1
|
Kim YH, Kim HS, Hong IS. Advances in biomaterials-based tissue engineering for regeneration of female reproductive tissues. Biofabrication 2025; 17:022001. [PMID: 39854843 DOI: 10.1088/1758-5090/adae38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 01/24/2025] [Indexed: 01/27/2025]
Abstract
The anatomical components of the female reproductive system-comprising the ovaries, uterus, cervix, vagina, and fallopian tubes-interact intricately to provide the structural and hormonal support essential for reproduction. However, this system is susceptible to various detrimental factors, both congenital and acquired, that can impair fertility and adversely affect quality of life. Recent advances in bioengineering have led to the development of sophisticated three-dimensional models that mimic the complex architecture and functionality of reproductive organs. These models, incorporating diverse cell types and tissue layers, are crucial for understanding physiological processes within the reproductive tract. They offer insights into decidualization, ovulation, folliculogenesis, and the progression of reproductive cancers, thereby enhancing personalized medical treatments and addressing female infertility. This review highlights the pivotal role of tissue engineering in diagnosing and treating female infertility, emphasizing the importance of considering factors like biocompatibility, biomaterial selection, and mechanical properties in the design of bioengineered systems. The challenge of replicating the functionally specialized and structurally complex organs, such as the uterus and ovary, underscores the need for reliable techniques that improve morphological and functional restoration. Despite substantial progress, the goal of creating a fully artificial female reproductive system is still a challenge. Nonetheless, the recent fabrication of artificial ovaries, uteruses, cervixes, and vaginas marks significant advancements toward this aim. Looking forward, the challenges in bioengineering are expected to spur further innovations in both basic and applied sciences, potentially hastening the clinical adoption of these technologies.
Collapse
Affiliation(s)
- Yong Ho Kim
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Hyung-Sik Kim
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - In-Sun Hong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840, Republic of Korea
| |
Collapse
|
2
|
Assens M, Frederiksen H, Pedersen AT, Petersen JH, Andersson AM, Sundberg K, Jensen LN, Curtin P, Skakkebæk NE, Swan SH, Main KM. Prenatal phthalate exposure and pubertal development in 16-year-old daughters: reproductive hormones and number of ovarian follicles. Hum Reprod 2024; 39:2501-2511. [PMID: 39385341 DOI: 10.1093/humrep/deae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 08/24/2024] [Indexed: 10/12/2024] Open
Abstract
STUDY QUESTION Is there a possible association between prenatal phthalate exposure and late effects in teenage daughters with respect to reproductive hormone levels, uterine volume, and number of ovarian follicles? SUMMARY ANSWER Our study showed subtle associations between phthalate metabolite concentrations in maternal serum from pregnancy or cord blood and LH and insulin-like growth factor 1 (IGF-1) levels as well as uterine volume in their daughters 16 years later. WHAT IS KNOWN ALREADY Endocrine-disrupting environmental chemicals may adversely affect human reproductive health, and many societies have experienced a trend toward earlier puberty and an increasing prevalence of infertility in young couples. The scientific evidence of adverse effects of foetal exposure to a large range of chemicals, including phthalates, on male reproductive health is growing, but very few studies have explored effects on female reproduction. STUDY DESIGN, SIZE, DURATION This follow-up study included 317 teenage daughters who were part of the Copenhagen Mother-Child Cohort, a population-based longitudinal birth cohort of 1210 females born between 1997 and 2002. PARTICIPANTS/MATERIALS, SETTING, METHODS A total of 317 female participants (median age 16 years) were examined for weight, height, and menstrual pattern. A serum sample was analysed for concentrations of reproductive hormones, and trans-abdominal 3D ultrasonography was performed to obtain the number of ovarian follicles, ovarian and uterine size. Prenatal maternal serum samples were available for 115 females, and cord blood samples were available for 118 females. These were analysed for concentrations of 32 phthalate metabolites. Weighted quantile sum regression was used for modelling associations of combined prenatal phthalate exposure with the reproductive outcomes in post-menarcheal females. MAIN RESULTS AND THE ROLE OF CHANCE In bivariate correlation analyses, negative significant associations were found between several prenatal phthalate metabolite concentrations and serum hormone concentrations (testosterone, 17-OH-progesterone, and IGF-1) as well as number of ovarian follicles in puberty. Positive significant correlations were found between prenatal phthalate exposure and FSH and sex hormone-binding globulin concentrations. Combined analyses of phthalate exposure (weighted quantile sums) showed significant negative associations with IGF-1 concentration and uterine volume as well as a significant positive association with LH concentration. LIMITATIONS, REASONS FOR CAUTION Phthalate metabolites were measured in serum from single prenatal maternal blood samples and cord blood samples. Potential concomitant exposure to other endocrine-disrupting environmental chemicals before or after birth was not controlled for. The study population size was limited. WIDER IMPLICATIONS OF THE FINDINGS Our results support the need for further research into possible adverse effects of environmental chemicals during foetal development of the female reproductive system. STUDY FUNDING/COMPETING INTEREST(S) The work was supported by The Center on Endocrine Disruptors (CeHoS) under The Danish Environmental Protection Agency and The Ministry of Environment and Food (grant number: MST-621-00 065). No conflicts of interest are declared. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Maria Assens
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- International Center for Research & Training in Endocrine Disruption of Male Reproduction & Child Health (EDMaRC), Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- International Center for Research & Training in Endocrine Disruption of Male Reproduction & Child Health (EDMaRC), Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Anette Tønnes Pedersen
- Department of Gynaecology, The Fertility Clinic, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jørgen Holm Petersen
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- International Center for Research & Training in Endocrine Disruption of Male Reproduction & Child Health (EDMaRC), Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Karin Sundberg
- Department of Obstetrics, Center of Fetal Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Lisa Neerup Jensen
- Department of Obstetrics, Center of Fetal Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Paul Curtin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Niels E Skakkebæk
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- International Center for Research & Training in Endocrine Disruption of Male Reproduction & Child Health (EDMaRC), Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Shanna H Swan
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katharina M Main
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- International Center for Research & Training in Endocrine Disruption of Male Reproduction & Child Health (EDMaRC), Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Shang J, Wang S, Wang A, Li F, Zhang J, Wang J, Lv R, Chen H, Mu X, Zhang K, Bai X, Tian Y. Intra-ovarian inflammatory states and their associations with embryo quality in normal-BMI PCOS patients undergoing IVF treatment. Reprod Biol Endocrinol 2024; 22:11. [PMID: 38212789 PMCID: PMC10782707 DOI: 10.1186/s12958-023-01183-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/28/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is the main cause of anovulatory infertility in women of reproductive age, and low-grade chronic inflammation plays a key role in the occurrence and development of PCOS. However, obesity, as a likely confounding factor, can affect the inflammatory state of PCOS patients. OBJECTIVE The aim of this study was to comprehensively investigate intra-ovarian inflammatory states and their impact on embryo quality in PCOS patients with a normal BMI undergoing IVF treatment. METHODS DIA-mass spectrometry-based proteomics and bioinformatic analysis were combined to comprehensively profile the protein expression of granulosa cells (GCs) from 5 normal-BMI PCOS patients and 5 controls. Thirty-four cytokines were further systematically detected in follicular fluid (FF) from 32 age- and BMI-matched normal-BMI patients using Luminex liquid chip suspension technology. Next, the differentially expressed cytokines were evaluated by enzyme-linked immunosorbent assay (ELISA) in 24 newly recruited subjects, and the relationship between these cytokines and embryo quality in PCOS patients was analysed. Finally, these cytokine levels were compared and evaluated in PCOS patients with different androgen levels. RESULTS Proteomic analysis showed that the suppression of substance metabolism and steroid biosynthesis, more interestingly, resulted in an enhanced immune and inflammatory response in the GCs of normal-BMI PCOS patients and prompted the involvement of cytokines in this process. Luminex analysis further showed that FF macrophage inflammatory protein-1 beta (MIP-1β) and stromal cell-derived factor-1 alpha (SDF-1α) levels were significantly increased in normal-BMI PCOS patients compared to controls (P = 0.005; P = 0.035, respectively), and the ELISA results were consistent with these findings. Besides, FF MIP-1β showed an inverse correlation with the number of D3 good-quality embryos and the good-quality blastocyst rate in patients with PCOS (P = 0.006; P = 0.003, respectively), which remained significant after correction for multiple comparisons. Moreover, SDF-1α levels had no relationship with embryo development in PCOS patients. Additionally, SDF-1α levels were significantly lower in PCOS patients with high androgen levels than in controls (P = 0.031). CONCLUSIONS Local ovarian inflammation was present in normal-BMI PCOS patients, affecting follicular development, and FF MIP-1β may be a potential biomarker associated with embryo quality in normal-BMI PCOS patients.
Collapse
Affiliation(s)
- Jie Shang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No.154, Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Siyu Wang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Aiyuan Wang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Fang Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No.154, Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No.154, Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jin Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No.154, Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Rui Lv
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No.154, Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Haixia Chen
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No.154, Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaohuan Mu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No.154, Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Kai Zhang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Xiaohong Bai
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No.154, Anshan Road, Heping District, Tianjin, 300052, China.
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China.
| | - Ye Tian
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No.154, Anshan Road, Heping District, Tianjin, 300052, China.
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
4
|
Thangaraj SV, Zeng L, Pennathur S, Lea R, Sinclair KD, Bellingham M, Evans NP, Auchus R, Padmanabhan V. Developmental programming: Impact of preconceptional and gestational exposure to a real-life environmental chemical mixture on maternal steroid, cytokine and oxidative stress milieus in sheep. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165674. [PMID: 37495149 PMCID: PMC10568064 DOI: 10.1016/j.scitotenv.2023.165674] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Gestational exposure to environmental chemicals (ECs) is associated with adverse, sex-specific offspring health effects of global concern. As the maternal steroid, cytokine and oxidative stress milieus can have critical effects on pregnancy outcomes and the programming of diseases in offspring, it is important to study the impact of real-life EC exposure, i.e., chronic low levels of mixtures of ECs on these milieus. Sheep exposed to biosolids, derived from human waste, is an impactful model representing the ECs humans are exposed to in real-life. Offspring of sheep grazed on biosolids-treated pasture are characterized by reproductive and metabolic disruptions. OBJECTIVE To determine if biosolids exposure disrupts the maternal steroid, cytokine and oxidative stress milieus, in a fetal sex-specific manner. METHODS Ewes were maintained before mating and through gestation on pastures fertilized with biosolids (BTP), or inorganic fertilizer (Control). From maternal plasma collected mid-gestation, 19 steroids, 14 cytokines, 6 oxidative stress markers were quantified. Unpaired t-test and ANOVA were used to test for differences between control and BTP groups (n = 15/group) and between groups based on fetal sex, respectively. Correlation between the different markers was assessed by Spearman correlation. RESULTS Concentrations of the mineralocorticoids - deoxycorticosterone, corticosterone, the glucocorticoids - deoxycortisol, cortisol, cortisone, the sex steroids - androstenedione, dehydroepiandrosterone, 16-OH-progesterone and reactive oxygen metabolites were higher in the BTP ewes compared to Controls, while the proinflammatory cytokines IL-1β and IL-17A and anti-inflammatory IL-36RA were decreased in the BTP group. BTP ewes with a female fetus had lower levels of IP-10. DISCUSSION These findings suggest that pre-conceptional and gestational exposure to ECs in biosolids increases steroids, reactive oxygen metabolites and disrupts cytokines in maternal circulation, likely contributors to the aberrant phenotypic outcomes seen in offspring of BTP sheep - a translationally relevant precocial model.
Collapse
Affiliation(s)
- S V Thangaraj
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - L Zeng
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - S Pennathur
- Departments of Medicine and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - R Lea
- Schools of Biosciences and Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - K D Sinclair
- Schools of Biosciences and Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - M Bellingham
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - N P Evans
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - R Auchus
- Departments of Pharmacology & Internal medicine, Division of Metabolism, Endocrinology, & Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - V Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Dovom MR, Noroozzadeh M, Mosaffa N, Zadeh‐Vakili A, Piryaei A, Rahmati M, Azar MF, Tehrani FR. Continued exposure to D‐galactose in postnatal period may inhibit excessive primordial follicle reduction in rats exposed prenatally to D‐galactose. Birth Defects Res 2022; 114:1112-1122. [DOI: 10.1002/bdr2.2083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/03/2022] [Accepted: 08/12/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Marzieh Rostami Dovom
- Reproductive Endocrinology Research Center Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mahsa Noroozzadeh
- Reproductive Endocrinology Research Center Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Azita Zadeh‐Vakili
- Endocrine Research Center Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center Royan Institute for Stem Cell Biology and Technology, ACECR Tehran Iran
| | - Maryam Rahmati
- Reproductive Endocrinology Research Center Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mahbanoo Farhadi Azar
- Reproductive Endocrinology Research Center Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Fahimeh Ramezani Tehrani
- Reproductive Endocrinology Research Center Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
6
|
Iljin A, Antoszewski B, Szewczyk T, Sitek A. The 2D:4D index is associated with the development of excess body weight in adults, but not with the rate of weight loss following bariatric surgery. Sci Rep 2022; 12:8078. [PMID: 35578001 PMCID: PMC9110364 DOI: 10.1038/s41598-022-12306-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 05/09/2022] [Indexed: 01/17/2023] Open
Abstract
2D:4D finger length ratio is a proxy of prenatal sex hormone exposure. Prenatal testosterone decreases and prenatal estrogens increase this index. In the current study we investigated whether the 2D:4D index, as a marker of the prenatal hormonal environment, is associated with the development of overweight and obesity in adults, and whether is it correlated with the rate of weight loss in patients after bariatric surgery. We tested 125 adults with obesity (BMI ≥ 30.0 kg/m2), 125 adults with overweight (BMI 25.0–29.9 kg/m2) and 153 persons with normal body weight (BMI < 25 kg/m2) of both sexes. We have found that the development of excessive body weight in men and women, and fat accumulation in the upper arms, thighs and lower legs in women with obesity (but not men) are associated with increased prenatal estrogen exposure. This relationship indicates a new area of activity in the field of obesity prevention. Moreover, it seems that the 2D:4D index (especially of the right hand) may be a useful factor in early prediction of the risk of developing excessive body weight in humans. The rate of weight loss after bariatric surgery is independent of prenatal exposure to sex hormones.
Collapse
Affiliation(s)
- Aleksandra Iljin
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Lodz, ul. Kopcińskiego 22, 90-153, Łódź, Poland
| | - Bogusław Antoszewski
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Lodz, ul. Kopcińskiego 22, 90-153, Łódź, Poland
| | - Tomasz Szewczyk
- Clinical Department of Gastroenterology, Oncology and General Surgery, USK No. 1, ul. Kopcińskiego 22, 90-153, Łódź, Poland.,Department of General Surgery, Regional Health Center, ul. Gen. Józefa Bema 5-6, 59-300, Lubin, Poland
| | - Aneta Sitek
- Department of Anthropology, Faculty of Biology and Environmental Protection, University of Lodz, ul. Banacha 12/16, 90-237, Łódź, Poland.
| |
Collapse
|
7
|
Witek P, Grzesiak M, Koziorowski M, Slomczynska M, Knapczyk-Stwora K. Long-Term Changes in Ovarian Follicles of Gilts Exposed Neonatally to Methoxychlor: Effects on Oocyte-Derived Factors, Anti-Müllerian Hormone, Follicle-Stimulating Hormone, and Cognate Receptors. Int J Mol Sci 2022; 23:ijms23052780. [PMID: 35269923 PMCID: PMC8911393 DOI: 10.3390/ijms23052780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
In this paper, we investigated the effects of neonatal exposure to methoxychlor (MXC), a synthetic organochlorine used as an insecticide with estrogenic, antiestrogenic, and antiandrogenic activities on ovarian follicles of adult pigs. Piglets were injected with MXC (20 μg/kg body weight) or corn oil (controls) from postnatal Day 1 to Day 10 (n = 5 per group). Then, mRNA expression, protein abundance and immunolocalization of growth and differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15), anti-Müllerian hormone (AMH) and cognate receptors (ACVR1, BMPR1A, BMPR1B, TGFBR1, BMPR2, and AMHR2), as well as FSH receptor (FSHR) were examined in preantral and small antral ovarian follicles of sexually mature gilts. The plasma AMH and FSH levels were also assessed. In preantral follicles, neonatal exposure to MXC increased GDF9, BMPR1B, TGFBR1, and BMPR2 mRNAs, while the levels of AMH and BMP15 mRNAs decreased. In addition, MXC also decreased BMP15 and BMPR1B protein abundance. Regarding small antral follicles, neonatal exposure to MXC upregulated mRNAs for BMPR1B, BMPR2, and AMHR2 and downregulated mRNAs for AMH, BMPR1A, and FSHR. MXC decreased the protein abundance of AMH, and all examined receptors in small antral follicles. GDF9 and BMP15 were immunolocalized in oocytes and granulosa cells of preantral follicles of control and treated ovaries. All analyzed receptors were detected in the oocytes and granulosa cells of preantral follicles, and in the granulosa and theca cells of small antral follicles. The exception, however, was FSHR, which was detected only in the granulosa cells of small antral follicles. In addition, MXC decreased the plasma AMH and FSH concentrations. In conclusion, the present study may indicate long-term effects of neonatal MXC exposure on GDF9, BMP15, AMH, and FSH signaling in ovaries of adult pigs. However, the MXC effects varied at different stages of follicular development. It seems that neonatal MXC exposure may result in accelerated initial recruitment of ovarian follicles and impaired cyclic recruitment of antral follicles.
Collapse
Affiliation(s)
- Patrycja Witek
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland; (M.G.); (M.S.)
- Correspondence: (P.W.); (K.K.-S.)
| | - Małgorzata Grzesiak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland; (M.G.); (M.S.)
| | - Marek Koziorowski
- Department of Physiology and Reproduction of Animals, Institute of Biotechnology, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland;
| | - Maria Slomczynska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland; (M.G.); (M.S.)
| | - Katarzyna Knapczyk-Stwora
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland; (M.G.); (M.S.)
- Correspondence: (P.W.); (K.K.-S.)
| |
Collapse
|
8
|
Wang Y, Guo B, Guo Y, Qi N, Lv Y, Ye Y, Huang Y, Long X, Chen H, Su C, Zhang L, Zhang Q, Li M, Liao J, Yan Y, Mao X, Zeng Y, Jiang J, Chen Z, Guo Y, Gao S, Cheng J, Jiang Y, Mo Z. A spatiotemporal steroidogenic regulatory network in human fetal adrenal glands and gonads. Front Endocrinol (Lausanne) 2022; 13:1036517. [PMID: 36465633 PMCID: PMC9713933 DOI: 10.3389/fendo.2022.1036517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/28/2022] [Indexed: 11/18/2022] Open
Abstract
Human fetal adrenal glands produce substantial amounts of dehydroepiandrosterone (DHEA), which is one of the most important precursors of sex hormones. However, the underlying biological mechanism remains largely unknown. Herein, we sequenced human fetal adrenal glands and gonads from 7 to 14 gestational weeks (GW) via 10× Genomics single-cell transcriptome techniques, reconstructed their location information by spatial transcriptomics. Relative to gonads, adrenal glands begin to synthesize steroids early. The coordination among steroidogenic cells and multiple non-steroidogenic cells promotes adrenal cortex construction and steroid synthesis. Notably, during the window of sexual differentiation (8-12 GW), key enzyme gene expression shifts to accelerate DHEA synthesis in males and cortisol synthesis in females. Our research highlights the robustness of the action of fetal adrenal glands on gonads to modify the process of sexual differentiation.
Collapse
Affiliation(s)
- Yifu Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Bingqian Guo
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Guangxi Collaborative Innovation Center for Biomedicine (Guangxi-Association of Southeast Asian Nations (ASEAN) Collaborative Innovation Center for Major Disease Prevention and Treatment), Guangxi Medical University, Nanning, Guangxi, China
| | - Yajie Guo
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Guangxi Collaborative Innovation Center for Biomedicine (Guangxi-Association of Southeast Asian Nations (ASEAN) Collaborative Innovation Center for Major Disease Prevention and Treatment), Guangxi Medical University, Nanning, Guangxi, China
| | - Nana Qi
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Guangxi Collaborative Innovation Center for Biomedicine (Guangxi-Association of Southeast Asian Nations (ASEAN) Collaborative Innovation Center for Major Disease Prevention and Treatment), Guangxi Medical University, Nanning, Guangxi, China
| | - Yufang Lv
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yu Ye
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Urology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yan Huang
- Department of Obstetrics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xinyang Long
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- School of Public Health of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Hongfei Chen
- Department of Obstetrics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Cheng Su
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Liying Zhang
- Department of Gynecology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qingyun Zhang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Urology, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Minxi Li
- Department of Gynecology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jinling Liao
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Guangxi Collaborative Innovation Center for Biomedicine (Guangxi-Association of Southeast Asian Nations (ASEAN) Collaborative Innovation Center for Major Disease Prevention and Treatment), Guangxi Medical University, Nanning, Guangxi, China
| | - Yunkun Yan
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xingning Mao
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Guangxi Collaborative Innovation Center for Biomedicine (Guangxi-Association of Southeast Asian Nations (ASEAN) Collaborative Innovation Center for Major Disease Prevention and Treatment), Guangxi Medical University, Nanning, Guangxi, China
| | - Yanyu Zeng
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Guangxi Collaborative Innovation Center for Biomedicine (Guangxi-Association of Southeast Asian Nations (ASEAN) Collaborative Innovation Center for Major Disease Prevention and Treatment), Guangxi Medical University, Nanning, Guangxi, China
| | - Jinghang Jiang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhongyuan Chen
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Guangxi Collaborative Innovation Center for Biomedicine (Guangxi-Association of Southeast Asian Nations (ASEAN) Collaborative Innovation Center for Major Disease Prevention and Treatment), Guangxi Medical University, Nanning, Guangxi, China
| | - Yi Guo
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shuai Gao
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiwen Cheng
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yonghua Jiang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Guangxi Collaborative Innovation Center for Biomedicine (Guangxi-Association of Southeast Asian Nations (ASEAN) Collaborative Innovation Center for Major Disease Prevention and Treatment), Guangxi Medical University, Nanning, Guangxi, China
- Department of Obstetrics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
- *Correspondence: Zengnan Mo, ; Yonghua Jiang,
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- *Correspondence: Zengnan Mo, ; Yonghua Jiang,
| |
Collapse
|
9
|
Björkgren I, Chung DH, Mendoza S, Gabelev-Khasin L, Petersen NT, Modzelewski A, He L, Lishko PV. Alpha/Beta Hydrolase Domain-Containing Protein 2 Regulates the Rhythm of Follicular Maturation and Estrous Stages of the Female Reproductive Cycle. Front Cell Dev Biol 2021; 9:710864. [PMID: 34568325 PMCID: PMC8455887 DOI: 10.3389/fcell.2021.710864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/09/2021] [Indexed: 12/26/2022] Open
Abstract
Mammalian female fertility is defined by a successful and strictly periodic ovarian cycle, which is under the control of gonadotropins and steroid hormones, particularly progesterone and estrogen. The latter two are produced by the ovaries that are engaged in controlled follicular growth, maturation, and release of the eggs, i.e., ovulation. The steroid hormones regulate ovarian cycles via genomic signaling, by altering gene transcription and protein synthesis. However, despite this well-studied mechanism, steroid hormones can also signal via direct, non-genomic action, by binding to their membrane receptors. Here we show, that the recently discovered membrane progesterone receptor α/β hydrolase domain-containing protein 2 (ABHD2) is highly expressed in mammalian ovaries where the protein plays a novel regulatory role in follicle maturation and the sexual cycle of females. Ablation of Abhd2 caused a dysregulation of the estrous cycle rhythm with females showing shortened luteal stages while remaining in the estrus stage for a longer time. Interestingly, the ovaries of Abhd2 knockout (KO) females resemble polycystic ovary morphology (PCOM) with a high number of atretic antral follicles that could be rescued with injection of gonadotropins. Such a procedure also allowed Abhd2 KO females to ovulate a significantly increased number of mature and fertile eggs in comparison with their wild-type littermates. These results suggest a novel regulatory role of ABHD2 as an important factor in non-genomic steroid regulation of the female reproductive cycle.
Collapse
Affiliation(s)
- Ida Björkgren
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Dong Hwa Chung
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Sarah Mendoza
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Liliya Gabelev-Khasin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Natalie T. Petersen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Andrew Modzelewski
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Lin He
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Polina V. Lishko
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
- The Center for Reproductive Longevity and Equality at the Buck Institute for Research on Aging, Novato, CA, United States
| |
Collapse
|
10
|
Salinas I, Sinha N, Sen A. Androgen-induced epigenetic modulations in the ovary. J Endocrinol 2021; 249:R53-R64. [PMID: 33764313 PMCID: PMC8080881 DOI: 10.1530/joe-20-0578] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/24/2021] [Indexed: 12/16/2022]
Abstract
In recent years, androgens have emerged as critical regulators of female reproduction and women's health in general. While high levels of androgens in women are associated with polycystic ovary syndrome (PCOS), recent evidence suggests that a certain amount of direct androgen action through androgen receptor is also essential for normal ovarian function. Moreover, prenatal androgen exposure has been reported to cause developmental reprogramming of the fetus that manifests into adult pathologies, supporting the Developmental Origins of Health and Disease (DOHaD) hypothesis. Therefore, it has become imperative to understand the underlying mechanism of androgen actions and its downstream effects under normal and pathophysiological conditions. Over the years, there has been a lot of studies on androgen receptor function as a transcriptional regulator in the nucleus as well as androgen-induced rapid extra-nuclear signaling. Conversely, new evidence suggests that androgen actions may also be mediated through epigenetic modulation involving both the nuclear and extra-nuclear androgen signaling. This review focuses on androgen-induced epigenetic modifications in female reproduction, specifically in the ovary, and discusses emerging concepts, latest perceptions, and highlight the areas that need further investigation.
Collapse
Affiliation(s)
- Irving Salinas
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI 48824, USA
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Niharika Sinha
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI 48824, USA
- Department of Animal Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Aritro Sen
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI 48824, USA
- Department of Animal Sciences, Michigan State University, East Lansing, MI 48824, USA
- Corresponding author and person to whom reprint request should be addressed: Aritro Sen Ph.D., Reproductive and Developmental Sciences Program, 3013 Interdisciplinary Science & Technology Building, 766 Service Road, Michigan State University, East Lansing, MI 48824, Ph:517-432-4585;
| |
Collapse
|
11
|
Wei JF, Huang SB, Jin P, Li JY, Yang YY, Hu CJ, Yang LF, Zhang ZW, Deng M, Deng JP. An incremental feeding pattern for Guangdong Small-ear Spotted gilts during gestation: effects on stillbirth rate and muscle weight of progeny. Domest Anim Endocrinol 2021; 75:106604. [PMID: 33556766 DOI: 10.1016/j.domaniend.2021.106604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 11/08/2020] [Accepted: 01/05/2021] [Indexed: 11/25/2022]
Abstract
While an appropriate feed intake is crucial for the reproductive performance of sows, there is a lack of recommendations currently for feed allowance of Guangdong Small-ear Spotted gilts during gestation. The effects of 2 different feeding patterns during gestation on the reproductive performance of Guangdong Small-ear Spotted gilts were investigated by assigning 80 gilts to 2 feeding pattern groups with a randomized complete block design in accordance with initial body weight and back fat thickness, followed by treatment with an incremental feeding pattern (IFP) and a concaved feeding pattern, respectively, with no difference in total feed intake. The IFP group showed a significant decrease in the stillbirth rate (P < 0.05) and an upward trend in piglet mean birth weight (P = 0.06). Furthermore, the IFP group exhibited an increase in the weights of stomach, supraspinatus tendon, triceps, and psoas minor in neonatal piglets (P < 0.05). Overall, the results of the present investigation showed that IFP could significantly reduce the stillbirth rate of Guangdong Small-ear Spotted gilts and increase the muscle weight of progeny.
Collapse
Affiliation(s)
- J F Wei
- Guangzhou DaBeiNong Agri-animal Huabandry Science and Technology Co., Ltd, Guangzhou, Guangdong 510642, China
| | - S B Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - P Jin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - J Y Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Y Y Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - C J Hu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - L F Yang
- Guangdong Yihao Foodstuffs Co. Ltd, Guangzhou, Guangdong 510642, China
| | - Z W Zhang
- Guangdong Yihao Foodstuffs Co. Ltd, Guangzhou, Guangdong 510642, China
| | - M Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - J P Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
12
|
Yao S, Lopez-Tello J, Sferruzzi-Perri AN. Developmental programming of the female reproductive system-a review. Biol Reprod 2020; 104:745-770. [PMID: 33354727 DOI: 10.1093/biolre/ioaa232] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
Exposures to adverse conditions in utero can lead to permanent changes in the structure and function of key physiological systems in the developing fetus, increasing the risk of disease and premature aging in later postnatal life. When considering the systems that could be affected by an adverse gestational environment, the reproductive system of developing female offspring may be particularly important, as changes have the potential to alter both reproductive capacity of the first generation, as well as health of the second generation through changes in the oocyte. The aim of this review is to examine the impact of different adverse intrauterine conditions on the reproductive system of the female offspring. It focuses on the effects of exposure to maternal undernutrition, overnutrition/obesity, hypoxia, smoking, steroid excess, endocrine-disrupting chemicals, and pollutants during gestation and draws on data from human and animal studies to illuminate underlying mechanisms. The available data indeed indicate that adverse gestational environments alter the reproductive physiology of female offspring with consequences for future reproductive capacity. These alterations are mediated via programmed changes in the hypothalamic-pituitary-gonadal axis and the structure and function of reproductive tissues, particularly the ovaries. Reproductive programming may be observed as a change in the timing of puberty onset and menopause/reproductive decline, altered menstrual/estrous cycles, polycystic ovaries, and elevated risk of reproductive tissue cancers. These reproductive outcomes can affect the fertility and fecundity of the female offspring; however, further work is needed to better define the possible impact of these programmed changes on subsequent generations.
Collapse
Affiliation(s)
- Sijia Yao
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, UK
| | - Jorge Lopez-Tello
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, UK
| | - Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, UK
| |
Collapse
|
13
|
Stenhouse C, Cortes-Araya Y, Hogg CO, Donadeu FX, Ashworth CJ. Associations between foetal size and ovarian development in the pig. Anim Reprod Sci 2020; 221:106589. [PMID: 32920249 DOI: 10.1016/j.anireprosci.2020.106589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 01/17/2023]
Abstract
It is estimated that intra-uterine growth restricted piglets represent 25 % of the total number of piglets born. Growth restricted female pigs have impaired reproductive performance postnatally. HHowever, when during gestation this phenotype arises is not known. With this study, the aim was to improve the understanding of foetal ovarian development in normal and small foetuses throughout gestation. Female Large White X Landrace foetuses were obtained at gestational day (GD) 45, 60 and 90 (n = 5-6 litters/GD). Histological analysis of GATA4 stained foetal ovaries at GD60 and 90 indicated there were fewer primary follicles (P ≤ 0.05) in the foetuses weighing the least compared to those with a weight similar to the mean for the litter (CTMLW) at GD90. Plasma oestradiol concentrations were less in the foetuses with lesser weights compared with greater weight foetuses at GD90 (P ≤ 0.05). The RNA was extracted from ovaries of the lesser weight and CTMLW foetuses at GD45, 60 and 90 and qPCR was performed to quantify relative abundance of 12 candidate mRNAs for which encoded proteins that modulate ovarian function and development. Gestational changes in relative abundances of CD31, PTGFR, SPP1 and VEGFA mRNA transcripts were observed. Relative abundance of KI67 (P = 0.066) and P53 (P ≤ 0.05) was less in ovaries of the lesser weight compared to CTMLW foetuses at GD60. There was a lesser relative abundance of PTGFR mRNA transcript in ovaries from the foetuses with lesser weight compared to CTMLW foetuses at GD45 and 60 (P ≤ 0.05). These findings indicate that postnatal differences in the reproductive potential of growth restricted females are programmed early in gestation. It is hoped that further investigation will improve the understanding of the relationship between prenatal reproductive development and postnatal reproductive performance.
Collapse
Affiliation(s)
- Claire Stenhouse
- Functional Genetics and Development Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK.
| | - Yennifer Cortes-Araya
- Functional Genetics and Development Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Charis O Hogg
- Functional Genetics and Development Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - F Xavier Donadeu
- Functional Genetics and Development Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Cheryl J Ashworth
- Functional Genetics and Development Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| |
Collapse
|
14
|
The Effect of Twin Sex on Menstrual Characteristics. Medicina (B Aires) 2020; 56:medicina56040173. [PMID: 32290215 PMCID: PMC7230271 DOI: 10.3390/medicina56040173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 11/17/2022] Open
Abstract
Background and objectives: The purpose of this project is to evaluate the association between twin sex discordance and menstrual characteristics. We hypothesize that sharing the uterus with a male twin can change ovulation programming, hence changing the menstrual cycle characteristics during adulthood. This project could be novel in discovering new physiological mechanisms of hormone exposure and menstrual cycles. Materials and methods: This is a cross-sectional study. We asked females from sex-concordant (n = 1290) and sex-discordant (n = 168) twin pairs in the Washington State Twin Registry about characteristics of menstrual cycles. Generalized Estimating Equation (GEE) analysis was used to compare groups. The main outcome measures included the amount of bleeding, duration of menstruation, the timing of menstruation, length of menstruation, and a number of periods per year. Results: We found a statistically significant association between the amount of menstrual period bleeding and twin sex discordance (0.42 (95% CI 0.18–0.94)). However, twin sex discordance was not associated with period duration, length of menstrual cycle, cycle regularity, or a number of periods per year. Conclusions: Twin sex discordance is not a predictor of clinical characteristics of menstruation during adulthood except for the amount of bleeding. Future studies should focus on the impact of male hormones on the amount of bleeding during menstruation.
Collapse
|
15
|
Neonatal Exposure to Agonists and Antagonists of Sex Steroid Receptors Affects AMH and FSH Plasma Level and Their Receptors Expression in the Adult Pig Ovary. Animals (Basel) 2019; 10:ani10010012. [PMID: 31861570 PMCID: PMC7022616 DOI: 10.3390/ani10010012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The ovarian development and the establishment of ovarian reserve during fetal and/or neonatal life is critical for future reproductive success. Many environmental chemicals are known to negatively affect development and physiology of human and animal ovaries by interfering with endocrine systems, resulting in aberrant reproductive functions. The present study shows the long-term impact of neonatal exposure to agonists and antagonists of sex steroid receptors on AMH and FSH signalling in the ovary of adult pigs. Our findings suggest alteration in ovarian follicle recruitment from ovarian reserve arising from neonatal disruption of androgen/estrogen signalling induced by environmental endocrine active compounds. Everyday use of many endocrine disruptors is already prohibited after their harmful impacts on normal physiology have become known. Nevertheless, market introduction of new chemicals with potential deleterious influence on reproductive physiology has continued. Our outcomes confirm that a neonatal window plays an essential role in the physiological programming of ovarian function in adult pigs. The influence of environmental chemicals on this critical neonatal window needs to be investigated in order to gain a comprehensive view of deleterious interactions between endocrine disrupting chemicals and ovarian function. Abstract In this study piglets were injected with testosterone propionate (TP, an androgen), flutamide (FLU, an antiandrogen), 4-tert-octylphenol (OP, an estrogenic compound), ICI 182,780 (ICI, an antiestrogen) or corn oil (controls) between postnatal days 1 and 10 (N = 5/group). Then plasma anti-Müllerian hormone (AMH) and follicle stimulating hormone (FSH) concentration and the expression of their receptors were examined in the adult pig ovary. TP and FLU decreased plasma AMH and FSH concentration. In preantral follicles, TP resulted in upregulation of AMHR2 and FSHR expression, but decreased AMH protein abundance. FLU upregulated AMHR2 expression, while OP increased FSHR mRNA. In small antral follicles, OP upregulated ACVR1 and BMPR1A expression, while FLU increased BMPR1A mRNA. FLU and ICI resulted in upregulation of AMHR2 expression. TP and FLU upregulated AMH expression, while it was downregulated in response to OP or ICI. Moreover, OP and ICI resulted in downregulation of FSHR expression, while FLU decreased FSHR protein abundance. In conclusion, neonatal exposure to either agonist or antagonist of androgen receptor affected AMH and FSH signalling systems in preantral follicles. In small antral follicles these systems were influenced by compounds with estrogenic, antiestrogenic, and antiandrogenic activity. Consequently, these hormonal agents may cause an accelerated recruitment of primordial follicles and affect the cycling recruitment of small antral follicles in pigs.
Collapse
|
16
|
Hartanti MD, Hummitzsch K, Irving-Rodgers HF, Bonner WM, Copping KJ, Anderson RA, McMillen IC, Perry VEA, Rodgers RJ. Morphometric and gene expression analyses of stromal expansion during development of the bovine fetal ovary. Reprod Fertil Dev 2019; 31:482-495. [PMID: 30501845 DOI: 10.1071/rd18218] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 08/18/2018] [Indexed: 12/19/2022] Open
Abstract
During ovarian development stroma from the mesonephros penetrates and expands into the ovarian primordium and thus appears to be involved, at least physically, in the formation of ovigerous cords, follicles and surface epithelium. Cortical stromal development during gestation in bovine fetal ovaries (n=27) was characterised by immunohistochemistry and by mRNA analyses. Stroma was identified by immunostaining of stromal matrix collagen type I and proliferating cells were identified by Ki67 expression. The cortical and medullar volume expanded across gestation, with the rate of cortical expansion slowing over time. During gestation, the proportion of stroma in the cortex and total volume in the cortex significantly increased (P<0.05). The proliferation index and numerical density of proliferating cells in the stroma significantly decreased (P<0.05), whereas the numerical density of cells in the stroma did not change (P>0.05). The expression levels of 12 genes out of 18 examined, including osteoglycin (OGN) and lumican (LUM), were significantly increased later in development (P<0.05) and the expression of many genes was positively correlated with other genes and with gestational age. Thus, the rate of cortical stromal expansion peaked in early gestation due to cell proliferation, whilst late in development expression of extracellular matrix genes increased.
Collapse
Affiliation(s)
- M D Hartanti
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia
| | - K Hummitzsch
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia
| | - H F Irving-Rodgers
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia
| | - W M Bonner
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia
| | - K J Copping
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia
| | - R A Anderson
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - I C McMillen
- The Chancellery, University of Newcastle, Callaghan, NSW 2308, Australia
| | - V E A Perry
- School of Veterinary and Medical Science, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - R J Rodgers
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
17
|
Androgenic and estrogenic indices in human newborns and infants: the MIREC-ID study. J Dev Orig Health Dis 2019; 10:578-586. [PMID: 30898182 DOI: 10.1017/s2040174419000059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Prenatal sex steroid exposure plays an important role in determining child development. Yet, measurement of prenatal hormonal exposure has been limited by the paucity of newborn/infant data and the invasiveness of fetal hormonal sampling. Here we provide descriptive data from the MIREC-ID study (n=173 girls; 162 boys) on a range of minimally invasive physical indices thought to reflect prenatal exposure to androgens [anogenital distances (AGDs); penile length/width, scrotal/vulvar pigmentation], to estrogens [vaginal maturation index (VMI) - the degree of maturation of vaginal wall cells] or to both androgens/estrogens [2nd-to-4th digit ratio (2D:4D); areolar pigmentation, triceps/sub-scapular skinfold thickness, arm circumference]. VMI was found to be associated with triceps skinfold thickness (β=0.265, P=0.005), suggesting that this marker may be sensitive to estrogen levels produced by adipose tissue in girls. Both estrogenic and androgenic markers (VMI: β=0.338, P=0.031; 2D:4D - right: β=-0.207, P=0.040; left: β=-0.276, P=0.006; AGD-fourchette - β=0.253, P=0.036) were associated with areolar pigmentation in girls, supporting a role for the latter as an index of both androgen and estrogen exposure. We also found AGD-penis (distance from the anus to the penis) to be associated with scrotal pigmentation (β=0.290, P=0.048), as well as right arm circumference (β=0.462, P<0.0001), supporting the notion that these indices may be used together as markers of androgen exposure in boys. In sum, these findings support the use of several physical indices at birth to convey a more comprehensive picture of prenatal exposure to sex hormones.
Collapse
|
18
|
Maternal β-hydroxy-β-methylbutyrate (HMB) supplementation during pregnancy affects early folliculogenesis in the ovary of newborn piglets. Theriogenology 2019; 128:91-100. [PMID: 30743108 DOI: 10.1016/j.theriogenology.2019.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 01/15/2019] [Accepted: 02/01/2019] [Indexed: 12/22/2022]
Abstract
Beta-hydroxy-beta-methylbutyrate (HMB) is a leucine metabolite with protein anabolic effects. This study was designed to determine whether prenatal HMB treatment has an effect on oogenesis and folliculogenesis in the ovary of newborn piglets. HMB decreased the number of egg nests and primordial follicles and increased the pool of developing follicles compared to the control group. Although the percentage of TUNEL-positive oocytes within the egg nests was higher in HMB-treated group no increase in the Bax/Bcl-2 ratio and active caspase-3 expression was observed. Moreover, the granulosa cell proliferation index and StAR protein expression were higher in HMB-treated group. In contrast to the control group, the expression of E-cadherins was reduced after the HMB treatment. In addition, a significant increase in the serum level of gonadotropins and steroid hormones was detected in HMB-treated piglets. In conclusion, prenatal HMB treatment dysregulates hormonal homeostasis which impairs early folliculogenesis in piglets.
Collapse
|
19
|
Zhang S, Heng J, Song H, Zhang Y, Lin X, Tian M, Chen F, Guan W. Role of Maternal Dietary Protein and Amino Acids on Fetal Programming, Early Neonatal Development, and Lactation in Swine. Animals (Basel) 2019; 9:ani9010019. [PMID: 30642135 PMCID: PMC6356768 DOI: 10.3390/ani9010019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Dietary protein is an important nutrient source for sows, necessary for not only growth and production, but also other physiological functions. Protein limitations in maternal diets have the potential to impair fetal myogenesis, while excess maternal dietary protein appears to only have minor effects on early fetal muscle formation. Effects of maternal protein deficiency on increased fat deposition in porcine neonates is inconsistent with gene expressions in the neonates. Sufficient maternal dietary protein can enhance porcine milk protein and fat concentration. Understanding the function of protein and amino acids in sows and the effects on their offspring can provide rational approaches for the regulation of piglet growth and further improvements in meat quality in the future. Abstract Maternal nutrition plays a vital role in fetal development, early development of neonates, and lactation and regulates the lifetime productivity of offspring. During pregnancy, maternal nutrition alters expression of the fetal genome and the development of tissues and organs via fetal programming. After parturition, maternal nutrition continues to regulate growth and development of piglets through maternal milk, which contains carbohydrates, lipids, proteins and oligosaccharides. Thus, deficiencies in maternal nutrition are detrimental to development of piglets, which can lead to inefficient growth and decreased carcass merit. Protein is an important nutritional component for sows, which not only functions in muscle development, but also plays a vital role in embryonic and neonatal development and lactation. Although effects of maternal undernutrition on neonatal development have been widely studied in sows, the function of different maternal dietary protein levels on fetal development, neonatal growth and lactation performance of sows is largely unknown. Determination of the effects and underlying mechanisms of maternal dietary protein levels on development of piglets is vital to the pork industry. Therefore, we summarized recent reports regarding mechanisms of effects of maternal protein levels on regulation of conceptus growth and early postnatal development though uterine fetal programming and lactation in swine.
Collapse
Affiliation(s)
- Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.
| | - Jinghui Heng
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Hanqing Song
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Yufeng Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaofeng Lin
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Min Tian
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Fang Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.
- College of Animal Science, South China Agricultural University, Wushan Avenue, Tianhe District, Guangzhou 510642, China.
| |
Collapse
|
20
|
Hale MD, McCoy JA, Doheny BM, Galligan TM, Guillette LJ, Parrott BB. Embryonic estrogen exposure recapitulates persistent ovarian transcriptional programs in a model of environmental endocrine disruption†. Biol Reprod 2018; 100:149-161. [DOI: 10.1093/biolre/ioy165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/12/2018] [Indexed: 11/15/2022] Open
Affiliation(s)
- Matthew D Hale
- Savannah River Ecology Laboratory, Aiken, South Carolina, USA
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA
| | | | - Brenna M Doheny
- School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Thomas M Galligan
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, Virginia, USA
| | - Louis J Guillette
- Marine Biomedicine and Environmental Sciences Program, Hollings Marine Laboratory, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Benjamin B Parrott
- Savannah River Ecology Laboratory, Aiken, South Carolina, USA
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
21
|
Xue B, Beltz TG, Guo F, Johnson AK. Sex differences in maternal gestational hypertension-induced sensitization of angiotensin II hypertension in rat offspring: the protective effect of estrogen. Am J Physiol Regul Integr Comp Physiol 2017; 314:R274-R281. [PMID: 29046315 DOI: 10.1152/ajpregu.00216.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies demonstrate that maternal hypertension during pregnancy sensitizes an angiotensin (ANG) II-induced increase in blood pressure (BP) in adult male offspring that was associated with upregulation of mRNA expression of several renin-angiotensin-aldosterone system (RAAS) components and NADPH oxidase in the lamina terminalis (LT) and paraventricular nucleus (PVN). The purpose of the present study was to test whether there are sex differences in the maternal hypertension-induced sensitization of ANG II hypertension, and whether sex hormones are involved in the sensitization process. Male offspring of hypertensive dams showed an enhanced hypertensive response to systemic ANG II when compared with male offspring of normotensive dams and to female offspring of either normotensive or hypertensive dams. Castration did not alter the hypertensive response to ANG II in male offspring. Intact female offspring had no upregulation of RAAS components and NADPH oxidase in the LT and PVN, whereas ovariectomy (OVX) upregulated mRNA expression of several RAAS components and NADPH oxidase in these nuclei and induced a greater increase in the pressor response to ANG II in female offspring of hypertensive dams compared with female offspring of normotensive dams. This enhanced increase in BP was partially attenuated by 17β-estradiol replacement in the OVX offspring of hypertensive dams. The results suggest that maternal hypertension induces a sex-specific sensitization of ANG II-induced hypertension and mRNA expression of brain RAAS and NADPH oxidase in offspring. Female offspring are protected from maternal hypertension-induced sensitization of ANG II hypertension, and female sex hormones are partially responsible for this protective effect.
Collapse
Affiliation(s)
- Baojian Xue
- Department of Psychological and Brain Sciences, University of Iowa , Iowa City, Iowa.,François M. Abboud Cardiovascular Research Center, University of Iowa , Iowa City, Iowa
| | - Terry G Beltz
- Department of Psychological and Brain Sciences, University of Iowa , Iowa City, Iowa
| | - Fang Guo
- Department of Psychological and Brain Sciences, University of Iowa , Iowa City, Iowa
| | - Alan Kim Johnson
- Department of Psychological and Brain Sciences, University of Iowa , Iowa City, Iowa.,Department of Pharmacology, University of Iowa , Iowa City, Iowa.,Department of Health and Human Physiology, University of Iowa , Iowa City, Iowa.,François M. Abboud Cardiovascular Research Center, University of Iowa , Iowa City, Iowa
| |
Collapse
|
22
|
Pérez-Cerezales S, Ramos-Ibeas P, Rizos D, Lonergan P, Bermejo-Alvarez P, Gutiérrez-Adán A. Early sex-dependent differences in response to environmental stress. Reproduction 2017; 155:R39-R51. [PMID: 29030490 DOI: 10.1530/rep-17-0466] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/09/2017] [Accepted: 10/12/2017] [Indexed: 12/14/2022]
Abstract
Developmental plasticity enables the appearance of long-term effects in offspring caused by exposure to environmental stressors during embryonic and foetal life. These long-term effects can be traced to pre- and post-implantation development, and in both cases, the effects are usually sex specific. During preimplantation development, male and female embryos exhibit an extensive transcriptional dimorphism mainly driven by incomplete X chromosome inactivation. These early developmental stages are crucial for the establishment of epigenetic marks that will be conserved throughout development, making it a particularly susceptible period for the appearance of long-term epigenetic-based phenotypes. Later in development, gonadal formation generates hormonal differences between the sexes, and male and female placentae exhibit different responses to environmental stressors. The maternal environment, including hormones and environmental insults during pregnancy, contributes to sex-specific placental development that controls genetic and epigenetic programming during foetal development, regulating sex-specific differences, including sex-specific epigenetic responses to environmental hazards, leading to long-term effects. This review summarizes several human and animal studies examining sex-specific responses to environmental stressors during both the periconception period (caused by differences in sex chromosome dosage) and placental development (caused by both sex chromosomes and hormones). The identification of relevant sex-dependent trajectories caused by sex chromosomes and/or sex hormones is essential to define diagnostic markers and prevention/intervention protocols.
Collapse
Affiliation(s)
| | | | | | - Pat Lonergan
- School of Agriculture and Food ScienceUniversity College Dublin, Dublin, Ireland
| | | | | |
Collapse
|
23
|
Unal M. Digit ratio 2D:4D is a possible indicator for androgenetic alopecia in males. J Cosmet Dermatol 2017; 17:545-548. [DOI: 10.1111/jocd.12403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Mehmet Unal
- Department of Dermatology, Faculty of Medicine; Selçuk University; Konya Turkey
| |
Collapse
|
24
|
Ding J, Tan X, Song K, Ma W, Xiao J, Zhang M. Effect of controlled ovarian hyperstimulation on puberty and estrus in mice offspring. Reproduction 2017; 154:433-444. [PMID: 28687593 DOI: 10.1530/rep-16-0572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 06/26/2017] [Accepted: 07/07/2017] [Indexed: 01/09/2023]
Abstract
Controlled ovarian hyperstimulation (COH) is widely used for the treatment of infertility, while the long-term effects of COH on the reproductive function in female offspring are currently unknown. Based on the fact that COH could cause high E2 levels in women throughout pregnancy and excess estrogenic exposure during fetal development is harmful to subsequent adult ovarian function, we assumed the hypothesis that COH disrupts reproductive function in female offspring. To test this hypothesis, COH was induced in mice to obtain female offspring by pregnant mare serum gonadotropin (PMSG) and HCG, and then we evaluated pubertal transition, serum levels of E2, anti-Mullerian hormone (AMH), FSH and LH, mRNA expressions of Esr1, Amhr2, Fshr and Lhcgr in ovaries, number of follicles and ovarian histology. We also investigated the apoptosis of follicles by TUNEL; the mRNA expressions of Fas, FasL, Bax, Bcl2, and caspase 3, 8 and 9 by quantitative real-time PCR; and the protein expressions of cleaved-caspase (CASP) 3, 8 and 9 by Western blot. Moreover, we further observed estrous cyclicity in young adult offspring, performed follicle counting and measured the level of AMH in both serum and ovary. COH could induce detrimental pregnancy outcomes, as well as delayed pubertal transition and irregular estrous cycle due to the aberrant growth and maturation of follicles in female offspring. Our novel findings add new evidence to better understand the potential risks of COH on the reproductive function in female offspring, raising the awareness that COH could exert adverse effects on female offspring, rather than just obtain more oocytes for fertilization.
Collapse
Affiliation(s)
- Jiahui Ding
- Institute of Integrated Traditional Chinese and Western MedicineTongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xiujuan Tan
- Institute of Integrated Traditional Chinese and Western MedicineTongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Kunkun Song
- Institute of Integrated Traditional Chinese and Western MedicineTongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wenwen Ma
- Institute of Integrated Traditional Chinese and Western MedicineTongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jing Xiao
- Institute of Integrated Traditional Chinese and Western MedicineTongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Mingmin Zhang
- Institute of Integrated Traditional Chinese and Western MedicineTongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
25
|
Sagvekar P, Mangoli V, Desai S, Patil A, Mukherjee S. LINE1 CpG-DNA Hypomethylation in Granulosa Cells and Blood Leukocytes Is Associated With PCOS and Related Traits. J Clin Endocrinol Metab 2017; 102:1396-1405. [PMID: 28324041 DOI: 10.1210/jc.2016-2645] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 01/03/2017] [Indexed: 02/07/2023]
Abstract
CONTEXT Altered global DNA methylation is indicative of epigenomic instability concerning chronic diseases. Investigating its incidence and association with polycystic ovary syndrome (PCOS) is essential to understand the etiopathogenesis of this disorder. OBJECTIVES We assessed global DNA methylation differences in peripheral blood leukocytes (PBLs) and cumulus granulosa cells (CGCs) of controls and women with PCOS; and their association with PCOS and its traits. DESIGN, SETTING, PARTICIPANTS, MAIN OUTCOME MEASURE This study included a total of 102 controls and women with PCOS. Forty-one women undergoing controlled ovarian hyperstimulation (COH) and 61 women not undergoing COH were recruited from in vitro fertilization (IVF) and infertility clinics. DNA methylation was measured by ELISA for 5'-methyl-cytosine content and bisulfite sequencing of 5'-untranslated region (5'-UTR) of long interspersed nucleotide element-1 (LINE1/L1). RESULTS Total 5'-methyl-cytosine and L1 methylation levels in PBLs and CGCs were similar between controls and women with PCOS. Methylation assessed at CpG sites of L1 5'-UTR revealed a single CpG-site (CpG-4) to be consistently hypomethylated in PBLs of both PCOS groups and CGCs of stimulated PCOS group. In unstimulated women, hypomethylation at CpG-4 was strongly associated with PCOS susceptibility, whereas in stimulated group it showed strong associations with PCOS and its hormonal traits. Furthermore, CGCs demonstrated consistent global and CpG-DNA hypomethylation relative to PBLs, irrespective of normal or disease states. CONCLUSION Our study revealed strong association of single hypomethylated CpG-site with PCOS. Identification and characterization of more such methyl-CpG signatures in repetitive elements in larger study populations would provide valuable epigenetic insights into PCOS.
Collapse
Affiliation(s)
| | - Vijay Mangoli
- Fertility Clinic and IVF Center, Gamdevi, Mumbai 400007, Maharashtra, India
| | - Sadhana Desai
- Fertility Clinic and IVF Center, Gamdevi, Mumbai 400007, Maharashtra, India
| | - Anushree Patil
- Department of Infertility and Endocrinology, National Institute for Research in Reproductive Health, Parel, Mumbai 400012, India
| | | |
Collapse
|
26
|
Bilgic Ö, Altınyazar HC, Eryılmaz D, Tuğrul ZA. Are 2D:4D finger-length ratios an indicator of androgenetic alopecia in males? An Bras Dermatol 2017; 91:156-9. [PMID: 27192513 PMCID: PMC4861561 DOI: 10.1590/abd1806-4841.20164622] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 06/21/2015] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Although the pathogenesis of androgenetic alopecia is not completely
understood, the roles of genetic susceptibility and androgens are
well-known. A lower ratio of the second digit (index finger = 2D) to the
fourth digit (ring finger = 4D) length has been hypothesized to reflect
prenatal androgen exposure and/or higher sensitivity to androgens. OBJECTIVES To determine the relationship between the second to fourth digit length ratio
and androgenetic alopecia. METHODS Finger length measurements were made by a digital vernier calliper.
Androgenetic alopecia severity was assessed using the Hamilton-Norwood
scale. Subjects with an androgenetic alopecia score of grade III or more
were included in the study. RESULTS A total of 189 males with androgenetic alopecia and 171 healthy controls were
enrolled in the study. The age range of participants was 19-65 years. The
2D:4D ratios in patients with androgenetic alopecia were significantly lower
than those of healthy controls for the right hand; however, no significant
difference was found for the left hand. Average 2D:4D ratios in androgenetic
alopecia patients were also lower than in controls. No significant
relationship was observed between androgenetic alopecia severity and 2D:4D
ratios. CONCLUSION Our data support the anatomical evidence of in utero androgen exposure and/or
an individual’s sensitivity to androgens in patients with androgenetic
alopecia. Furthermore, the right hand 2D:4D ratio might be an indicator of
androgenetic alopecia development.
Collapse
|
27
|
Jiang SW, Xu S, Chen H, Liu X, Tang Z, Cui Y, Liu J. Pathologic significance of SET/I2PP2A-mediated PP2A and non-PP2A pathways in polycystic ovary syndrome (PCOS). Clin Chim Acta 2017; 464:155-159. [PMID: 27836688 DOI: 10.1016/j.cca.2016.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 11/06/2016] [Accepted: 11/07/2016] [Indexed: 02/05/2023]
Abstract
SET (SE translocation, SET), a constitutive inhibitor of protein phosphatase 2A (PP2A), is a multifunctional oncoprotein involved in DNA replication, histone modification, nucleosome assembly, gene transcription and cell proliferation. It is widely expressed in human tissues including the gonadal system and brain. Intensive studies have shown that overexpressed SET plays an important role in the development of Alzheimer's disease (AD), and may also contribute to the malignant transformation of breast and ovarian cancers. Recent studies indicated that through interaction with PP2A, SET may upregulate androgen biosynthesis and contribute to hyperandrogenism in polycystic ovary syndrome (PCOS) patients. This review article summarizes data concerning the SET expression in ovaries from PCOS and normal women, and analyzes the role/regulatory mechanism of SET for androgen biosynthesis in PCOS, as well as the significance of this action in the development of PCOS. The potential value of SET-triggered pathway as a therapeutic target and the application of anti-SET reagents for treating hyperandrogenism in PCOS patients are also discussed.
Collapse
Affiliation(s)
- Shi-Wen Jiang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA, USA.
| | - Siliang Xu
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA, USA; The State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Haibin Chen
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong 515000, China
| | - Xiaoqiang Liu
- The Third People's Hospital of Qingdao, Department of Obstetrics and Gynecology, Qingdao, Shandong 266041, China; Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Zuoqing Tang
- Department of Medical Genetics, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yugui Cui
- The State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jiayin Liu
- The State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
28
|
Kassotis CD, Bromfield JJ, Klemp KC, Meng CX, Wolfe A, Zoeller RT, Balise VD, Isiguzo CJ, Tillitt DE, Nagel SC. Adverse Reproductive and Developmental Health Outcomes Following Prenatal Exposure to a Hydraulic Fracturing Chemical Mixture in Female C57Bl/6 Mice. Endocrinology 2016; 157:3469-81. [PMID: 27560547 PMCID: PMC5393361 DOI: 10.1210/en.2016-1242] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/19/2016] [Indexed: 11/19/2022]
Abstract
Unconventional oil and gas operations using hydraulic fracturing can contaminate surface and groundwater with endocrine-disrupting chemicals. We have previously shown that 23 of 24 commonly used hydraulic fracturing chemicals can activate or inhibit the estrogen, androgen, glucocorticoid, progesterone, and/or thyroid receptors in a human endometrial cancer cell reporter gene assay and that mixtures can behave synergistically, additively, or antagonistically on these receptors. In the current study, pregnant female C57Bl/6 dams were exposed to a mixture of 23 commonly used unconventional oil and gas chemicals at approximately 3, 30, 300, and 3000 μg/kg·d, flutamide at 50 mg/kg·d, or a 0.2% ethanol control vehicle via their drinking water from gestational day 11 through birth. This prenatal exposure to oil and gas operation chemicals suppressed pituitary hormone concentrations across experimental groups (prolactin, LH, FSH, and others), increased body weights, altered uterine and ovary weights, increased heart weights and collagen deposition, disrupted folliculogenesis, and other adverse health effects. This work suggests potential adverse developmental and reproductive health outcomes in humans and animals exposed to these oil and gas operation chemicals, with adverse outcomes observed even in the lowest dose group tested, equivalent to concentrations reported in drinking water sources. These endpoints suggest potential impacts on fertility, as previously observed in the male siblings, which require careful assessment in future studies.
Collapse
Affiliation(s)
- Christopher D Kassotis
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Animal Sciences (J.J.B.) and D. H. Barron Reproductive and Perinatal Biology Research Program (J.J.B.), University of Florida, Gainesville, Florida 32611; Department of Obstetrics, Gynecology and Women's Health (K.C.K., C.-X.M.,V.D.B., C.J.I., S.C.N.) and Division of Biological Sciences (V.D.B., S.C.N.), University of Missouri, Columbia, Missouri 65211; Department of Pediatrics (A.W.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; Department of Biology (RTZ), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and United States Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - John J Bromfield
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Animal Sciences (J.J.B.) and D. H. Barron Reproductive and Perinatal Biology Research Program (J.J.B.), University of Florida, Gainesville, Florida 32611; Department of Obstetrics, Gynecology and Women's Health (K.C.K., C.-X.M.,V.D.B., C.J.I., S.C.N.) and Division of Biological Sciences (V.D.B., S.C.N.), University of Missouri, Columbia, Missouri 65211; Department of Pediatrics (A.W.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; Department of Biology (RTZ), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and United States Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Kara C Klemp
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Animal Sciences (J.J.B.) and D. H. Barron Reproductive and Perinatal Biology Research Program (J.J.B.), University of Florida, Gainesville, Florida 32611; Department of Obstetrics, Gynecology and Women's Health (K.C.K., C.-X.M.,V.D.B., C.J.I., S.C.N.) and Division of Biological Sciences (V.D.B., S.C.N.), University of Missouri, Columbia, Missouri 65211; Department of Pediatrics (A.W.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; Department of Biology (RTZ), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and United States Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Chun-Xia Meng
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Animal Sciences (J.J.B.) and D. H. Barron Reproductive and Perinatal Biology Research Program (J.J.B.), University of Florida, Gainesville, Florida 32611; Department of Obstetrics, Gynecology and Women's Health (K.C.K., C.-X.M.,V.D.B., C.J.I., S.C.N.) and Division of Biological Sciences (V.D.B., S.C.N.), University of Missouri, Columbia, Missouri 65211; Department of Pediatrics (A.W.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; Department of Biology (RTZ), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and United States Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Andrew Wolfe
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Animal Sciences (J.J.B.) and D. H. Barron Reproductive and Perinatal Biology Research Program (J.J.B.), University of Florida, Gainesville, Florida 32611; Department of Obstetrics, Gynecology and Women's Health (K.C.K., C.-X.M.,V.D.B., C.J.I., S.C.N.) and Division of Biological Sciences (V.D.B., S.C.N.), University of Missouri, Columbia, Missouri 65211; Department of Pediatrics (A.W.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; Department of Biology (RTZ), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and United States Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - R Thomas Zoeller
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Animal Sciences (J.J.B.) and D. H. Barron Reproductive and Perinatal Biology Research Program (J.J.B.), University of Florida, Gainesville, Florida 32611; Department of Obstetrics, Gynecology and Women's Health (K.C.K., C.-X.M.,V.D.B., C.J.I., S.C.N.) and Division of Biological Sciences (V.D.B., S.C.N.), University of Missouri, Columbia, Missouri 65211; Department of Pediatrics (A.W.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; Department of Biology (RTZ), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and United States Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Victoria D Balise
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Animal Sciences (J.J.B.) and D. H. Barron Reproductive and Perinatal Biology Research Program (J.J.B.), University of Florida, Gainesville, Florida 32611; Department of Obstetrics, Gynecology and Women's Health (K.C.K., C.-X.M.,V.D.B., C.J.I., S.C.N.) and Division of Biological Sciences (V.D.B., S.C.N.), University of Missouri, Columbia, Missouri 65211; Department of Pediatrics (A.W.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; Department of Biology (RTZ), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and United States Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Chiamaka J Isiguzo
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Animal Sciences (J.J.B.) and D. H. Barron Reproductive and Perinatal Biology Research Program (J.J.B.), University of Florida, Gainesville, Florida 32611; Department of Obstetrics, Gynecology and Women's Health (K.C.K., C.-X.M.,V.D.B., C.J.I., S.C.N.) and Division of Biological Sciences (V.D.B., S.C.N.), University of Missouri, Columbia, Missouri 65211; Department of Pediatrics (A.W.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; Department of Biology (RTZ), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and United States Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Donald E Tillitt
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Animal Sciences (J.J.B.) and D. H. Barron Reproductive and Perinatal Biology Research Program (J.J.B.), University of Florida, Gainesville, Florida 32611; Department of Obstetrics, Gynecology and Women's Health (K.C.K., C.-X.M.,V.D.B., C.J.I., S.C.N.) and Division of Biological Sciences (V.D.B., S.C.N.), University of Missouri, Columbia, Missouri 65211; Department of Pediatrics (A.W.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; Department of Biology (RTZ), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and United States Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Susan C Nagel
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Animal Sciences (J.J.B.) and D. H. Barron Reproductive and Perinatal Biology Research Program (J.J.B.), University of Florida, Gainesville, Florida 32611; Department of Obstetrics, Gynecology and Women's Health (K.C.K., C.-X.M.,V.D.B., C.J.I., S.C.N.) and Division of Biological Sciences (V.D.B., S.C.N.), University of Missouri, Columbia, Missouri 65211; Department of Pediatrics (A.W.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; Department of Biology (RTZ), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and United States Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| |
Collapse
|
29
|
Govindaraj V, Krishnagiri H, Chauhan MS, Rao AJ. BRCA-1 Gene Expression and Comparative Proteomic Profile of Primordial Follicles from Young and Adult Buffalo (Bubalus bubalis) Ovaries. Anim Biotechnol 2016; 28:94-103. [DOI: 10.1080/10495398.2016.1210613] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | | | - Manmohan Singh Chauhan
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - A. J. Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
30
|
Conley A. Review of the reproductive endocrinology of the pregnant and parturient mare. Theriogenology 2016; 86:355-65. [DOI: 10.1016/j.theriogenology.2016.04.049] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/16/2016] [Accepted: 03/14/2016] [Indexed: 10/21/2022]
|
31
|
Zubeldia-Brenner L, Roselli CE, Recabarren SE, Gonzalez Deniselle MC, Lara HE. Developmental and Functional Effects of Steroid Hormones on the Neuroendocrine Axis and Spinal Cord. J Neuroendocrinol 2016; 28:10.1111/jne.12401. [PMID: 27262161 PMCID: PMC4956521 DOI: 10.1111/jne.12401] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 06/03/2016] [Accepted: 06/03/2016] [Indexed: 12/13/2022]
Abstract
This review highlights the principal effects of steroid hormones at central and peripheral levels in the neuroendocrine axis. The data discussed highlight the principal role of oestrogens and testosterone in hormonal programming in relation to sexual orientation, reproductive and metabolic programming, and the neuroendocrine mechanism involved in the development of polycystic ovary syndrome phenotype. Moreover, consistent with the wide range of processes in which steroid hormones take part, we discuss the protective effects of progesterone on neurodegenerative disease and the signalling mechanism involved in the genesis of oestrogen-induced pituitary prolactinomas.
Collapse
Affiliation(s)
- L Zubeldia-Brenner
- Instituto de Biología y Medicina Experimental-CONICET, Buenos Aires, Argentina
| | - C E Roselli
- Department of Physiology and Pharmacology, Oregon Health and Science University Portland, Portland, OR, USA
| | - S E Recabarren
- Laboratory of Animal Physiology and Endocrinology, Faculty of Veterinary Sciences, University of Concepcion, Chillán, Chile
| | - M C Gonzalez Deniselle
- Instituto de Biología y Medicina Experimental-CONICET, Buenos Aires, Argentina
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - H E Lara
- Laboratory of Neurobiochemistry Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| |
Collapse
|
32
|
Kristensen SL, Ramlau-Hansen CH, Ernst E, Olsen SF, Bonde JP, Vested A, Halldorsson TI, Rantakokko P, Kiviranta H, Toft G. Prenatal exposure to persistent organochlorine pollutants and female reproductive function in young adulthood. ENVIRONMENT INTERNATIONAL 2016; 92-93:366-72. [PMID: 27132162 DOI: 10.1016/j.envint.2016.04.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/14/2016] [Accepted: 04/14/2016] [Indexed: 05/26/2023]
Abstract
BACKGROUND The biopersistent organochlorine pollutants dichlorodiphenyldichloroethylene (p,p'-DDE), hexachlorobenzene (HCB) and polychlorinated biphenyls (PCBs) can be detected in humans worldwide. The chemicals can cross the placenta and may interfere with endogenous hormonal homeostasis. OBJECTIVES To investigate effects on female reproduction following intrauterine exposure to selected biopersistent organochlorines. METHODS We used data from a Danish pregnancy cohort with follow-up on 436 eligible daughters at approximately 20years of age. Information on age of menarche (n=335), menstrual cycle length (n=230) and serum concentrations of reproductive hormones (n=243) was obtained. Number of antral follicles was counted by vaginal ultrasound (n=147). Of 244 daughters who attended clinical examination, 170 used hormonal contraceptives and 74 were non-users. Concentrations of p,p'-DDE, HCB and six PCB congeners were analysed in maternal serum samples obtained in pregnancy week 30. RESULTS Age of menarche and menstrual cycle length were found not to be statistically significant associated with prenatal organochlorine exposure. Among non-users of hormonal contraceptives with information on antral follicle number (n=43), daughters exposed to the highest tertile of p,p'-DDE had 28% (95% confidence interval (95% CI): 5; 46%) lower follicle number compared to the low-level exposed reference group. Those exposed to medium and higher levels of HCB had 30% (95% CI: 5; 48%) and 28% (95% CI: 7; 44%) lower follicle number compared to the reference group. Furthermore, maternal serum HCB concentrations were inversely associated with free androgen index among non-users of hormonal contraceptives (n=73). These associations were not found in users of hormonal contraceptives. CONCLUSIONS Among non-users of hormonal contraceptives, we found indications of adverse long-term effects on female reproduction following prenatal exposure to biopersistent organochlorines. These findings may have wide implications for public health as intrauterine exposure occurs worldwide.
Collapse
Affiliation(s)
- Susanne Lund Kristensen
- Danish Ramazzini Centre, Department of Occupational Medicine, Aarhus University Hospital, Aarhus, Denmark; Department of Obstetrics and Gynecology, Regional Hospital of Randers, Denmark.
| | | | - Erik Ernst
- Department of Gynaecology and Obstetrics, Aarhus University Hospital, and Institute of Anatomy, University of Aarhus, Aarhus, Denmark
| | | | - Jens Peter Bonde
- Department of Occupational and Environmental Medicine, Bispebjerg Hospital of Copenhagen University, Copenhagen, Denmark
| | - Anne Vested
- Danish Ramazzini Centre, Department of Occupational Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Thorhallur Ingi Halldorsson
- Centre for Fetal Programming, Statens Serum Institut, Copenhagen, Denmark; Faculty of Food Science and Nutrition, University of Iceland, Reykjavik, Iceland
| | - Panu Rantakokko
- National Institute for Health and Welfare, Department of Environmental Health, Chemical Exposure Unit, Kuopio, Finland
| | - Hannu Kiviranta
- National Institute for Health and Welfare, Department of Environmental Health, Chemical Exposure Unit, Kuopio, Finland
| | - Gunnar Toft
- Danish Ramazzini Centre, Department of Occupational Medicine, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
33
|
Soleman RS, Kreukels BP, Veltman DJ, Cohen-Kettenis PT, Hompes PG, Drent ML, Lambalk CB. Does polycystic ovary syndrome affect cognition? A functional magnetic resonance imaging study exploring working memory. Fertil Steril 2016; 105:1314-1321.e1. [DOI: 10.1016/j.fertnstert.2016.01.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/08/2016] [Accepted: 01/25/2016] [Indexed: 01/19/2023]
|
34
|
Lefèvre PLC, Berger RG, Ernest SR, Gaertner DW, Rawn DFK, Wade MG, Robaire B, Hales BF. Exposure of Female Rats to an Environmentally Relevant Mixture of Brominated Flame Retardants Targets the Ovary, Affecting Folliculogenesis and Steroidogenesis. Biol Reprod 2015; 94:9. [PMID: 26607716 PMCID: PMC4809562 DOI: 10.1095/biolreprod.115.134452] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/13/2015] [Indexed: 11/04/2022] Open
Abstract
Brominated flame retardants (BFRs) are incorporated into various consumer products to prevent flame propagation. These compounds leach into the domestic environment, resulting in chronic exposure and contamination. Pregnancy failure is associated with high levels of BFRs in human follicular fluid, raising serious questions regarding their impact on female reproductive health. The goal of this study is to elucidate the effects of an environmentally relevant BFR mixture on female rat ovarian functions (i.e., folliculogenesis and steroidogenesis). A BFR dietary mixture formulated to mimic the relative BFR congener levels in North American house dust was administered to adult female Sprague-Dawley rats from 2 to 3 wk before mating until Gestational Day 20; these diets were designed to deliver nominal doses of 0, 0.06, 20, or 60 mg/kg/day of the BFR mixture. Exposure to BFRs triggered an approximately 50% increase in the numbers of preantral and antral follicles and an enlargement of the antral follicles in the ovaries of the dams. A significant reduction in the expression of catalase, an antioxidant enzyme, and downregulation of the expression of insulin-like factor 3 (Insl3) and 17alpha-hydroxylase (Cyp17a1) were observed in the ovary. In addition, BFR exposure affected steroidogenesis; we observed a significant decrease in circulating 17-hydroxypregnenolone and an increase in testosterone concentrations in BFR-exposed dams. Thus, BFRs target ovarian function in the rat, adversely affecting both folliculogenesis and steroidogenesis.
Collapse
Affiliation(s)
- Pavine L C Lefèvre
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Robert G Berger
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Sheila R Ernest
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Dean W Gaertner
- Food Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Dorothea F K Rawn
- Food Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Michael G Wade
- Environmental Health Science and Research Bureau, Radiation and Research Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Bernard Robaire
- Food Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada
| | - Barbara F Hales
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
35
|
Cardoso RC, Puttabyatappa M, Padmanabhan V. Steroidogenic versus Metabolic Programming of Reproductive Neuroendocrine, Ovarian and Metabolic Dysfunctions. Neuroendocrinology 2015; 102:226-37. [PMID: 25832114 PMCID: PMC4591099 DOI: 10.1159/000381830] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/21/2015] [Indexed: 12/12/2022]
Abstract
The susceptibility of the reproductive system to early exposure to steroid hormones has become a major concern in our modern societies. Human fetuses are at risk of abnormal programming via exposure to endocrine disrupting chemicals, inadvertent use of contraceptive pills during pregnancy, as well as from excess exposure to steroids due to disease states. Animal models provide an unparalleled resource to understand the developmental origin of diseases. In female sheep, prenatal exposure to testosterone excess results in an array of adult reproductive disorders that recapitulate those seen in women with polycystic ovary syndrome (PCOS), including disrupted neuroendocrine feedback mechanisms, increased pituitary sensitivity to gonadotropin-releasing hormone, luteinizing hormone excess, functional hyperandrogenism, and multifollicular ovarian morphology culminating in early reproductive failure. Prenatal testosterone treatment also leads to fetal growth retardation, insulin resistance, and hypertension. Mounting evidence suggests that developmental exposure to an improper steroidal/metabolic environment may mediate the programming of adult disorders in prenatal testosterone-treated females, and these defects are maintained or amplified by the postnatal sex steroid and metabolic milieu. This review addresses the steroidal and metabolic contributions to the development and maintenance of the PCOS phenotype in the prenatal testosterone-treated sheep model, including the effects of prenatal and postnatal treatment with an androgen antagonist or insulin sensitizer as potential strategies to prevent/ameliorate these dysfunctions. Insights obtained from these intervention strategies on the mechanisms underlying these defects are likely to have translational relevance to human PCOS.
Collapse
Affiliation(s)
- Rodolfo C Cardoso
- Department of Pediatrics, University of Michigan, Ann Arbor, Mich., USA
| | | | | |
Collapse
|
36
|
Wu S, Chen Y, Fajobi T, DiVall SA, Chang C, Yeh S, Wolfe A. Conditional knockout of the androgen receptor in gonadotropes reveals crucial roles for androgen in gonadotropin synthesis and surge in female mice. Mol Endocrinol 2014; 28:1670-81. [PMID: 25157703 DOI: 10.1210/me.2014-1154] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Polycystic ovary syndrome is the major cause of infertility in reproductive aged women. Polycystic ovary syndrome is associated with high circulating levels of androgens and impaired metabolic function. The goal of this study was to understand how androgen signaling via the androgen receptor (AR) affects reproductive function. We knocked out the AR gene specifically in pituitary gonadotropes (PitARKO) to explore the role of androgen on the development of reproductive function in female mice. There was no difference in the age of puberty between control and PitARKO littermates, which was assessed by the ages of vaginal opening and first estrus. Cyclicity and fertility were also studied, and there was no significant difference between control and PitARKO mice. We observed a significant decrease in basal FSH serum and mRNA levels with no corresponding change in LH serum and mRNA levels. Although the numbers of litters born to control and PitARKO females were the same, the litter size was significantly smaller for PitARKO mice. The LH and FSH responses to ovariectomy was altered with reduced LH/FSH hormone and mRNA levels in PitARKO females. This reduction may be due to reduced expression of activin A/B and gnrhr. The preovulatory surge levels of LH and FSH were dramatically lower in PitARKO mice. The number of corpora lutea was decreased whereas the number of antral follicles was similar between control and PitARKO mice. Overall the pituitary AR contributes to the elaboration of the LH surge and normal reproductive function by regulating LH/FSH expression and secretion.
Collapse
Affiliation(s)
- Sheng Wu
- Pediatrics Department (S.W., Y.C., T.F., S.A.D., A.W.), Johns Hopkins School of Medicine, Baltimore, Maryland 21286; Department of Pathology and Laboratory Medicine (C.C.), University of Rochester Medical Center, Rochester, New York 14642; and Department of Urology and Pathology (S.Y.), University of Rochester, Rochester, New York 14642
| | | | | | | | | | | | | |
Collapse
|
37
|
Caldwell ASL, Middleton LJ, Jimenez M, Desai R, McMahon AC, Allan CM, Handelsman DJ, Walters KA. Characterization of reproductive, metabolic, and endocrine features of polycystic ovary syndrome in female hyperandrogenic mouse models. Endocrinology 2014; 155:3146-59. [PMID: 24877633 DOI: 10.1210/en.2014-1196] [Citation(s) in RCA: 233] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Polycystic ovary syndrome (PCOS) affects 5-10% of women of reproductive age, causing a range of reproductive, metabolic and endocrine defects including anovulation, infertility, hyperandrogenism, obesity, hyperinsulinism, and an increased risk of type 2 diabetes and cardiovascular disease. Hyperandrogenism is the most consistent feature of PCOS, but its etiology remains unknown, and ethical and logistic constraints limit definitive experimentation in humans to determine mechanisms involved. In this study, we provide the first comprehensive characterization of reproductive, endocrine, and metabolic PCOS traits in 4 distinct murine models of hyperandrogenism, comprising prenatal dihydrotestosterone (DHT, potent nonaromatizable androgen) treatment during days 16-18 of gestation, or long-term treatment (90 days from 21 days of age) with DHT, dehydroepiandrosterone (DHEA), or letrozole (aromatase inhibitor). Prenatal DHT-treated mature mice exhibited irregular estrous cycles, oligo-ovulation, reduced preantral follicle health, hepatic steatosis, and adipocyte hypertrophy, but lacked overall changes in body-fat composition. Long-term DHT treatment induced polycystic ovaries displaying unhealthy antral follicles (degenerate oocyte and/or > 10% pyknotic granulosa cells), as well as anovulation and acyclicity in mature (16-week-old) females. Long-term DHT also increased body and fat pad weights and induced adipocyte hypertrophy and hypercholesterolemia. Long-term letrozole-treated mice exhibited absent or irregular cycles, oligo-ovulation, polycystic ovaries containing hemorrhagic cysts atypical of PCOS, and displayed no metabolic features of PCOS. Long-term dehydroepiandrosterone treatment produced no PCOS features in mature mice. Our findings reveal that long-term DHT treatment replicated a breadth of ovarian, endocrine, and metabolic features of human PCOS and provides the best mouse model for experimental studies of PCOS pathogenesis.
Collapse
Affiliation(s)
- A S L Caldwell
- Andrology Laboratory (A.S.L.C., L.J.M., M.J., R.D., C.M.A.,D.J.H., K.A.W.) and Biogerontology Laboratory (A.C.M.), ANZAC Research Institute, University of Sydney, Sydney, New South Wales 2139, Australia
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Xiao D, Huang X, Xue Q, Zhang L. Antenatal hypoxia induces programming of reduced arterial blood pressure response in female rat offspring: role of ovarian function. PLoS One 2014; 9:e98743. [PMID: 24905716 PMCID: PMC4048263 DOI: 10.1371/journal.pone.0098743] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 05/07/2014] [Indexed: 01/21/2023] Open
Abstract
In utero exposure to adverse environmental factors increases the risk of cardiovascular disease in adulthood. The present study tested the hypothesis that antenatal hypoxia causes a gender-dependent programming of altered arterial blood pressure response (BP) in adult offspring. Time-dated pregnant rats were divided into normoxic and hypoxic (10.5% O2 from days 15 to 21 of gestation) groups. The experiments were conducted in adult offspring. Antenatal hypoxia caused intrauterine growth restriction, and resulted in a gender-dependent increase Angiotensin II (Ang II)-induced BP response in male offspring, but significant decrease in BP response in female offspring. The baroreflex sensitivity was not significantly altered. Consistent with the reduced blood pressure response, antenatal hypoxia significantly decreased Ang II-induced arterial vasoconstriction in female offspring. Ovariectomy had no significant effect in control animals, but significantly increased Ang II-induced maximal BP response in prenatally hypoxic animals and eliminated the difference of BP response between the two groups. Estrogen replacement in ovariectomized animals significantly decreased the BP response to angiotensin II I only in control, but not in hypoxic animals. The result suggests complex programming mechanisms of antenatal hypoxia in regulation of ovary function. Hypoxia-mediated ovary dysfunction results in the phenotype of reduced vascular contractility and BP response in female adult offspring.
Collapse
Affiliation(s)
- DaLiao Xiao
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - Xiaohui Huang
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - Qin Xue
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - Lubo Zhang
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| |
Collapse
|
39
|
Zambrano E, Guzmán C, Rodríguez-González GL, Durand-Carbajal M, Nathanielsz PW. Fetal programming of sexual development and reproductive function. Mol Cell Endocrinol 2014; 382:538-549. [PMID: 24045010 DOI: 10.1016/j.mce.2013.09.008] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 09/03/2013] [Accepted: 09/05/2013] [Indexed: 11/15/2022]
Abstract
The recent growth of interest in developmental programming of physiological systems has generally focused on the cardiovascular system (especially hypertension) and predisposition to metabolic dysfunction (mainly obesity and diabetes). However, it is now clear that the full range of altered offspring phenotypes includes impaired reproductive function. In rats, sheep and nonhuman primates, reproductive capacity is altered by challenges experienced during critical periods of development. This review will examine available experimental evidence across commonly studied experimental species for developmental programming of female and male reproductive function throughout an individual's life-course. It is necessary to consider events that occur during fetal development, early neonatal life and prior to and during puberty, during active reproductive life and aging as reproductive performance declines.
Collapse
Affiliation(s)
- Elena Zambrano
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México.
| | - Carolina Guzmán
- HIPAM, Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM)/Hospital General de México, México
| | - Guadalupe L Rodríguez-González
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México
| | - Marta Durand-Carbajal
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México
| | - Peter W Nathanielsz
- Center for Pregnancy and Newborn Research, Department of Obstetrics, University of Texas Health Sciences Center San Antonio, TX, United States
| |
Collapse
|
40
|
|
41
|
Affiliation(s)
- J. Casellas
- Grup de Recerca en Remugants, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - G. Caja
- Grup de Recerca en Remugants, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
42
|
Pepe GJ, Lynch TJ, Albrecht ED. Regulation of baboon fetal ovarian development by placental estrogen: onset of puberty is delayed in offspring deprived of estrogen in utero. Biol Reprod 2013; 89:132. [PMID: 24132960 DOI: 10.1095/biolreprod.112.107318] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Using the baboon as a model for studies of human reproductive biology, we previously showed that placental estrogen regulates fetal ovarian follicle development. In this study, offspring of baboons untreated or treated in utero with the aromatase inhibitor letrozole (estradiol reduced >95%) or letrozole and estradiol were reared to adulthood to determine whether estrogen programming of the fetal ovary impacted puberty and reproduction in adulthood. All offspring exhibited normal growth and blood pressure/chemistries. Puberty onset in untreated baboons (43.2 ± 1.4 mo) was delayed (P < 0.01) in animals of letrozole-treated mothers (49.0 ± 1.2 mo) and normal in offspring of mothers treated with letrozole and estradiol (42.7 ± 0.8 mo). During the first 2 yr postmenarche, menstrual cycles in estrogen-suppressed animals (43.2 ± 1.3 days) were longer (P < 0.05) than in untreated baboons (38.3 ± 0.5 days) or those treated with letrozole and estrogen (39.6 ± 0.8 days). Moreover, in estrogen-suppressed offspring, serum levels of estradiol were lower and follicle-stimulating hormone greater (P < 0.05) in the follicular and luteal phases, and the elevation in luteal-phase progesterone extended (P < 0.02). Thus, puberty onset was delayed and menstrual cycles prolonged and associated with altered serum hormone levels in baboon offspring that developed in an intrauterine environment in which estradiol levels were suppressed. Because puberty and follicle development, as shown previously, were normal in baboons treated in utero with letrozole and estradiol, we propose that fetal ovarian development and timely onset of puberty in the primate is programmed by fetal exposure to placental estrogen.
Collapse
Affiliation(s)
- Gerald J Pepe
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| | | | | |
Collapse
|
43
|
Richardson M, Guo M, Fauser B, Macklon N. Environmental and developmental origins of ovarian reserve. Hum Reprod Update 2013; 20:353-69. [DOI: 10.1093/humupd/dmt057] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
44
|
Cheng XB, Jimenez M, Desai R, Middleton LJ, Joseph SR, Ning G, Allan CM, Smith JT, Handelsman DJ, Walters KA. Characterizing the neuroendocrine and ovarian defects of androgen receptor-knockout female mice. Am J Physiol Endocrinol Metab 2013; 305:E717-26. [PMID: 23880317 DOI: 10.1152/ajpendo.00263.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Homozygous androgen receptor (AR)-knockout (ARKO) female mice are subfertile due to both intra- and extraovarian (neuroendocrine) defects as defined by ovary transplantation. Using ARKO mice, this study set out to reveal the precise AR-regulated pathways required for optimal androgen-regulated ovulation and fertility. ARKO females exhibit deficient neuroendocrine negative feedback, with a reduced serum luteinizing hormone (LH) response to ovariectomy (OVX) (P < 0.01). Positive feedback is also altered as intact ARKO females, at late proestrus, exhibit an often mistimed endogenous ovulatory LH surge. Furthermore, at late proestrus, intact ARKO females display diminished preovulatory serum estradiol (E2; P < 0.01) and LH (P < 0.05) surge levels and reduced Kiss1 mRNA expression in the anteroventral periventricular nucleus (P < 0.01) compared with controls. However, this reduced ovulatory LH response in intact ARKO females can be rescued by OVX and E2 priming or treatment with endogenous GnRH. These findings reveal that AR regulates the negative feedback response to E2, E2-positive feedback is compromised in ARKO mice, and AR-regulated negative and positive steroidal feedback pathways impact on intrahypothalamic control of the kisspeptin/GnRH/LH cascade. In addition, intraovarian AR-regulated pathways controlling antral to preovulatory follicle dynamics are disrupted because adult ARKO ovaries collected at proestrus have small antral follicles with reduced oocyte/follicle diameter ratios (P < 0.01) and increased proportions of unhealthy large antral follicles (P < 0.05) compared with controls. As a consequence of aberrant follicular growth patterns, proestrus ARKO ovaries also exhibit fewer preovulatory follicle (P < 0.05) and corpora lutea numbers (P < 0.01). However, embryo development to the blastocyst stage is unchanged in ARKO females, and hence, the subfertility is a consequence of reduced ovulations and not altered embryo quality. These findings reveal that the AR has a functional role in neuroendocrine regulation and timing of the ovulatory LH surge as well as antral/preovulatory follicle development.
Collapse
Affiliation(s)
- Xiaobing B Cheng
- ANZAC Research Institute, Andrology Laboratory, Concord Hospital, University of Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Walters KA, Middleton LJ, Joseph SR, Hazra R, Jimenez M, Simanainen U, Allan CM, Handelsman DJ. Targeted loss of androgen receptor signaling in murine granulosa cells of preantral and antral follicles causes female subfertility. Biol Reprod 2012; 87:151. [PMID: 23115271 DOI: 10.1095/biolreprod.112.102012] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Ovarian granulosa cells display strong androgen receptor (AR) expression, suggesting a functional role for direct AR-mediated actions within developing mammalian follicles. By crossing AR-floxed and anti-Müllerian hormone (AMH)-Cre recombinase mice, we generated granulosa cell-specific androgen receptor knockout mice (GCARKO). Cre expression, assessed by lacZ activity, localized to 70%-100% of granulosa cells in most preantral to antral follicles, allowing for selected evaluation of granulosa cell AR-dependent actions during follicle development. Relative to wild-type (WT) females, GCARKO females were subfertile, producing a 24% reduction in the number of litters (P < 0.05) over 6 mo and an age-dependent decrease in total number of pups born, evident from 6 mo of age (P < 0.05). Follicle dynamics were altered in GCARKO ovaries at 3 mo of age, with a significant reduction in large preantral and small antral follicle numbers compared to WT ovaries (P < 0.05). Global premature follicle depletion was not observed, but increased follicular atresia was evident in GCARKO ovaries at 6 mo of age, with an 81% increase in unhealthy follicles and zona pellucida remnants (P < 0.01). Cumulus cell expansion was decreased (P < 0.01) and oocyte viability was diminished in GCARKO females, with a significant reduction in the percentage of oocytes fertilized after natural mating and, thus, in the rate of progression to the two-cell embryo stage (P < 0.05). In addition, compared with age-matched WT females, 6-mo-old GCARKO females exhibited significantly prolonged estrous cycles (P ≤ 0.05), suggesting altered hypothalamic-pituitary-gonadal feedback signaling. In conclusion, our findings revealed that selective loss of granulosa cell AR actions during preantral and antral stages of development leads to a premature reduction in female fecundity through reduced follicle health and oocyte viability.
Collapse
Affiliation(s)
- Kirsty A Walters
- ANZAC Research Institute, Department of Andrology, Concord Hospital, University of Sydney, Sydney, New South Wales, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Skjaervo GR, Roskaft E. Early conditions and fitness: effect of maternal parity on human life-history traits. Behav Ecol 2012. [DOI: 10.1093/beheco/ars185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
47
|
Károlyi Z. [The pathomechanism of polycystic ovary syndrome in the light of recent research findings]. Orv Hetil 2012; 153:1567-9. [PMID: 23022879 DOI: 10.1556/oh.2012.29467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The author summarizes the factors which play a role in the development of polycystic ovary syndrome highlighting the impact of intrauterine genetic programming and the importance of the maternal steroid environment. Environmental effects, steroid receptor modulators, endocrine disruptor compounds, and the role of obesity in the development of polycystic ovary syndrome are also discussed.
Collapse
Affiliation(s)
- Zoltán Károlyi
- Péterfy Sándor Utcai Kórház Endokrinológiai Szakrendelő Budapest Péterfy.
| |
Collapse
|
48
|
Temporal window in which exposure to estradiol permanently modifies ovarian function causing polycystic ovary morphology in rats. Fertil Steril 2012; 98:1283-90. [PMID: 22854013 DOI: 10.1016/j.fertnstert.2012.07.1060] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 06/18/2012] [Accepted: 07/05/2012] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To investigate the developmental window in which E(2) exposure produces irreversible changes in ovarian function resulting in polycystic ovary. DESIGN Basic experimental study. SETTING University animal laboratory. ANIMAL(S) Thirty Sprague-Dawley rats were administered a single E(2) valerate dose (10 mg/kg of weight) at 1, 7, 14, 21, or 30 days of age. Control rats were injected with the vehicle at 1 day of age. All rats were sacrificed at 6 months of age. INTERVENTION(S) Observation of vaginal opening, estrous cyclicity by vaginal smears, and ovarian morphometry in the 6-month-old rat. MAIN OUTCOME MEASURE(S) Measurement of ovarian noradrenaline by high-performance liquid chromatography coupled with electrochemical detection, serum levels of LH by enzyme-linked immunoassay, P, androstenedione, and E(2) by enzyme immunoassay. RESULT(S) Rats exposed to E(2) at 1, 7, or 14 days of life did not show estrual cycling activity and maintained a polycystic ovary (PCO) condition throughout the entirety of the study. However, if the exposure to E(2) occurred after postnatal day 21, the PCO-induced condition was reversible. In rats that developed a permanent PCO condition, we observed significant effects of E(2) on ovarian morphology if exposure occurred on postnatal day 1 and a presumable effect on the hypothalamus if the exposure occurred between postnatal days 1 and 14. CONCLUSION(S) Our findings suggest that in rats, the most sensitive period for the promotion of an irreversible PCO morphology by estrogenic compounds is during neonatal early follicular development.
Collapse
|
49
|
Díaz-García C, Estella C, Perales-Puchalt A, Simón C. Reproductive medicine and inheritance of infertility by offspring: the role of fetal programming. Fertil Steril 2011; 96:536-45. [PMID: 21794856 DOI: 10.1016/j.fertnstert.2011.06.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Revised: 06/22/2011] [Accepted: 06/23/2011] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To summarize the molecular processes involved in fetal programming, to describe how assisted reproduction technologies (ART) may affect the epigenetic pattern of the embryo, and to highlight the current knowledge of the role of perinatal events in the subsequent development of reproductive pathology affecting infertile patients. DESIGN A literature review of fetal programming of adulthood gynecologic diseases and ART. A Medline search was performed with the following keywords: (fetal programming OR epigenetics OR methylation OR acetylation) AND (IVF OR ART) AND (gynecology). Articles up to October 2010 were selected. Articles and recent reviews were classified by human and animals studies and also according to their experimental or observational design. SETTING University hospital research center. PATIENT(S) None. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) None. RESULT(S) Data from experimental animal models and case-control studies support the potential effect of ART in changing methylation patterns in gametes and embryos. However, these findings are not supported by population studies or experimental studies performed in human gametes/embryos. Experimental and epidemiologic studies support the hypothesis that some adult gynecologic diseases causing infertility may have a fetal origin. CONCLUSION(S) Although it seems clear that some adult gynecologic diseases causing infertility may have a fetal origin, there is insufficient evidence to confirm that ART is the origin of later onset, adulthood diseases. Further research in this field must be conducted.
Collapse
Affiliation(s)
- César Díaz-García
- Department of Gynecology and Obstetrics, La Fe University Hospital, University of Valencia, Valencia, Spain.
| | | | | | | |
Collapse
|
50
|
Juengel JL, O'Connell AR, French MC, Proctor LE, Wheeler R, Farquhar PA, Dodds KG, Galloway SM, Johnstone PD, Davis GH. Identification of a line of sheep carrying a putative autosomal gene increasing ovulation rate in sheep that does not appear to interact with mutations in the transforming growth factor beta superfamily. Biol Reprod 2011; 85:113-20. [PMID: 21415136 DOI: 10.1095/biolreprod.110.090514] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Sheep lines with mutations in single genes that have major effects on ovulation rate have been very useful in gaining a better understanding of pathways important in controlling follicular development and ovulation rate. To date however, all known mutations are in the transforming growth factor beta (TGFB) superfamily. Ovulation rates were measured in 720 progeny of 20 rams that were descendants of a single prolific ewe. Evaluation of ovulation rates of daughters of closely related sires suggests the presence of a segregating major gene Fecundity Davisdale (FECD) that increases ovulation rate between 0.4 and 0.8 in heterozygous daughters. Key features of mutations in genes of the TGFB superfamily pathway, such as synergistic interactions with other family members, infertility in homozygous carriers, and increased responsiveness to exogenous gonadotropins, were not observed in this line; thus, the mutation does not appear to be acting in the TGFB pathway. Hence, there is likely a novel mutation being carried in this line of sheep that alters ovulation rate. Future identification of the causative mutation may provide new insights into regulation of follicular development and ovulation rate.
Collapse
Affiliation(s)
- Jennifer L Juengel
- Centre for Reproduction and Genomics, AgResearch Limited, Invermay Agricultural Centre, Mosgiel, New Zealand.
| | | | | | | | | | | | | | | | | | | |
Collapse
|