1
|
Jiao YX, Zhou YM, Zhou ZW, He Y, Liu S, Xu XT, Ji K, Chen JJ. Histone acetylation alteration by KAT6A inhibitor WM-1119 suppresses IgE-mediated mast cell activation and allergic inflammation via reduction in AP-1 signaling. Biochem Pharmacol 2025; 232:116732. [PMID: 39709039 DOI: 10.1016/j.bcp.2024.116732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 12/23/2024]
Abstract
Activation of immunoglobulin E (IgE)-associated mast cells (MCs) triggers the onset of pro-inflammatory signals associated with type I allergic diseases. Although histone acetylation changes have been associated with inflammatory diseases, the impact of lysine-acetyltransferase (KAT) inhibitors on IgE-mediated MCs function is unclear. Potential anti-allergic effects of the KAT6A inhibitor WM-1119 on IgE-mediated MCs activation and allergic inflammation were examined in this study. WM-1119 was observed to reduce IgE-mediated degranulation in rat basophilic leukemia-2H3 cells (RBLs) and murine bone marrow-derived mast cells (BMMCs), as demonstrated by reduced the release of β-hexosaminidase (β-hex)or histamine(HA) and decreased inflammatory cytokines. Additionally, WM-1119 attenuated allergic responses in IgE-induced passive cutaneous anaphylaxis (PCA) and active systemic anaphylaxis (ASA) mice. No WM-1119 effects on histamine-induced hypothermia in mice were observed. Mechanically, WM-1119 reduced levels of histone H3 lysine 14 acetylation (H3K14ac) and H3K27ac, while also reducing IgE-induced MAPK or NF-κB activity. Moreover, WM-1119 reduced activator protein-1 (AP-1) activity in a manner involving inhibition of c-Fos transcription and translation together with decreased AP-1 binding of its downstream promoters. KAT6A knockdown in MCs also reduced AP-1 activity by inhibiting c-Fos expression. H3K14ac enrichment in the Fos promoter was observed, indicating that H3K14ac may regulate c-Fos expression. In conclusion, KAT6A inhibition or knockdown was shown to reduce IgE-mediated MCs activation and allergic inflammation through a mechanism involving changes in c-Fos expression and downstream AP-1 activity consequent to down-regulation of histone acetylation. KAT6A inhibition may represent a new treatment strategy for suppressing MCs in treating allergic diseases.
Collapse
Affiliation(s)
- Yu-Xin Jiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Yan-Mei Zhou
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Zi-Wen Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Yong He
- Shenzhen University General Hospital, Shenzhen University, Shenzhen 518055, China
| | - Shan Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Xue-Ting Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Kunmei Ji
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Jia-Jie Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.
| |
Collapse
|
2
|
Bertin L, Crepaldi M, Zanconato M, Lorenzon G, Maniero D, de Barba C, Bonazzi E, Facchin S, Scarpa M, Ruffolo C, Angriman I, Buda A, Zingone F, Barberio B, Savarino EV. Advancing therapeutic frontiers: a pipeline of novel drugs for luminal and perianal Crohn's disease management. Therap Adv Gastroenterol 2024; 17:17562848241303651. [PMID: 39711916 PMCID: PMC11660281 DOI: 10.1177/17562848241303651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/12/2024] [Indexed: 12/24/2024] Open
Abstract
Crohn's disease (CD) is a chronic, complex inflammatory disorder of the gastrointestinal tract that presents significant therapeutic challenges. Despite the availability of a wide range of treatments, many patients experience primary non-response, secondary loss of response, or adverse events, limiting the overall effectiveness of current therapies. Clinical trials often report response rates below 60%, partly due to stringent inclusion criteria. Emerging therapies that target novel pathways offer promise in overcoming these limitations. This review explores the latest investigational drugs in phases I, II, and III clinical trials for treating both luminal and perianal CD. We highlight promising therapies that target known mechanisms, including selective Janus kinase inhibitors, anti-adhesion molecules, tumor necrosis factor inhibitors, and IL-23 selective inhibitors. In addition, we delve into novel therapeutic strategies such as sphingosine-1-phosphate receptor modulators, miR-124 upregulators, anti-fractalkine (CX3CL1), anti-TL1A, peroxisome proliferator-activated receptor gamma agonists, TGFBRI/ALK5 inhibitors, anti-CCR9 agents, and other innovative small molecules, as well as combination therapies. These emerging approaches, by addressing new pathways and mechanisms of action, have the potential to surpass the limitations of existing treatments and significantly improve CD management. However, the path to developing new therapies for inflammatory bowel disease (IBD) is fraught with challenges, including complex trial designs, ethical concerns regarding placebo use, recruitment difficulties, and escalating costs. The landscape of IBD clinical trials is shifting toward greater inclusivity, improved patient diversity, and innovative trial designs, such as adaptive and Bayesian approaches, to address these challenges. By overcoming these obstacles, the drug development pipeline can advance more effective, accessible, and timely treatments for CD.
Collapse
Affiliation(s)
- Luisa Bertin
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Martina Crepaldi
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Miriana Zanconato
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Greta Lorenzon
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Daria Maniero
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Caterina de Barba
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Erica Bonazzi
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Sonia Facchin
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Marco Scarpa
- Chirurgia Generale 3 Unit, Azienda Ospedale Università di Padova, Padua, Italy
| | - Cesare Ruffolo
- Chirurgia Generale 3 Unit, Azienda Ospedale Università di Padova, Padua, Italy
| | - Imerio Angriman
- Chirurgia Generale 3 Unit, Azienda Ospedale Università di Padova, Padua, Italy
| | - Andrea Buda
- Gastroenterology Unit, Department of Oncological Gastrointestinal Surgery, Santa Maria del Prato Hospital, Feltre, Italy
| | - Fabiana Zingone
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Brigida Barberio
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Edoardo Vincenzo Savarino
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani, 2, Padua 35128, Italy
| |
Collapse
|
3
|
Haque PS, Kapur N, Barrett TA, Theiss AL. Mitochondrial function and gastrointestinal diseases. Nat Rev Gastroenterol Hepatol 2024; 21:537-555. [PMID: 38740978 PMCID: PMC12036329 DOI: 10.1038/s41575-024-00931-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
Mitochondria are dynamic organelles that function in cellular energy metabolism, intracellular and extracellular signalling, cellular fate and stress responses. Mitochondria of the intestinal epithelium, the cellular interface between self and enteric microbiota, have emerged as crucial in intestinal health. Mitochondrial dysfunction occurs in gastrointestinal diseases, including inflammatory bowel diseases and colorectal cancer. In this Review, we provide an overview of the current understanding of intestinal epithelial cell mitochondrial metabolism, function and signalling to affect tissue homeostasis, including gut microbiota composition. We also discuss mitochondrial-targeted therapeutics for inflammatory bowel diseases and colorectal cancer and the evolving concept of mitochondrial impairment as a consequence versus initiator of the disease.
Collapse
Affiliation(s)
- Parsa S Haque
- Division of Gastroenterology and Hepatology, Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Neeraj Kapur
- Department of Medicine, Division of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Terrence A Barrett
- Department of Medicine, Division of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY, USA
- Lexington Veterans Affairs Medical Center Kentucky, Lexington, KY, USA
| | - Arianne L Theiss
- Division of Gastroenterology and Hepatology, Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA.
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, USA.
| |
Collapse
|
4
|
Chen Y, Ye Z, Lin M, Zhu L, Xu L, Wang X. Deciphering the Epigenetic Landscape: Placental Development and Its Role in Pregnancy Outcomes. Stem Cell Rev Rep 2024; 20:996-1014. [PMID: 38457061 DOI: 10.1007/s12015-024-10699-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 03/09/2024]
Abstract
The placenta stands out as a unique, transitory, and multifaceted organ, essential to the optimal growth and maturation of the fetus. Functioning as a vital nexus between the maternal and fetal circulatory systems, it oversees the critical exchange of nutrients and waste. This exchange is facilitated by placental cells, known as trophoblasts, which adeptly invade and remodel uterine blood vessels. Deviations in placental development underpin a slew of pregnancy complications, notably fetal growth restriction (FGR), preeclampsia (PE), recurrent spontaneous abortions (RSA), and preterm birth. Central to placental function and development is epigenetic regulation. Despite its importance, the intricate mechanisms by which epigenetics influence the placenta are not entirely elucidated. Recently, the scientific community has turned its focus to parsing out the epigenetic alterations during placental development, such as variations in promoter DNA methylation, genomic imprints, and shifts in non-coding RNA expression. By establishing correlations between epigenetic shifts in the placenta and pregnancy complications, researchers are unearthing invaluable insights into the biology and pathophysiology of these conditions. This review seeks to synthesize the latest findings on placental epigenetic regulation, spotlighting its crucial role in shaping fetal growth trajectories and development. Through this lens, we underscore the overarching significance of the placenta in the larger narrative of gestational health.
Collapse
Affiliation(s)
- Yujia Chen
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- National Health Commission (NHC), Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, China
| | - Zhoujie Ye
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- National Health Commission (NHC), Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, China
| | - Meijia Lin
- Department of Pathology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Liping Zhu
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- National Health Commission (NHC), Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, China
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China.
| | - Xinrui Wang
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China.
- National Health Commission (NHC), Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, China.
| |
Collapse
|
5
|
Fernandes MF, Vinolo MAR. Histone acylations as a mechanism for regulation of intestinal epithelial cells. DIGESTIVE MEDICINE RESEARCH 2024; 7:4. [PMID: 39399394 PMCID: PMC11469631 DOI: 10.21037/dmr-23-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Histone post-translational modifications are reversible epigenetic mechanisms that regulate chromatin structure and gene transcription. In recent years, in addition to the well-characterized histone acetylation, new acylations such as propionylation, crotonylation, butyrylation and beta-hydroxybutyrylation have been described and explored in different cell types at contexts of health and disease. Understanding how histone acylations contribute to gene expression regulation is especially important in intestinal epithelial cells (IECs) because they receive many different signals from other cells and the external environment and must adapt to maintain essential functions such as nutrient and water absorption, maintenance of tolerance and protection against pathogens. In this review, we describe how cells regulate these modifications, how they are recognized by other proteins and impact gene expression. We summarize recent studies that explored the role of these distinct epigenetic marks in the regulation of IECs and discuss their biological importance for the intestinal epithelium's adaptations to changes in metabolism and to respond to environmental signals provided, for example, by the diet, components of the intestinal microbiota and pathogens. Finally, we discuss how the histone acylations are affected by inflammatory signals and how this knowledge may provide new targets for treatment of pathologies such as the inflammatory bowel diseases.
Collapse
Affiliation(s)
- Mariane Font Fernandes
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Marco Aurélio Ramirez Vinolo
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| |
Collapse
|
6
|
Fidya, Choijookhuu N, Ikenoue M, Yano K, Yamaguma Y, Shirouzu S, Kai K, Ishizuka T, Hishikawa Y. Protective role of estrogen through G-protein coupled receptor 30 in a colitis mouse model. Histochem Cell Biol 2024; 161:81-93. [PMID: 37821557 DOI: 10.1007/s00418-023-02235-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 10/13/2023]
Abstract
Estrogen and its receptors are involved in the pathogenesis of gastrointestinal diseases such as colitis. However, the role of the membrane estrogen receptor G-protein-coupled receptor 30 (GPR30) in colitis is poorly understood. We therefore investigated the effect of estrogen in dextran sulfate sodium (DSS)-induced colitis. Male C57BL/6 mice were administered 1.5% DSS for 5 days and treated with 17β-estradiol (E2), GPR30 agonist (G1), or GPR30 antagonist (G15) for 8 days. Inflammation grade was evaluated by disease activity index (DAI) and histomorphological score. Colon tissues were immunohistochemically analyzed and revealed high expression of membrane GPR30, histone 3 lysine 36 dimethylation, and lysine 79 trimethylation in normal mouse colon epithelial cells but significantly decreased expression in DSS-treated mice, whereas the expression was partially preserved after treatment with E2 or G1. Colon shortening and DAI were significantly lower in E2- and G1-treated mice compared to DSS-treated mice. Caudal type homeobox 2 (CDX2) expression and cell proliferation differed in normal colon epithelial cells but overlapped in those of DSS-treated mice. Administration of E2 and G1 reduced CDX2 expression and cell proliferation. Altered expression of claudin-2 and occludin were observed in the colonic epithelium of DSS-treated mice, and these changes were significantly lower in the colon of E2- and G1-treated mice. These results indicate that estrogen regulates histone modification, cell proliferation, and CDX2 expression through GPR30, which affects intestinal epithelial barrier function. We conclude that estrogen protects against intestinal epithelial damage through GPR30 by enhancing intestinal epithelial barrier function in DSS-induced colitis in mice.
Collapse
Affiliation(s)
- Fidya
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
- Department of Oral Biology, Faculty of Dentistry, Universitas Brawijaya, Malang, Jawa Timur, Indonesia
| | - Narantsog Choijookhuu
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Makoto Ikenoue
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
- Department of Surgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Koichi Yano
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
- Department of Surgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Yu Yamaguma
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Shinichiro Shirouzu
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Kengo Kai
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
- Department of Surgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Takumi Ishizuka
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Yoshitaka Hishikawa
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan.
| |
Collapse
|
7
|
Küçük İ, Özçelik F, Yazgan Y, Yılmaz İ, Kaplan M, Yıldırım İ. Can Serum Histone H4 Level Be a Biomarker in Ulcerative Colitis? THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2024; 35:4-10. [PMID: 38454272 PMCID: PMC10837591 DOI: 10.5152/tjg.2024.22385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 04/13/2023] [Indexed: 03/09/2024]
Abstract
BACKGROUND/AIMS Histones are a part of neutrophil extracellular trap molecules which were reported to have diagnostic values in some inflammatory diseases. We aimed to evaluate whether serum histone H4 can be a diagnostic and prognostic marker for ulcerative colitis. MATERIALS AND METHODS This case-control study included 58 ulcerative colitis patients (34 males and 24 females) and 45 healthy controls (25 males and 20 females). The Mayo clinical scoring system was used for the clinical and endoscopic features. Truelove-Witt's method was applied to the histology activity index. The human histone H4 kit was used for the enzyme-linked immunosorbent assay of serum histone H4. RESULTS Serum histone H4 was significantly lower in the ulcerative colitis group compared to the control groups [268 (14-1639) vs. 598 (310-2134) ng/L, P < .001, respectively]. Among the ulcerative colitis patients, there was no correlation between serum histone H4 and disease extent, Mayo clinical scoring, Mayo endoscopic activity subscoring, histology activity index, inflammatory markers, d-dimer, and leukocyte and neutrophil counts (r < 0.20, P > .05). Histone H4 levels were not statistically significant between the patients with no medication and those taking 5-aminosalicylate and/or other agents (P > .05). The receiver operating characteristic curve analysis revealed that serum histone H4 concentrations had a 0.782 (95%CI: 0.690-0.857, P < .001) diagnostic accuracy for ulcerative colitis. The specificity and sensitivity for the cutoff level of ≤364 ng/L were 88.9% and 72.4%, respectively. CONCLUSION Decreased serum histone H4 values may be used as an auxiliary marker in the progression and diagnosis of ulcerative colitis. Further studies are needed to delineate this relationship between clinical and laboratory traits of ulcerative colitis and serum histone H4.
Collapse
Affiliation(s)
- İrfan Küçük
- Department of Gastroenterology, University of Health Sciences Sultan 2. Abdulhamid Han Training and Research Hospital, İstanbul, Turkey
| | - Fatih Özçelik
- Department of Medical Biochemistry, University of Health Sciences, Ümraniye Training and Research Hospital, İstanbul, Turkey
| | - Yusuf Yazgan
- Department of Pathology, University of Health Sciences Sultan 2. Abdulhamid Han Training and Research Hospital, İstanbul, Turkey
| | - İsmail Yılmaz
- Department of Pathology, University of Health Sciences Sultan 2. Abdulhamid Han Training and Research Hospital, İstanbul, Turkey
| | - Mustafa Kaplan
- Department of Internal Medicine, University of Health Sciences Sultan 2. Abdulhamid Han Training and Research Hospital, İstanbul, Turkey
| | - İdris Yıldırım
- Department of Pathology, University of Health Sciences Sultan 2. Abdulhamid Han Training and Research Hospital, İstanbul, Turkey
| |
Collapse
|
8
|
Deris Zayeri Z, Parsi A, Shahrabi S, Kargar M, Davari N, Saki N. Epigenetic and metabolic reprogramming in inflammatory bowel diseases: diagnostic and prognostic biomarkers in colorectal cancer. Cancer Cell Int 2023; 23:264. [PMID: 37936149 PMCID: PMC10631091 DOI: 10.1186/s12935-023-03117-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND AND AIM "Inflammatory bowel disease" (IBD) is a chronic, relapsing inflammatory disease of the intestinal tract that typically begins at a young age and might transit to colorectal cancer (CRC). In this manuscript, we discussed the epigenetic and metabolic change to present a extensive view of IBDs transition to CRC. This study discusses the possible biomarkers for evaluating the condition of IBDs patients, especially before the transition to CRC. RESEARCH APPROACH We searched "PubMed" and "Google Scholar" using the keywords from 2000 to 2022. DISCUSSION In this manuscript, interesting titles associated with IBD and CRC are discussed to present a broad view regarding the epigenetic and metabolic reprogramming and the biomarkers. CONCLUSION Epigenetics can be the main reason in IBD transition to CRC, and Hypermethylation of several genes, such as VIM, OSM4, SEPT9, GATA4 and GATA5, NDRG4, BMP3, ITGA4 and plus hypomethylation of LINE1 can be used in IBD and CRC management. Epigenetic, metabolisms and microbiome-derived biomarkers, such as Linoleic acid and 12 hydroxy 8,10-octadecadienoic acid, Serum M2-pyruvate kinase and Six metabolic genes (NAT2, XDH, GPX3, AKR1C4, SPHK and ADCY5) expression are valuable biomarkers for early detection and transition to CRC condition. Some miRs, such as miR-31, miR-139-5p, miR -155, miR-17, miR-223, miR-370-3p, miR-31, miR -106a, miR -135b and miR-320 can be used as biomarkers to estimate IBD transition to CRC condition.
Collapse
Affiliation(s)
- Zeinab Deris Zayeri
- Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abazar Parsi
- Alimentary Tract Research Center, Clinical Sciences Research Inistitute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Masoud Kargar
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nader Davari
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
9
|
Rajalingam A, Sekar K, Ganjiwale A. Identification of Potential Genes and Critical Pathways in Postoperative Recurrence of Crohn's Disease by Machine Learning And WGCNA Network Analysis. Curr Genomics 2023; 24:84-99. [PMID: 37994325 PMCID: PMC10662376 DOI: 10.2174/1389202924666230601122334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/28/2023] [Accepted: 05/10/2023] [Indexed: 11/24/2023] Open
Abstract
Background Crohn's disease (CD) is a chronic idiopathic inflammatory bowel disease affecting the entire gastrointestinal tract from the mouth to the anus. These patients often experience a period of symptomatic relapse and remission. A 20 - 30% symptomatic recurrence rate is reported in the first year after surgery, with a 10% increase each subsequent year. Thus, surgery is done only to relieve symptoms and not for the complete cure of the disease. The determinants and the genetic factors of this disease recurrence are also not well-defined. Therefore, enhanced diagnostic efficiency and prognostic outcome are critical for confronting CD recurrence. Methods We analysed ileal mucosa samples collected from neo-terminal ileum six months after surgery (M6=121 samples) from Crohn's disease dataset (GSE186582). The primary aim of this study is to identify the potential genes and critical pathways in post-operative recurrence of Crohn's disease. We combined the differential gene expression analysis with Recursive feature elimination (RFE), a machine learning approach to get five critical genes for the postoperative recurrence of Crohn's disease. The features (genes) selected by different methods were validated using five binary classifiers for recurrence and remission samples: Logistic Regression (LR), Decision tree classifier (DT), Support Vector Machine (SVM), Random Forest classifier (RF), and K-nearest neighbor (KNN) with 10-fold cross-validation. We also performed weighted gene co-expression network analysis (WGCNA) to select specific modules and feature genes associated with Crohn's disease postoperative recurrence, smoking, and biological sex. Combined with other biological interpretations, including Gene Ontology (GO) analysis, pathway enrichment, and protein-protein interaction (PPI) network analysis, our current study sheds light on the in-depth research of CD diagnosis and prognosis in postoperative recurrence. Results PLOD2, ZNF165, BOK, CX3CR1, and ARMCX4, are the important genes identified from the machine learning approach. These genes are reported to be involved in the viral protein interaction with cytokine and cytokine receptors, lysine degradation, and apoptosis. They are also linked with various cellular and molecular functions such as Peptidyl-lysine hydroxylation, Central nervous system maturation, G protein-coupled chemoattractant receptor activity, BCL-2 homology (BH) domain binding, Gliogenesis and negative regulation of mitochondrial depolarization. WGCNA identified a gene co-expression module that was primarily involved in mitochondrial translational elongation, mitochondrial translational termination, mitochondrial translation, mitochondrial respiratory chain complex, mRNA splicing via spliceosome pathways, etc.; Both the analysis result emphasizes that the mitochondrial depolarization pathway is linked with CD recurrence leading to oxidative stress in promoting inflammation in CD patients. Conclusion These key genes serve as the novel diagnostic biomarker for the postoperative recurrence of Crohn's disease. Thus, among other treatment options present until now, these biomarkers would provide success in both diagnosis and prognosis, aiming for a long-lasting remission to prevent further complications in CD.
Collapse
Affiliation(s)
- Aruna Rajalingam
- Department of Life Sciences, Bangalore University, Bangalore, Karnataka, 560056, India
| | - Kanagaraj Sekar
- Laboratory for Structural Biology and Bio-computing, Computational and Data Sciences, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Anjali Ganjiwale
- Department of Life Sciences, Bangalore University, Bangalore, Karnataka, 560056, India
| |
Collapse
|
10
|
Noble AJ, Nowak JK, Adams AT, Uhlig HH, Satsangi J. Defining Interactions Between the Genome, Epigenome, and the Environment in Inflammatory Bowel Disease: Progress and Prospects. Gastroenterology 2023; 165:44-60.e2. [PMID: 37062395 DOI: 10.1053/j.gastro.2023.03.238] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 03/08/2023] [Accepted: 03/24/2023] [Indexed: 04/18/2023]
Abstract
Recent advances in our understanding of the pathogenesis of inflammatory bowel disease (IBD) have highlighted the complex interplay between the genome, the epigenome, and the environment. Despite the exciting advances in genomics that have enabled the identification of over 200 susceptibility loci, these only account for a small proportion of the disease variance and the estimated heritability in IBD. It is likely that gene-environment (GxE) interactions contribute to "missing heritability" and these may act through epigenetic mechanisms. Several environmental factors, such as the microbiome, nutrition, and tobacco smoking, induce alterations in the epigenome of children and adults, which may impact disease susceptibility. Other mechanisms for GxE interactions are also directly pertinent in early life. We discuss a model in which environmental factors imprint disease risk in a window of susceptibility during infancy that may contribute to later disease onset, whereas other elements of the exposome act later in life and contribute directly to the pathogenesis and course of the disease. Understanding the mechanisms underlying GxE interactions may provide the basis for new therapeutic targets or preventative strategies for IBD.
Collapse
Affiliation(s)
- Alexandra J Noble
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, United Kingdom.
| | - Jan K Nowak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Alex T Adams
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, United Kingdom; Biomedical Research Center, University of Oxford, Oxford, United Kingdom
| | - Holm H Uhlig
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, United Kingdom; Department of Pediatrics, University of Oxford, Oxford, United Kingdom; Biomedical Research Center, University of Oxford, Oxford, United Kingdom
| | - Jack Satsangi
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, United Kingdom; Biomedical Research Center, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Li S, Xu K, Cheng Y, Chen L, Yi A, Xiao Z, Zhao X, Chen M, Tian Y, Meng W, Tang Z, Zhou S, Ruan G, Wei Y. The role of complex interactions between the intestinal flora and host in regulating intestinal homeostasis and inflammatory bowel disease. Front Microbiol 2023; 14:1188455. [PMID: 37389342 PMCID: PMC10303177 DOI: 10.3389/fmicb.2023.1188455] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/10/2023] [Indexed: 07/01/2023] Open
Abstract
Pharmacological treatment of inflammatory bowel disease (IBD) is inefficient and difficult to discontinue appropriately, and enterobacterial interactions are expected to provide a new target for the treatment of IBD. We collected recent studies on the enterobacterial interactions among the host, enterobacteria, and their metabolite products and discuss potential therapeutic options. Intestinal flora interactions in IBD are affected in the reduced bacterial diversity, impact the immune system and are influenced by multiple factors such as host genetics and diet. Enterobacterial metabolites such as SCFAs, bile acids, and tryptophan also play important roles in enterobacterial interactions, especially in the progression of IBD. Therapeutically, a wide range of sources of probiotics and prebiotics exhibit potential therapeutic benefit in IBD through enterobacterial interactions, and some have gained wide recognition as adjuvant drugs. Different dietary patterns and foods, especially functional foods, are novel therapeutic modalities that distinguish pro-and prebiotics from traditional medications. Combined studies with food science may significantly improve the therapeutic experience of patients with IBD. In this review, we provide a brief overview of the role of enterobacteria and their metabolites in enterobacterial interactions, discuss the advantages and disadvantages of the potential therapeutic options derived from such metabolites, and postulate directions for further research.
Collapse
Affiliation(s)
- Siyu Li
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Basic Medicine College of Army Medical University, Army Medical University, Chongqing, China
| | - Kan Xu
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Basic Medicine College of Army Medical University, Army Medical University, Chongqing, China
| | - Yi Cheng
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lu Chen
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ailin Yi
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhifeng Xiao
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xuefei Zhao
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Minjia Chen
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yuting Tian
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wei Meng
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zongyuan Tang
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shuhong Zhou
- Department of Laboratory Animal Center, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Guangcong Ruan
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yanling Wei
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
12
|
Jarmakiewicz-Czaja S, Sokal A, Ferenc K, Motyka E, Helma K, Filip R. The Role of Genetic and Epigenetic Regulation in Intestinal Fibrosis in Inflammatory Bowel Disease: A Descending Process or a Programmed Consequence? Genes (Basel) 2023; 14:1167. [PMID: 37372347 DOI: 10.3390/genes14061167] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) are a group of chronic diseases characterized by recurring periods of exacerbation and remission. Fibrosis of the intestine is one of the most common complications of IBD. Based on current analyses, it is evident that genetic factors and mechanisms, as well as epigenetic factors, play a role in the induction and progression of intestinal fibrosis in IBD. Key genetic factors and mechanisms that appear to be significant include NOD2, TGF-β, TLRs, Il23R, and ATG16L1. Deoxyribonucleic acid (DNA) methylation, histone modification, and ribonucleic acid (RNA) interference are the primary epigenetic mechanisms. Genetic and epigenetic mechanisms, which seem to be important in the pathophysiology and progression of IBD, may potentially be used in targeted therapy in the future. Therefore, the aim of this study was to gather and discuss selected mechanisms and genetic factors, as well as epigenetic factors.
Collapse
Affiliation(s)
| | - Aneta Sokal
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Katarzyna Ferenc
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Elżbieta Motyka
- Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Kacper Helma
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Department of Gastroenterology with IBD, Clinical Hospital No. 2 im. Św. Jadwigi Królowej, 35-301 Rzeszow, Poland
| |
Collapse
|
13
|
Bhattacharya A. Epigenetic modifications and regulations in gastrointestinal diseases. EPIGENETICS IN ORGAN SPECIFIC DISORDERS 2023:497-543. [DOI: 10.1016/b978-0-12-823931-5.00005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
14
|
Bai L, Dermadi D, Kalesinskas L, Dvorak M, Chang SE, Ganesan A, Rubin SJS, Kuo A, Cheung P, Donato M, Utz PJ, Habtezion A, Khatri P. Mass-cytometry-based quantitation of global histone post-translational modifications at single-cell resolution across peripheral immune cells in IBD. J Crohns Colitis 2022; 17:804-815. [PMID: 36571819 PMCID: PMC10155749 DOI: 10.1093/ecco-jcc/jjac194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND AIMS Current understanding of histone post-translational modifications (histone modifications) across immune cell types in patients with inflammatory bowel disease (IBD) during remission and flare is limited. The study aimed to quantify histone modifications at a single-cell resolution in IBD patients during remission and flare and how they differ compared to healthy controls. METHODS We performed a case-control study of 94 subjects (83 IBD patients and 11 healthy controls). IBD patients had either UC (n=38) or CD (n=45) in clinical remission or flare. We used epigenetic profiling by time-of-flight (EpiTOF) to investigate changes in histone modifications within peripheral blood mononuclear cells from IBD patients. RESULTS We discovered substantial heterogeneity in histone modifications across multiple immune cell types in IBD patients. They had a higher proportion of less differentiated CD34 + hematopoietic progenitors, and a subset of CD56 bright NK cells and γδ T cells characterized by distinct histone modifications associated with the gene transcription. The subset of CD56 bright NK cells had increased several histone acetylations. An epigenetically defined subset of NK was associated with higher levels of CRP in peripheral blood. CD14+ monocytes from IBD patients had significantly decreased cleaved H3T22, suggesting they were epigenetically primed for macrophage differentiation. CONCLUSION We describe the first systems-level quantification of histone modifications across immune cells from IBD patients at a single-cell resolution revealing the increased epigenetic heterogeneity that is not possible with traditional ChIP-seq profiling. Our data open new directions in investigating the association between histone modifications and IBD pathology using other epigenomic tools.
Collapse
Affiliation(s)
- Lawrence Bai
- Immunology Program, Stanford University School of Medicine, 1215 Welch Road, Modular B, Stanford, CA 94305 USA
| | - Denis Dermadi
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA.,Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Laurynas Kalesinskas
- Biomedical Informatics Training Program, Stanford University School of Medicine, 1265 Welch Road, MSOB X-343, Stanford, CA 94305 USA
| | - Mai Dvorak
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA.,Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sarah E Chang
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA.,Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ananthakrishnan Ganesan
- Computational and Mathematical Engineering, Stanford University, 475 Via Ortega, Suite B060, Stanford, CA 94305 USA
| | - Samuel J S Rubin
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Alex Kuo
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA.,Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peggie Cheung
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA.,Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michele Donato
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA.,Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Paul J Utz
- Immunology Program, Stanford University School of Medicine, 1215 Welch Road, Modular B, Stanford, CA 94305 USA.,Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA.,Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aida Habtezion
- Immunology Program, Stanford University School of Medicine, 1215 Welch Road, Modular B, Stanford, CA 94305 USA.,Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA.,Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Purvesh Khatri
- Immunology Program, Stanford University School of Medicine, 1215 Welch Road, Modular B, Stanford, CA 94305 USA.,Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA.,Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
15
|
Therapeutic Efficacy of Novel HDAC Inhibitors SPA3052 and SPA3074 against Intestinal Inflammation in a Murine Model of Colitis. Pharmaceuticals (Basel) 2022; 15:ph15121515. [PMID: 36558966 PMCID: PMC9785328 DOI: 10.3390/ph15121515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are digestive tract disorders that involve chronic inflammation with frequent recurrences. This study aimed to evaluate the efficacy of two novel histone deacetylase 8 (HDAC8) inhibitors, namely, SPA3052 and SPA3074, against dextran sulfate sodium (DSS)-induced experimental colitis. Male C57BL/6N mice were subjected to two cycles of 1.5% DSS followed by treatment with suberoylanilide hydroxamic acid (SAHA), SPA3052, or SPA3074 for 14 days. Our results showed that SPA3074 administration increased (>50%) the expression of occludin, a tight junction protein, which was significantly decreased (>100%) after DSS treatment. Moreover, SPA3074 upregulated suppressor of cytokine signaling 1 (SOCS1) protein expression, which is known to be a key suppressor of T-helper cell differentiation and pro-inflammatory cytokines expression. Furthermore, we observed a decrease in SOCS1-associated Akt phosphorylation and an increase in lower extracellular signal-regulated kinase 1 and 2 phosphorylation, which contributed to lower nuclear factor-kappa B activation. Th2 effector cytokines, especially interleukin-13, were also downregulated by SPA3074 treatment. This study suggests that HDAC8 might be a promising novel target for the development of IBD treatments and that the novel HDAC8 inhibitor SPA3074 is a new candidate for IBD therapeutics.
Collapse
|
16
|
Rehman S, Gora AH, Varshney S, Dias J, Olsvik PA, Fernandes JMO, Brugman S, Kiron V. Developmental defects and behavioral changes in a diet-induced inflammation model of zebrafish. Front Immunol 2022; 13:1018768. [PMID: 36389790 PMCID: PMC9643868 DOI: 10.3389/fimmu.2022.1018768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/03/2022] [Indexed: 12/03/2022] Open
Abstract
Soybean meal evokes diet-induced intestinal inflammation in certain fishes. Although the molecular aspects of soybean-induced intestinal inflammation in zebrafish are known, the impact of the inflammatory diet on fish behavior remain largely underexplored. We fed zebrafish larvae with three diets - control, soybean meal and soybean meal with β-glucan to gain deeper insight into the behavioral changes associated with the soybean meal-induced inflammation model. We assessed the effect of the diets on the locomotor behavior, morphological development, oxygen consumption and larval transcriptome. Our study revealed that dietary soybean meal can reduce the locomotor activity, induce developmental defects and increase the oxygen demand in zebrafish larvae. Transcriptomic analysis pointed to the suppression of genes linked to visual perception, organ development, phototransduction pathway and activation of genes linked to the steroid biosynthesis pathway. On the contrary, β-glucan, an anti-inflammatory feed additive, counteracted the behavioral and phenotypic changes linked to dietary soybean. Although we did not identify any differentially expressed genes from the soybean meal alone fed group vs soybean meal + β-glucan-fed group comparison, the unique genes from the comparisons of the two groups with the control likely indicate reduction in inflammatory cytokine signaling, inhibition of proteolysis and induction of epigenetic modifications by the dietary glucan. Furthermore, we found that feeding an inflammatory diet at the larval stage can lead to long-lasting developmental defects. In conclusion, our study reveals the extra-intestinal manifestations associated with soybean meal-induced inflammation model.
Collapse
Affiliation(s)
- Saima Rehman
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Adnan H. Gora
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Shubham Varshney
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Pål A. Olsvik
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Sylvia Brugman
- Department of Animal Sciences, Host Microbe Interactomics, Wageningen University, Wageningen, Netherlands
| | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
- *Correspondence: Viswanath Kiron,
| |
Collapse
|
17
|
Chervy M, Sivignon A, Dambrine F, Buisson A, Sauvanet P, Godfraind C, Allez M, Le Bourhis L, The Remind Group, Barnich N, Denizot J. Epigenetic master regulators HDAC1 and HDAC5 control pathobiont Enterobacteria colonization in ileal mucosa of Crohn's disease patients. Gut Microbes 2022; 14:2127444. [PMID: 36175163 PMCID: PMC9542275 DOI: 10.1080/19490976.2022.2127444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AIEC Adherent-Invasive Escherichia coli; BSA Bovine serum albumin; CD Crohn's disease; CEABAC10 Carcinoembryonic antigen bacterial artificial chromosome 10; CEACAM Carcinoembryonic antigen-related cell adhesion molecule; FBS Fetal bovine serum; IBD Inflammatory Bowel Disease; HAT Histone acetyltransferase; HDAC Histone deacetylase; kDa KiloDalton; SAHA Suberoylanilide Hydroxamic Acid; Scr Scramble.
Collapse
Affiliation(s)
- Mélissa Chervy
- Université Clermont Auvergne, Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Clermont-Ferrand, France
| | - Adeline Sivignon
- Université Clermont Auvergne, Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Clermont-Ferrand, France,Institut Universitaire de Technologie, Génie Biologique, Aubière, France
| | - Flavie Dambrine
- Université Clermont Auvergne, Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Clermont-Ferrand, France
| | - Anthony Buisson
- Université Clermont Auvergne, Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Clermont-Ferrand, France,Gastroenterology Department, CHU Estaing, Clermont-Ferrand, France
| | - Pierre Sauvanet
- Université Clermont Auvergne, Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Clermont-Ferrand, France,Surgery and Oncology Digestive Department, CHU Estaing, Clermont-Ferrand, France
| | - Catherine Godfraind
- Université Clermont Auvergne, Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Clermont-Ferrand, France,Neuropathology Unit, CHU Gabriel Montpied, Clermont-Ferrand, France
| | - Matthieu Allez
- Gastroenterology Department, Hôpital Saint-Louis - APHP, Paris, France,Université De Paris, Institut de Recherche Saint-Louis, EMily, INSERM U1160, Paris, France,Hôpital Saint-Louis, Paris, France
| | - Lionel Le Bourhis
- Université De Paris, Institut de Recherche Saint-Louis, EMily, INSERM U1160, Paris, France
| | | | - Nicolas Barnich
- Université Clermont Auvergne, Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Clermont-Ferrand, France,Institut Universitaire de Technologie, Génie Biologique, Aubière, France
| | - Jérémy Denizot
- Université Clermont Auvergne, Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Clermont-Ferrand, France,Institut Universitaire de Technologie, Génie Biologique, Aubière, France,CONTACT Jérémy Denizot M2iSH, UMR 1071 Inserm/Université Clermont Auvergne, CBRV, 28 place Henri Dunant, Clermont-Ferrand63001, France
| |
Collapse
|
18
|
Grados L, Pérot M, Barbezier N, Delayre-Orthez C, Bach V, Fumery M, Anton PM, Gay-Quéheillard J. How advanced are we on the consequences of oral exposure to food contaminants on the occurrence of chronic non communicable diseases? CHEMOSPHERE 2022; 303:135260. [PMID: 35688194 DOI: 10.1016/j.chemosphere.2022.135260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
The development of an individual during fetal life and childhood is characterized by rapid growth as well as gradual maturation of organs and systems. Beyond the nutritional intake in essential nutrients, food contaminants can permanently influence the way organs mature and function. These processes are called "programming" and play an essential role in the occurrence of non-communicable chronic diseases throughout the lifespan. Populations as pregnant women, fetuses and young children are vulnerable and particularly sensitive to food contaminants which can induce epigenetic modifications transmissible to future generations. Among these contaminants, pesticides are found in most food matrices exposing humans to cocktails of molecules through variable concentrations and duration of exposure. The Maillard reaction products (MRPs) represent other food contaminants resulting from heat treatment of food. Modern diet, rich in fats and sugars, is also rich in neoformed pathogenic compounds, Advanced Glycation End products (AGEs), the levels of which depend on the heat treatment of foods and eating habits and whose effects on health are controversial. In this review, we have chosen to present the current knowledge on the impacts of selected pesticides and MRPs, on the risk of developing during life non-communicable chronic diseases such as IBD, metabolic disorders or allergies. A large review of literature was performed via Pubmed, and the most appropriate studies were summarised.
Collapse
Affiliation(s)
- Lucien Grados
- PériTox, Périnatalité & Risques Toxiques, UMR-I 01 INERIS, Université Picardie Jules Verne, CURS, CHU Amiens Picardie, Avenue René Laennec, Amiens, France; CHU Amiens-Picardie, Service D'hépato-gastro-entérologie, Rond-point Du Pr Cabrol, Amiens, France
| | - Maxime Pérot
- Transformations and Agroressources (URL 7519), Institut Polytechnique UniLaSalle, Université D'Artois, 19 Rue Pierre Waguet, BP 30313, 60026, Beauvais, France
| | - Nicolas Barbezier
- Transformations and Agroressources (URL 7519), Institut Polytechnique UniLaSalle, Université D'Artois, 19 Rue Pierre Waguet, BP 30313, 60026, Beauvais, France
| | - Carine Delayre-Orthez
- Transformations and Agroressources (URL 7519), Institut Polytechnique UniLaSalle, Université D'Artois, 19 Rue Pierre Waguet, BP 30313, 60026, Beauvais, France
| | - Véronique Bach
- PériTox, Périnatalité & Risques Toxiques, UMR-I 01 INERIS, Université Picardie Jules Verne, CURS, CHU Amiens Picardie, Avenue René Laennec, Amiens, France
| | - Mathurin Fumery
- PériTox, Périnatalité & Risques Toxiques, UMR-I 01 INERIS, Université Picardie Jules Verne, CURS, CHU Amiens Picardie, Avenue René Laennec, Amiens, France; CHU Amiens-Picardie, Service D'hépato-gastro-entérologie, Rond-point Du Pr Cabrol, Amiens, France
| | - Pauline M Anton
- Transformations and Agroressources (URL 7519), Institut Polytechnique UniLaSalle, Université D'Artois, 19 Rue Pierre Waguet, BP 30313, 60026, Beauvais, France
| | - Jérôme Gay-Quéheillard
- PériTox, Périnatalité & Risques Toxiques, UMR-I 01 INERIS, Université Picardie Jules Verne, CURS, CHU Amiens Picardie, Avenue René Laennec, Amiens, France.
| |
Collapse
|
19
|
Xu J, Xu HM, Yang MF, Liang YJ, Peng QZ, Zhang Y, Tian CM, Wang LS, Yao J, Nie YQ, Li DF. New Insights Into the Epigenetic Regulation of Inflammatory Bowel Disease. Front Pharmacol 2022; 13:813659. [PMID: 35173618 PMCID: PMC8841592 DOI: 10.3389/fphar.2022.813659] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/06/2022] [Indexed: 01/10/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the colonic mucosa. Environmental factors, genetics, intestinal microbiota, and the immune system are all involved in the pathophysiology of IBD. Lately, accumulating evidence has shown that abnormal epigenetic changes in DNA methylation, histone markers, and non-coding RNA expression greatly contribute to the development of the entire disease. Epigenetics regulates many functions, such as maintaining the homeostasis of the intestinal epithelium and regulating the immune system of the immune cells. In the present study, we systematically summarized the latest advances in epigenetic modification of IBD and how epigenetics reveals new mechanisms of IBD. Our present review provided new insights into the pathophysiology of IBD. Moreover, exploring the patterns of DNA methylation and histone modification through epigenetics can not only be used as biomarkers of IBD but also as a new target for therapeutic intervention in IBD patients.
Collapse
Affiliation(s)
- Jing Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hao-ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Mei-feng Yang
- Department of Hematology, Yantian District People’s Hospital, Shenzhen, China
| | | | - Quan-zhou Peng
- Department of Pathology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, China
| | - Cheng-mei Tian
- Department of Emergency, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Li-sheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Yu-qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - De-feng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| |
Collapse
|
20
|
Synthesis, Spectroscopic and Biological Investigation of a New Ca(II) Complex of Meloxicam as Potential COX-2 Inhibitor. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022; 47:7105-7122. [PMID: 35070636 PMCID: PMC8767366 DOI: 10.1007/s13369-021-06521-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 12/16/2021] [Indexed: 01/09/2023]
Abstract
Drug development on basis of coordination compounds provides versatile structural and functional properties as compared to other organic compounds. In the present study, a new Ca(II) complex of meloxicam was synthesized and characterized by elemental analysis, FT-IR, UV–Vis, 13C NMR, SEM–EDX, powder XRD and thermal analysis (TGA). The Ca(II) complex was investigated for its in vitro, in vivo biological activities and in silico docking analysis against COX-1 and COX-2. The spectral analysis indicates that the meloxicam acts as a deprotonated bidentate ligand (coordinated to the metal atom through the amide oxygen and the nitrogen atom of the thiazolyl ring) in the complex. SEM–EDX and powder XRD analysis depicted crystalline morphology of Ca(II) complex with a crystalline size of 32.86 nm. The in vitro biological activities were evaluated by five different antioxidant methods and COX inhibition assay, while in vivo activities were evaluated by carrageenan-, histamine- and PGE2-induced paw edema methods and acetic acid-induced writhing test. The Ca(II) complex showed prominent antioxidant activities and was found to be more selective toward COX-2 (43.77) than COX-1 as compared to meloxicam. It exhibited lower toxicity (LD50 1000 mg/Kg) and significantly inhibited carrageenan- and PGE2-induced inflammation at 10 mg/Kg (P < 0.05), but no significant effect was observed on histamine-induced inflammation. Moreover, Ca(II) complex significantly reduced the number of writhes induced by acetic acid (P < 0.05). The in silico molecular docking data revealed that Ca(II) complex obstructed COX-2 (dock score 6438) more effectively than COX-1 (dock score 5732) as compared to meloxicam alone.
Collapse
|
21
|
Bikbavova GR, Livzan MA, Novikov DG, Bambulskaya EA. Precision medicine and inflammatory bowel diseases: concept, strategies, future. EXPERIMENTAL AND CLINICAL GASTROENTEROLOGY 2021; 1:121-129. [DOI: 10.31146/1682-8658-ecg-190-6-121-129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
With the advent of modern cellular and genomic technologies, we have become participants in the integration of such areas as personalized, predictive, preventive, and precision medicine (referred to as 4P-medicine), into practical healthcare. In replace of the classic methods of diagnosis and treatment of diseases comes medicine, which makes it possible to predict (anticipate) the disease, and a personalized approach to each patient, taking into account their genetic, biochemical and physiological uniqueness. Precision medicine aims to improve the quality of medical care by opening up an individual approach to the patient and covers a wide range of areas, including drug therapy, genetics, and cause-and-effect relationships in order to make the right decisions based on evidence. 4P-medicine combines knowledge in the field of proteomics, metabolomics, genomics, bioinformatics with classical approaches of anatomy, therapy, laboratory and instrumental diagnostics as well as public health. The purpose of this review is to analyze and summarize the information available to date and to present examples of the application of modern approaches of medicine into clinical practice by diving into the example of inflammatory bowel diseases (IBD). The search for literature containing scientific information about relevant studies was conducted in the PubMed and Google Scholar systems with the use of the following keywords: precision medicine, 4P medicine, inflammatory bowel diseases. Despite significant progress in medicine in general, there is still a long way to go before implementing the principles of precision medicine in the field of IBD, since many clinicians continue to treat patients with IBD symptomatically. However, the use of specific biomarkers and new treatment strategies as described in the review, can significantly accelerate this path and contribute to the improvement of diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- G. R. Bikbavova
- Federal State Educational Establishment of Higher Education Omsk State Medical University of the Ministry of Health of the Russian Federation
| | - M. A. Livzan
- Federal State Educational Establishment of Higher Education Omsk State Medical University of the Ministry of Health of the Russian Federation
| | - D. G. Novikov
- Federal State Educational Establishment of Higher Education Omsk State Medical University of the Ministry of Health of the Russian Federation
| | - E. A. Bambulskaya
- Federal State Educational Establishment of Higher Education Omsk State Medical University of the Ministry of Health of the Russian Federation
| |
Collapse
|
22
|
Can serum histone H4 levels predict mucosal healing in Crohn's disease? GASTROENTEROLOGY REVIEW 2021; 16:127-131. [PMID: 34276839 PMCID: PMC8275961 DOI: 10.5114/pg.2021.106663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/20/2020] [Indexed: 11/17/2022]
Abstract
Introduction Mucosal healing (MH) has been a treatment target with the introduction of biological agents in Crohn’s disease (CD). Histone H4 increases in chronic inflammation. Aim Our goal was to investigate the role of serum histone H4 in predicting MH. Material and methods The study included 44 patients who applied to the endoscopy unit for ileocolonoscopic evaluation with the diagnosis of ileocecal CD and 26 healthy controls. After ileocolonoscopic evaluation, we divided the patients into 2 groups: those with and those without MH, according to the presence of endoscopic ulcer or erosion findings. Blood samples were taken from these patients to analyse serum histone H4 before the endoscopic procedure. We first compared serum histone H4 levels between CD patients and the healthy control group and then between those with and those without MH among the CD patients. Finally, we compared CRP, ESR, and serum histone H4 levels in patients with CD according to the presence of MH and symptoms. Results Serum histone H4 levels were significantly higher in ileocolonic CD patients compared to the healthy control group (p = 0.002). Also, serum histone H4 levels were significantly higher in CD patients with no MH (p = 0.028) or symptomatic patients (p = 0.033). We did not find a significant difference in C-reactive protein and erythrocyte sedimentation rate levels between CD patients in the presence of MH (p = 0.281 and p = 0.203, respectively) or symptoms (0.779 and 0.652, respectively). Conclusions Serum histone H4 might be a useful biomarker for MH prediction in ileocolonoscopic CD patients. Validation is needed for large numbers of patients.
Collapse
|
23
|
Yu YL, Chen M, Zhu H, Zhuo MX, Chen P, Mao YJ, Li LY, Zhao Q, Wu M, Ye M. STAT1 epigenetically regulates LCP2 and TNFAIP2 by recruiting EP300 to contribute to the pathogenesis of inflammatory bowel disease. Clin Epigenetics 2021; 13:127. [PMID: 34112215 PMCID: PMC8194145 DOI: 10.1186/s13148-021-01101-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/10/2021] [Indexed: 12/23/2022] Open
Abstract
Background The aetiology of inflammatory bowel disease (IBD) is related to genetics and epigenetics. Epigenetic regulation of the pathogenesis of IBD has not been well defined. Here, we investigated the role of H3K27ac events in the pathogenesis of IBD. Based on previous ChIP-seq and RNA-seq assays, we studied signal transducer and activator of transcription 1 (STAT1) as a transcription factor (TF) and investigated whether the STAT1–EP300–H3K27ac axis contributes to the development of IBD. We performed ChIP-PCR to investigate the interaction between STAT1 and H3K27ac, and co-IP assays were performed to investigate the crosstalk between STAT1 and EP300. Results Lymphocyte cytosolic protein 2 (LCP2) and TNF-α‐inducible protein 2 (TNFAIP2) are target genes of STAT1. p-STAT1 binds to the enhancer loci of the two genes where H3K27ac is enriched, and EP300 subsequently binds to regulate their expression. In mice with dextran sulfate sodium (DSS)-induced acute colitis, an EP300 inhibitor significantly inhibited colitis. Conclusions p-STAT1 and EP300 promote TNFAIP2 and LCP2 expression through an increase in H3K27ac enrichment on their enhancers and contribute to the pathogenesis of chronic inflammation. Graphic abstract ![]()
Collapse
Affiliation(s)
- Ya-Li Yu
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China.,Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Meng Chen
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China.,Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Hua Zhu
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China.,Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Ming-Xing Zhuo
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China.,Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Ping Chen
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China.,Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Yu-Juan Mao
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China.,Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Lian-Yun Li
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Intestinal and Colorectal Diseases, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China.,Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Min Wu
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Intestinal and Colorectal Diseases, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Mei Ye
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China. .,Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China.
| |
Collapse
|
24
|
He L, Wen S, Zhong Z, Weng S, Jiang Q, Mi H, Liu F. The Synergistic Effects of 5-Aminosalicylic Acid and Vorinostat in the Treatment of Ulcerative Colitis. Front Pharmacol 2021; 12:625543. [PMID: 34093178 PMCID: PMC8176098 DOI: 10.3389/fphar.2021.625543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 05/10/2021] [Indexed: 12/14/2022] Open
Abstract
Background: The drug 5-aminosalicylic acid (5-ASA) is the first-line therapy for the treatment of patients with mild-to-moderate ulcerative colitis (UC). However, in some cases, 5-ASA cannot achieve the desired therapeutic effects. Therefore, patients have to undergo therapies that include corticosteroids, monoclonal antibodies or immunosuppressants, which are expensive and may be accompanied by significant side effects. Synergistic drug combinations can achieve greater therapeutic effects than individual drugs while contributing to combating drug resistance and lessening toxic side effects. Thus, in this study, we sought to identify synergistic drugs that can act synergistically with 5-ASA. Methods: We started our study with protein-metabolite analysis based on peroxisome proliferator-activated receptor gamma (PPARG), the therapeutic target of 5-ASA, to identify more additional potential drug targets. Then, we further evaluated the possibility of their synergy with PPARG by integrating Kyoto Encyclopedia of Genes and Genome (KEGG) pathway enrichment analysis, pathway-pathway interaction analysis, and semantic similarity analysis. Finally, we validated the synergistic effects with in vitro and in vivo experiments. Results: The combination of 5-ASA and vorinostat (SAHA) showed lower toxicity and mRNA expression of p65 in human colonic epithelial cell lines (Caco-2 and HCT-116), and more efficiently alleviated the symptoms of dextran sulfate sodium (DSS)-induced colitis than treatment with 5-ASA and SAHA alone. Conclusion: SAHA can exert effective synergistic effects with 5-ASA in the treatment of UC. One possible mechanism of synergism may be synergistic inhibition of the nuclear factor kappa B (NF-kB) signaling pathway. Moreover, the metabolite-butyric acid may be involved.
Collapse
Affiliation(s)
- Long He
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Reserch Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuting Wen
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Reserch Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhuotai Zhong
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Senhui Weng
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qilong Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong Mi
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fengbin Liu
- Lingnan Medical Reserch Center of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Baiyun Hospital of the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
25
|
The role of epigenetic modifications for the pathogenesis of Crohn's disease. Clin Epigenetics 2021; 13:108. [PMID: 33980294 PMCID: PMC8117638 DOI: 10.1186/s13148-021-01089-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/22/2021] [Indexed: 12/19/2022] Open
Abstract
Epigenetics has become a promising field for finding new biomarkers and improving diagnosis, prognosis, and drug response in inflammatory bowel disease. The number of people suffering from inflammatory bowel diseases, especially Crohn's disease, has increased remarkably. Crohn's disease is assumed to be the result of a complex interplay between genetic susceptibility, environmental factors, and altered intestinal microbiota, leading to dysregulation of the innate and adaptive immune response. While many genetic variants have been identified to be associated with Crohn's disease, less is known about the influence of epigenetics in the pathogenesis of this disease. In this review, we provide an overview of current epigenetic studies in Crohn's disease. In particular, we enable a deeper insight into applied bioanalytical and computational tools, as well as a comprehensive update toward the cell-specific evaluation of DNA methylation and histone modifications.
Collapse
|
26
|
Hashimoto-Hill S, Kelly D, Alenghat T. Epigenomics of intestinal disease. MEDICAL EPIGENETICS 2021:213-230. [DOI: 10.1016/b978-0-12-823928-5.00018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
27
|
Nair J, Maheshwari A. Epigenetics in Necrotizing Enterocolitis. Curr Pediatr Rev 2021; 17:172-184. [PMID: 33882811 DOI: 10.2174/1573396317666210421110608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/14/2021] [Accepted: 02/26/2021] [Indexed: 11/22/2022]
Abstract
Epigenetic alterations in our genetic material can lead to heritable changes in the risk, clinical manifestations, course, and outcomes of many diseases. Understanding these epigenetic mechanisms can help in identifying potential therapeutic targets. This is especially important in necrotizing enterocolitis (NEC), where prenatal as well as postnatal factors impact susceptibility to this devastating condition, but our therapeutic options are limited. Developmental factors affecting intestinal structure and function, our immune system, gut microbiome, and postnatal enteral nutrition are all thought to play a prominent role in this disease. In this manuscript, we have reviewed the epigenetic mechanisms involved in NEC. These include key developmental changes in DNA methylation in the immature intestine, the role of long non-coding RNA (lncRNA) in maintaining intestinal barrier function, epigenetic influences of prenatal inflammation on immunological pathways in NEC pathogenesis such as Toll-Like Receptor 4 (TLR4) and epigenetic changes associated with enteral feeding causing upregulation of pro-inflammatory genes. We have assimilated research findings from our own laboratory with an extensive review of the literature utilizing key terms in multiple databases, including PubMed, EMBASE, and Science Direct.
Collapse
Affiliation(s)
- Jayasree Nair
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Akhil Maheshwari
- Department of Pediatrics, Johns Hopkins University, Baltimore, MA, United States
| |
Collapse
|
28
|
Proteomics analysis reveals the effect of Aeromonas hydrophila sirtuin CobB on biological functions. J Proteomics 2020; 225:103848. [DOI: 10.1016/j.jprot.2020.103848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/09/2020] [Accepted: 05/24/2020] [Indexed: 02/07/2023]
|
29
|
Hamminger P, Rica R, Ellmeier W. Histone deacetylases as targets in autoimmune and autoinflammatory diseases. Adv Immunol 2020; 147:1-59. [PMID: 32981634 DOI: 10.1016/bs.ai.2020.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Reversible lysine acetylation of histones is a key epigenetic regulatory process controlling gene expression. Reversible histone acetylation is mediated by two opposing enzyme families: histone acetyltransferases (HATs) and histone deacetylases (HDACs). Moreover, many non-histone targets of HATs and HDACs are known, suggesting a crucial role for lysine acetylation as a posttranslational modification on the cellular proteome and protein function far beyond chromatin-mediated gene regulation. The HDAC family consists of 18 members and pan-HDAC inhibitors (HDACi) are clinically used for the treatment of certain types of cancer. HDACi or individual HDAC member-deficient (cell lineage-specific) mice have also been tested in a large number of preclinical mouse models for several autoimmune and autoinflammatory diseases and in most cases HDACi treatment results in an attenuation of clinical disease severity. A reduction of disease severity has also been observed in mice lacking certain HDAC members. This indicates a high therapeutic potential of isoform-selective HDACi for immune-mediated diseases. Isoform-selective HDACi and thus targeted inactivation of HDAC isoforms might also overcome the adverse effects of current clinically approved pan-HDACi. This review provides a brief overview about the fundamental function of HDACs as epigenetic regulators, highlights the roles of HDACs beyond chromatin-mediated control of gene expression and summarizes the studies showing the impact of HDAC inhibitors and genetic deficiencies of HDAC members for the outcome of autoimmune and autoinflammatory diseases with a focus on rheumatoid arthritis, inflammatory bowel disease and experimental autoimmune encephalomyelitis (EAE) as an animal model of multiple sclerosis.
Collapse
Affiliation(s)
- Patricia Hamminger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ramona Rica
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
30
|
Integrated omics profiling of dextran sodium sulfate-induced colitic mice supplemented with Wolfberry ( Lycium barbarum). NPJ Sci Food 2020; 4:5. [PMID: 32258419 PMCID: PMC7109062 DOI: 10.1038/s41538-020-0065-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 02/14/2020] [Indexed: 12/11/2022] Open
Abstract
We used a multi-omics profiling approach to investigate the suppressive effects of 2% Wolfberry (WOL)-enriched diets on dextran sodium sulfate (DSS)-induced colitis in mice. It was observed that in mice fed the WOL diet, the disease activity index, colon shortening, plasma concentrations of matrix metalloproteinase-3 and relative mesenteric fat weight were significantly improved as compared to the DSS group. Results from colon transcriptome and proteome profiles showed that WOL supplementation significantly ameliorated the expression of genes and proteins associated with the integrity of the colonic mucosal wall and colonic inflammation. Based on the hepatic transcriptome, proteome and metabolome data, genes involved in fatty acid metabolism, proteins involved in inflammation and metabolites related to glycolysis were downregulated in WOL mice, leading to lowered inflammation and changes in these molecules may have led to improvement in body weight loss. The integrated nutrigenomic approach thus revealed the molecular mechanisms underlying the ameliorative effect of whole WOL fruit consumption on inflammatory bowel disease.
Collapse
|
31
|
Chen M, Li Q, Cao N, Deng Y, Li L, Zhao Q, Wu M, Ye M. Profiling of histone 3 lysine 27 acetylation reveals its role in a chronic DSS-induced colitis mouse model. Mol Omics 2020; 15:296-307. [PMID: 31147658 DOI: 10.1039/c9mo00070d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract. In current dogma, pathogenesis of IBD is attributed to the dysregulated mucosal immune response to gut flora in genetically susceptible individuals, but the genetics evidence from GWAS studies so far is insufficient to explain the observed heritability in IBD. For this discordance, epigenetics has emerged to be one of the important causes. Recent studies have reported that histone acetylation is correlated with the development of IBD, whereas its role and underlying molecular mechanism in the disease still remain elusive. Here, we established a dextran sulfate sodium (DSS)-induced chronic colitis model and performed RNA-sequencing (RNA-seq) and Chromatin Immunoprecipitation followed by NGS sequencing (ChIP-seq) for H3K27ac in the mice colon tissues to investigate whether H3K27ac is involved in the development of intestinal inflammation. We found that the global H3K27ac level and distribution in colon tissue had no significant difference after DSS treatment, while H3K27ac signals were significantly enriched in the typical-enhancers of the DSS group compared with the control. By combining with RNA-seq data (fold change >2), we identified 56 candidate genes as potential target genes for H3K27ac change upon DSS treatment. We further predicted transcription factors (TFs) involved in DSS-induced colitis according to the enhancers with increased H3K27ac. H3K27ac increase in special typical-enhancers in the DSS group is possibly related to the development of intestinal inflammation by up-regulating adjacent gene expression and shifting TF networks, which will provide new insight into the pathogenesis and therapy of IBD.
Collapse
Affiliation(s)
- Meng Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Danielsen EM, De Haro Hernando A, Yassin M, Rasmussen K, Olsen J, Hansen GH, Danielsen EM. Short-term tissue permeability actions of dextran sulfate sodium studied in a colon organ culture system. Tissue Barriers 2020; 8:1728165. [PMID: 32079482 PMCID: PMC7549740 DOI: 10.1080/21688370.2020.1728165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dextran sulfate sodium (DSS)-induced colitis is the most commonly used animal model for inflammatory bowel diseases. However, the precise molecular action of DSS, in particular its initial effect on the epithelial tissue permeability, is still poorly understood. In the present work, organ culture of mouse – and pig colon explants were performed for 1–2 h in the presence/absence of 2% DSS together with polar- and lipophilic fluorescent probes. Probe permeability was subsequently assessed by fluorescence microscopy. DSS rapidly increased paracellular permeability of 70-kDa dextran without otherwise affecting the overall epithelial integrity. FITC-conjugated DSS likewise permeated the epithelial barrier and strongly accumulated in nuclei of cells scattered in the lamina propria. By immunolabeling, plasma cells, T cells, macrophages, mast cells, and fibroblasts were identified as possible targets for DSS, indicating that accumulation of the polyanion in nuclei was not confined to a particular type of cell in the lamina propria. In contrast, colonocytes were rarely targeted by DSS, but as visualized by transmission electron microscopy, it induced the formation of vacuole-like structures in the intercellular space between adjacent epithelial cells. Nuclei of various cell types in the lamina propria, including both cells of the innate and adaptive immune system, are novel targets for a rapid action of DSS, and from previous in vitro studies, polyanions like DSS are known to disrupt nucleosomes by binding to the histones. We therefore propose that nuclear targeting is one way whereby DSS exerts its inflammatory action as a colitogen in animal models of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Elisabeth M Danielsen
- Department of Cellular and Molecular Medicine, the Panum Institute, Faculty of Health Sciences, University of Copenhagen , Copenhagen, Denmark
| | - Alba De Haro Hernando
- Department of Cellular and Molecular Medicine, the Panum Institute, Faculty of Health Sciences, University of Copenhagen , Copenhagen, Denmark
| | - Mohammad Yassin
- Department of Cellular and Molecular Medicine, the Panum Institute, Faculty of Health Sciences, University of Copenhagen , Copenhagen, Denmark
| | - Karina Rasmussen
- Department of Cellular and Molecular Medicine, the Panum Institute, Faculty of Health Sciences, University of Copenhagen , Copenhagen, Denmark
| | - Jørgen Olsen
- Department of Cellular and Molecular Medicine, the Panum Institute, Faculty of Health Sciences, University of Copenhagen , Copenhagen, Denmark
| | - Gert H Hansen
- Department of Cellular and Molecular Medicine, the Panum Institute, Faculty of Health Sciences, University of Copenhagen , Copenhagen, Denmark
| | - E Michael Danielsen
- Department of Cellular and Molecular Medicine, the Panum Institute, Faculty of Health Sciences, University of Copenhagen , Copenhagen, Denmark
| |
Collapse
|
33
|
Guo L, Gao J, Gao Y, Zhu Z, Zhang Y. Aspirin Reshapes Acetylomes in Inflammatory and Cancer Cells via CoA-Dependent and CoA-Independent Pathways. J Proteome Res 2020; 19:962-972. [PMID: 31922419 DOI: 10.1021/acs.jproteome.9b00853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aspirin, or acetylsalicylic acid (ASA), is the most widely used medication to relieve pain, fever, and inflammation. Recent studies have revealed new benefits of aspirin, including reduction of heart attack and stroke, anticancer, and life extension. Despite the profound effects of aspirin, the mechanism of its action remains to be elucidated. Here, we used deuterium-labeled aspirin (D-aspirin) together with mass spectrometry-based acetylomic analysis, termed DAcMS, to investigate the landscape of protein acetylation induced by aspirin. The DAcMS revealed the acetylomes of lipopolysaccharide-induced inflammatory BV2 cells and colon cancer HCT116 cells. The acetylation level was substantially induced upon aspirin treatment in both cell lines. In total, we identified 17,003 acetylation sites on 4623 proteins in BV2 cells and 16,366 acetylated sites corresponding to 4702 acetylated proteins in HCT116 cells. Importantly, functional analyses of these aspirin-induced acetylated proteins suggested that they were highly enriched in many key biological categories, which function importantly in inflammatory response. We further demonstrated that aspirin acetylates proteins through both acetyl-CoA-dependent and acetyl-CoA-independent pathways, and the accessible lysine residues at the protein surface are major acetylation targets of aspirin. Hence, our study provides the comprehensive atlas of aspirin-induced acetylome under disease conditions. This knowledge proffers new insight into the aspirin-directed acetylome and perhaps new drug target sites relevant to human cancer and inflammatory diseases. The MS data of this study have been deposited under the accession number IPX0001923000 at iProX.
Collapse
Affiliation(s)
- Lin Guo
- Interdisciplinary Research Center on Biology and Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 26 Qiuyue Road , Pudong, Shanghai 201210 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Jing Gao
- Interdisciplinary Research Center on Biology and Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 26 Qiuyue Road , Pudong, Shanghai 201210 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yang Gao
- Interdisciplinary Research Center on Biology and Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 26 Qiuyue Road , Pudong, Shanghai 201210 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Zhengjiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 26 Qiuyue Road , Pudong, Shanghai 201210 , China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 26 Qiuyue Road , Pudong, Shanghai 201210 , China
| |
Collapse
|
34
|
Kim E, Bae J, Lee J, Shin JH, Seok PR, Kim Y, Yoo SH. Purification and characterization of turanose, a sucrose isomer and its anti-inflammatory effects in dextran sulfate sodium (DSS)-induced colitis model. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103570] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
35
|
Zeng Z, Mukherjee A, Zhang H. From Genetics to Epigenetics, Roles of Epigenetics in Inflammatory Bowel Disease. Front Genet 2019; 10:1017. [PMID: 31737035 PMCID: PMC6834788 DOI: 10.3389/fgene.2019.01017] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/24/2019] [Indexed: 02/05/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a destructive, recurrent, and heterogeneous disease. Its detailed pathogenesis is still unclear, although available evidence supports that IBD is caused by a complex interplay between genetic predispositions, environmental factors, and aberrant immune responses. Recent breakthroughs with regard to its genetics have offered valuable insights into the sophisticated genetic basis, but the identified genetic factors only explain a small part of overall disease variance. It is becoming increasingly apparent that epigenetic factors can mediate the interaction between genetics and environment, and play a fundamental role in the pathogenesis of IBD. This review outlines recent genetic and epigenetic discoveries in IBD, with a focus on the roles of epigenetics in disease susceptibility, activity, behavior and colorectal cancer (CRC), and their potential translational applications.
Collapse
Affiliation(s)
- Zhen Zeng
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Center for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| | | | - Hu Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Center for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
36
|
Kamrani A, Alipourfard I, Ahmadi-Khiavi H, Yousefi M, Rostamzadeh D, Izadi M, Ahmadi M. The role of epigenetic changes in preeclampsia. Biofactors 2019; 45:712-724. [PMID: 31343798 DOI: 10.1002/biof.1542] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022]
Abstract
Preeclampsia (PE) is a disorder affecting 2-10% of pregnancies and has a major role for perinatal and maternal mortality and morbidity. PE can be occurred by initiation of new hypertension combined with proteinuria after 20 weeks gestation, as well as various reasons such as inflammatory cytokines, poor trophoblast invasion can be related with PE disease. Environmental factors can cause epigenetic changes including DNA methylation, microRNAs (miRNAs), and histone modification that may be related to different diseases such as PE. Abnormal DNA methylation during placentation is the most important epigenetic factor correlated with PE. Moreover, changes in histone modification like acetylation and also the effect of overregulation or low regulation of miRNAs or long noncoding RNAs on variety signaling pathways can be resulted in PE. The aim of this review is to describe of studies about epigenetic changes in PE and its therapeutic strategies.
Collapse
Affiliation(s)
- Amin Kamrani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Iraj Alipourfard
- Center of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | | | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davood Rostamzadeh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Morteza Izadi
- Health Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Majid Ahmadi
- Reproductive Biology Department, Tabriz University of Medical Sciences, Tabriz, Iran
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
37
|
Abstract
Beyond their well-known role in embryonic development of the central and peripheral nervous system, neurotrophins, particularly nerve growth factor and brain-derived neurotrophic factor, exert an essential role in pain production and sensitization. This has mainly been studied within the framework of somatic pain, and even antibodies (tanezumab and fasinumab) have recently been developed for their use in chronic somatic painful conditions, such as osteoarthritis or low back pain. However, data suggest that neurotrophins also exert an important role in the occurrence of visceral pain and visceral sensitization. Visceral pain is a distressing symptom that prompts many consultations and is typically encountered in both 'organic' (generally inflammatory) and 'functional' (displaying no obvious structural changes in routine clinical evaluations) disorders of the gut, such as inflammatory bowel disease and irritable bowel syndrome, respectively. The present review provides a summary of neurotrophins as a molecular family and their role in pain in general and addresses recent investigations of the involvement of nerve growth factor and brain-derived neurotrophic factor in visceral pain, particularly that associated with inflammatory bowel disease and irritable bowel syndrome.
Collapse
|
38
|
Hagihara Y, Yoshimatsu Y, Mikami Y, Takada Y, Mizuno S, Kanai T. Epigenetic regulation of T helper cells and intestinal pathogenicity. Semin Immunopathol 2019; 41:379-399. [PMID: 30891628 DOI: 10.1007/s00281-019-00732-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/05/2019] [Indexed: 02/06/2023]
|
39
|
Matsui M, Terasawa K, Kajikuri J, Kito H, Endo K, Jaikhan P, Suzuki T, Ohya S. Histone Deacetylases Enhance Ca 2+-Activated K⁺ Channel K Ca3.1 Expression in Murine Inflammatory CD4⁺ T Cells. Int J Mol Sci 2018; 19:ijms19102942. [PMID: 30262728 PMCID: PMC6213394 DOI: 10.3390/ijms19102942] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/19/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022] Open
Abstract
The up-regulated expression of the Ca2+-activated K+ channel KCa3.1 in inflammatory CD4+ T cells has been implicated in the pathogenesis of inflammatory bowel disease (IBD) through the enhanced production of inflammatory cytokines, such as interferon-γ (IFN-γ). However, the underlying mechanisms have not yet been elucidated. The objective of the present study is to clarify the involvement of histone deacetylases (HDACs) in the up-regulation of KCa3.1 in the CD4+ T cells of IBD model mice. The expression levels of KCa3.1 and its regulators, such as function-modifying molecules and transcription factors, were quantitated using a real-time polymerase chain reaction (PCR) assay, Western blotting, and depolarization responses, which were induced by the selective KCa3.1 blocker TRAM-34 (1 μM) and were measured using a voltage-sensitive fluorescent dye imaging system. The treatment with 1 μM vorinostat, a pan-HDAC inhibitor, for 24 h repressed the transcriptional expression of KCa3.1 in the splenic CD4+ T cells of IBD model mice. Accordingly, TRAM-34-induced depolarization responses were significantly reduced. HDAC2 and HDAC3 were significantly up-regulated in the CD4+ T cells of IBD model mice. The down-regulated expression of KCa3.1 was observed following treatments with the selective inhibitors of HDAC2 and HDAC3. The KCa3.1 K+ channel regulates inflammatory cytokine production in CD4+ T cells, mediating epigenetic modifications by HDAC2 and HDAC3.
Collapse
Affiliation(s)
- Miki Matsui
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan.
| | - Kyoko Terasawa
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| | - Junko Kajikuri
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan.
| | - Hiroaki Kito
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan.
| | - Kyoko Endo
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan.
| | - Pattaporn Jaikhan
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 403-8334, Japan.
| | - Takayoshi Suzuki
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 403-8334, Japan.
| | - Susumu Ohya
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan.
| |
Collapse
|
40
|
Kelly D, Kotliar M, Woo V, Jagannathan S, Whitt J, Moncivaiz J, Aronow BJ, Dubinsky MC, Hyams JS, Markowitz JF, Baldassano RN, Stephens MC, Walters TD, Kugathasan S, Haberman Y, Sundaram N, Rosen MJ, Helmrath M, Karns R, Barski A, Denson LA, Alenghat T. Microbiota-sensitive epigenetic signature predicts inflammation in Crohn's disease. JCI Insight 2018; 3:122104. [PMID: 30232290 PMCID: PMC6237229 DOI: 10.1172/jci.insight.122104] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/07/2018] [Indexed: 12/19/2022] Open
Abstract
Altered response to the intestinal microbiota strongly associates with inflammatory bowel disease (IBD); however, how commensal microbial cues are integrated by the host during the pathogenesis of IBD is not understood. Epigenetics represents a potential mechanism that could enable intestinal microbes to modulate transcriptional output during the development of IBD. Here, we reveal a histone methylation signature of intestinal epithelial cells isolated from the terminal ilea of newly diagnosed pediatric IBD patients. Genes characterized by significant alterations in histone H3-lysine 4 trimethylation (H3K4me3) showed differential enrichment in pathways involving immunoregulation, cell survival and signaling, and metabolism. Interestingly, a large subset of these genes was epigenetically regulated by microbiota in mice and several microbiota-sensitive epigenetic targets demonstrated altered expression in IBD patients. Remarkably though, a substantial proportion of these genes exhibited H3K4me3 levels that correlated with the severity of intestinal inflammation in IBD, despite lacking significant differential expression. Collectively, these data uncover a previously unrecognized epigenetic profile of IBD that can be primed by commensal microbes and indicate sensitive targets in the epithelium that may underlie how microbiota predispose to subsequent intestinal inflammation and disease.
Collapse
Affiliation(s)
- Daniel Kelly
- Division of Immunobiology, Center for Inflammation and Tolerance
- Division of Gastroenterology, Hepatology, and Nutrition
| | | | - Vivienne Woo
- Division of Immunobiology, Center for Inflammation and Tolerance
| | | | - Jordan Whitt
- Division of Immunobiology, Center for Inflammation and Tolerance
| | | | - Bruce J. Aronow
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center (CCHMC) and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Marla C. Dubinsky
- Department of Pediatrics, Mount Sinai Hospital, New York, New York, USA
| | - Jeffrey S. Hyams
- Division of Digestive Diseases, Hepatology, and Nutrition, Connecticut Children’s Medical Center, Hartford, Connecticut, USA
| | | | - Robert N. Baldassano
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael C. Stephens
- Department of Pediatric Gastroenterology, Mayo Clinic, Rochester, Minnesota, USA
| | - Thomas D. Walters
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Subra Kugathasan
- Division of Pediatric Gastroenterology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Yael Haberman
- Division of Gastroenterology, Hepatology, and Nutrition
- Sheba Medical Center, Tel Hashomer, affiliated with the Tel-Aviv University, Israel
| | - Nambirajan Sundaram
- Division of Pediatric General and Thoracic Surgery, CCHMC and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | - Michael Helmrath
- Division of Pediatric General and Thoracic Surgery, CCHMC and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Rebekah Karns
- Division of Gastroenterology, Hepatology, and Nutrition
| | - Artem Barski
- Divisions of Allergy and Immunology and Human Genetics, and
| | - Lee A. Denson
- Division of Gastroenterology, Hepatology, and Nutrition
| | - Theresa Alenghat
- Division of Immunobiology, Center for Inflammation and Tolerance
| |
Collapse
|
41
|
Eddy AC, Chapman H, George EM. Acute Hypoxia and Chronic Ischemia Induce Differential Total Changes in Placental Epigenetic Modifications. Reprod Sci 2018; 26:766-773. [PMID: 30223723 DOI: 10.1177/1933719118799193] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Preeclampsia is a common obstetrical complication, hallmarked by new-onset hypertension. Believed to result from placental insufficiency and chronic placental ischemia, the symptoms of preeclampsia are caused by release of pathogenic factors from the placenta itself, although the mechanisms of their regulation are in many cases unknown. One potential mechanism is through changes in placental epigenetic chromatin modifications, particularly histone acetylation and DNA methylation. Here, we determined the effects of chronic ischemia on global epigenetic modifications in the rodent placenta in vivo and acute hypoxia in BeWo placental trophoblast cells in vitro. Placental insufficiency via uterine artery restriction increased maternal blood pressure and fetal demise while decreasing placental and fetal mass. Global placental histone H3 acetylation levels were significantly decreased at H3 K9, K14, K18, K27, and K56. Interestingly, when BeWo-immortalized placental trophoblast cells were cultured in oxygen concentrations mimicking healthy and ischemic placentas, there was a significant increase in acetylated at K9, K18, K27, and K56. This was associated with a small but significant decrease in placental acetyl-CoA, suggesting depletion in the source of acetyl group donors. Finally, while global methylation of cytosine from placental DNA was low in both groups of animals (<1%), there was ∼50% increase in 5-mC in response to chronic ischemia. This suggests acute hypoxia and chronic ischemia induce differential global changes in histone acetylation in the placenta and that chronically altered metabolic profiles could affect histone acetylation in the placenta, thereby regulating production of pathogenic factors from the placenta during preeclampsia.
Collapse
Affiliation(s)
- Adrian C Eddy
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, USA
| | - Heather Chapman
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, USA
| | - Eric M George
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, USA. .,Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
42
|
Ali MN, Choijookhuu N, Takagi H, Srisowanna N, Nguyen Nhat Huynh M, Yamaguchi Y, Synn Oo P, Tin Htwe Kyaw M, Sato K, Yamaguchi R, Hishikawa Y. The HDAC Inhibitor, SAHA, Prevents Colonic Inflammation by Suppressing Pro-inflammatory Cytokines and Chemokines in DSS-induced Colitis. Acta Histochem Cytochem 2018; 51:33-40. [PMID: 29622848 PMCID: PMC5880801 DOI: 10.1267/ahc.17033] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/19/2017] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease (IBD) is an inflammatory disorder of the gastrointestinal tract that is caused by multiple factors, including dysfunction of the immune system and genetic and epigenetic alterations. Aberrant epigenetic regulation, especially histone acetylation, was found in biopsies from IBD patients and mouse models of colitis, suggesting that an epigenetic treatment approach may be useful for IBD therapy. Therefore, we investigated the effects of the histone deacetylase (HDAC) inhibitor, suberoylanilide hydroxamic acid (SAHA), in a mouse model of dextran sulfate sodium (DSS)-induced colitis. C57BL/6 mice were treated with 1.5% DSS for 5 days and/or SAHA (25 mg/kg BW/day) for 26 days. Levels of mRNA for the pro-inflammatory cytokines, interleukin (IL)-6 and tumor necrosis factor (TNF)-α, and the chemokines, Ccl2, were examined by qRT-PCR. CD11b, a marker of dendritic cells, macrophages, and monocytes, as well as Ccl2 expression, were examined by immunohistochemistry. IL-6, TNF-α, and Ccl2 gene expression peaked on day 5 in DSS-treated mouse colon, whereas SAHA treatment significantly decreased pro-inflammatory gene expression. Ccl2 protein expression resembled Ccl2 gene expression results. Moreover, localization of CD11b showed that migratory inflammatory cells were dramatically decreased by SAHA treatment compared to DSS-treated mouse colon. Thus, we conclude that the HDAC inhibitor, SAHA, attenuates inflammatory changes in DSS-induced colitis by suppressing local secretion of pro-inflammatory cytokines and chemokines and also by suppressing mobilization and accumulation of inflammatory cells.
Collapse
Affiliation(s)
- Mohmand Noor Ali
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
- Laboratory of Veterinary Pathology, Department of Veterinary, Faculty of Agriculture, University of Miyazaki
| | - Narantsog Choijookhuu
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| | - Hideaki Takagi
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki
| | - Naparee Srisowanna
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| | - Mai Nguyen Nhat Huynh
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| | - Yuya Yamaguchi
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| | - Phyu Synn Oo
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| | - Myat Tin Htwe Kyaw
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| | - Katsuaki Sato
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki
| | - Ryoji Yamaguchi
- Laboratory of Veterinary Pathology, Department of Veterinary, Faculty of Agriculture, University of Miyazaki
| | - Yoshitaka Hishikawa
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| |
Collapse
|
43
|
Serino M. Molecular Paths Linking Metabolic Diseases, Gut Microbiota Dysbiosis and Enterobacteria Infections. J Mol Biol 2018; 430:581-590. [PMID: 29374557 DOI: 10.1016/j.jmb.2018.01.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/19/2018] [Indexed: 02/07/2023]
Abstract
Alterations of both ecology and functions of gut microbiota are conspicuous traits of several inflammatory pathologies, notably metabolic diseases such as obesity and type 2 diabetes. Moreover, the proliferation of enterobacteria, subdominant members of the intestinal microbial ecosystem, has been shown to be favored by Western diet, the strongest inducer of both metabolic diseases and gut microbiota dysbiosis. The inner interdependence between the host and the gut microbiota is based on a plethora of molecular mechanisms by which host and intestinal microbes modify each other. Among these mechanisms are as follows: (i) the well-known metabolic impact of short chain fatty acids, produced by microbial fermentation of complex carbohydrates from plants; (ii) a mutual modulation of miRNAs expression, both on the eukaryotic (host) and prokaryotic (gut microbes) side; (iii) the production by enterobacteria of virulence factors such as the genotoxin colibactin, shown to alter the integrity of host genome and induce a senescence-like phenotype in vitro; (iv) the microbial excretion of outer-membrane vesicles, which, in addition to other functions, may act as a carrier for multiple molecules such as toxins to be delivered to target cells. In this review, I describe the major molecular mechanisms by which gut microbes exert their metabolic impact at a multi-organ level (the gut barrier being in the front line) and support the emerging triad of metabolic diseases, gut microbiota dysbiosis and enterobacteria infections.
Collapse
Affiliation(s)
- Matteo Serino
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France.
| |
Collapse
|
44
|
de Menezes MF, Nicola F, Vital da Silva IR, Vizuete A, Elsner VR, Xavier LL, Gonçalves CAS, Netto CA, Mestriner RG. Glial fibrillary acidic protein levels are associated with global histone H4 acetylation after spinal cord injury in rats. Neural Regen Res 2018; 13:1945-1952. [PMID: 30233068 PMCID: PMC6183034 DOI: 10.4103/1673-5374.239443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Emerging evidence has suggested global histone H4 acetylation status plays an important role in neural plasticity. For instance, the imbalance of this epigenetic marker has been hypothesized as a key factor for the development and progression of several neurological diseases. Likewise, astrocytic reactivity - a well-known process that markedly influences the tissue remodeling after a central nervous system injury - is crucial for tissue remodeling after spinal cord injury (SCI). However, the linkage between the above-mentioned mechanisms after SCI remains poorly understood. We sought to investigate the relation between both glial fibrillary acidic protein (GFAP) and S100 calcium-binding protein B (S100B) (astrocytic reactivity classical markers) and global histone H4 acetylation levels. Sixty-one male Wistar rats (aged ~3 months) were divided into the following groups: sham; 6 hours post-SCI; 24 hours post-SCI; 48 hours post-SCI; 72 hours post-SCI; and 7 days post-SCI. The results suggested that GFAP, but not S100B was associated with global histone H4 acetylation levels. Moreover, global histone H4 acetylation levels exhibited a complex pattern after SCI, encompassing at least three clearly defined phases ( first phase: no changes in the 6, 24 and 48 hours post-SCI groups; second phase: increased levels in the 72 hours post-SCI group; and a third phase: return to levels similar to control in the 7 days post-SCI group). Overall, these findings suggest global H4 acetylation levels exhibit distinct patterns of expression during the first week post-SCI, which may be associated with GFAP levels in the perilesional tissue. Current data encourage studies using H4 acetylation as a possible biomarker for tissue remodeling after spinal cord injury.
Collapse
Affiliation(s)
- Mayara Ferraz de Menezes
- Neurorehabilitation and Neural Repair Research Group; Graduate Program in Cellular and Molecular Biology, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fabrício Nicola
- Department of Biochemistry, Basic Science Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ivy Reichert Vital da Silva
- Graduate Program in Biosciences and Rehabilitation, Centro Universitário Metodista IPA, Porto Alegre, RS, Brazil
| | - Adriana Vizuete
- Department of Biochemistry, Basic Science Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Viviane Rostirola Elsner
- Graduate Program in Biosciences and Rehabilitation, Centro Universitário Metodista IPA, Porto Alegre, RS, Brazil
| | - Léder Leal Xavier
- Neurorehabilitation and Neural Repair Research Group; Graduate Program in Cellular and Molecular Biology, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Carlos Alexandre Netto
- Department of Biochemistry, Basic Science Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Régis Gemerasca Mestriner
- Neurorehabilitation and Neural Repair Research Group; Graduate Program in Cellular and Molecular Biology, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
45
|
Aguirre JE, Winston JH, Sarna SK. Neonatal immune challenge followed by adult immune challenge induces epigenetic-susceptibility to aggravated visceral hypersensitivity. Neurogastroenterol Motil 2017; 29:10.1111/nmo.13081. [PMID: 28439935 PMCID: PMC7048321 DOI: 10.1111/nmo.13081] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 03/10/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Abdominal pain is one of the major symptoms of inflammatory Bowel Disease (IBD). The inflammatory mediators released by colon inflammation are known to sensitize the afferent neurons, which is one of the contributors to abdominal pain. However, not all IBD patients have abdominal pain, and some patients report abdominal pain during remission, suggesting contributions of other pathological factors to abdominal pain in IBD. Epidemiological studies found early-life gastrointestinal infections a risk factor for IBD symptoms and adult-life gastrointestinal infections may trigger the onset of IBD. We investigated the hypothesis that neonatal colon immune challenge followed by an adult colon immune challenge upregulates spinal cord BDNF that aggravates visceral sensitivity over and above that induced by adult colon immune challenge alone. METHODS We induced neonatal and adult colon immune challenges by intraluminal administration of trinitrobenzene sulfonic acid to the rat colon. KEY RESULTS We found that neonatal immune challenge triggers epigenetic programming that upregulates tyrosine hydroxylase in the locus ceruleus when these rats are subjected to an adult colon immune challenge. The upregulation of locus ceruleus tyrosine hydroxylase, upregulates norepinephrine in the cerebrospinal fluid that acts on adrenergic receptors to enhance pCREB binding to the cAMP response element, which recruits histone acetylene transferase (HAT) to the BDNF gene to enhance its transcription resulting in aggravated visceromotor response to colorectal distension. HAT and adrenergic receptor antagonists block the aggravation of visceral sensitivity. CONCLUSION & INFERENCES HAT and adrenergic receptor inhibitors may serve as alternates to opioids and NSAIDS in suppressing abdominal pain in IBD.
Collapse
Affiliation(s)
- Jose E Aguirre
- Enteric Neuromuscular Disorders and Visceral Pain Center, Division of Gastroenterology, Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1083
| | - John H. Winston
- Enteric Neuromuscular Disorders and Visceral Pain Center, Division of Gastroenterology, Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1083
| | - Sushil K. Sarna
- Enteric Neuromuscular Disorders and Visceral Pain Center, Division of Gastroenterology, Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1083,Department of Neuroscience and Cell Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1083
| |
Collapse
|
46
|
Zhou M, He J, Shen Y, Zhang C, Wang J, Chen Y. New Frontiers in Genetics, Gut Microbiota, and Immunity: A Rosetta Stone for the Pathogenesis of Inflammatory Bowel Disease. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8201672. [PMID: 28831399 PMCID: PMC5558637 DOI: 10.1155/2017/8201672] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/03/2017] [Accepted: 07/03/2017] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD), which encompasses ulcerative colitis (UC) and Crohn's disease (CD), is a complicated, uncontrolled, and multifactorial disorder characterized by chronic, relapsing, or progressive inflammatory conditions that may involve the entire gastrointestinal tract. The protracted nature has imposed enormous economic burdens on patients with IBD, and the treatment is far from optimal due to the currently limited comprehension of IBD pathogenesis. In spite of the exact etiology still remaining an enigma, four identified components, including personal genetic susceptibility, external environment, internal gut microbiota, and the host immune response, are responsible for IBD pathogenesis, and compelling evidence has suggested that IBD may be triggered by aberrant and continuing immune responses to gut microbiota in genetically susceptibility individuals. The past decade has witnessed the flourishing of research on genetics, gut microbiota, and immunity in patients with IBD. Therefore, in this review, we will comprehensively exhibit a series of novel findings and update the major advances regarding these three fields. Undoubtedly, these novel findings have opened a new horizon and shed bright light on the causality research of IBD.
Collapse
Affiliation(s)
- Mingxia Zhou
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Jing He
- Department of General Surgery, Huashan Hospital of Fudan University, Shanghai 200040, China
| | - Yujie Shen
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Cong Zhang
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Jiazheng Wang
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Yingwei Chen
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
- Shanghai Institute for Pediatric Research, Shanghai 200092, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| |
Collapse
|
47
|
赵 娜, 黄 彪, 吴 巧, 唐 勇, 余 曙. 蛋白修饰与炎症性肠病. Shijie Huaren Xiaohua Zazhi 2017; 25:1521-1527. [DOI: 10.11569/wcjd.v25.i17.1521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
近年来炎症性肠病(inflammatory bowel disease, IBD)的发病率明显呈持续上升趋势, 越来越多的证据表明, 肠道内蛋白质的异常表达或蛋白修饰的异常与IBD的发病有关. 蛋白修饰是指蛋白质通过翻译后修饰改变自身的空间构象、活性、稳定性及与其他分子相互作用等方面的性能, 从而参与调节机体多样化的生命过程. 虽然蛋白修饰不会改变DNA的序列, 但可以影响相关基因的表达. 研究显示, 蛋白修饰可能通过患者的饮食、环境及肠道微生物等多方面影响基因表型从而参与IBD的发病过程. 本文就蛋白修饰在IBD发病过程中所起的作用做一综述.
Collapse
|
48
|
Abstract
The human epigenome may link environmental exposures and commensal microbiota changes to host pathology in respect to the developmental origins of inflammatory bowel diseases (ulcerative colitis [UC] and Crohn's disease [more appropriately Crohn disease, CD]). Genetic predisposition - prenatal, perinatal and pediatric environmental influences - microbiome aberration (dysbiosis) and immune dysregulation appear to be important elements in disease development, progression and maintenance. The prevalence of combined genetic and epigenetic susceptibility toward UC and CD is calculated herein to be as high as 2%, and approximately 1% for UC and CD in highly developed countries, respectively. This review emphasizes the significant challenges for epigenetic research in inflammatory bowel diseases. Overcoming these challenges, however, could reveal unique opportunities for disease prevention, treatment and possible cure.
Collapse
Affiliation(s)
- Richard Kellermayer
- Section of Pediatric Gastroenterology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, USDA/ARS Children's Nutrition Research Center, Houston, TX 77030, USA
| |
Collapse
|
49
|
Sisay M, Engidawork E, Shibeshi W. Evaluation of the antidiarrheal activity of the leaf extracts of Myrtus communis Linn (Myrtaceae) in mice model. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:103. [PMID: 28183311 PMCID: PMC5301383 DOI: 10.1186/s12906-017-1625-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/06/2017] [Indexed: 12/26/2022]
Abstract
Background Myrtus communis L. has a folkloric repute for the management of diarrhea and dysentery in different parts of the world. However, the safety and efficacy of the leaf extract have not been scientifically validated in animal model. This study was, therefore, aimed to investigate the antidiarrheal effect of 80% methanol extract (80ME) and solvent fractions of the leaves of Myrtus communis L. in mice. Methods The antidiarrheal activity of the 80ME and solvent fractions was evaluated against castor oil induced diarrheal model, charcoal meal and enteropooling tests. For the 80%ME, the test groups received 100, 200 and 400 mg/kg of the extract. In case of fractions, the test groups received various doses of fractions (200, 300, 400 mg/kg and an additional dose of 800 mg/kg for the aqueous fraction (AF)), where as negative controls received the vehicle (10 ml/kg) and positive controls received loperamide (3 mg/kg). Results The 80ME at 200 mg/kg (p < 0.05) & 400 mg/kg (p < 0.01) as well as the chloroform fraction (CF) and methanol fraction (MF) at 400 mg/kg (p < 0.05) significantly delayed the onset of diarrhea. Besides, the 80ME (at all tested doses) and both of these fractions (at 300 & 400 mg/kg) significantly decreased the frequency and weight of fecal outputs. Results from the charcoal meal test revealed that the 80ME, at all doses, (p < 0.001) as well as the CF and MF at 300 mg/kg (p < 0.05) & 400 mg/kg (p < 0.001) produced a significant anti-motility effect. Similarly, in the entero-pooling test, the 80ME (at all tested doses) (p < 0.01) as well as the CF and MF (at 300 & 400 mg/kg, p < 0.05) produced a significant decline in the weight and volume of intestinal contents, whereas the AF revealed significant effect (p < 0.05) at dose of 800 mg/kg only. Conclusion The study demonstrated that the 80ME and solvent fractions contain bioactive constituents that have antidiarrheal activity. Therefore, this study provides a scientific support for the acclaimed traditional use of Myrtus communis L for the treatment of diarrheal diseases.
Collapse
|
50
|
Epigenetic Changes in Chronic Inflammatory Diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 106:139-189. [DOI: 10.1016/bs.apcsb.2016.09.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|