.
Collapse
Affiliation(s)
- Erin L Stewart
- Erin L. Stewart, Celine Mascaux, Nhu-An Pham, Shingo Sakashita, Jenna Sykes, Lucia Kim, Naoki Yanagawa, Ghassan Allo, Kota Ishizawa, Dennis Wang, Chang-Qi Zhu, Ming Li, Christine Ng, Ni Liu, Melania Pintilie, Petra Martin, Tom John, Igor Jurisica, Natasha B. Leighl, Benjamin G. Neel, Thomas K. Waddell, Frances A. Shepherd, Geoffrey Liu, Ming-Sound Tsao, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada; Lucia Kim, Inha University College of Medicine, Incheon, South Korea; and Tom John, Austin Hospital, Heidelberg, Australia
| | - Celine Mascaux
- Erin L. Stewart, Celine Mascaux, Nhu-An Pham, Shingo Sakashita, Jenna Sykes, Lucia Kim, Naoki Yanagawa, Ghassan Allo, Kota Ishizawa, Dennis Wang, Chang-Qi Zhu, Ming Li, Christine Ng, Ni Liu, Melania Pintilie, Petra Martin, Tom John, Igor Jurisica, Natasha B. Leighl, Benjamin G. Neel, Thomas K. Waddell, Frances A. Shepherd, Geoffrey Liu, Ming-Sound Tsao, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada; Lucia Kim, Inha University College of Medicine, Incheon, South Korea; and Tom John, Austin Hospital, Heidelberg, Australia
| | - Nhu-An Pham
- Erin L. Stewart, Celine Mascaux, Nhu-An Pham, Shingo Sakashita, Jenna Sykes, Lucia Kim, Naoki Yanagawa, Ghassan Allo, Kota Ishizawa, Dennis Wang, Chang-Qi Zhu, Ming Li, Christine Ng, Ni Liu, Melania Pintilie, Petra Martin, Tom John, Igor Jurisica, Natasha B. Leighl, Benjamin G. Neel, Thomas K. Waddell, Frances A. Shepherd, Geoffrey Liu, Ming-Sound Tsao, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada; Lucia Kim, Inha University College of Medicine, Incheon, South Korea; and Tom John, Austin Hospital, Heidelberg, Australia
| | - Shingo Sakashita
- Erin L. Stewart, Celine Mascaux, Nhu-An Pham, Shingo Sakashita, Jenna Sykes, Lucia Kim, Naoki Yanagawa, Ghassan Allo, Kota Ishizawa, Dennis Wang, Chang-Qi Zhu, Ming Li, Christine Ng, Ni Liu, Melania Pintilie, Petra Martin, Tom John, Igor Jurisica, Natasha B. Leighl, Benjamin G. Neel, Thomas K. Waddell, Frances A. Shepherd, Geoffrey Liu, Ming-Sound Tsao, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada; Lucia Kim, Inha University College of Medicine, Incheon, South Korea; and Tom John, Austin Hospital, Heidelberg, Australia
| | - Jenna Sykes
- Erin L. Stewart, Celine Mascaux, Nhu-An Pham, Shingo Sakashita, Jenna Sykes, Lucia Kim, Naoki Yanagawa, Ghassan Allo, Kota Ishizawa, Dennis Wang, Chang-Qi Zhu, Ming Li, Christine Ng, Ni Liu, Melania Pintilie, Petra Martin, Tom John, Igor Jurisica, Natasha B. Leighl, Benjamin G. Neel, Thomas K. Waddell, Frances A. Shepherd, Geoffrey Liu, Ming-Sound Tsao, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada; Lucia Kim, Inha University College of Medicine, Incheon, South Korea; and Tom John, Austin Hospital, Heidelberg, Australia
| | - Lucia Kim
- Erin L. Stewart, Celine Mascaux, Nhu-An Pham, Shingo Sakashita, Jenna Sykes, Lucia Kim, Naoki Yanagawa, Ghassan Allo, Kota Ishizawa, Dennis Wang, Chang-Qi Zhu, Ming Li, Christine Ng, Ni Liu, Melania Pintilie, Petra Martin, Tom John, Igor Jurisica, Natasha B. Leighl, Benjamin G. Neel, Thomas K. Waddell, Frances A. Shepherd, Geoffrey Liu, Ming-Sound Tsao, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada; Lucia Kim, Inha University College of Medicine, Incheon, South Korea; and Tom John, Austin Hospital, Heidelberg, Australia
| | - Naoki Yanagawa
- Erin L. Stewart, Celine Mascaux, Nhu-An Pham, Shingo Sakashita, Jenna Sykes, Lucia Kim, Naoki Yanagawa, Ghassan Allo, Kota Ishizawa, Dennis Wang, Chang-Qi Zhu, Ming Li, Christine Ng, Ni Liu, Melania Pintilie, Petra Martin, Tom John, Igor Jurisica, Natasha B. Leighl, Benjamin G. Neel, Thomas K. Waddell, Frances A. Shepherd, Geoffrey Liu, Ming-Sound Tsao, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada; Lucia Kim, Inha University College of Medicine, Incheon, South Korea; and Tom John, Austin Hospital, Heidelberg, Australia
| | - Ghassan Allo
- Erin L. Stewart, Celine Mascaux, Nhu-An Pham, Shingo Sakashita, Jenna Sykes, Lucia Kim, Naoki Yanagawa, Ghassan Allo, Kota Ishizawa, Dennis Wang, Chang-Qi Zhu, Ming Li, Christine Ng, Ni Liu, Melania Pintilie, Petra Martin, Tom John, Igor Jurisica, Natasha B. Leighl, Benjamin G. Neel, Thomas K. Waddell, Frances A. Shepherd, Geoffrey Liu, Ming-Sound Tsao, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada; Lucia Kim, Inha University College of Medicine, Incheon, South Korea; and Tom John, Austin Hospital, Heidelberg, Australia
| | - Kota Ishizawa
- Erin L. Stewart, Celine Mascaux, Nhu-An Pham, Shingo Sakashita, Jenna Sykes, Lucia Kim, Naoki Yanagawa, Ghassan Allo, Kota Ishizawa, Dennis Wang, Chang-Qi Zhu, Ming Li, Christine Ng, Ni Liu, Melania Pintilie, Petra Martin, Tom John, Igor Jurisica, Natasha B. Leighl, Benjamin G. Neel, Thomas K. Waddell, Frances A. Shepherd, Geoffrey Liu, Ming-Sound Tsao, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada; Lucia Kim, Inha University College of Medicine, Incheon, South Korea; and Tom John, Austin Hospital, Heidelberg, Australia
| | - Dennis Wang
- Erin L. Stewart, Celine Mascaux, Nhu-An Pham, Shingo Sakashita, Jenna Sykes, Lucia Kim, Naoki Yanagawa, Ghassan Allo, Kota Ishizawa, Dennis Wang, Chang-Qi Zhu, Ming Li, Christine Ng, Ni Liu, Melania Pintilie, Petra Martin, Tom John, Igor Jurisica, Natasha B. Leighl, Benjamin G. Neel, Thomas K. Waddell, Frances A. Shepherd, Geoffrey Liu, Ming-Sound Tsao, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada; Lucia Kim, Inha University College of Medicine, Incheon, South Korea; and Tom John, Austin Hospital, Heidelberg, Australia
| | - Chang-Qi Zhu
- Erin L. Stewart, Celine Mascaux, Nhu-An Pham, Shingo Sakashita, Jenna Sykes, Lucia Kim, Naoki Yanagawa, Ghassan Allo, Kota Ishizawa, Dennis Wang, Chang-Qi Zhu, Ming Li, Christine Ng, Ni Liu, Melania Pintilie, Petra Martin, Tom John, Igor Jurisica, Natasha B. Leighl, Benjamin G. Neel, Thomas K. Waddell, Frances A. Shepherd, Geoffrey Liu, Ming-Sound Tsao, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada; Lucia Kim, Inha University College of Medicine, Incheon, South Korea; and Tom John, Austin Hospital, Heidelberg, Australia
| | - Ming Li
- Erin L. Stewart, Celine Mascaux, Nhu-An Pham, Shingo Sakashita, Jenna Sykes, Lucia Kim, Naoki Yanagawa, Ghassan Allo, Kota Ishizawa, Dennis Wang, Chang-Qi Zhu, Ming Li, Christine Ng, Ni Liu, Melania Pintilie, Petra Martin, Tom John, Igor Jurisica, Natasha B. Leighl, Benjamin G. Neel, Thomas K. Waddell, Frances A. Shepherd, Geoffrey Liu, Ming-Sound Tsao, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada; Lucia Kim, Inha University College of Medicine, Incheon, South Korea; and Tom John, Austin Hospital, Heidelberg, Australia
| | - Christine Ng
- Erin L. Stewart, Celine Mascaux, Nhu-An Pham, Shingo Sakashita, Jenna Sykes, Lucia Kim, Naoki Yanagawa, Ghassan Allo, Kota Ishizawa, Dennis Wang, Chang-Qi Zhu, Ming Li, Christine Ng, Ni Liu, Melania Pintilie, Petra Martin, Tom John, Igor Jurisica, Natasha B. Leighl, Benjamin G. Neel, Thomas K. Waddell, Frances A. Shepherd, Geoffrey Liu, Ming-Sound Tsao, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada; Lucia Kim, Inha University College of Medicine, Incheon, South Korea; and Tom John, Austin Hospital, Heidelberg, Australia
| | - Ni Liu
- Erin L. Stewart, Celine Mascaux, Nhu-An Pham, Shingo Sakashita, Jenna Sykes, Lucia Kim, Naoki Yanagawa, Ghassan Allo, Kota Ishizawa, Dennis Wang, Chang-Qi Zhu, Ming Li, Christine Ng, Ni Liu, Melania Pintilie, Petra Martin, Tom John, Igor Jurisica, Natasha B. Leighl, Benjamin G. Neel, Thomas K. Waddell, Frances A. Shepherd, Geoffrey Liu, Ming-Sound Tsao, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada; Lucia Kim, Inha University College of Medicine, Incheon, South Korea; and Tom John, Austin Hospital, Heidelberg, Australia
| | - Melania Pintilie
- Erin L. Stewart, Celine Mascaux, Nhu-An Pham, Shingo Sakashita, Jenna Sykes, Lucia Kim, Naoki Yanagawa, Ghassan Allo, Kota Ishizawa, Dennis Wang, Chang-Qi Zhu, Ming Li, Christine Ng, Ni Liu, Melania Pintilie, Petra Martin, Tom John, Igor Jurisica, Natasha B. Leighl, Benjamin G. Neel, Thomas K. Waddell, Frances A. Shepherd, Geoffrey Liu, Ming-Sound Tsao, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada; Lucia Kim, Inha University College of Medicine, Incheon, South Korea; and Tom John, Austin Hospital, Heidelberg, Australia
| | - Petra Martin
- Erin L. Stewart, Celine Mascaux, Nhu-An Pham, Shingo Sakashita, Jenna Sykes, Lucia Kim, Naoki Yanagawa, Ghassan Allo, Kota Ishizawa, Dennis Wang, Chang-Qi Zhu, Ming Li, Christine Ng, Ni Liu, Melania Pintilie, Petra Martin, Tom John, Igor Jurisica, Natasha B. Leighl, Benjamin G. Neel, Thomas K. Waddell, Frances A. Shepherd, Geoffrey Liu, Ming-Sound Tsao, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada; Lucia Kim, Inha University College of Medicine, Incheon, South Korea; and Tom John, Austin Hospital, Heidelberg, Australia
| | - Tom John
- Erin L. Stewart, Celine Mascaux, Nhu-An Pham, Shingo Sakashita, Jenna Sykes, Lucia Kim, Naoki Yanagawa, Ghassan Allo, Kota Ishizawa, Dennis Wang, Chang-Qi Zhu, Ming Li, Christine Ng, Ni Liu, Melania Pintilie, Petra Martin, Tom John, Igor Jurisica, Natasha B. Leighl, Benjamin G. Neel, Thomas K. Waddell, Frances A. Shepherd, Geoffrey Liu, Ming-Sound Tsao, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada; Lucia Kim, Inha University College of Medicine, Incheon, South Korea; and Tom John, Austin Hospital, Heidelberg, Australia
| | - Igor Jurisica
- Erin L. Stewart, Celine Mascaux, Nhu-An Pham, Shingo Sakashita, Jenna Sykes, Lucia Kim, Naoki Yanagawa, Ghassan Allo, Kota Ishizawa, Dennis Wang, Chang-Qi Zhu, Ming Li, Christine Ng, Ni Liu, Melania Pintilie, Petra Martin, Tom John, Igor Jurisica, Natasha B. Leighl, Benjamin G. Neel, Thomas K. Waddell, Frances A. Shepherd, Geoffrey Liu, Ming-Sound Tsao, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada; Lucia Kim, Inha University College of Medicine, Incheon, South Korea; and Tom John, Austin Hospital, Heidelberg, Australia
| | - Natasha B Leighl
- Erin L. Stewart, Celine Mascaux, Nhu-An Pham, Shingo Sakashita, Jenna Sykes, Lucia Kim, Naoki Yanagawa, Ghassan Allo, Kota Ishizawa, Dennis Wang, Chang-Qi Zhu, Ming Li, Christine Ng, Ni Liu, Melania Pintilie, Petra Martin, Tom John, Igor Jurisica, Natasha B. Leighl, Benjamin G. Neel, Thomas K. Waddell, Frances A. Shepherd, Geoffrey Liu, Ming-Sound Tsao, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada; Lucia Kim, Inha University College of Medicine, Incheon, South Korea; and Tom John, Austin Hospital, Heidelberg, Australia
| | - Benjamin G Neel
- Erin L. Stewart, Celine Mascaux, Nhu-An Pham, Shingo Sakashita, Jenna Sykes, Lucia Kim, Naoki Yanagawa, Ghassan Allo, Kota Ishizawa, Dennis Wang, Chang-Qi Zhu, Ming Li, Christine Ng, Ni Liu, Melania Pintilie, Petra Martin, Tom John, Igor Jurisica, Natasha B. Leighl, Benjamin G. Neel, Thomas K. Waddell, Frances A. Shepherd, Geoffrey Liu, Ming-Sound Tsao, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada; Lucia Kim, Inha University College of Medicine, Incheon, South Korea; and Tom John, Austin Hospital, Heidelberg, Australia
| | - Thomas K Waddell
- Erin L. Stewart, Celine Mascaux, Nhu-An Pham, Shingo Sakashita, Jenna Sykes, Lucia Kim, Naoki Yanagawa, Ghassan Allo, Kota Ishizawa, Dennis Wang, Chang-Qi Zhu, Ming Li, Christine Ng, Ni Liu, Melania Pintilie, Petra Martin, Tom John, Igor Jurisica, Natasha B. Leighl, Benjamin G. Neel, Thomas K. Waddell, Frances A. Shepherd, Geoffrey Liu, Ming-Sound Tsao, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada; Lucia Kim, Inha University College of Medicine, Incheon, South Korea; and Tom John, Austin Hospital, Heidelberg, Australia
| | - Frances A Shepherd
- Erin L. Stewart, Celine Mascaux, Nhu-An Pham, Shingo Sakashita, Jenna Sykes, Lucia Kim, Naoki Yanagawa, Ghassan Allo, Kota Ishizawa, Dennis Wang, Chang-Qi Zhu, Ming Li, Christine Ng, Ni Liu, Melania Pintilie, Petra Martin, Tom John, Igor Jurisica, Natasha B. Leighl, Benjamin G. Neel, Thomas K. Waddell, Frances A. Shepherd, Geoffrey Liu, Ming-Sound Tsao, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada; Lucia Kim, Inha University College of Medicine, Incheon, South Korea; and Tom John, Austin Hospital, Heidelberg, Australia
| | - Geoffrey Liu
- Erin L. Stewart, Celine Mascaux, Nhu-An Pham, Shingo Sakashita, Jenna Sykes, Lucia Kim, Naoki Yanagawa, Ghassan Allo, Kota Ishizawa, Dennis Wang, Chang-Qi Zhu, Ming Li, Christine Ng, Ni Liu, Melania Pintilie, Petra Martin, Tom John, Igor Jurisica, Natasha B. Leighl, Benjamin G. Neel, Thomas K. Waddell, Frances A. Shepherd, Geoffrey Liu, Ming-Sound Tsao, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada; Lucia Kim, Inha University College of Medicine, Incheon, South Korea; and Tom John, Austin Hospital, Heidelberg, Australia
| | - Ming-Sound Tsao
- Erin L. Stewart, Celine Mascaux, Nhu-An Pham, Shingo Sakashita, Jenna Sykes, Lucia Kim, Naoki Yanagawa, Ghassan Allo, Kota Ishizawa, Dennis Wang, Chang-Qi Zhu, Ming Li, Christine Ng, Ni Liu, Melania Pintilie, Petra Martin, Tom John, Igor Jurisica, Natasha B. Leighl, Benjamin G. Neel, Thomas K. Waddell, Frances A. Shepherd, Geoffrey Liu, Ming-Sound Tsao, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada; Lucia Kim, Inha University College of Medicine, Incheon, South Korea; and Tom John, Austin Hospital, Heidelberg, Australia.
| |
Collapse
|
45
|
Asparuhova MB, Secondini C, Rüegg C, Chiquet-Ehrismann R. Mechanism of irradiation-induced mammary cancer metastasis: A role for SAP-dependent Mkl1 signaling. Mol Oncol 2015; 9:1510-27. [PMID: 25999144 PMCID: PMC5528797 DOI: 10.1016/j.molonc.2015.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/19/2015] [Accepted: 04/11/2015] [Indexed: 12/18/2022] Open
Abstract
Radiotherapy is a standard treatment after conservative breast cancer surgery. However, cancers relapsing within a previously irradiated area have an increased probability to metastasize. The mechanisms responsible for this aggressiveness remain unclear. Here, we used the clinically relevant 4T1 breast cancer model mimicking aggressive local relapse after radiotherapy to identify differences between tumors grown in untreated versus preirradiated mammary glands. Tumors grown within preirradiated beds were highly enriched in transcripts encoding collagens and other proteins building or modifying the extracellular matrix, such as laminin‐332, tenascins, lysyl oxidases and matrix metalloproteinases. Type I collagen, known to directly contribute to tissue stiffening, and the pro‐metastatic megakaryoblastic leukemia‐1 (Mkl1) target gene tenascin‐C were further investigated. Mammary tissue preirradiation induced Mkl1 nuclear translocation in the tumor cells in vivo, indicating activation of Mkl1 signaling. Transcript profiling of cultured 4T1 cells revealed that the majority of the Mkl1 target genes, including tenascin‐C, required serum response factor (SRF) for their expression. However, application of dynamic strain or matrix stiffness to 4T1 cells converted the predominant SRF/Mkl1 action into SAP domain‐dependent Mkl1 signaling independent of SRF, accompanied by a switch to SAP‐dependent tumor cell migration. 4T1 tumors overexpressing intact Mkl1 became more metastatic within preirradiated beds, while tumors expressing Mkl1 lacking the SAP domain exhibited impaired growth and metastatic spread, and decreased Mkl1 target gene expression. Thus, we identified SAP‐dependent Mkl1 signaling as a previously unrecognized mediator of aggressive progression of mammary tumors locally relapsing after radiotherapy, and provide a novel signaling pathway for therapeutic intervention. Stroma irradiation results in tumors with increased extracellular matrix deposition. Irradiation induces Mkl1 nuclear translocation, tumor growth and lung metastases. Matrix stiffness and cyclic mechanical strain trigger SAP‐dependent Mkl1 signaling. Strain and irradiation induce SAP‐dependent cell migration and tumor progression. Radiation‐induced SAP‐dependent Mkl1 action: a new target for breast cancer therapy.
Collapse
Affiliation(s)
- Maria B Asparuhova
- Friedrich Miescher Institute for Biomedical Research, Affiliated with the Novartis Institutes for Biomedical Research and the University of Basel, Maulbeerstrasse 66, 4058 Basel, Switzerland.
| | - Chiara Secondini
- Department of Medicine, Faculty of Science, University of Fribourg, Rue Albert Gockel 1, 1700 Fribourg, Switzerland.
| | - Curzio Rüegg
- Department of Medicine, Faculty of Science, University of Fribourg, Rue Albert Gockel 1, 1700 Fribourg, Switzerland.
| | - Ruth Chiquet-Ehrismann
- Friedrich Miescher Institute for Biomedical Research, Affiliated with the Novartis Institutes for Biomedical Research and the University of Basel, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Faculty of Science, Basel, Switzerland.
| |
Collapse
|
46
|
Gurbuz I, Chiquet-Ehrismann R. CCN4/WISP1 (WNT1 inducible signaling pathway protein 1): a focus on its role in cancer. Int J Biochem Cell Biol 2015; 62:142-6. [PMID: 25794425 DOI: 10.1016/j.biocel.2015.03.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 01/17/2023]
Abstract
The matricellular protein WISP1 is a member of the CCN protein family. It is induced by WNT1 and is a downstream target of β-catenin. WISP1 is expressed during embryonic development, wound healing and tissue repair. Aberrant WISP1 expression is associated with various pathologies including osteoarthritis, fibrosis and cancer. Its role in tumor progression and clinical outcome makes WISP1 an emerging candidate for the detection and treatment of tumors.
Collapse
Affiliation(s)
- Irem Gurbuz
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Basel, Switzerland; University of Basel, Faculty of Science, Basel, Switzerland.
| | - Ruth Chiquet-Ehrismann
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Basel, Switzerland; University of Basel, Faculty of Science, Basel, Switzerland
| |
Collapse
|
47
|
Cheng X, Yang Y, Fan Z, Yu L, Bai H, Zhou B, Wu X, Xu H, Fang M, Shen A, Chen Q, Xu Y. MKL1 potentiates lung cancer cell migration and invasion by epigenetically activating MMP9 transcription. Oncogene 2015; 34:5570-81. [PMID: 25746000 DOI: 10.1038/onc.2015.14] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/17/2014] [Accepted: 01/07/2015] [Indexed: 12/24/2022]
Abstract
Malignant tumors are exemplified by excessive proliferation and aggressive migration/invasion contributing to increased mortality of cancer patients. Matrix metalloproteinase 9 (MMP9) expression is positively correlated with lung cancer malignancy. The mechanism underlying an elevated MMP9 expression is not clearly defined. We demonstrate here that the transcriptional modulator megakaryocytic leukemia 1 (MKL1) was activated by hypoxia and transforming growth factor (TGF-β), two prominent pro-malignancy factors, in cultured lung cancer cells. MKL1 levels were also increased in more invasive types of lung cancer in humans. Depletion of MKL1 in lung cancer cells attenuated migration and invasion both in vitro and in vivo. Overexpression of MKL1 potentiated the induction of MMP9 transcription by hypoxia and TGF-β, whereas MKL1 silencing diminished MMP9 expression. Of interest, MKL1 knockdown eliminated histone H3K4 methylation surrounding the MMP9 promoter. Further analyses revealed that MKL1 recruited ASH2, a component of the H3K4 methyltransferase complex, to activate MMP9 transcription. Depletion of ASH2 ameliorated cancer cell migration and invasion in an MMP9-dependent manner. Together our data indicate that MKL1 potentiates lung cancer cell migration and invasion by epigenetically activating MMP9 transcription.
Collapse
Affiliation(s)
- X Cheng
- Key Laboratory of Cardiovascular Disease and Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Y Yang
- Key Laboratory of Cardiovascular Disease and Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Z Fan
- Key Laboratory of Cardiovascular Disease and Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - L Yu
- Key Laboratory of Cardiovascular Disease and Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - H Bai
- Key Laboratory of Cardiovascular Disease and Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - B Zhou
- Key Laboratory of Cardiovascular Disease and Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - X Wu
- Key Laboratory of Cardiovascular Disease and Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - H Xu
- Key Laboratory of Cardiovascular Disease and Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - M Fang
- Key Laboratory of Cardiovascular Disease and Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Department of Nursing, Jiangsu Jiankang Vocational University, Nanjing, China
| | - A Shen
- Department of Key Laboratory of Inflammation and Molecular Targets, Medical College, Nantong University, Nantong, China
| | - Q Chen
- Key Laboratory of Cardiovascular Disease and Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Y Xu
- Key Laboratory of Cardiovascular Disease and Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
48
|
Fachal L, Dunning AM. From candidate gene studies to GWAS and post-GWAS analyses in breast cancer. Curr Opin Genet Dev 2015; 30:32-41. [PMID: 25727315 DOI: 10.1016/j.gde.2015.01.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 12/16/2014] [Accepted: 01/21/2015] [Indexed: 12/31/2022]
Abstract
There are now more than 90 established breast cancer risk loci, with 57 new ones, revealed through genome-wide-association studies (GWAS) during the last two years. Established high, moderate and low penetrance genetic variants currently explain ∼49% of familial breast cancer risk. GWAS-discovered variants account for 14%, and it is estimated that another 1000 yet-to-be-discovered loci could contribute an additional ∼14% of familial risk. Polygenic risk scores can already be used to stratify breast cancer risk in the female population and could improve the targeting of mammographic screening programmes, which are at present largely based on age-specific risks. Fine-scale mapping and functional analyses are revealing candidate causal variants and the molecular mechanisms by which GWAS-hits may act. Better-powered GWAS and genome-wide sequencing projects are likely to continue identifying new breast cancer causal variants.
Collapse
Affiliation(s)
- Laura Fachal
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge CB1 8RN, UK; Genomic Medicine Group, CIBERER, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Alison M Dunning
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge CB1 8RN, UK.
| |
Collapse
|