1
|
Üstündağ H, Kara A, Gökhan Taş N, Danişman Kalindemi Rtaş F, Kurt N, Erbaş E, Tahir Huyut M, Gül M, Afşin Kari Per İ. Alleviation of LPS-induced acute lung injury by propolis-based nanocomposites through the TLR4/NFKB and P2X7/AKT pathways: Randomized-controlled experimental study. Toxicon 2025; 258:108330. [PMID: 40147797 DOI: 10.1016/j.toxicon.2025.108330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/13/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Sepsis-associated acute lung injury continues to pose a significant medical challenge with substantial morbidity and mortality rates. In this study, we investigated the therapeutic potential of propolis-based treatments and their nanocomposites in modulating inflammation and apoptosis using a lipopolysaccharide (LPS)-induced rat model of sepsis. Forty-two Sprague-Dawley rats were divided into seven groups (n = 6): control, LPS (5 mg/kg, i.p.), LPS + Propolis (100 mg/kg, i.p.), LPS + NanoPropolis (100 mg/kg, i.p.), LPS + silver nanoparticles propolis (AgNPsPro) (50 mg/kg), and a negative propolis group (100 mg/kg, i.p.). The rats were assessed for inflammatory, oxidative stress, and apoptotic markers through Western blot, histopathological analyses, and biochemical measurements. The LPS group exhibited significantly higher levels of pro-inflammatory cytokines (IL-1β, TNF-α) and the systemic infection marker presepsin (PRSN) in blood, as well as the oxidative stress marker malondialdehyde (MDA) in lung tissue. The treatment groups, particularly LPS + AgNPsPro, showed significant reductions in these markers, with decreased levels of MDA, IL-1β, TNF-α, NF-κB, and TLR4, and increased GSH content in lung tissue (p < 0.05). The anti-apoptotic protein BCL-2 was upregulated, while pro-apoptotic BAX expression was reduced, indicating enhanced cell survival. The P2X7 receptor, a key inflammation regulator, and the AKT signaling pathway, involved in cell survival, were positively modulated by the treatments. Histopathological findings corroborated these results, showing less lung tissue damage. In conclusion, propolis-based treatments, especially in combination with nanoparticles, demonstrate therapeutic potential in reducing inflammation, oxidative stress, and apoptosis in sepsis-induced lung injury.
Collapse
Affiliation(s)
- Hilal Üstündağ
- Department of Physiology, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, 2400, Türkiye.
| | - Adem Kara
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Türkiye
| | - Necip Gökhan Taş
- Erzincan Binali Yıldırım University Experimental Animals Application and Research Centre, Erzincan, Türkiye
| | | | - Nezahat Kurt
- Department of Biochemistry, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Türkiye.
| | - Elif Erbaş
- Department of Veterinary Histology and Embryology, Faculty of Veterinary Medicine, Erzurum, Türkiye
| | - Mehmet Tahir Huyut
- Department of Biostatistic, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, 2400, Türkiye
| | - Mustafa Gül
- Department of Physiology, Faculty of Medicine, Ataturk University, Erzurum, 25240, Türkiye
| | - İshak Afşin Kari Per
- Department of Science Education, Faculty of Education, Erciyes University, Kayseri, Türkiye
| |
Collapse
|
2
|
Soares-Bezerra RJ, da Silva Ferreira NC, de Almeida Alves TM, Zani CL, Rosa LH, Calheiros AS, de Souza CZ, Miranda JAA, Lima-Quaresma KRF, Alves LA, da Silva Frutuoso V. The analgesic and gastroprotective activities of the three fungal extracts and their possible correlation with the inhibition of the P2X7 receptor. Biomed Pharmacother 2024; 181:117657. [PMID: 39515112 DOI: 10.1016/j.biopha.2024.117657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
P2X7 is a purinergic receptor physiologically activated by extracellular ATP. Its activation induces proinflammatory responses, including cytokine release, reactive oxygen species formation, and cell death. Previous in vivo experimental models demonstrated that P2X7 blockade has anti-inflammatory effects; however, there are no drugs used in clinical therapy that act on the P2X7 receptor. In the context of inflammatory diseases, nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used as the first-line treatment; however, their major side effects include stomach ulcer formation, which increases patient morbidity and mortality. Here, we analyzed for the first time the analgesic and gastroprotective activities of three fungal extracts that showed antagonistic effects on P2X7 in vitro. The Antarctic fungal extracts obtained from Vishniacozyma victoriae, Metschnikowia australis, and Ascomycota sp. were tested in animal models of acute pain and ethanol-induced ulceration. These three extracts reduced paw licking by approximately 50 %, which is related to pain behavior, and reduced the number of stomach ulcers 3-7 times compared with the control (70 % ethanol), making them more efficient than the lansoprazole, an NSAID drug, and Brilliant Blue G (BBG), a known P2X7 antagonist, which only halves the number of ulcers. Furthermore, the extracts also protected the gastric mucosa and significantly reduced the levels of liver and renal enzymes compared with those in the ethanol group. Taken together, the fungal extracts presented both analgesic and possibly anti-inflammatory activities and had a protective effect on the gastric epithelium.
Collapse
Affiliation(s)
- Rômulo José Soares-Bezerra
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ 21040-360, Brazil.
| | | | - Tânia Maria de Almeida Alves
- Laboratory of Chemistry of Bioactive Natural Products, René Rachou Research Center, Oswaldo Cruz Foundation, Belo Horizonte, MG 30190-009, Brazil
| | - Carlos Leomar Zani
- Laboratory of Chemistry of Bioactive Natural Products, René Rachou Research Center, Oswaldo Cruz Foundation, Belo Horizonte, MG 30190-009, Brazil
| | - Luiz Henrique Rosa
- Laboratory of Polar Microbiology and Tropical Connections, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Andrea Surrage Calheiros
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ 21040-360, Brazil
| | - Cristiane Zanon de Souza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ 21040-360, Brazil
| | | | | | - Luiz Anastacio Alves
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ 21040-360, Brazil
| | - Válber da Silva Frutuoso
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ 21040-360, Brazil
| |
Collapse
|
3
|
Uzay B, Donmez-Demir B, Ozcan SY, Kocak EE, Yemisci M, Ozdemir YG, Dalkara T, Karatas H. The effect of P2X7 antagonism on subcortical spread of optogenetically-triggered cortical spreading depression and neuroinflammation. J Headache Pain 2024; 25:120. [PMID: 39044141 PMCID: PMC11267761 DOI: 10.1186/s10194-024-01807-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 06/06/2024] [Indexed: 07/25/2024] Open
Abstract
Migraine is a neurological disorder characterized by episodes of severe headache. Cortical spreading depression (CSD), the electrophysiological equivalent of migraine aura, results in opening of pannexin 1 megachannels that release ATP and triggers parenchymal neuroinflammatory signaling cascade in the cortex. Migraine symptoms suggesting subcortical dysfunction bring subcortical spread of CSD under the light. Here, we investigated the role of purinergic P2X7 receptors on the subcortical spread of CSD and its consequent neuroinflammation using a potent and selective P2X7R antagonist, JNJ-47965567. P2X7R antagonism had no effect on the CSD threshold and characteristics but increased the latency to hypothalamic voltage deflection following CSD suggesting that ATP acts as a mediator in the subcortical spread. P2X7R antagonism also prevented cortical and subcortical neuronal activation following CSD, revealed by bilateral decrease in c-fos positive neuron count, and halted CSD-induced neuroinflammation revealed by decreased neuronal HMGB1 release and decreased nuclear translocation of NF-kappa B-p65 in astrocytes. In conclusion, our data suggest that P2X7R plays a role in CSD-induced neuroinflammation, subcortical spread of CSD and CSD-induced neuronal activation hence can be a potential target.
Collapse
Affiliation(s)
- Burak Uzay
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sihhiye, Ankara, 06100, Türkiye
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Buket Donmez-Demir
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sihhiye, Ankara, 06100, Türkiye
| | - Sinem Yilmaz Ozcan
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sihhiye, Ankara, 06100, Türkiye
| | - Emine Eren Kocak
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sihhiye, Ankara, 06100, Türkiye
- Department of Psychiatry, Hacettepe University, Ankara, Türkiye
| | - Muge Yemisci
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sihhiye, Ankara, 06100, Türkiye
- Department of Neurology, Hacettepe University, Ankara, Türkiye
| | - Yasemin Gursoy Ozdemir
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sihhiye, Ankara, 06100, Türkiye
- School of Medicine, Koc University, Istanbul, Türkiye
| | - Turgay Dalkara
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sihhiye, Ankara, 06100, Türkiye
- Department of Neurology, Hacettepe University, Ankara, Türkiye
| | - Hulya Karatas
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sihhiye, Ankara, 06100, Türkiye.
| |
Collapse
|
4
|
Al Mamun A, Shao C, Geng P, Wang S, Xiao J. Pyroptosis in Diabetic Peripheral Neuropathy and its Therapeutic Regulation. J Inflamm Res 2024; 17:3839-3864. [PMID: 38895141 PMCID: PMC11185259 DOI: 10.2147/jir.s465203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
Pyroptosis is a pro-inflammatory form of cell death resulting from the activation of gasdermins (GSDMs) pore-forming proteins and the release of several pro-inflammatory factors. However, inflammasomes are the intracellular protein complexes that cleave gasdermin D (GSDMD), leading to the formation of robust cell membrane pores and the initiation of pyroptosis. Inflammasome activation and gasdermin-mediated membrane pore formation are the important intrinsic processes in the classical pyroptotic signaling pathway. Overactivation of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome triggers pyroptosis and amplifies inflammation. Current evidence suggests that the overactivation of inflammasomes and pyroptosis may further induce the progression of cancers, nerve injury, inflammatory disorders and metabolic dysfunctions. Current evidence also indicates that pyroptosis-dependent cell death accelerates the progression of diabetes and its frequent consequences including diabetic peripheral neuropathy (DPN). Pyroptosis-mediated inflammatory reaction further exacerbates DPN-mediated CNS injury. Accumulating evidence shows that several molecular signaling mechanisms trigger pyroptosis in insulin-producing cells, further leading to the development of DPN. Numerous studies have suggested that certain natural compounds or drugs may possess promising pharmacological properties by modulating inflammasomes and pyroptosis, thereby offering potential preventive and practical therapeutic approaches for the treatment and management of DPN. This review elaborates on the underlying molecular mechanisms of pyroptosis and explores possible therapeutic strategies for regulating pyroptosis-regulated cell death in the pharmacological treatment of DPN.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
| | - Chuxiao Shao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
| | - Peiwu Geng
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
| | - Shuanghu Wang
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
| | - Jian Xiao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
| |
Collapse
|
5
|
Ferreira NCDS, Viviani LG, Lima LM, do Amaral AT, Romano JVP, Fortunato AL, Soares RF, Alberto AVP, Coelho Neto JA, Alves LA. A Hybrid Approach Combining Shape-Based and Docking Methods to Identify Novel Potential P2X7 Antagonists from Natural Product Databases. Pharmaceuticals (Basel) 2024; 17:592. [PMID: 38794162 PMCID: PMC11123696 DOI: 10.3390/ph17050592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 05/26/2024] Open
Abstract
P2X7 is an ATP-activated purinergic receptor implicated in pro-inflammatory responses. It is associated with the development of several diseases, including inflammatory and neurodegenerative conditions. Although several P2X7 receptor antagonists have recently been reported in the literature, none of them is approved for clinical use. However, the structure of the known antagonists can serve as a scaffold for discovering effective compounds in clinical therapy. This study aimed to propose an improved virtual screening methodology for the identification of novel potential P2X7 receptor antagonists from natural products through the combination of shape-based and docking approaches. First, a shape-based screening was performed based on the structure of JNJ-47965567, a P2X7 antagonist, using two natural product compound databases, MEGx (~5.8 × 103 compounds) and NATx (~32 × 103 compounds). Then, the compounds selected by the proposed shape-based model, with Shape-Tanimoto score values ranging between 0.624 and 0.799, were filtered for drug-like properties. Finally, the compounds that met the drug-like filter criteria were docked into the P2X7 allosteric binding site, using the docking programs GOLD and DockThor. The docking poses with the best score values were submitted to careful visual inspection of the P2X7 allosteric binding site. Based on our established visual inspection criteria, four compounds from the MEGx database and four from the NATx database were finally selected as potential P2X7 receptor antagonists. The selected compounds are structurally different from known P2X7 antagonists, have drug-like properties, and are predicted to interact with key P2X7 allosteric binding pocket residues, including F88, F92, F95, F103, M105, F108, Y295, Y298, and I310. Therefore, the combination of shape-based screening and docking approaches proposed in our study has proven useful in selecting potential novel P2X7 antagonist candidates from natural-product-derived compounds databases. This approach could also be useful for selecting potential inhibitors/antagonists of other receptors and/or biological targets.
Collapse
Affiliation(s)
- Natiele Carla da Silva Ferreira
- Laboratory of Cellular Communication, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; (N.C.d.S.F.); (L.M.L.); (J.V.P.R.); (A.L.F.); (A.V.P.A.)
| | - Lucas Gasparello Viviani
- Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil; (L.G.V.); (A.T.d.A.)
| | - Lauro Miranda Lima
- Laboratory of Cellular Communication, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; (N.C.d.S.F.); (L.M.L.); (J.V.P.R.); (A.L.F.); (A.V.P.A.)
| | | | - João Victor Paiva Romano
- Laboratory of Cellular Communication, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; (N.C.d.S.F.); (L.M.L.); (J.V.P.R.); (A.L.F.); (A.V.P.A.)
- Laboratory of Immunobiotechnology, Federal University of Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Anderson Lage Fortunato
- Laboratory of Cellular Communication, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; (N.C.d.S.F.); (L.M.L.); (J.V.P.R.); (A.L.F.); (A.V.P.A.)
| | - Rafael Ferreira Soares
- Laboratory of Applied Genomics and Bioinnovations, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil;
| | - Anael Viana Pinto Alberto
- Laboratory of Cellular Communication, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; (N.C.d.S.F.); (L.M.L.); (J.V.P.R.); (A.L.F.); (A.V.P.A.)
| | - Jose Aguiar Coelho Neto
- National Institute of Industrial Property, Rio de Janeiro 20090-910, Brazil;
- Tijuca Campus, Veiga de Almeida University, Rio de Janeiro 20271-020, Brazil
| | - Luiz Anastacio Alves
- Laboratory of Cellular Communication, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; (N.C.d.S.F.); (L.M.L.); (J.V.P.R.); (A.L.F.); (A.V.P.A.)
| |
Collapse
|
6
|
Zhou X, Xu D, Li M, Zeng X. New investigational drugs to treat Sjogren's syndrome: lessons learnt from immunology. Expert Opin Investig Drugs 2024; 33:105-114. [PMID: 38293750 DOI: 10.1080/13543784.2024.2312216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
INTRODUCTION Sjögren's syndrome is a heterogeneous autoimmune condition that impairs quality of life because of dryness, fatigue, pain, and systemic involvements. Current treatment largely depends on empirical evidence, with no effective therapy approved. Clinical trials on targeted drugs often fail to report efficacy due to common factors. AREAS COVERED This review summarizes the pathogenesis and what caused the failure of new investigational drugs in clinical trials, highlighting solutions for more effective investigations, with greater consistency between research outcomes, clinical use, and patient needs. EXPERT OPINION Unlinked pathobiology with symptoms resulted in misidentified targets and disappointing trials. Useful stratification tools are necessary for the heterogeneous SS patients. Composite endpoints or improvements in ESSDAI scores are needed, considering the high placebo response, and the unbalance between symptom burden and disease activity. Compared to classic biologics, targeted cell therapy will be a more promising field of investigation in the coming years.
Collapse
Affiliation(s)
- Xingyu Zhou
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Dong Xu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|
7
|
Naaldijk Y, Sherman LS, Turrini N, Kenfack Y, Ratajczak MZ, Souayah N, Rameshwar P, Ulrich H. Mesenchymal Stem Cell-Macrophage Crosstalk Provides Specific Exosomal Cargo to Direct Immune Response Licensing of Macrophages during Inflammatory Responses. Stem Cell Rev Rep 2024; 20:218-236. [PMID: 37851277 DOI: 10.1007/s12015-023-10612-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2023] [Indexed: 10/19/2023]
Abstract
Neurodegenerative diseases (NDDs) continue to be a significant healthcare problem. The economic and social implications of NDDs increase with longevity. NDDs are linked to neuroinflammation and activated microglia and astrocytes play a central role. There is a growing interest for stem cell-based therapy to deliver genes, and for tissue regeneration. The promise of mesenchymal stem cells (MSC) is based on their availability as off-the-shelf source, and ease of expanding from discarded tissues. We tested the hypothesis that MSC have a major role of resetting activated microglial cells. We modeled microglial cell lines by using U937 cell-derived M1 and M2 macrophages. We studied macrophage types, alone, or in a non-contact culture with MSCs. MSCs induced significant release of exosomes from both types of macrophages, but significantly more of the M1 type. RNA sequencing showed enhanced gene expression within the exosomes with the major changes linked to the inflammatory response, including cytokines and the purinergic receptors. Computational analyses of the transcripts supported the expected effect of MSCs in suppressing the inflammatory response of M1 macrophages. The inflammatory cargo of M1 macrophage-derived exosomes revealed involvement of cytokines and purinergic receptors. At the same time, the exosomes from MSC-M2 macrophages were able to reset the classical M2 macrophages to more balanced inflammation. Interestingly, we excluded transfer of purinergic receptor transcripts from the co-cultured MSCs by analyzing these cells for the identified purinergic receptors. Since exosomes are intercellular communicators, these findings provide insights into how MSCs may modulate tissue regeneration and neuroinflammation.
Collapse
Affiliation(s)
- Yahaira Naaldijk
- Department of Medicine, Rutgers New Jersey Medical School (NJMS), Newark, NJ, USA
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Lauren S Sherman
- Department of Medicine, Rutgers New Jersey Medical School (NJMS), Newark, NJ, USA
- Rutgers School of Graduate Studies at NHMS, Newark, NJ, USA
| | - Natalia Turrini
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | | | - Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
- Laboratory of Regenerative Medicine at Medical University of Warsaw, Warsaw, Poland
| | - Nizar Souayah
- Department of Neurology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Pranela Rameshwar
- Department of Medicine, Rutgers New Jersey Medical School (NJMS), Newark, NJ, USA.
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
- Department of Neuroscience and Physiology, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
8
|
Mishra A, Kumar A, Naik L, Patel S, Das M, Behura A, Nayak DK, Mishra A, Bhutia SK, Singh R, Dhiman R. Soybean lectin-triggered IL-6 secretion induces autophagy to kill intracellular mycobacteria through P2RX7 dependent activation of the JAK2/STAT3/Mcl-1 pathway. Cytokine 2023; 171:156366. [PMID: 37716189 DOI: 10.1016/j.cyto.2023.156366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023]
Abstract
Cytokine therapy and cytokine-mediated autophagy have been used as prominent host-directed therapy (HDT) approaches to restrain M. tb growth in the host cell. In the present study, we have dissected the anti-tubercular activity of Soybean lectin (SBL) through cytokine-mediated autophagy induction in differentiated THP-1 (dTHP-1) cells. A significant increase in IL-6 expression was observed in both uninfected and mycobacteria infected dTHP-1 cells through the P2RX7 mediated pathway via PI3K/Akt/CREB-dependent signalling after SBL treatment. Inhibition of IL-6 level using IL-6 neutralizing antibody or associated signalling significantly enhanced the mycobacterial load in SBL-treated dTHP-1 cells. Further, autocrine signalling of IL-6 through its receptor-induced Mcl-1 expression activated autophagy via JAK2/STAT3 pathway, and inhibition of this pathway affected autophagy. Finally, blocking the IL-6-regulated autophagy through NSC 33994 (a JAK2 inhibitor) or S63845 (an Mcl-1 inhibitor) led to a notable increase in intracellular mycobacterial growth in SBL-treated cells. Taken together, these results indicate that SBL interacts with P2RX7 to regulate PI3K/Akt/CREB network to release IL-6 in dTHP-1 cells. The released IL-6, in turn, activates the JAK2/STAT3/Mcl-1 pathway upon interaction with IL-6Rα to modulate autophagy that ultimately controls mycobacterial growth in macrophages.
Collapse
Affiliation(s)
- Abtar Mishra
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Ashish Kumar
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Lincoln Naik
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Salina Patel
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Mousumi Das
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Assirbad Behura
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Dev Kiran Nayak
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan 342011, India
| | - Sujit K Bhutia
- Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, PO Box # 4, Faridabad 121001, Haryana, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
9
|
Therkildsen JR, Tingskov SJ, Jensen MS, Praetorius H, Nørregaard R. P2X 7 accelerate tissue fibrosis via metalloproteinase 8-dependent macrophage infiltration in a murine model of unilateral ureteral obstruction. Physiol Rep 2023; 11:e15878. [PMID: 37994252 PMCID: PMC10665779 DOI: 10.14814/phy2.15878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/19/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023] Open
Abstract
Renal fibrosis is tightly associated with chronic kidney disease, irrespective of the underlying pathogenesis. We previously demonstrated mild antifibrotic effects of targeting the P2X7 receptor in a pyelonephritis model. Reduced P2X7 R-activation elevated the neutrophil-to-macrophage ratio, resulting in less matrix accumulation without affecting the initial tissue healing. Here, we test if this P2X7 R-dependent modification of matrix accumulation also applies to a noninfectious fibrosis model of unilateral ureteral obstruction (7dUUO) and whether the response is gender-dependent. We found that P2X7 -/- mice show reduced fibrosis compared to wild type after 7dUUO: the effect was most pronounced in females, with a 55% decrease in collagen deposition after 7dUUO (p < 0.0068). P2X7 R deficiency did not affect early fibrosis markers (TGF-β, α-SMA) or the renal infiltration of neutrophils. However, a UUO-induced increase in macrophages was observed in wildtypes only (p < 0.001), leaving the P2X7 -/- mice with ≈50% fewer CD68+ cells in the renal cortex (p = 0.018). In males, 7dUUO triggered an increase in diffusely interstitial scattering of the profibrotic, macrophage-attracting metalloproteinase MMP8 and showed significantly lower MMP8 tissue expression in both male and female P2X7 -/- mice (p < 0.0008). Thus, the P2X7 R is advocated as a late-stage fibrosis moderator by reducing neutrophil-dependent interstitial MMP8 release, resulting in less macrophage infiltration and reduced matrix accumulation.
Collapse
Affiliation(s)
- Jacob Rudjord Therkildsen
- Department of BiomedicineAarhus UniversityAarhus CDenmark
- Department of Clinical BiochemistryAarhus University HospitalAarhus NDenmark
| | | | | | | | | |
Collapse
|
10
|
Babiec L, Wilkaniec A, Matuszewska M, Pałasz E, Cieślik M, Adamczyk A. Alterations of Purinergic Receptors Levels and Their Involvement in the Glial Cell Morphology in a Pre-Clinical Model of Autism Spectrum Disorders. Brain Sci 2023; 13:1088. [PMID: 37509018 PMCID: PMC10377192 DOI: 10.3390/brainsci13071088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Recent data suggest that defects in purinergic signalling are a common denominator of autism spectrum disorders (ASDs), though nothing is known about whether the disorder-related imbalance occurs at the receptor level. In this study, we investigated whether prenatal exposure to valproic acid (VPA) induces changes in purinergic receptor expression in adolescence and whether it corresponds to glial cell activation. Pregnant dams were subjected to an intraperitoneal injection of VPA at embryonic day 12.5. In the hippocampi of adolescent male VPA offspring, we observed an increase in the level of P2X1, with concomitant decreases in P2X7 and P2Y1 receptors. In contrast, in the cortex, the level of P2X1 was significantly reduced. Also, significant increases in cortical P2Y1 and P2Y12 receptors were detected. Additionally, we observed profound alterations in microglial cell numbers and morphology in the cortex of VPA animals, leading to the elevation of pro-inflammatory cytokine expression. The changes in glial cells were partially reduced via a single administration of a non-selective P2 receptor antagonist. These studies show the involvement of purinergic signalling imbalance in the modulation of brain inflammatory response induced via prenatal VPA exposure and may indicate that purinergic receptors are a novel target for pharmacological intervention in ASDs.
Collapse
Affiliation(s)
- Lidia Babiec
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Anna Wilkaniec
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Marta Matuszewska
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Ewelina Pałasz
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Magdalena Cieślik
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| |
Collapse
|
11
|
Magalhães HIR, Machado FA, Souza RF, Caetano MAF, Figliuolo VR, Coutinho-Silva R, Castelucci P. Study of the roles of caspase-3 and nuclear factor kappa B in myenteric neurons in a P2X7 receptor knockout mouse model of ulcerative colitis. World J Gastroenterol 2023; 29:3440-3468. [PMID: 37389242 PMCID: PMC10303518 DOI: 10.3748/wjg.v29.i22.3440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/25/2023] [Accepted: 05/12/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND The literature indicates that the enteric nervous system is affected in inflammatory bowel diseases (IBDs) and that the P2X7 receptor triggers neuronal death. However, the mechanism by which enteric neurons are lost in IBDs is unknown. AIM To study the role of the caspase-3 and nuclear factor kappa B (NF-κB) pathways in myenteric neurons in a P2X7 receptor knockout (KO) mouse model of IBDs. METHODS Forty male wild-type (WT) C57BL/6 and P2X7 receptor KO mice were euthanized 24 h or 4 d after colitis induction by 2,4,6-trinitrobenzene sulfonic acid (colitis group). Mice in the sham groups were injected with vehicle. The mice were divided into eight groups (n = 5): The WT sham 24 h and 4 d groups, the WT colitis 24 h and 4 d groups, the KO sham 24 h and 4 d groups, and the KO colitis 24 h and 4 d groups. The disease activity index (DAI) was analyzed, the distal colon was collected for immunohistochemistry analyses, and immunofluorescence was performed to identify neurons immunoreactive (ir) for calretinin, P2X7 receptor, cleaved caspase-3, total caspase-3, phospho-NF-κB, and total NF-κB. We analyzed the number of calretinin-ir and P2X7 receptor-ir neurons per ganglion, the neuronal profile area (µm²), and corrected total cell fluorescence (CTCF). RESULTS Cells double labeled for calretinin and P2X7 receptor, cleaved caspase-3, total caspase-3, phospho-NF-κB, or total NF-κB were observed in the WT colitis 24 h and 4 d groups. The number of calretinin-ir neurons per ganglion was decreased in the WT colitis 24 h and 4 d groups compared to the WT sham 24 h and 4 d groups, respectively (2.10 ± 0.13 vs 3.33 ± 0.17, P < 0.001; 2.92 ± 0.12 vs 3.70 ± 0.11, P < 0.05), but was not significantly different between the KO groups. The calretinin-ir neuronal profile area was increased in the WT colitis 24 h group compared to the WT sham 24 h group (312.60 ± 7.85 vs 278.41 ± 6.65, P < 0.05), and the nuclear profile area was decreased in the WT colitis 4 d group compared to the WT sham 4 d group (104.63 ± 2.49 vs 117.41 ± 1.14, P < 0.01). The number of P2X7 receptor-ir neurons per ganglion was decreased in the WT colitis 24 h and 4 d groups compared to the WT sham 24 h and 4 d groups, respectively (19.49 ± 0.35 vs 22.21 ± 0.18, P < 0.001; 20.35 ± 0.14 vs 22.75 ± 0.51, P < 0.001), and no P2X7 receptor-ir neurons were observed in the KO groups. Myenteric neurons showed ultrastructural changes in the WT colitis 24 h and 4 d groups and in the KO colitis 24 h group. The cleaved caspase-3 CTCF was increased in the WT colitis 24 h and 4 d groups compared to the WT sham 24 h and 4 d groups, respectively (485949 ± 14140 vs 371371 ± 16426, P < 0.001; 480381 ± 11336 vs 378365 ± 4053, P < 0.001), but was not significantly different between the KO groups. The total caspase-3 CTCF, phospho-NF-κB CTCF, and total NF-κB CTCF were not significantly different among the groups. The DAI was recovered in the KO groups. Furthermore, we demonstrated that the absence of the P2X7 receptor attenuated inflammatory infiltration, tissue damage, collagen deposition, and the decrease in the number of goblet cells in the distal colon. CONCLUSION Ulcerative colitis affects myenteric neurons in WT mice but has a weaker effect in P2X7 receptor KO mice, and neuronal death may be associated with P2X7 receptor-mediated caspase-3 activation. The P2X7 receptor can be a therapeutic target for IBDs.
Collapse
Affiliation(s)
| | | | | | | | - Vanessa Ribeiro Figliuolo
- Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Robson Coutinho-Silva
- Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | | |
Collapse
|
12
|
Singh S, Yadav PK, Singh AK. In-silico structural characterization and phylogenetic analysis of Nucleoside diphosphate kinase: A novel antiapoptotic protein of Porphyromonas gingivalis. J Cell Biochem 2023; 124:545-556. [PMID: 36815439 DOI: 10.1002/jcb.30389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023]
Abstract
The Nucleoside diphosphate kinase (NDK) protein of Porphyromonas gingivalis (P. gingivalis) plays a crucial role in immune evasion and inhibition of apoptosis in host cells and has the potential to cause cancer. However, its structure has not yet been characterized. We used an in-silico approach to determine the 3D structure of the P. gingivalis NDK. Furthermore, structural characterization and functional annotation were performed using computational approaches. The 3D structure of NDK was predicted through homology modeling. The structural domains predicted for the model protein belong to the NDK family. Structural alignment of prokaryotic and eukaryotic NDKs with the model protein revealed the conservation of the domain region. Structure-based phylogenetic analysis depicted a significant evolutionary relationship between the model protein and the prokaryotic NDK. Functional annotation of the model confirmed structural homology, exhibiting similar enzymatic functions as NDK, including ATP binding and nucleoside diphosphate kinase activity. Furthermore, molecular dynamic (MD) simulation technique stabilized the model structure and provides a thermo-stable protein structure that can be used as a therapeutic target for further studies.
Collapse
Affiliation(s)
- Suchitra Singh
- Department of Bioinformatics, Central University of South Bihar, Gaya, India
| | - Piyush Kumar Yadav
- Department of Bioinformatics, Central University of South Bihar, Gaya, India
| | - Ajay Kumar Singh
- Department of Bioinformatics, Central University of South Bihar, Gaya, India
| |
Collapse
|
13
|
Dai S, Lin J, Hou Y, Luo X, Shen Y, Ou J. Purine signaling pathway dysfunction in autism spectrum disorders: Evidence from multiple omics data. Front Mol Neurosci 2023; 16:1089871. [PMID: 36818658 PMCID: PMC9935591 DOI: 10.3389/fnmol.2023.1089871] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Previous studies have suggested that the dysregulation of purine metabolism may be associated with autism spectrum disorder (ASD). Here, we adopted metabolomics and transcriptomics to verify and explore the underlying molecular mechanism of purine metabolism dysfunction in ASD and identify potential biomarkers within the purine metabolism pathway. Methods Ultra-high-performance liquid chromatography-mass spectrometry was used to obtain the plasma metabolic profiles of 12 patients with ASD and 12 typically developing (TD) children. RNA sequencing was used to screen differentially expressed genes related to the purine metabolic pathway and purine receptor-coding genes in 24 children with ASD and 21 healthy controls. Finally, serum uric acid levels were compared in 80 patients with ASD and 174 TD children to validate the omics results. Results A total of 66 identified metabolites showed significant between-group differences. Network analysis showed that purine metabolism was the most strongly enriched. Uric acid was one of the most highlighted nodes within the network. The transcriptomic study revealed significant differential expression of three purine metabolism-related genes (adenosine deaminase, adenylosuccinate lyase, and bifunctional enzyme neoformans 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase/inosine monophosphate (IMP) cyclohydrolase) (p < 0.01) and five purinergic receptor genes (P2X7, P2Y2, P2Y6, P2Y8, and P2Y10) (p < 0.05). In the validation sample, there was a significant difference in serum uric acid levels between the two groups (p < 0.001), and the area under the curve for uric acid was 0.812 (sensitivity, 82.5%; specificity, 63.8%). Discussion Patients with ASD had dysfunctional purine metabolic pathways, and blood uric acid may be a potential biomarker for ASD.
Collapse
|
14
|
Tang Y, Rubini P, Yin HY, Illes P. Acupuncture for Counteracting P2X4 and P2X7 Receptor Involvement in Neuroinflammation. PURINERGIC SIGNALING IN NEURODEVELOPMENT, NEUROINFLAMMATION AND NEURODEGENERATION 2023:359-374. [DOI: 10.1007/978-3-031-26945-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Nainu F, Mamada SS, Harapan H, Emran TB. Inflammation-Mediated Responses in the Development of Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:39-70. [PMID: 36949305 DOI: 10.1007/978-981-19-7376-5_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Since its first description over a century ago, neurodegenerative diseases (NDDs) have impaired the lives of millions of people worldwide. As one of the major threats to human health, NDDs are characterized by progressive loss of neuronal structure and function, leading to the impaired function of the CNS. While the precise mechanisms underlying the emergence of NDDs remains elusive, association of neuroinflammation with the emergence of NDDs has been suggested. The immune system is tightly controlled to maintain homeostatic milieu and failure in doing so has been shown catastrophic. Here, we review current concepts on the cellular and molecular drivers responsible in the induction of neuroinflammation and how such event further promotes neuronal damage leading to neurodegeneration. Experimental data generated from cell culture and animal studies, gross and molecular pathologies of human CNS samples, and genome-wide association study are discussed to provide deeper insights into the mechanistic details of neuroinflammation and its roles in the emergence of NDDs.
Collapse
Affiliation(s)
- Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Sukamto S Mamada
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Harapan Harapan
- School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| |
Collapse
|
16
|
Synthesis, biological evaluation and molecular modeling studies of novel 1,2,3-triazole-linked menadione-furan derivatives as P2X7 inhibitors. J Bioenerg Biomembr 2022; 54:227-239. [PMID: 36070071 DOI: 10.1007/s10863-022-09947-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
Abstract
The P2X7 receptor (P2X7R) is an ion channel that promotes the passage of ions through the membrane through brief stimulation once activated by ATP, its endogenous opener. However, prolonged stimulation with ATP, which occurs in pathological processes, opens a nonselective pore in the plasma membrane, allowing the passage of large molecules and leading to cytokine release or even cell death. In this sense, the search for new inhibitors for this receptor has attracted a great deal of attention in recent years. Considering the booming of biomass upgrading reactions in recent years and the continued efforts to synthesize biologically active molecules containing the 1,2,3-triazole ring, in the present work, we aimed to investigate whether triazole-linked menadione-furan derivatives could present P2X7R inhibitory activity. The novel compounds were tested for their inhibitory activity on ATP-induced dye uptake in peritoneal macrophages. Some have shown promising results, having displayed IC50 values lower than that of the P2X7R inhibitor BBG. Molecular docking studies also indicated that the active compounds bind to an allosteric site on P2X7R, presenting potential P2X7R inhibition.
Collapse
|
17
|
Cordaro M, Siracusa R, D’Amico R, Genovese T, Franco G, Marino Y, Di Paola D, Cuzzocrea S, Impellizzeri D, Di Paola R, Fusco R. Role of Etanercept and Infliximab on Nociceptive Changes Induced by the Experimental Model of Fibromyalgia. Int J Mol Sci 2022; 23:ijms23116139. [PMID: 35682817 PMCID: PMC9181785 DOI: 10.3390/ijms23116139] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/22/2022] Open
Abstract
Background: Fibromyalgia is a clinical condition that affects 1% to 5% of the population. No proper therapy has been currently found. It has been described that inflammation plays a central role in the nerve sensitizations that characterize the pathology. Methods: This paper aimed to evaluate the efficacy of etanercept and infliximab in the management of pain sensitization. Fibromyalgia was induced by three injections once a day of reserpine at the dose of 1 mg/kg. Etanercept (3 mg/kg) and infliximab (10 mg/kg) were administered the day after the last reserpine injection and then 5 days after that. Behavioral analyses were conducted once a week, and molecular investigations were performed at the end of the experiment. Results: Our data confirmed the major effect of infliximab administration as compared to etanercept: infliximab administration strongly reduced pain sensitization in thermal hyperalgesia and mechanical allodynia. From the molecular point of view, infliximab reduced the activation of microglia and astrocytes and the expression of the purinergic P2X7 receptor ubiquitously expressed on glia and neurons. Downstream of the P2X7 receptor, infliximab also reduced p38-MAPK overexpression induced by the reserpine administration. Conclusion: Etanercept and infliximab treatment caused a significant reduction in pain. In particular, rats that received infliximab showed less pain sensitization. Moreover, infliximab reduced the activation of microglia and astrocytes, reducing the expression of the purinergic receptor P2X7 and p38-MAPK pathway.
Collapse
Affiliation(s)
- Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (T.G.); (G.F.); (Y.M.); (D.D.P.)
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (T.G.); (G.F.); (Y.M.); (D.D.P.)
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (T.G.); (G.F.); (Y.M.); (D.D.P.)
| | - Gianluca Franco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (T.G.); (G.F.); (Y.M.); (D.D.P.)
| | - Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (T.G.); (G.F.); (Y.M.); (D.D.P.)
| | - Davide Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (T.G.); (G.F.); (Y.M.); (D.D.P.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (T.G.); (G.F.); (Y.M.); (D.D.P.)
- Correspondence: (S.C.); (D.I.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (T.G.); (G.F.); (Y.M.); (D.D.P.)
- Correspondence: (S.C.); (D.I.)
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| | - Roberta Fusco
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| |
Collapse
|
18
|
Novel plasma protein binding analysis method for a PET tracer and its radiometabolites: a case study with [11C]SMW139 to explain the high uptake of radiometabolites in mouse brain. J Pharm Biomed Anal 2022; 219:114860. [DOI: 10.1016/j.jpba.2022.114860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
|
19
|
Chambers CA, Dadelahi AS, Moley CR, Olson RM, Logue CM, Skyberg JA. Nucleotide receptors mediate protection against neonatal sepsis and meningitis caused by alpha-hemolysin expressing Escherichia coli K1. FASEB J 2022; 36:e22197. [PMID: 35147989 DOI: 10.1096/fj.202101485r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/30/2021] [Accepted: 01/20/2022] [Indexed: 01/15/2023]
Abstract
Neonatal meningitis-associated Escherichia coli (NMEC) is among the leading causes of bacterial meningitis and sepsis in newborn infants. Several virulence factors have been identified as common among NMEC, and have been shown to play an important role in the development of bacteremia and/or meningitis. However, there is significant variability in virulence factor expression between NMEC isolates, and relatively little research has been done to assess the impact of variable virulence factor expression on immune cell activation and the outcome of infection. Here, we investigated the role of NMEC strain-dependent P2X receptor (P2XR) signaling on the outcome of infection in neonatal mice. We found that alpha-hemolysin (HlyA)-expressing NMEC (HlyA+ ) induced robust P2XR-dependent macrophage cell death in vitro, while HlyA- NMEC did not. P2XR-dependent cell death was inflammasome independent, suggesting an uncoupling of P2XR and inflammasome activation in the context of NMEC infection. In vivo inhibition of P2XRs was associated with increased mortality in neonatal mice infected with HlyA+ NMEC, but had no effect on the survival of neonatal mice infected with HlyA- NMEC. Furthermore, we found that P2XR-dependent protection against HlyA+ NMEC in vivo required macrophages, but not neutrophils or NLRP3. Taken together, these data suggest that HlyA+ NMEC activates P2XRs which in turn confers macrophage-dependent protection against infection in neonates. In addition, our findings indicate that strain-dependent virulence factor expression should be taken into account when studying the immune response to NMEC.
Collapse
Affiliation(s)
- Catherine A Chambers
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | - Alexis S Dadelahi
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | - Charles R Moley
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | - Rachel M Olson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | - Catherine M Logue
- Department of Population Heath, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Jerod A Skyberg
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
20
|
Salem M, Lecka J, Pelletier J, Gomes Marconato D, Dumas A, Vallières L, Brochu G, Robaye B, Jobin C, Sévigny J. NTPDase8 protects mice from intestinal inflammation by limiting P2Y 6 receptor activation: identification of a new pathway of inflammation for the potential treatment of IBD. Gut 2022; 71:43-54. [PMID: 33452178 DOI: 10.1136/gutjnl-2020-320937] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Nucleotides are danger signals that activate inflammatory responses via binding P2 receptors. The nucleoside triphosphate diphosphohydrolase-8 (NTPDase8) is an ectonucleotidase that hydrolyses P2 receptor ligands. We investigated the role of NTPDase8 in intestinal inflammation. DESIGN We generated NTPDase8-deficient (Entpd8-/-) mice to define the role of NTPDase8 in the dextran sodium sulfate (DSS) colitis model. To assess inflammation, colons were collected and analysed by histopathology, reverse transcriptase-quantitative real-time PCR (RT-qPCR) and immunohistochemistry. P2 receptor expression was analysed by RT-qPCR on primary intestinal epithelium and NTPDase8 activity by histochemistry. The role of intestinal P2Y6 receptors was assessed by bone marrow transplantation experiments and with a P2Y6 receptor antagonist. RESULTS NTPDase8 is the dominant enzyme responsible for the hydrolysis of nucleotides in the lumen of the colon. Compared with wild-type (WT) control mice, the colon of Entpd8-/- mice treated with DSS displayed significantly more histological damage, immune cell infiltration, apoptosis and increased expression of several proinflammatory cytokines. P2Y6 was the dominant P2Y receptor expressed at the mRNA level by the colonic epithelia. Irradiated P2ry6-/- mice transplanted with WT bone marrow were fully protected from DSS-induced intestinal inflammation. In agreement, the daily intrarectal injection of a P2Y6 antagonist protected mice from DSS-induced intestinal inflammation in a dose-dependent manner. Finally, human intestinal epithelial cells express NTPDase8 and P2Y6 similarly as in mice. CONCLUSION NTPDase8 protects the intestine from inflammation most probably by limiting the activation of P2Y6 receptors in colonic epithelial cells. This may provide a novel therapeutic strategy for the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Mabrouka Salem
- Dép de microbiologie-infectiologie et d'immunologie, fac de médecine, Université Laval, Quebec City, QC, Canada
- Axe Maladies infectieuses et immunitaires, CHU de Québec - Université Laval, Quebec City, QC, Canada
| | - Joanna Lecka
- Axe Maladies infectieuses et immunitaires, CHU de Québec - Université Laval, Quebec City, QC, Canada
| | - Julie Pelletier
- Axe Maladies infectieuses et immunitaires, CHU de Québec - Université Laval, Quebec City, QC, Canada
| | - Danielle Gomes Marconato
- Dép de microbiologie-infectiologie et d'immunologie, fac de médecine, Université Laval, Quebec City, QC, Canada
- Axe Maladies infectieuses et immunitaires, CHU de Québec - Université Laval, Quebec City, QC, Canada
| | - Aline Dumas
- Axe Neurosciences, CHU de Québec - Université Laval, Quebec city, QC, Canada
| | - Luc Vallières
- Axe Neurosciences, CHU de Québec - Université Laval, Quebec city, QC, Canada
- Dép de médecine moléculaire, fac de médecine, Université Laval, Quebec City, QC, Canada
| | - Gaetan Brochu
- CHU de Québec - Université Laval, Quebec City, QC, Canada
- Dept. of Surgery, Université Laval, Quebec City, QC, Canada
| | - Bernard Robaye
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Christian Jobin
- Dept of Infectious Diseases & Pathology, University of Florida, Gainesville, Florida, USA
| | - Jean Sévigny
- Dép de microbiologie-infectiologie et d'immunologie, fac de médecine, Université Laval, Quebec City, QC, Canada
- Axe Maladies infectieuses et immunitaires, CHU de Québec - Université Laval, Quebec City, QC, Canada
| |
Collapse
|
21
|
Mugisho OO, Green CR. The NLRP3 inflammasome in age-related eye disease: Evidence-based connexin hemichannel therapeutics. Exp Eye Res 2021; 215:108911. [PMID: 34958779 DOI: 10.1016/j.exer.2021.108911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/25/2021] [Accepted: 12/21/2021] [Indexed: 12/21/2022]
Abstract
The inflammasome pathway is a fundamental component of the innate immune system, playing a key role especially in chronic age-related eye diseases (AREDs). The inflammasome is of particular interest because it is a common disease pathway that once instigated, can amplify and perpetuate itself leading to chronic inflammation. With aging, it becomes more difficult to shut down inflammation after an insult but the common pathway means that a shared solution may be feasible that could be effective across multiple disease indications. This review focusses on the NLRP3 inflammasome, the most studied and characterized inflammasome in the eye. It describes the two-step signalling required for NLRP3 inflammasome complex activation, and provides evidence for its role in AREDs. In the final section, the article gives an overview of potential NLRP3 inflammasome targeting therapies, before presenting evidence for connexin hemichannel regulators as upstream blockers of inflammasome activation. These have shown therapeutic efficacy in multiple ocular disease models.
Collapse
Affiliation(s)
- Odunayo O Mugisho
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand.
| | - Colin R Green
- Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, New Zealand
| |
Collapse
|
22
|
Contingent intramuscular boosting of P2XR7 axis improves motor function in transgenic ALS mice. Cell Mol Life Sci 2021; 79:7. [PMID: 34936028 PMCID: PMC8695421 DOI: 10.1007/s00018-021-04070-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/06/2022]
Abstract
Amyotrophic lateral sclerosis is a fatal neurodegenerative disorder that leads to progressive degeneration of motor neurons and severe muscle atrophy without effective treatment. Most research on the disease has been focused on studying motor neurons and supporting cells of the central nervous system. Strikingly, the recent observations have suggested that morpho-functional alterations in skeletal muscle precede motor neuron degeneration, bolstering the interest in studying muscle tissue as a potential target for the delivery of therapies. We previously showed that the systemic administration of the P2XR7 agonist, 2′(3′)-O‐(4-benzoylbenzoyl) adenosine 5-triphosphate (BzATP), enhanced the metabolism and promoted the myogenesis of new fibres in the skeletal muscles of SOD1G93A mice. Here we further corroborated this evidence showing that intramuscular administration of BzATP improved the motor performance of ALS mice by enhancing satellite cells and the muscle pro-regenerative activity of infiltrating macrophages. The preservation of the skeletal muscle retrogradely propagated along with the motor unit, suggesting that backward signalling from the muscle could impinge on motor neuron death. In addition to providing the basis for a suitable adjunct multisystem therapeutic approach in ALS, these data point out that the muscle should be at the centre of ALS research as a target tissue to address novel therapies in combination with those oriented to the CNS.
Collapse
|
23
|
Fernandes TDO, Rodrigues AM, Punaro GR, Lima DYD, Higa EMS. P2X7 receptor-nitric oxide interaction mediates apoptosis in mouse immortalized mesangial cells exposed to high glucose. J Bras Nefrol 2021; 44:147-154. [PMID: 34694316 PMCID: PMC9269184 DOI: 10.1590/2175-8239-jbn-2021-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/11/2021] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Diabetes mellitus (DM) is a chronic disease characterized by hyperglycemia that leads to diabetic nephropathy (DN). We showed that P2X7, a purinergic receptor, was highly expressed in DM; however, when oxidative stress was controlled, renal NO recovered, and the activation of this receptor remained significantly reduced. The aim of this study was to assess the influence of NO on the P2X7 and apoptosis in mouse immortalized mesangial cells (MiMC) cultured in high glucose (HG) medium. METHODS MiMCs were cultured with DMEM and exposed to normal glucose (NG), mannitol (MA), or HG. Cell viability was assessed by an automated counter. Supernatants were collected for NO quantification, and proteins were extracted for analysis of NO synthases (iNOS and eNOS), caspase-3, and P2X7. RESULTS Cell viability remained above 90% in all groups. There was a significant increase in the proliferation of cells in HG compared to MA and NG. NO, iNOS, caspase-3, and P2X7 were significantly increased in HG compared to NG and MA, with no changes in eNOS. We observed that there was a strong and significant correlation between P2X7 and NO. DISCUSSION The main finding was that the production of NO by iNOS was positively correlated with the increase of P2X7 in MCs under HG conditions, showing that there is a common stimulus between them and that NO interacts with the P2X7 pathway, contributing to apoptosis in experimental DM. These findings could be relevant to studies of therapeutic targets for the prevention and/or treatment of hyperglycemia-induced kidney damage to delay DN progression.
Collapse
Affiliation(s)
- Thamires de Oliveira Fernandes
- Universidade Federal de São Paulo, Divisão de Nefrologia, São Paulo, SP, Brasil.,Universidade Federal de São Paulo, Laboratório de Óxido Nítrico e Estresse Oxidativo, São Paulo, SP, Brasil
| | - Adelson Marçal Rodrigues
- Universidade Federal de São Paulo, Depardamento de Medicina, São Paulo, SP, Brasil.,Universidade Federal de São Paulo, Laboratório de Óxido Nítrico e Estresse Oxidativo, São Paulo, SP, Brasil
| | - Giovana Rita Punaro
- Universidade Federal de São Paulo, Divisão de Nefrologia, São Paulo, SP, Brasil.,Universidade Federal de São Paulo, Laboratório de Óxido Nítrico e Estresse Oxidativo, São Paulo, SP, Brasil
| | - Deyse Yorgos de Lima
- Universidade Federal de São Paulo, Divisão de Nefrologia, São Paulo, SP, Brasil.,Universidade Federal de São Paulo, Laboratório de Óxido Nítrico e Estresse Oxidativo, São Paulo, SP, Brasil
| | - Elisa Mieko Suemitsu Higa
- Universidade Federal de São Paulo, Divisão de Nefrologia, São Paulo, SP, Brasil.,Universidade Federal de São Paulo, Depardamento de Medicina, São Paulo, SP, Brasil.,Universidade Federal de São Paulo, Laboratório de Óxido Nítrico e Estresse Oxidativo, São Paulo, SP, Brasil.,Universidade Federal de São Paulo, Divisão de Emergência, São Paulo, SP, Brasil
| |
Collapse
|
24
|
Taidi Z, Zhou T, Moore KH, Mansfield KJ, Liu L. P2X7 Receptor Blockade Protects Against Acrolein-Induced Bladder Damage: A Potential New Therapeutic Approach for the Treatment of Bladder Inflammatory Diseases. Front Pharmacol 2021; 12:682520. [PMID: 34456718 PMCID: PMC8397461 DOI: 10.3389/fphar.2021.682520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/12/2021] [Indexed: 01/28/2023] Open
Abstract
Inflammatory conditions of the urinary bladder have been shown to be associated with urothelial damage and loss of function. The purinergic P2X7 receptor has been implicated in several inflammatory conditions. The aim of this study was to investigate the role of the P2X7 receptor in acrolein-induced inflammatory damage using the porcine urinary bladder. For this purpose, an ex-vivo model of porcine urothelial damage induced by direct instillation of acrolein into the whole bladder lumen was used. To determine the role of the P2X7 receptor, the bladders were pre-incubated with a selective P2X7 receptor antagonist, A804598 (10 μM), for 1 h. The effects of the acrolein-induced urothelial damage on the bladder’s function were assessed by examining the bladder wall contractile response, structure changes, apoptosis, and oxidative stress in the bladder tissues. The acrolein treatment led to significant damage to the urothelium histology, tight junction expression, and contractile responses. Acrolein also induced apoptosis in the mucosa layer. All these acrolein-induced responses were attenuated by pre-treatment with the P2X7 receptor antagonist A804598. Acrolein also significantly induced DNA oxidation in the submucosal layer; however, the P2X7 receptor antagonism did not show any protective effect towards the acrolein-induced oxidative stress. These findings suggested that the P2X7 receptor is involved in the acrolein-induced damage to the urothelium; therefore, the P2X7 receptor antagonists may be a new therapeutic option for the treatment of bladder inflammation.
Collapse
Affiliation(s)
- Zhinoos Taidi
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Tommy Zhou
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Kate H Moore
- St George Hospital, UNSW Sydney, Kogarah, NSW, Australia
| | - Kylie J Mansfield
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Lu Liu
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
25
|
Physalin pool from Physalis angulata L. leaves and physalin D inhibit P2X7 receptor function in vitro and acute lung injury in vivo. Biomed Pharmacother 2021; 142:112006. [PMID: 34392085 DOI: 10.1016/j.biopha.2021.112006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/14/2021] [Accepted: 08/01/2021] [Indexed: 11/23/2022] Open
Abstract
P2X7 receptor promotes inflammatory response and neuropathic pain. New drugs capable of impairing inflammation and pain-reducing adverse effects extracted from plant extracts have been studied. Physalis angulate L. possesses traditional uses and exhibits antiparasitic, anti-inflammatory, antimicrobial, antinociceptive, antimalarial, antileishmanial, immunosuppressive, antiasthmatic. diuretic, and antitumor activities. The most representative phytochemical constituents identified with medicinal importance are the physalins and withanolides. However, the mechanism of anti-inflammatory action is scarce. Although some physalins and withanolides subtypes have anti-inflammatory activity, only four physalins subtypes (B, D, F, and G) have further studies. Therefore, we evaluated the crude ethanolic extract enriched with physalins B, D, F, and G from P. angulata leaves, a pool containing the physalins B, D, F, G, and the physalins individually, as P2X7 receptor antagonists. For this purpose, we evaluated ATP-induced dye uptake, macroscopic currents, and interleukin 1-β (IL-1β) in vitro. The crude extract and pool dose-dependently inhibited P2X7 receptor function. Thus, physalin B, D, F, and G individually evaluated for 5'-triphosphate (ATP)-induced dye uptake assay, whole-cell patch-clamp, and cytokine release showed distinct antagonist levels. Physalin D displayed higher potency and efficacy than physalin B, F, and G for all these parameters. In vivo mice model as ATP-induced paw edema was potently inhibited for physalin D, in contrast to physalin B, F, and G. ATP and lipopolysaccharide (LPS)-induced pleurisy in mice were reversed for physalin D treatment. Molecular modeling and computational simulation predicted the intermolecular interactions between the P2X7 receptor and physalin derivatives. In silico results indicated physalin D and F as a potent allosteric P2X7 receptor antagonist. These data confirm physalin D as a promisor source for developing a new P2X7 receptor antagonist with anti-inflammatory action.
Collapse
|
26
|
Krajewski PK, Szukała W, Lichawska-Cieślar A, Matusiak Ł, Jura J, Szepietowski JC. MCPIP1/Regnase-1 Expression in Keratinocytes of Patients with Hidradenitis Suppurativa: Preliminary Results. Int J Mol Sci 2021; 22:ijms22147241. [PMID: 34298861 PMCID: PMC8307415 DOI: 10.3390/ijms22147241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 11/16/2022] Open
Abstract
The pathogenesis of hidradenitis suppurativa (HS) is yet to be fully understood. However, inflammation is a key element in the development of skin lesions. The aim of this study was to evaluate the expression of monocyte chemotactic protein-1-induced protein-1 (MCPIP1) in the skin of patients suffering from HS. Skin biopsies of 15 patients with HS and 15 healthy controls were obtained and processed for immunohistochemistry, western blot, and real time PCR. The highest mean MCPIP1 mRNA expression was found in the inflammatory lesional skin of HS patients. It was significantly higher than MCPIP1 mRNA expression in the biopsies from both healthy controls and non-lesional skin of HS patients. Western blot analysis indicated that expression of MCPIP1 was elevated within both lesional and non-lesional skin compared to the healthy control. The increased MCPIP1 mRNA and protein expression level in HS lesions may indicate its possible role in the disease pathogenesis.
Collapse
Affiliation(s)
- Piotr K. Krajewski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Chalubinskiego 1, 50-368 Wroclaw, Poland; (P.K.K.); (Ł.M.)
| | - Weronika Szukała
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-392 Krakow, Poland; (W.S.); (J.J.)
| | - Agata Lichawska-Cieślar
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-392 Krakow, Poland; (W.S.); (J.J.)
- Correspondence: (A.L.-C.); (J.C.S.)
| | - Łukasz Matusiak
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Chalubinskiego 1, 50-368 Wroclaw, Poland; (P.K.K.); (Ł.M.)
| | - Jolanta Jura
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-392 Krakow, Poland; (W.S.); (J.J.)
| | - Jacek C. Szepietowski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Chalubinskiego 1, 50-368 Wroclaw, Poland; (P.K.K.); (Ł.M.)
- Correspondence: (A.L.-C.); (J.C.S.)
| |
Collapse
|
27
|
Oliveira NF, Silva CLM. Unveiling the Potential of Purinergic Signaling in Schistosomiasis Treatment. Curr Top Med Chem 2021; 21:193-204. [PMID: 32972342 DOI: 10.2174/1568026620666200924115113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/15/2020] [Accepted: 08/24/2020] [Indexed: 11/22/2022]
Abstract
Schistosomiasis is a neglected tropical disease. It is related to long-lasting granulomatous fibrosis and inflammation of target organs, and current sub-optimal pharmacological treatment creates global public health concerns. Intravascular worms and eggs release antigens and extracellular vesicles that target host endothelial cells, modulate the immune system, and stimulate the release of damageassociated molecular patterns (DAMPs). ATP, one of the most studied DAMPs, triggers a cascade of autocrine and paracrine actions through purinergic P2X and P2Y receptors, which are shaped by ectonucleotidases (CD39). Both P2 receptor families, and in particular P2Y1, P2Y2, P2Y12, and P2X7 receptors, have been attracting increasing interest in several inflammatory diseases and drug development. Current data obtained from the murine model unveiled a CD39-ADP-P2Y1/P2Y12 receptors signaling pathway linked to the liver and mesenteric exacerbations of schistosomal inflammation. Therefore, we proposed that members of this purinergic signaling could be putative pharmacological targets to reduce schistosomal morbidity.
Collapse
Affiliation(s)
- Nathália Ferreira Oliveira
- Laboratory of Molecular and Biochemical Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia Lucia Martins Silva
- Laboratory of Molecular and Biochemical Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
28
|
Morimoto N, Kono T, Sakai M, Hikima JI. Inflammasomes in Teleosts: Structures and Mechanisms That Induce Pyroptosis during Bacterial Infection. Int J Mol Sci 2021; 22:4389. [PMID: 33922312 PMCID: PMC8122782 DOI: 10.3390/ijms22094389] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Pattern recognition receptors (PRRs) play a crucial role in inducing inflammatory responses; they recognize pathogen-associated molecular patterns, damage-associated molecular patterns, and environmental factors. Nucleotide-binding oligomerization domain-leucine-rich repeat-containing receptors (NLRs) are part of the PRR family; they form a large multiple-protein complex called the inflammasome in the cytosol. In mammals, the inflammasome consists of an NLR, used as a sensor molecule, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) as an adaptor protein, and pro-caspase1 (Casp1). Inflammasome activation induces Casp1 activation, promoting the maturation of proinflammatory cytokines, such as interleukin (IL)-1β and IL-18, and the induction of inflammatory cell death called pyroptosis via gasdermin D cleavage in mammals. Inflammasome activation and pyroptosis in mammals play important roles in protecting the host from pathogen infection. Recently, numerous inflammasome-related genes in teleosts have been identified, and their conservation and/or differentiation between their expression in mammals and teleosts have also been elucidated. In this review, we summarize the current knowledge of the molecular structure and machinery of the inflammasomes and the ASC-spec to induce pyroptosis; moreover, we explore the protective role of the inflammasome against pathogenic infection in teleosts.
Collapse
Affiliation(s)
- Natsuki Morimoto
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan;
| | - Tomoya Kono
- Department of Biochemistry and Applied Bioscience, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan; (T.K.); (M.S.)
| | - Masahiro Sakai
- Department of Biochemistry and Applied Bioscience, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan; (T.K.); (M.S.)
| | - Jun-ichi Hikima
- Department of Biochemistry and Applied Bioscience, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan; (T.K.); (M.S.)
| |
Collapse
|
29
|
Feng D, Zhu X. Preventive Effect of Saussurea lappa Extract on Osteoarthritis in Mice Model through Inhibition of NF-κB Pathway. DOKL BIOCHEM BIOPHYS 2021; 496:56-61. [PMID: 33689077 DOI: 10.1134/s1607672921010142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 11/23/2022]
Abstract
The current study evaluated Saussurea lappa extract (SLE) as possible therapeutic agent for osteoarthritis treatment in mice model. Male BALB/c nude mice were separated into sham, model and SLE treatment (at 1.0, 1.5, 2.0, 2.5, and 3.0 mg/kg) groups. Osteoarthritis mice model was prepared by injecting 5 mg/kg doses of monosodium iodoacetate (MIA) to mice via intra-articular route. The SLE was injected to mice for 20 days from day 2 of MIA injection through intraperitoneal route. The SLE treatment alleviated OA-induced higher secretion of interleukin-6, TNF-α, and IL-1β in mice serum. Moreover, elevated levels of P2X7R and MMP-13 in OA mice were also significantly down-regulated on treatment with SLE. In OA mice SLE treatment suppressed expression of SP and PGE2 in cartilage tissues. The expression of activated IκBα and NF-κB p65 was also inhibited markedly by SLE treatment in OA mice. In summary, SLE has protective effect on osteoarthritis in mice by targeting interleukin overproduction and P2X7R expression. Besides, it suppressed MMP expression and deactivated NF-κB signaling pathway. Therefore, SLE can be developed for the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Dong Feng
- Department of Orthopaedics, First People's Hospital of Tancheng County, 276100, Linyi, Shandong Province, China
| | - Xiaohu Zhu
- Department of Orthopedics, Funing County People's Hospital, Funing County, 224400, Yancheng, Jiangsu Province, China.
| |
Collapse
|
30
|
Fukuda M, Fukuda S, Ando J, Yamamoto K, Yonemoto N, Suzuki T, Niwa Y, Inoue T, Satoh-Asahara N, Hasegawa K, Shimatsu A, Tsukahara T. Disruption of P2X4 purinoceptor and suppression of the inflammation associated with cerebral aneurysm formation. J Neurosurg 2021; 134:102-114. [PMID: 31860812 DOI: 10.3171/2019.9.jns19270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 09/24/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE There are no effective therapeutic drugs for cerebral aneurysms, partly because the pathogenesis remains unresolved. Chronic inflammation of the cerebral arterial wall plays an important role in aneurysm formation, but it is not clear what triggers the inflammation. The authors have observed that vascular endothelial P2X4 purinoceptor is involved in flow-sensitive mechanisms that regulate vascular remodeling. They have thus hypothesized that shear stress-associated hemodynamic stress on the endothelium causes the inflammatory process in the cerebral aneurysm development. METHODS To test their hypothesis, the authors examined the role of P2X4 in cerebral aneurysm development by using P2X4-/- mice and rats that were treated with a P2X4 inhibitor, paroxetine, and subjected to aneurysm-inducing surgery. Cerebral aneurysms were induced by unilateral carotid artery ligation and renovascular hypertension. RESULTS The frequency of aneurysm induction evaluated by light microscopy was significantly lower in the P2X4-/- mice (p = 0.0488) and in the paroxetine-treated male (p = 0.0253) and female (p = 0.0204) rats compared to control mice and rats, respectively. In addition, application of paroxetine from 2 weeks after surgery led to a significant reduction in aneurysm size in the rats euthanized 3 weeks after aneurysm-inducing surgery (p = 0.0145), indicating that paroxetine suppressed enlargement of formed aneurysms. The mRNA and protein expression levels of known inflammatory contributors to aneurysm formation (monocyte chemoattractant protein-1 [MCP-1], interleukin-1β [IL-1β], tumor necrosis factor-α [TNFα], inducible nitric oxide synthase [iNOS], and cyclooxygenase-2 [COX-2]) were all significantly elevated in the rats that underwent the aneurysm-inducing surgery compared to the nonsurgical group, and the values in the surgical group were all significantly decreased by paroxetine administration according to quantitative polymerase chain reaction techniques and Western blotting. Although immunolabeling densities for COX-2, iNOS, and MCP-1 were not readily observed in the nonsurgical mouse groups, such densities were clearly seen in the arterial wall of P2X4+/+ mice after aneurysm-inducing surgery. In contrast, in the P2X4-/- mice after the surgery, immunolabeling of COX-2 and iNOS was not observed in the arterial wall, whereas that of MCP-1 was readily observed in the adventitia, but not the intima. CONCLUSIONS These data suggest that P2X4 is required for the inflammation that contributes to both cerebral aneurysm formation and growth. Enhanced shear stress-associated hemodynamic stress on the vascular endothelium may trigger cerebral aneurysm development. Paroxetine may have potential for the clinical treatment of cerebral aneurysms, given that this agent exhibits efficacy as a clinical antidepressant.
Collapse
Affiliation(s)
- Miyuki Fukuda
- 1Department of Neurosurgery, National Hospital Organization Kyoto Medical Center, Kyoto
- 2Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto
| | - Shunichi Fukuda
- 1Department of Neurosurgery, National Hospital Organization Kyoto Medical Center, Kyoto
| | - Joji Ando
- 3Laboratory of Biomedical Engineering, School of Medicine, Dokkyo Medical University, Mibu City, Tochigi
| | - Kimiko Yamamoto
- 4Department of Biomedical Engineering, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo
| | | | - Takashi Suzuki
- 1Department of Neurosurgery, National Hospital Organization Kyoto Medical Center, Kyoto
- 6Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto; and
| | - Youko Niwa
- 1Department of Neurosurgery, National Hospital Organization Kyoto Medical Center, Kyoto
| | - Takayuki Inoue
- 7Department of Endocrinology, Metabolism, and Hypertension Research, Clinical Research Institute
| | - Noriko Satoh-Asahara
- 7Department of Endocrinology, Metabolism, and Hypertension Research, Clinical Research Institute
| | | | - Akira Shimatsu
- 9Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Tetsuya Tsukahara
- 1Department of Neurosurgery, National Hospital Organization Kyoto Medical Center, Kyoto
| |
Collapse
|
31
|
Nummenmaa E, Hämäläinen M, Pemmari A, Moilanen LJ, Tuure L, Nieminen RM, Moilanen T, Vuolteenaho K, Moilanen E. Transient Receptor Potential Ankyrin 1 (TRPA1) Is Involved in Upregulating Interleukin-6 Expression in Osteoarthritic Chondrocyte Models. Int J Mol Sci 2020; 22:ijms22010087. [PMID: 33374841 PMCID: PMC7794684 DOI: 10.3390/ijms22010087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 12/19/2022] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is a membrane-bound ion channel found in neurons, where it mediates nociception and neurogenic inflammation. Recently, we have discovered that TRPA1 is also expressed in human osteoarthritic (OA) chondrocytes and downregulated by the anti-inflammatory drugs aurothiomalate and dexamethasone. We have also shown TRPA1 to mediate inflammation, pain, and cartilage degeneration in experimental osteoarthritis. In this study, we investigated the role of TRPA1 in joint inflammation, focusing on the pro-inflammatory cytokine interleukin-6 (IL-6). We utilized cartilage/chondrocytes from wild-type (WT) and TRPA1 knockout (KO) mice, along with primary chondrocytes from OA patients. The results show that TRPA1 regulates the synthesis of the OA-driving inflammatory cytokine IL-6 in chondrocytes. IL-6 was highly expressed in WT chondrocytes, and its expression, along with the expression of IL-6 family cytokines leukemia inhibitory factor (LIF) and IL-11, were significantly downregulated by TRPA1 deficiency. Furthermore, treatment with the TRPA1 antagonist significantly downregulated the expression of IL-6 in chondrocytes from WT mice and OA patients. The results suggest that TRPA1 is involved in the upregulation of IL-6 production in chondrocytes. These findings together with previous results on the expression and functions of TRPA1 in cellular and animal models point to the role of TRPA1 as a potential mediator and novel drug target in osteoarthritis.
Collapse
Affiliation(s)
- Elina Nummenmaa
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
| | - Antti Pemmari
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
| | - Lauri J. Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
| | - Lauri Tuure
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
| | - Riina M. Nieminen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
| | - Teemu Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
- Coxa Hospital for Joint Replacement, FI-33520 Tampere, Finland
| | - Katriina Vuolteenaho
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
- Correspondence:
| |
Collapse
|
32
|
Radiation-Induced Salivary Gland Dysfunction: Mechanisms, Therapeutics and Future Directions. J Clin Med 2020; 9:jcm9124095. [PMID: 33353023 PMCID: PMC7767137 DOI: 10.3390/jcm9124095] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
Salivary glands sustain collateral damage following radiotherapy (RT) to treat cancers of the head and neck, leading to complications, including mucositis, xerostomia and hyposalivation. Despite salivary gland-sparing techniques and modified dosing strategies, long-term hypofunction remains a significant problem. Current therapeutic interventions provide temporary symptom relief, but do not address irreversible glandular damage. In this review, we summarize the current understanding of mechanisms involved in RT-induced hyposalivation and provide a framework for future mechanistic studies. One glaring gap in published studies investigating RT-induced mechanisms of salivary gland dysfunction concerns the effect of irradiation on adjacent non-irradiated tissue via paracrine, autocrine and direct cell-cell interactions, coined the bystander effect in other models of RT-induced damage. We hypothesize that purinergic receptor signaling involving P2 nucleotide receptors may play a key role in mediating the bystander effect. We also discuss promising new therapeutic approaches to prevent salivary gland damage due to RT.
Collapse
|
33
|
Okada T, Suzuki H, Travis ZD, Zhang JH. The Stroke-Induced Blood-Brain Barrier Disruption: Current Progress of Inspection Technique, Mechanism, and Therapeutic Target. Curr Neuropharmacol 2020; 18:1187-1212. [PMID: 32484111 PMCID: PMC7770643 DOI: 10.2174/1570159x18666200528143301] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/23/2020] [Accepted: 05/23/2020] [Indexed: 02/07/2023] Open
Abstract
Stroke is one of the leading causes of mortality and morbidity worldwide. The blood-brain barrier (BBB) is a characteristic structure of microvessel within the brain. Under normal physiological conditions, the BBB plays a role in the prevention of harmful substances entering into the brain parenchyma within the central nervous system. However, stroke stimuli induce the breakdown of BBB leading to the influx of cytotoxic substances, vasogenic brain edema, and hemorrhagic transformation. Therefore, BBB disruption is a major complication, which needs to be addressed in order to improve clinical outcomes in stroke. In this review, we first discuss the structure and function of the BBB. Next, we discuss the progress of the techniques utilized to study BBB breakdown in in-vitro and in-vivo studies, along with biomarkers and imaging techniques in clinical settings. Lastly, we highlight the mechanisms of stroke-induced neuroinflammation and apoptotic process of endothelial cells causing BBB breakdown, and the potential therapeutic targets to protect BBB integrity after stroke. Secondary products arising from stroke-induced tissue damage provide transformation of myeloid cells such as microglia and macrophages to pro-inflammatory phenotype followed by further BBB disruption via neuroinflammation and apoptosis of endothelial cells. In contrast, these myeloid cells are also polarized to anti-inflammatory phenotype, repairing compromised BBB. Therefore, therapeutic strategies to induce anti-inflammatory phenotypes of the myeloid cells may protect BBB in order to improve clinical outcomes of stroke patients.
Collapse
Affiliation(s)
- Takeshi Okada
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219,
11041 Campus St, Loma Linda, CA 92354, USA,Department of Neurosurgery, Mie University Graduate School of Medicine, Mie, Japan, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Mie, Japan, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Zachary D Travis
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219,
11041 Campus St, Loma Linda, CA 92354, USA,Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA, USA , Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA 92354, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219,
11041 Campus St, Loma Linda, CA 92354, USA,Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA 92354, USA,Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA 92354, USA
| |
Collapse
|
34
|
Biologic therapy in Sjögren's syndrome. Clin Rheumatol 2020; 40:2143-2154. [PMID: 33106929 DOI: 10.1007/s10067-020-05429-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/06/2020] [Accepted: 09/22/2020] [Indexed: 01/19/2023]
Abstract
Sjögren's syndrome (SS) is a chronic autoimmune disease with complex and diverse clinical manifestations. It is characterized by lymphocyte infiltration of exocrine glands such as the salivary gland and lacrimal gland leading to insufficient secretion of the gland, manifested as dry mouth and dry eyes. In addition, it can involve extraglandular organs and cause systemic damage. The pathogenesis of SS is still unclear. At present, symptomatic treatment is the mainstay and there is a lack of effective therapy. With the development of molecular pathways underlying the pathogenesis of SS, more and more novel biological agents are used to treat SS. We summarized and analyzed the existing evidences on the efficacy of biological treatment of SS and their targets. Analysis of the efficacy of biological therapy and improvement of treatment strategies can help to give full play to its therapeutic advantages.
Collapse
|
35
|
Molecular Mechanisms of Glial Cells Related Signaling Pathways Involved in the Neuroinflammatory Response of Depression. Mediators Inflamm 2020; 2020:3497920. [PMID: 33100903 PMCID: PMC7569467 DOI: 10.1155/2020/3497920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/17/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
Dysfunction of the glial cells, such as astrocytes and microglia, is one of the pathological features in many psychiatric disorders, including depression, which emphasizes that glial cells driving neuroinflammation is not only an important pathological change in depression but also a potential therapeutic target. In this review, we summarized a recent update about several signaling pathways in which glial cells may play their roles in depression through neuroinflammatory reactions. We focused on the basic knowledge of these signaling pathways by elaborating each of them. This review may provide an updated image about the recent advances on these signaling pathways that are essential parts of neuroinflammation involved in depression.
Collapse
|
36
|
Zheng J, Mo J, Zhu T, Zhuo W, Yi Y, Hu S, Yin J, Zhang W, Zhou H, Liu Z. Comprehensive elaboration of the cGAS-STING signaling axis in cancer development and immunotherapy. Mol Cancer 2020; 19:133. [PMID: 32854711 PMCID: PMC7450153 DOI: 10.1186/s12943-020-01250-1] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/17/2020] [Indexed: 02/08/2023] Open
Abstract
Cellular recognition of microbial DNA is an evolutionarily conserved mechanism by which the innate immune system detects pathogens. Cyclic GMP-AMP synthase (cGAS) and its downstream effector, stimulator of interferon genes (STING), are involved in mediating fundamental innate antimicrobial immunity by promoting the release of type I interferons (IFNs) and other inflammatory cytokines. Accumulating evidence suggests that the activation of the cGAS-STING axis is critical for antitumor immunity. The downstream cytokines regulated by cGAS-STING, especially type I IFNs, serve as bridges connecting innate immunity with adaptive immunity. Accordingly, a growing number of studies have focused on the synthesis and screening of STING pathway agonists. However, chronic STING activation may lead to a protumor phenotype in certain malignancies. Hence, the cGAS-STING signaling pathway must be orchestrated properly when STING agonists are used alone or in combination. In this review, we discuss the dichotomous roles of the cGAS-STING pathway in tumor development and the latest advances in the use of STING agonists.
Collapse
Affiliation(s)
- Juyan Zheng
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Institute of Clinical Pharmacology, Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, People's Republic of China
| | - Junluan Mo
- Shenzhen center for chronic disease control and Prevention, Shenzhen, 518020, People's Republic of China
| | - Tao Zhu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Institute of Clinical Pharmacology, Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, People's Republic of China
| | - Wei Zhuo
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Institute of Clinical Pharmacology, Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, People's Republic of China
| | - Yueneng Yi
- Hunan Yineng Biological Medicine Co., Ltd, Changsha, 410205, People's Republic of China
| | - Shuo Hu
- Department of Nuclear Medicine, Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Jiye Yin
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Institute of Clinical Pharmacology, Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, People's Republic of China
| | - Wei Zhang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Institute of Clinical Pharmacology, Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, People's Republic of China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Institute of Clinical Pharmacology, Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, People's Republic of China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China. .,Institute of Clinical Pharmacology, Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, People's Republic of China.
| |
Collapse
|
37
|
Zheng QH. Radioligands targeting purinergic P2X7 receptor. Bioorg Med Chem Lett 2020; 30:127169. [DOI: 10.1016/j.bmcl.2020.127169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022]
|
38
|
Ma H, Qin S, Zhao S. Osteoarthritis is Prevented in Rats by Verbascoside via Nuclear Factor kappa B (NF-κB) Pathway Downregulation. Med Sci Monit 2020; 26:e921276. [PMID: 32249762 PMCID: PMC7160605 DOI: 10.12659/msm.921276] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Cartilage degeneration during osteoarthritis (OA) most adversely affects the quality of life by hindering the movement. The present study investigated the role of verbascoside in the protection of cartilage degeneration induced by osteoarthritis. Material/Methods The enzyme-linked immunosorbent (ELISA) and western blot assays were used for determination of inflammatory cytokine secretion in serum and cartilage tissues, respectively. Results Treatment of the OA rats with verbascoside inhibited overproduction of interleukin (IL)-6, tumor necrosis factor (TNF)-α, and IL-1β in serum as well as cartilage tissues. The expression of P2X7R and matrix metalloproteinase (MMP)-13 was much higher in the rats induced with OA. However, administration of verbascoside reversed the OA-induced upregulation of P2X7R and MMP-13 expression in the cartilage tissues. The OA-mediated increase in substance P (SP) and prostaglandin E2 (PGE2) expression was also reduced in the cartilage tissues by the verbascoside treatment. Western blot assay revealed that verbascoside treatment markedly decreased the activation of IκBα and NF-κB p65 in the OA rats. Conclusions Thus, verbascoside inhibited inflammatory cytokine secretion in the OA rats by targeting P2X7R expression, production of matrix metalloproteinase, PGE2 and downregulation of NF-κB signaling pathway. Therefore, verbascoside may be used as potent agent for osteoarthritis treatment.
Collapse
Affiliation(s)
- Hongbing Ma
- Department of Orthopedics, Chengdu Second People's Hospital, Chengdu, Sichuan, China (mainland)
| | - Shourong Qin
- Department of Traumatic Orthopaedics, Taian City Central Hospital, Taian, Shandong, China (mainland)
| | - Shaoheng Zhao
- Department of Orthopedic, Xi'an No.3 Hospital, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|
39
|
Khalafalla MG, Woods LT, Jasmer KJ, Forti KM, Camden JM, Jensen JL, Limesand KH, Galtung HK, Weisman GA. P2 Receptors as Therapeutic Targets in the Salivary Gland: From Physiology to Dysfunction. Front Pharmacol 2020; 11:222. [PMID: 32231563 PMCID: PMC7082426 DOI: 10.3389/fphar.2020.00222] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/18/2020] [Indexed: 12/12/2022] Open
Abstract
Although often overlooked in our daily lives, saliva performs a host of necessary physiological functions, including lubricating and protecting the oral cavity, facilitating taste sensation and digestion and maintaining tooth enamel. Therefore, salivary gland dysfunction and hyposalivation, often resulting from pathogenesis of the autoimmune disease Sjögren's syndrome or from radiotherapy of the head and neck region during cancer treatment, severely reduce the quality of life of afflicted patients and can lead to dental caries, periodontitis, digestive disorders, loss of taste and difficulty speaking. Since their initial discovery in the 1970s, P2 purinergic receptors for extracellular nucleotides, including ATP-gated ion channel P2X and G protein-coupled P2Y receptors, have been shown to mediate physiological processes in numerous tissues, including the salivary glands where P2 receptors represent a link between canonical and non-canonical saliva secretion. Additionally, extracellular nucleotides released during periods of cellular stress and inflammation act as a tissue alarmin to coordinate immunological and tissue repair responses through P2 receptor activation. Accordingly, P2 receptors have gained widespread clinical interest with agonists and antagonists either currently undergoing clinical trials or already approved for human use. Here, we review the contributions of P2 receptors to salivary gland function and describe their role in salivary gland dysfunction. We further consider their potential as therapeutic targets to promote physiological saliva flow, prevent salivary gland inflammation and enhance tissue regeneration.
Collapse
Affiliation(s)
- Mahmoud G. Khalafalla
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Lucas T. Woods
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Kimberly J. Jasmer
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Kevin Muñoz Forti
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Jean M. Camden
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Janicke L. Jensen
- Institute of Clinical Dentistry, Section of Oral Surgery and Oral Medicine, University of Oslo, Oslo, Norway
| | - Kirsten H. Limesand
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States
| | - Hilde K. Galtung
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Gary A. Weisman
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
40
|
Munoz FM, Patel PA, Gao X, Mei Y, Xia J, Gilels S, Hu H. Reactive oxygen species play a role in P2X7 receptor-mediated IL-6 production in spinal astrocytes. Purinergic Signal 2020; 16:97-107. [PMID: 32146607 DOI: 10.1007/s11302-020-09691-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/11/2020] [Indexed: 01/29/2023] Open
Abstract
Astrocytes mediate a remarkable variety of cellular functions, including gliotransmitter release. Under pathological conditions, high concentrations of the purinergic receptor agonist adenosine triphosphate (ATP) are released into the extracellular space leading to the activation of the purinergic P2X7 receptor, which in turn can initiate signaling cascades. It is well-established that reactive oxygen species (ROS) increase in macrophages and microglia following P2X7 receptor activation. However, direct evidence that activation of P2X7 receptor leads to ROS production in astrocytes is lacking to date. While it is known that P2X7R activation induces cytokine production, the mechanism involved in this process is unclear. In the present study, we demonstrated that P2X7 receptor activation induced ROS production in spinal astrocytes in a concentration-dependent manner. We also found that P2X7R-mediated ROS production is at least partially through NADPH oxidase. In addition, our ELISA data show that P2X7R-induced IL-6 release was dependent on NADPH oxidase-mediated production of ROS. Collectively, these results reveal that activation of the P2X7 receptor on spinal astrocytes increases ROS production through NADPH oxidase, subsequently leading to IL-6 release. Our results reveal a role of ROS in the P2X7 signaling pathway in mouse spinal cord astrocytes and may indicate a potential mechanism for the astrocytic P2X7 receptor in chronic pain.
Collapse
Affiliation(s)
- Frances M Munoz
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Priya A Patel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Xinghua Gao
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Yixiao Mei
- Department of Anesthesiology, Rutgers New Jersey Medical School, 185 S. Orange Ave., Newark, NJ, 07103, USA
| | - Jingsheng Xia
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Sofia Gilels
- Department of Anesthesiology, Rutgers New Jersey Medical School, 185 S. Orange Ave., Newark, NJ, 07103, USA
| | - Huijuan Hu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA. .,Department of Anesthesiology, Rutgers New Jersey Medical School, 185 S. Orange Ave., Newark, NJ, 07103, USA.
| |
Collapse
|
41
|
Okada T, Suzuki H. Mechanisms of neuroinflammation and inflammatory mediators involved in brain injury following subarachnoid hemorrhage. Histol Histopathol 2020; 35:623-636. [PMID: 32026458 DOI: 10.14670/hh-18-208] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Subarachnoid hemorrhage (SAH) is a devastating cerebrovascular disorder. Neuroinflammation is a critical cause of brain injury following SAH in both acute and chronic phases. While accumulating evidence has shown that therapies targeting neuroinflammation exerted beneficial effects in experimental SAH, there is little clinical evidence. One of the factors making neuroinflammation complicated is that inflammatory signaling pathways and mediators act as protective or detrimental responses at different phases. In addition, biomarkers to detect neuroinflammation are little known in clinical settings. In this review, first, we discuss how the inflammatory signaling pathways contribute to brain injury and other secondary pathophysiological changes in SAH. Damage-associated molecular patterns arising from mechanical stress, transient global cerebral ischemia, red blood cell breakdown and delayed cerebral ischemia following SAH trigger to activate pattern recognition receptors (PRRs) such as Toll-like receptors, nucleotide-binding oligomerization domain-like receptors, and receptors for advanced glycation end products. Most of PRRs activate common downstream signaling transcriptional factor nuclear factor-κΒ and mitogen-activated protein kinases, releasing pro-inflammatory mediators and cytokines. Next, we focus on how pro-inflammatory substances play a role during the course of SAH. Finally, we highlight an important inducer of neuroinflammation, matricellular protein (MCP). MCPs are a component of extracellular matrix and exert beneficial and harmful effects through binding to receptors, other matrix proteins, growth factors, and cytokines. Treatment targeting MCPs is being proved efficacious in pre-clinical models for preventing brain injury including neuroinflammation in SAH. In addition, MCPs may be a candidate of biomarkers predicting brain injury following SAH in clinical settings.
Collapse
Affiliation(s)
- Takeshi Okada
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan.
| |
Collapse
|
42
|
He J, Zheng S. NF-κB Phosphorylation Inhibition Prevents Articular Cartilage Degradation in Osteoarthritis Rats via 2-Aminoquinoline. Med Sci Monit 2020; 26:e920346. [PMID: 31978040 PMCID: PMC6998790 DOI: 10.12659/msm.920346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background Osteoarthritis is a chronic degenerative disease of the joints that is common in older people worldwide. The characteristic features of osteoarthritis include cartilage degradation, synovitis, and remodelling of subchondral bone. The present study investigated the effect of 2-aminoquinoline on knee articular cartilage degradation in an osteoarthritis rat model. Material/Methods The rat model of osteoarthritis was established in Wistar rats by intra-articular injection of monosodium iodoacetate. The rats were randomly divided into 6 groups of 10 rats each: a normal control group, an untreated group, and 4 (5, 10, 15 and 20 mg/kg) treatment groups. The rats in treatment groups received 5, 10, 15, or 20 mg/kg doses of 2-aminoquinoline on day 2 of monosodium iodoacetate injection. Results The 2-aminoquinoline treatment of monosodium iodoacetate-injected rats markedly decreased weight-bearing asymmetry, inhibited edema formation, and improved paw withdrawal thresholds. The expression of inflammatory cytokines was markedly higher in the osteoarthritis rats. Treatment with 2-aminoquinoline led to a significant reduction in inflammatory cytokine expression in osteoarthritis rats in a dose-dependent manner. In osteoarthritis rats, the expressions of prostaglandin E2 (PGE2), matrix metalloproteinase-13 (MMP-13), and substance P were also higher in comparison to the control group. The 2-aminoquinoline treatment supressed PGE2, MMP-13, and substance P levels in osteoarthritis rats. Moreover, the expression of phosphorylated nuclear factor kappaB (p-NF-κB) was markedly higher in the untreated rats. However, activation of NF-κB was downregulated in the osteoarthritis rats by treatment with 2-aminoquinoline. Conclusions The present study demonstrated that 2-aminoquinoline prevents articular cartilage damage in osteoarthritis rats through inhibition of inflammatory factors and downregulation of NF-κB activation, suggesting that 2-aminoquinoline would be effective in treatment of osteoarthritis.
Collapse
Affiliation(s)
- Jinlong He
- Department of Integrated Traditional Chinese Medicine (TCM) and Western Medicine Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Shicheng Zheng
- Department of Integrated Traditional Chinese Medicine (TCM) and Western Medicine Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|
43
|
Attenuation of diabetic retinopathy and neuropathy by resveratrol: Review on its molecular mechanisms of action. Life Sci 2020; 245:117350. [PMID: 31982401 DOI: 10.1016/j.lfs.2020.117350] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 12/16/2022]
Abstract
Resveratrol is an important phenolic phytochemical from the therapeutic perspective. It has therapeutic impacts over wide range of diseases, especially the ones related to oxidative stress. Resveratrol, being primarily a potent anti-oxidant phytochemical, has significant impact against major diseases as inflammatory disorders, diabetes, and cancer. In the current review article, we intend to highlight the molecular aspects of the mechanism of action of resveratrol against major diabetic implications, namely, retinopathy and neuropathy. Both these diabetic implications are among the first fallouts of chronic hyperglycaemia. Resveratrol, via multiple molecular pathways, tend to attenuate and reverse these deformity and other disease-causing implications.
Collapse
|
44
|
Mavragani CP, Moutsopoulos HM. Sjögren's syndrome: Old and new therapeutic targets. J Autoimmun 2019; 110:102364. [PMID: 31831255 DOI: 10.1016/j.jaut.2019.102364] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 11/10/2019] [Indexed: 02/09/2023]
Abstract
Sjögren's syndrome (SS) is a prototype autoimmune disease characterized by oral and ocular mucosal dryness following chronic inflammation of salivary and lachrymal glands, respectively. Profound B cell hyperactivity along with systemic manifestations including fatigue, musculoskeletal complaints, features related to hepatic, pulmonary, renal and nervous system involvement, as well as lymphoma development can be also present. Despite that activation of both innate and adaptive immune pathways has been long well documented in SS pathogenesis, systemic immunosuppression in SS, in contrast to other autoimmune diseases, has been largely inefficacious. Biological agents previously implemented in successful therapeutic outcomes in rheumatoid arthritis (RA), such as anti-TNF agents, anakinra, tocilizumab and rituximab failed to reach primary outcomes in randomized double-blind controlled trials in the context of SS. Abatacept and belimumab, already licensed for the treatment of RA and lupus respectively, as well combination regimens of both rituximab and belimumab hold some promise in alleviation of SS-specific complaints, but data from large controlled trials are awaited. Recent advances in dissecting the molecular pathways underlying SS pathogenesis led to an expanding number of novel biological compounds directed towards type I interferon system, antigen presentation, costimulatory pathways, B and T cell activation, as well as germinal center formation. While targeting of cathepsin-S (Petesicatib), inducible costimulator of T cells ligand (prezalumab), and lymphotoxin beta receptor (baminercept) failed to fulfil the primary outcome measures, preliminary results from two randomized placebo controlled trials on CD40 blockade (Iscalimab) and B-cell activating factor receptor (Ianalumab) inhibition resulted in significant reduction of SS disease activity, with a favorable so far safety profile. Results from administration of other kinase inhibitors, a transmembrane activator and calcium-modulator and cytophilin ligand interactor TACI fusion protein (RC18), as well as low dose recombinant interleukin-2 to expand T-regulatory cells are currently awaited.
Collapse
Affiliation(s)
- Clio P Mavragani
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | | |
Collapse
|
45
|
Homerin G, Jawhara S, Dezitter X, Baudelet D, Dufrénoy P, Rigo B, Millet R, Furman C, Ragé G, Lipka E, Farce A, Renault N, Sendid B, Charlet R, Leroy J, Phanithavong M, Richeval C, Wiart JF, Allorge D, Adriouch S, Vouret-Craviari V, Ghinet A. Pyroglutamide-Based P2X7 Receptor Antagonists Targeting Inflammatory Bowel Disease. J Med Chem 2019; 63:2074-2094. [PMID: 31525963 DOI: 10.1021/acs.jmedchem.9b00584] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This report deals with the design, the synthesis, and the pharmacological evaluation of pyroglutamide-based P2X7 antagonists. A dozen were shown to possess improved properties, among which inhibition of YO-PRO-1/TO-PRO-3 uptake and IL1β release upon BzATP activation of the receptor and dampening signs of DSS-induced colitis on mice, in comparison with reference antagonist GSK1370319A. Docking study and biological evaluation of synthesized compounds has highlighted new SAR, and low toxicity profiles of pyroglutamides herein described are clues for the finding of a usable h-P2X7 antagonist drug. Such a drug would raise the hope for a cure to many P2X7-dependent pathologies, including inflammatory, neurological, and immune diseases.
Collapse
Affiliation(s)
- Germain Homerin
- CHRU de Lille, Faculté de Médecine-Pôle Recherche, Inserm U995, LIRIC, Université de Lille, Place Verdun, F-59045 Lille Cedex, France.,Yncréa Hauts-de-France, UCLille, Laboratoire de Pharmacochimie, Hautes Etudes d'Ingénieur (HEI), 13 rue de Toul, F-59046 Lille, France
| | - Samir Jawhara
- CHRU de Lille, Faculté de Médecine-Pôle Recherche, Inserm U995, LIRIC, Université de Lille, Place Verdun, F-59045 Lille Cedex, France
| | - Xavier Dezitter
- CHRU de Lille, Faculté de Médecine-Pôle Recherche, Inserm U995, LIRIC, Université de Lille, Place Verdun, F-59045 Lille Cedex, France.,Institut de Chimie Pharmaceutique Albert Lespagnol, IFR114, 3 rue du Pr Laguesse, F-59006 Lille, France
| | - Davy Baudelet
- CHRU de Lille, Faculté de Médecine-Pôle Recherche, Inserm U995, LIRIC, Université de Lille, Place Verdun, F-59045 Lille Cedex, France.,Yncréa Hauts-de-France, UCLille, Laboratoire de Pharmacochimie, Hautes Etudes d'Ingénieur (HEI), 13 rue de Toul, F-59046 Lille, France
| | - Pierrick Dufrénoy
- CHRU de Lille, Faculté de Médecine-Pôle Recherche, Inserm U995, LIRIC, Université de Lille, Place Verdun, F-59045 Lille Cedex, France.,Yncréa Hauts-de-France, UCLille, Laboratoire de Pharmacochimie, Hautes Etudes d'Ingénieur (HEI), 13 rue de Toul, F-59046 Lille, France
| | - Benoît Rigo
- CHRU de Lille, Faculté de Médecine-Pôle Recherche, Inserm U995, LIRIC, Université de Lille, Place Verdun, F-59045 Lille Cedex, France.,Yncréa Hauts-de-France, UCLille, Laboratoire de Pharmacochimie, Hautes Etudes d'Ingénieur (HEI), 13 rue de Toul, F-59046 Lille, France
| | - Régis Millet
- CHRU de Lille, Faculté de Médecine-Pôle Recherche, Inserm U995, LIRIC, Université de Lille, Place Verdun, F-59045 Lille Cedex, France.,Institut de Chimie Pharmaceutique Albert Lespagnol, IFR114, 3 rue du Pr Laguesse, F-59006 Lille, France
| | - Christophe Furman
- CHRU de Lille, Faculté de Médecine-Pôle Recherche, Inserm U995, LIRIC, Université de Lille, Place Verdun, F-59045 Lille Cedex, France.,Institut de Chimie Pharmaceutique Albert Lespagnol, IFR114, 3 rue du Pr Laguesse, F-59006 Lille, France
| | - Guillaume Ragé
- CHRU de Lille, Faculté de Médecine-Pôle Recherche, Inserm U995, LIRIC, Université de Lille, Place Verdun, F-59045 Lille Cedex, France.,Institut de Chimie Pharmaceutique Albert Lespagnol, IFR114, 3 rue du Pr Laguesse, F-59006 Lille, France
| | - Emmanuelle Lipka
- CHRU de Lille, Faculté de Médecine-Pôle Recherche, Inserm U995, LIRIC, Université de Lille, Place Verdun, F-59045 Lille Cedex, France.,Laboratoire de Chimie Analytique, Faculté des Sciences Pharmaceutiques et Biologiques de Lille, F-59006 Lille Cedex, France
| | - Amaury Farce
- CHRU de Lille, Faculté de Médecine-Pôle Recherche, Inserm U995, LIRIC, Université de Lille, Place Verdun, F-59045 Lille Cedex, France.,Institut de Chimie Pharmaceutique Albert Lespagnol, IFR114, 3 rue du Pr Laguesse, F-59006 Lille, France
| | - Nicolas Renault
- CHRU de Lille, Faculté de Médecine-Pôle Recherche, Inserm U995, LIRIC, Université de Lille, Place Verdun, F-59045 Lille Cedex, France.,Institut de Chimie Pharmaceutique Albert Lespagnol, IFR114, 3 rue du Pr Laguesse, F-59006 Lille, France
| | - Boualem Sendid
- CHRU de Lille, Faculté de Médecine-Pôle Recherche, Inserm U995, LIRIC, Université de Lille, Place Verdun, F-59045 Lille Cedex, France
| | - Rogatien Charlet
- CHRU de Lille, Faculté de Médecine-Pôle Recherche, Inserm U995, LIRIC, Université de Lille, Place Verdun, F-59045 Lille Cedex, France
| | - Jordan Leroy
- CHRU de Lille, Faculté de Médecine-Pôle Recherche, Inserm U995, LIRIC, Université de Lille, Place Verdun, F-59045 Lille Cedex, France
| | - Mélodie Phanithavong
- Laboratoire de Toxicologie & Génopathies, CHRU de Lille, Centre de Biologie Pathologie, Blvd du Pr. J. Leclercq, CS 70001, F-59037 Lille, France
| | - Camille Richeval
- Laboratoire de Toxicologie & Génopathies, CHRU de Lille, Centre de Biologie Pathologie, Blvd du Pr. J. Leclercq, CS 70001, F-59037 Lille, France
| | - Jean-François Wiart
- Laboratoire de Toxicologie & Génopathies, CHRU de Lille, Centre de Biologie Pathologie, Blvd du Pr. J. Leclercq, CS 70001, F-59037 Lille, France
| | - Delphine Allorge
- Laboratoire de Toxicologie & Génopathies, CHRU de Lille, Centre de Biologie Pathologie, Blvd du Pr. J. Leclercq, CS 70001, F-59037 Lille, France
| | - Sahil Adriouch
- INSERM U905, F-76183 Rouen, France.,Institute for Research and Innovation in Biomedicine, Normandie University, F-76183 Rouen, France
| | - Valérie Vouret-Craviari
- Institute for Research on Cancer and Aging (IRCAN), F-06100 Nice, France.,University of Nice Cote d'Azur (UCA), F-06100 Nice, France
| | - Alina Ghinet
- CHRU de Lille, Faculté de Médecine-Pôle Recherche, Inserm U995, LIRIC, Université de Lille, Place Verdun, F-59045 Lille Cedex, France.,Yncréa Hauts-de-France, UCLille, Laboratoire de Pharmacochimie, Hautes Etudes d'Ingénieur (HEI), 13 rue de Toul, F-59046 Lille, France.,Faculty of Chemistry, "Al. I. Cuza" University of Iasi, Blvd Carol I, nr. 11, 700506 Iasi, Romania
| |
Collapse
|
46
|
Skarlis C, Marketos N, Mavragani CP. Biologics in Sjögren's syndrome. Pharmacol Res 2019; 147:104389. [DOI: 10.1016/j.phrs.2019.104389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022]
|
47
|
Vallon V, Unwin R, Inscho EW, Leipziger J, Kishore BK. Extracellular Nucleotides and P2 Receptors in Renal Function. Physiol Rev 2019; 100:211-269. [PMID: 31437091 DOI: 10.1152/physrev.00038.2018] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The understanding of the nucleotide/P2 receptor system in the regulation of renal hemodynamics and transport function has grown exponentially over the last 20 yr. This review attempts to integrate the available data while also identifying areas of missing information. First, the determinants of nucleotide concentrations in the interstitial and tubular fluids of the kidney are described, including mechanisms of cellular release of nucleotides and their extracellular breakdown. Then the renal cell membrane expression of P2X and P2Y receptors is discussed in the context of their effects on renal vascular and tubular functions. Attention is paid to effects on the cortical vasculature and intraglomerular structures, autoregulation of renal blood flow, tubuloglomerular feedback, and the control of medullary blood flow. The role of the nucleotide/P2 receptor system in the autocrine/paracrine regulation of sodium and fluid transport in the tubular and collecting duct system is outlined together with its role in integrative sodium and fluid homeostasis and blood pressure control. The final section summarizes the rapidly growing evidence indicating a prominent role of the extracellular nucleotide/P2 receptor system in the pathophysiology of the kidney and aims to identify potential therapeutic opportunities, including hypertension, lithium-induced nephropathy, polycystic kidney disease, and kidney inflammation. We are only beginning to unravel the distinct physiological and pathophysiological influences of the extracellular nucleotide/P2 receptor system and the associated therapeutic perspectives.
Collapse
Affiliation(s)
- Volker Vallon
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Robert Unwin
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Edward W Inscho
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Jens Leipziger
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Bellamkonda K Kishore
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| |
Collapse
|
48
|
Soares-Bezerra RJ, da Silva Ferreira NC, de Almeida Alves TM, Zani CL, Rosa LH, Faria RX, da Silva Frutuoso V, Alves LA. A new insight into purinergic pharmacology: Three fungal species as natural P2X7R antagonists. Phytother Res 2019; 33:2319-2328. [PMID: 31264271 PMCID: PMC6771832 DOI: 10.1002/ptr.6412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 03/28/2019] [Accepted: 05/18/2019] [Indexed: 12/03/2022]
Affiliation(s)
- Rômulo José Soares-Bezerra
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Tânia Maria de Almeida Alves
- Laboratory of Chemistry of Bioactive Natural Products, René Rachou Research Center, Oswaldo Cruz Foundation, Belo Horizonte, Brazil
| | - Carlos Leomar Zani
- Laboratory of Chemistry of Bioactive Natural Products, René Rachou Research Center, Oswaldo Cruz Foundation, Belo Horizonte, Brazil
| | - Luiz Henrique Rosa
- Laboratory of Polar Microbiology and Tropical Connections, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Robson Xavier Faria
- Laboratory of Toxoplasmosis and other Protozoosis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Válber da Silva Frutuoso
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Luiz Anastacio Alves
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
49
|
Gao M, Wang M, Meyer JA, Territo PR, Hutchins GD, Zarrinmayeh H, Zheng QH. Synthesis and in vitro biological evaluation of new P2X7R radioligands [11C]halo-GSK1482160 analogs. Bioorg Med Chem Lett 2019; 29:1476-1480. [DOI: 10.1016/j.bmcl.2019.04.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023]
|
50
|
Pan Z, Zhang X, Ma Y, Xu S, Shuai Z, Pan F, Sun G. Genetic variation of rs7958311 in P2X7R gene is associated with the susceptibility and disease activity of ankylosing spondylitis. Postgrad Med J 2019; 95:251-257. [PMID: 30992418 DOI: 10.1136/postgradmedj-2018-136036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 02/05/2019] [Accepted: 03/12/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To describe association between the genetic variation of inflammation-associated gene, P2X7R, and ankylosing spondylitis (AS) susceptibility. METHODS Four single nucleotide polymorphisms (SNPs) of P2 X 7 R gene were genotyped in 673 patients with AS and 687 healthy controls. Allele and genotype frequencies and different genetic models were performed to calculate ORs and 95% CIs, the demographic and clinical characteristics of patients were recorded. The data analyses were also conducted by sex. RESULTS Compared with controls, genetic variation in rs7958311 but not the other three SNPs was statistically significant in female patients (χ2=6.907, p=0.032). Specifically, the P2 X 7 R gene rs7958311 polymorphism A allele showed a protective effect in AS susceptibility (OR=0.704, p=0.049, pFDR=0.061). In addition, female individuals with GA and/or AA genotypes had a lower risk of having AS compared with those with GG genotype (GA vs GG: OR=0.446, p=0.012, pFDR=0.030; AA vs GG: OR=0.440, p=0.039, pFDR=0.061; GA/AA vs GG: OR=0.445, p=0.009, pFDR=0.030). Furthermore, individuals with A allele (ie, GA/AA vs GG) had a higher disease activity, including Bath Ankylosing Spondylitis Disease Activity Index (overall: Z=- 2.630, p=0.014; male: Z=- 2.243, p=0.025), Schober test (overall: Z=- 3.041, p<0.001; male: Z=- 2.243, p=0.025) and chest expansion (overall: Z=- 3.895, p=0.004; male: Z=- 2.403, p=0.016). CONCLUSION The allelic variation of rs7958311 SNP in P2X7R gene may have a protective effect on AS susceptibility in females and is associated with disease activity in male patients.
Collapse
Affiliation(s)
- Zhipeng Pan
- Department of Medical Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xu Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,School of Public Health, The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, China
| | - Yubo Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,School of Public Health, The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, China
| | - Shengqian Xu
- Department of Rheumatism and Immunity, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zongwen Shuai
- Department of Rheumatism and Immunity, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China .,School of Public Health, The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, China
| | - Guoping Sun
- Department of Medical Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|