1
|
Brock K, Alpha KM, Brennan G, De Jong EP, Luke E, Turner CE. A comparative analysis of paxillin and Hic-5 proximity interactomes. Cytoskeleton (Hoboken) 2025; 82:12-31. [PMID: 38801098 PMCID: PMC11599474 DOI: 10.1002/cm.21878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/18/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024]
Abstract
Focal adhesions serve as structural and signaling hubs, facilitating bidirectional communication at the cell-extracellular matrix interface. Paxillin and the related Hic-5 (TGFβ1i1) are adaptor/scaffold proteins that recruit numerous structural and regulatory proteins to focal adhesions, where they perform both overlapping and discrete functions. In this study, paxillin and Hic-5 were expressed in U2OS osteosarcoma cells as biotin ligase (BioID2) fusion proteins and used as bait proteins for proximity-dependent biotinylation in order to directly compare their respective interactomes. The fusion proteins localized to both focal adhesions and the centrosome, resulting in biotinylation of components of each of these structures. Biotinylated proteins were purified and analyzed by mass spectrometry. The list of proximity interactors for paxillin and Hic-5 comprised numerous shared core focal adhesion proteins that likely contribute to their similar functions in cell adhesion and migration, as well as proteins unique to paxillin and Hic-5 that have been previously localized to focal adhesions, the centrosome, or the nucleus. Western blotting confirmed biotinylation and enrichment of FAK and vinculin, known interactors of Hic-5 and paxillin, as well as several potentially unique proximity interactors of Hic-5 and paxillin, including septin 7 and ponsin, respectively. Further investigation into the functional relationship between the unique interactors and Hic-5 or paxillin may yield novel insights into their distinct roles in cell migration.
Collapse
Affiliation(s)
- Katia Brock
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Kyle M. Alpha
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Grant Brennan
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Ebbing P. De Jong
- Proteomics Core facility, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Elizabeth Luke
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Christopher E. Turner
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| |
Collapse
|
2
|
Chen L, Chen N, Xie Z, Xiao Y, Jiang H. Prognostic and immunological role of LASP2 in clear cell renal cell carcinoma. Genes Genomics 2024:10.1007/s13258-024-01612-9. [PMID: 39714590 DOI: 10.1007/s13258-024-01612-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) represents a common renal carcinoma subtype influenced by the immune microenvironment. LIM and SH3 Protein 2 (LASP2), an actin-binding protein within the nebulin family, contributes to cellular immunity and adhesion mechanisms. OBJECTIVE This study aimed to clarify the immunological and prognostic relevance of LASP2 in ccRCC. METHODS Using clinical and expression data from TCGA, LASP2 expression levels were analyzed alongside clinicopathological features in ccRCC patients. Validation was conducted through real-world samples and tissue microarrays. Comprehensive analysis using online databases examined genetic mutations, DNA methylation patterns, and immune microenvironment characteristics. Gene set enrichment analysis (GSEA) provided insights into LASP2's potential mechanisms in ccRCC. RESULTS LASP2 expression was notably reduced and correlated with adverse clinicopathological features and prognosis in ccRCC patients. Prognostic associations were identified across multiple CpG DNA methylation sites. LASP2 levels showed significant correlations with immune cell infiltration and checkpoint genes, including PDCD1 and CTLA4. GSEA findings highlighted LASP2's enrichment within metabolic pathways and signaling networks, such as fatty acid metabolism, TGF-β signaling, and epithelial-mesenchymal transition. CONCLUSION LASP2 emerged as an immune-associated biomarker linked to poorer survival outcomes in ccRCC, suggesting its potential as a novel anti-cancer target and prognostic indicator in ccRCC.
Collapse
Affiliation(s)
- Libo Chen
- Department of Urology, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, No. 63, Huang Tang Road, Meizhou, 514031, Guangdong Province, People's Republic of China
| | - Nanhui Chen
- Department of Urology, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, No. 63, Huang Tang Road, Meizhou, 514031, Guangdong Province, People's Republic of China
| | - Zhouzhou Xie
- Meizhou Clinical Institute of Shantou University Medical College, Meizhou, People's Republic of China
| | - Yuchen Xiao
- Shantou University Medical College, Shantou, People's Republic of China
| | - Huiming Jiang
- Department of Urology, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, No. 63, Huang Tang Road, Meizhou, 514031, Guangdong Province, People's Republic of China.
| |
Collapse
|
3
|
Li MQ, Lu XY, Yao JY, Zou GJ, Zeng ZH, Zhang LX, Zhou SF, Chen ZR, Zhao TS, Guo ZR, Cui YH, Li F, Li CQ. LASP1 in the nucleus accumbens modulates methamphetamine-induced conditioned place preference in mice. Neurochem Int 2024; 180:105884. [PMID: 39419179 DOI: 10.1016/j.neuint.2024.105884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Methamphetamine (METH) is a highly addictive and widely abused drug that causes complex adaptive changes in the brain's reward system, such as the nucleus accumbens (NAc). LASP1 (LIM and SH 3 domain protein 1) as an actin-binding protein, regulates synaptic plasticity. However, the role and mechanism by which NAc LASP1 contributes to METH addiction remains unclear. In this study, adult male C57BL/6J mice underwent repeated METH exposure or METH-induced conditioned place preference (CPP). Western blotting and immunohistochemistry were used to determine LASP1 expression in the NAc. Furthermore, LASP1 knockdown or overexpression using adeno-associated virus (AAV) administration via stereotactic injection into the NAc was used to observe the corresponding effects on CPP. We found that repeated METH exposure and METH-induced CPP upregulated LASP1 expression in the NAc. LASP1 silencing in the NAc reversed METH-induced CPP and reduced PSD95, NR2A, and NR2B expression, whereas LASP1 overexpression in the NAc enhanced CPP acquisition, accompanied by increased PSD95, NR2A, and NR2B expression. Our findings demonstrate an important role of NAc LASP1 in modulating METH induced drug-seeking behavior and the underlying mechanism may be related to regulate the expression of synapse-associated proteins in the NAc. These results reveal a novel molecular regulator of the actions of METH on the NAc and provide a new strategy for treating METH addiction.
Collapse
Affiliation(s)
- Meng-Qing Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410013, China
| | - Xiao-Yu Lu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410013, China
| | - Jia-Yu Yao
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410013, China
| | - Guang-Jing Zou
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410013, China
| | - Ze-Hao Zeng
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410013, China
| | - Lin-Xuan Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410013, China
| | - Shi-Fen Zhou
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410013, China
| | - Zhao-Rong Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410013, China
| | - Tian-Shu Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Zi-Rui Guo
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410013, China
| | - Yan-Hui Cui
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410013, China
| | - Fang Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410013, China.
| | - Chang-Qi Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410013, China.
| |
Collapse
|
4
|
ZHANG YE, LIANG YANAN, WU YAN, SONG LIWEN, ZHANG ZUWANG. CircTIAM1 overexpression promotes the progression of papillary thyroid cancer by regulating the miR-338-3p/LASP1 axis. Oncol Res 2024; 32:1747-1763. [PMID: 39449799 PMCID: PMC11497179 DOI: 10.32604/or.2024.030945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/01/2023] [Indexed: 10/26/2024] Open
Abstract
Background Papillary thyroid cancer (PTC) is the most prevalent histological type of differentiated thyroid malignancy. Circular RNAs (circRNAs) have been implicated in the pathogenesis and progression of various cancers. circTIAM1 (hsa_circ_0061406) is a novel circRNA with aberrant expression in PTC. However, its functional roles in PTC progression remain to be investigated. Methods The expression levels of circTIAM1 in the PTC and the matched para-cancerous tissues were detected by quantitative real-time reverse-transcription PCR (qRT-PCR). The subcellular localization of circTIAM1 was examined by fluorescence in-situ hybridization (FISH). Kaplan-Meier plot was used to analyze the association of clinicopathological features with circTIAM1 expression. Bioinformatics databases were utilized to predict the target miRNAs of circTIAM1 and the downstream target mRNAs. RNA pull-down, RIP assay, and dual-luciferase reporter assay were used to confirm the interactions. Functional experiments, such as CCK-8, EDU staining, and apoptosis assays, as well as in vivo xenograft model were employed to explore the impacts of circTIAM1, miR-338-3p, and LIM/SH3 protein 1 (LASP1) on the malignant phenotype of the PTC cells. Results CircTIAM1 was highly expressed in PTC cells. Moreover, circTIAM1 silencing suppressed the proliferation and invasion of PTC cells in vitro and impaired tumorigenesis in vivo. Furthermore, miR-338-3p was verified as a miRNA target of circTIAM1. LASP1 was also identified as a downstream target of miR-338-3p. The anti-tumorigenic effect of miR-338-3p overexpression and the pro-tumorigenic effect of LASP1 was further explored by functional assays, which demonstrated that circTIAM1 modulated the PTC progression through targeting miR-338-3p/LASP1 axis. Conclusion The overexpression of circTIAM1 is associated with the malignant progression of PTC. A high level of circTIAM1 promotes the malignancy of PTC cells via the miR-338-3p/LASP1 axis.
Collapse
Affiliation(s)
- YE ZHANG
- School of Medicine and Health, Jiuzhou Polytechnic, Xuzhou, 221113, China
| | - YANAN LIANG
- Department of Oncology, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| | - YAN WU
- Department of Oncology, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| | - LIWEN SONG
- Department of Oncology, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| | - ZUWANG ZHANG
- Department of Oncology, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| |
Collapse
|
5
|
Karimi N, Motovali-Bashi M, Ghaderi-Zefrehei M. Gene network reveals LASP1, TUBA1C, and S100A6 are likely playing regulatory roles in multiple sclerosis. Front Neurol 2023; 14:1090631. [PMID: 36970516 PMCID: PMC10035600 DOI: 10.3389/fneur.2023.1090631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/10/2023] [Indexed: 03/11/2023] Open
Abstract
IntroductionMultiple sclerosis (MS), a non-contagious and chronic disease of the central nervous system, is an unpredictable and indirectly inherited disease affecting different people in different ways. Using Omics platforms genomics, transcriptomics, proteomics, epigenomics, interactomics, and metabolomics database, it is now possible to construct sound systems biology models to extract full knowledge of the MS and recognize the pathway to uncover the personalized therapeutic tools.MethodsIn this study, we used several Bayesian Networks in order to find the transcriptional gene regulation networks that drive MS disease. We used a set of BN algorithms using the R add-on package bnlearn. The BN results underwent further downstream analysis and were validated using a wide range of Cytoscape algorithms, web based computational tools and qPCR amplification of blood samples from 56 MS patients and 44 healthy controls. The results were semantically integrated to improve understanding of the complex molecular architecture underlying MS, distinguishing distinct metabolic pathways and providing a valuable foundation for the discovery of involved genes and possibly new treatments.ResultsResults show that the LASP1, TUBA1C, and S100A6 genes were most likely playing a biological role in MS development. Results from qPCR showed a significant increase (P < 0.05) in LASP1 and S100A6 gene expression levels in MS patients compared to that in controls. However, a significant down regulation of TUBA1C gene was observed in the same comparison.ConclusionThis study provides potential diagnostic and therapeutic biomarkers for enhanced understanding of gene regulation underlying MS.
Collapse
Affiliation(s)
- Nafiseh Karimi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Majid Motovali-Bashi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
- *Correspondence: Majid Motovali-Bashi
| | | |
Collapse
|
6
|
Svec KV, Howe AK. Protein Kinase A in cellular migration-Niche signaling of a ubiquitous kinase. Front Mol Biosci 2022; 9:953093. [PMID: 35959460 PMCID: PMC9361040 DOI: 10.3389/fmolb.2022.953093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/30/2022] [Indexed: 12/28/2022] Open
Abstract
Cell migration requires establishment and maintenance of directional polarity, which in turn requires spatial heterogeneity in the regulation of protrusion, retraction, and adhesion. Thus, the signaling proteins that regulate these various structural processes must also be distinctly regulated in subcellular space. Protein Kinase A (PKA) is a ubiquitous serine/threonine kinase involved in innumerable cellular processes. In the context of cell migration, it has a paradoxical role in that global inhibition or activation of PKA inhibits migration. It follows, then, that the subcellular regulation of PKA is key to bringing its proper permissive and restrictive functions to the correct parts of the cell. Proper subcellular regulation of PKA controls not only when and where it is active but also specifies the targets for that activity, allowing the cell to use a single, promiscuous kinase to exert distinct functions within different subcellular niches to facilitate cell movement. In this way, understanding PKA signaling in migration is a study in context and in the elegant coordination of distinct functions of a single protein in a complex cellular process.
Collapse
Affiliation(s)
- Kathryn V. Svec
- Department of Pharmacology, University of Vermont, Burlington, VT, United States
| | - Alan K. Howe
- Department of Pharmacology, University of Vermont, Burlington, VT, United States
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, V T, United States
- University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| |
Collapse
|
7
|
Vanderheijden C, Vaessen T, Yakkioui Y, Riedl R, Temel Y, Hovinga K, Hoogland G. LIM and SH3 protein 1 (LASP1) differentiates malignant chordomas from less malignant chondrosarcomas. J Neurooncol 2022; 158:81-88. [PMID: 35507100 PMCID: PMC9166821 DOI: 10.1007/s11060-022-04012-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/06/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE Chordomas are malignant tumors that develop along the neuraxis between skull-base and sacrum. Chondrosarcomas show similarities with chordomas, yet show less malignant behavior. LIM and SH3 protein 1 (LASP1) is a cytoskeletal protein known to promote the malignant behavior of tumors. LASP1 was previously identified as a possibly overexpressed protein in a chordoma proteomics experiment. In this study we compare LASP1 expression in chordoma and chondrosarcoma tissue. METHODS Biopsies of primary tumors were collected from surgically treated chordoma (n = 6) and chondrosarcoma (n = 6) patients, flash-frozen upon collection and collectively analyzed for LASP1 RNA (real-time PCR) and protein expression (western blotting). Additionally, tissue micro array (TMA)-based immunohistochemistry was applied to an archive of 31 chordoma and 1 chondrosarcoma specimen. RESULTS In chordoma samples, LASP1 mRNA was detected in 4/6 cases and a strong 36 kDa immunoreactive protein band was observed in 4/5 cases. In contrast, 0/6 chondrosarcoma samples showed detectable levels of LASP1 mRNA and only a weak 36 kDa band was observed in 4/5 cases. Immunohistochemical analysis showed LASP1 expression in all chordoma samples, whereas chondrosarcoma specimen did not show immunoreactivity. CONCLUSION LASP1 is strongly expressed in the majority of chordoma cases and shows low expression in chondrosarcoma tissue. Since LASP1 is known to function as oncogene and regulate cell proliferation in other tumor types, this study implicates a role for LASP1 in chordoma biology. Further studies are warranted to improve understanding of LASP1's expression and functioning within chordoma, both in vitro and in vivo.
Collapse
Affiliation(s)
- Cas Vanderheijden
- Department of Neurosurgery, Maastricht University Medical Center, PO Box 5800, 6202 AZ, Maastricht, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Thomas Vaessen
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Pathology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Youssef Yakkioui
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Neurosurgery, Noordwest Hospital, Alkmaar, The Netherlands
| | - Robert Riedl
- Department of Pathology, Zuyderland Medical Center, Heerlen, The Netherlands
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, PO Box 5800, 6202 AZ, Maastricht, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Koos Hovinga
- Department of Neurosurgery, Maastricht University Medical Center, PO Box 5800, 6202 AZ, Maastricht, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Govert Hoogland
- Department of Neurosurgery, Maastricht University Medical Center, PO Box 5800, 6202 AZ, Maastricht, The Netherlands.
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
8
|
Artelt N, Ritter AM, Leitermann L, Kliewe F, Schlüter R, Simm S, van den Brandt J, Endlich K, Endlich N. The podocyte-specific knockout of palladin in mice with a 129 genetic background affects podocyte morphology and the expression of palladin interacting proteins. PLoS One 2021; 16:e0260878. [PMID: 34879092 PMCID: PMC8654177 DOI: 10.1371/journal.pone.0260878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/18/2021] [Indexed: 11/19/2022] Open
Abstract
Proper and size selective blood filtration in the kidney depends on an intact morphology of podocyte foot processes. Effacement of interdigitating podocyte foot processes in the glomeruli causes a leaky filtration barrier resulting in proteinuria followed by the development of chronic kidney diseases. Since the function of the filtration barrier is depending on a proper actin cytoskeleton, we studied the role of the important actin-binding protein palladin for podocyte morphology. Podocyte-specific palladin knockout mice on a C57BL/6 genetic background (PodoPalldBL/6-/-) were back crossed to a 129 genetic background (PodoPalld129-/-) which is known to be more sensitive to kidney damage. Then we analyzed the morphological changes of glomeruli and podocytes as well as the expression of the palladin-binding partners Pdlim2, Lasp-1, Amotl1, ezrin and VASP in 6 and 12 months old mice. PodoPalld129-/- mice in 6 and 12 months showed a marked dilatation of the glomerular tuft and a reduced expression of the mesangial marker protein integrin α8 compared to controls of the same age. Furthermore, ultrastructural analysis showed significantly more podocytes with morphological deviations like an enlarged sub-podocyte space and regions with close contact to parietal epithelial cells. Moreover, PodoPalld129-/- of both age showed a severe effacement of podocyte foot processes, a significantly reduced expression of pLasp-1 and Pdlim2, and significantly reduced mRNA expression of Pdlim2 and VASP, three palladin-interacting proteins. Taken together, the results show that palladin is essential for proper podocyte morphology in mice with a 129 background.
Collapse
Affiliation(s)
- Nadine Artelt
- Institute for Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Alina M. Ritter
- Institute for Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Linda Leitermann
- Institute for Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Felix Kliewe
- Institute for Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, Greifswald, Germany
| | - Stefan Simm
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Jens van den Brandt
- Central Core and Research Facility of Laboratory Animals (ZSFV), University Medicine Greifswald, Greifswald, Germany
| | - Karlhans Endlich
- Institute for Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Nicole Endlich
- Institute for Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
- * E-mail:
| |
Collapse
|
9
|
Vincenzi M, Mercurio FA, Leone M. Protein Interaction Domains: Structural Features and Drug Discovery Applications (Part 2). Curr Med Chem 2021; 28:854-892. [PMID: 31942846 DOI: 10.2174/0929867327666200114114142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Proteins present a modular organization made up of several domains. Apart from the domains playing catalytic functions, many others are crucial to recruit interactors. The latter domains can be defined as "PIDs" (Protein Interaction Domains) and are responsible for pivotal outcomes in signal transduction and a certain array of normal physiological and disease-related pathways. Targeting such PIDs with small molecules and peptides able to modulate their interaction networks, may represent a valuable route to discover novel therapeutics. OBJECTIVE This work represents a continuation of a very recent review describing PIDs able to recognize post-translationally modified peptide segments. On the contrary, the second part concerns with PIDs that interact with simple peptide sequences provided with standard amino acids. METHODS Crucial structural information on different domain subfamilies and their interactomes was gained by a wide search in different online available databases (including the PDB (Protein Data Bank), the Pfam (Protein family), and the SMART (Simple Modular Architecture Research Tool)). Pubmed was also searched to explore the most recent literature related to the topic. RESULTS AND CONCLUSION PIDs are multifaceted: they have all diverse structural features and can recognize several consensus sequences. PIDs can be linked to different diseases onset and progression, like cancer or viral infections and find applications in the personalized medicine field. Many efforts have been centered on peptide/peptidomimetic inhibitors of PIDs mediated interactions but much more work needs to be conducted to improve drug-likeness and interaction affinities of identified compounds.
Collapse
Affiliation(s)
- Marian Vincenzi
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| | - Flavia Anna Mercurio
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| |
Collapse
|
10
|
Massoud TF, Paulmurugan R. Molecular Imaging of Protein–Protein Interactions and Protein Folding. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00071-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
11
|
Cui YH, Fu A, Wang XQ, Tu BX, Chen KZ, Wang YK, Hu QG, Wang LF, Hu ZL, Pan PH, Li F, Bi FF, Li CQ. Hippocampal LASP1 ameliorates chronic stress-mediated behavioral responses in a mouse model of unpredictable chronic mild stress. Neuropharmacology 2020; 184:108410. [PMID: 33242526 DOI: 10.1016/j.neuropharm.2020.108410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022]
Abstract
Substantial evidence has revealed that abnormalities in synaptic plasticity play important roles during the process of depression. LASP1 (LIM and SH3 domain protein 1), a member of actin-binding proteins, has been shown to be associated with the regulation of synaptic plasticity. However, the role of LASP1 in the regulation of mood is still unclear. Here, using an unpredictable chronic mild stress (UCMS) paradigm, we found that the mRNA and protein levels of LASP1 were decreased in the hippocampus of stressed mice and that UCMS-induced down-regulation of LASP1 was abolished by chronic administration of fluoxetine. Adenosine-associated virus-mediated hippocampal LASP1 overexpression alleviated the UCMS-induced behavioral results of forced swimming test and sucrose preference test in stressed mice. It also restored the dendritic spine density, elevated the levels of AKT (a serine/threonine protein kinase), phosphorylated-AKT, insulin-like growth factor 2, and postsynaptic density protein 95. These findings suggest that LASP1 alleviates UCMS-provoked behavioral defects, which may be mediated by an enhanced dendritic spine density and more activated AKT-dependent LASP1 signaling, pointing to the antidepressant role of LASP1.
Collapse
Affiliation(s)
- Yan-Hui Cui
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China; Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ao Fu
- Clinic Medicine of 5-year Program, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Xue-Qin Wang
- Center for Neuroscience and behavior, Changsha Medical University, Changsha, 410219, China
| | - Bo-Xuan Tu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Kang-Zhi Chen
- Clinic Medicine of 8-year Program, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Yi-Kai Wang
- Clinic Medicine of 8-year Program, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Qiong-Gui Hu
- Clinic Medicine of 8-year Program, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Lai-Fa Wang
- Center for Neuroscience and behavior, Changsha Medical University, Changsha, 410219, China
| | - Zhao-Lan Hu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Pin-Hua Pan
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Fang Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Fang-Fang Bi
- Department of Neurology, XiangYa Hospital, Central South University, Changsha, 410008, China.
| | - Chang-Qi Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China.
| |
Collapse
|
12
|
Ge X, Zhang T, Yu X, Muwonge AN, Anandakrishnan N, Wong NJ, Haydak JC, Reid JM, Fu J, Wong JS, Bhattacharya S, Cuttitta CM, Zhong F, Gordon RE, Salem F, Janssen W, Hone JC, Zhang A, Li H, He JC, Gusella GL, Campbell KN, Azeloglu EU. LIM-Nebulette Reinforces Podocyte Structural Integrity by Linking Actin and Vimentin Filaments. J Am Soc Nephrol 2020; 31:2372-2391. [PMID: 32737144 DOI: 10.1681/asn.2019121261] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/06/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Maintenance of the intricate interdigitating morphology of podocytes is crucial for glomerular filtration. One of the key aspects of specialized podocyte morphology is the segregation and organization of distinct cytoskeletal filaments into different subcellular components, for which the exact mechanisms remain poorly understood. METHODS Cells from rats, mice, and humans were used to describe the cytoskeletal configuration underlying podocyte structure. Screening the time-dependent proteomic changes in the rat puromycin aminonucleoside-induced nephropathy model correlated the actin-binding protein LIM-nebulette strongly with glomerular function. Single-cell RNA sequencing and immunogold labeling were used to determine Nebl expression specificity in podocytes. Automated high-content imaging, super-resolution microscopy, atomic force microscopy (AFM), live-cell imaging of calcium, and measurement of motility and adhesion dynamics characterized the physiologic role of LIM-nebulette in podocytes. RESULTS Nebl knockout mice have increased susceptibility to adriamycin-induced nephropathy and display morphologic, cytoskeletal, and focal adhesion abnormalities with altered calcium dynamics, motility, and Rho GTPase activity. LIM-nebulette expression is decreased in diabetic nephropathy and FSGS patients at both the transcript and protein level. In mice, rats, and humans, LIM-nebulette expression is localized to primary, secondary, and tertiary processes of podocytes, where it colocalizes with focal adhesions as well as with vimentin fibers. LIM-nebulette shRNA knockdown in immortalized human podocytes leads to dysregulation of vimentin filament organization and reduced cellular elasticity as measured by AFM indentation. CONCLUSIONS LIM-nebulette is a multifunctional cytoskeletal protein that is critical in the maintenance of podocyte structural integrity through active reorganization of focal adhesions, the actin cytoskeleton, and intermediate filaments.
Collapse
Affiliation(s)
- Xuhua Ge
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Tao Zhang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Xiaoxia Yu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alecia N Muwonge
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nanditha Anandakrishnan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nicholas J Wong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jonathan C Haydak
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jordan M Reid
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jia Fu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jenny S Wong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Smiti Bhattacharya
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Mechanical Engineering, Columbia University, New York, New York
| | - Christina M Cuttitta
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Fang Zhong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ronald E Gordon
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Fadi Salem
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - William Janssen
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - James C Hone
- Department of Mechanical Engineering, Columbia University, New York, New York
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hong Li
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - John C He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - G Luca Gusella
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kirk N Campbell
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Evren U Azeloglu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York .,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
13
|
The Expressions and Mechanisms of Sarcomeric Proteins in Cancers. DISEASE MARKERS 2020; 2020:8885286. [PMID: 32670437 PMCID: PMC7346232 DOI: 10.1155/2020/8885286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/07/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023]
Abstract
The sarcomeric proteins control the movement of cells in diverse species, whereas the deregulation can induce tumours in model organisms and occurs in human carcinomas. Sarcomeric proteins are recognized as oncogene and related to tumor cell metastasis. Recent insights into their expressions and functions have led to new cancer therapeutic opportunities. In this review, we appraise the evidence for the sarcomeric proteins as cancer genes and discuss cancer-relevant biological functions, potential mechanisms by which sarcomeric proteins activity is altered in cancer.
Collapse
|
14
|
Chen L, Wang J, Fan X, Zhang Y, Zhoua M, Li X, Wang L. LASP2 inhibits trophoblast cell migration and invasion in preeclampsia through inactivation of the Wnt/β-catenin signaling pathway. J Recept Signal Transduct Res 2020; 41:67-73. [PMID: 32635793 DOI: 10.1080/10799893.2020.1787444] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Preeclampsia (PE) is a specific disorder of pregnancy with significant morbidity and mortality to the mother and the fetus. It has been reported that abnormal regulation of trophoblast cells contributes to the development of PE. LIM and SH3 Protein 2 (LASP2) belongs to nebulin protein family of actin-binding protein that has broad biological functions. In this study, we evaluated the role of LASP2 in the regulation of trophoblast cells. Our results demonstrated that LASP2 was markedly up-regulated in the placentas of patients with PE. Overexpression of LASP2 significantly suppressed the cell proliferation, migration, and invasion of trophoblast cells. LASP2 overexpression reduced the expression levels of β-catenin, cyclin D1, and c-Myc in trophoblast cells. Furthermore, activation of Wnt/β-catenin pathway booked the effects of LASP2 on trophoblast cells. In conclusion, these findings indicated that LASP2 might contribute to the pathogenesis of PE via regulating cell proliferation, migration, and invasion of trophoblast cells. Thus, LASP2 might be a prospective therapeutic target for the prevention and treatment of PE.
Collapse
Affiliation(s)
- Li Chen
- Department of Obstetrics, Baoji Maternal and Child Health Care Hospital, Baoji, PR China
| | - Jing Wang
- Department of Obstetrics, Baoji Maternal and Child Health Care Hospital, Baoji, PR China
| | - Xiaojun Fan
- Department of Obstetrics, Baoji Maternal and Child Health Care Hospital, Baoji, PR China
| | - Yan Zhang
- Department of Obstetrics, Baoji Maternal and Child Health Care Hospital, Baoji, PR China
| | - Mi Zhoua
- Department of Obstetrics, Baoji Maternal and Child Health Care Hospital, Baoji, PR China
| | - Xiaohui Li
- Department of Obstetrics, Baoji Maternal and Child Health Care Hospital, Baoji, PR China
| | - Lijuan Wang
- Department of Obstetrics, Baoji Maternal and Child Health Care Hospital, Baoji, PR China
| |
Collapse
|
15
|
Choi JW, Kim JW, Nguyen LP, Nguyen HC, Park EM, Choi DH, Han KM, Kang SM, Tark D, Lim YS, Hwang SB. Nonstructural NS5A Protein Regulates LIM and SH3 Domain Protein 1 to Promote Hepatitis C Virus Propagation. Mol Cells 2020; 43:469-478. [PMID: 32344996 PMCID: PMC7264479 DOI: 10.14348/molcells.2020.0018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/26/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) propagation is highly dependent on cellular proteins. To identify the host factors involved in HCV propagation, we previously performed protein microarray assays and identified the LIM and SH3 domain protein 1 (LASP-1) as an HCV NS5A-interacting partner. LASP-1 plays an important role in the regulation of cell proliferation, migration, and protein-protein interactions. Alteration of LASP-1 expression has been implicated in hepatocellular carcinoma. However, the functional involvement of LASP1 in HCV propagation and HCV-induced pathogenesis has not been elucidated. Here, we first verified the protein interaction of NS5A and LASP-1 by both in vitro pulldown and coimmunoprecipitation assays. We further showed that NS5A and LASP-1 were colocalized in the cytoplasm of HCV infected cells. NS5A interacted with LASP-1 through the proline motif in domain I of NS5A and the tryptophan residue in the SH3 domain of LASP-1. Knockdown of LASP-1 increased HCV replication in both HCV-infected cells and HCV subgenomic replicon cells. LASP-1 negatively regulated viral propagation and thereby overexpression of LASP-1 decreased HCV replication. Moreover, HCV propagation was decreased by wild-type LASP-1 but not by an NS5A binding-defective mutant of LASP-1. We further demonstrated that LASP-1 was involved in the replication stage of the HCV life cycle. Importantly, LASP-1 expression levels were increased in persistently infected cells with HCV. These data suggest that HCV modulates LASP-1 via NS5A in order to regulate virion levels and maintain a persistent infection.
Collapse
Affiliation(s)
- Jae-Woong Choi
- Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 5453, Korea
- Ilsong Institute of Life Science, Hallym University, Anyang 14066, Korea
| | - Jong-Wook Kim
- Ilsong Institute of Life Science, Hallym University, Anyang 14066, Korea
| | - Lap P. Nguyen
- Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 5453, Korea
- Ilsong Institute of Life Science, Hallym University, Anyang 14066, Korea
| | - Huu C. Nguyen
- Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 5453, Korea
| | - Eun-Mee Park
- Center for Immunology and Pathology, National Institute of Health, Korea Center for Disease Control & Prevention, Cheongju 28159, Korea
| | - Dong Hwa Choi
- Biocenter, Gyeonggido Business & Science Accelerator, Suwon 16229, Korea
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Korea
| | - Kang Min Han
- Department of Pathology, Dongguk University Ilsan Hospital, Goyang 1032, Korea
| | - Sang Min Kang
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Korea
| | - Dongseob Tark
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Korea
| | - Yun-Sook Lim
- Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 5453, Korea
- Ilsong Institute of Life Science, Hallym University, Anyang 14066, Korea
| | - Soon B. Hwang
- Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 5453, Korea
- Ilsong Institute of Life Science, Hallym University, Anyang 14066, Korea
| |
Collapse
|
16
|
The Nebulin Family LIM and SH3 Proteins Regulate Postsynaptic Development and Function. J Neurosci 2019; 40:526-541. [PMID: 31754010 PMCID: PMC6961999 DOI: 10.1523/jneurosci.0334-19.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023] Open
Abstract
Neuronal dendrites have specialized actin-rich structures called dendritic spines that receive and integrate most excitatory synaptic inputs. The stabilization of dendrites and spines during neuronal maturation is essential for proper neural circuit formation. Changes in dendritic morphology and stability are largely mediated by regulation of the actin cytoskeleton; however, the underlying mechanisms remain to be fully elucidated. Here, we present evidence that the nebulin family members LASP1 and LASP2 play an important role in the postsynaptic development of rat hippocampal neurons from both sexes. We find that both LASP1 and LASP2 are enriched in dendritic spines, and their knockdown impairs spine development and synapse formation. Furthermore, LASP2 exerts a distinct role in dendritic arbor and dendritic spine stabilization. Importantly, the actin-binding N-terminal LIM domain and nebulin repeats of LASP2 are required for spine stability and dendritic arbor complexity. These findings identify LASP1 and LASP2 as novel regulators of neuronal circuitry.SIGNIFICANCE STATEMENT Proper regulation of the actin cytoskeleton is essential for the structural stability of dendrites and dendritic spines. Consequently, the malformation of dendritic structures accompanies numerous neurologic disorders, such as schizophrenia and autism. Nebulin family members are best known for their role in regulating the stabilization and function of actin thin filaments in muscle. The two smallest family members, LASP1 and LASP2, are more structurally diverse and are expressed in a broader array of tissues. While both LASP1 and LASP2 are highly expressed in the brain, little is currently known about their function in the nervous system. In this study, we demonstrate the first evidence that LASP1 and LASP2 are involved in the formation and long-term maintenance of dendrites and dendritic spines.
Collapse
|
17
|
Liu W, Wang Z, Wang C, Ai Z. Long non-coding RNA MIAT promotes papillary thyroid cancer progression through upregulating LASP1. Cancer Cell Int 2019; 19:194. [PMID: 31372094 PMCID: PMC6659215 DOI: 10.1186/s12935-019-0913-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023] Open
Abstract
Background Accumulating evidences indicate that long non-coding RNAs (lncRNAs) play an important role in initiation and development of thyroid cancer. However, the underlying molecular mechanism remains elusive. Methods To explore potential oncogenic and tumor suppressive lncRNAs in papillary thyroid cancer (PTC), we performed RNA sequencing to discover differentially expression lncRNAs between PTC tissues and matched normal tissues. RT-qPCR was used to validate differentially expressed lncRNAs. Bioinformatic analysis was performed to predicted potential miRNA and gene which might be regulated by MIAT. Cell proliferation, invasion and cycle assay were conducted to study the function of MIAT and LASP1 in PTC. Results Through analysis of RNA sequencing, we observed that lncRNA-MIAT was overexpressed in PTC tissues. The upregulation of MIAT was further confirmed in 40 pairs of PTC tissues and normal tissues we collected. In the function assays, results suggested that MIAT silencing led to inhibition of cell proliferation, invasion and disruption of cell cycle progression in PTC cells. Mechanistically, MIAT directly bound to miR-324-3p and upregulated LASP1 expression in PTC cells. In addition, expression of MIAT was positively correlated with LASP1 mRNA expression in samples collected from patients with PTC. More importantly, transfection of recombinant LASP1 attenuated MIAT silencing induced inhibition of cell proliferation, invasion and disruption of cell cycle progression in PTC cells. Conclusions In conclusion, the findings suggest that lncRNA-MIAT may promote PTC proliferation and invasion through physically binding miR-324-3p and upregulation of LASP1. Electronic supplementary material The online version of this article (10.1186/s12935-019-0913-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Zhenglin Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Cong Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Zhilong Ai
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| |
Collapse
|
18
|
Zhang Y, Zhang L. Knockdown of LASP2 inhibits the proliferation, migration, and invasion of cervical cancer cells. J Cell Biochem 2019; 120:15389-15396. [PMID: 31026088 DOI: 10.1002/jcb.28806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 03/25/2019] [Accepted: 04/12/2019] [Indexed: 12/11/2022]
Abstract
LIM and SH3 protein 2 (LASP2) belongs to nebulin family. It has been proven that LASP2 is involved in several cancers; however, its role in cervical cancer is unclear. Herein, we showed that LASP2 was highly expressed in cervical cancer tissues and cell lines. To knockdown LASP2 in cervical cancer cells, small interfering RNAs (siRNAs) targeting LASP2 (si-LASP2) were used. We found that cell proliferation, migration/invasion were markedly reduced after si-LASP2 transfection. A significant increase in E-cadherin expression, and decrease in N-cadherin and vimentin expressions were observed in si-LASP2 transfected cervical cancer cells. Knockdown of LASP2 caused significant inhibitory effect on the PI3K/Akt pathway. Treatment with the activator of the PI3K/Akt pathway, 740Y-P, abolished the effects of si-LASP2 transfection on cervical cancer cells. These findings suggested that LASP2 may be an oncogene through regulating the PI3K/Akt pathway in cervical cancer.
Collapse
Affiliation(s)
- Yimeng Zhang
- Department of Gynecology and Obstetrics, Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Liya Zhang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| |
Collapse
|
19
|
Saffarian A, Tarokh A, Reza Haghshenas M, Taghipour M, Chenari N, Ghaderi A, Razmkhah M. Proteomics Study of Mesenchymal Stem Cell-Like Cells Isolated from Cerebrospinal Fluid of Patients with Meningioma. CURR PROTEOMICS 2019. [DOI: 10.2174/1570164616666190204161453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:Cerebrospinal fluid (CSF) contains pro-growth factors that can affect proliferation, migration and differentiation of Mesenchymal Stem Cells (MSCs).Objective:This study aimed to isolate MSC like cells from CSF of patients with meningioma and psudotumorcerebri (PTC) and identify differentially expressed proteins in these cells.Methods:Five patients with newly diagnosed intracranial meningioma and five patients with PTC were recruited in this comparative proteomics study. MSCs were isolated from CSF and validated by mesenchyml and non-mesenchyml fluorochrome antibodies, and flow cytometer analysis. Two- Dimensional Gel Electrophoresis (2-DE) coupled with Mass Spectrometry (MS) was performed to identify differentially expressed proteins.Results:Microscopic views of the isolated cells as well as flow cytometer analysis were found to be compatible with MSC-like cells. Eight distinct protein spots were differentially and reproducibly expressed among the stained gels of two studied groups. The identified proteins were Phosphoglycerate Mutase 1 (PGAM1), LIM and SH3 domain protein (LASP1), peroxiredoxin-6 (PRDX-6), type I cytoskeletal 9 (KRT9), Superoxide Dismutase (SOD), endoplasmin, Stathmin 1 (STMN1), and glutathione S-transferase (GST).Conclusion:This study provides new insights into the plausible role of CSF derived MSCs in cancer progression, and reveals a promising therapeutic opportunity for targeting of MSC proteins in patients with meningioma.
Collapse
Affiliation(s)
- Arash Saffarian
- Department of Neurosurgery, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Tarokh
- Department of Neurosurgery, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Haghshenas
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mousa Taghipour
- Department of Neurosurgery, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nooshafarin Chenari
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboobeh Razmkhah
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
20
|
Weidle UH, Epp A, Birzele F, Brinkmann U. The Functional Role of Prostate Cancer Metastasis-related Micro-RNAs. Cancer Genomics Proteomics 2019; 16:1-19. [PMID: 30587496 DOI: 10.21873/cgp.20108] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/08/2018] [Accepted: 11/23/2018] [Indexed: 02/06/2023] Open
Abstract
The mortality of patients with hormone-resistant prostate cancer can be ascribed to a large degree to metastasis to distant organs, predominantly to the bones. In this review, we discuss the contribution of micro-RNAs (miRs) to the metastatic process of prostate cancer. The criteria for selection of miRs for this review were the availability of preclinical in vivo metastasis-related data in conjunction with prognostic clinical data. Depending on their function in the metastatic process, the corresponding miRs are up- or down-regulated in prostate cancer tissues when compared to matching normal tissues. Up-regulated miRs preferentially target suppressors of cytokine signaling or tumor suppressor-related genes and metastasis-inhibitory transcription factors. Down-regulated miRs promote epithelial-mesenchymal transition or mesenchymal-epithelial transition and diverse pro-metastatic signaling pathways. Some of the discussed miRs exert their function by simultaneously targeting epigenetic pathways as well as cell-cycle-related, anti-apoptotic and signaling-promoting targets. Finally, we discuss potential therapeutic options for the treatment of prostate cancer-related metastases by substitution or inhibition of miRs.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Alexandra Epp
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Fabian Birzele
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
21
|
A genome-wide scan for diversifying selection signatures in selected horse breeds. PLoS One 2019; 14:e0210751. [PMID: 30699152 PMCID: PMC6353161 DOI: 10.1371/journal.pone.0210751] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/30/2018] [Indexed: 12/20/2022] Open
Abstract
The genetic differentiation of the current horse population was evolutionarily created by natural or artificial selection which shaped the genomes of individual breeds in several unique ways. The availability of high throughput genotyping methods created the opportunity to study this genetic variation on a genome-wide level allowing detection of genome regions divergently selected between separate breeds as well as among different horse types sharing similar phenotypic features. In this study, we used the population differentiation index (FST) that is generally used for measuring locus-specific allele frequencies variation between populations, to detect selection signatures among six horse breeds maintained in Poland. These breeds can be classified into three major categories, including light, draft and primitive horses, selected mainly in terms of type (utility), exterior, performance, size, coat color and appearance. The analysis of the most pronounced selection signals found in this study allowed us to detect several genomic regions and genes connected with processes potentially important for breed phenotypic differentiation and associated with energy homeostasis during physical effort, heart functioning, fertility, disease resistance and motor coordination. Our results also confirmed previously described association of loci on ECA3 (spanning LCORL and NCAPG genes) and ECA11 (spanning LASP1 gene) with the regulation of body size in our draft and primitive (small size) horses. The efficiency of the applied FST-based approach was also confirmed by the identification of a robust selection signal in the blue dun colored Polish Konik horses at the locus of TBX3 gene, which was previously shown to be responsible for dun coat color dilution in other horse breeds. FST-based method showed to be efficient in detection of diversifying selection signatures in the analyzed horse breeds. Especially pronounced signals were observed at the loci responsible for fixed breed-specific features. Several candidate genes under selection were proposed in this study for traits selected in separate breeds and horse types, however, further functional and comparative studies are needed to confirm and explain their effect on the observed genetic diversity of the horse breeds.
Collapse
|
22
|
Hosseini SM, Mahjoubi F, Majidzadeh T, Khaje-Hosseini F, Haghipanah M. Nebulette Expression Is Associated with Lymph Node Metastasis in Patients with Colorectal Cancer. Middle East J Dig Dis 2018; 10:174-179. [PMID: 30186581 PMCID: PMC6119834 DOI: 10.15171/mejdd.2018.107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/03/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND
Colorectal cancer (CRC) is one of the most common cancers among men and women worldwide.
Cancer metastasis is the main cause of death in patients with cancer. NEBL (nebulette, Gene ID:
10529) protein interacts with thin filaments in the cell and may functionally destabilize focal
adhesion composition. There are some studies on NEBL gene expression alteration in cancer. In
the presented study we aimed to analyze NEBL gene expression in patients with colorectal cancer
to explore possible association of this gene with clinicopathological features in CRC.
METHODS
Sixty-seven fresh samples of colorectal tumors and adjacent normal tissues were collected
from Iranian patients with CRC. Real time polymerase chain reaction was performed to measure
the level of NEBL gene expression and its association with clinico-pathological features.
RESULTS
A significant overexpression with 3 fold increse was seen in NEBL mRNA level in tumoral
tissues compared with the adjacent normal tissues. In addition there was a significant association
between NEBL gene expression with lymph node metastasis in patients with CRC.
CONCLUSION
The overexpression of NEBL has the capacity to be considred as a prognostic biomarker in
patients with CRC.
Collapse
Affiliation(s)
- Sayed Mostafa Hosseini
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Frouzandeh Mahjoubi
- Department of Clinical Genetic, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Tayebeh Majidzadeh
- Department of Clinical Genetic, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | | | - Mahya Haghipanah
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Gao Q, Tang L, Wu L, Li K, Wang H, Li W, Wu J, Li M, Wang S, Zhao L. LASP1 promotes nasopharyngeal carcinoma progression through negatively regulation of the tumor suppressor PTEN. Cell Death Dis 2018. [PMID: 29531214 PMCID: PMC5847534 DOI: 10.1038/s41419-018-0443-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
LIM and SH3 protein 1 (LASP1) enhances tumor growth and metastasis in various cancers, but its role in nasopharyngeal carcinoma (NPC) remains unclear. Herein, we investigated the role of LASP1 in NPC and explored the underlying mechanisms in NPC. Clinically, overexpression of LASP1 is associated with tumor metastasis and poor prognosis of NPC patients. Gain-of-function and loss-of-function assays showed that LASP1 promoted NPC cell proliferation, metastasis, and invasion in vitro and in vivo. Mechanistically, we observed clear co-localization between LASP1 and PTEN in NPC cells. LASP1 interacted with PTEN and decreased the expression of PTEN in NPC. The ubiquitination assay indicated that LASP1 overexpression increased PTEN ubiquitination. PTEN was known as a tumor suppressor by negatively regulating phosphoinositide 3-kinase/AKT signaling pathway. Rescue experiments showed that PTEN weakened LASP1-mediated cell proliferation, migration, and invasive abilities and decreased the phosphorylation of AKT in NPC cells. Our findings suggest that LASP1 has a crucial role in NPC progression via LASP1/PTEN/AKT axis, highlighting LASP1 as a therapeutic target for NPC.
Collapse
Affiliation(s)
- Qingzu Gao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Lihua Tang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ling Wu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Kaitao Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hui Wang
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weidong Li
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China
| | - Juan Wu
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingyi Li
- Radiotherapy Department, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuang Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Liang Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
24
|
Endres M, Kneitz S, Orth MF, Perera RK, Zernecke A, Butt E. Regulation of matrix metalloproteinases (MMPs) expression and secretion in MDA-MB-231 breast cancer cells by LIM and SH3 protein 1 (LASP1). Oncotarget 2018; 7:64244-64259. [PMID: 27588391 PMCID: PMC5325439 DOI: 10.18632/oncotarget.11720] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 08/09/2016] [Indexed: 01/27/2023] Open
Abstract
The process of tumor invasion requires degradation of extracellular matrix by proteolytic enzymes. Cancer cells form protrusive invadopodia, which produce and release matrix metalloproteinases (MMPs) to degrade the basement membrane thereby enabling metastasis. We investigated the effect of LASP1, a newly identified protein in invadopodia, on expression, secretion and activation of MMPs in invasive breast tumor cell lines. By analyzing microarray data of in-house generated control and LASP1-depleted MDA-MB-231 breast cancer cells, we observed downregulation of MMP1, -3 and -9 upon LASP1 depletion. This was confirmed by Western blot analysis. Conversely, rescue experiments restored in part MMP expression and secretion. The regulatory effect of LASP1 on MMP expression was also observed in BT-20 breast cancer cells as well as in prostate and bladder cancer cell lines. In line with bioinformatic FunRich analysis of our data, which mapped a high regulation of transcription factors by LASP1, public microarray data analysis detected a correlation between high LASP1 expression and enhanced c-Fos levels, a protein that is part of the transcription factor AP-1 and known to regulate MMP expression. Compatibly, in luciferase reporter assays, AP-1 showed a decreased transcriptional activity after LASP1 knockdown. Zymography assays and Western blot analysis revealed an additional promotion of MMP secretion into the extracellular matrix by LASP1, thus, most likely, altering the microenvironment during cancer progression. The newly identified role of LASP1 in regulating matrix degradation by affecting MMP transcription and secretion elucidated the migratory potential of LASP1 overexpressing aggressive tumor cells in earlier studies.
Collapse
Affiliation(s)
- Marcel Endres
- Institute of Experimental Biomedicine II, University Medical Clinic of Wuerzburg, Wuerzburg, Germany
| | - Susanne Kneitz
- Physiological Chemistry, Biozentrum, University of Wuerzburg, Am Hubland, Wuerzburg, Germany
| | - Martin F Orth
- Institute of Experimental Biomedicine II, University Medical Clinic of Wuerzburg, Wuerzburg, Germany
| | - Ruwan K Perera
- Institute of Experimental Biomedicine II, University Medical Clinic of Wuerzburg, Wuerzburg, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine II, University Medical Clinic of Wuerzburg, Wuerzburg, Germany
| | - Elke Butt
- Institute of Experimental Biomedicine II, University Medical Clinic of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
25
|
Shi J, Guo J, Li X. Role of LASP-1, a novel SOX9 transcriptional target, in the progression of lung cancer. Int J Oncol 2017; 52:179-188. [PMID: 29138807 DOI: 10.3892/ijo.2017.4201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/07/2017] [Indexed: 11/06/2022] Open
Abstract
Lung cancer accounts for most cancer-related deaths worldwide. However, the underlying mechanism by which it mediates the progression of lung cancer remains unclear. Expression of LASP-1 (LIM and SH3 protein 1) was evaluated in lung cancer tissues and tumor-adjacent normal tissues using immunohistochemistry and western blotting. Functional studies have shown that siRNA-mediated silencing of LASP-1 in human lung cancer cells and reduced cell proliferation, migration, and invasion. Flow cytometry and immunofluorescence staining also revealed that rate of cell apoptosis was increased after knockdown of expression of LASP-1, thereby suggesting that LASP-1 may function as an oncogene during lung cancer progression. SOX9 is an important transcription factor, which is involved in the development of several types of human cancer. Further analysis has showed the presence of a consensus-binding site of SOX9 in the promoter region of LASP-1. Mechanistic investigations showed that LASP-1 was transcriptionally activated by SOX9. Through luciferase reporter and ChIP assays, we demonstrated that LASP-1 was a direct target gene of sex determining region Y-box 9 (SOX9). Knockdown of SOX9 expression by RNA interference reduces cell proliferation and induces apoptosis of lung cancer cells, which was consistent with the results obtained from silencing the expression of LASP-1 in NCI‑H1650 cells. Together, these findings indicated that LASP-1, as a downstream target of SOX9, may act as a novel biomarker for lung cancer and plays an important role in cell proliferation, migration, and invasion.
Collapse
Affiliation(s)
- Jianguang Shi
- Department of Thoracic Surgery, Ningbo First Hospital, Haishu, Ningbo, Zhejiang 315010, P.R. China
| | - Jing Guo
- Department of Thoracic Surgery, Ningbo First Hospital, Haishu, Ningbo, Zhejiang 315010, P.R. China
| | - Xinjian Li
- Department of Thoracic Surgery, Ningbo First Hospital, Haishu, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
26
|
Sato M, Yoneyama MS, Hatakeyama S, Funyu T, Suzuki T, Ohyama C, Tsuboi S. The role of LIM and SH3 protein-1 in bladder cancer metastasis. Oncol Lett 2017; 14:4829-4834. [PMID: 29085487 DOI: 10.3892/ol.2017.6802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/04/2017] [Indexed: 12/28/2022] Open
Abstract
The LIM and SH3 protein-1 (LASP-1) is a multi-domain protein that is involved in several malignant cancers. The role of LASP-1 in malignant phenotypes including high invasive properties and unrestricted cell proliferation, remain to be elucidated. The present study reported the association of LASP-1 expression with bladder cancer malignancy and its role in cancer cell invasion and proliferation. The immunohistochemical analysis of the expression status of LASP-1 in radical cystectomy specimens from invasive bladder cancer patients revealed that the LASP-1-positive patients demonstrated a decreased survival rate compared with the LASP-1-negative patients. The expression level of LASP-1 was increased in invasive bladder cancer cell lines compared with the non-invasive bladder cancer cell lines. Invasive cancer cells form invadopodia, the filamentous actin-based membrane protrusions that are essential in cancer cell invasion. Knockdown of LASP-1 reduced the ability to form invadopodia, resulting in decreased invasive capacity of the LASP-1 knockdown cells. In addition, knockdown of LASP-1 reduced cell proliferation. These results suggest that LASP-1 is important in invadopodia formation and cell proliferation of bladder cancer cells, promoting the malignant properties and resulting in poor-prognosis.
Collapse
Affiliation(s)
- Misaki Sato
- Department of Cancer Immunology and Cell Biology, Oyokyo Kidney Research Institute, Hirosaki, Aomori 036-8243, Japan
| | - Mihoko Sutoh Yoneyama
- Department of Cancer Immunology and Cell Biology, Oyokyo Kidney Research Institute, Hirosaki, Aomori 036-8243, Japan.,Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Shingo Hatakeyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Tomihisa Funyu
- Department of Cancer Immunology and Cell Biology, Oyokyo Kidney Research Institute, Hirosaki, Aomori 036-8243, Japan
| | - Tadashi Suzuki
- Department of Cancer Immunology and Cell Biology, Oyokyo Kidney Research Institute, Hirosaki, Aomori 036-8243, Japan
| | - Chikara Ohyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Shigeru Tsuboi
- Department of Cancer Immunology and Cell Biology, Oyokyo Kidney Research Institute, Hirosaki, Aomori 036-8243, Japan.,Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| |
Collapse
|
27
|
Ngan E, Kiepas A, Brown CM, Siegel PM. Emerging roles for LPP in metastatic cancer progression. J Cell Commun Signal 2017; 12:143-156. [PMID: 29027626 DOI: 10.1007/s12079-017-0415-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/03/2017] [Indexed: 01/21/2023] Open
Abstract
LIM domain containing proteins are important regulators of diverse cellular processes, and play pivotal roles in regulating the actin cytoskeleton. Lipoma Preferred Partner (LPP) is a member of the zyxin family of LIM proteins that has long been characterized as a promoter of mesenchymal/fibroblast cell migration. More recently, LPP has emerged as a critical inducer of tumor cell migration, invasion and metastasis. LPP is thought to contribute to these malignant phenotypes by virtue of its ability to shuttle into the nucleus, localize to adhesions and, most recently, to promote invadopodia formation. In this review, we will examine the mechanisms through which LPP regulates the functions of adhesions and invadopodia, and discuss potential roles of LPP in mediating cellular responses to mechanical cues within these mechanosensory structures.
Collapse
Affiliation(s)
- Elaine Ngan
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 508, Montréal, Québec, H3A 1A3, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Alex Kiepas
- Department of Physiology, McGill University, Montréal, Québec, Canada
| | - Claire M Brown
- Department of Physiology, McGill University, Montréal, Québec, Canada
| | - Peter M Siegel
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 508, Montréal, Québec, H3A 1A3, Canada. .,Department of Medicine, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
28
|
Hu S, Ran Y, Chen W, Zhang Y, Xu Y. MicroRNA-326 inhibits cell proliferation and invasion, activating apoptosis in hepatocellular carcinoma by directly targeting LIM and SH3 protein 1. Oncol Rep 2017; 38:1569-1578. [PMID: 28713953 DOI: 10.3892/or.2017.5810] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 06/26/2017] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth-most common cancer and third leading cause of cancer-related deaths worldwide. Increasing evidence indicates that dysregulation of microRNAs is often observed in HCC, and has been extensively investigated in terms of cancer formation, progression, diagnosis, therapy, and prognosis. Recently, microRNA-326 (miR-326) has been demonstrated to play important roles in multiple types of human cancer. However, the expression pattern, clinical significance, roles and regulatory mechanisms of miR-326 in HCC have yet to be elucidated. In this study, miR-326 was frequently downregulated in HCC tissues and cell lines. Low miR-326 expression was significantly associated with the TNM stage, differentiation and lymph node metastasis of HCC patients. Further functional assays demonstrated that the recovered miR-326 expression inhibited HCC cell proliferation and invasion and activated cell apoptosis in vitro. In addition, LIM and SH3 protein 1 (LASP1) was identified as a direct target gene of miR-326 in HCC. Furthermore, LASP1 was upregulated in HCC tissues and cell lines. The expression level of LASP1 mRNA was inversely correlated with that of miR-326 in HCC tissues. Moreover, LASP1 silencing elicited effects similar to miR-326 overexpression on HCC cells, and LASP1 upregulation markedly reversed the effects of miR-326 overexpression on HCC cells. These results revealed that miR-326 suppressed the progression of HCC by directly targeting LASP1. Therefore, miR-326 may be used as a potential therapeutic target for the treatment of patients with HCC.
Collapse
Affiliation(s)
- Shiping Hu
- Department of Hepatology, Longgang Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong 518172, P.R. China
| | - Yun Ran
- Department of Hepatology, Longgang Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong 518172, P.R. China
| | - Wenlin Chen
- Department of Hepatology, Longgang Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong 518172, P.R. China
| | - Yuncheng Zhang
- Department of Hepatology, Longgang Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong 518172, P.R. China
| | - Yongjian Xu
- Department of Hepatology, Longgang Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong 518172, P.R. China
| |
Collapse
|
29
|
Zhang X, Cai L, Zhou H, Liu Y, Fan C, Wang L, Li A, Miao Y, Li Q, Qiu X, Wang E. Lasp2 enhances tumor invasion via facilitating phosphorylation of FAK and predicts poor overall survival of non-small cell lung cancer patients. Mol Carcinog 2017; 56:2558-2565. [PMID: 28667800 DOI: 10.1002/mc.22700] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 05/13/2017] [Accepted: 06/29/2017] [Indexed: 12/28/2022]
Abstract
Lasp2, as well as Lasp1, is a member of the LIM-protein subfamily of the nebulin group characterized by the combined presence of LIM and SH3 domains. Lasp1 and Lasp2 are highly conserved in their LIM, nebulin-like, and SH3 domains but differ significantly at their linker regions. Lasp1 had been described as an oncogenic protein that was highly expressed in diverse cancer types and facilitated tumor proliferation, invasion, and metastasis process. However, unlike Lasp1, little is known about the functions of Lasp2. In the present study, using immunohistochemistry, we found that Lasp2 expression was significantly correlated with histological type (P = 0.012), advanced TNM stage (P = 0.024), positive regional lymph node metastasis (P = 0.035), and poor overall survival (P = 0.001). Would healing assay and transwell assay results indicated that Lasp2 promoted tumor migration and invasion in NSCLC cells. Furthermore, Lasp2 facilitated Snail expression and inhibited Zo-1. The levels of phosphorylated FAK (Tyr397 and Tyr925) were obviously increased after overexpressing Lasp2 and were downregulated by transfecting Lasp2-siRNA. FAK inhibitor counteracted upregulating Snail expression and downregulating of Zo-1 expression induced by Lasp2 overexpression. Taken together, Lasp2 may facilitate tumor migration and invasion of NSCLCs through FAK-Snail/Zo-1 signaling pathway. Lasp2 may be a potential prognostic predictor of NSCLC patients.
Collapse
Affiliation(s)
- Xiupeng Zhang
- Department of Pathology, Basic Medicine Science and First Hospital of China Medical University, Shenyang, China
| | - Lin Cai
- Department of Pathology, Basic Medicine Science and First Hospital of China Medical University, Shenyang, China
| | - Haijing Zhou
- Department of Pathology, Basic Medicine Science and First Hospital of China Medical University, Shenyang, China
| | - Yang Liu
- Department of Pathology, Basic Medicine Science and First Hospital of China Medical University, Shenyang, China
| | - Chuifeng Fan
- Department of Pathology, Basic Medicine Science and First Hospital of China Medical University, Shenyang, China
| | - Liang Wang
- Department of Pathology, Basic Medicine Science and First Hospital of China Medical University, Shenyang, China
| | - Ailin Li
- Department of Radiotherapy, First Hospital of China Medical University, Shenyang, China
| | - Yuan Miao
- Department of Pathology, Basic Medicine Science and First Hospital of China Medical University, Shenyang, China
| | - Qingchang Li
- Department of Pathology, Basic Medicine Science and First Hospital of China Medical University, Shenyang, China
| | - Xueshan Qiu
- Department of Pathology, Basic Medicine Science and First Hospital of China Medical University, Shenyang, China
| | - Enhua Wang
- Department of Pathology, Basic Medicine Science and First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
30
|
Oh PS, Kim HS, Kim EM, Hwang H, Ryu HH, Lim S, Sohn MH, Jeong HJ. Inhibitory effect of blue light emitting diode on migration and invasion of cancer cells. J Cell Physiol 2017; 232:3444-3453. [PMID: 28098340 DOI: 10.1002/jcp.25805] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/14/2017] [Accepted: 01/17/2017] [Indexed: 12/20/2022]
Abstract
The aim of this study was to determine the effects and molecular mechanism of blue light emitting diode (LED) in tumor cells. A migration and invasion assay for the metastatic behavior of mouse colon cancer CT-26 and human fibrosarcoma HT-1080 cells was performed. Cancer cell migration-related proteins were identified by obtaining a 2-dimensional gel electrophoresis (2-DE) in total cellular protein profile of blue LED-irradiated cancer cells, followed by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) analysis of proteins. Protein levels were examined by immunoblotting. Irradiation with blue LED inhibited CT-26 and HT-1080 cell migration and invasion. The anti-metastatic effects of blue LED irradiation were associated with inhibition of matrix metalloproteinase (MMP)-2 and MMP-9 expression. P38 MAPK phosphorylation was increased in blue LED-irradiated CT-26 and HT-1080 cells, but was inhibited after pretreatment with SB203580, a specific inhibitor of p38 MAPK. Inhibition of p38 MAPK phosphorylation by SB203580 treatment increased number of migratory cancer cells in CT-26 and HT-1080 cells, indicating that blue LED irradiation inhibited cancer cell migration via phosphorylation of p38 MAPK. Additionally blue LED irradiation of mice injected with CT-26 cells expressing luciferase decreased early stage lung metastasis compared to untreated control mice. These results indicate that blue LED irradiation inhibits cancer cell migration and invasion in vitro and in vivo.
Collapse
Affiliation(s)
- Phil-Sun Oh
- Molecular Imaging and Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Sciences, Biomedical Research Institute, Department of Nuclear Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Republic of Korea
| | - Hyun-Soo Kim
- Molecular Imaging and Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Sciences, Biomedical Research Institute, Department of Nuclear Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Republic of Korea
| | - Eun-Mi Kim
- Molecular Imaging and Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Sciences, Biomedical Research Institute, Department of Nuclear Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Republic of Korea
| | - Hyosook Hwang
- Molecular Imaging and Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Sciences, Biomedical Research Institute, Department of Nuclear Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Republic of Korea
| | - Hyang Hwa Ryu
- Molecular Imaging and Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Sciences, Biomedical Research Institute, Department of Nuclear Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Republic of Korea
| | - SeokTae Lim
- Molecular Imaging and Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Sciences, Biomedical Research Institute, Department of Nuclear Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Republic of Korea
| | - Myung-Hee Sohn
- Molecular Imaging and Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Sciences, Biomedical Research Institute, Department of Nuclear Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Republic of Korea
| | - Hwan-Jeong Jeong
- Molecular Imaging and Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Sciences, Biomedical Research Institute, Department of Nuclear Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Republic of Korea
| |
Collapse
|
31
|
Butt E, Ebbing J, Bubendorf L, Ardelt P. Influence of hematuria and infection on diagnostic accuracy of urinary LASP1: a new biomarker for bladder carcinoma. Biomark Med 2017; 11:347-357. [PMID: 28290211 DOI: 10.2217/bmm-2016-0348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM To further promote the clinical use of urinary LASP1 as biomarker for urothelial carcinoma of the bladder regarding limitations and alternative testing systems. PATIENTS & METHODS Urine stabilization, alternative measurement systems and limitations by erythrocyte contamination and infection were investigated in 246 patients. RESULTS Thimerosal allowed sufficient stabilization. Fluorescence-activated cell sorting analysis was not influenced by presence of erythrocytes or leukocytes and reliably urothelial carcinoma of the bladder but cell counts in specimen were low. Cut-off values of <25 leukocytes and <200 erythrocytes/µl resulted in sensitivity, specificity, positive and negative predictive values of 0.59, 0.80, 0.80 and 0.59, respectively. CONCLUSION Hematuria up to 200 erythrocytes/µl but not presence of leukocytes may be tolerated for this promising marker.
Collapse
Affiliation(s)
- Elke Butt
- Institute for Experimental Biomedicine II, University Clinic of Wuerzburg, Germany
| | - Jan Ebbing
- Department of Urology, University Hospital Basel, Basel, Switzerland
| | - Lukas Bubendorf
- Department of Pathology, University Hospital Basel, Basel, Switzerland
| | - Peter Ardelt
- Department of Urology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
32
|
Kong FY, Zhu T, Li N, Cai YF, Zhou K, Wei X, Kou YB, You HJ, Zheng KY, Tang RX. Bioinformatics analysis of the proteins interacting with LASP-1 and their association with HBV-related hepatocellular carcinoma. Sci Rep 2017; 7:44017. [PMID: 28266596 PMCID: PMC5339786 DOI: 10.1038/srep44017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 02/02/2017] [Indexed: 12/11/2022] Open
Abstract
LIM and SH3 domain protein (LASP-1) is responsible for the development of several types of human cancers via the interaction with other proteins; however, the precise biological functions of proteins interacting with LASP-1 are not fully clarified. Although the role of LASP-1 in hepatocarcinogenesis has been reported, the implication of LASP-1 interactors in HBV-related hepatocellular carcinoma (HCC) is not clearly evaluated. We obtained information regarding LASP-1 interactors from public databases and published studies. Via bioinformatics analysis, we found that LASP-1 interactors were related to distinct molecular functions and associated with various biological processes. Through an integrated network analysis of the interaction and pathways of LASP-1 interactors, cross-talk between different proteins and associated pathways was found. In addition, LASP-1 and several its interactors are significantly altered in HBV-related HCC through microarray analysis and could form a complex co-expression network. In the disease, LASP-1 and its interactors were further predicted to be regulated by a complex interaction network composed of different transcription factors. Besides, numerous LASP-1 interactors were associated with various clinical factors and related to the survival and recurrence of HBV-related HCC. Taken together, these results could help enrich our understanding of LASP-1 interactors and their relationships with HBV-related HCC.
Collapse
Affiliation(s)
- Fan-Yun Kong
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ting Zhu
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Nan Li
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yun-Fei Cai
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kai Zhou
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiao Wei
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yan-Bo Kou
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hong-Juan You
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kui-Yang Zheng
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ren-Xian Tang
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
33
|
Ballek O, Valečka J, Dobešová M, Broučková A, Manning J, Řehulka P, Stulík J, Filipp D. TCR Triggering Induces the Formation of Lck-RACK1-Actinin-1 Multiprotein Network Affecting Lck Redistribution. Front Immunol 2016; 7:449. [PMID: 27833610 PMCID: PMC5081367 DOI: 10.3389/fimmu.2016.00449] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/10/2016] [Indexed: 02/02/2023] Open
Abstract
The initiation of T-cell signaling is critically dependent on the function of the member of Src family tyrosine kinases, Lck. Upon T-cell antigen receptor (TCR) triggering, Lck kinase activity induces the nucleation of signal-transducing hubs that regulate the formation of complex signaling network and cytoskeletal rearrangement. In addition, the delivery of Lck function requires rapid and targeted membrane redistribution, but the mechanism underpinning this process is largely unknown. To gain insight into this process, we considered previously described proteins that could assist in this process via their capacity to interact with kinases and regulate their intracellular translocations. An adaptor protein, receptor for activated C kinase 1 (RACK1), was chosen as a viable option, and its capacity to bind Lck and aid the process of activation-induced redistribution of Lck was assessed. Our microscopic observation showed that T-cell activation induces a rapid, concomitant, and transient co-redistribution of Lck and RACK1 into the forming immunological synapse. Consistent with this observation, the formation of transient RACK1-Lck complexes were detectable in primary CD4+ T-cells with their maximum levels peaking 10 s after TCR-CD4 co-aggregation. Moreover, RACK1 preferentially binds to a pool of kinase active pY394Lck, which co-purifies with high molecular weight cellular fractions. The formation of RACK1-Lck complexes depends on functional SH2 and SH3 domains of Lck and includes several other signaling and cytoskeletal elements that transiently bind the complex. Notably, the F-actin-crosslinking protein, α-actinin-1, binds to RACK1 only in the presence of kinase active Lck suggesting that the formation of RACK1-pY394Lck-α-actinin-1 complex serves as a signal module coupling actin cytoskeleton bundling with productive TCR/CD4 triggering. In addition, the treatment of CD4+ T-cells with nocodazole, which disrupts the microtubular network, also blocked the formation of RACK1-Lck complexes. Importantly, activation-induced Lck redistribution was diminished in primary CD4+ T-cells by an adenoviral-mediated knockdown of RACK1. These results demonstrate that in T cells, RACK1, as an essential component of the multiprotein complex which upon TCR engagement, links the binding of kinase active Lck to elements of the cytoskeletal network and affects the subcellular redistribution of Lck.
Collapse
Affiliation(s)
- Ondřej Ballek
- Laboratory of Immunobiology, Institute of Molecular Genetics AS CR , Prague , Czech Republic
| | - Jan Valečka
- Laboratory of Immunobiology, Institute of Molecular Genetics AS CR , Prague , Czech Republic
| | - Martina Dobešová
- Laboratory of Immunobiology, Institute of Molecular Genetics AS CR , Prague , Czech Republic
| | - Adéla Broučková
- Laboratory of Immunobiology, Institute of Molecular Genetics AS CR , Prague , Czech Republic
| | - Jasper Manning
- Laboratory of Immunobiology, Institute of Molecular Genetics AS CR , Prague , Czech Republic
| | - Pavel Řehulka
- Faculty of Military Health Sciences, Institute of Molecular Pathology , Hradec Králové , Czech Republic
| | - Jiří Stulík
- Faculty of Military Health Sciences, Institute of Molecular Pathology , Hradec Králové , Czech Republic
| | - Dominik Filipp
- Laboratory of Immunobiology, Institute of Molecular Genetics AS CR , Prague , Czech Republic
| |
Collapse
|
34
|
Kato M, Kurozumi A, Goto Y, Matsushita R, Okato A, Nishikawa R, Fukumoto I, Koshizuka K, Ichikawa T, Seki N. Regulation of metastasis-promoting LOXL2 gene expression by antitumor microRNAs in prostate cancer. J Hum Genet 2016; 62:123-132. [PMID: 27278788 DOI: 10.1038/jhg.2016.68] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 04/29/2016] [Accepted: 05/11/2016] [Indexed: 12/22/2022]
Abstract
Our recent studies of microRNA (miRNA) expression signatures of prostate cancer (PCa) showed that six miRNAs (specifically, miR-26a, miR-26b, miR-29a, miR-29b, miR-29c and miR-218) were markedly reduced in cancer tissues. Moreover, ectopic expression of these miRNAs suppressed PCa cell aggressiveness, indicating that these miRNAs acted in concert to regulate genes that promoted metastasis. Genome-wide gene expression analysis and in silico database analysis identified a total of 35 candidate genes that promoted metastasis and were targeted by these 6 miRNAs. Using luciferase reporter assays, we showed that the lysyl oxidase-like 2 (LOXL2) gene was directly controlled by these tumor-suppressive miRNAs in PCa cells. Overexpression of LOXL2 was confirmed in PCa tissues and knockdown of the LOXL2 gene markedly inhibited the migration and invasion of PCa cells. Aberrant expression of LOXL2 enhanced migration and invasion of PCa cells. Downregulation of antitumor miRNAs might disrupt the tightly controlled RNA networks found in normal cells. New insights into the novel molecular mechanisms of PCa pathogenesis was revealed by antitumor miRNA-regulated RNA networks.
Collapse
Affiliation(s)
- Mayuko Kato
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan.,Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Akira Kurozumi
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan.,Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yusuke Goto
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan.,Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Ryosuke Matsushita
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Atsushi Okato
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan.,Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Rika Nishikawa
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan.,Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Ichiro Fukumoto
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Keiichi Koshizuka
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Tomohiko Ichikawa
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
35
|
Zhang H, Li Z, Chu B, Zhang F, Zhang Y, Ke F, Chen Y, Xu Y, Liu S, Zhao S, Liang H, Weng M, Wu X, Li M, Wu W, Quan Z, Liu Y, Zhang Y, Gong W. Upregulated LASP-1 correlates with a malignant phenotype and its potential therapeutic role in human cholangiocarcinoma. Tumour Biol 2016; 37:8305-8315. [PMID: 26729195 DOI: 10.1007/s13277-015-4704-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 12/20/2015] [Indexed: 02/08/2023] Open
Abstract
LIM and SH3 protein 1 (LASP-1) is demonstrated to play a key role in occurrence and development of tumors. However, the expression and function of LASP-1 in cholangiocarcinoma (CCA) remain largely unexplored. This study aimed to investigate the effect of regulated LASP-1 expression on migration, invasion, proliferation, and apoptosis of CCA cells and on tumorigenesis in vivo, and to examine clinico-oncological correlates of LASP-1 expression. Expression of LASP-1 by immunohistochemistry was evaluated in CCA tissue samples. HCCC-9810 and RBE cells were transfected with the LASP-1 small interfering RNA (siRNA), and the effect of knocking down LASP-1 gene expression on cell migration, invasion, proliferation, and apoptosis were examined by wound healing, transwell assays, CCK-8 assays, colony formation, and flow cytometry assays, respectively. Xenograft tumor model was used to validate the effect of downregulated LASP-1 in vivo. Our results demonstrated that LASP-1 was over-expressed in CCA tissues, positively correlating with larger tumors, poor histological differentiation, lymph node metastasis, advanced TNM stage, and poor prognosis in CCA patients (P < 0.05). Downregulation of LASP-1 in HCCC-9810 and RBE cell lines significantly increased cell apoptosis and suppressed cell migration, invasion, and proliferation in vitro and tumorigenesis in vivo. Our results indicate that LASP-1 may essentially involve in the metastasis and growth of CCA and clinical significance of LASP-1 may reside in function as a biomarker to predict prognosis and as a promising therapeutic strategy for CCA patients by the inhibition of LASP-1 expression.
Collapse
Affiliation(s)
- Hongchen Zhang
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
- The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Zhizhen Li
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
- The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Bingfeng Chu
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
- The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Fei Zhang
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
- The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yijian Zhang
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
- The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Fayong Ke
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
- The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yuanyuan Chen
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
- The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yi Xu
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
- The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Shibo Liu
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
- The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Shuai Zhao
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
- The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Haibin Liang
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
- The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Mingzhe Weng
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
- The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Xiangsong Wu
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
- The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Maolan Li
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
- The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Wenguang Wu
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
- The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Zhiwei Quan
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
- The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yingbin Liu
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
- The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yong Zhang
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
- The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Wei Gong
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China.
- The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
36
|
Ura B, Scrimin F, Arrigoni G, Athanasakis E, Aloisio M, Monasta L, Ricci G. Abnormal expression of leiomyoma cytoskeletal proteins involved in cell migration. Oncol Rep 2016; 35:3094-100. [PMID: 26986808 DOI: 10.3892/or.2016.4688] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/05/2015] [Indexed: 11/05/2022] Open
Abstract
Uterine leiomyomas are monoclonal tumors. Several factors are involved in the neoplastic transformation of the myometrium. In our study we focused on dysregulated cytoskeletal proteins in the leiomyoma as compared to the myometrium. Paired tissue samples of ten leiomyomas and adjacent myometria were obtained and analyzed by two‑dimensional gel electrophoresis (2-DE). Mass spectrometry was used for protein identification, and western blotting for 2-DE data validation. The values of ten cytoskeletal proteins were found to be significantly different: eight proteins were upregulated in the leiomyoma and two proteins were downregulated. Three of the upregulated proteins (myosin regulatory light polypeptide 9, four and a half LIM domains protein 1 and LIM and SH3 domain protein 1) are involved in cell migration, while downregulated protein transgelin is involved in replicative senescence. Myosin regulatory light polypeptide 9 (MYL9) was further validated by western blotting because it is considered to be a cell migration marker in several cancers and could play a key role in leiomyoma development. Our data demonstrate significant alterations in the expression of cytoskeletal proteins involved in leiomyoma growth. A better understanding of the involvement of cytoskeletal proteins in leiomyoma pathogenesis may contribute to the identification of new therapeutic targets and the development of new pharmacological approaches.
Collapse
Affiliation(s)
- Blendi Ura
- Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Federica Scrimin
- Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Giorgio Arrigoni
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Michelangelo Aloisio
- Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Lorenzo Monasta
- Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Giuseppe Ricci
- Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo', Trieste, Italy
| |
Collapse
|
37
|
Abstract
The members of the nebulin protein family, including nebulin, nebulette, LASP-1, LASP-2, and N-RAP, contain various numbers of nebulin repeats and bind to actin, but are otherwise heterogeneous with regard to size, expression pattern, and function. This review focuses on the roles of nebulin family members in the heart. Nebulin is the largest member predominantly expressed in skeletal muscle, where it stretches along the thin filament. In heart, nebulin is detectable only at low levels and its absence has no apparent effects. Nebulette is similar in structure to the nebulin C-terminal Z-line region and specifically expressed in heart. Nebulette gene mutations have been identified in dilated cardiomyopathy patients and transgenic mice overexpressing nebulette mutants partially recapitulate the human pathology. In contrast, nebulette knockout mice show no functional phenotype, but exhibit Z-line widening. LASP-2 is an isoform of nebulette expressed in multiple tissues, including the heart. It is present in the Z-line and intercalated disc and able to bind and cross-link filamentous actin. LASP-1 is similar in structure to LASP-2, but expressed only in non-muscle tissue. N-RAP is present in myofibril precursors during myofibrillogenesis and thought to be involved in myofibril assembly, while it is localized at the intercalated disc in adult heart. Additional in vivo models are required to provide further insights into the functions of nebulin family members in the heart.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research, UOS Milan, National Research Council
| | | |
Collapse
|
38
|
Orth MF, Cazes A, Butt E, Grunewald TGP. An update on the LIM and SH3 domain protein 1 (LASP1): a versatile structural, signaling, and biomarker protein. Oncotarget 2015; 6:26-42. [PMID: 25622104 PMCID: PMC4381576 DOI: 10.18632/oncotarget.3083] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 12/28/2014] [Indexed: 01/15/2023] Open
Abstract
The gene encoding the LIM and SH3 domain protein (LASP1) was cloned two decades ago from a cDNA library of breast cancer metastases. As the first protein of a class comprising one N-terminal LIM and one C-terminal SH3 domain, LASP1 founded a new LIM-protein subfamily of the nebulin group. Since its discovery LASP1 proved to be an extremely versatile protein because of its exceptional structure allowing interaction with various binding partners, its ubiquitous expression in normal tissues, albeit with distinct expression patterns, and its ability to transmit signals from the cytoplasm into the nucleus. As a result, LASP1 plays key roles in cell structure, physiological processes, and cell signaling. Furthermore, LASP1 overexpression contributes to cancer aggressiveness hinting to a potential value of LASP1 as a cancer biomarker. In this review we summarize published data on structure, regulation, function, and expression pattern of LASP1, with a focus on its role in human cancer and as a biomarker protein. In addition, we provide a comprehensive transcriptome analysis of published microarrays (n=2,780) that illustrates the expression profile of LASP1 in normal tissues and its overexpression in a broad range of human cancer entities.
Collapse
Affiliation(s)
- Martin F Orth
- Institute for Clinical Biochemistry and Pathobiochemistry, University Clinic of Würzburg, Grombühlstrasse, Würzburg, Germany
| | - Alex Cazes
- Institute for Clinical Biochemistry and Pathobiochemistry, University Clinic of Würzburg, Grombühlstrasse, Würzburg, Germany
| | - Elke Butt
- Institute for Clinical Biochemistry and Pathobiochemistry, University Clinic of Würzburg, Grombühlstrasse, Würzburg, Germany
| | - Thomas G P Grunewald
- Laboratory for Pediatric Sarcoma Biology, Institute of Pathology of the LMU Munich, Thalkirchner Strasse, Munich, Germany
| |
Collapse
|
39
|
The cytoskeletal protein LASP-1 differentially regulates migratory activities of choriocarcinoma cells. Arch Gynecol Obstet 2015; 293:407-14. [DOI: 10.1007/s00404-015-3830-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/27/2015] [Indexed: 01/06/2023]
|
40
|
Vaman V. S. A, Poppe H, Houben R, Grunewald TGP, Goebeler M, Butt E. LASP1, a Newly Identified Melanocytic Protein with a Possible Role in Melanin Release, but Not in Melanoma Progression. PLoS One 2015; 10:e0129219. [PMID: 26061439 PMCID: PMC4465371 DOI: 10.1371/journal.pone.0129219] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/06/2015] [Indexed: 12/25/2022] Open
Abstract
The LIM and SH3 protein 1 (LASP1) is a focal adhesion protein. Its expression is increased in many malignant tumors. However, little is known about the physiological role of the protein. In the present study, we investigated the expression and function of LASP1 in normal skin, melanocytic nevi and malignant melanoma. In normal skin, a distinct LASP1 expression is visible only in the basal epidermal layer while in nevi LASP1 protein is detected in all melanocytes. Melanoma exhibit no increase in LASP1 mRNA compared to normal skin. In melanocytes, the protein is bound to dynamin and mainly localized at late melanosomes along the edges and at the tips of the cell. Knockdown of LASP1 results in increased melanin concentration in the cells. Collectively, we identified LASP1 as a hitherto unknown protein in melanocytes and as novel partner of dynamin in the physiological process of membrane constriction and melanosome vesicle release.
Collapse
Affiliation(s)
- Anjana Vaman V. S.
- Institute of Clinical Biochemistry and Pathobiochemistry, University Hospital Würzburg, Würzburg, Germany
| | - Heiko Poppe
- Institute of Clinical Biochemistry and Pathobiochemistry, University Hospital Würzburg, Würzburg, Germany
- Department of Dermatology, University Hospital Würzburg, Würzburg, Germany
| | - Roland Houben
- Department of Dermatology, University Hospital Würzburg, Würzburg, Germany
| | - Thomas G. P. Grunewald
- Laboratory for Pediatric Sarcoma Biology, Institute of Pathology, Ludwig Maximilians University Munich, Munich, Germany
| | - Matthias Goebeler
- Department of Dermatology, University Hospital Würzburg, Würzburg, Germany
| | - Elke Butt
- Institute of Clinical Biochemistry and Pathobiochemistry, University Hospital Würzburg, Würzburg, Germany
- * E-mail:
| |
Collapse
|
41
|
LASP1 is a novel BCR-ABL substrate and a phosphorylation-dependent binding partner of CRKL in chronic myeloid leukemia. Oncotarget 2015; 5:5257-71. [PMID: 24913448 PMCID: PMC4170624 DOI: 10.18632/oncotarget.2072] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chronic myeloid leukemia (CML) is characterized by a genomic translocation generating a permanently active BCR-ABL oncogene with a complex pattern of atypically tyrosine-phosphorylated proteins that drive the malignant phenotype of CML. Recently, the LIM and SH3 domain protein 1 (LASP1) was identified as a component of a six gene signature that is strongly predictive for disease progression and relapse in CML patients. However, the underlying mechanisms why LASP1 expression correlates with dismal outcome remained unresolved. Here, we identified LASP1 as a novel and overexpressed direct substrate of BCR-ABL in CML. We demonstrate that LASP1 is specifically phosphorylated by BCR-ABL at tyrosine-171 in CML patients, which is abolished by tyrosine kinase inhibitor therapy. Further studies revealed that LASP1 phosphorylation results in an association with CRKL - another specific BCR-ABL substrate and bona fide biomarker for BCR-ABL activity. pLASP1-Y171 binds to non-phosphorylated CRKL at its SH2 domain. Accordingly, the BCR-ABL-mediated pathophysiological hyper-phosphorylation of LASP1 in CML disrupts normal regulation of CRKL and LASP1, which likely has implications on downstream BCR-ABL signaling. Collectively, our results suggest that LASP1 phosphorylation might serve as an additional candidate biomarker for assessment of BCR-ABL activity and provide a first step toward a molecular understanding of LASP1 function in CML.
Collapse
|
42
|
Hailer A, Grunewald TGP, Orth M, Reiss C, Kneitz B, Spahn M, Butt E. Loss of tumor suppressor mir-203 mediates overexpression of LIM and SH3 Protein 1 (LASP1) in high-risk prostate cancer thereby increasing cell proliferation and migration. Oncotarget 2015; 5:4144-4153. [PMID: 24980827 PMCID: PMC4147312 DOI: 10.18632/oncotarget.1928] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Several studies have linked overexpression of the LIM and SH3 domain protein 1 (LASP1) to progression of breast, colon, liver, and bladder cancer. However, its expression pattern and role in human prostate cancer (PCa) remained largely undefined. Analysis of published microarray data revealed a significant overexpression of LASP1 in PCa metastases compared to parental primary tumors and normal prostate epithelial cells. Subsequent gene-set enrichment analysis comparing LASP1-high and -low PCa identified an association of LASP1 with genes involved in locomotory behavior and chemokine signaling. These bioinformatic predictions were confirmed in vitro as the inducible short hairpin RNA-mediated LASP1 knockdown impaired migration and proliferation in LNCaP prostate cancer cells. By immunohistochemical staining and semi-quantitative image analysis of whole tissue sections we found an enhanced expression of LASP1 in primary PCa and lymph node metastases over benign prostatic hyperplasia. Strong cytosolic and nuclear LASP1 immunoreactivity correlated with PSA progression. Conversely, qRT-PCR analyses for mir-203, which is a known translational suppressor of LASP1 in matched RNA samples revealed an inverse correlation of LASP1 protein and mir-203 expression. Collectively, our results suggest that loss of mir-203 expression and thus uncontrolled LASP1 overexpression might drive progression of PCa.
Collapse
Affiliation(s)
- Amelie Hailer
- Institute for Clinical Biochemistry and Pathobiochemistry, University Clinic of Wuerzburg, Grombuehlstrasse 12, 97080 Wuerzburg, Germany. These authors contributed equally to this work
| | - Thomas G P Grunewald
- INSERM Unit 830, Genetics and Biology of Cancers, Institute Curie Research Center, 26 rue d'Ulm, 75248 Paris, France. These authors contributed equally to this work
| | - Martin Orth
- Institute for Clinical Biochemistry and Pathobiochemistry, University Clinic of Wuerzburg, Grombuehlstrasse 12, 97080 Wuerzburg, Germany. These authors contributed equally to this work
| | - Cora Reiss
- Institute for Clinical Biochemistry and Pathobiochemistry, University Clinic of Wuerzburg, Grombuehlstrasse 12, 97080 Wuerzburg, Germany. These authors contributed equally to this work
| | - Burkhard Kneitz
- Urology and Pediatric Urology, University Clinic of Wuerzburg, Oberduerrbacher Strasse 6, 97080 Wuerzburg, Germany
| | - Martin Spahn
- Urology and Pediatric Urology, University Clinic of Wuerzburg, Oberduerrbacher Strasse 6, 97080 Wuerzburg, Germany
| | - Elke Butt
- Institute for Clinical Biochemistry and Pathobiochemistry, University Clinic of Wuerzburg, Grombuehlstrasse 12, 97080 Wuerzburg, Germany. These authors contributed equally to this work
| |
Collapse
|
43
|
Salvi A, Bongarzone I, Ferrari L, Abeni E, Arici B, De Bortoli M, Scuri S, Bonini D, Grossi I, Benetti A, Baiocchi G, Portolani N, De Petro G. Molecular characterization of LASP-1 expression reveals vimentin as its new partner in human hepatocellular carcinoma cells. Int J Oncol 2015; 46:1901-12. [PMID: 25760690 PMCID: PMC4383023 DOI: 10.3892/ijo.2015.2923] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/03/2015] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related mortality worldwide. We have previously reported that LASP-1 is a downstream protein of the urokinase type plasminogen activator (uPA). Here we investigated the role of LASP-1 in HCC by a molecular and biological characterization of LASP-1 expression in human HCC specimens and in cultured HCC cells. We determined the LASP-1 mRNA expression levels in 55 HCC cases with different hepatic background disease. We identified 3 groups of patients with high, equal or low LASP-1 mRNA levels in HCC tissues compared to the peritumoral (PT) tissues. In particular we found that i) the HCCs displayed a higher LASP-1 mRNA level in HCC compared to PT tissues; ii) the expression levels of LASP-1 mRNA in female HCCs were significantly higher compared to male HCCs; iii) the cirrhotic HCCs displayed a higher LASP-1 mRNA. Further, the biological characterization of the ectopic LASP-1 overexpression in HCC cells, using MALDI-TOF mass spectrometer on the LASP-1 co-immunoprecipitated fractions, displayed vimentin as a novel putative partner of LASP-1. Our results suggest that LASP-1 mRNA overexpression may be mainly implicated in female HCCs and cirrhotic HCCs; and that LASP1 may play its role with vimentin in HCC cells.
Collapse
Affiliation(s)
- Alessandro Salvi
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, Brescia, Italy
| | - Italia Bongarzone
- Department of Experimental Oncology and Molecular Medicine, Proteomics Laboratory, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Lia Ferrari
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, Brescia, Italy
| | - Edoardo Abeni
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, Brescia, Italy
| | - Bruna Arici
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, Brescia, Italy
| | - Maida De Bortoli
- Department of Experimental Oncology and Molecular Medicine, Proteomics Laboratory, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sabrina Scuri
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, Brescia, Italy
| | - Daniela Bonini
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, Brescia, Italy
| | - Ilaria Grossi
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, Brescia, Italy
| | - Anna Benetti
- Department of Clinical and Experimental Sciences, Division of Morbid Anatomy, University of Brescia, Brescia, Italy
| | - Gianluca Baiocchi
- Department of Clinical and Experimental Sciences, Surgical Clinic, University of Brescia, Brescia, Italy
| | - Nazario Portolani
- Department of Clinical and Experimental Sciences, Surgical Clinic, University of Brescia, Brescia, Italy
| | - Giuseppina De Petro
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, Brescia, Italy
| |
Collapse
|
44
|
Zhao T, Ren H, Li J, Chen J, Zhang H, Xin W, Sun Y, Sun L, Yang Y, Sun J, Wang X, Gao S, Huang C, Zhang H, Yang S, Hao J. LASP1 is a HIF1α target gene critical for metastasis of pancreatic cancer. Cancer Res 2015; 75:111-9. [PMID: 25385028 PMCID: PMC4286473 DOI: 10.1158/0008-5472.can-14-2040] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
LASP1 is an actin-binding protein associated with actin assembly dynamics in cancer cells. Here, we report that LASP1 is overexpressed in pancreatic ductal adenocarcinoma (PDAC) where it promotes invasion and metastasis. We found that LASP1 overexpression in PDAC cells was mediated by HIF1α through direct binding to a hypoxia response element in the LASP1 promoter. HIF1α stimulated LASP1 expression in PDAC cells in vitro and mouse tumor xenografts in vivo. Clinically, LASP1 overexpression in PDAC patient specimens was associated significantly with lymph node metastasis and overall survival. Overall, our results defined LASP1 as a direct target gene for HIF1α upregulation that is critical for metastatic progression of PDAC.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Cell Movement/physiology
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- Female
- Heterografts
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- LIM Domain Proteins/genetics
- LIM Domain Proteins/metabolism
- Mice
- Mice, Nude
- Neoplasm Metastasis
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Promoter Regions, Genetic
- Transcriptional Activation
- Transfection
- Pancreatic Neoplasms
Collapse
Affiliation(s)
- Tiansuo Zhao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China. Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - He Ren
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China. Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jing Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China. Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jing Chen
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China. Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Huan Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China. Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Wen Xin
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China. Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yan Sun
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China. Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Lei Sun
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China. Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yongwei Yang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China. Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Junwei Sun
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China. Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xiuchao Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China. Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Song Gao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China. Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Chongbiao Huang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China. Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Huafeng Zhang
- School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Shengyu Yang
- Department of Tumor Biology and Comprehensive Melanoma Research Center, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jihui Hao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China. Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
| |
Collapse
|
45
|
Abstract
Cryopreservation is the only method for long-term storage of viable cells and tissues used for cellular therapy, stem cell transplantation and/or tissue engineering. However, the freeze-thaw process strongly contributes to cell and tissue damage through several mechanisms, including oxidative stress, cell injury from intracellular ice formation and altered physical cellular properties. Our previous proteomics investigation was carried out on Wharton's Jelly Stem Cells (WJSCs) having similar properties to adult mesenchymal stem cells and thus representing a rich source of primitive cells to be potentially used in regenerative medicine. The aim of the present work was to investigate molecular changes that occur in WJSCs proteome in different experimental conditions: fresh primary cell culture and frozen cell. To analyze changes in protein expression of WJSCs undergoing different culturing procedures, we performed a comparative proteomic analysis (2DE followed by MALDI-TOF MS/MS nanoESI-Q-TOF MS coupled with nanoLC) between WJSCs from fresh and frozen cell culturing, respectively. Frozen WJSCs showed qualitative and quantitative changes compared to cells from fresh preparation, expressing proteins involved in replication, cellular defence mechanism and metabolism, that could ensure freeze-thaw survival. The results of this study could play a key role in elucidating possible mechanisms related to maintaining active proliferation and maximal cellular plasticity and thus making the use of WJSCs in cell therapy safe following bio-banking.
Collapse
|
46
|
The clinicopathological significance of miR-133a in colorectal cancer. DISEASE MARKERS 2014; 2014:919283. [PMID: 25104873 PMCID: PMC4101241 DOI: 10.1155/2014/919283] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/12/2014] [Accepted: 06/14/2014] [Indexed: 12/27/2022]
Abstract
This study determined the expression of microRNA-133a (MiR-133a) in colorectal cancer (CRC) and adjacent normal mucosa samples and evaluated its clinicopathological role in CRC. The expression of miR-133a in 125 pairs of tissue samples was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) and correlated with patient's clinicopathological data by statistical analysis. Endogenous expression levels of several potential target genes were determined by qRT-PCR and correlated using Pearson's method. MiR-133a was downregulated in 83.2% of tumors compared to normal mucosal tissue. Higher miR-133a expression in tumor tissues was associated with development of distant metastasis, advanced Dukes and TNM staging, and poor survival. The unfavorable prognosis of higher miR-133a expression was accompanied by dysregulation of potential miR-133a target genes, LIM and SH3 domain protein 1 (LASP1), Caveolin-1 (CAV1), and Fascin-1 (FSCN1). LASP1 was found to possess a negative correlation (γ = −0.23), whereas CAV1 exhibited a significant positive correlation (γ = 0.27), and a stronger correlation was found in patients who developed distant metastases (γ = 0.42). In addition, a negative correlation of FSCN1 was only found in nonmetastatic patients. In conclusion, miR-133a was downregulated in CRC tissues, but its higher expression correlated with adverse clinical characteristics and poor prognosis.
Collapse
|
47
|
Kwon HJ, Kurono S, Kaneko Y, Ohmiya Y, Yasuda K. Analysis of proteins showing differential changes during ATP oscillations in chondrogenesis. Cell Biochem Funct 2014; 32:429-37. [PMID: 24578328 DOI: 10.1002/cbf.3033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 01/02/2014] [Accepted: 01/30/2014] [Indexed: 01/02/2023]
Abstract
Prechondrogenic condensation is a critical step for skeletal pattern formation. Our previous study showed that ATP oscillations play an essential role in prechondrogenic condensation because they induce oscillatory secretion. However, the molecular mechanisms that underlie ATP oscillations remain poorly understood. We examined how differential changes in proteins are implicated in ATP oscillations during chondrogenesis by using liquid chromatography/mass spectrometry. Our analysis showed that a number of proteins involved in ATP synthesis/consumption, catabolic/anabolic processes, actin dynamics, cell migration and adhesion were detected at either the peak or the trough of ATP oscillations, which implies that these proteins have oscillatory expression patterns that are coupled to ATP oscillations. On the basis of the results, we suggest that (1) the oscillatory expression of proteins involved in ATP synthesis/consumption and catabolic/anabolic processes can contribute to the generation or maintenance of ATP oscillations and that (2) the oscillatory expression of proteins involved in actin dynamics, cell migration and adhesion plays key roles in prechondrogenic condensation by inducing collective adhesion and migration in cooperation with ATP oscillations.
Collapse
Affiliation(s)
- Hyuck Joon Kwon
- Department of Physical Therapy, College of Health Science, Eulji University, Gyeonggi, South Korea
| | | | | | | | | |
Collapse
|
48
|
Fanayan S, Smith JT, Lee LY, Yan F, Snyder M, Hancock WS, Nice E. Proteogenomic analysis of human colon carcinoma cell lines LIM1215, LIM1899, and LIM2405. J Proteome Res 2013; 12:1732-42. [PMID: 23458625 DOI: 10.1021/pr3010869] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As part of the genome-wide and chromosome-centric human proteomic project (C-HPP), we have integrated shotgun proteomics approach and a genome-wide transcriptomic approach (RNA-Seq) of a set of human colon cancer cell lines (LIM1215, LIM1899 and LIM2405) that were selected to represent a wide range of pathological states of colorectal cancer. The combination of a standard proteomics approach (1D-gel electrophoresis coupled to LC/ion trap mass spectrometry) and RNA-Seq allowed us to exploit the greater depth of the transcriptomics measurement (∼ 9800 transcripts per cell line) versus the protein observations (∼ 1900 protein identifications per cell line). Conversely, the proteomics data were helpful in identifying both cancer associated proteins with differential expression patterns as well as protein networks and pathways which appear to be deregulated in these cell lines. Examples of potential markers include mortalin, nucleophosmin, ezrin, LASP1, alpha and beta forms of spectrin, exportin, the carcinoembryonic antigen family, EGFR and MET. Interaction analyses identified the large intermediate filament family, the protein folding network and adapter proteins in focal adhesion networks, which included the CDC42 and RHOA signaling pathways that may have potential for identifying phenotypic states representing poorly and moderately differentiated states of CRC, with or without metastases.
Collapse
Affiliation(s)
- Susan Fanayan
- Department of Chemistry and Biomolecular Sciences, Macquarie University , Sydney, NSW 2109, Australia
| | | | | | | | | | | | | |
Collapse
|
49
|
Joo J, Lee S, Nah SS, Kim YO, Kim DS, Shim SH, Hwangbo Y, Kim HK, Kwon JT, Kim JW, Song HY, Kim HJ. Lasp1 is down-regulated in NMDA receptor antagonist-treated mice and implicated in human schizophrenia susceptibility. J Psychiatr Res 2013; 47:105-12. [PMID: 23040864 DOI: 10.1016/j.jpsychires.2012.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 09/13/2012] [Accepted: 09/14/2012] [Indexed: 11/29/2022]
Abstract
Mice treated with MK-801, a non-competitive antagonist of the N-methyl-d-aspartic (NMDA) acid receptor, are important animal models for schizophrenia studies. In the present study, we compared protein expression levels in the hippocampus of mice treated with MK-801 (0.6 mg/kg) or saline once daily for 7 days. Changes in the proteome were detected by two-dimensional electrophoresis, and the six proteins exhibiting differential expression were identified by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. Down-regulation of one of these proteins, Lasp1 (LIM and SH3 protein 1), in MK-801-treated mice was confirmed by western blotting and immunohistochemical analyses. Lasp1 is a multidomain protein that may recruit signaling molecules to the actin-based cytoskeleton and is known to concentrate in synaptic sites of hippocampal neurons. We next investigated whether polymorphisms in the human LASP1 gene were associated with schizophrenia in the Korean population. A single-nucleotide polymorphism in the LASP1 gene promoter region was associated with schizophrenia susceptibility. Our results suggest that LASP1 might be associated with NMDA receptor antagonism and schizophrenia susceptibility and, thus, might be involved in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Jaesoon Joo
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan 330-090, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Gao K, Deng XY, Qian HY, Wu P, Qin GX, Liu T, Guo XJ. cDNA cloning and characterization of LASP1 from silkworm, Bombyx mori, involved in cytoplasmic polyhedrosis virus infection. Gene 2012; 511:389-97. [PMID: 23031809 DOI: 10.1016/j.gene.2012.09.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Accepted: 09/12/2012] [Indexed: 12/29/2022]
Abstract
Full-length cDNA of a LIM and SH3 contained protein 1 (named BmLASP1) was identified from the silkworm, Bombyx mori, for the first time by rapid amplification of cDNA ends. The full-length cDNA of BmLASP1 is 2094 bp, consisting of a 5'-terminal untranslated region (UTR) of 117 bp, and a 3'-UTR of 610 bp with two poly-adenylation signal sequence AATAAA and a poly (A) tail. The BmLASP1 cDNA encodes a polypeptide comprising 455 amino acids, including a LIM domain, two nebulin domains and an SH3 domain. The theoretical isoelectric point is 7.07 and the predicted molecular weight is 51.8 kDa. BmLASP1 has no signal peptide but three potential N-glycosylation sites. Sequence similarity and phylogenic analyses indicated that BmLASP1 belonged to the group of insect LASP1 with a longer linker region which is different from vertebrate LASP1. The LASP1 in silkworm contained eight exons in its coding regions, and the last exon-intron boundary was conserved the same as in mammalian and Ciona intestinalis LASP1 genes. By fluorescent quantitative real-time polymerase chain reaction, the mRNA transcripts of BmLASP1 were mainly detected in the gonad, head, and spiracle, and slightly in the silk gland, vasa mucosa, midgut, fat body, and hemocytes. After silkworm larvae were infected by B. mori cytoplasmic polyhedrosis virus (BmCPV), the relative expression level of BmLASP1 was down-regulated in the midgut. This result suggested that BmLASP1 may play an important role in the response of silkworm to BmCPV infection.
Collapse
Affiliation(s)
- Kun Gao
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu, China
| | | | | | | | | | | | | |
Collapse
|