1
|
Sun W, Li M, Lin Q, Jin X, Zhao B, Jiang Z, Zhang R, Li X. Arctiin Inhibits Hyperglycemia-Induced Oxidative Stress by Activating the Nrf2/HO-1 Signaling Pathway to Treat Type 2 Diabetic Osteoporosis. Mol Nutr Food Res 2025; 69:e70053. [PMID: 40177855 DOI: 10.1002/mnfr.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/15/2025] [Accepted: 03/11/2025] [Indexed: 04/05/2025]
Abstract
Arctiin (ARC), a primary component of burdock (Arctium lappa L.), is widely recognized as a traditional herb and nutritional supplement in Asia. This study set out to explore its potential impact on type 2 diabetic osteoporosis (T2DOP). MC3T3-E1 cells were exposed to a high-glucose environment to simulate diabetic conditions. Treatment with ARC increased the expression of crucial osteogenic transcription factor genes, such as RUNX2, Osterix, and COL1A1. Moreover, ARC mitigated the production of ROS induced by high glucose levels. For in vivo experimentation, db/db mice were used as models for T2DOP. ARC supplementation decreased bone loss and improved bone structural integrity. Collectively, our findings indicate that ARC holds promise as a nutritional intervention for the treatment of T2DOP. By activating the Nrf2/HO-1 signaling pathway, ARC could help counteract oxidative stress and impaired bone differentiation associated with diabetes, thus offering a potential dietary strategy to support bone health. Incorporating ARC-containing foods or supplements into the diet could be a beneficial approach to enhance overall bone quality and potentially reduce the risk of fractures and other bone-related problems in patients with diabetes, highlighting the importance of considering natural compounds for the nutritional management of chronic diseases.
Collapse
Affiliation(s)
- Weipeng Sun
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong Province, China
| | - Minying Li
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Qing Lin
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong Province, China
| | - Xueshan Jin
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong Province, China
| | - Biyi Zhao
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong Province, China
| | - Ziwei Jiang
- Department of Orthopaedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Ronghua Zhang
- College of Pharmacy, Jinan University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, Guangdong Province, China
- College of Cancer Institute, Jinan University, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Xiaoyun Li
- College of Pharmacy, Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
2
|
Pan Y, Lee YJ, Kim JH, Song MJ, Kwack K, Park SH, Sin SI, Chung JH, Park KY. Suppressor effects of carrots on azoxymethane/dextran sulfate sodium-induced colon cancer according to cultivation method. Front Immunol 2025; 16:1554801. [PMID: 40292300 PMCID: PMC12021845 DOI: 10.3389/fimmu.2025.1554801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/25/2025] [Indexed: 04/30/2025] Open
Abstract
Introduction This study investigated the suppressor effects of carrots depending on cultivation method on AOM/DSS-induced colon cancer in mice by examining cell apoptosis, inflammation response, and metabolites. Carrots grown using different fertilizers significantly suppressed tumor development by modulating cell apoptosis and inflammatory responses in our experimental settings. Methods and Results Naturaldream Fertilizer Carrot (NFC) cultivated with deep sea water minerals (DSWM) showed effectively increased the expression of apoptosis-related genes and proteins including p53, p21, Bim, Bad, Bax, Bak, Caspase 9, and Caspase 3 in colon tissue, while inhibiting the production of inflammatory factors and related genes and proteins such as TNF-a, IL-1b, IL-6, IFN-g, NF-kB, and iNOS in serum, spleen cells, and liver tissues. Intestinal microbiota analysis revealed a distinct composition in mice receiving carrots compared to the control group, with accumulation of intestinal microorganisms such as Lachnospiraceae, and Mucispirillum schaedleri closely associated with anti-tumor effects. Discussion and Conclusion Overall, our results indicate that carrots, especially carrots grown with DSWM fertilizers, play a crucial role in inhibiting AOM/DSS-induced colon cancer in mice by regulating cell apoptosis and inflammation responses. The present findings provide valuable insights for further exploration of carrots depending on the cultivation method, as a potential dietary source against colon cancer.
Collapse
Affiliation(s)
- Yanni Pan
- Collaborative Innovation Center for Child Nutrition and Health Development, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Yeon-Jun Lee
- Department of Biotechnology, CHA University, Seongnam, Republic of Korea
| | - Jin Hyeop Kim
- Department of Biotechnology, CHA University, Seongnam, Republic of Korea
| | - Min Ji Song
- Department of Biotechnology, CHA University, Seongnam, Republic of Korea
| | - KyuBum Kwack
- Department of Biomedical Science, CHA University, Seongnam, Republic of Korea
| | - Seung-Hwan Park
- Organic Anti-Cancer Agriculture Institute, iCOOP Natural Dream Company, Goesan-gun, Chungcheongbuk-do, Republic of Korea
| | - Sin-Il Sin
- Organic Anti-Cancer Agriculture Institute, iCOOP Natural Dream Company, Goesan-gun, Chungcheongbuk-do, Republic of Korea
| | - Ji Hyung Chung
- Department of Biotechnology, CHA University, Seongnam, Republic of Korea
| | - Kun-Young Park
- Graduate School of Integrative Medicine, CHA University, Seongnam, Republic of Korea
| |
Collapse
|
3
|
Xu T, Chakraborty S, Wei D, Tran M, Rhea R, Wei B, Nguyen P, Gagea M, Xie X, Wu L, Cohen L, Liao Z, Yang P. Evaluation of the protective effect of Compound Kushen Injection against radiation‑induced lung injury in mice. Mol Med Rep 2025; 31:88. [PMID: 39917996 PMCID: PMC11831882 DOI: 10.3892/mmr.2025.13453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 11/07/2024] [Indexed: 02/19/2025] Open
Abstract
Radiation‑induced lung injury (RILI) is a prevalent complication following thoracic radiation, and currently there is a lack of effective intervention options. The present study investigated the potential of Compound Kushen Injection (CKI), a botanical drug, to mitigate inflammatory responses in mice with RILI, along with its underlying mechanisms of action. C3H mice underwent total lung irradiation (TLI) and intraperitoneal injection of CKI (2, 4 or 8 ml/kg) once daily for 8 weeks. Pre‑radiation treatment with 4 or 8 ml/kg CKI starting 2 weeks before TLI or concurrent treatment of 8 ml/kg CKI with TLI led to a significantly longer overall survival compared with the TLI vehicle‑treated group. Micro‑computed tomography evaluations showed that concurrent treatment with 8 ml/kg CKI was associated with a significantly lower incidence of RILI. Histological evaluations revealed that concurrent CKI (4 and 8 ml/kg) treatment significantly reduced grades of lung inflammation. Following radiation at 72 h, TLI plus vehicle‑treated mice had significantly elevated serum IL6, IL17A, and transforming growth factor β (TGF‑β) levels compared with non‑irradiated normal mice. Conversely, mice that received TLI plus CKI displayed lower cytokine levels than those in the TLI plus vehicle‑treated mice. Immunohistochemistry staining showed a reduction of TGF‑β positive cells in the lung tissues of TLI mice after CKI treatment. The concurrent TLI CKI‑treated mice had a significantly reduced cyclooxygenase 2 (COX‑2) activity and COX‑2 metabolites compared with TLI vehicle‑treated mice. These data highlight that CKI substantially reduced radiation‑induced lung inflammation, mitigated RILI incidence, and prolonged overall survival.
Collapse
Affiliation(s)
- Ting Xu
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sharmistha Chakraborty
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Daoyan Wei
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Megan Tran
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robyn Rhea
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bo Wei
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Phuong Nguyen
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mihai Gagea
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaoxue Xie
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lirong Wu
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lorenzo Cohen
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhongxing Liao
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Peiying Yang
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
4
|
Kim HS, Ahn JW, Park JY, Joo SS. Identification, characterization, and anti-inflammatory activity of a lipocalin-like protein cloned from Oenanthe javanica. Food Sci Biotechnol 2025; 34:721-731. [PMID: 39958172 PMCID: PMC11822164 DOI: 10.1007/s10068-024-01700-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/08/2024] [Accepted: 08/23/2024] [Indexed: 02/18/2025] Open
Abstract
This study investigated the anti-inflammatory effects of OJlipo1, a lipocalin-like protein derived from Oenanthe javanica. Through cloning and expressing OJlipo1 in E. coli, and subsequent rigorous characterization including amino acid analysis and mass spectrometry, its potential against inflammation was evaluated. Studies on lipopolysaccharide-stimulated RAW 264.7 cells highlighted its capability to suppress nitric oxide synthase and cyclooxygenase-2 expression, as well as its interference with nuclear factor kappa B and mitogen-activated protein kinase pathways, which are essential for toll-like receptor 4 (TLR4) signaling. Utilizing TAK242, a TLR4 pathway inhibitor, reinforced OJlipo1's specific targeting mechanism. These findings underscore OJlipo1's significant anti-inflammatory potential, aligning with the traditional uses of O. javanica, and suggest new therapeutic avenues, especially for diseases associated with TLR4 dysregulation. This validates the traditional application of O. javanica in inflammation and positions OJlipo1 as a promising therapeutic candidate, enriching our understanding of its molecular underpinnings and therapeutic prospects.
Collapse
Affiliation(s)
- Hyun Soo Kim
- Department of Marine Life Science, College of Life Science, Gangneung-Wonju National University, Gangneung, 25457 Gangwon Republic of Korea
| | - Jeong Won Ahn
- Department of Marine Life Science, College of Life Science, Gangneung-Wonju National University, Gangneung, 25457 Gangwon Republic of Korea
| | - Jung Youl Park
- Glocal University Project Group, Andong National University, 1375 Gyeongdong-ro, Andong, Gyeongsangbuk-do 36729 Republic of Korea
| | - Seong Soo Joo
- Department of Marine Life Science, College of Life Science, Gangneung-Wonju National University, Gangneung, 25457 Gangwon Republic of Korea
- Huscion MAJIC R&D Center, 331 Pangyo-ro, Seongnam, 13488 Gyeonggi Republic of Korea
| |
Collapse
|
5
|
Liu JH, Wang Y, Dai SJ, Zhang DW, Yue XD. C 17-Labdane diterpenoid alkaloids bearing a rare skeleton with anti-inflammatory and anti-oxidant activities from Forsythia suspensa. Fitoterapia 2025; 180:106345. [PMID: 39667676 DOI: 10.1016/j.fitote.2024.106345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
Two undescribed C17-Labdane diterpenoid alkaloids, named forsylinfenines A and B (1-2), attributable to a rare 4,4,10,13-tetramethyl-1(2),3(4),5(10),6(7)-octahydrobenzo[f]quinolin skeleton, along with three known β-carboline-type alkaloids (3-5), were isolated. The chemical structures including absolute configurations of two undescribed compounds were established by means of integrated spectroscopic techniques and electronic circular dichroism (ECD) calculations. In addition, a plausible biosynthetic pathway for the formation of compounds 1 and 2 was proposed. In vitro, five alkaloids (1-5), especially two undescribed alkaloids with rare skeleton (1-2), exhibited significant anti-inflammatory activities due to inhibiting the release of TNF-α, IL-6, and IL-1β, as well as effective anti-oxidant activities owing to preventing the production of ROS in the LPS-induced RAW264.7 cells.
Collapse
Affiliation(s)
- Jia-Huan Liu
- School of Pharmaceutical Science, Yantai University, Yantai 264005, China
| | - Yue Wang
- School of Pharmaceutical Science, Yantai University, Yantai 264005, China
| | - Sheng-Jun Dai
- School of Pharmaceutical Science, Yantai University, Yantai 264005, China.
| | - De-Wu Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Xi-Dian Yue
- College of Life Sciences, Yantai University, Yantai 264005, China.
| |
Collapse
|
6
|
Jang CH, Chung YC, Lee A, Hwang YH. Hydroethanolic Extract of Polygonum aviculare L. Mediates the Anti-Inflammatory Activity in RAW 264.7 Murine Macrophages Through Induction of Heme Oxygenase-1 and Inhibition of Inducible Nitric Oxide Synthase. PLANTS (BASEL, SWITZERLAND) 2024; 13:3314. [PMID: 39683107 DOI: 10.3390/plants13233314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/07/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Polygonum aviculare L. (PAL), commonly known as knotgrass, has been utilized as a traditional folk medicine across Asian, African, Latin American and Middle Eastern countries to treat various inflammatory diseases, including arthritis and airway inflammation. Numerous medicinal herbs exert anti-inflammatory and antioxidative effects that are mediated through the activation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and the inhibition of nuclear factor kappa B (NF-κB). However, the underlying molecular mechanisms linking the antioxidative and anti-inflammatory effects remain poorly understood. Heme oxygenase-1 (HO-1) is an antioxidant enzyme that catalyzes heme degradation, ultimately leading to the production of carbon monoxide (CO). Elevated levels of CO have been correlated with the decreased level of inducible nitric oxide synthase (iNOS). In this study, we examined whether HO-1 plays a key role in the relationship between the antioxidative and anti-inflammatory properties of PAL. The anti-inflammatory and antioxidative activities of PAL in an in vitro system were evaluated by determining NF-κB activity, antioxidant response element (ARE) activity, pro-inflammatory cytokine and protein levels, as well as antioxidant protein levels. To examine whether HO-1 inhibition interfered with the anti-inflammatory effect of PAL, we measured nitrite, reactive oxygen species, iNOS, and HO-1 levels in RAW 264.7 murine macrophages pre-treated with Tin protoporphyrin (SnPP, an HO-1 inhibitor). Our results demonstrated that PAL increased ARE activity and the Nrf2-regulated HO-1 level, exerting antioxidative activities in RAW 264.7 macrophages. Additionally, PAL reduced cyclooxygenase-2 (COX-2) and iNOS protein levels by inactivating NF-κB in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages. Further investigation using the HO-1 inhibitor revealed that HO-1 inhibition promoted iNOS expression, subsequently elevating nitric oxide (NO) generation in LPS-activated RAW 264.7 macrophages treated with PAL compared to those in the macrophages without the HO-1 inhibitor. Overall, our findings suggest that HO-1 induction by PAL may exert anti-inflammatory effects through the reduction of the iNOS protein level. Hence, this study paves the way for further investigation to understand molecular mechanisms underlying the antioxidative and anti-inflammatory activities of medicinal herbs.
Collapse
Affiliation(s)
- Chan Ho Jang
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine (KIOM), Daejeon 34054, Republic of Korea
| | - You Chul Chung
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine (KIOM), Daejeon 34054, Republic of Korea
| | - Ami Lee
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine (KIOM), Daejeon 34054, Republic of Korea
- Korean Convergence Medical Science Major, KIOM School, University of Science & Technology (UST), Daejeon 34054, Republic of Korea
| | - Youn-Hwan Hwang
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine (KIOM), Daejeon 34054, Republic of Korea
- Korean Convergence Medical Science Major, KIOM School, University of Science & Technology (UST), Daejeon 34054, Republic of Korea
| |
Collapse
|
7
|
Wahyuni I, Aulifa DL, Rosdianto AM, Levita J. Nephroprotective Activity of Angelica keiskei (Miq). Koidz. on Cisplatin-Induced Rats: Reducing Serum Creatinine, Urea Nitrogen, KIM-1, and Suppressing NF-kappaB p65 and COX-2. Drug Des Devel Ther 2024; 18:4707-4721. [PMID: 39469724 PMCID: PMC11514653 DOI: 10.2147/dddt.s481479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
Background The sap of Angelica keiskei (Miq). Koidz. has been reported for its abundance of chalcone contents. Chalcones have been known for their effective nephroprotective activity toward cisplatin-induced renal cells and mice. Purpose To investigate the effect of A. keiskei sap extract (ASEE) on kidney function parameters (serum creatinine, urea nitrogen, and kidney injury molecule-1) and the expression of NF-kappaB p65 and COX-2 in cisplatin-induced Wistar rats. Methods In vivo nephroprotective activity of ASEE at 1000 and 1500 mg/kg BW/day doses for 10 days on cisplatin (5 mg/kg BW) induced nephrotoxicity was evaluated on Wistar rats. Quercetin 20 mg/kg BW/day was used as the control drug. Cisplatin inducement was given on day 7. The BW was measured every day. On day 11, the rats were euthanized, and their blood was taken intracardially for creatinine and urea nitrogen analysis. Histopathological analysis was carried out on the right kidney, and KIM-1 levels in the left kidney were measured. The Western blot technique evaluated the NF-kappaB p65 and COX-2 expression in the kidney. All data obtained were compared to the cisplatin group (negative control). The total flavonoids and chalcones in ASEE were also determined. Results Pretreatment with ASEE reduces the BW of Wistar rats, and significantly reduces creatinine and KIM-1 levels, but does not significantly reduce the levels of urea nitrogen, the expression of NF-kappaB p65, and COX-2 in the kidney of cisplatin-induced Wistar rats. The total flavonoid content in ASEE is 8.755 g QE/100 g extract and the total chalcone content is 5.532 g IBCE/100 g extract. Conclusion The sap of Angelica keiskei (Miq). Koidz. reveal the potential to protect the kidneys against cisplatin-induced toxicity. The nephroprotective activity may be attributed to the antioxidant and anti-inflammatory properties of the flavonoids and the chalcones contained in the sap of Angelica keiskei (Miq). Koidz.
Collapse
Affiliation(s)
- Ika Wahyuni
- Master Program in Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, West Java, Indonesia
- Faculty of Health, Universitas Nahdlatul Ulama, Mataram, West Nusa Tenggara, Indonesia
| | - Diah Lia Aulifa
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | | | - Jutti Levita
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
8
|
Preedalikit W, Chittasupho C, Leelapornpisid P, Duangnin N, Kiattisin K. Potential of Coffee Cherry Pulp Extract against Polycyclic Aromatic Hydrocarbons in Air Pollution Induced Inflammation and Oxidative Stress for Topical Applications. Int J Mol Sci 2024; 25:9416. [PMID: 39273362 PMCID: PMC11395326 DOI: 10.3390/ijms25179416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Airborne particulate matter (PM) contains polycyclic aromatic hydrocarbons (PAHs) as primary toxic components, causing oxidative damage and being associated with various inflammatory skin pathologies such as premature aging, atopic dermatitis, and psoriasis. Coffee cherry pulp (CCS) extract, rich in chlorogenic acid, caffeine, and theophylline, has demonstrated strong antioxidant properties. However, its specific anti-inflammatory effects and ability to protect macrophages against PAH-induced inflammation remain unexplored. Thus, this study aimed to evaluate the anti-inflammatory properties of CCS extract on RAW 264.7 macrophage cells exposed to atmospheric PAHs, compared to chlorogenic acid (CGA), caffeine (CAF), and theophylline (THP) standards. The CCS extract was assessed for its impact on the production of nitric oxide (NO) and expression of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). Results showed that CCS extract exhibited significant antioxidant activities and effectively inhibited protease and lipoxygenase (LOX) activities. The PAH induced the increase in intracellular reactive oxygen species, NO, TNF-α, IL-6, iNOS, and COX-2, which were markedly suppressed by CCS extract in a dose-dependent manner, comparable to the effects of chlorogenic acid, caffeine, and theophylline. In conclusion, CCS extract inhibits PAH-induced inflammation by reducing pro-inflammatory cytokines and reactive oxygen species (ROS) production in RAW 264.7 cells. This effect is likely due to the synergistic effects of its bioactive compounds. Chlorogenic acid showed strong antioxidant and anti-inflammatory activities, while caffeine and theophylline enhanced anti-inflammatory activity. CCS extract did not irritate the hen's egg chorioallantoic membrane. Therefore, CCS extract shows its potential as a promising cosmeceutical ingredient for safely alleviating inflammatory skin diseases caused by air pollution.
Collapse
Affiliation(s)
- Weeraya Preedalikit
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Cosmetic Sciences, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | | | - Kanokwan Kiattisin
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
9
|
Li JJ, Chen ZH, Liu CJ, Kang YS, Tu XP, Liang H, Shi W, Zhang FX. The phytochemistry, pharmacology, pharmacokinetics, quality control, and toxicity of Forsythiae Fructus: An updated systematic review. PHYTOCHEMISTRY 2024; 222:114096. [PMID: 38641141 DOI: 10.1016/j.phytochem.2024.114096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/02/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
Forsythiae Fructus (FF), the dried fruit of F. suspensa, is commonly used to treat fever, inflammation, etc in China or other Asian countries. FF is usually used as the core herb in traditional Chinese medicine preparations for the treatment of influenza, such as Shuang-huang-lian oral liquid and Yin-qiao powder, etc. Since the wide application and core role of FF, its research progress was summarized in terms of traditional uses, phytochemistry, pharmacology, pharmacokinetics, quality control, and toxicity. Meanwhile, the anti-influenza substances and mechanism of FF were emphasized. Till now, a total of 290 chemical components are identified in F. suspensa, and among them, 248 components were isolated and identified from FF, including 42 phenylethanoid glycosides, 48 lignans, 59 terpenoids, 14 flavonoids, 3 steroids, 24 cyclohexyl ethanol derivatives, 14 alkaloids, 26 organic acids, and 18 other types. FF and their pure compounds have the pharmacological activities of anti-virus, anti-inflammation, anti-oxidant, anti-bacteria, anti-tumor, neuroprotection, hepatoprotection, etc. Inhibition of TLR7, RIG-I, MAVS, NF-κB, MyD88 signaling pathway were the reported anti-influenza mechanisms of FF and phenylethanoid glycosides and lignans are the main active groups. However, the bioavailability of phenylethanoid glycosides and lignans of FF in vivo was low, which needed to be improved. Simultaneously, the un-elucidated compounds and anti-influenza substances of FF strongly needed to be explored. The current quality control of FF was only about forsythoside A and phillyrin, more active components should be taken into consideration. Moreover, there are no reports of toxicity of FF yet, but the toxicity of FF should be not neglected in clinical applications.
Collapse
Affiliation(s)
- Jin-Jin Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China
| | - Zi-Hao Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China
| | - Cheng-Jun Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China
| | - Yu-Shuo Kang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China
| | - Xin-Pu Tu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China.
| | - Wei Shi
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China.
| | - Feng-Xiang Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China.
| |
Collapse
|
10
|
Márquez-Flores YK, Martínez-Galero E, Correa-Basurto J, Sixto-López Y, Villegas I, Rosillo MÁ, Cárdeno A, Alarcón-de-la-Lastra C. Daidzein and Equol: Ex Vivo and In Silico Approaches Targeting COX-2, iNOS, and the Canonical Inflammasome Signaling Pathway. Pharmaceuticals (Basel) 2024; 17:647. [PMID: 38794217 PMCID: PMC11124169 DOI: 10.3390/ph17050647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/22/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND The inflammasome is a cytosolic multiprotein complex associated with multiple autoimmune diseases. Phytochemical compounds in soy (Glycine max) foods, such as isoflavones, have been reported for their anti-inflammatory properties. AIM the anti-inflammatory activity of DZ (daidzein) and EQ (equol) were investigated in an ex vivo model of LPS-stimulated murine peritoneal macrophages and by molecular docking correlation. METHODS Cells were pre-treated with DZ (25, 50, and 100 µM) or EQ (5, 10, and 25 µM), followed by LPS stimulation. The levels of PGE2, NO, TNF-α, IL-6, and IL-1β were analyzed by ELISA, whereas the expressions of COX-2, iNOS, NLRP3, ASC, caspase 1, and IL-18 were measured by Western blotting. Also, the potential for transcriptional modulation by targeting NF-κB, COX-2, iNOS, NLRP3, ASC, and caspase 1 was investigated by molecular docking. RESULTS The anti-inflammatory responses observed may be due to the modulation of NF-κB due to the binding of DZ or EQ, which is translated into decreased TNF-α, COX-2, iNOS, NLRP3, and ASC levels. CONCLUSION This study establishes that DZ and EQ inhibit LPS-induced inflammatory responses in peritoneal murine macrophages via down-regulation of NO and PGE2 generation, as well as the inhibition of the canonical inflammasome pathway, regulating NLRP3, and consequently decreasing IL-1β and IL-18 activation.
Collapse
Affiliation(s)
- Yazmín K. Márquez-Flores
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Campus Zacatenco, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n Col. Zacatenco, Mexico City C.P. 07738, Mexico;
| | - Elizdath Martínez-Galero
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Campus Zacatenco, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n Col. Zacatenco, Mexico City C.P. 07738, Mexico;
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos y Productos Biotecnológicos, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Santo Tomas, Mexico City C.P. 11340, Mexico; (J.C.-B.); (Y.S.-L.)
| | - Yudibeth Sixto-López
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos y Productos Biotecnológicos, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Santo Tomas, Mexico City C.P. 11340, Mexico; (J.C.-B.); (Y.S.-L.)
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Campus de Cartuja, Universidad de Granada, 18071 Granada, Spain
| | - Isabel Villegas
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Professor García González Street 2, 41012 Seville, Spain; (I.V.); (A.C.); (C.A.-d.-l.-L.)
| | - María Á. Rosillo
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Professor García González Street 2, 41012 Seville, Spain; (I.V.); (A.C.); (C.A.-d.-l.-L.)
| | - Ana Cárdeno
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Professor García González Street 2, 41012 Seville, Spain; (I.V.); (A.C.); (C.A.-d.-l.-L.)
| | - Catalina Alarcón-de-la-Lastra
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Professor García González Street 2, 41012 Seville, Spain; (I.V.); (A.C.); (C.A.-d.-l.-L.)
| |
Collapse
|
11
|
Cortez N, Villegas C, Burgos V, Ortiz L, Cabrera-Pardo JR, Paz C. Therapeutic Potential of Chlorogenic Acid in Chemoresistance and Chemoprotection in Cancer Treatment. Int J Mol Sci 2024; 25:5189. [PMID: 38791228 PMCID: PMC11121551 DOI: 10.3390/ijms25105189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Chemotherapeutic drugs are indispensable in cancer treatment, but their effectiveness is often lessened because of non-selective toxicity to healthy tissues, which triggers inflammatory pathways that are harmful to vital organs. In addition, tumors' resistance to drugs causes failures in treatment. Chlorogenic acid (5-caffeoylquinic acid, CGA), found in plants and vegetables, is promising in anticancer mechanisms. In vitro and animal studies have indicated that CGA can overcome resistance to conventional chemotherapeutics and alleviate chemotherapy-induced toxicity by scavenging free radicals effectively. This review is a summary of current information about CGA, including its natural sources, biosynthesis, metabolism, toxicology, role in combatting chemoresistance, and protective effects against chemotherapy-induced toxicity. It also emphasizes the potential of CGA as a pharmacological adjuvant in cancer treatment with drugs such as 5-fluorouracil, cisplatin, oxaliplatin, doxorubicin, regorafenib, and radiotherapy. By analyzing more than 140 papers from PubMed, Google Scholar, and SciFinder, we hope to find the therapeutic potential of CGA in improving cancer therapy.
Collapse
Affiliation(s)
- Nicole Cortez
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (N.C.); (C.V.)
| | - Cecilia Villegas
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (N.C.); (C.V.)
| | - Viviana Burgos
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Rudecindo Ortega, Temuco 4780000, Chile;
| | - Leandro Ortiz
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile;
| | - Jaime R. Cabrera-Pardo
- Laboratorio de Química Aplicada y Sustentable, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000000, Chile;
| | - Cristian Paz
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (N.C.); (C.V.)
| |
Collapse
|
12
|
Das D, Banerjee A, Manna K, Sarkar D, Shil A, Sikdar Ne E Bhakta M, Mukherjee S, Maji BK. Quercetin counteracts monosodium glutamate to mitigate immunosuppression in the thymus and spleen via redox-guided cellular signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155226. [PMID: 38387276 DOI: 10.1016/j.phymed.2023.155226] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/13/2023] [Accepted: 11/18/2023] [Indexed: 02/24/2024]
Abstract
BACKGROUND Chronic inflammation brought on by oxidative stress can result in several immunopathologies. Natural compounds with antioxidant characteristics, like quercetin, have shown effectiveness in reducing oxidative damage and regulating the immune response. PURPOSE The commonly used food additive monosodium glutamate (M) causes immunosuppression by disrupting redox equilibrium and inducing oxidative stress. The goal of this work is to examine the therapeutic potential of quercetin against immunotoxicity brought on by M, revealing the molecular route implicated in such immunopathology by targeting the thymus and spleen, to support the development of future anti-inflammatory and antioxidant therapies. STUDY DESIGN AND METHODS M-fed rats were employed as an immunotoxicity model and were supplemented with quercetin for four weeks. Hematological and biochemical parameters were measured; H&E staining, immunohistochemistry, flow cytometry, real-time quantitative PCR, and western blotting were performed. RESULTS Based on the findings, TLR4 was activated by M to cause oxidative stress-mediated inflammation, which was alleviated by the supplementation of quercetin by modulating redox homeostasis to neutralize free radicals and suppress the inflammatory response. To prevent M-induced inflammation, quercetin demonstrated anti-inflammatory functions by blocking NF-kB activation, lowering the production of pro-inflammatory cytokines, and increasing the release of anti-inflammatory cytokines. By normalizing lipid profiles and lowering the potential risk of immunological deficiency caused by M, quercetin also improves lipid metabolism. Additionally, it has shown potential for modifying insulin levels, suggesting a possible function in controlling M-induced alteration in glucose metabolism. The addition of quercetin to M enhanced the immune response by improving immunoglobulin levels and CD4/CD8 expression in the thymus and spleen. Additionally, quercetin inhibited apoptosis by controlling mitochondrial caspase-mediated cellular signaling, suggesting that it may be able to halt cell death in M-fed rats. CONCLUSION The results of this study first indicate that quercetin, via modulating redox-guided cellular signaling, has a promising role in reducing immune disturbances. This study illuminates the potential of quercetin as a safe, natural remedy for immunopathology caused by M, including thymic hypoplasia and/or splenomegaly, and paves the way for future anti-inflammatory and antioxidant supplements.
Collapse
Affiliation(s)
- Debasmita Das
- Department of Physiology (UG & PG), Serampore College, 9 William Carey Road, Serampore, Hooghly-712201, West Bengal, India
| | - Arnab Banerjee
- Department of Physiology (UG & PG), Serampore College, 9 William Carey Road, Serampore, Hooghly-712201, West Bengal, India
| | - Krishnendu Manna
- Department of Food & Nutrition, University of Kalyani, Kalyani, Nadia, West Bengal, India
| | - Deotima Sarkar
- Department of Bacteriology, National Institute of Cholera and Enteric Diseases, Indian Council of Medical Research (ICMR-NICED), Kolkata 700010, India
| | - Aparna Shil
- Microbiology, Nutrition and Dietetics Laboratory, Physiology Unit, Department of Life Sciences, Presidency University, Kolkata-700073, India
| | - Mausumi Sikdar Ne E Bhakta
- Microbiology, Nutrition and Dietetics Laboratory, Physiology Unit, Department of Life Sciences, Presidency University, Kolkata-700073, India
| | - Sandip Mukherjee
- Department of Physiology (UG & PG), Serampore College, 9 William Carey Road, Serampore, Hooghly-712201, West Bengal, India
| | - Bithin Kumar Maji
- Department of Physiology (UG & PG), Serampore College, 9 William Carey Road, Serampore, Hooghly-712201, West Bengal, India.
| |
Collapse
|
13
|
Kim D, Heo Y, Kim M, Suminda GGD, Manzoor U, Min Y, Kim M, Yang J, Park Y, Zhao Y, Ghosh M, Son YO. Inhibitory effects of Acanthopanax sessiliflorus Harms extract on the etiology of rheumatoid arthritis in a collagen-induced arthritis mouse model. Arthritis Res Ther 2024; 26:11. [PMID: 38167214 PMCID: PMC10763440 DOI: 10.1186/s13075-023-03241-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The biological function of Acanthopanax sessiliflorus Harm (ASH) has been investigated on various diseases; however, the effects of ASH on arthritis have not been investigated so far. This study investigates the effects of ASH on rheumatoid arthritis (RA). METHODS Supercritical carbon dioxide (CO2) was used for ASH extract preparation, and its primary components, pimaric and kaurenoic acids, were identified using gas chromatography-mass spectrometer (GC-MS). Collagenase-induced arthritis (CIA) was used as the RA model, and primary cultures of articular chondrocytes were used to examine the inhibitory effects of ASH extract on arthritis in three synovial joints: ankle, sole, and knee. RESULTS Pimaric and kaurenoic acids attenuated pro-inflammatory cytokine-mediated increase in the catabolic factors and retrieved pro-inflammatory cytokine-mediated decrease in related anabolic factors in vitro; however, they did not affect pro-inflammatory cytokine (IL-1β, TNF-α, and IL-6)-mediated cytotoxicity. ASH effectively inhibited cartilage degradation in the knee, ankle, and toe in the CIA model and decreased pannus development in the knee. Immunohistochemistry demonstrated that ASH mostly inhibited the IL-6-mediated matrix metalloproteinase. Gene Ontology and pathway studies bridge major gaps in the literature and provide insights into the pathophysiology and in-depth mechanisms of RA-like joint degeneration. CONCLUSIONS To the best of our knowledge, this is the first study to conduct extensive research on the efficacy of ASH extract in inhibiting the pathogenesis of RA. However, additional animal models and clinical studies are required to validate this hypothesis.
Collapse
Affiliation(s)
- Dahye Kim
- Division of Animal Genetics and Bioinformatics, National Institute of Animal Science, RDA, Wanju, Republic of Korea
| | - Yunji Heo
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju City, Jeju Special Self-Governing Province, 63243, Republic of Korea
| | - Mangeun Kim
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju City, Jeju Special Self-Governing Province, 63243, Republic of Korea
| | - Godagama Gamaarachchige Dinesh Suminda
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju City, Jeju Special Self-Governing Province, 63243, Republic of Korea
| | - Umar Manzoor
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju City, Jeju Special Self-Governing Province, 63243, Republic of Korea
- Laboratory of Immune and Inflammatory Disease, College of Pharmacy, Jeju Research Institute of Pharmaceutical Sciences, Jeju National University, Jeju, 63243, Republic of Korea
| | - Yunhui Min
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju City, Jeju Special Self-Governing Province, 63243, Republic of Korea
| | - Minhye Kim
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju City, Jeju Special Self-Governing Province, 63243, Republic of Korea
| | - Jiwon Yang
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju City, Jeju Special Self-Governing Province, 63243, Republic of Korea
| | - Youngjun Park
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju City, Jeju Special Self-Governing Province, 63243, Republic of Korea
- Laboratory of Immune and Inflammatory Disease, College of Pharmacy, Jeju Research Institute of Pharmaceutical Sciences, Jeju National University, Jeju, 63243, Republic of Korea
| | - Yaping Zhao
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Mrinmoy Ghosh
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju City, Jeju Special Self-Governing Province, 63243, Republic of Korea.
- Department of Biotechnology, School of Bio, Chemical and Processing Engineering (SBCE), Kalasalingam Academy of Research and Education, Krishnankoil, Srivilliputhur, 626126, India.
| | - Young-Ok Son
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju City, Jeju Special Self-Governing Province, 63243, Republic of Korea.
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju City, Jeju Special Self-Governing Province, 63243, Republic of Korea.
- Practical Translational Research Center, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
14
|
Choi YG, Choi WS, Song JY, Lee Y, Lee SH, Lee JS, Lee S, Choi SR, Lee CH, Lee JY. Antiinflammatory effect of the ethanolic extract of Korean native herb Potentilla rugulosa Nakai in Bisphenol-a-stimulated A549 cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:758-773. [PMID: 37527000 DOI: 10.1080/15287394.2023.2240835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Potentilla rugulosa Nakai (P. rugulosa) is a perennial herb in the Rosaceae family and found in the Korean mountains. Previously, our findings demonstrated that P. rugulosa contains numerous polyphenols and flavonoids exhibiting important antioxidant and anti-obesity bioactivities. Bisphenol A (BPA) is a xenoestrogen that was shown to produce pulmonary inflammation in humans. However, the mechanisms underlying BPA-induced inflammation remain to be determined. The aim of this study was to examine whether ethanolic extract of P. rugulosa exerted an inhibitory effect on BPA-induced inflammation utilizing an adenocarcinoma human alveolar basal epithelial cell line A549. The P. rugulosa extract inhibited BPA-mediated cytotoxicity by reducing levels of reactive oxygen species (ROS). Further, P. rugulosa extract suppressed the upregulation of various pro-inflammatory mediators induced by activation of the nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. In addition, inhibition of the NF-κB and MAPK signaling pathways by P. rugulosa extract was found to occur via decrease in the transcriptional activity of NF-κB. Further, blockade of phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and stress-activated protein kinase/Jun N-terminal kinase (SAPK/JNK) was noted. Thus, our findings suggest that the ethanolic extract of P. rugulosa may act as a natural anti-inflammatory therapeutic agent.
Collapse
Affiliation(s)
- Yong Geon Choi
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Won Seok Choi
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Jin Yong Song
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Yubin Lee
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Su Hyun Lee
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Jong Seok Lee
- Biological Material Analysis Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Sarah Lee
- Biological Material Analysis Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Se Rin Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Ji-Yun Lee
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
15
|
Yu X. Promising Therapeutic Treatments for Cardiac Fibrosis: Herbal Plants and Their Extracts. Cardiol Ther 2023; 12:415-443. [PMID: 37247171 PMCID: PMC10423196 DOI: 10.1007/s40119-023-00319-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/27/2023] [Indexed: 05/30/2023] Open
Abstract
Cardiac fibrosis is closely associated with multiple heart diseases, which are a prominent health issue in the global world. Neurohormones and cytokines play indispensable roles in cardiac fibrosis. Many signaling pathways participate in cardiac fibrosis as well. Cardiac fibrosis is due to impaired degradation of collagen and impaired fibroblast activation, and collagen accumulation results in increasing heart stiffness and inharmonious activity, leading to structure alterations and finally cardiac function decline. Herbal plants have been applied in traditional medicines for thousands of years. Because of their naturality, they have attracted much attention for use in resisting cardiac fibrosis in recent years. This review sheds light on several extracts from herbal plants, which are promising therapeutics for reversing cardiac fibrosis.
Collapse
Affiliation(s)
- Xuejing Yu
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75235, USA.
| |
Collapse
|
16
|
Alshammari A, Han Y, Jones TW, Pillai B, Zhang D, Ergul A, Somanath PR, Fagan SC. Stimulation of Angiotensin II Type 2 Receptor Modulates Pro-Inflammatory Response in Microglia and Macrophages: Therapeutic Implications for the Treatment of Stroke. Life (Basel) 2023; 13:1274. [PMID: 37374057 DOI: 10.3390/life13061274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/10/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Sustained microglial activation contributes to the development of post-stroke cognitive impairment (PSCI). Compound 21 (C21), an angiotensin II type 2 receptor agonist, has shown some neurovascular protection after stroke. This study aimed to investigate the direct anti-inflammatory effects of C21 on macrophages, as well as brain innate immune cells. METHODS Murine microglial cell line (C8-B4) and RAW 264.7 macrophages were exposed to lipopolysaccharide (LPS) and co-treated with C21. Pro-inflammatory mediators were assessed via RT-qPCR and ELISA. Cellular reactive oxygen species (ROS) were evaluated via CellROXGreen staining, and nitrate production was assessed using Griess assay. RESULTS C21 suppressed LPS-induced inflammation and ROS generation in both cells. In microglia, C21 blunted LPS-induced mRNA expression of IL-1β, IL-12b, COX-1, iNOS, and IL-6. A similar pattern was observed in macrophages, where C21 suppressed LPS-induced IL-1β, TNF-α, and CXCL1 expression. These anti-inflammatory effects in microglia and macrophages were associated with increased neuroprotective gene expression, including GDNF and BDNF, in a dose-dependent manner. CONCLUSIONS Our findings suggest a protective effect of C21 against the inflammatory response, in both macrophages and microglia, via suppression of the release of pro-inflammatory cytokines/chemokines and the generation of ROS while stimulating the production of neurotrophic factors.
Collapse
Affiliation(s)
- Abdulkarim Alshammari
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30602, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Department of Clinical Pharmacy, Faculty of Pharmacy, Northern Border University, Rafha 76313, Saudi Arabia
| | - Yohan Han
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30602, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Timothy W Jones
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30602, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Bindu Pillai
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30602, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Duo Zhang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30602, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Adviye Ergul
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson VA Health Care System, Charleston, SC 29401, USA
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30602, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Susan C Fagan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30602, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| |
Collapse
|
17
|
Xiong D, Gao F, Shao J, Pan Y, Wang S, Wei D, Ye S, Chen Y, Chen R, Yue B, Li J, Chen J. Arctiin-encapsulated DSPE-PEG bubble-like nanoparticles inhibit alveolar epithelial type 2 cell senescence to alleviate pulmonary fibrosis via the p38/p53/p21 pathway. Front Pharmacol 2023; 14:1141800. [PMID: 36998607 PMCID: PMC10043219 DOI: 10.3389/fphar.2023.1141800] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/28/2023] [Indexed: 03/15/2023] Open
Abstract
Background: Idiopathic pulmonary fibrosis is a severe and deadly form of diffuse parenchymal lung disease and treatment options are few. Alveolar epithelial type 2 (AEC2) cell senescence is implicated in the pathogenies of IPF. A major bioactive compound from the traditional Chinese medicine Fructus arctii, arctiin (ARC) has robust anti-inflammatory, anti-senescence, and anti-fibrosis functions. However, the potential therapeutic effects of ARC on IPF and the underlying mechanisms involved are still unknown.Methods: First of all, ARC was identified as an active ingredient by network pharmacology analysis and enrichment analysis of F. arctii in treating IPF. We developed ARC-encapsulated DSPE-PEG bubble-like nanoparticles (ARC@DPBNPs) to increase ARC hydrophilicity and achieve high pulmonary delivery efficiency. C57BL/6 mice were used to establish a bleomycin (BLM)-induced pulmonary fibrosis model for assessing the treatment effect of ARC@DPBNPs on lung fibrosis and the anti-senescence properties of AEC2. Meanwhile, p38/p53 signaling in AEC2 was detected in IPF lungs, BLM-induced mice, and an A549 senescence model. The effects of ARC@DPBNPs on p38/p53/p21 were assessed in vivo and in vitro.Results: Pulmonary route of administration of ARC@DPBNPs protected mice against BLM-induced pulmonary fibrosis without causing significant damage to the heart, liver, spleen, or kidney. ARC@DPBNPs blocked BLM-induced AEC2 senescence in vivo and in vitro. The p38/p53/p21 signaling axis was significantly activated in the lung tissues of patients with IPF, senescent AEC2, and BLM-induced lung fibrosis. ARC@DPBNPs attenuated AEC2 senescence and pulmonary fibrosis by inhibiting the p38/p53/p21 pathway.Conclusion: Our data suggest that the p38/p53/p21 signaling axis plays a pivotal role in AEC2 senescence in pulmonary fibrosis. The p38/p53/p21 signaling axis inhibition by ARC@DPBNPs provides an innovative approach to treating pulmonary fibrosis in clinical settings.
Collapse
Affiliation(s)
- Dian Xiong
- Lung Transplantation Center, Department of Thoracic Surgery, Nanjing Medical University Affiliated Wuxi People’s Hospital, Wuxi, China
| | - Fei Gao
- Department of Emergency, Nanjing Medical University Affiliated Wuxi People’s Hospital, Wuxi, China
- Department of Emergency, Nanjing General Hospital of Nanjing Military Region, Nanjing, China
| | - Jingbo Shao
- Lung Transplantation Center, Department of Thoracic Surgery, Nanjing Medical University Affiliated Wuxi People’s Hospital, Wuxi, China
| | - Yueyun Pan
- Lung Transplantation Center, Department of Thoracic Surgery, Nanjing Medical University Affiliated Wuxi People’s Hospital, Wuxi, China
| | - Song Wang
- Department of Intensive Care Medicine, Nanjing Medical University Affiliated Wuxi People’s Hospital, Wuxi, China
| | - Dong Wei
- Lung Transplantation Center, Department of Thoracic Surgery, Nanjing Medical University Affiliated Wuxi People’s Hospital, Wuxi, China
| | - Shugao Ye
- Lung Transplantation Center, Department of Thoracic Surgery, Nanjing Medical University Affiliated Wuxi People’s Hospital, Wuxi, China
| | - Yuan Chen
- Lung Transplantation Center, Department of Thoracic Surgery, Nanjing Medical University Affiliated Wuxi People’s Hospital, Wuxi, China
| | - Rui Chen
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Bingqing Yue
- Department of Lung Transplantation, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Juan Li
- Department of Chemistry, Fudan University, Shanghai, China
- *Correspondence: Jingyu Chen, ; Juan Li,
| | - Jingyu Chen
- Lung Transplantation Center, Department of Thoracic Surgery, Nanjing Medical University Affiliated Wuxi People’s Hospital, Wuxi, China
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- *Correspondence: Jingyu Chen, ; Juan Li,
| |
Collapse
|
18
|
Pathways Affected by Falcarinol-Type Polyacetylenes and Implications for Their Anti-Inflammatory Function and Potential in Cancer Chemoprevention. Foods 2023; 12:foods12061192. [PMID: 36981118 PMCID: PMC10048309 DOI: 10.3390/foods12061192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Polyacetylene phytochemicals are emerging as potentially responsible for the chemoprotective effects of consuming apiaceous vegetables. There is some evidence suggesting that polyacetylenes (PAs) impact carcinogenesis by influencing a wide variety of signalling pathways, which are important in regulating inflammation, apoptosis, cell cycle regulation, etc. Studies have shown a correlation between human dietary intake of PA-rich vegetables with a reduced risk of inflammation and cancer. PA supplementation can influence cell growth, gene expression and immunological responses, and has been shown to reduce the tumour number in rat and mouse models. Cancer chemoprevention by dietary PAs involves several mechanisms, including effects on inflammatory cytokines, the NF-κB pathway, antioxidant response elements, unfolded protein response (UPR) pathway, growth factor signalling, cell cycle progression and apoptosis. This review summarises the published research on falcarinol-type PA compounds and their mechanisms of action regarding cancer chemoprevention and also identifies some gaps in our current understanding of the health benefits of these PAs.
Collapse
|
19
|
Functionalised penetrating peptide-chondroitin sulphate‑gold nanoparticles: Synthesis, characterization, and applications as an anti-Alzheimer's disease drug. Int J Biol Macromol 2023; 230:123125. [PMID: 36603725 DOI: 10.1016/j.ijbiomac.2022.123125] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/04/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023]
Abstract
The purpose of this study was to construct a transmembrane peptide-chondroitin sulphate‑gold nanoparticle (TAT-CS@Au) delivery system and investigate its activity as an anti-Alzheimer's disease (AD) drug. We successfully prepared TAT-CS@Au nanoparticles, investigated their anti-AD effects, and explored the possible mechanisms in in vitro models. TAT-CS@Au exhibited excellent cellular uptake and transport capacity, effectively inhibited the accumulation of Aβ1-40, and significantly reduced Aβ1-40-induced apoptosis in SH-SY5Y cells. Furthermore, TAT-CS@Au significantly reduced oxidative stress damage and cholinergic injury induced by Aβ1-40 by regulating intracellular concentrations of reactive oxygen species (ROS), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), and acetylcholine (ACh). Western blotting results demonstrated that TAT-CS@Au inhibited aberrant tau phosphorylation (Ser199, Thr205, Ser404, and Ser396) through GSK3β inactivation. TAT-CS@Au decreased the levels of inflammatory factors, specifically TNF-α, IL-6, and IL-1β, by inhibiting NF-κB nuclear translocation by activating MAPK signalling pathways. Overall, these results indicate that TAT-CS@Au exhibits excellent transmembrane ability, inhibits Aβ1-40 accumulation, antagonises oxidative stress, reduces aberrant tau phosphorylation, and suppresses the expression of inflammatory factors. TAT-CS@Au may be a multi-target anti-AD drug with good cell permeability, providing new insights into the design and research of anti-AD therapeutics.
Collapse
|
20
|
Xu X, Huang X, Zheng Y, Wang X, Xie J, Liu S, Guo K. Synthesis, Structural Elucidation, and Anti-Inflammatory Activity of a Water-Soluble Derivative of Arctiin. Molecules 2023; 28:molecules28041789. [PMID: 36838775 PMCID: PMC9961579 DOI: 10.3390/molecules28041789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
The poor oral bioavailability of arctiin caused by its low water solubility is the biggest obstacle in developing it as a drug. In this work, a new water-soluble glucuronide derivative of arctiin (arctigenin-4'-O-glucuronide) was synthesized through 2,2,6,6-tetramethylpiperidine 1-oxyl mediated oxidation reaction. Subsequently, its anti-inflammatory effect was evaluated by mice acute lung injury model in vivo. The results showed that the glucuronide derivative of arctiin not only had better water solubility but also displayed improved anti-inflammatory activity in vivo, thus serving as an innovative compound in the drug development of arctiin.
Collapse
Affiliation(s)
- Xia Xu
- College of Pharmacy, Southwest Minzu University, Chengdu 610200, China
| | - Xiaofeng Huang
- College of Pharmacy, Southwest Minzu University, Chengdu 610200, China
| | - Yuedan Zheng
- College of Pharmacy, Southwest Minzu University, Chengdu 610200, China
| | - Xiaoling Wang
- College of Pharmacy, Southwest Minzu University, Chengdu 610200, China
| | - Jing Xie
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Sha Liu
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
- The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu 610066, China
- Correspondence: (S.L.); (K.G.)
| | - Kun Guo
- College of Pharmacy, Southwest Minzu University, Chengdu 610200, China
- Correspondence: (S.L.); (K.G.)
| |
Collapse
|
21
|
Sun YJ, Cao SJ, Liang FN, Li JY, Zhang XY, Li W, Ding LQ, Qiu F. Puerol and pueroside derivatives from Pueraria lobata and their anti-inflammatory activity. PHYTOCHEMISTRY 2023; 205:113507. [PMID: 36347309 DOI: 10.1016/j.phytochem.2022.113507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Five undescribed puerols and puerosides and three known analogues were obtained from the roots of Pueraria lobata. Their structures were determined by comprehensive analysis of spectroscopic data and chemical methods. Since puerol D and puerol C were racemic compounds, resolved into their enantiomers, and their absolute configurations were determined by experimental and calculated ECD spectra. Six of the isolates were evaluated for their inhibitory activities on NO generation and the expression of inflammatory factors in the LPS-stimulated RAW 264.7 macrophage cells. The results showed that (S)-puerol C, (R)-puerol C, isokuzubutenolide A and kuzubutenolide A significantly decreased the NO production (IC50 values in the range of 16.87-39.95 μM). Meanwhile, (S)-puerol C, isokuzubutenolide A and kuzubutenolide A also reduced the mRNA expression of inflammatory factors (TNF-α, IL-1β and IL-6).
Collapse
Affiliation(s)
- Ying-Jie Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Zhongxin Pharmaceutical Group Co., Ltd. Le Ren Tang Pharmaceutical Factory, Tianjin, China
| | - Shi-Jie Cao
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Feng-Ni Liang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jin-Yan Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiang-Yu Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan
| | - Li-Qin Ding
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
22
|
Zhong H, Han L, Lu RY, Wang Y. Antifungal and Immunomodulatory Ingredients from Traditional Chinese Medicine. Antibiotics (Basel) 2022; 12:antibiotics12010048. [PMID: 36671249 PMCID: PMC9855100 DOI: 10.3390/antibiotics12010048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Fungal infections have become a growing public health challenge due to the clinical transmission of pathogenic fungi. The currently available antifungal drugs leave very limited choices for clinical physicians to deal with such situation, not to mention the long-standing problems of emerging drug resistance, side effects and heavy economic burdens imposed to patients. Therefore, new antifungal drugs are urgently needed. Screening drugs from natural products and using synthetic biology strategies are very promising for antifungal drug development. Chinese medicine is a vast library of natural products of biologically active molecules. According to traditional Chinese medicine (TCM) theory, preparations used to treat fungal diseases usually have antifungal and immunomodulatory functions. This suggests that if antifungal drugs are used in combination with immunomodulatory drugs, better results may be achieved. Studies have shown that the active components of TCM have strong antifungal or immunomodulatory effects and have broad application prospects. In this paper, the latest research progress of antifungal and immunomodulatory components of TCM is reviewed and discussed, hoping to provide inspiration for the design of novel antifungal compounds and to open up new horizons for antifungal treatment strategies.
Collapse
Affiliation(s)
- Hua Zhong
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Lei Han
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Ren-Yi Lu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yan Wang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
- Correspondence:
| |
Collapse
|
23
|
Anti-Colitic Effect of an Exopolysaccharide Fraction from Pediococcus pentosaceus KFT-18 on Dextran Sulfate Sodium-Induced Colitis through Suppression of Inflammatory Mediators. Polymers (Basel) 2022; 14:polym14173594. [PMID: 36080669 PMCID: PMC9460603 DOI: 10.3390/polym14173594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
We previously reported the immunostimulatory effect of an exopolysaccharide fraction from Pediococcus pentosaceus KFT18 (PE-EPS), a lactic acid bacterium, in macrophages and primary splenocytes, as well as in cyclophosphamide-induced immunosuppressed mice. In this study, the anti-colitic activity of PE-EPS was investigated in a dextran sulfate sodium (DSS)-induced colitis animal model. PE-EPS relieved DSS-induced colitis symptoms, such as stool blood, decreased colon length, crypt disruption, and mucus layer edema. Regarding the molecular mechanism, PE-EPS reduced the enhanced expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and pro-inflammatory cytokines (TNF-α, IL-6, and IL-1) in the colon tissue of colitis-induced mice. Additionally, PE-EPS protected against DSS-induced phosphorylation of p65 and signal transducer and activator of transcription 1 (STAT1). These findings suggested that the exopolysaccharide fraction from Ped. pentosaceus KFT18 can be used to treat inflammatory bowel disease by alleviating colonic inflammation.
Collapse
|
24
|
Khan H, Sharma K, Kumar A, Kaur A, Singh TG. Therapeutic implications of cyclooxygenase (COX) inhibitors in ischemic injury. Inflamm Res 2022; 71:277-292. [PMID: 35175358 DOI: 10.1007/s00011-022-01546-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Ischemia-reperfusion injury (IRI) is the inexplicable aggravation of cellular dysfunction that results in blood flow restoration to previously ischemic tissues. COX mediates the oxidative conversion of AA to various prostaglandins and thromboxanes, which are involved in various physiological and pathological processes. In the pathophysiology of I/R injuries, COX has been found to play an important role. I/R injuries affect most vital organs and are characterized by inflammation, oxidative stress, cell death, and apoptosis, leading to morbidity and mortality. MATERIALS AND METHODS A systematic literature review of Bentham, Scopus, PubMed, Medline, and EMBASE (Elsevier) databases was carried out to understand the Nature and mechanistic interventions of the Cyclooxygenase modulations in ischemic injury. Here, we have discussed the COX Physiology and downstream signalling pathways modulated by COX, e.g., Camp Pathway, Peroxisome Proliferator-Activated Receptor Activity, NF-kB Signalling, PI3K/Akt Signalling in ischemic injury. CONCLUSION This review will discuss the various COX types, specifically COX-1 and COX-2, which are involved in developing I/R injury in organs such as the brain, spinal cord, heart, kidney, liver, and intestine.
Collapse
Affiliation(s)
- Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Kunal Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Amit Kumar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
25
|
Synthesis, Spectroscopic and Biological Investigation of a New Ca(II) Complex of Meloxicam as Potential COX-2 Inhibitor. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022; 47:7105-7122. [PMID: 35070636 PMCID: PMC8767366 DOI: 10.1007/s13369-021-06521-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 12/16/2021] [Indexed: 01/09/2023]
Abstract
Drug development on basis of coordination compounds provides versatile structural and functional properties as compared to other organic compounds. In the present study, a new Ca(II) complex of meloxicam was synthesized and characterized by elemental analysis, FT-IR, UV–Vis, 13C NMR, SEM–EDX, powder XRD and thermal analysis (TGA). The Ca(II) complex was investigated for its in vitro, in vivo biological activities and in silico docking analysis against COX-1 and COX-2. The spectral analysis indicates that the meloxicam acts as a deprotonated bidentate ligand (coordinated to the metal atom through the amide oxygen and the nitrogen atom of the thiazolyl ring) in the complex. SEM–EDX and powder XRD analysis depicted crystalline morphology of Ca(II) complex with a crystalline size of 32.86 nm. The in vitro biological activities were evaluated by five different antioxidant methods and COX inhibition assay, while in vivo activities were evaluated by carrageenan-, histamine- and PGE2-induced paw edema methods and acetic acid-induced writhing test. The Ca(II) complex showed prominent antioxidant activities and was found to be more selective toward COX-2 (43.77) than COX-1 as compared to meloxicam. It exhibited lower toxicity (LD50 1000 mg/Kg) and significantly inhibited carrageenan- and PGE2-induced inflammation at 10 mg/Kg (P < 0.05), but no significant effect was observed on histamine-induced inflammation. Moreover, Ca(II) complex significantly reduced the number of writhes induced by acetic acid (P < 0.05). The in silico molecular docking data revealed that Ca(II) complex obstructed COX-2 (dock score 6438) more effectively than COX-1 (dock score 5732) as compared to meloxicam alone.
Collapse
|
26
|
Chargari C, Rassy E, Helissey C, Achkar S, Francois S, Deutsch E. Impact of radiation therapy on healthy tissues. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 376:69-98. [PMID: 36997270 DOI: 10.1016/bs.ircmb.2022.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Radiation therapy has a fundamental role in the management of cancers. However, despite a constant improvement in radiotherapy techniques, the issue of radiation-induced side effects remains clinically relevant. Mechanisms of acute toxicity and late fibrosis are therefore important topics for translational research to improve the quality of life of patients treated with ionizing radiations. Tissue changes observed after radiotherapy are consequences of complex pathophysiology, involving macrophage activation, cytokine cascade, fibrotic changes, vascularization disorders, hypoxia, tissue destruction and subsequent chronic wound healing. Moreover, numerous data show the impact of these changes in the irradiated stroma on the oncogenic process, with interplays between tumor radiation response and pathways involved in the fibrotic process. The mechanisms of radiation-induced normal tissue inflammation are reviewed, with a focus on the impact of the inflammatory process on the onset of treatment-related toxicities and the oncogenic process. Possible targets for pharmacomodulation are also discussed.
Collapse
|
27
|
Crude Saponin from Platycodon grandiflorum Attenuates Aβ-Induced Neurotoxicity via Antioxidant, Anti-Inflammatory and Anti-Apoptotic Signaling Pathways. Antioxidants (Basel) 2021; 10:antiox10121968. [PMID: 34943071 PMCID: PMC8750977 DOI: 10.3390/antiox10121968] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 12/18/2022] Open
Abstract
Although Platycodon grandiflorum saponins exhibit many beneficial biological effects in various diseases and conditions, how they protect nerve cells against neurodegenerative diseases and Alzheimer’s disease (AD) pathology is unknown. We investigated whether P. grandiflorum crude saponin (PGS) protects neurons from neurodegeneration caused by amyloid beta (Aβ)-induced oxidative stress. Hippocampal neuron HT-22 cells were used in the in vitro experiment, and AD mice (5XFAD mice) were used as the in vivo model. Intracellular reactive oxygen species (ROS) was stained with DCF-DA and assessed using fluorescence microscopy. To elucidate the mechanism underlying neuroprotection, intracellular protein levels were assessed by western blotting. In 5XFAD mice, an animal model of AD, nerve damage recovery due to the induction of Aβ toxicity was evaluated by histological analysis. PGS attenuates Aβ-induced neurotoxicity by inhibiting Aβ-induced reactive oxygen species (ROS) production and apoptosis in HT-22 cells. Furthermore, PGS upregulated Nrf2-mediated antioxidant signaling and downregulated NF-κB-mediated inflammatory signaling. Additionally, PGS inhibited apoptosis by regulating the expression of apoptosis-associated proteins. In addition, PGS ameliorated Aβ-mediated pathologies, leading to AD-associated cognitive decline. Conclusions: Taken together, these findings suggest that PGS inhibits Aβ accumulation in the subiculum and cerebral cortex and attenuates Aβ toxicity-induced nerve damage in vitro and in vivo. Therefore, PGS is a resource for developing AD therapeutics.
Collapse
|
28
|
Zhou B, Wang L, Liang Y, Li J, Pan X. Arctiin suppresses H9N2 avian influenza virus-mediated inflammation via activation of Nrf2/HO-1 signaling. BMC Complement Med Ther 2021; 21:289. [PMID: 34836523 PMCID: PMC8620712 DOI: 10.1186/s12906-021-03462-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/10/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND H9N2 avian influenza viruses (AIVs) infect avian and mammalian hosts and provide internal genes for new emerging highly pathogenic avian viruses that cause severe pneumonia with high mortality, for which few medications are available. Arctiin, a bioactive lignan glycoside, has been reported to possess multiple pharmacological properties. However, the effect of arctiin on H9N2 virus infection is unclear. In the current study, we analyzed the effect of arctiin on H9N2 virus infection and the underlying molecular mechanism in vitro. METHODS The antiviral effect against H9N2 virus was determined by plaque reduction assay (PRA) and progeny virus reduction assay. We employed MTT assay, qRT-PCR, ELISA, immunofluorescence and Western blotting to better understand the anti-inflammatory effect and corresponding mechanism of arctiin on H9N2 virus-infected cells. RESULTS The results showed that arctiin had antiviral activity against H9N2 virus. Arctiin treatment reduced H9N2 virus-triggered proinflammatory cytokines, such as IL-6, and TNF-α. Moreover, arctiin significantly suppressed H9N2 virus-mediated expression of COX-2 and PGE2. Furthermore, we found that arctiin inhibited H9N2 virus-mediated activation of RIG-I/JNK MAPK signaling. Interestingly, arctiin treatment obviously reversed H9N2 virus-induced reduction of Nrf2, increased the nuclear translocation of Nrf2, and upregulated Nrf2 signaling target genes (HO-1 and SOD2). Zinc protoporphyrin (Znpp)-an HO-1 inhibitor-weakened the inhibitory effect of arctiin on H9N2 virus-induced RIG-I/JNK MAPK and proinflammatory mediators. CONCLUSION Taken together, these results suggested that the anti-inflammatory effects of arctiin on H9N2 virus infection may be due to the activation of Nrf2/HO-1 and blocked RIG-I/JNK MAPK signaling; thus, arctiin may be a promising agent for prevention and treatment of H9N2 virus infections.
Collapse
Affiliation(s)
- Beixian Zhou
- Center of stem cell and Regenerative Medicine, The People's Hospital of Gaozhou, Gaozhou, China
| | - Linxin Wang
- Guangzhou Laboratory, No. 9, XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, 510005, China
| | - Yueyun Liang
- Department of Anesthesiology, The People's Hospital of Gaozhou, Gaozhou, China
| | - Jing Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, NO. 195, Dongfengxi Road, Guangzhou, 510120, China. .,Institute of Chinese Integrative Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Xiping Pan
- Guangzhou Laboratory, No. 9, XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, 510005, China.
| |
Collapse
|
29
|
Jannus F, Medina-O’Donnell M, Neubrand VE, Marín M, Saez-Lara MJ, Sepulveda MR, Rufino-Palomares EE, Martinez A, Lupiañez JA, Parra A, Rivas F, Reyes-Zurita FJ. Efficient In Vitro and In Vivo Anti-Inflammatory Activity of a Diamine-PEGylated Oleanolic Acid Derivative. Int J Mol Sci 2021; 22:ijms22158158. [PMID: 34360922 PMCID: PMC8347335 DOI: 10.3390/ijms22158158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/28/2022] Open
Abstract
Recent evidence has shown that inflammation can contribute to all tumorigenic states. We have investigated the anti-inflammatory effects of a diamine-PEGylated derivative of oleanolic acid (OADP), in vitro and in vivo with inflammation models. In addition, we have determined the sub-cytotoxic concentrations for anti-inflammatory assays of OADP in RAW 264.7 cells. The inflammatory process began with incubation with lipopolysaccharide (LPS). Nitric oxide production levels were also determined, exceeding 75% inhibition of NO for a concentration of 1 µg/mL of OADP. Cell-cycle analysis showed a reversal of the arrest in the G0/G1 phase in LPS-stimulated RAW 264.7 cells. Furthermore, through Western blot analysis, we have determined the probable molecular mechanism activated by OADP; the inhibition of the expression of cytokines such as TNF-α, IL-1β, iNOS, and COX-2; and the blocking of p-IκBα production in LPS-stimulated RAW 264.7 cells. Finally, we have analyzed the anti-inflammatory action of OADP in a mouse acute ear edema, in male BL/6J mice treated with OADP and tetradecanoyl phorbol acetate (TPA). Treatment with OADP induced greater suppression of edema and decreased the ear thickness 14% more than diclofenac. The development of new derivatives such as OADP with powerful anti-inflammatory effects could represent an effective therapeutic strategy against inflammation and tumorigenic processes.
Collapse
Affiliation(s)
- Fatin Jannus
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva, 18071 Granada, Spain; (F.J.); (M.M.); (M.J.S.-L.); (E.E.R.-P.); (J.A.L.)
| | - Marta Medina-O’Donnell
- Department of Organic Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva, 18071 Granada, Spain; (A.M.); (A.P.)
- Correspondence: (M.M.-O.); (F.R.); (F.J.R.-Z.); Tel.: +34-958-243-252 (F.J.R.-Z.)
| | - Veronika E. Neubrand
- Department of Cell Biology, Faculty of Sciences, University of Granada, Av. Fuentenueva, 18071 Granada, Spain; (V.E.N.); (M.R.S.)
| | - Milagros Marín
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva, 18071 Granada, Spain; (F.J.); (M.M.); (M.J.S.-L.); (E.E.R.-P.); (J.A.L.)
| | - Maria J. Saez-Lara
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva, 18071 Granada, Spain; (F.J.); (M.M.); (M.J.S.-L.); (E.E.R.-P.); (J.A.L.)
| | - M. Rosario Sepulveda
- Department of Cell Biology, Faculty of Sciences, University of Granada, Av. Fuentenueva, 18071 Granada, Spain; (V.E.N.); (M.R.S.)
| | - Eva E. Rufino-Palomares
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva, 18071 Granada, Spain; (F.J.); (M.M.); (M.J.S.-L.); (E.E.R.-P.); (J.A.L.)
| | - Antonio Martinez
- Department of Organic Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva, 18071 Granada, Spain; (A.M.); (A.P.)
| | - Jose A. Lupiañez
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva, 18071 Granada, Spain; (F.J.); (M.M.); (M.J.S.-L.); (E.E.R.-P.); (J.A.L.)
| | - Andres Parra
- Department of Organic Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva, 18071 Granada, Spain; (A.M.); (A.P.)
| | - Francisco Rivas
- Department of Organic Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva, 18071 Granada, Spain; (A.M.); (A.P.)
- Correspondence: (M.M.-O.); (F.R.); (F.J.R.-Z.); Tel.: +34-958-243-252 (F.J.R.-Z.)
| | - Fernando J. Reyes-Zurita
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva, 18071 Granada, Spain; (F.J.); (M.M.); (M.J.S.-L.); (E.E.R.-P.); (J.A.L.)
- Correspondence: (M.M.-O.); (F.R.); (F.J.R.-Z.); Tel.: +34-958-243-252 (F.J.R.-Z.)
| |
Collapse
|
30
|
TLR4 and TNFR1 blockade dampen M1 macrophage activation and shifts them towards an M2 phenotype. Immunol Res 2021; 69:334-351. [PMID: 34235623 DOI: 10.1007/s12026-021-09209-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022]
Abstract
The Gram-negative bacterial lipopolysaccharide (LPS)-induced sepsis has emerged as major concern worldwide due to the pressing need to develop its effective treatment strategies which is not available yet. LPS is the major causative agent in the pathogenesis of septic shock. In macrophages, LPS interacts with cell surface TLR4 leading to reactive oxygen species (ROS), TNF-α, IL-1β production, oxidative stress and markedly activated the MAPKs and NF-kB pathway. Post cell isolation, the macrophages were subjected to administration with neutralizing antibodies to TLR4 and TNFR1 either alone or in combination prior to LPS challenge. Subsequently, we performed flow cytometric analysis along with Western blots, reactive oxygen species production, and TNF-α, IL-1β release. Outcomes suggested that the dual blockade of TLR4 and TNFR1 was indeed beneficial in shifting the LPS-induced M1 polarization towards M2. Both TLR4 and TNFR1 exhibited dependency during LPS stimulation. Furthermore, the switch towards the M2 phenotype might be responsible for the decreased levels of TNF-α, IL-1β, NO, and superoxide anion and the simultaneous elevation in the activity level of anti-oxidant enzymes like SOD, CAT (catalase), and GSH content in the isolated peritoneal macrophages. Simultaneous blocking of both TLR4 and TNFR1 also showed reduced expression of NF-kB, JNK, and COX-2 by promoting TNFR2-mediated TNF-α signaling. The increased arginase activity further confirmed the polarization towards M2. Thus it may be inferred that dual blockade of TLR4 and TNFR1 might be an alternative therapeutic approach for regulating of sepsis in future.
Collapse
|
31
|
Ha JS, Choi HR, Kim IS, Kim EA, Cho SW, Yang SJ. Hypoxia-Induced S100A8 Expression Activates Microglial Inflammation and Promotes Neuronal Apoptosis. Int J Mol Sci 2021; 22:1205. [PMID: 33530496 PMCID: PMC7866104 DOI: 10.3390/ijms22031205] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/06/2021] [Accepted: 01/18/2021] [Indexed: 12/31/2022] Open
Abstract
S100 calcium-binding protein A8 (S100A8), a danger-associated molecular pattern, has emerged as an important mediator of the pro-inflammatory response. Some S100 proteins play a prominent role in neuroinflammatory disorders and increase the secretion of pro-inflammatory cytokines in microglial cells. The aim of this study was to determine whether S100A8 induced neuronal apoptosis during cerebral hypoxia and elucidate its mechanism of action. In this study, we reported that the S100A8 protein expression was increased in mouse neuronal and microglial cells when exposed to hypoxia, and induced neuroinflammation and neuronal apoptosis. S100A8, secreted from neurons under hypoxia, activated the secretion of tumor necrosis factor (TNF-α) and interleukin-6 (IL-6) through phosphorylation of extracellular-signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) in microglia. Also, phosphorylation of ERK via the TLR4 receptor induced the priming of the NLRP3 inflammasome. The changes in Cyclooxygenase-2 (COX-2) expression, a well-known inflammatory activator, were regulated by the S100A8 expression in microglial cells. Knockdown of S100A8 levels by using shRNA revealed that microglial S100A8 expression activated COX-2 expression, leading to neuronal apoptosis under hypoxia. These results suggested that S100A8 may be an important molecule for bidirectional microglia-neuron communication and a new therapeutic target for neurological disorders caused by microglial inflammation during hypoxia.
Collapse
Affiliation(s)
- Ji Sun Ha
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Korea; (J.S.H.); (H.-R.C.)
| | - Hye-Rim Choi
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Korea; (J.S.H.); (H.-R.C.)
| | - In Sik Kim
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Uijeongbu 11759, Korea;
| | - Eun-A Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Seung-Ju Yang
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Korea; (J.S.H.); (H.-R.C.)
| |
Collapse
|
32
|
Antileishmanial Activity of Lignans, Neolignans, and Other Plant Phenols. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2021; 115:115-176. [PMID: 33797642 DOI: 10.1007/978-3-030-64853-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Secondary metabolites (SM) from organisms have served medicinal chemists over the past two centuries as an almost inexhaustible pool of new drugs, drug-like skeletons, and chemical probes that have been used in the "hunt" for new biologically active molecules with a "beneficial effect on human mind and body." Several secondary metabolites, or their derivatives, have been found to be the answer in the quest to search for new approaches to treat or even eradicate many types of diseases that oppress humanity. A special place among SM is occupied by lignans and neolignans. These phenolic compounds are generated biosynthetically via radical coupling of two phenylpropanoid monomers, and are known for their multitarget activity and low toxicity. The disadvantage of the relatively low specificity of phenylpropanoid-based SM turns into an advantage when structural modifications of these skeletons are made. Indeed, phenylpropanoid-based SM previously have proven to offer great potential as a starting point in drug development. Compounds such as Warfarin® (a coumarin-based anticoagulant) as well as etoposide and teniposide (podophyllotoxin-based anticancer drugs) are just a few examples. At the beginning of the third decade of the twenty-first century, the call for the treatment of more than a dozen rare or previously "neglected" diseases remains for various reasons unanswered. Leishmaniasis, a neglected disease that desperately needs new ways of treatment, is just one of these. This disease is caused by more than 20 leishmanial parasites that are pathogenic to humans and are spread by as many as 800 sandfly species across subtropical areas of the world. With continuing climate changes, the presence of Leishmania parasites and therefore leishmaniasis, the disease caused by these parasites, is spreading from previous locations to new areas. Thus, leishmaniasis is affecting each year a larger proportion of the world's population. The choice of appropriate leishmaniasis treatment depends on the severity of the disease and its form of manifestation. The success of current drug therapy is often limited, due in most cases to requiring long hospitalization periods (weeks to months) and the toxicity (side effects) of administered drugs, in addition to the increasing resistance of the parasites to treatment. It is thus important to develop new drugs and treatments that are less toxic, can overcome drug resistance, and require shorter periods of treatment. These aspects are especially important for the populations of developing countries. It was reported that several phenylpropanoid-based secondary metabolites manifest interesting antileishmanial activities and are used by various indigenous people to treat leishmaniasis. In this chapter, the authors shed some light on the various biological activities of phenylpropanoid natural products, with the main focus being on their possible applications in the context of antileishmanial treatment.
Collapse
|
33
|
Li Y, Li S, Li D. Breviscapine Alleviates Cognitive Impairments Induced by Transient Cerebral Ischemia/Reperfusion through Its Anti-Inflammatory and Anti-Oxidant Properties in a Rat Model. ACS Chem Neurosci 2020; 11:4489-4498. [PMID: 33270442 DOI: 10.1021/acschemneuro.0c00697] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cerebral ischemia/reperfusion (I/R)-induced injury is a common phenomenon of stroke, and the effective treatment for I/R-induced brain tissue damage is limited. Breviscapine has been widely used in China as herbal medicine to treat cardiovascular diseases for hundreds of years and has been demonstrated to possess potent cardiovascular pharmacological effects. This study aims to investigate the neuroprotective effect of breviscapine on cerebral I/R-induced injury. The rat model of middle cerebral artery occlusion (MCAO) was applied in our study. The cerebral I/R rats received multiple injections of breviscapine. All rats were subject to neurological behavior tests by open field test and Morris water maze test. The pro-inflammatory cytokines and oxidative stress marker levels were determined by ELISA and colorimetric analysis, respectively. We demonstrated that administration of breviscapine dose-dependently ameliorated cerebral I/R-induced injury and improved the neurological performance of cerebral I/R rats. Further studies illustrated that breviscapine treatment effectively attenuated inflammatory cytokine expression, reduced oxidative stress, and pro-apoptosis protein expression and inhibited the activation of NF-κB signaling and microglia in the I/R injury tissues. Breviscapine may serve as a single drug or a promising adjuvant that can be used in conjunction with other medicine for the treatment of cerebral I/R-induced injury.
Collapse
Affiliation(s)
- Yinghua Li
- Hangzhou Women’s Hospital, No. 369 Kunpeng Road, Hangzhou 310008, Zhejiang, China
| | - Songyi Li
- Hangzhou Women’s Hospital, No. 369 Kunpeng Road, Hangzhou 310008, Zhejiang, China
| | - Dingheng Li
- Hangzhou Women’s Hospital, No. 369 Kunpeng Road, Hangzhou 310008, Zhejiang, China
| |
Collapse
|
34
|
周 玉, 陆 萧, 夏 丽, 姚 伟, 秦 国, 王 国. [Arctiin antagonizes triptolide-induced renal toxicity in rats via anti-inflammatory pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1399-1405. [PMID: 33118522 PMCID: PMC7606234 DOI: 10.12122/j.issn.1673-4254.2020.10.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the protective effect of arctiin with anti-inflammatory bioactivity against triptolide-induced nephrotoxicity in rats and explore the underlying mechanism. METHODS Forty SD rats were divided into 4 groups for gastric lavage of normal saline, arctiin (500 mg/kg), triptolide (500 μg/kg), or both arctiin (500 mg/kg) and triptolide (500 μg/kg). Blood samples were collected for analysis of biochemical renal parameters, and the renal tissues were harvested for determining the kidney index and for pathological evaluation with HE staining. In the in vitro experiment, HK-2 cells were treated with arctiin and triptolide either alone or in combination, and the cell viability was determined with MTT assay; the cell morphological changes was observed using laser confocal microscopy, cell apoptosis was detected using flow cytometry, and the expressions of inflammation-related protein expression were detected by Western blotting. RESULTS In SD rats, arctiin significantly antagonized triptolide-induced elevation of BUN, Scr and kidney index (P < 0.05) and obviously improved renal tissue damages induced by triptolide including cell swelling, vacuolization and spotty necrosis. Arctiin significantly inhibited triptolide-induced cytotoxicity in HK-2 cells and increased the cell viability at 24 h (P < 0.05). Arctiin also attenuated triptolide-induced cell morphological changes, decreased cell apoptosis rate (P < 0.05) and reversed the expressions of IκBα and nuclear p65 (P < 0.05). CONCLUSIONS Arctiin can protect the kidney from triptolide-induced damages in rats possibly through the anti-inflammatory pathway.
Collapse
Affiliation(s)
- 玉燕 周
- 皖南医学院药物研发中心//药学院,安徽 芜湖 241002Drug Research and Development Center//School of Pharmacy, Wannan Medical College, Wuhu 241002, China
- 安徽省多糖药物工程技术研究中心//活性大分子研究安徽省重点实验室,安徽 芜湖 241002Anhui Provincial Engineering Research Center for Polysaccharide Drugs//Anhui Provincial Key Laboratory of Active Biological Macro-molecules, Wuhu 241002, China
| | - 萧雅 陆
- 皖南医学院药物研发中心//药学院,安徽 芜湖 241002Drug Research and Development Center//School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - 丽 夏
- 皖南医学院药物研发中心//药学院,安徽 芜湖 241002Drug Research and Development Center//School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - 伟强 姚
- 皖南医学院药物研发中心//药学院,安徽 芜湖 241002Drug Research and Development Center//School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - 国正 秦
- 皖南医学院药物研发中心//药学院,安徽 芜湖 241002Drug Research and Development Center//School of Pharmacy, Wannan Medical College, Wuhu 241002, China
- 安徽省多糖药物工程技术研究中心//活性大分子研究安徽省重点实验室,安徽 芜湖 241002Anhui Provincial Engineering Research Center for Polysaccharide Drugs//Anhui Provincial Key Laboratory of Active Biological Macro-molecules, Wuhu 241002, China
| | - 国栋 王
- 皖南医学院药物研发中心//药学院,安徽 芜湖 241002Drug Research and Development Center//School of Pharmacy, Wannan Medical College, Wuhu 241002, China
- 安徽省多糖药物工程技术研究中心//活性大分子研究安徽省重点实验室,安徽 芜湖 241002Anhui Provincial Engineering Research Center for Polysaccharide Drugs//Anhui Provincial Key Laboratory of Active Biological Macro-molecules, Wuhu 241002, China
| |
Collapse
|
35
|
The Extract of Arctium lappa L. Fruit (Arctii Fructus) Improves Cancer-Induced Cachexia by Inhibiting Weight Loss of Skeletal Muscle and Adipose Tissue. Nutrients 2020; 12:nu12103195. [PMID: 33086629 PMCID: PMC7603378 DOI: 10.3390/nu12103195] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Cachexia induced by cancer is a systemic wasting syndrome and it accompanies continuous body weight loss with the exhaustion of skeletal muscle and adipose tissue. Cancer cachexia is not only a problem in itself, but it also reduces the effectiveness of treatments and deteriorates quality of life. However, effective treatments have not been found yet. Although Arctii Fructus (AF) has been studied about several pharmacological effects, there were no reports on its use in cancer cachexia. Methods: To induce cancer cachexia in mice, we inoculated CT-26 cells to BALB/c mice through subcutaneous injection and intraperitoneal injection. To mimic cancer cachexia in vitro, we used conditioned media (CM), which was CT-26 colon cancer cells cultured medium. Results: In in vivo experiments, AF suppressed expression of interleukin (IL)-6 and atrophy of skeletal muscle and adipose tissue. As a result, the administration of AF decreased mortality by preventing weight loss. In adipose tissue, AF decreased expression of uncoupling protein 1 (UCP1) by restoring AMP-activated protein kinase (AMPK) activation. In in vitro model, CM increased muscle degradation factors and decreased adipocytes differentiation factors. However, these tendencies were ameliorated by AF treatment in C2C12 myoblasts and 3T3-L1 cells. Conclusion: Taken together, our study demonstrated that AF could be a therapeutic supplement for patients suffering from cancer cachexia.
Collapse
|
36
|
Chen D, Ye Z, Wang C, Wang Q, Wang H, Kuek V, Wang Z, Qiu H, Yuan J, Kenny J, Yang F, He J, Liu Y, Wang G, Zhang M, Zhang G, Wang J, Chen P, Xu J. Arctiin abrogates osteoclastogenesis and bone resorption via suppressing RANKL-induced ROS and NFATc1 activation. Pharmacol Res 2020; 159:104944. [PMID: 32454224 DOI: 10.1016/j.phrs.2020.104944] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/10/2020] [Accepted: 05/15/2020] [Indexed: 12/30/2022]
Abstract
Osteoporosis, characterized by disrupted bone resorption and formation, is viewed as a global health challenge. Arctiin (ARC) is a main component of Arctium lappa L, which exerts chemopreventive effects against various tumor cells. However, the role of ARC in bone remodeling is still unclear. Here, we first demonstrated that ARC inhibits osteoclast formation and bone resorption function induced by the receptor activator of nuclear factor-κB ligand (RANKL) in a dose- and time-dependent manner without exerting cytotoxic effects. Mechanistic analysis revealed that ARC not only suppresses RANKL-induced mitogen-activated protein kinase (MAPK) and calcium signaling pathways, but also enhances the expression of cytoprotective enzymes that are involved in scavenging reactive oxygen species (ROS). Further, ARC inhibits the activation of the major transcription factor nuclear factor of activated T cells 1 (NFATc1) during RANKL-induced osteoclast formation. Preclinical studies showed that ARC protects bone loss in an ovariectomy (OVX) mouse model. Conclusively, our data confirmed that ARC could potentially inhibit osteoclastogenesis by abrogating RANKL-induced MAPK, calcium, and NFATc1 signaling pathway, as well as by promoting the expression of ROS scavenging enzymes in Nrf2/Keap1/ARE signaling pathway, thereby2 preventing OVX-induced bone loss. Thus, ARC may serve as a novel therapeutic agent for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Delong Chen
- Department of Orthopaedic Surgery, Clifford Hospital, Jinan University, Guangzhou 510006, China; School of Biomedical Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Zhen Ye
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Chao Wang
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Qingqing Wang
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia 6009, Australia; Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Haibin Wang
- Department of Orthopaedic Surgery, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Vincent Kuek
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Ziyi Wang
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Heng Qiu
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Jinbo Yuan
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Jacob Kenny
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Fan Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SHTCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianbo He
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia 6009, Australia; Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yun Liu
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia 6009, Australia; Department of Spine Osteopathy Surgery, First Affiliated Hospital, Guangxi Medical University, Nanning 530021, China
| | - Gang Wang
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia 6009, Australia; Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Meng Zhang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Gangyu Zhang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Junjian Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Peng Chen
- Department of Orthopaedic Surgery, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia 6009, Australia.
| |
Collapse
|
37
|
Mohan CD, Rangappa S, Preetham HD, Chandra Nayaka S, Gupta VK, Basappa S, Sethi G, Rangappa KS. Targeting STAT3 signaling pathway in cancer by agents derived from Mother Nature. Semin Cancer Biol 2020; 80:157-182. [DOI: 10.1016/j.semcancer.2020.03.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/23/2020] [Accepted: 03/28/2020] [Indexed: 02/07/2023]
|
38
|
Germanó MJ, Muñoz MD, Della-Vedova MC, Feresin GE, Rinaldi-Tosi M, Enriz RD, Ramirez DC, Giannini FA. Anti-oxidant and anti-inflammatory effect of polar extracts obtained from waste product of wine making. Nat Prod Res 2020; 35:4769-4773. [PMID: 32009455 DOI: 10.1080/14786419.2020.1721492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A lot of diseases are characterized by an increased inflammatory response with an exacerbated production of free radicals. The anti-inflammatory effect of different compounds with antioxidant capacity, as polyphenols present in grape is well known. Therefore, the objective is to evaluate the anti-oxidant and anti-inflammatory activity of waste product of wine production.Six different non-toxic-marc-polar extracts from Malbec and Syrah grape varieties were obtained, their total phenol and flavonoid content were evaluated, and their antioxidant and anti-inflammatory activity were determined.High content of total phenols and flavonoids were found mainly in extracts obtained from Syrah (80.51 ± 16.63 g equivalent to gallic acid/100 g and 25.47 ± 3.33 g equivalent to quercetin/100 g). In addition, they had a high antioxidant effect (above 88.5% of ABTS inhibition by Syrah extracts). Finally, all extracts decreased the nitric oxide (NO) production, but this was more accented when extract from Syrah obtained by infusion was used, which decreased NO levels to baseline (4.46 µM).Taking together, our results show the potential pharmaceutical use of waste product of wine making to prevent or to treat diseases which inflammatory response is exacerbated.
Collapse
Affiliation(s)
- M J Germanó
- Laboratorio de Medicina Experimental & Terapéuticas, Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - M D Muñoz
- Laboratorio de Medicina Experimental & Terapéuticas, Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis, Argentina
| | - M C Della-Vedova
- Laboratorio de Medicina Experimental & Terapéuticas, Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis, Argentina
| | - G E Feresin
- Facultad de Ingeniería, Universidad Nacional de San Juan (UNSJ), San Juan, Argentina
| | - M Rinaldi-Tosi
- Laboratorio de Medicina Experimental & Terapéuticas, Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis, Argentina
| | - R D Enriz
- Area de Química General e Inorgánica, Universidad Nacional de San Luis, San Luis (UNSL), Argentina.,Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis, Argentina
| | - D C Ramirez
- Laboratorio de Medicina Experimental & Terapéuticas, Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis, Argentina
| | - F A Giannini
- Area de Química General e Inorgánica, Universidad Nacional de San Luis, San Luis (UNSL), Argentina
| |
Collapse
|
39
|
Ruan J, Guo J, Huang Y, Mao Y, Yang Z, Zuo Z. Adolescent exposure to environmental level of PCBs (Aroclor 1254) induces non-alcoholic fatty liver disease in male mice. ENVIRONMENTAL RESEARCH 2020; 181:108909. [PMID: 31776016 DOI: 10.1016/j.envres.2019.108909] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants found in various environmental media, and there is growing evidence that PCBs may contribute to the pathogenesis of non-alcoholic fatty liver disease (NAFLD). The purposes of this study were to investigate whether environmental level of Aroclor 1254 (a commercial mixture of PCBs) exposure to adolescent male mice could induce the development of NAFLD and the mechanisms involved. Twenty-one-day-old male C57BL/6 mice were exposed to Aroclor 1254 (0.5-500 μg/kg body weight) by oral gavage once every third day for 60 days. The results showed that exposure to Aroclor 1254 increased body weight and decreased the liver-somatic index in a dose-dependent manner. Aroclor 1254 administration increased lipid accumulation in the liver and induced the mRNA expression of genes associated with lipogenesis, including acetyl-CoA carboxylase 1 (Acc1), acetyl-CoA carboxylase 2 (Acc2) and fatty acid synthase (Fasn). Moreover, Aroclor 1254 decreased peroxisome proliferator-activated receptor alpha (PPARα) signaling and lipid oxidation. In addition, we found that Aroclor 1254 administration induced oxidative stress in mouse liver and elevated the protein level of cyclooxygenase 2 (COX-2), an inflammatory molecule, possibly via the endoplasmic reticulum (ER) stress inositol-requiring enzyme 1α-X-box-binding protein-1 (IRE1α-XBP1) pathway, but not the nuclear factor-κB (NF-κB) pathway. In summary, adolescent exposure to environmental level of PCBs stimulated oxidative stress, ER stress and the inflammatory response and caused NAFLD in male mice. This work provides new insight into the idea that adolescent exposure to environmental level of PCBs might induce the development of NAFLD under the regulation of ER stress in males.
Collapse
Affiliation(s)
- Jinpeng Ruan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jiaojiao Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yameng Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yunzi Mao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Zhenggang Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China.
| |
Collapse
|
40
|
Alhusaini A, Fadda L, Hasan IH, Ali HM, El Orabi NF, Badr AM, Zakaria E, Alenazi AM, Mahmoud AM. Arctium lappa Root Extract Prevents Lead-Induced Liver Injury by Attenuating Oxidative Stress and Inflammation, and Activating Akt/GSK-3β Signaling. Antioxidants (Basel) 2019; 8:582. [PMID: 31771282 PMCID: PMC6943639 DOI: 10.3390/antiox8120582] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/15/2019] [Accepted: 11/22/2019] [Indexed: 12/26/2022] Open
Abstract
Arctium lappa L (A. lappa) is a popular medicinal plant with promising hepatoprotective activity. This study investigated the protective effect of A. lappa root extract (ALRE) on lead (Pb) hepatotoxicity, pointing to its ability to modulate oxidative stress, inflammation, and protein kinase B/Akt/glycogen synthase kinase (GSK)-3β signaling. Rats received 50 mg/kg lead acetate (Pb(Ac)2) and 200 mg/kg ALRE or vitamin C (Vit. C) for 7 days, and blood and liver samples were collected. Pb(Ac)2 provoked hepatotoxicity manifested by elevated serum transaminases and lactate dehydrogenase, and decreased total protein. Histopathological alterations, including distorted lobular hepatic architecture, microsteatotic changes, congestion, and massive necrosis were observed in Pb(II)-induced rats. ALRE ameliorated liver function and prevented all histological alterations. Pb(II) increased hepatic lipid peroxidation (LPO), nitric oxide (NO), caspase-3, and DNA fragmentation, and serum C-reactive protein, tumor necrosis factor-α, and interleukin-1β. Cellular antioxidants, and Akt and GSK-3β phosphorylation levels were decreased in the liver of Pb(II)-induced rats. ALRE ameliorated LPO, NO, caspase-3, DNA fragmentation and inflammatory mediators, and boosted antioxidant defenses in Pb(II)-induced rats. In addition, ALRE activated Akt and inhibited GSK-3β in the liver of Pb(II)-induced rats. In conclusion, ALRE inhibits liver injury in Pb(II)-intoxicated rats by attenuating oxidative injury and inflammation, and activation of Akt/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Ahlam Alhusaini
- Pharmacology and Toxicology Department, Faculty of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (L.F.); (I.H.H.); (N.F.E.O.); (A.M.B.); (A.M.A.)
| | - Laila Fadda
- Pharmacology and Toxicology Department, Faculty of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (L.F.); (I.H.H.); (N.F.E.O.); (A.M.B.); (A.M.A.)
| | - Iman H. Hasan
- Pharmacology and Toxicology Department, Faculty of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (L.F.); (I.H.H.); (N.F.E.O.); (A.M.B.); (A.M.A.)
| | - Hanaa M. Ali
- Common First Year Deanship, King Saud University, Riyadh 11451, Saudi Arabia;
- Genetic and Cytology Department, National Research Centre, Giza 12622, Egypt
| | - Naglaa F. El Orabi
- Pharmacology and Toxicology Department, Faculty of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (L.F.); (I.H.H.); (N.F.E.O.); (A.M.B.); (A.M.A.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Amira M. Badr
- Pharmacology and Toxicology Department, Faculty of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (L.F.); (I.H.H.); (N.F.E.O.); (A.M.B.); (A.M.A.)
- Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Enas Zakaria
- Pharmaceutics Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Abeer M. Alenazi
- Pharmacology and Toxicology Department, Faculty of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (L.F.); (I.H.H.); (N.F.E.O.); (A.M.B.); (A.M.A.)
| | - Ayman M. Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
41
|
Li L, Zhang X, Bu F, Chen N, Zhang H, Gu J. Simultaneous determination of eight constituents in rat plasma by HPLC-MS/MS and its application to a pharmacokinetic study after oral administration of Shejin-liyan Granule. Biomed Chromatogr 2019; 33:e4648. [PMID: 31301083 DOI: 10.1002/bmc.4648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/26/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022]
Abstract
Shejin-liyan Granule (SJLY) is an effective traditional Chinese prescription medicine for the treatment of acute pharyngitis. In this study, a selective and convenient HPLC-MS/MS method was developed and validated for the simultaneous determination of the following eight constituents in the plasma: galuteolin, tectoridin, tectorigenin, iridin, irigenin, irisflorentin, arctiin and arctigenin. The plasma samples were prepared by a protein precipitation method using acetonitrile, and analysis was carried out on a C18 column using a gradient elution at a flow rate of 0.3 mL/min. The concentration of these analytes was quantified in the positive ion and multiple reaction monitoring modes. The method was validated for selectivity, linearity, accuracy, precision, recovery, matrix effect and sample stability. The obtained results were well within the acceptable limits. The established method was then successfully applied to study the pharmacokinetic profiles of the multiple constituents of Shejin-liyan Granule. According to the area under the curve and maximum concentration data, tectorigenin exhibited the highest exposure followed by arctigenin, irigenin, arctiin and irisflorentin. The concentrations of galuteolin, tectoridin and iridin were low, and a complete concentration-time curve could not be plotted. This research provides useful information for understanding the pharmacokinetics of Shejin-liyan Granule.
Collapse
Affiliation(s)
- Ling Li
- Department of Pharmacy, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Xiuwen Zhang
- Department of Pharmacy, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Fengjiao Bu
- Department of Pharmacy, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Nianzu Chen
- Department of Pharmacy, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Hongmei Zhang
- Jinan Center for Food and Drug Control, Jinan, Shandong Province, China
| | - Jifeng Gu
- Department of Pharmacy, Eye & ENT Hospital of Fudan University, Shanghai, China
| |
Collapse
|
42
|
Galangin Suppresses Renal Inflammation via the Inhibition of NF- κB, PI3K/AKT and NLRP3 in Uric Acid Treated NRK-52E Tubular Epithelial Cells. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3018357. [PMID: 31240210 PMCID: PMC6556363 DOI: 10.1155/2019/3018357] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/22/2019] [Accepted: 04/16/2019] [Indexed: 01/10/2023]
Abstract
Renal inflammation can result in renal injury. Uric acid (UA) is the final product of purine metabolism in humans and because of the lack of urate oxidase, UA may accumulate in tissues, including kidney, causing inflammation. Galangin was isolated from a traditional Chinese medicine plant and possesses several beneficial effects, working as an anti-oxidant, anti-mutagenic, anti-tumor, anti-inflammatory, anti-microbial, and anti-viral agent. Therefore, this study aimed at investigating the molecular mechanism of galangin in the attenuation of UA induced renal inflammation in normal rat kidney epithelial cells NRK-52E. Our findings suggested that galangin treatment efficiently protected NRK-52E cells against UA induced renal inflammation by decreasing tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-18, prostaglandin E2 (PGE2), and nitric oxide (NO) release, and it inhibited nitric oxide synthase (iNOS), prostaglandin endoperoxide synthase 2 (PTGS2), TNF-α, IL-1β, and IL-18 mRNA expression. In addition, galangin was not exerting any cytotoxicity at the concentrations that were effective against inflammation as assessed by CCK8 assay. Moreover, western blotting showed that galangin treatment effectively inhibited nuclear factor-kappa B (NF-κB), phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT) and nucleotide-binding domain- (NOD-) like receptor protein 3 (NLRP3) signaling pathway activation. Taken together, these findings suggested that galangin plays a pivotal role in renal inflammation by suppressing inflammatory responses, which might be closely associated with the inhibition of NLRP3 inflammasome, NF-κB and PI3K/AKT signaling pathway activation.
Collapse
|
43
|
Zálešák F, Bon DJYD, Pospíšil J. Lignans and Neolignans: Plant secondary metabolites as a reservoir of biologically active substances. Pharmacol Res 2019; 146:104284. [PMID: 31136813 DOI: 10.1016/j.phrs.2019.104284] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/19/2022]
Abstract
Lignans and neolignans are plant secondary metabolites derived from the oxidative coupling of phenylpropanoids. Biological activity of these phenolic compounds ranges from antioxidant, antitumor (terminaloside P, IC50 = 10 nM), anti-inflammatory, anti-neurodegenerative (schibitubin B, IC50 = 3.2 nM) and antiviral (patentiflorin A, IC50 = 14-23 nM) to antimicrobial. In addition, it was observed that several members of this group, namely enterolactone and its biochemical precursors also known as phytoestrogens, possess important protective properties. Most of these lignans and neolignans are presented in reasonable amounts in one's diet and thus the protection they provide against the colon and breast cancer, to name a few, is even more important to note. Similarly, neuroprotective properties were observed (schisanwilsonin G, IC50 = 3.2 nM) These structural motives also serve as an important starting point in the development of anticancer drugs. Presumably the most famous members of this family, etoposide and teniposide, synthetic derivatives of podophyllotoxin, are used in the clinical treatment of lymphocytic leukemia, certain brain tumors, and lung tumors already for nearly 20 years. This review describes 413 lignans and neolignans which have been isolated between 2016 and mid-2018 being reported in more than 300 peer-reviewed articles. It covers their source, structure elucidation, and bioactivity. Within the review, the structure-based overview of compounds as well as the bioactivity-based overview of compounds are described.
Collapse
Affiliation(s)
- František Zálešák
- Department of Organic Chemistry, Faculty of Science, Palacky University, tř. 17. listopadu 1192/12, CZ-771 46 Olomouc, Czech Republic.
| | - David Jean-Yves Denis Bon
- Department of Organic Chemistry, Faculty of Science, Palacky University, tř. 17. listopadu 1192/12, CZ-771 46 Olomouc, Czech Republic.
| | - Jiří Pospíšil
- Department of Organic Chemistry, Faculty of Science, Palacky University, tř. 17. listopadu 1192/12, CZ-771 46 Olomouc, Czech Republic; Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic.
| |
Collapse
|
44
|
Kang H. MicroRNA-Mediated Health-Promoting Effects of Phytochemicals. Int J Mol Sci 2019; 20:ijms20102535. [PMID: 31126043 PMCID: PMC6566171 DOI: 10.3390/ijms20102535] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 12/17/2022] Open
Abstract
Phytochemicals are known to benefit human health by modulating various cellular processes, including cell proliferation, apoptosis, and inflammation. Due to the potential use of phytochemicals as therapeutic agents against human diseases such as cancer, studies are ongoing to elucidate the molecular mechanisms by which phytochemicals affect cellular functions. It has recently been shown that phytochemicals may regulate the expression of microRNAs (miRNAs). MiRNAs are responsible for the fine-tuning of gene expression by controlling the expression of their target mRNAs in both normal and pathological cells. This review summarizes the recent findings regarding phytochemicals that modulate miRNA expression and promote human health by exerting anticancer, photoprotective, and anti-hepatosteatosis effects. Identifying miRNAs modulated by phytochemicals and understanding the regulatory mechanisms mediated by their target mRNAs will facilitate the efforts to maximize the therapeutic benefits of phytochemicals.
Collapse
Affiliation(s)
- Hara Kang
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea.
| |
Collapse
|
45
|
Chen L, Kuang P, Liu H, Wei Q, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. Sodium Fluoride (NaF) Induces Inflammatory Responses Via Activating MAPKs/NF-κB Signaling Pathway and Reducing Anti-inflammatory Cytokine Expression in the Mouse Liver. Biol Trace Elem Res 2019; 189:157-171. [PMID: 30062462 DOI: 10.1007/s12011-018-1458-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/20/2018] [Indexed: 02/07/2023]
Abstract
At present, no reports are focused on fluoride-induced hepatic inflammatory responses in human beings and animals. This study aimed to investigate the mRNA and protein levels of inflammatory cytokines and signaling molecules for evaluating the effect of different doses (0, 12, 24, and 48 mg/kg) of sodium fluoride (NaF) on inflammatory reaction in the mouse liver by using methods of experimental pathology, quantitative real-time polymerase chain reaction (qRT-PCR), and western blot analysis. We found that NaF in excess of 12 mg/kg caused the hepatic inflammatory responses, and the results showed that NaF activated the mitogen-activated protein kinases (MAPKs) signaling pathway by markedly increasing (p < 0.01 or p < 0.05) mRNA and protein levels of apoptosis signal-regulating kinase 1 (ASK1), mitogen-activated protein kinase kinases 1/2 (MEK1/2), extracellular signal-regulated protein kinases 1/2 (Erk1/2), mitogen-activated protein kinase kinases 4/7 (MEK4/7), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (p38) and mitogen-activated protein kinase kinases 3/6 (MEK3/6), and the nuclear factor-kappa B (NF-κB) signaling pathway by increasing (p < 0.01 or p < 0.05) the production of NF-κB and inhibitor of nuclear factor kappa-B kinase subunit beta (IKK-β) and reducing (p < 0.01 or p < 0.05) the production of the inhibitory kappa B (IκB). Thus, NaF that caused the hepatic inflammatory responses was characterized by increasing (p < 0.01 or p < 0.05) the production of pro-inflammatory mediators such as interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), monocyte chemotactic protein 1 (MCP-1), and cyclooxygenase-2 (COX-2) via the activation of MAPKs and NF-κB pathways, and by significantly inhibiting (p < 0.01 or p < 0.05) the production of anti-inflammatory mediators including interleukin-4 (IL-4) and transforming growth factor beta (TGF-β).
Collapse
Affiliation(s)
- Linlin Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Ping Kuang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Huan Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Qin Wei
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China.
- Key Laboratory of Agricultural Information Engineering of Sichuan Province, Sichuan Agriculture University, Ya'an, 625014, Sichuan, China.
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Xun Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| |
Collapse
|
46
|
Tasneem S, Liu B, Li B, Choudhary MI, Wang W. Molecular pharmacology of inflammation: Medicinal plants as anti-inflammatory agents. Pharmacol Res 2019; 139:126-140. [DOI: 10.1016/j.phrs.2018.11.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 12/20/2022]
|
47
|
Zhang H, Sun X, Qi H, Ma Q, Zhou Q, Wang W, Wang K. Pharmacological Inhibition of the Temperature-Sensitive and Ca 2+-Permeable Transient Receptor Potential Vanilloid TRPV3 Channel by Natural Forsythoside B Attenuates Pruritus and Cytotoxicity of Keratinocytes. J Pharmacol Exp Ther 2019; 368:21-31. [PMID: 30377214 DOI: 10.1124/jpet.118.254045] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/26/2018] [Indexed: 03/08/2025] Open
Abstract
The temperature-sensitive and calcium-permeable transient receptor potential vanilloid 3 (TRPV3) channel abundantly expressed in keratinocytes plays important functions in skin physiology. Dysfunctional gain-of-function TRPV3 gene mutations cause genetic Olmsted syndrome characterized by periorificial keratoderma, palmoplantar keratoderma, inflammation, and severe itching, which suggests that pharmacological inhibition of overactive TRPV3 function may be beneficial in treating pruritus or skin disorders. To test this hypothesis, we identified natural compound forsythoside B as a TRPV3 inhibitor through screening of human embryonic kidney 293 (HEK293) cells expressing human TRPV3 channels in a calcium fluorescent assay. Whole-cell patch-clamp recordings of HEK293 cells expressing TRPV3 confirmed that forsythoside B selectively inhibited the channel current activated by agonist 2-aminoethoxydiphenyl borate (50 µM) in a dose-dependent fashion, with an IC50 value of 6.7 ± 0.7 μM. In vivo evaluation of scratching behavior demonstrated that pharmacological inhibition of TRPV3 by forsythoside B significantly attenuated acute itch induced by either the TRPV3 agonist carvacrol or the pruritogen histamine, as well as chronic itch induced by acetone-ether-water in a mouse model of dry skin. Furthermore, forsythoside B was able to prevent the death of HEK293 cells or native human immortalized nontumorigenic keratinocyte cells from human keratinocytes expressing a gain-of-function TRPV3 G573S mutant or in the presence of the TRPV3 agonist carvacrol. Taken together, our findings demonstrate the crucial role of TRPV3 in pruritus and keratinocyte toxicity; thus, specific inhibition of overactive TRPV3 by natural forsythoside B may possess therapeutic potential for treatment of chronic pruritus, skin allergy, or inflammation-related skin diseases.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Xiaoying Sun
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Hang Qi
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Qingxia Ma
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Qiqi Zhou
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Wei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| |
Collapse
|
48
|
Zhou B, Weng G, Huang Z, Liu T, Dai F. Arctiin Prevents LPS-Induced Acute Lung Injury via Inhibition of PI3K/AKT Signaling Pathway in Mice. Inflammation 2018; 41:2129-2135. [DOI: 10.1007/s10753-018-0856-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
49
|
Promotion of Keratinocyte Proliferation by Tracheloside through ERK1/2 Stimulation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:4580627. [PMID: 30147732 PMCID: PMC6083535 DOI: 10.1155/2018/4580627] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/17/2018] [Indexed: 11/17/2022]
Abstract
Cell migration and proliferation are important for proper wound healing after skin injury. Recent studies have shown that compounds from plants could promote cell migration and proliferation. Tracheloside, which is a plant lignan, has been found to promote the growth of HaCaT cells over 40% compared to other compounds tested based on a cell proliferation assay. An in vitro scratch assay confirmed the healing activity of tracheloside (more than 2-fold increased healing activity after 24 hours of treatment compared with the control) and revealed that this activity is better than that of allantoin (1.2-fold increased after 24 hours of treatment compared with the control), a positive control. With western blot results, wound healing with tracheloside occurred through the phosphorylation of ERK1/2. Therefore, tracheloside is a good candidate to promote wound healing and could be developed as a therapeutic agent for wound treatment or used as a leading compound with higher activity.
Collapse
|
50
|
Guan F, Lam W, Hu R, Kim YK, Han H, Cheng YC. Majority of Chinese Medicine Herb Category "Qing Re Yao" Have Multiple Mechanisms of Anti-inflammatory Activity. Sci Rep 2018; 8:7416. [PMID: 29743639 PMCID: PMC5943244 DOI: 10.1038/s41598-018-25813-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 04/24/2018] [Indexed: 11/14/2022] Open
Abstract
Herbs categorized as “Qing Re Yao” are translated into “medicine that removes heat” where heat symptoms strongly resemble inflammation. 226 herbs, among those 54 herbs are classified as “Qing Re Yao”, were studied on six key mechanisms of inflammation: COX2, iNOS activity, and the pathways of IL-6, IFNγ, TNF-α and glucocorticoid in order to assess if the majority of this family of herbs have anti-inflammatory activity. 96% demonstrated at least one anti-inflammatory process or innate immunity modular activity, and 72% could affect one anti-inflammatory process. Of the, 54 “Qing Re Yao” 68% affect at least 2 mechanism compared to only 4% (47 herbs) in the “Bu Yi Yao” category that are used to “tonify body energy” and prevent diseases. Moreover 43% of “Qing Re Yao” herbs affect 3 or more mechanisms while none of the “Bu Yi Yao” have this poly-mechanism quality. Additionally “Qing Re Yao” herbs exhibiting activity against STAT3 or GAS could have downstream effects on these target genes and their pathways. Our study addresses the key action on why “Qing Re Yao” work on inflammation. This study also demonstrates the utility in isolating anti-inflammatory substances to be used as a lead for drug discovery and development.
Collapse
Affiliation(s)
- Fulan Guan
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, 06510, USA
| | - Wing Lam
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, 06510, USA
| | - Rong Hu
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, 06510, USA
| | - Yun Kyung Kim
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, 06510, USA
| | - Hua Han
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, 06510, USA
| | - Yung-Chi Cheng
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, 06510, USA.
| |
Collapse
|