1
|
Chia ZJ, Kumarapperuma H, Zhang R, Little PJ, Kamato D. Smad transcription factors as mediators of 7 transmembrane G protein-coupled receptor signalling. Acta Pharmacol Sin 2025; 46:795-804. [PMID: 39506064 PMCID: PMC11950520 DOI: 10.1038/s41401-024-01413-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024]
Abstract
The Smad transcription factors are well known for their role at the core of transforming growth factor-β (TGF-β) signalling. However, recent evidence shows that the Smad transcription factors play a vital role downstream of other classes of receptors including G protein-coupled receptors (GPCR). The versatility of Smad transcription factors originated from the two regions that can be differently activated by the TGF-β receptor superfamily or through the recruitment of intracellular kinases stimulated by other receptors classes such as GPCRs. The classic GPCR signalling cascade is further expanded to conditional adoption of the Smad transcription factor under the stimulation of Akt, demonstrating the unique involvement of the Smad transcription factor in GPCR signalling pathways in disease environments. In this review, we provide a summary of the signalling pathways of the Smad transcription factors as an important downstream mediator of GPCRs, presenting exciting opportunities for discovering new therapeutic targets for diseases.
Collapse
Affiliation(s)
- Zheng-Jie Chia
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, QLD, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
| | - Hirushi Kumarapperuma
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, QLD, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
| | - Ruizhi Zhang
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, QLD, Australia
- School of Environment and Science, Griffith Sciences, Griffith University, Nathan, QLD, Australia
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
- Department of Pharmacy, Guangzhou Xinhua University, Guangzhou, 510520, China
| | - Danielle Kamato
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, QLD, Australia.
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia.
- School of Environment and Science, Griffith Sciences, Griffith University, Nathan, QLD, Australia.
| |
Collapse
|
2
|
Fogarty A, Jia S, Wilbourne J, DuPuis C, Zhao F. Crucial roles of mesenchymal Gata2 in murine epididymal development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.26.645498. [PMID: 40196482 PMCID: PMC11974812 DOI: 10.1101/2025.03.26.645498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Androgens drive the morphogenesis and differentiation of the Wolffian duct (WD) into the epididymis, an essential organ for male reproduction, by binding to the androgen receptor (AR). However, it remains unclear whether other transcriptional programs operate beyond the central androgen/AR signaling in promoting WD development. We discovered that mesenchyme-specific deletion of the transcription factor Gata2 resulted in defective epididymal coiling in the corpus and caudal regions. The defective coiling in the absence of mesenchymal Gata2 did not result from androgen signaling deficiency, as there were no abnormalities in testicular morphology, androgen production, or AR/Ar expression, and dihydrotestosterone supplementation did not restore epididymal coiling in cultured WDs. Instead, Gata2 deletion reduced the expression of the mesenchyme-derived factor Inhba and epithelial proliferation, both of which play critical roles in epididymal coiling. The epididymal defect persisted into adulthood, with the uncoiled corpus and caudal epididymis exhibiting abnormal epithelial morphology and lumen environments, resulting in an unfavorable environment for sperm storage. Our results demonstrate the androgen-independent role of mesenchymal GATA2 in promoting epididymal development through Inhba induction and highlight the importance of proper fetal development in male reproduction.
Collapse
Affiliation(s)
- Allyssa Fogarty
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
- Comparative Biomedical Sciences Graduate Program, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Shuai Jia
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jillian Wilbourne
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Claire DuPuis
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Fei Zhao
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
- Comparative Biomedical Sciences Graduate Program, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
3
|
Wiley MB, Bauer J, Alvarez V, Kolics Z, Cheng W, Church DN, Kerr DJ, Kerr RS, Jung B. Activin A affects colorectal cancer progression and immunomodulation in a stage dependent manner. Sci Rep 2025; 15:8509. [PMID: 40075112 PMCID: PMC11903883 DOI: 10.1038/s41598-025-91853-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Advanced colorectal cancer (CRC) continues to present with poor survival and treatment options remain limited. We have shown that increased activin A (activin) expression in the tumor microenvironment (TME) is associated with poor outcome in a cohort of stage III and IV CRC patients. Here, we hypothesized that activin promotes stage specific outcomes in CRC, enhancing metastasis and tolerance in late-stage CRC exclusively. We employed Digital Spatial Profiling (DSP) technology on a cohort of stage II and III CRC patient tissue samples obtained at the time of curative surgery to show that activin co-localization was associated with increased mitogenic signaling, proliferation, and immunosuppression in stage III, but not stage II, CRCs. Furthermore, we found strong linear correlations between markers of immunosuppression and signaling proteins in activin (+) areas, an effect that was not observed in activin (-) areas of tissue. Taken together these data suggest activin exerts pro-metastatic and immunosuppressive effects in stage III, but not stage II, CRC providing an attractive therapeutic target for advanced CRC.
Collapse
Affiliation(s)
- Mark B Wiley
- Department of Medicine, University of Washington College of Medicine, Seattle, WA, 98195, USA
| | - Jessica Bauer
- Department of Medicine, University of Washington College of Medicine, Seattle, WA, 98195, USA
| | - Valentina Alvarez
- Department of Medicine, University of Washington College of Medicine, Seattle, WA, 98195, USA
| | - Zoe Kolics
- Department of Medicine, University of Washington College of Medicine, Seattle, WA, 98195, USA
| | - Wenxuan Cheng
- Department of Medicine, University of Washington College of Medicine, Seattle, WA, 98195, USA
| | - David N Church
- Nuffield Department of Medicine, University of Oxford, Oxford, OX1 4BH, UK
- NIHR Oxford Comprehensive Biomedical Research Center, Oxford University Hospitals NHS Foundation Trust, University of Oxford, Oxford, OX1 4BH, UK
| | - David J Kerr
- Radcliffe Department of Medicine, University of Oxford, Oxford, OX1 4BH, UK
| | - Rachel S Kerr
- Department of Oncology, University of Oxford, Oxford, OX1 4BH, UK
| | - Barbara Jung
- School of Medicine, University of California, San Diego, San Diego, CA, 92093, USA.
| |
Collapse
|
4
|
Wiens KR, Wasti N, Ulloa OO, Klegeris A. Diversity of Microglia-Derived Molecules with Neurotrophic Properties That Support Neurons in the Central Nervous System and Other Tissues. Molecules 2024; 29:5525. [PMID: 39683685 DOI: 10.3390/molecules29235525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Microglia, the brain immune cells, support neurons by producing several established neurotrophic molecules including glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF). Modern analytical techniques have identified numerous phenotypic states of microglia, each associated with the secretion of a diverse set of substances, which likely include not only canonical neurotrophic factors but also other less-studied molecules that can interact with neurons and provide trophic support. In this review, we consider the following eight such candidate cytokines: oncostatin M (OSM), leukemia inhibitory factor (LIF), activin A, colony-stimulating factor (CSF)-1, interleukin (IL)-34, growth/differentiation factor (GDF)-15, fibroblast growth factor (FGF)-2, and insulin-like growth factor (IGF)-2. The available literature provides sufficient evidence demonstrating murine cells produce these cytokines and that they exhibit neurotrophic activity in at least one neuronal model. Several distinct types of neurotrophic activity are identified that only partially overlap among the cytokines considered, reflecting either their distinct intrinsic properties or lack of comprehensive studies covering the full spectrum of neurotrophic effects. The scarcity of human-specific studies is another significant knowledge gap revealed by this review. Further studies on these potential microglia-derived neurotrophic factors are warranted since they may be used as targeted treatments for diverse neurological disorders.
Collapse
Affiliation(s)
- Kennedy R Wiens
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Naved Wasti
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Omar Orlando Ulloa
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Andis Klegeris
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
5
|
Horvat Mercnik M, Schliefsteiner C, Sanchez-Duffhues G, Wadsack C. TGFβ signalling: a nexus between inflammation, placental health and preeclampsia throughout pregnancy. Hum Reprod Update 2024; 30:442-471. [PMID: 38519450 PMCID: PMC11215164 DOI: 10.1093/humupd/dmae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/16/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND The placenta is a unique and pivotal organ in reproduction, controlling crucial growth and cell differentiation processes that ensure a successful pregnancy. Placental development is a tightly regulated and dynamic process, in which the transforming growth factor beta (TGFβ) superfamily plays a central role. This family of pleiotropic growth factors is heavily involved in regulating various aspects of reproductive biology, particularly in trophoblast differentiation during the first trimester of pregnancy. TGFβ signalling precisely regulates trophoblast invasion and the cell transition from cytotrophoblasts to extravillous trophoblasts, which is an epithelial-to-mesenchymal transition-like process. Later in pregnancy, TGFβ signalling ensures proper vascularization and angiogenesis in placental endothelial cells. Beyond its role in trophoblasts and endothelial cells, TGFβ signalling contributes to the polarization and function of placental and decidual macrophages by promoting maternal tolerance of the semi-allogeneic foetus. Disturbances in early placental development have been associated with several pregnancy complications, including preeclampsia (PE) which is one of the severe complications. Emerging evidence suggests that TGFβ is involved in the pathogenesis of PE, thereby offering a potential target for intervention in the human placenta. OBJECTIVE AND RATIONALE This comprehensive review aims to explore and elucidate the roles of the major members of the TGFβ superfamily, including TGFβs, bone morphogenetic proteins (BMPs), activins, inhibins, nodals, and growth differentiation factors (GDFs), in the context of placental development and function. The review focusses on their interactions within the major cell types of the placenta, namely trophoblasts, endothelial cells, and immune cells, in both normal pregnancies and pregnancies complicated by PE throughout pregnancy. SEARCH METHODS A literature search was carried out using PubMed and Google Scholar, searching terms: 'TGF signalling preeclampsia', 'pregnancy TGF signalling', 'preeclampsia tgfβ', 'preeclampsia bmp', 'preeclampsia gdf', 'preeclampsia activin', 'endoglin preeclampsia', 'endoglin pregnancy', 'tgfβ signalling pregnancy', 'bmp signalling pregnancy', 'gdf signalling pregnancy', 'activin signalling pregnancy', 'Hofbauer cell tgfβ signalling', 'placental macrophages tgfβ', 'endothelial cells tgfβ', 'endothelium tgfβ signalling', 'trophoblast invasion tgfβ signalling', 'trophoblast invasion Smad', 'trophoblast invasion bmp', 'trophoblast invasion tgfβ', 'tgfβ preeclampsia', 'tgfβ placental development', 'TGFβ placental function', 'endothelial dysfunction preeclampsia tgfβ signalling', 'vascular remodelling placenta TGFβ', 'inflammation pregnancy tgfβ', 'immune response pregnancy tgfβ', 'immune tolerance pregnancy tgfβ', 'TGFβ pregnancy NK cells', 'bmp pregnancy NK cells', 'bmp pregnancy tregs', 'tgfβ pregnancy tregs', 'TGFβ placenta NK cells', 'TGFβ placenta tregs', 'NK cells preeclampsia', 'Tregs preeclampsia'. Only articles published in English until 2023 were used. OUTCOMES A comprehensive understanding of TGFβ signalling and its role in regulating interconnected cell functions of the main placental cell types provides valuable insights into the processes essential for successful placental development and growth of the foetus during pregnancy. By orchestrating trophoblast invasion, vascularization, immune tolerance, and tissue remodelling, TGFβ ligands contribute to the proper functioning of a healthy maternal-foetal interface. However, dysregulation of TGFβ signalling has been implicated in the pathogenesis of PE, where the shallow trophoblast invasion, defective vascular remodelling, decreased uteroplacental perfusion, and endothelial cell and immune dysfunction observed in PE, are all affected by an altered TGFβ signalling. WIDER IMPLICATIONS The dysregulation of TGFβ signalling in PE has important implications for research and clinical practice. Further investigation is required to understand the underlying mechanisms, including the role of different ligands and their regulation under pathophysiological conditions, in order to discover new therapeutic targets. Distinguishing between clinically manifested subtypes of PE and studying TGFβ signalling in different placental cell types holistically is an important first step. To put this knowledge into practice, pre-clinical animal models combined with new technologies are needed. This may also lead to improved human research models and identify potential therapeutic targets, ultimately improving outcomes for affected pregnancies and reducing the burden of PE.
Collapse
Affiliation(s)
| | | | - Gonzalo Sanchez-Duffhues
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Tissue-Specific BMP Signalling ISPA-HUCA, Oviedo, Spain
| | - Christian Wadsack
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
6
|
Liu D, Wang S, Liu S, Wang Q, Che X, Wu G. Frontiers in sarcopenia: Advancements in diagnostics, molecular mechanisms, and therapeutic strategies. Mol Aspects Med 2024; 97:101270. [PMID: 38583268 DOI: 10.1016/j.mam.2024.101270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024]
Abstract
The onset of sarcopenia is intimately linked with aging, posing significant implications not only for individual patient quality of life but also for the broader societal healthcare framework. Early and accurate identification of sarcopenia and a comprehensive understanding of its mechanistic underpinnings and therapeutic targets paramount to addressing this condition effectively. This review endeavors to present a cohesive overview of recent advancements in sarcopenia research and diagnosis. We initially delve into the contemporary diagnostic criteria, specifically referencing the European Working Group on Sarcopenia in Older People (EWGSOP) 2 and Asian Working Group on Sarcopenia (AWGS) 2019 benchmarks. Additionally, we elucidate comprehensive assessment techniques for muscle strength, quantity, and physical performance, highlighting tools such as grip strength, chair stand test, dual-energy X-ray Absorptiometry (DEXA), bioelectrical impedance analysis (BIA), gait speed, and short physical performance battery (SPPB), while also discussing their inherent advantages and limitations. Such diagnostic advancements pave the way for early identification and unequivocal diagnosis of sarcopenia. Proceeding further, we provide a deep-dive into sarcopenia's pathogenesis, offering a thorough examination of associated signaling pathways like the Myostatin, AMP-activated protein kinase (AMPK), insulin/IGF-1 Signaling (IIS), and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways. Each pathway's role in sarcopenia mediation is detailed, underscoring potential therapeutic target avenues. From a mechanistic perspective, the review also underscores the pivotal role of mitochondrial dysfunction in sarcopenia, emphasizing elements such as mitochondrial oxidative overload, mitochondrial biogenesis, and mitophagy, and highlighting their therapeutic significance. At last, we capture recent strides made in sarcopenia treatment, ranging from nutritional and exercise interventions to potential pharmacological and supplementation strategies. In sum, this review meticulously synthesizes the latest scientific developments in sarcopenia, aiming to enhance diagnostic precision in clinical practice and provide comprehensive insights into refined mechanistic targets and innovative therapeutic interventions, ultimately contributing to optimized patient care and advancements in the field.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Shijin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Shuang Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Qifei Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China.
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China.
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China.
| |
Collapse
|
7
|
Lu YQ, Wang Y. Multi-Omic Analysis Reveals Genetic Determinants and Therapeutic Targets of Chronic Kidney Disease and Kidney Function. Int J Mol Sci 2024; 25:6033. [PMID: 38892221 PMCID: PMC11172763 DOI: 10.3390/ijms25116033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Chronic kidney disease (CKD) presents a significant global health challenge, characterized by complex pathophysiology. This study utilized a multi-omic approach, integrating genomic data from the CKDGen consortium alongside transcriptomic, metabolomic, and proteomic data to elucidate the genetic underpinnings and identify therapeutic targets for CKD and kidney function. We employed a range of analytical methods including cross-tissue transcriptome-wide association studies (TWASs), Mendelian randomization (MR), summary-based MR (SMR), and molecular docking. These analyses collectively identified 146 cross-tissue genetic associations with CKD and kidney function. Key Golgi apparatus-related genes (GARGs) and 41 potential drug targets were highlighted, with MAP3K11 emerging as a significant gene from the TWAS and MR data, underscoring its potential as a therapeutic target. Capsaicin displayed promising drug-target interactions in molecular docking analyses. Additionally, metabolome- and proteome-wide MR (PWMR) analyses revealed 33 unique metabolites and critical inflammatory proteins such as FGF5 that are significantly linked to and colocalized with CKD and kidney function. These insights deepen our understanding of CKD pathogenesis and highlight novel targets for treatment and prevention.
Collapse
Affiliation(s)
| | - Yirong Wang
- School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China;
| |
Collapse
|
8
|
Nayerpour Dizaj T, Doustmihan A, Sadeghzadeh Oskouei B, Akbari M, Jaymand M, Mazloomi M, Jahanban-Esfahlan R. Significance of PSCA as a novel prognostic marker and therapeutic target for cancer. Cancer Cell Int 2024; 24:135. [PMID: 38627732 PMCID: PMC11020972 DOI: 10.1186/s12935-024-03320-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/30/2024] [Indexed: 04/20/2024] Open
Abstract
One of the contributing factors in the diagnosis and treatment of most cancers is the identification of their surface antigens. Cancer tissues or cells have their specific antigens. Some antigens that are present in many cancers elicit different functions. One of these antigens is the prostate stem cell antigen (PSCA) antigen, which was first identified in the prostate. PSCA is a cell surface protein that has different functions in different tissues. It can play an inhibitory role in cell proliferation as well as a tumor-inducing role. PSCA has several genetic variants involved in cancer susceptibility in some tissues, so identifying the characteristics of this antigen and its relationship with clinical features can provide more information on diagnosis and treatment of patients with cancers. Most studies on the PSCA have focused on prostate cancer. While it is also expressed in other cancers, little attention has been paid to its role as a valuable diagnostic, prognostic, and therapeutic tool in other cancers. PSCA has several genetic variants that seem to play a significant role in cancer susceptibility in some tissues, so identifying the characteristics of this antigen and its relationship and variants with clinical features can be beneficial in concomitant cancer therapy and diagnosis, as theranostic tools. In this study, we will review the alteration of the PSCA expression and its polymorphisms and evaluate its clinical and theranostics significance in various cancers.
Collapse
Affiliation(s)
- Tina Nayerpour Dizaj
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Doustmihan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Sadeghzadeh Oskouei
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Akbari
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - MirAhmad Mazloomi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Mekala S, Rai R, Reed SL, Bowen B, Michalopoulos GK, Locker J, Raeman R, Oertel M. Antagonizing Activin A/p15 INK4b Signaling as Therapeutic Strategy for Liver Disease. Cells 2024; 13:649. [PMID: 38607090 PMCID: PMC11011318 DOI: 10.3390/cells13070649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/09/2024] [Accepted: 02/01/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND/AIM Activin A is involved in the pathogenesis of human liver diseases, but its therapeutic targeting is not fully explored. Here, we tested the effect of novel, highly specific small-molecule-based activin A antagonists (NUCC-474/555) in improving liver regeneration following partial hepatectomy and halting fibrosis progression in models of chronic liver diseases (CLDs). METHODS Cell toxicity of antagonists was determined in rat hepatocytes and Huh-7 cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay. Hepatocytes and hepatic stellate cells (HSCs) were treated with activin A and NUCC-555 and analyzed by reverse transcription-polymerase chain reaction and immunohistochemistry. Partial hepatectomized Fisher (F)344 rats were treated with NUCC-555, and bromodeoxyuridine (BrdU) incorporation was determined at 18/24/36/120/240 h. NUCC-555 was administered into thioacetamide- or carbon tetrachloride-treated F344 rats or C57BL/6 mice, and the fibrosis progression was studied. RESULTS NUCC-474 showed higher cytotoxicity in cultured hepatic cells; therefore, NUCC-555 was used in subsequent studies. Activin A-stimulated overexpression of cell cycle-/senescence-related genes (e.g., p15INK4b, DEC1, Glb1) was near-completely reversed by NUCC-555 in hepatocytes. Activin A-mediated HSC activation was blocked by NUCC-555. In partial hepatectomized rats, antagonizing activin A signaling resulted in a 1.9-fold and 2.3-fold increase in BrdU+ cells at 18 and 24 h, respectively. Administration of NUCC-555 in rats and mice with progressing fibrosis significantly reduced collagen accumulation (7.9-fold), HSC activation indicated by reduced alpha smooth muscle actin+ and vimentin+ cells, and serum aminotransferase activity. CONCLUSIONS Our studies demonstrate that activin A antagonist NUCC-555 promotes liver regeneration and halts fibrosis progression in CLD models, suggesting that blocking activin A signaling may represent a new approach to treating people with CLD.
Collapse
Affiliation(s)
- Sowmya Mekala
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, 200 Lothrop Street—BST S-404, Pittsburgh, PA 15261, USA (R.R.); (G.K.M.); (R.R.)
| | - Ravi Rai
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, 200 Lothrop Street—BST S-404, Pittsburgh, PA 15261, USA (R.R.); (G.K.M.); (R.R.)
| | - Samantha Loretta Reed
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, 200 Lothrop Street—BST S-404, Pittsburgh, PA 15261, USA (R.R.); (G.K.M.); (R.R.)
| | - Bill Bowen
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, 200 Lothrop Street—BST S-404, Pittsburgh, PA 15261, USA (R.R.); (G.K.M.); (R.R.)
| | - George K. Michalopoulos
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, 200 Lothrop Street—BST S-404, Pittsburgh, PA 15261, USA (R.R.); (G.K.M.); (R.R.)
- Pittsburgh Liver Research Center (PLRC), University of Pittsburgh, Pittsburgh, PA 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Joseph Locker
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, 200 Lothrop Street—BST S-404, Pittsburgh, PA 15261, USA (R.R.); (G.K.M.); (R.R.)
- Pittsburgh Liver Research Center (PLRC), University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Reben Raeman
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, 200 Lothrop Street—BST S-404, Pittsburgh, PA 15261, USA (R.R.); (G.K.M.); (R.R.)
- Pittsburgh Liver Research Center (PLRC), University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Michael Oertel
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, 200 Lothrop Street—BST S-404, Pittsburgh, PA 15261, USA (R.R.); (G.K.M.); (R.R.)
- Pittsburgh Liver Research Center (PLRC), University of Pittsburgh, Pittsburgh, PA 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
10
|
Zheng F, Dahlmanns M, Kessler P, Alzheimer C. Increase in activin A may counteract decline in synaptic plasticity with age. Front Aging Neurosci 2024; 16:1382492. [PMID: 38646448 PMCID: PMC11026702 DOI: 10.3389/fnagi.2024.1382492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Activin A, a member of the transforming growth factor β (TGF-β) family, is widely recognized for its neurotrophic and neuroprotective function in the developing and injured brain, respectively. Moreover, in the healthy adult brain, activin A has been shown to tune signal processing at excitatory synapses in a fashion that improves cognitive performance. Because its level in human cerebrospinal fluid rises with age, we wondered whether activin A has a role in mitigating the gradual cognitive decline that healthy individuals experience in late-life. To interrogate the role of activin A in synaptic plasticity in the aging brain, we used an established transgenic mouse line, in which expression of a dominant-negative mutant of activin receptor IB (dnActRIB) serves to disrupt activin receptor signaling in a forebrain-specific fashion. In brain slices of young adult dnActRIB mice (2-4 months old), the NMDA receptor-dependent and -independent forms of long-term potentiation (LTP) at the Schaffer collateral-CA1 pyramidal cell synapse of the hippocampus were equally impaired relative to the extent of LTP measured in the wild-type preparation. Unexpectedly, the difference between the genotypes disappeared when the two forms of LTP were re-examined in slices from middle-aged mice (13-16 months old). Since the level of activin A and endogenous ActRIB both displayed a significant elevation in middle-aged hippocampus, we reasoned that with such a rise, the dominant-negative effect of the mutant receptors could be overcome. Substantiating this idea, we found that administration of recombinant activin A was indeed capable of restoring full-blown LTP in slices from young dnActRIB mice. Our data suggest that, beginning in the middle-aged brain, endogenous activin receptor signaling appears to become strengthened in an attempt to stave off cognitive decline. If further corroborated, this concept would also hold promise for new therapeutic venues to preserve cognitive functions in the aged brain.
Collapse
Affiliation(s)
- Fang Zheng
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | |
Collapse
|
11
|
Du R, Wen L, Niu M, Zhao L, Guan X, Yang J, Zhang C, Liu H. Activin receptors in human cancer: Functions, mechanisms, and potential clinical applications. Biochem Pharmacol 2024; 222:116061. [PMID: 38369212 DOI: 10.1016/j.bcp.2024.116061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/18/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Activins are members of the transforming growth factor-β (TGF-β) superfamily and act as key regulators in various physiological processes, such as follicle and embryonic development, as well as in multiple human diseases, including cancer. They have been established to signal through three type I and two type II serine/threonine kinase receptors, which, upon ligand binding, form a final signal-transducing receptor complex that activates downstream signaling and governs gene expression. Recent research highlighted the dysregulation of the expression or activity of activin receptors in multiple human cancers and their critical involvement in cancer progression. Furthermore, expression levels of activin receptors have been associated with clinicopathological features and patient outcomes across different cancers. However, there is currently a paucity of comprehensive systematic reviews of activin receptors in cancer. Thus, this review aimed to consolidate existing knowledge concerning activin receptors, with a primary emphasis on their signaling cascade and emerging biological functions, regulatory mechanisms, and potential clinical applications in human cancers in order to provide novel perspectives on cancer prognosis and targeted therapy.
Collapse
Affiliation(s)
- Ruochen Du
- First Clinical Medical College of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Department of Laboratory Animal Center, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Liqi Wen
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Min Niu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Liting Zhao
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Xiaoya Guan
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Jiao Yang
- Department of Anatomy, the Basic Medical School of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Chunming Zhang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China.
| | - Hongliang Liu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; First Clinical Medical College of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Department of Cell Biology and Genetics, the Basic Medical School of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China.
| |
Collapse
|
12
|
Kim C, Kim H, Park JS, Park J, Oh J, Yoon J, Baek K. High-level production and purification of bioactive recombinant human activin A in Chinese hamster ovary cells. Prep Biochem Biotechnol 2024; 54:218-225. [PMID: 37222635 DOI: 10.1080/10826068.2023.2214932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Activin A, a member of the TGF-β superfamily, is a homodimer of the inhibin βΑ subunit that plays a diversity of roles in biological processes. Because of its multiple functions, significant efforts have been made to produce activin A, however, unsatisfactory results were obtained due to its low level of expression. In this study, a stable CHO cell line exhibiting high expression of rhActivin A was isolated and production of rhActivin A was achieved using the cell line from 11-day fed-batch cultures in a 7.5 L bioreactor. The production rate was 0.22 g/L, substantially higher than those reported in previous studies. The culture supernatant of the bioreactor was used to purify rhActivin A (purity: >99%, recovery rate: 47%). The purified rhActivin A exhibited biological activity, with an EC50 of 3.893 ng/mL and a specific activity of 1.38 × 103 IU/mg. The control of process-related impurities in the purified rhActivin A was successful and met the USP recommendations for use in cell therapy. Thus, our production and purification methods were appropriate for large-scale GMP-grade rhActivin A production, which can be used for various purposes including cell therapy.
Collapse
Affiliation(s)
- Changin Kim
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si, South Korea
| | | | | | - Jiwon Park
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si, South Korea
| | - Jeongmin Oh
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si, South Korea
| | | | - Kwanghee Baek
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si, South Korea
| |
Collapse
|
13
|
Zheng Y, Lebid A, Chung L, Fu J, Wang X, Otrocol A, Zarif JC, Yu H, Llosa NJ, Pardoll DM. Targeting the activin receptor 1C on CD4+ T cells for cancer immunotherapy. Oncoimmunology 2024; 13:2297503. [PMID: 38235319 PMCID: PMC10793694 DOI: 10.1080/2162402x.2023.2297503] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/24/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024] Open
Abstract
Activins, members of the TGF-beta superfamily, have been isolated and identified in the endocrine system, but have not been substantially investigated in the context of the immune system and endocrine-unrelated cancers. Here, we demonstrated that tumor-bearing mice had elevated systemic activin levels, which correlated directly with tumor burden. Likewise, cancer patients have elevated plasma activin levels compared to healthy controls. We observed that both tumor and immune cells could be sources of activins. Importantly, our in vitro studies suggest that activins promote differentiation of naïve CD4+ cells into Foxp3-expressing induced regulatory T cells (Tregs), particularly when TGF-beta was limited in the culture medium. Database and qRT-PCR analysis of sorted major immune cell subsets in mice revealed that activin receptor 1c (ActRIC) was uniquely expressed on Tregs and that both ActRIC and ActRIIB (activin receptor 2b) were highly upregulated during iTreg differentiation. ActRIC-deficient naïve CD4+ cells were found to be defective in iTreg generation both in vitro and in vivo. Treg suppression assays were also performed, and ActRIC deficiency did not change the function or stability of iTregs. Mice lacking ActRIC or mice treated with monoclonal anti-ActRIC antibody were more resistant to tumor progression than wild-type controls. This phenotype was correlated with reduced expression of Foxp3 in CD4+ cells in the tumor microenvironment. In light of the information presented above, blocking activin-ActRIC signaling is a promising and disease-specific strategy to impede the accumulation of immunosuppressive iTregs in cancer. Therefore, it is a potential candidate for cancer immunotherapy.
Collapse
Affiliation(s)
- Ying Zheng
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andriana Lebid
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Liam Chung
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Juan Fu
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaoxu Wang
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrea Otrocol
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jelani C. Zarif
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hong Yu
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicolas J. Llosa
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Drew M. Pardoll
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
14
|
Weckerle J, Mayr CH, Fundel-Clemens K, Lämmle B, Boryn L, Thomas MJ, Bretschneider T, Luippold AH, Huber HJ, Viollet C, Rist W, Veyel D, Ramirez F, Klee S, Kästle M. Transcriptomic and Proteomic Changes Driving Pulmonary Fibrosis Resolution in Young and Old Mice. Am J Respir Cell Mol Biol 2023; 69:422-440. [PMID: 37411041 DOI: 10.1165/rcmb.2023-0012oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/06/2023] [Indexed: 07/08/2023] Open
Abstract
Bleomycin-induced pulmonary fibrosis in mice mimics major hallmarks of idiopathic pulmonary fibrosis. Yet in this model, it spontaneously resolves over time. We studied molecular mechanisms of fibrosis resolution and lung repair, focusing on transcriptional and proteomic signatures and the effect of aging. Old mice showed incomplete and delayed lung function recovery 8 weeks after bleomycin instillation. This shift in structural and functional repair in old bleomycin-treated mice was reflected in a temporal shift in gene and protein expression. We reveal gene signatures and signaling pathways that underpin the lung repair process. Importantly, the downregulation of WNT, BMP, and TGFβ antagonists Frzb, Sfrp1, Dkk2, Grem1, Fst, Fstl1, and Inhba correlated with lung function improvement. Those genes constitute a network with functions in stem cell pathways, wound, and pulmonary healing. We suggest that insufficient and delayed downregulation of those antagonists during fibrosis resolution in old mice explains the impaired regenerative outcome. Together, we identified signaling pathway molecules with relevance to lung regeneration that should be tested in-depth experimentally as potential therapeutic targets for pulmonary fibrosis.
Collapse
Affiliation(s)
| | | | | | - Bärbel Lämmle
- Global Computational Biology and Digital Sciences, and
| | | | | | - Tom Bretschneider
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; and
| | - Andreas H Luippold
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; and
| | | | | | - Wolfgang Rist
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; and
| | - Daniel Veyel
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; and
| | - Fidel Ramirez
- Global Computational Biology and Digital Sciences, and
| | - Stephan Klee
- Department of Immunology and Respiratory Disease Research
| | - Marc Kästle
- Department of Immunology and Respiratory Disease Research
| |
Collapse
|
15
|
Pich-Bavastro C, Yerly L, Di Domizio J, Tissot-Renaud S, Gilliet M, Kuonen F. Activin A-Mediated Polarization of Cancer-Associated Fibroblasts and Macrophages Confers Resistance to Checkpoint Immunotherapy in Skin Cancer. Clin Cancer Res 2023; 29:3498-3513. [PMID: 37327314 PMCID: PMC10472111 DOI: 10.1158/1078-0432.ccr-23-0219] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/05/2023] [Accepted: 06/14/2023] [Indexed: 06/18/2023]
Abstract
PURPOSE Cemiplimab is approved for the treatment of locally advanced basal cell carcinomas (BCC), although with mitigated results. We sought to interrogate the cellular and molecular transcriptional reprogramming underlying BCC resistance to immunotherapy. EXPERIMENTAL DESIGN Here, we combined spatial and single-cell transcriptomics to deconvolute the spatial heterogeneity of the tumor microenvironment in regard with response to immunotherapy, in a cohort of both naïve and resistant BCCs. RESULTS We identified subsets of intermingled cancer-associated fibroblasts (CAF) and macrophages contributing the most to CD8 T-cell exclusion and immunosuppression. Within this spatially resolved peritumoral immunosuppressive niche, CAFs and adjacent macrophages were found to display Activin A-mediated transcriptional reprogramming towards extracellular matrix remodeling, suggesting active participation to CD8 T-cell exclusion. In independent datasets of human skin cancers, Activin A-conditioned CAFs and macrophages were associated with resistance to immune checkpoint inhibitors (ICI). CONCLUSIONS Altogether, our data identify the cellular and molecular plasticity of tumor microenvironment (TME) and the pivotal role of Activin A in polarizing the TME towards immune suppression and ICI resistance.
Collapse
Affiliation(s)
- Christine Pich-Bavastro
- Department of Dermatology and Venereology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Laura Yerly
- Department of Dermatology and Venereology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jeremy Di Domizio
- Department of Dermatology and Venereology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Stéphanie Tissot-Renaud
- Department of Oncology, Immune Landscape Laboratory, Center of Experimental Therapeutics, Lausanne University Hospital, Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Michel Gilliet
- Department of Dermatology and Venereology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - François Kuonen
- Department of Dermatology and Venereology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
16
|
Nie J, Tang T, Wang Z, Zhang D, Wei J, Sheng W. Mitral valve repair in patients with mirror-image dextrocardia and situs inversus: two cases and a review of the literature. J Int Med Res 2023; 51:3000605231189129. [PMID: 37548409 PMCID: PMC10408350 DOI: 10.1177/03000605231189129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023] Open
Abstract
Dextrocardia is a rare cardiac malposition that was first described in 1606. Mirror-image dextrocardia is characterized by a mirror-image change of the normal position of the heart. Most cases are accompanied by situs inversus viscerum, whereas only 3% to 10% of cases are associated with intracardiac anomalies. Valve surgery for acquired valvular lesions in patients with mirror-image dextrocardia with situs inversus is rare. Diagnosing situs anomalies in adults is important to prevent errors during surgical operations, emergency procedures, or interventional operations. In this report, we present two cases of mitral regurgitation in patients with mirror-image dextrocardia. One patient had mirror-image dextrocardia with subacute infective endocarditis and mitral regurgitation, and the other patient had mirror-image dextrocardia with mitral Carpentier type I regurgitation. In both patients, mitral valve repair was successfully performed using a transseptal approach.
Collapse
Affiliation(s)
| | | | | | - Dafa Zhang
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | - Jun Wei
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | - Weiyong Sheng
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| |
Collapse
|
17
|
Monsen VT, Attramadal H. Structural insights into regulation of CCN protein activities and functions. J Cell Commun Signal 2023:10.1007/s12079-023-00768-5. [PMID: 37245184 DOI: 10.1007/s12079-023-00768-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/07/2023] [Indexed: 05/29/2023] Open
Abstract
CCN proteins play important functions during development, in repair mechanisms following tissue injury, as well as in pathophysiologic mechanisms of metastasis of cancer. CCNs are secreted proteins that have a multimodular structure and are categorized as matricellular proteins. Although the prevailing view is that CCN proteins regulate biologic processes by interacting with a wide array of other proteins in the microenvironment of the extracellular matrix, the molecular mechanisms of action of CCN proteins are still poorly understood. Not dissuading the current view, however, the recent appreciation that these proteins are signaling proteins in their own right and may even be considered preproproteins controlled by endopeptidases to release a C-terminal bioactive peptide has opened new avenues of research. Also, the recent resolution of the crystal structure of two of the domains of CCN3 have provided new knowledge with implications for the entire CCN family. These resolved structures in combination with structural predictions based upon the AlphaFold artificial intelligence tool provide means to shed new light on CCN functions in context of the notable literature in the field. CCN proteins have emerged as important therapeutic targets in several disease conditions, and clinical trials are currently ongoing. Thus, a review that critically discusses structure - function relationship of CCN proteins, in particular as it relates to interactions with other proteins in the extracellular milieu and on the cell surface, as well as to cell signaling activities of these proteins, is very timely. Suggested mechanism for activation and inhibition of signaling by the CCN protein family (graphics generated with BioRender.com ).
Collapse
Affiliation(s)
- Vivi Talstad Monsen
- Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Håvard Attramadal
- Institute for Surgical Research, Oslo University Hospital, Oslo, Norway.
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
18
|
Garcia Garcia JM, Vannuzzi V, Donati C, Bernacchioni C, Bruni P, Petraglia F. Endometriosis: Cellular and Molecular Mechanisms Leading to Fibrosis. Reprod Sci 2023; 30:1453-1461. [PMID: 36289173 PMCID: PMC10160154 DOI: 10.1007/s43032-022-01083-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/09/2022] [Indexed: 10/31/2022]
Abstract
Endometriosis is a chronic inflammatory condition affecting women of reproductive age. A relevant feature of endometriosis is the presence of fibrotic tissue inside and around the lesions, thus contributing to the classic endometriosis-related symptoms, pain, and infertility. The molecular mechanisms responsible for the development of fibrosis in endometriosis are not yet defined. The present review aimed to examine the biological mechanisms and signalling pathways involved in fibrogenesis of endometriotic lesions, highlighting the difference between deep infiltrating and ovarian endometriosis. The main cell types involved in the development of fibrosis are platelets, myofibroblasts, macrophages, and sensory nerve fibers. Members of the transforming growth factor (TGF) -β family, as well as the receptor Notch, or the bioactive sphingolipid sphingosine 1-phosphate (S1P), play a role in the development of tissue fibrosis, resulting in their metabolism and/or their signalling pathways altered in endometriotic lesions. It is relevant the knowledge of the molecular mechanisms that guide and support fibrosis in endometriosis, to identify new drug targets and provide new therapeutic approaches to patients.
Collapse
Affiliation(s)
- Jose Manuel Garcia Garcia
- Obstetrics and Gynecology and Molecular Biology, Department of Experimental and Clinical Biomedical Sciences "M. Serio, " University of Florence, Florence, Italy
| | - Valentina Vannuzzi
- Obstetrics and Gynecology and Molecular Biology, Department of Experimental and Clinical Biomedical Sciences "M. Serio, " University of Florence, Florence, Italy
| | - Chiara Donati
- Obstetrics and Gynecology and Molecular Biology, Department of Experimental and Clinical Biomedical Sciences "M. Serio, " University of Florence, Florence, Italy
| | - Caterina Bernacchioni
- Obstetrics and Gynecology and Molecular Biology, Department of Experimental and Clinical Biomedical Sciences "M. Serio, " University of Florence, Florence, Italy
| | - Paola Bruni
- Obstetrics and Gynecology and Molecular Biology, Department of Experimental and Clinical Biomedical Sciences "M. Serio, " University of Florence, Florence, Italy
| | - Felice Petraglia
- Obstetrics and Gynecology and Molecular Biology, Department of Experimental and Clinical Biomedical Sciences "M. Serio, " University of Florence, Florence, Italy.
| |
Collapse
|
19
|
Payano VJH, Lopes LVDA, Peixoto LR, Silva KAD, Ortiga-Carvalho TM, Tafuri A, Vago AR, Bloise E. Immunostaining of βA-Activin and Follistatin Is Decreased in HPV(+) Cervical Pre-Neoplastic and Neoplastic Lesions. Viruses 2023; 15:v15051031. [PMID: 37243119 DOI: 10.3390/v15051031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
The activin-follistatin system regulates several cellular processes, including differentiation and tumorigenesis. We hypothesized that the immunostaining of βA-activin and follistatin varies in neoplastic cervical lesions. Cervical paraffin-embedded tissues from 162 patients sorted in control (n = 15), cervical intraepithelial neoplasia (CIN) grade 1 (n = 38), CIN2 (n = 37), CIN3 (n = 39), and squamous cell carcinoma (SCC; n = 33) groups were examined for βA-activin and follistatin immunostaining. Human papillomavirus (HPV) detection and genotyping were performed by PCR and immunohistochemistry. Sixteen samples were inconclusive for HPV detection. In total, 93% of the specimens exhibited HPV positivity, which increased with patient age. The most detected high-risk (HR)-HPV type was HPV16 (41.2%) followed by HPV18 (16%). The immunostaining of cytoplasmatic βA-activin and follistatin was higher than nuclear immunostaining in all cervical epithelium layers of the CIN1, CIN2, CIN3, and SCC groups. A significant decrease (p < 0.05) in the cytoplasmic and nuclear immunostaining of βA-activin was detected in all cervical epithelial layers from the control to the CIN1, CIN2, CIN3, and SCC groups. Only nuclear follistatin immunostaining exhibited a significant reduction (p < 0.05) in specific epithelial layers of cervical tissues from CIN1, CIN2, CIN3, and SCC compared to the control. Decreased immunostaining of cervical βA-activin and follistatin at specific stages of CIN progression suggests that the activin-follistatin system participates in the loss of the differentiation control of pre-neoplastic and neoplastic cervical specimens predominantly positive for HPV.
Collapse
Affiliation(s)
- Victor Jesus Huaringa Payano
- Laboratório de Patogênese Molecular, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-910, MG, Brazil
| | - Lara Verônica de Araújo Lopes
- Laboratório de Patogênese Molecular, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-910, MG, Brazil
| | - Larissa Rodrigues Peixoto
- Laboratório de Patogênese Molecular, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-910, MG, Brazil
| | - Keila Alves da Silva
- Laboratório de Patogênese Molecular, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-910, MG, Brazil
| | - Tania Maria Ortiga-Carvalho
- Laboratório de Endocrinologia Translacional, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Alexandre Tafuri
- Laboratório de Anatomia Patológica Tafuri, Belo Horizonte 30170-133, MG, Brazil
| | - Annamaria Ravara Vago
- Laboratório de Patogênese Molecular, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-910, MG, Brazil
| | - Enrrico Bloise
- Laboratório de Patogênese Molecular, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-910, MG, Brazil
| |
Collapse
|
20
|
Hatamzade Esfahani N, Day AS. The Role of TGF-β, Activin and Follistatin in Inflammatory Bowel Disease. GASTROINTESTINAL DISORDERS 2023; 5:167-186. [DOI: 10.3390/gidisord5020015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2023] Open
Abstract
Inflammatory bowel disease (IBD) is an immune-mediated inflammatory condition predominantly affecting the gastrointestinal (GI) tract. An increasing prevalence of IBD has been observed globally. The pathogenesis of IBD includes a complex interplay between the intestinal microbiome, diet, genetic factors and immune responses. The consequent imbalance of inflammatory mediators ultimately leads to intestinal mucosal damage and defective repair. Growth factors, given their specific roles in maintaining the homeostasis and integrity of the intestinal epithelium, are of particular interest in the setting of IBD. Furthermore, direct targeting of growth factor signalling pathways involved in the regeneration of the damaged epithelium and the regulation of inflammation could be considered as therapeutic options for individuals with IBD. Several members of the transforming growth factor (TGF)-β superfamily, particularly TGF-β, activin and follistatin, are key candidates as they exhibit various roles in inflammatory processes and contribute to maintenance and homeostasis in the GI tract. This article aimed firstly to review the events involved in the pathogenesis of IBD with particular emphasis on TGF-β, activin and follistatin and secondly to outline the potential role of therapeutic manipulation of these pathways.
Collapse
Affiliation(s)
| | - Andrew S. Day
- Paediatric Department, University of Otago Christchurch, Christchurch 8140, New Zealand
| |
Collapse
|
21
|
Bohn S, Hexemer L, Huang Z, Strohmaier L, Lenhardt S, Legewie S, Loewer A. State- and stimulus-specific dynamics of SMAD signaling determine fate decisions in individual cells. Proc Natl Acad Sci U S A 2023; 120:e2210891120. [PMID: 36857347 PMCID: PMC10013741 DOI: 10.1073/pnas.2210891120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/07/2023] [Indexed: 03/02/2023] Open
Abstract
SMAD-mediated signaling regulates apoptosis, cell cycle arrest, and epithelial-to-mesenchymal transition to safeguard tissue homeostasis. However, it remains elusive how the relatively simple pathway can determine such a broad range of cell fate decisions and how it differentiates between varying ligands. Here, we systematically investigate how SMAD-mediated responses are modulated by various ligands of the transforming growth factor β (TGFβ) family and compare these ligand responses in quiescent and proliferating MCF10A cells. We find that the nature of the phenotypic response is mainly determined by the proliferation status, with migration and cell cycle arrest being dominant in proliferating cells for all tested TGFβ family ligands, whereas cell death is the major outcome in quiescent cells. In both quiescent and proliferating cells, the identity of the ligand modulates the strength of the phenotypic response proportional to the dynamics of induced SMAD nuclear-to-cytoplasmic translocation and, as a consequence, the corresponding gene expression changes. Interestingly, the proliferation state of a cell has little impact on the set of genes induced by SMAD signaling; instead, it modulates the relative cellular sensitivity to TGFβ superfamily members. Taken together, diversity of SMAD-mediated responses is mediated by differing cellular states, which determine ligand sensitivity and phenotypic effects, while the pathway itself merely serves as a quantitative relay from the cell membrane to the nucleus.
Collapse
Affiliation(s)
- Stefan Bohn
- Department of Biology, Technical University Darmstadt, 64287Darmstadt, Germany
| | - Lorenz Hexemer
- Department of Systems Biology, Institute for Biomedical Genetics, University of Stuttgart, 70569Stuttgart, Germany
| | - Zixin Huang
- Department of Biology, Technical University Darmstadt, 64287Darmstadt, Germany
| | - Laura Strohmaier
- Department of Systems Biology, Institute for Biomedical Genetics, University of Stuttgart, 70569Stuttgart, Germany
| | - Sonja Lenhardt
- Department of Biology, Technical University Darmstadt, 64287Darmstadt, Germany
| | - Stefan Legewie
- Department of Systems Biology, Institute for Biomedical Genetics, University of Stuttgart, 70569Stuttgart, Germany
- Stuttgart Research Center for Systems Biology, University of Stuttgart, 70569Stuttgart, Germany
| | - Alexander Loewer
- Department of Biology, Technical University Darmstadt, 64287Darmstadt, Germany
| |
Collapse
|
22
|
Soomro A, Khajehei M, Li R, O’Neil K, Zhang D, Gao B, MacDonald M, Kakoki M, Krepinsky JC. A therapeutic target for CKD: activin A facilitates TGFβ1 profibrotic signaling. Cell Mol Biol Lett 2023; 28:10. [PMID: 36717814 PMCID: PMC9885651 DOI: 10.1186/s11658-023-00424-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/20/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND TGFβ1 is a major profibrotic mediator in chronic kidney disease (CKD). Its direct inhibition, however, is limited by adverse effects. Inhibition of activins, also members of the TGFβ superfamily, blocks TGFβ1 profibrotic effects, but the mechanism underlying this and the specific activin(s) involved are unknown. METHODS Cells were treated with TGFβ1 or activins A/B. Activins were inhibited generally with follistatin, or specifically with neutralizing antibodies or type I receptor downregulation. Cytokine levels, signaling and profibrotic responses were assessed with ELISA, immunofluorescence, immunoblotting and promoter luciferase reporters. Wild-type or TGFβ1-overexpressing mice with unilateral ureteral obstruction (UUO) were treated with an activin A neutralizing antibody. RESULTS In primary mesangial cells, TGFβ1 induces secretion primarily of activin A, which enables longer-term profibrotic effects by enhancing Smad3 phosphorylation and transcriptional activity. This results from lack of cell refractoriness to activin A, unlike that for TGFβ1, and promotion of TGFβ type II receptor expression. Activin A also supports transcription through regulating non-canonical MRTF-A activation. TGFβ1 additionally induces secretion of activin A, but not B, from tubular cells, and activin A neutralization prevents the TGFβ1 profibrotic response in renal fibroblasts. Fibrosis induced by UUO is inhibited by activin A neutralization in wild-type mice. Worsened fibrosis in TGFβ1-overexpressing mice is associated with increased renal activin A expression and is inhibited to wild-type levels with activin A neutralization. CONCLUSIONS Activin A facilitates TGFβ1 profibrotic effects through regulation of both canonical (Smad3) and non-canonical (MRTF-A) signaling, suggesting it may be a novel therapeutic target for preventing fibrosis in CKD.
Collapse
Affiliation(s)
- Asfia Soomro
- grid.25073.330000 0004 1936 8227Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Mohammad Khajehei
- grid.25073.330000 0004 1936 8227Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Renzhong Li
- grid.25073.330000 0004 1936 8227Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Kian O’Neil
- grid.25073.330000 0004 1936 8227Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Dan Zhang
- grid.25073.330000 0004 1936 8227Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Bo Gao
- grid.25073.330000 0004 1936 8227Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Melissa MacDonald
- grid.25073.330000 0004 1936 8227Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Masao Kakoki
- grid.410711.20000 0001 1034 1720Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC USA
| | - Joan C. Krepinsky
- grid.25073.330000 0004 1936 8227Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada ,grid.416721.70000 0001 0742 7355St. Joseph’s Hospital, 50 Charlton Ave East, Rm T3311, Hamilton, ON L8N 4A6 Canada
| |
Collapse
|
23
|
Ganjoo S, Puebla-Osorio N, Nanez S, Hsu E, Voss T, Barsoumian H, Duong LK, Welsh JW, Cortez MA. Bone morphogenetic proteins, activins, and growth and differentiation factors in tumor immunology and immunotherapy resistance. Front Immunol 2022; 13:1033642. [PMID: 36353620 PMCID: PMC9638036 DOI: 10.3389/fimmu.2022.1033642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2024] Open
Abstract
The TGF-β superfamily is a group of secreted polypeptides with key roles in exerting and regulating a variety of physiologic effects, especially those related to cell signaling, growth, development, and differentiation. Although its central member, TGF-β, has been extensively reviewed, other members of the family-namely bone morphogenetic proteins (BMPs), activins, and growth and differentiation factors (GDFs)-have not been as thoroughly investigated. Moreover, although the specific roles of TGF-β signaling in cancer immunology and immunotherapy resistance have been extensively reported, little is known of the roles of BMPs, activins, and GDFs in these domains. This review focuses on how these superfamily members influence key immune cells in cancer progression and resistance to treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Maria Angelica Cortez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
24
|
Chauhan A, Gupta A, Goyal P, Kumar T. Serum levels of Activin A: Marker of insulin resistance and cardiovascular risk in prediabetics. J Family Med Prim Care 2022; 11:5983-5989. [PMID: 36618207 PMCID: PMC9810948 DOI: 10.4103/jfmpc.jfmpc_128_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 11/11/2022] Open
Abstract
Background A substantial proportion of health burden in diabetic individuals can be attributed to cardiovascular complications. The increasing risk of cardiovascular complications along the spectrum of dysglycemia warrants the need to devise novel markers for early assessment and management. Activin A is a multifunctional cytokine with an important role in glucose homeostasis and vascular diseases. It can thus serve as a guide for early identification of cardiovascular disease (CVD) risk in prediabetes. Objective The aim of the study was to measure serum levels of activin A in prediabetics, compare them with normoglycemic controls and find the correlation of activin A with markers of insulin resistance such as the homeostatic model assessment of insulin resistance (HOMA-IR). Methods Sixty prediabetic patients and similar age-, sex-, blood pressure-, and BMI-matched controls were recruited in the study. In both groups, serum levels of fasting blood glucose and post prandial glucose, glycated hemoglobin (HbA1c) and fasting insulin were measured. HOMA-IR values were calculated. Serum activin A levels were measured in both groups using ELISA. The obtained values were compared between the two groups. Results The median (IQR) of s. fasting insulin (mIU/L) in the case group was 15.3 (12.2-18.62) which was significantly higher than that in the control group, which was 6 (4.2-7.3). The median (IQR) of s. activin A (ng/mL) in the case group was 263.55 (227.18-279.56) which was significantly higher than that in the control group, which was 159.9 (150.73-178.75) (P < 0.001). There was a very strong positive correlation of s. activin A (ng/mL) with s. fasting insulin (mIU/L) and HOMA-IR (rho = 0.67 and 0.75, respectively, P < 0.001). Conclusion Activin A, if combined with other atherosclerotic markers, might improve the assessment of insulin resistance and cardiovascular risk in prediabetics and lead to focus on lifestyle modifications and preventive medical therapy, thereby contributing to the prevention of CVD-related mortality and morbidity in these patients.
Collapse
Affiliation(s)
- Ajay Chauhan
- Department of Medicine, ABVIMS Dr. RML Hospital, R. No. 104, Academic Block, PGI Building, RML Hospital, New Delhi, India
| | - Asmita Gupta
- Department of Medicine, ABVIMS Dr. RML Hospital, R. No. 104, Academic Block, PGI Building, RML Hospital, New Delhi, India
| | - Parul Goyal
- Department of Medicine, ABVIMS Dr. RML Hospital, R. No. 104, Academic Block, PGI Building, RML Hospital, New Delhi, India
| | - Tarun Kumar
- Department of Medicine, ABVIMS Dr. RML Hospital, R. No. 104, Academic Block, PGI Building, RML Hospital, New Delhi, India
| |
Collapse
|
25
|
Nakajima T, Tanaka Y, Takahashi Y, Kondo T, Takenaka S. The expression and phosphorylation of SMAD3 protein in microglia and astrocytes of the rat hippocampus after transient global cerebral ischemia. J Chem Neuroanat 2022; 125:102146. [PMID: 36030021 DOI: 10.1016/j.jchemneu.2022.102146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/28/2022]
Abstract
SMAD3 protein transduces signals from TGF-β and activins. In vitro studies have shown that SMAD3 plays an important role in regulating of micoglia and astrocytic function. However, there is little information on the association between SMAD3 signaling and the pathophysiology of the glial cells in the post-ischemic hippocampus. In this study, we examined the time-course changes in the expression and phosphorylation of SMAD3 in the rat hippocampus using a rat model of global cerebral ischemia. Most pyramidal neuronal cells in the CA1 region died within 7 days after ischemia. The number of SMAD3- or phosphorylated SMAD3 (p-SMAD3)-immunopositive microglia or astrocytes increased in the CA1 region 7 days after ischemia. Real-time PCR analysis showed an increase in the level of TGF-β1 mRNA in the hippocampus after ischemia. Intracerebroventricular injection of SB525334, a selective inhibitor of TGF-β receptor I kinase (ALK5), reduced the ischemia-induced p-SMAD3 immunoreactivity in the microglia and astrocytes. By contrast, intracerebroventricular injection of SB525334 did not affect the ischemia-induced neuronal cell death. These results suggest that ischemia-induced SMAD3 phosphorylation in the microglia and astrocytes of post-ischemic hippocampi is associated with tissue repair and not neuroprotection.
Collapse
Affiliation(s)
- Takayuki Nakajima
- Laboratory of Veterinary Anatomy, Graduate School of Veterinary Science, Osaka Metropolitan University, 1-58 Rinku-Ohraikita, Izumisano, Osaka 598-8531, Japan.
| | - Yuki Tanaka
- Laboratory of Veterinary Anatomy, Graduate School of Veterinary Science, Osaka Metropolitan University, 1-58 Rinku-Ohraikita, Izumisano, Osaka 598-8531, Japan
| | - Yusuke Takahashi
- Laboratory of Veterinary Anatomy, Graduate School of Veterinary Science, Osaka Metropolitan University, 1-58 Rinku-Ohraikita, Izumisano, Osaka 598-8531, Japan
| | - Tomohiro Kondo
- Laboratory of Animal Science, Graduate School of Veterinary Science, Osaka Metropolitan University, 1-58 Rinku-Ohraikita, Izumisano, Osaka 598-8531, Japan
| | - Shigeo Takenaka
- Department of Nutrition, Graduate School of Human Life and Ecology, Osaka Metropolitan University, 7-30 Habikino, Osaka 583-8555, Japan
| |
Collapse
|
26
|
Yerly L, Pich-Bavastro C, Di Domizio J, Wyss T, Tissot-Renaud S, Cangkrama M, Gilliet M, Werner S, Kuonen F. Integrated multi-omics reveals cellular and molecular interactions governing the invasive niche of basal cell carcinoma. Nat Commun 2022; 13:4897. [PMID: 35986012 PMCID: PMC9391376 DOI: 10.1038/s41467-022-32670-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 08/11/2022] [Indexed: 11/23/2022] Open
Abstract
Tumors invade the surrounding tissues to progress, but the heterogeneity of cell types at the tumor-stroma interface and the complexity of their potential interactions hampered mechanistic insight required for efficient therapeutic targeting. Here, combining single-cell and spatial transcriptomics on human basal cell carcinomas, we define the cellular contributors of tumor progression. In the invasive niche, tumor cells exhibit a collective migration phenotype, characterized by the expression of cell-cell junction complexes. In physical proximity, we identify cancer-associated fibroblasts with extracellular matrix-remodeling features. Tumor cells strongly express the cytokine Activin A, and increased Activin A-induced gene signature is found in adjacent cancer-associated fibroblast subpopulations. Altogether, our data identify the cell populations and their transcriptional reprogramming contributing to the spatial organization of the basal cell carcinoma invasive niche. They also demonstrate the power of integrated spatial and single-cell multi-omics to decipher cancer-specific invasive properties and develop targeted therapies. The role of reciprocal tumour-stroma interactions in tumour invasion remains poorly characterised. Here, single-cell and spatial transcriptomics identifies the cell populations and their transcriptional reprogramming contributing to the spatial organization of the basal cell carcinoma invasive niche.
Collapse
|
27
|
Ferrulli A, Terruzzi I, Senesi P, Succi M, Cannavaro D, Luzi L. Turning the clock forward: New pharmacological and non pharmacological targets for the treatment of obesity. Nutr Metab Cardiovasc Dis 2022; 32:1320-1334. [PMID: 35354547 DOI: 10.1016/j.numecd.2022.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 11/26/2022]
Abstract
AIMS Obesity and its main metabolic complication, type 2 diabetes, have attained the status of a global pandemic; there is need for novel strategies aimed at treating obesity and preventing the development of diabetes. A healthy diet and exercise are basic for treatment of obesity but often not enough. Pharmacotherapy can be helpful in maintaining compliance, ameliorating obesity-related health risks, and improving quality of life. In the last two decades, the knowledge of central and peripheral mechanisms underlying homeostatic and hedonic aspects of food intake has significantly increased. Dysregulation of one or more of these components could lead to obesity. DATA SYNTHESIS In order to better understand how potential innovative treatment options can affect obesity, homeostatic and reward mechanisms that regulate energy balance has been firstly illustrated. Then, an overview of potential therapeutic targets for obesity, distinguished according to the level of regulation of feeding behavior, has been provided. Moreover, several non-drug therapies have been recently tested in obesity, such as non-invasive neurostimulation: Transcranial Magnetic Stimulation or Transcranial Direct Current Stimulation. All of them are promising for obesity treatment and are almost devoid of side effects, constituting a potential resource for the prevention of metabolic diseases. CONCLUSIONS The plethora of current anti-obesity therapies creates the unique challenge for physicians to customize the intervention, according to the specific obesity characteristics and the intervention side effect profiles; moreover, it allows multimodal approaches addressed to treat obesity and metabolic adaptation with complementary mechanisms.
Collapse
Affiliation(s)
- Anna Ferrulli
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Sesto San Giovanni, MI, Italy; Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Ileana Terruzzi
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Sesto San Giovanni, MI, Italy; Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Pamela Senesi
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Sesto San Giovanni, MI, Italy; Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Massimiliano Succi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Daniele Cannavaro
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Livio Luzi
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Sesto San Giovanni, MI, Italy; Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.
| |
Collapse
|
28
|
Zheng F, Valero-Aracama MJ, Schaefer N, Alzheimer C. Activin A Reduces GIRK Current to Excite Dentate Gyrus Granule Cells. Front Cell Neurosci 2022; 16:920388. [PMID: 35711474 PMCID: PMC9197229 DOI: 10.3389/fncel.2022.920388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Activin A, a member of the TGF-β family, is recognized as a multifunctional protein in the adult brain with a particular impact on neuronal circuits associated with cognitive and affective functions. Activin receptor signaling in mouse hippocampus is strongly enhanced by the exploration of an enriched environment (EE), a behavioral paradigm known to improve performance in learning and memory tasks and to ameliorate depression-like behaviors. To interrogate the relationship between EE, activin signaling, and cellular excitability in the hippocampus, we performed ex vivo whole-cell recordings from dentate gyrus (DG) granule cells (GCs) of wild type mice and transgenic mice expressing a dominant-negative mutant of activin receptor IB (dnActRIB), which disrupts activin signaling in a forebrain-specific fashion. We found that, after overnight EE housing, GC excitability was strongly enhanced in an activin-dependent fashion. Moreover, the effect of EE on GC firing was mimicked by pre-treatment of hippocampal slices from control mice with recombinant activin A for several hours. The excitatory effect of activin A was preserved when canonical SMAD-dependent signaling was pharmacologically suppressed but was blocked by inhibitors of ERK-MAPK and PKA signaling. The involvement of a non-genomic signaling cascade was supported by the fact that the excitatory effect of activin A was already achieved within minutes of application. With respect to the ionic mechanism underlying the increase in intrinsic excitability, voltage-clamp recordings revealed that activin A induced an apparent inward current, which resulted from the suppression of a standing G protein-gated inwardly rectifying K+ (GIRK) current. The link between EE, enhanced activin signaling, and inhibition of GIRK current was strengthened by the following findings: (i) The specific GIRK channel blocker tertiapin Q (TQ) occluded the characteristic electrophysiological effects of activin A in both current- and voltage-clamp recordings. (ii) The outward current evoked by the GIRK channel activator adenosine was significantly reduced by preceding EE exploration as well as by recombinant activin A in control slices. In conclusion, our study identifies GIRK current suppression via non-canonical activin signaling as a mechanism that might at least in part contribute to the beneficial effects of EE on cognitive performance and affective behavior.
Collapse
Affiliation(s)
- Fang Zheng
- Institute of Physiology
and Pathophysiology, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Erlangen, Germany
- *Correspondence: Christian Alzheimer Fang Zheng
| | - Maria Jesus Valero-Aracama
- Institute of Physiology
and Pathophysiology, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Erlangen, Germany
| | - Natascha Schaefer
- Institute for Clinical Neurobiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Christian Alzheimer
- Institute of Physiology
and Pathophysiology, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Erlangen, Germany
- *Correspondence: Christian Alzheimer Fang Zheng
| |
Collapse
|
29
|
Schmidt CC, Zheng F, Alzheimer C. Activin A regulates the excitability of hippocampal mossy cells. Hippocampus 2022; 32:401-410. [PMID: 35301773 DOI: 10.1002/hipo.23415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/15/2022] [Accepted: 03/11/2022] [Indexed: 12/16/2022]
Abstract
Mossy cells (MCs) in the hilus of the dentate gyrus (DG) receive increasing attention as a major player controlling information processing in the DG network. Furthermore, disturbed MC activity has been implicated in widespread neuropsychiatric disorders such as epilepsy and major depression. Using whole-cell patch-clamp recordings from MCs in acute hippocampal slices from wild type and transgenic mice, we demonstrate that activin, a member of the transforming growth factor-β (TGF-β) family, has a strong neuromodulatory effect on MC activity. Disruption of activin receptor signaling reduced MC firing, dampened their excitatory input and augmented their inhibitory input. By contrast, acute application of recombinant activin A strongly increased MC activity and promoted excitatory synaptic drive. Notably, similar changes of MC activity have been observed in a rodent model of depression and after antidepressant drug therapy, respectively. Given that a rise in activin signaling particularly in the DG has been proposed as a mechanism of antidepressant action, our data suggest that the effect of activin on MC excitability might make a considerable contribution in this regard.
Collapse
Affiliation(s)
- Carla C Schmidt
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Fang Zheng
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Alzheimer
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
30
|
Kumari R, Irudayam MJ, Al Abdallah Q, Jones TL, Mims TS, Puchowicz MA, Pierre JF, Brown CW. SMAD2 and SMAD3 differentially regulate adiposity and the growth of subcutaneous white adipose tissue. FASEB J 2021; 35:e22018. [PMID: 34731499 DOI: 10.1096/fj.202101244r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/28/2021] [Accepted: 10/13/2021] [Indexed: 11/11/2022]
Abstract
Adipose tissue is the primary site of energy storage, playing important roles in health. While adipose research largely focuses on obesity, fat also has other critical functions, producing adipocytokines and contributing to normal nutrient metabolism, which in turn play important roles in satiety and total energy homeostasis. SMAD2/3 proteins are downstream mediators of activin signaling, which regulate critical preadipocyte and mature adipocyte functions. Smad2 global knockout mice exhibit embryonic lethality, whereas global loss of Smad3 protects mice against diet-induced obesity. The direct contributions of Smad2 and Smad3 in adipose tissues, however, are unknown. Here, we sought to determine the primary effects of adipocyte-selective reduction of Smad2 or Smad3 on diet-induced adiposity using Smad2 or Smad3 "floxed" mice intercrossed with Adiponectin-Cre mice. Additionally, we examined visceral and subcutaneous preadipocyte differentiation efficiency in vitro. Almost all wild type subcutaneous preadipocytes differentiated into mature adipocytes. In contrast, visceral preadipocytes differentiated poorly. Exogenous activin A suppressed differentiation of preadipocytes from both depots. Smad2 conditional knockout (Smad2cKO) mice did not exhibit significant effects on weight gain, irrespective of diet, whereas Smad3 conditional knockout (Smad3cKO) male mice displayed a trend of reduced body weight on high-fat diet. On both diets, Smad3cKO mice displayed an adipose depot-selective phenotype, with a significant reduction in subcutaneous fat mass but not visceral fat mass. Our data suggest that Smad3 is an important contributor to the maintenance of subcutaneous white adipose tissue in a sex-selective fashion. These findings have implications for understanding SMAD-mediated, depot selective regulation of adipocyte growth and differentiation.
Collapse
Affiliation(s)
- Roshan Kumari
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Maria Johnson Irudayam
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Qusai Al Abdallah
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Tamekia L Jones
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Children's Foundation Research Institute, Memphis, Tennessee, USA
| | - Tahliyah S Mims
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Michelle A Puchowicz
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Joseph F Pierre
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Chester W Brown
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Le Bonheur Children's Hospital, Memphis, Tennessee, USA
| |
Collapse
|
31
|
Doğan K, Yıldız ŞN, Sarıakçalı B, Duman G, Bolat S. Elevated Levels of Activin-A, TNF-Alpha and IL-6 in Acromegaly. NEUROCHEM J+ 2021. [DOI: 10.1134/s181971242103003x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Lyadova I, Gerasimova T, Nenasheva T. Macrophages Derived From Human Induced Pluripotent Stem Cells: The Diversity of Protocols, Future Prospects, and Outstanding Questions. Front Cell Dev Biol 2021; 9:640703. [PMID: 34150747 PMCID: PMC8207294 DOI: 10.3389/fcell.2021.640703] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/25/2021] [Indexed: 12/23/2022] Open
Abstract
Macrophages (Mφ) derived from induced pluripotent stem cells (iMphs) represent a novel and promising model for studying human Mφ function and differentiation and developing new therapeutic strategies based on or oriented at Mφs. iMphs have several advantages over the traditionally used human Mφ models, such as immortalized cell lines and monocyte-derived Mφs. The advantages include the possibility of obtaining genetically identical and editable cells in a potentially scalable way. Various applications of iMphs are being developed, and their number is rapidly growing. However, the protocols of iMph differentiation that are currently used vary substantially, which may lead to differences in iMph differentiation trajectories and properties. Standardization of the protocols and identification of minimum required conditions that would allow obtaining iMphs in a large-scale, inexpensive, and clinically suitable mode are needed for future iMph applications. As a first step in this direction, the current review discusses the fundamental basis for the generation of human iMphs, performs a detailed analysis of the generalities and the differences between iMph differentiation protocols currently employed, and discusses the prospects of iMph applications.
Collapse
Affiliation(s)
- Irina Lyadova
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
33
|
Solagna F, Tezze C, Lindenmeyer MT, Lu S, Wu G, Liu S, Zhao Y, Mitchell R, Meyer C, Omairi S, Kilic T, Paolini A, Ritvos O, Pasternack A, Matsakas A, Kylies D, zur Wiesch JS, Turner JE, Wanner N, Nair V, Eichinger F, Menon R, Martin IV, Klinkhammer BM, Hoxha E, Cohen CD, Tharaux PL, Boor P, Ostendorf T, Kretzler M, Sandri M, Kretz O, Puelles VG, Patel K, Huber TB. Pro-cachectic factors link experimental and human chronic kidney disease to skeletal muscle wasting programs. J Clin Invest 2021; 131:135821. [PMID: 34060483 PMCID: PMC8159690 DOI: 10.1172/jci135821] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Skeletal muscle wasting is commonly associated with chronic kidney disease (CKD), resulting in increased morbidity and mortality. However, the link between kidney and muscle function remains poorly understood. Here, we took a complementary interorgan approach to investigate skeletal muscle wasting in CKD. We identified increased production and elevated blood levels of soluble pro-cachectic factors, including activin A, directly linking experimental and human CKD to skeletal muscle wasting programs. Single-cell sequencing data identified the expression of activin A in specific kidney cell populations of fibroblasts and cells of the juxtaglomerular apparatus. We propose that persistent and increased kidney production of pro-cachectic factors, combined with a lack of kidney clearance, facilitates a vicious kidney/muscle signaling cycle, leading to exacerbated blood accumulation and, thereby, skeletal muscle wasting. Systemic pharmacological blockade of activin A using soluble activin receptor type IIB ligand trap as well as muscle-specific adeno-associated virus-mediated downregulation of its receptor ACVR2A/B prevented muscle wasting in different mouse models of experimental CKD, suggesting that activin A is a key factor in CKD-induced cachexia. In summary, we uncovered a crosstalk between kidney and muscle and propose modulation of activin signaling as a potential therapeutic strategy for skeletal muscle wasting in CKD.
Collapse
Affiliation(s)
- Francesca Solagna
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Caterina Tezze
- Veneto Institute of Molecular Medicine, Padua, Italy
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Maja T. Lindenmeyer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Shun Lu
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guochao Wu
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Shuya Liu
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yu Zhao
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robert Mitchell
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Charlotte Meyer
- Renal Division, Faculty of Medicine, Medical Centre, University of Freiburg, Freiburg, Germany
| | - Saleh Omairi
- College of Medicine, University of Wasit, Kut, Iraq
| | - Temel Kilic
- Renal Division, Faculty of Medicine, Medical Centre, University of Freiburg, Freiburg, Germany
| | - Andrea Paolini
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Olli Ritvos
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Arja Pasternack
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Antonios Matsakas
- Molecular Physiology Laboratory, Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Hull, United Kingdom
| | - Dominik Kylies
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Jan-Eric Turner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Wanner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Viji Nair
- Michigan Medicine, Ann Arbor, Michigan, USA
| | | | | | - Ina V. Martin
- Department of Nephrology and Clinical Immunology and
| | | | - Elion Hoxha
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clemens D. Cohen
- Nephrological Center, Medical Clinic and Polyclinic IV, University of Munich, Munich, Germany
| | - Pierre-Louis Tharaux
- Paris Centre de Recherche Cardiovasculaire, INSERM, Université de Paris, Paris, France
| | - Peter Boor
- Department of Nephrology and Clinical Immunology and
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | | | | | - Marco Sandri
- Veneto Institute of Molecular Medicine, Padua, Italy
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Oliver Kretz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Victor G. Puelles
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, United Kingdom
- Freiburg Institute for Advanced Studies and Center for Biological System Analysis, University of Freiburg, Freiburg, Germany
| | - Tobias B. Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Freiburg Institute for Advanced Studies and Center for Biological System Analysis, University of Freiburg, Freiburg, Germany
| |
Collapse
|
34
|
Liu S, Liu B, Zhao Q, Shi J, Gu Y, Guo Y, Li Y, Liu Y, Cheng Y, Qiao Y, Liu Y. Down-regulated FST expression is involved in the poor prognosis of triple-negative breast cancer. Cancer Cell Int 2021; 21:267. [PMID: 34001106 PMCID: PMC8130405 DOI: 10.1186/s12935-021-01977-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 05/08/2021] [Indexed: 12/29/2022] Open
Abstract
Background Triple-negative breast cancer (TNBC) is more commonly associated with young patients, featuring high histological grade, visceral metastasis, and distant recurrence. Follistatin (FST) is a secreted extracellular regulatory protein that antagonizes TGF-β superfamily such as activin and TGF-β related superfamily such as bone morphogenetic protein (BMP). The implication of FST in the proliferation, angiogenesis, and metastasis of solid tumors documents good or poor outcome of patients with BC. However, the role of FST in TNBC remains unclear. Methods Data of 935 patients with breast cancer (BC) were extracted from TCGA. Case–control study, Kaplan–Meier, uni-multivariate COX, and ROC curve were utilized to investigate the relationship between FST expression and the clinical characteristics and prognosis of BC. Functional studies were used to analyze the effect of FST expression on proliferation, apoptosis, migration, and invasion of TNBC cell lines. Bioinformatic methods such as volcanoplot, GO annd KEGG enrichment, and protein–protein interactions (PPI) analyses were conducted to further confirm the different roles of FST in the apoptotic pathways among mesenchymal and mesenchymal stem-like cells of TNBC. Results Data from TCGA showed that low FST expression correlated with poor prognosis (for univariate analysis, HR = 0.47, 95% CI: 0.27–0.82, p = 0.008; for multivariate analysis, HR = 0.40, 95% CI: 0.21–0.75, p = 0.004). Low FST expression provided high predicted value of poor prognosis in TNBC amongst BCs. FST knockdown promoted the proliferation, migration and invasion of BT549 and HS578T cell lines. FST inhibited the apoptosis of mesenchymal cells by targeting BMP7. Conclusions Low FST expression is associated with poor prognosis of patients with TNBC. FST expressions exhibit the anisotropic roles of apoptosis between mesenchymal and mesenchymal stem-like cells but promote the proliferation, migration, invasion in both of two subtypes of TNBC in vitro. FST may be a subtype-heterogeneous biomarker for monitoring the progress of TNBC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01977-x.
Collapse
Affiliation(s)
- Sainan Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Bin Liu
- Department of Breast Surgery, Second Affiliated Hospital of Jilin University, Changchun, 130021, China
| | - Qian Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Jikang Shi
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yulu Gu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yanbo Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yong Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yunkai Liu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yi Cheng
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yichun Qiao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China.
| | - Yawen Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
35
|
S1P and activin A induce fibrotic phenotype in uterine fibroids: a promising target for antifibrotic therapy. Fertil Steril 2021; 115:1451-1452. [PMID: 33863554 DOI: 10.1016/j.fertnstert.2021.03.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 11/22/2022]
|
36
|
Nakajima T, Kunieda Y, Takahashi Y, Tanaka Y, Kondo T, Takenaka S. Changes in Smad1/5/9 expression and phosphorylation in astrocytes of the rat hippocampus after transient global cerebral ischemia. J Chem Neuroanat 2021; 113:101941. [PMID: 33711423 DOI: 10.1016/j.jchemneu.2021.101941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 01/15/2023]
Abstract
Smad proteins are known to transduce the actions of the transforming growth factor-β (TGF-β) family including TGF-βs, activins, and bone morphogenetic proteins (BMPs). We previously reported that Smad1/5/9 immunoreactivity was observed in astrocytes of various rat brain regions including the hippocampus, suggesting that Smad1/5/9 may be associated with the physiology of astrocytes. However, the Smad1/5/9 expression and activation in the hippocampal astrocytes after global cerebral ischemia has not been yet elucidated. In this study, we examined temporal changes in the expression and phosphorylation of Smad1/5/9 in the hippocampus using a rat model of global cerebral ischemia. Furthermore, we examined the candidate ligand involved in the phosphorylation of Smad1/5/9 in the hippocampus after ischemia. Pyramidal neuronal cell death in the CA1 regions was visible at 3 days, and maximum death occurred within 7 days after ischemia. At 7 days after ischemia, astrocytes that showed strong immunoreactivity for Smad1/5/9 were frequently observed in the CA1 region. Additionally, there was an increase in phosphorylated Smad1/5/9 (phospho-Smad1/5/9) -immunopositive astrocytes in the CA1 region 7 days after ischemia. Real-time PCR analysis showed an increase in the expression level of TGF-β1 mRNA in the hippocampus after ischemia. Intracerebroventricular injection of SB525334, an inhibitor of TGF-β/Smad signaling, reduced immunoreactivity for phospho-Smad1/5/9 in astrocytes. These results suggest that TGF-β1 may be a key molecule for ischemia-induced Smad1/5/9 phosphorylation in astrocytes, and TGF-β1-Smad1/5/9 signaling may play a role in post-ischemic events, including brain inflammation or tissue repair rather than neuroprotection of the hippocampus.
Collapse
Affiliation(s)
- Takayuki Nakajima
- Department of Veterinary Anatomy, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ohraikita, Izumisano, Osaka, 598-8531, Japan.
| | - Yuji Kunieda
- Department of Veterinary Anatomy, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ohraikita, Izumisano, Osaka, 598-8531, Japan
| | - Yusuke Takahashi
- Department of Veterinary Anatomy, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ohraikita, Izumisano, Osaka, 598-8531, Japan
| | - Yuki Tanaka
- Department of Veterinary Anatomy, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ohraikita, Izumisano, Osaka, 598-8531, Japan
| | - Tomohiro Kondo
- Department of Integrated Structural Biosciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ohraikita, Izumisano, Osaka, 598-8531, Japan
| | - Shigeo Takenaka
- Department of Clinical Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, 7-30 Habikino, Osaka, 583-8555, Japan
| |
Collapse
|
37
|
Wilhelmsen A, Tsintzas K, Jones SW. Recent advances and future avenues in understanding the role of adipose tissue cross talk in mediating skeletal muscle mass and function with ageing. GeroScience 2021; 43:85-110. [PMID: 33528828 PMCID: PMC8050140 DOI: 10.1007/s11357-021-00322-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/01/2021] [Indexed: 12/15/2022] Open
Abstract
Sarcopenia, broadly defined as the age-related decline in skeletal muscle mass, quality, and function, is associated with chronic low-grade inflammation and an increased likelihood of adverse health outcomes. The regulation of skeletal muscle mass with ageing is complex and necessitates a delicate balance between muscle protein synthesis and degradation. The secretion and transfer of cytokines, long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), both discretely and within extracellular vesicles, have emerged as important communication channels between tissues. Some of these factors have been implicated in regulating skeletal muscle mass, function, and pathologies and may be perturbed by excessive adiposity. Indeed, adipose tissue participates in a broad spectrum of inter-organ communication and obesity promotes the accumulation of macrophages, cellular senescence, and the production and secretion of pro-inflammatory factors. Pertinently, age-related sarcopenia has been reported to be more prevalent in obesity; however, such effects are confounded by comorbidities and physical activity level. In this review, we provide evidence that adiposity may exacerbate age-related sarcopenia and outline some emerging concepts of adipose-skeletal muscle communication including the secretion and processing of novel myokines and adipokines and the role of extracellular vesicles in mediating inter-tissue cross talk via lncRNAs and miRNAs in the context of sarcopenia, ageing, and obesity. Further research using advances in proteomics, transcriptomics, and techniques to investigate extracellular vesicles, with an emphasis on translational, longitudinal human studies, is required to better understand the physiological significance of these factors, the impact of obesity upon them, and their potential as therapeutic targets in combating muscle wasting.
Collapse
Affiliation(s)
- Andrew Wilhelmsen
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Kostas Tsintzas
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK.
| | - Simon W Jones
- Institute of Inflammation and Ageing, MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, Queen Elizabeth Hospital, The University of Birmingham, Birmingham, UK
| |
Collapse
|
38
|
Tian YD, Chung MH, Quan QL, Lee DH, Kim EJ, Chung JH. UV-Induced Reduction of ACVR1C Decreases SREBP1 and ACC Expression by the Suppression of SMAD2 Phosphorylation in Normal Human Epidermal Keratinocytes. Int J Mol Sci 2021; 22:ijms22031101. [PMID: 33499275 PMCID: PMC7865598 DOI: 10.3390/ijms22031101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 01/14/2023] Open
Abstract
Activin A receptor type 1C (ACVR1C), a type I transforming growth factor-β (TGF-β) receptor, has been implicated in sensitive skin and psoriasis and is involved in the regulation of metabolic homeostasis as well as cell proliferation and differentiation. In this study, we identified a novel role of ACVR1C in the ultraviolet (UV)-irradiation-induced reduction of epidermal lipogenesis in human skin. UV irradiation decreased ACVR1C expression and epidermal triglyceride (TG) synthesis in human skin in vivo and in primary normal human epidermal keratinocytes (NHEK) in vitro. Lipogenic genes, including genes encoding acetyl-CoA carboxylase (ACC) and sterol regulatory element binding protein-1 (SREBP1), were significantly downregulated in UV-irradiated NHEK. ACVR1C knockdown by shRNA resulted in greater decreases in SREBP1 and ACC in response to UV irradiation. Conversely, the overexpression of ACVR1C attenuated the UV-induced decreases in SREBP1 and ACC. Further mechanistic study revealed that SMAD2 phosphorylation mediated the ACVR1C-induced lipogenic gene modulation. Taken together, a decrease in ACVR1C may cause UV-induced reductions in SREBP1 and ACC as well as epidermal TG synthesis via the suppression of SMAD2 phosphorylation. ACVR1C may be a target for preventing or treating UV-induced disruptions in lipid metabolism and associated skin disorders.
Collapse
Affiliation(s)
- Yu-Dan Tian
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea;
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Korea; (Q.-L.Q.); (D.H.L.)
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, Korea;
- Department of Dermatology, Seoul National University Hospital, Seoul 03080, Korea
| | - Min Hwa Chung
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, Korea;
| | - Qing-Ling Quan
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Korea; (Q.-L.Q.); (D.H.L.)
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, Korea;
- Department of Dermatology, Seoul National University Hospital, Seoul 03080, Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Korea; (Q.-L.Q.); (D.H.L.)
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, Korea;
- Department of Dermatology, Seoul National University Hospital, Seoul 03080, Korea
| | - Eun Ju Kim
- Department of Dermatology, Seoul National University Hospital, Seoul 03080, Korea
- Correspondence: (E.J.K.); (J.H.C.)
| | - Jin Ho Chung
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea;
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Korea; (Q.-L.Q.); (D.H.L.)
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, Korea;
- Department of Dermatology, Seoul National University Hospital, Seoul 03080, Korea
- Institute on Aging, Seoul National University, Seoul 03080, Korea
- Correspondence: (E.J.K.); (J.H.C.)
| |
Collapse
|
39
|
Wu B, Zhang S, Guo Z, Bi Y, Zhou M, Li P, Seyedsadr M, Xu X, Li JL, Markovic-Plese S, Wan YY. The TGF-β superfamily cytokine Activin-A is induced during autoimmune neuroinflammation and drives pathogenic Th17 cell differentiation. Immunity 2021; 54:308-323.e6. [PMID: 33421362 DOI: 10.1016/j.immuni.2020.12.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/12/2020] [Accepted: 12/16/2020] [Indexed: 01/02/2023]
Abstract
Th17 cells are known to exert pathogenic and non-pathogenic functions. Although the cytokine transforming growth factor β1 (TGF-β1) is instrumental for Th17 cell differentiation, it is dispensable for generation of pathogenic Th17 cells. Here, we examined the T cell-intrinsic role of Activin-A, a TGF-β superfamily member closely related to TGF-β1, in pathogenic Th17 cell differentiation. Activin-A expression was increased in individuals with relapsing-remitting multiple sclerosis and in mice with experimental autoimmune encephalomyelitis. Stimulation with interleukin-6 and Activin-A induced a molecular program that mirrored that of pathogenic Th17 cells and was inhibited by blocking Activin-A signaling. Genetic disruption of Activin-A and its receptor ALK4 in T cells impaired pathogenic Th17 cell differentiation in vitro and in vivo. Mechanistically, extracellular-signal-regulated kinase (ERK) phosphorylation, which was essential for pathogenic Th17 cell differentiation, was suppressed by TGF-β1-ALK5 but not Activin-A-ALK4 signaling. Thus, Activin-A drives pathogenic Th17 cell differentiation, implicating the Activin-A-ALK4-ERK axis as a therapeutic target for Th17 cell-related diseases.
Collapse
Affiliation(s)
- Bing Wu
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Song Zhang
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zengli Guo
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yanmin Bi
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mingxia Zhou
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ping Li
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Xiaojiang Xu
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Jian-Liang Li
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Silva Markovic-Plese
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Yisong Y Wan
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
40
|
Single-cell analysis reveals transcriptomic remodellings in distinct cell types that contribute to human prostate cancer progression. Nat Cell Biol 2021; 23:87-98. [PMID: 33420488 DOI: 10.1038/s41556-020-00613-6] [Citation(s) in RCA: 246] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
Prostate cancer shows remarkable clinical heterogeneity, which manifests in spatial and clonal genomic diversity. By contrast, the transcriptomic heterogeneity of prostate tumours is poorly understood. Here we have profiled the transcriptomes of 36,424 single cells from 13 prostate tumours and identified the epithelial cells underlying disease aggressiveness. The tumour microenvironment (TME) showed activation of multiple progression-associated transcriptomic programs. Notably, we observed promiscuous KLK3 expression and validated the ability of cancer cells in altering T-cell transcriptomes. Profiling of a primary tumour and two matched lymph nodes provided evidence that KLK3 ectopic expression is associated with micrometastases. Close cell-cell communication exists among cells. We identified an endothelial subset harbouring active communication (activated endothelial cells, aECs) with tumour cells. Together with sequencing of an additional 11 samples, we showed that aECs are enriched in castration-resistant prostate cancer and promote cancer cell invasion. Finally, we created a user-friendly web interface for users to explore the sequenced data.
Collapse
|
41
|
The Association between the Activin A Serum Level and Carotid Intima-Media Thickness in Chronic Kidney Disease Patients. Int J Nephrol 2020; 2020:8893653. [PMID: 33294228 PMCID: PMC7700056 DOI: 10.1155/2020/8893653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/18/2020] [Accepted: 10/25/2020] [Indexed: 12/23/2022] Open
Abstract
Introduction Chronic kidney disease (CKD) is associated with high mortality rates, mainly as a result of cardiovascular complications. Meanwhile, recent studies have suggested a role of a homodimer protein called activin A in chronic kidney disease-mineral and bone disorder (CKD-MBD) conditions that may exist in the vascular calcification and osteolytic process. Ultrasound examination of the carotid intima-media thickness (cIMT) is a noninvasive method to assess vascular calcification. This study aimed to analyze the relationship between the activin A serum level and cIMT in patients with CKD at Mohammad Hoesin Hospital, Palembang, Indonesia. Methods We conducted a hospital-based, cross-sectional study of consecutive CKD patients at the Department of Internal Medicine, Mohammad Hoesin Hospital, from July to November 2019. The level of activin A was measured by enzyme-linked immunosorbent assay. Meanwhile, cIMT measurements were collected by B-mode ultrasound imaging. Results A total of 55 patients with CKD were included in this investigation. The median serum activin A level in these patients was 236.17 (116.33–283) pg/mL, while the median cIMT was 0.8 (0.6–1.45) mm. A relationship between the serum activin A level and cIMT (r = 0.449; p = 0.001) was observed. During multivariate analysis with linear regression, triglyceride (p = 0.049), phosphate (p = 0.005), and activin A (p = 0.020) serum levels were factors associated with cIMT. Conclusion In this study, a relationship between the activin A serum level and cIMT in patients with CKD was identified. Vascular calcification should be screened for in all CKD patients by the measurement of cIMT.
Collapse
|
42
|
Activin Receptor-Ligand Trap for the Treatment of β-thalassemia: A Serendipitous Discovery. Mediterr J Hematol Infect Dis 2020; 12:e2020075. [PMID: 33194149 PMCID: PMC7643807 DOI: 10.4084/mjhid.2020.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/09/2020] [Indexed: 12/17/2022] Open
Abstract
β-thalassemia is a hereditary disorder caused by defective production of β-globin chains of hemoglobin (Hb) that leads to an increased α/β globins ratio with subsequent free α-globins. Alpha globin excess causes oxidative stress, red blood cells membrane damage, premature death of late-stage erythroid precursors, resulting in ineffective erythropoiesis. The transforming growth factor β (TGF-β) superfamily signaling acts on biological processes, such as cell quiescence, apoptosis, proliferation, differentiation, and migration, and plays an essential role in regulating the hematopoiesis. This pathway can lose its physiologic regulation in pathologic conditions, leading to anemia and ineffective erythropoiesis. Activin receptor-ligand trap molecules such as Sotatercept and Luspatercept downregulate the TGF-β pathway, thus inhibiting the Smad2/3 cascade and alleviating anemia in patients with β-thalassemia and myelodysplastic syndromes. In this review, we describe in extenso the TGF-β pathway, as well as the molecular and biological basis of activin receptors ligand traps, focusing on their role in various β-thalassemia experimental models. The most recent results from clinical trials on sotatercept and luspatercept will also be reviewed.
Collapse
|
43
|
Micati DJ, Radhakrishnan K, Young JC, Rajpert‐De Meyts E, Hime GR, Abud HE, Loveland KL. ‘Snail factors in testicular germ cell tumours and their regulation by the BMP4 signalling pathway’. Andrology 2020; 8:1456-1470. [DOI: 10.1111/andr.12823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 04/20/2020] [Accepted: 05/14/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Diana J. Micati
- Centre for Reproductive Health Hudson Institute of Medical Research Clayton Victoria Australia
- Department of Molecular and Translational Sciences Monash University Clayton Victoria Australia
| | - Karthika Radhakrishnan
- Centre for Reproductive Health Hudson Institute of Medical Research Clayton Victoria Australia
- Department of Molecular and Translational Sciences Monash University Clayton Victoria Australia
| | - Julia C. Young
- Centre for Reproductive Health Hudson Institute of Medical Research Clayton Victoria Australia
- Department of Molecular and Translational Sciences Monash University Clayton Victoria Australia
- Department of Anatomy and Developmental Biology Monash Biomedicine Discovery Institute Monash University Clayton Victoria Australia
| | - Ewa Rajpert‐De Meyts
- Department of Growth and Reproduction, Rigshospitalet University of Copenhagen Copenhagen Denmark
| | - Gary R. Hime
- Department of Anatomy and Neuroscience University of Melbourne Melbourne Victoria Australia
| | - Helen E. Abud
- Department of Anatomy and Developmental Biology Monash Biomedicine Discovery Institute Monash University Clayton Victoria Australia
- Stem Cells and Development Program Monash Biomedicine Discovery Institute Monash University Clayton Victoria Australia
| | - Kate L. Loveland
- Centre for Reproductive Health Hudson Institute of Medical Research Clayton Victoria Australia
- Department of Molecular and Translational Sciences Monash University Clayton Victoria Australia
- Department of Anatomy and Developmental Biology Monash Biomedicine Discovery Institute Monash University Clayton Victoria Australia
| |
Collapse
|
44
|
Toms D, Al-Ani A, Sunba S, Tong QYV, Workentine M, Ungrin M. Automated Hypothesis Generation to Identify Signals Relevant in the Development of Mammalian Cell and Tissue Bioprocesses, With Validation in a Retinal Culture System. Front Bioeng Biotechnol 2020; 8:534. [PMID: 32582664 PMCID: PMC7287043 DOI: 10.3389/fbioe.2020.00534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
We have developed an accessible software tool (receptoR) to predict potentially active signaling pathways in one or more cell type(s) of interest from publicly available transcriptome data. As proof-of-concept, we applied it to mouse photoreceptors, yielding the previously untested hypothesis that activin signaling pathways are active in these cells. Expression of the type 2 activin receptor (Acvr2a) was experimentally confirmed by both RT-qPCR and immunochemistry, and activation of this signaling pathway with recombinant activin A significantly enhanced the survival of magnetically sorted photoreceptors in culture. Taken together, we demonstrate that our approach can be easily used to mine publicly available transcriptome data and generate hypotheses around receptor expression that can be used to identify novel signaling pathways in specific cell types of interest. We anticipate that receptoR (available at https://www.ucalgary.ca/ungrinlab/receptoR) will enable more efficient use of limited research resources.
Collapse
Affiliation(s)
- Derek Toms
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Abdullah Al-Ani
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.,Leaders in Medicine Program, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Saud Sunba
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Qing Yun Victor Tong
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Matthew Workentine
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Mark Ungrin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
45
|
Ly TD, Plümers R, Fischer B, Schmidt V, Hendig D, Kuhn J, Knabbe C, Faust I. Activin A-Mediated Regulation of XT-I in Human Skin Fibroblasts. Biomolecules 2020; 10:E609. [PMID: 32295230 PMCID: PMC7226200 DOI: 10.3390/biom10040609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 12/25/2022] Open
Abstract
Fibrosis is a fundamental feature of systemic sclerosis (SSc) and is characterized by excessive accumulation of extracellular matrix components like proteoglycans (PG) or collagens in skin and internal organs. Serum analysis from SSc patients showed an increase in the enzyme activity of xylosyltransferase (XT), the initial enzyme in PG biosynthesis. There are two distinct XT isoforms-XT-I and XT-II-in humans, but until now only XT-I is associated with fibrotic remodelling for an unknown reason. The aim of this study was to identify new XT mediators and clarify the underlying mechanisms, in view of developing putative therapeutic anti-fibrotic interventions in the future. Therefore, we used different cytokines and growth factors, small molecule inhibitors as well as small interfering RNAs, and assessed the cellular XT activity and XYLT1 expression in primary human dermal fibroblasts by radiochemical activity assays and qRT-PCR. We identified a new function of activin A as a regulator of XYLT1 mRNA expression and XT activity. While the activin A-induced XT-I increase was found to be mediated by activin A receptor type 1B, MAPK and Smad pathways, the activin A treatment did not alter the XYLT2 expression. Furthermore, we observed a reciprocal regulation of XYLT1 and XYLT2 transcription after inhibition of the activin A pathway components. These results improve the understanding of the differential expression regulation of XYLT isoforms under pathological fibroproliferative conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Isabel Faust
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545 Bad Oeynhausen, Germany
| |
Collapse
|
46
|
Chang K, Kang P, Liu Y, Huang K, Miao T, Sagona AP, Nezis IP, Bodmer R, Ocorr K, Bai H. TGFB-INHB/activin signaling regulates age-dependent autophagy and cardiac health through inhibition of MTORC2. Autophagy 2019; 16:1807-1822. [PMID: 31884871 PMCID: PMC8386626 DOI: 10.1080/15548627.2019.1704117] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Age-related impairment of macroautophagy/autophagy and loss of cardiac tissue homeostasis contribute significantly to cardiovascular diseases later in life. MTOR (mechanistic target of rapamycin kinase) signaling is the most well-known regulator of autophagy, cellular homeostasis, and longevity. The MTOR signaling consists of two structurally and functionally distinct multiprotein complexes, MTORC1 and MTORC2. While MTORC1 is well characterized but the role of MTORC2 in aging and autophagy remains poorly understood. Here we identified TGFB-INHB/activin signaling as a novel upstream regulator of MTORC2 to control autophagy and cardiac health during aging. Using Drosophila heart as a model system, we show that cardiac-specific knockdown of TGFB-INHB/activin-like protein daw induces autophagy and alleviates age-related heart dysfunction, including cardiac arrhythmias and bradycardia. Interestingly, the downregulation of daw activates TORC2 signaling to regulate cardiac autophagy. Activation of TORC2 alone through overexpressing its subunit protein rictor promotes autophagic flux and preserves cardiac function with aging. In contrast, activation of TORC1 does not block autophagy induction in daw knockdown flies. Lastly, either daw knockdown or rictor overexpression in fly hearts prolongs lifespan, suggesting that manipulation of these pathways in the heart has systemic effects on longevity control. Thus, our studies discover the TGFB-INHB/activin-mediated inhibition of TORC2 as a novel mechanism for age-dependent decreases in autophagic activity and cardiac health. Abbreviations: AI: arrhythmia index; BafA1: bafilomycin A1; BMP: bone morphogenetic protein; CQ: chloroquine; CVD: cardiovascular diseases; DI: diastolic interval; ER: endoplasmic reticulum; HP: heart period; HR: heart rate; MTOR: mechanistic target of rapamycin kinase; NGS: normal goat serum; PBST: PBS with 0.1% Triton X-100; PDPK1: 3-phosphoinositide dependent protein kinase 1; RICTOR: RPTOR independent companion of MTOR complex 2; ROI: region of interest; ROUT: robust regression and outlier removal; ROS: reactive oxygen species; R-SMAD: receptor-activated SMAD; SI: systolic interval; SOHA: semi-automatic optical heartbeat analysis; TGFB: transformation growth factor beta; TSC1: TSC complex subunit 1.
Collapse
Affiliation(s)
- Kai Chang
- Department of Genetics, Development, and Cell Biology, Iowa State University , Ames, IA, USA
| | - Ping Kang
- Department of Genetics, Development, and Cell Biology, Iowa State University , Ames, IA, USA
| | - Ying Liu
- Department of Genetics, Development, and Cell Biology, Iowa State University , Ames, IA, USA
| | - Kerui Huang
- Department of Genetics, Development, and Cell Biology, Iowa State University , Ames, IA, USA
| | - Ting Miao
- Department of Genetics, Development, and Cell Biology, Iowa State University , Ames, IA, USA
| | | | - Ioannis P Nezis
- School of Life Sciences, University of Warwick , Coventry, UK
| | - Rolf Bodmer
- Development, Aging, and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute , La Jolla, CA, USA
| | - Karen Ocorr
- Development, Aging, and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute , La Jolla, CA, USA
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University , Ames, IA, USA
| |
Collapse
|
47
|
Bian X, Griffin TP, Zhu X, Islam MN, Conley SM, Eirin A, Tang H, O’Shea PM, Palmer AK, McCoy RG, Herrmann SM, Mehta RA, Woollard JR, Rule AD, Kirkland JL, Tchkonia T, Textor SC, Griffin MD, Lerman LO, Hickson LJ. Senescence marker activin A is increased in human diabetic kidney disease: association with kidney function and potential implications for therapy. BMJ Open Diabetes Res Care 2019; 7:e000720. [PMID: 31908790 PMCID: PMC6936543 DOI: 10.1136/bmjdrc-2019-000720] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/28/2019] [Accepted: 10/23/2019] [Indexed: 12/31/2022] Open
Abstract
Objective Activin A, an inflammatory mediator implicated in cellular senescence-induced adipose tissue dysfunction and profibrotic kidney injury, may become a new target for the treatment of diabetic kidney disease (DKD) and chronic kidney diseases. We tested the hypothesis that human DKD-related injury leads to upregulation of activin A in blood and urine and in a human kidney cell model. We further hypothesized that circulating activin A parallels kidney injury markers in DKD. Research design and methods In two adult diabetes cohorts and controls (Minnesota, USA; Galway, Ireland), the relationships between plasma (or urine) activin A, estimated glomerular filtration rate (eGFR) and DKD injury biomarkers were tested with logistic regression and correlation coefficients. Activin A, inflammatory, epithelial-mesenchymal-transition (EMT) and senescence markers were assayed in human kidney (HK-2) cells incubated in high glucose plus transforming growth factor-β1 or albumin. Results Plasma activin A levels were elevated in diabetes (n=206) compared with controls (n=76; 418.1 vs 259.3 pg/mL; p<0.001) and correlated inversely with eGFR (rs=-0.61; p<0.001; diabetes). After eGFR adjustment, only albuminuria (OR 1.56, 95% CI 1.16 to 2.09) and tumor necrosis factor receptor-1 (OR 6.40, 95% CI 1.08 to 38.00) associated with the highest activin tertile. Albuminuria also related to urinary activin (rs=0.65; p<0.001). Following in vitro HK-2 injury, activin, inflammatory, EMT genes and supernatant activin levels were increased. Conclusions Circulating activin A is increased in human DKD and correlates with reduced kidney function and kidney injury markers. DKD-injured human renal tubule cells develop a profibrotic and inflammatory phenotype with activin A upregulation. These findings underscore the role of inflammation and provide a basis for further exploration of activin A as a diagnostic marker and therapeutic target in DKD.
Collapse
Affiliation(s)
- Xiaohui Bian
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tomás P Griffin
- Centre for Endocrinology, Diabetes and Metabolism, Saolta University Health Care Group, Galway University Hospitals, Galway, Ireland
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Xiangyang Zhu
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Md Nahidul Islam
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre, School of Medicine, National University of Ireland Galway, Galway, Ireland
- Department of Clinical Biochemistry, Saolta University Health Care Group, Galway University Hospitals, Galway, Ireland
| | - Sabena M Conley
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Hui Tang
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Paula M O’Shea
- Department of Clinical Biochemistry, Saolta University Health Care Group, Galway University Hospitals, Galway, Ireland
| | - Allyson K Palmer
- Division of Community Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Rozalina G McCoy
- Division of Community Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Sandra M Herrmann
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Ramila A Mehta
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - John R Woollard
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrew D Rule
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - James L Kirkland
- Division of Community Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| | - Stephen C Textor
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew D Griffin
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre, School of Medicine, National University of Ireland Galway, Galway, Ireland
- Department of Nephrology, Saolta University Health Care Group, Galway University Hospitals, Galway, Ireland
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - LaTonya J Hickson
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
48
|
Baroncelli M, Drabek K, Eijken M, van der Eerden BCJ, van de Peppel J, van Leeuwen JPTM. Two-day-treatment of Activin-A leads to transient change in SV-HFO osteoblast gene expression and reduction in matrix mineralization. J Cell Physiol 2019; 235:4865-4877. [PMID: 31667867 PMCID: PMC7028110 DOI: 10.1002/jcp.29365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/07/2019] [Indexed: 12/14/2022]
Abstract
Activins regulate bone formation by controlling osteoclasts and osteoblasts. We investigated Activin‐A mechanism of action on human osteoblast mineralization, RNA and microRNA (miRNA) expression profile. A single 2‐day treatment of Activin‐A at Day 5 of osteoblast differentiation significantly reduced matrix mineralization. Activin A‐treated osteoblasts responded with transient change in gene expression, in a 2‐wave‐fashion. The 38 genes differentially regulated during the first wave (within 8 hr after Activin A start) were involved in transcription regulation. In the second wave (1–2 days after Activin A start), 65 genes were differentially regulated and related to extracellular matrix. Differentially expressed genes in both waves were associated to transforming growth factor beta signaling. We identified which microRNAs modulating osteoblast differentiation were regulated by Activin‐A. In summary, 2‐day treatment with Activin‐A in premineralization period of osteoblast cultures influenced miRNAs, gene transcription, and reduced matrix mineralization. Modulation of Activin A signaling might be useful to control bone quality for therapeutic purposes.
Collapse
Affiliation(s)
- Marta Baroncelli
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ksenija Drabek
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marco Eijken
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Bram C J van der Eerden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jeroen van de Peppel
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
49
|
Guru Vishnu P, Bhattacharya TK, Bhushan B, Paswan C, Rajendra Prasad A, Divya D. Genetic polymorphism in core promoter sequence of ACTRIIB gene and association analysis with growth traits in chicken. Reprod Domest Anim 2019; 54:1330-1340. [PMID: 31310035 DOI: 10.1111/rda.13511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 07/06/2019] [Indexed: 11/29/2022]
Abstract
Molecular breeding exploiting candidate genes is burgeoning reproductive approach to improve growth traits in poultry. The activin type IIB receptor (ACTRIIB) is a negative growth regulator, modulating action of many muscle growth regulators. PCR-single-strand conformation polymorphism was employed to unravel polymorphism in promoter region of the ACTRIIB gene and delineate its association with growth traits in Aseel and control broiler (CB). Analysis of 5' promoter region (1122bp) of ACTRIIB gene identified five SNPs, that is g. [56 G > C (SNP1), 352A > C (SNP2), 580G > A (SNP3), 625C > T (SNP4) and 962C > T (SNP5)] at SMAD, paired box 7 homeodomain binding motif, GC box and bHLH-PAS type transcription factors in CB and Aseel. CB had significantly higher body weight (BW) and average daily gain (ADG) at all SNP sites, except at SNP 1. The haplotype construction resulted 8 haplotypes in CB and Aseel population. The BW and ADG differed significantly (p < .05) at all ages in CB and Aseel. The diplotypes H1H8 and H1H4 manifested higher BW and ADG, while diplotypes H3H8 and H3H7 displayed BW and ADG at each age in both lines (p < .05). Aseel exhibited higher expression of ACTRIIB gene than CB by 70.17, 4.83, 1.41, 2.38, 5.13, 1.20, 2.90, 6.53 and 11.75 times for h1h2, h1h3, h1h4, h1h6, h1h7, h1h8 h3h4, h3h7 and h3h8, respectively. The H3H8 and H3H7 diplotypes exhibited higher level of mRNA and protein than H1H8 and H1H4. The regulatory upstream region of ACTRIIB gene demonstrates high degree of genetic diversity and can be harnessed as potential marker in genetic selection programmes for increasing meat production.
Collapse
Affiliation(s)
| | | | - Bharat Bhushan
- Division of Animal Genetics & Breeding, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Chandan Paswan
- Avian Molecular Genetics Laboratory, ICAR-Directorate of Poultry Research, Hyderabad, India
| | - Athe Rajendra Prasad
- Division of Animal Genetics & Breeding, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Devara Divya
- Avian Molecular Genetics Laboratory, ICAR-Directorate of Poultry Research, Hyderabad, India
| |
Collapse
|
50
|
Activin-A in the regulation of immunity in health and disease. J Autoimmun 2019; 104:102314. [PMID: 31416681 DOI: 10.1016/j.jaut.2019.102314] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 07/28/2019] [Indexed: 02/08/2023]
Abstract
The TGF-β superfamily of cytokines plays pivotal roles in the regulation of immune responses protecting against or contributing to diseases, such as, allergy, autoimmunity and cancer. Activin-A, a member of the TGF-β superfamily, was initially identified as an inducer of follicle-stimulating hormone secretion. Extensive research over the past decades illuminated fundamental roles for activin-A in essential biologic processes, including embryonic development, stem cell maintenance and differentiation, haematopoiesis, cell proliferation and tissue fibrosis. Activin-A signals through two type I and two type II receptors which, upon ligand binding, activate their kinase activity, phosphorylate the SMAD2 and 3 intracellular signaling mediators that form a complex with SMAD4, translocate to the nucleus and activate or silence gene expression. Most immune cell types, including macrophages, dendritic cells (DCs), T and B lymphocytes and natural killer cells have the capacity to produce and respond to activin-A, although not in a similar manner. In innate immune cells, including macrophages, DCs and neutrophils, activin-A exerts a broad range of pro- or anti-inflammatory functions depending on the cell maturation and activation status and the spatiotemporal context. Activin-A also controls the differentiation and effector functions of Th cell subsets, including Th9 cells, TFH cells, Tr1 Treg cells and Foxp3+ Treg cells. Moreover, activin-A affects B cell responses, enhancing mucosal IgA secretion and inhibiting pathogenic autoantibody production. Interestingly, an array of preclinical and clinical studies has highlighted crucial functions of activin-A in the initiation, propagation and resolution of human diseases, including autoimmune diseases, such as, systemic lupus erythematosus, rheumatoid arthritis and pulmonary alveolar proteinosis, in allergic disorders, including allergic asthma and atopic dermatitis, in cancer and in microbial infections. Here, we provide an overview of the biology of activin-A and its signaling pathways, summarize recent studies pertinent to the role of activin-A in the modulation of inflammation and immunity, and discuss the potential of targeting activin-A as a novel therapeutic approach for the control of inflammatory diseases.
Collapse
|