1
|
Chen J, Guo X, Zou X, Wang M, Yang C, Hou W, Sprindzuk MV, Lu Z. The Biodistribution of Replication-Defective Simian Adenovirus 1 Vector in a Mouse Model. Viruses 2024; 16:550. [PMID: 38675893 PMCID: PMC11054548 DOI: 10.3390/v16040550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
The administration route affects the biodistribution of a gene transfer vector and the expression of a transgene. A simian adenovirus 1 vector carrying firefly luciferase and GFP reporter genes (SAdV1-GFluc) were constructed, and its biodistribution was investigated in a mouse model by bioluminescence imaging and virus DNA tracking with real-time PCR. Luciferase activity and virus DNA were mainly found in the liver and spleen after the intravenous administration of SAdV1-GFluc. The results of flow cytometry illustrated that macrophages in the liver and spleen as well as hepatocytes were the target cells. Repeated inoculation was noneffective because of the stimulated serum neutralizing antibodies (NAbs) against SAdV-1. A transient, local expression of low-level luciferase was detected after intragastric administration, and the administration could be repeated without compromising the expression of the reporter gene. Intranasal administration led to a moderate, constant expression of a transgene in the whole respiratory tract and could be repeated one more time without a significant increase in the NAb titer. An immunohistochemistry assay showed that respiratory epithelial cells and macrophages in the lungs were transduced. High luciferase activity was restricted at the injection site and sustained for a week after intramuscular administration. A compromised transgene expression was observed after a repeated injection. When these mice were intramuscularly injected for a third time with the human adenovirus 5 (HAdV-5) vector carrying a luciferase gene, the luciferase activity recovered and reached the initial level, suggesting that the sequential use of SAdV-1 and HAdV-5 vectors was practicable. In short, the intranasal inoculation or intramuscular injection may be the preferred administration routes for the novel SAdV-1 vector in vaccine development.
Collapse
Affiliation(s)
- Juan Chen
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (J.C.); (X.G.); (X.Z.); (M.W.); (C.Y.); (W.H.)
- School of Public Health, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014040, China
| | - Xiaojuan Guo
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (J.C.); (X.G.); (X.Z.); (M.W.); (C.Y.); (W.H.)
| | - Xiaohui Zou
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (J.C.); (X.G.); (X.Z.); (M.W.); (C.Y.); (W.H.)
| | - Min Wang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (J.C.); (X.G.); (X.Z.); (M.W.); (C.Y.); (W.H.)
| | - Chunlei Yang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (J.C.); (X.G.); (X.Z.); (M.W.); (C.Y.); (W.H.)
- Henan Chemical Technician College, Kaifeng 475008, China
| | - Wenzhe Hou
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (J.C.); (X.G.); (X.Z.); (M.W.); (C.Y.); (W.H.)
| | - Matvey V. Sprindzuk
- United Institute of Informatics Problems, National Academy of Sciences of Belarus, 220012 Minsk, Belarus;
| | - Zhuozhuang Lu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (J.C.); (X.G.); (X.Z.); (M.W.); (C.Y.); (W.H.)
| |
Collapse
|
2
|
|
3
|
Fink C, Gevaert JJ, Barrett JW, Dikeakos JD, Foster PJ, Dekaban GA. In vivo tracking of adenoviral-transduced iron oxide-labeled bone marrow-derived dendritic cells using magnetic particle imaging. Eur Radiol Exp 2023; 7:42. [PMID: 37580614 PMCID: PMC10425309 DOI: 10.1186/s41747-023-00359-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/30/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Despite widespread study of dendritic cell (DC)-based cancer immunotherapies, the in vivo postinjection fate of DC remains largely unknown. Due in part to a lack of quantifiable imaging modalities, this is troubling as the amount of DC migration to secondary lymphoid organs correlates with therapeutic efficacy. Magnetic particle imaging (MPI) has emerged as a suitable modality to quantify in vivo migration of superparamagnetic iron oxide (SPIO)-labeled DC. Herein, we describe a popliteal lymph node (pLN)-focused MPI scan to quantify DC in vivo migration accurately and consistently. METHODS Adenovirus (Ad)-transduced SPIO+ (Ad SPIO+) and SPIO+ C57BL/6 bone marrow-derived DC were generated and assessed for viability and phenotype, then fluorescently labeled and injected into mouse hind footpads (n = 6). Two days later, in vivo DC migration was quantified using whole animal, pLN-focused, and ex vivo pLN MPI scans. RESULTS No significant differences in viability, phenotype and in vivo pLN migration were noted for Ad SPIO+ and SPIO+ DC. Day 2 pLN-focused MPI quantified DC migration in all instances while whole animal MPI only quantified pLN migration in 75% of cases. Ex vivo MPI and fluorescence microscopy confirmed that pLN MPI signal was due to originally injected Ad SPIO+ and SPIO+ DC. CONCLUSION We overcame a reported limitation of MPI by using a pLN-focused MPI scan to quantify pLN-migrated Ad SPIO+ and SPIO+ DC in 100% of cases and detected as few as 1000 DC (4.4 ng Fe) in vivo. MPI is a suitable preclinical imaging modality to assess DC-based cancer immunotherapeutic efficacy. RELEVANCE STATEMENT Tracking the in vivo fate of DC using noninvasive quantifiable magnetic particle imaging can potentially serve as a surrogate marker of therapeutic effectiveness. KEY POINTS • Adenoviral-transduced and iron oxide-labeled dendritic cells are in vivo migration competent. • Magnetic particle imaging is a suitable modality to quantify in vivo dendritic cell migration. • Magnetic particle imaging focused field of view overcomes dynamic range limitation.
Collapse
Affiliation(s)
- Corby Fink
- Biotherapeutics Research Laboratory, Robarts Research Institute, London, ON, Canada
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Julia J Gevaert
- Cellular and Molecular Imaging Group, Robarts Research Institute, London, ON, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - John W Barrett
- Department of Otolaryngology-Head and Neck Surgery, University of Western Ontario, London, ON, Canada
| | - Jimmy D Dikeakos
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Paula J Foster
- Cellular and Molecular Imaging Group, Robarts Research Institute, London, ON, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - Gregory A Dekaban
- Biotherapeutics Research Laboratory, Robarts Research Institute, London, ON, Canada.
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
4
|
Chen F, Liu J, Flight RM, Naughton KJ, Lukyanchuk A, Edgin AR, Song X, Zhang H, Wong K, Moseley HNB, Wang C, Brainson CF. Cellular Origins of EGFR-Driven Lung Cancer Cells Determine Sensitivity to Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101999. [PMID: 34622577 PMCID: PMC8596110 DOI: 10.1002/advs.202101999] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/20/2021] [Indexed: 05/05/2023]
Abstract
Targeting the epidermal growth factor receptor (EGFR) with tyrosine kinase inhibitors (TKIs) is one of the major precision medicine treatment options for lung adenocarcinoma. Due to common development of drug resistance to first- and second-generation TKIs, third-generation inhibitors, including osimertinib and rociletinib, have been developed. A model of EGFR-driven lung cancer and a method to develop tumors of distinct epigenetic states through 3D organotypic cultures are described here. It is discovered that activation of the EGFR T790M/L858R mutation in lung epithelial cells can drive lung cancers with alveolar or bronchiolar features, which can originate from alveolar type 2 (AT2) cells or bronchioalveolar stem cells, but not basal cells or club cells of the trachea. It is also demonstrated that these clones are able to retain their epigenetic differences through passaging orthotopically in mice and crucially that they have distinct drug vulnerabilities. This work serves as a blueprint for exploring how epigenetics can be used to stratify patients for precision medicine decisions.
Collapse
Affiliation(s)
- Fan Chen
- Department of Toxicology and Cancer BiologyUniversity of KentuckyLexingtonKY40536USA
- Present address:
Department of Medical OncologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhou510060P. R. China
| | - Jinpeng Liu
- Department of Internal MedicineUniversity of KentuckyLexingtonKY40536USA
| | - Robert M. Flight
- Department of Molecular and Cellular BiochemistryUniversity of KentuckyLexingtonKY40536USA
- Markey Cancer CenterUniversity of KentuckyLexingtonKY40536USA
| | - Kassandra J. Naughton
- Department of Toxicology and Cancer BiologyUniversity of KentuckyLexingtonKY40536USA
| | - Alexsandr Lukyanchuk
- Department of Toxicology and Cancer BiologyUniversity of KentuckyLexingtonKY40536USA
| | - Abigail R. Edgin
- Department of Toxicology and Cancer BiologyUniversity of KentuckyLexingtonKY40536USA
| | - Xiulong Song
- Department of Toxicology and Cancer BiologyUniversity of KentuckyLexingtonKY40536USA
| | - Haikuo Zhang
- DNAtrix10355 Science Center Drive, Suite 110San DiegoCA92121USA
| | - Kwok‐Kin Wong
- Laura and Isaac Perlmutter Cancer CenterNYU Langone Medical CenterNew York UniversityNew YorkNY10016USA
| | - Hunter N. B. Moseley
- Department of Toxicology and Cancer BiologyUniversity of KentuckyLexingtonKY40536USA
- Department of Molecular and Cellular BiochemistryUniversity of KentuckyLexingtonKY40536USA
- Markey Cancer CenterUniversity of KentuckyLexingtonKY40536USA
| | - Chi Wang
- Department of Internal MedicineUniversity of KentuckyLexingtonKY40536USA
- Markey Cancer CenterUniversity of KentuckyLexingtonKY40536USA
| | - Christine F. Brainson
- Department of Toxicology and Cancer BiologyUniversity of KentuckyLexingtonKY40536USA
- Markey Cancer CenterUniversity of KentuckyLexingtonKY40536USA
| |
Collapse
|
5
|
Trincado V, Gala RP, Morales JO. Buccal and Sublingual Vaccines: A Review on Oral Mucosal Immunization and Delivery Systems. Vaccines (Basel) 2021; 9:vaccines9101177. [PMID: 34696284 PMCID: PMC8539688 DOI: 10.3390/vaccines9101177] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
Currently, most vaccines available on the market are for parental use; however, this may not be the best option on several occasions. Mucosal routes of administration such as intranasal, sublingual, and buccal generate great interest due to the benefits they offer. These range from increasing patient compliance to inducing a more effective immune response than that achieved through conventional routes. Due to the activation of the common mucosal immune system, it is possible to generate an effective systemic and local immune response, which is not achieved through parenteral administration. Protection against pathogens that use mucosal entry routes is provided by an effective induction of mucosal immunity. Mucosal delivery systems are being developed, such as films and microneedles, which have proven to be effective, safe, and easy to administer. These systems have multiple advantages over commonly used injections, which are simple to manufacture, stable at room temperature, painless for the patient since they do not require puncture. Therefore, these delivery systems do not require to be administered by medical personnel; in fact, they could be self-administered.
Collapse
Affiliation(s)
- Valeria Trincado
- Drug Delivery Laboratory, Departamento de Ciencias y Tecnología Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile;
- Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380494, Chile
- Center of New Drugs for Hypertension (CENDHY), Santiago 8380494, Chile
| | - Rikhav P. Gala
- Biotechnology Division, Center Mid-Atlantic, Fraunhofer USA, Newark, DE 19702, USA;
| | - Javier O. Morales
- Drug Delivery Laboratory, Departamento de Ciencias y Tecnología Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile;
- Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380494, Chile
- Center of New Drugs for Hypertension (CENDHY), Santiago 8380494, Chile
- Correspondence:
| |
Collapse
|
6
|
Pushparajah D, Jimenez S, Wong S, Alattas H, Nafissi N, Slavcev RA. Advances in gene-based vaccine platforms to address the COVID-19 pandemic. Adv Drug Deliv Rev 2021; 170:113-141. [PMID: 33422546 PMCID: PMC7789827 DOI: 10.1016/j.addr.2021.01.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/23/2020] [Accepted: 01/01/2021] [Indexed: 01/07/2023]
Abstract
The novel betacoronavirus, SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), has spread across the globe at an unprecedented rate since its first emergence in Wuhan City, China in December 2019. Scientific communities around the world have been rigorously working to develop a potent vaccine to combat COVID-19 (coronavirus disease 2019), employing conventional and novel vaccine strategies. Gene-based vaccine platforms based on viral vectors, DNA, and RNA, have shown promising results encompassing both humoral and cell-mediated immune responses in previous studies, supporting their implementation for COVID-19 vaccine development. In fact, the U.S. Food and Drug Administration (FDA) recently authorized the emergency use of two RNA-based COVID-19 vaccines. We review current gene-based vaccine candidates proceeding through clinical trials, including their antigenic targets, delivery vehicles, and route of administration. Important features of previous gene-based vaccine developments against other infectious diseases are discussed in guiding the design and development of effective vaccines against COVID-19 and future derivatives.
Collapse
Affiliation(s)
- Deborah Pushparajah
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada
| | - Salma Jimenez
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada; Theraphage, 151 Charles St W Suite # 199, Kitchener, ON, N2G 1H6, Canada
| | - Shirley Wong
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada
| | - Hibah Alattas
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada
| | - Nafiseh Nafissi
- Mediphage Bioceuticals, 661 University Avenue, Suite 1300, Toronto, ON, M5G 0B7, Canada
| | - Roderick A Slavcev
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada; Mediphage Bioceuticals, 661 University Avenue, Suite 1300, Toronto, ON, M5G 0B7, Canada; Theraphage, 151 Charles St W Suite # 199, Kitchener, ON, N2G 1H6, Canada.
| |
Collapse
|
7
|
Uytingco CR, Green WW, Martens JR. Olfactory Loss and Dysfunction in Ciliopathies: Molecular Mechanisms and Potential Therapies. Curr Med Chem 2019; 26:3103-3119. [PMID: 29303074 DOI: 10.2174/0929867325666180105102447] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/08/2017] [Accepted: 12/20/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Ciliopathies are a class of inherited pleiotropic genetic disorders in which alterations in cilia assembly, maintenance, and/or function exhibit penetrance in the multiple organ systems. Olfactory dysfunction is one such clinical manifestation that has been shown in both patients and model organisms. Existing therapies for ciliopathies are limited to the treatment or management of symptoms. The last decade has seen an increase in potential curative therapeutic options including small molecules and biologics. Recent work in multiciliated olfactory sensory neurons has demonstrated the capacity of targeted gene therapy to restore ciliation in terminally differentiated cells and rescue olfactory function. This review will discuss the current understanding of the penetrance of ciliopathies in the olfactory system. Importantly, it will highlight both pharmacological and biological approaches, and their potential therapeutic value in the olfactory system and other ciliated tissues. METHODS We undertook a structured and comprehensive search of peer-reviewed research literature encompassing in vitro, in vivo, model organism, and clinical studies. From these publications, we describe the olfactory system, and discuss the penetrance of ciliopathies and impact of cilia loss on olfactory function. In addition, we outlined the developing therapies for ciliopathies across different organ and cell culture systems, and discussed their potential therapeutic application to the mammalian olfactory system. RESULTS One-hundred sixty-one manuscripts were included in the review, centering on the understanding of olfactory penetrance of ciliopathies, and discussing the potential therapeutic options for ciliopathies in the context of the mammalian olfactory system. Forty-four manuscripts were used to generate a table listing the known congenital causes of olfactory dysfunction, with the first ten listed are linked to ciliopathies. Twenty-three manuscripts were used to outline the potential of small molecules for the olfactory system. Emphasis was placed on HDAC6 inhibitors and lithium, both of which were shown to stabilize microtubule structures, contributing to ciliogenesis and cilia lengthening. Seventy-five manuscripts were used to describe gene therapy and gene therapeutic strategies. Included were the implementation of adenoviral, adeno-associated virus (AAV), and lentiviral vectors to treat ciliopathies across different organ systems and application toward the olfactory system. Thus far, adenoviral and AAVmeditated ciliary restoration demonstrated successful proof-of-principle preclinical studies. In addition, gene editing, ex vivo gene therapy, and transplantation could serve as alternative therapeutic and long-term approaches. But for all approaches, additional assessment of vector immunogenicity, specificity, and efficacy need further investigation. Currently, ciliopathy treatments are limited to symptomatic management with no curative options. However, the accessibility and amenability of the olfactory system to treatment would facilitate development and advancement of a viable therapy. CONCLUSION The findings of this review highlight the contribution of ciliopathies to a growing list of congenial olfactory dysfunctions. Promising results from other organ systems imply the feasibility of biologics, with results from gene therapies proving to be a viable therapeutic option for ciliopathies and olfactory dysfunction.
Collapse
Affiliation(s)
- Cedric R Uytingco
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL 32610, United States.,University of Florida Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, United States
| | - Warren W Green
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL 32610, United States.,University of Florida Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, United States
| | - Jeffrey R Martens
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL 32610, United States.,University of Florida Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, United States
| |
Collapse
|
8
|
Best SA, Harapas CR, Kersbergen A, Rathi V, Asselin-Labat ML, Sutherland KD. FGFR3-TACC3 is an oncogenic fusion protein in respiratory epithelium. Oncogene 2018; 37:6096-6104. [PMID: 29991799 PMCID: PMC6215478 DOI: 10.1038/s41388-018-0399-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 05/24/2018] [Accepted: 06/08/2018] [Indexed: 11/25/2022]
Abstract
Structural rearrangements of the genome can drive lung tumorigenesis
through the generation of fusion genes with oncogenic properties. Advanced
genomic approaches have identified the presence of a genetic fusion between
fibroblast growth factor receptor 3
(FGFR3) and transforming acidic coiled-coil 3
(TACC3) in non-small cell lung cancer (NSCLC), providing a
novel target for FGFR inhibition. To interrogate the functional consequences of
the FGFR3-TACC3 fusion in the transformation of lung epithelial cells, we
generated a novel transgenic mouse model that expresses FGFR3-TACC3 concomitant
with loss of the p53 tumor suppressor gene. Intra-nasal
delivery of an Ad5-CMV-Cre virus promoted seromucinous glandular transformation
of olfactory cells lining the nasal cavities of FGFR3-TACC3
(LSL-F3T3) mice, which was further
accelerated upon loss of p53
(LSL-F3T3/p53).
Surprisingly, lung tumors failed to develop in intra-nasally infected
LSL-F3T3 and
LSL-F3T3/p53 mice. In
line with these observations, we demonstrated that intra-nasal delivery of
Ad5-CMV-Cre induces widespread Cre-mediated recombination in the olfactory
epithelium. Intra-tracheal delivery of Ad5-CMV-Cre into the lungs of
LSL-F3T3 and
LSL-F3T3/p53 mice
however, resulted in the development of lung adenocarcinomas. Taken together,
these findings provide in vivo evidence for an oncogenic
function of FGFR3-TACC3 in respiratory epithelium.
Collapse
Affiliation(s)
- Sarah A Best
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Cassandra R Harapas
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Ariena Kersbergen
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Vivek Rathi
- Department of Anatomical Pathology, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Marie-Liesse Asselin-Labat
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Kate D Sutherland
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia. .,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
9
|
Tomusange K, Wijesundara D, Gummow J, Wesselingh S, Suhrbier A, Gowans EJ, Grubor-Bauk B. Mucosal vaccination with a live recombinant rhinovirus followed by intradermal DNA administration elicits potent and protective HIV-specific immune responses. Sci Rep 2016; 6:36658. [PMID: 27853256 PMCID: PMC5113119 DOI: 10.1038/srep36658] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/18/2016] [Indexed: 01/30/2023] Open
Abstract
Mucosal immunity is deemed crucial to control sexual transmission of human immunodeficiency virus (HIV). Herein we report the efficacy of a mucosal HIV vaccine strategy comprising intranasal (IN) vaccination with a cocktail of live recombinant human rhinoviruses (HRVs) encoding overlapping fragments of HIV Gag and full length Tat (rHRV-Gag/Tat) followed by intradermal (ID) vaccination with DNA vaccines encoding HIV Gag and Tat (pVAX-Gag-Tat). This heterologous prime-boost strategy will be referred to hereafter as rHRV-DNA. As a control, IN vaccination with wild type (wt)-HRV-A1 followed by a single ID dose of pVAX (wt-HRV-A1/pVAX vaccination) was included. rHRV-DNA vaccination elicited superior multi-functional CD8+T cell responses in lymphocytes harvested from mesenteric lymph nodes and spleens, and higher titres of Tat-specific antibodies in blood and vaginal lavages, and reduced the viral load more effectively after challenge with EcoHIV, a murine HIV challenge model, in peritoneal macrophages, splenocytes and blood compared compared with wt-HRV-A1/pVAX vaccination or administration of 3 ID doses of pVAX-Gag-Tat (3X pVAX-Gag-Tat vaccination). These data provide the first evidence that a rHRV-DNA vaccination regimen can induce HIV-specific immune responses in the gut, vaginal mucosa and systemically, and supports further testing of this regimen in the development of an effective mucosally-targeted HIV-1 vaccine.
Collapse
Affiliation(s)
- Khamis Tomusange
- Virology Laboratory, Basil Hetzel Institute, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Danushka Wijesundara
- Virology Laboratory, Basil Hetzel Institute, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Jason Gummow
- Virology Laboratory, Basil Hetzel Institute, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Steve Wesselingh
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Eric J Gowans
- Virology Laboratory, Basil Hetzel Institute, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Branka Grubor-Bauk
- Virology Laboratory, Basil Hetzel Institute, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
10
|
Acosta-Ramirez E, Tram C, Kampen RM, Tillman MR, Schwendener RA, Xing Z, Halperin SA, Wang J. Respiratory macrophages regulate CD4 T memory responses to mucosal immunization with recombinant adenovirus-based vaccines. Cell Immunol 2016; 310:53-62. [PMID: 27425590 PMCID: PMC7094387 DOI: 10.1016/j.cellimm.2016.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 07/11/2016] [Accepted: 07/11/2016] [Indexed: 01/09/2023]
Abstract
Respiratory macrophages have dual functional roles that regulate CD4 T cell responses to recombinant adenovirus-based vaccination in a stage-dependent manner. Respiratory macrophages suppress the initial CD4 T cell activation and the subsequent size of tissue-resident CD4 memory T cells. Respiratory macrophages and potentially circulating monocytes are critically required for the development and fitness of long-term tissue-resident CD4 memory T cells.
Respiratory immunization is an attractive way to generate systemic and mucosal protective memory responses that are required for preventing mucosally transmitted infections. However, the molecular and cellular mechanisms for controlling memory T cell responses remain incompletely understood. In this study, we investigated the role of respiratory macrophage (MΦ) in regulating CD4 T cell responses to recombinant adenovirus-based (rAd) vaccines. We demonstrated that rAd intranasal (i.n.) vaccination induced migration and accumulation of respiratory MΦ and circulatory monocytes in the mediastinal lymph nodes and lung parenchyma. Under the influence of respiratory MΦ CD4 T cells exhibited slow proliferation kinetics and an increased tendency of generating central memory, as opposed to effector memory, CD4 T cell responses in vitro and in vivo. Correspondingly, depletion of MΦ using clodronate-containing liposome prior to i.n. immunization significantly enhanced CD4 T cell proliferation and increased the frequency of CD4 memory T cells in the airway lumen, demonstrating that MΦ initially serve as a negative regulator in limiting generation of mucosal tissue-resident memory CD4 T cells. However, clodronate-containing liposome delivery following i.n. immunization markedly reduced the frequencies of memory CD4 T cells in the airway lumen and spleen, indicating that respiratory MΦ and potentially circulating monocytes are critically required for maintaining long-term memory CD4 T cells. Collectively, our data demonstrate that rAd-induced mucosal CD4 T memory responses are regulated by respiratory MΦ and/or monocytes at multiple stages.
Collapse
Affiliation(s)
- Elizabeth Acosta-Ramirez
- Canadian Center for Vaccinology, Faculty of Medicine, Dalhousie University, and IWK Health Centre, Halifax, Nova Scotia, Canada; Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, and IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Cynthia Tram
- Canadian Center for Vaccinology, Faculty of Medicine, Dalhousie University, and IWK Health Centre, Halifax, Nova Scotia, Canada; Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, and IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Rachel M Kampen
- Canadian Center for Vaccinology, Faculty of Medicine, Dalhousie University, and IWK Health Centre, Halifax, Nova Scotia, Canada; Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, and IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Melanie R Tillman
- Canadian Center for Vaccinology, Faculty of Medicine, Dalhousie University, and IWK Health Centre, Halifax, Nova Scotia, Canada; Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, and IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Reto A Schwendener
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Zhou Xing
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Scott A Halperin
- Canadian Center for Vaccinology, Faculty of Medicine, Dalhousie University, and IWK Health Centre, Halifax, Nova Scotia, Canada; Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, and IWK Health Centre, Halifax, Nova Scotia, Canada; Department of Pediatrics, Faculty of Medicine, Dalhousie University, and IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Jun Wang
- Canadian Center for Vaccinology, Faculty of Medicine, Dalhousie University, and IWK Health Centre, Halifax, Nova Scotia, Canada; Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, and IWK Health Centre, Halifax, Nova Scotia, Canada; Department of Pediatrics, Faculty of Medicine, Dalhousie University, and IWK Health Centre, Halifax, Nova Scotia, Canada.
| |
Collapse
|
11
|
Xiang K, Ying G, Yan Z, Shanshan Y, Lei Z, Hongjun L, Maosheng S. Progress on adenovirus-vectored universal influenza vaccines. Hum Vaccin Immunother 2016; 11:1209-22. [PMID: 25876176 DOI: 10.1080/21645515.2015.1016674] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Influenza virus (IFV) infection causes serious health problems and heavy financial burdens each year worldwide. The classical inactivated influenza virus vaccine (IIVV) and live attenuated influenza vaccine (LAIV) must be updated regularly to match the new strains that evolve due to antigenic drift and antigenic shift. However, with the discovery of broadly neutralizing antibodies that recognize conserved antigens, and the CD8(+) T cell responses targeting viral internal proteins nucleoprotein (NP), matrix protein 1 (M1) and polymerase basic 1 (PB1), it is possible to develop a universal influenza vaccine based on the conserved hemagglutinin (HA) stem, NP, and matrix proteins. Recombinant adenovirus (rAd) is an ideal influenza vaccine vector because it has an ideal stability and safety profile, induces balanced humoral and cell-mediated immune responses due to activation of innate immunity, provides 'self-adjuvanting' activity, can mimic natural IFV infection, and confers seamless protection against mucosal pathogens. Moreover, this vector can be developed as a low-cost, rapid-response vaccine that can be quickly manufactured. Therefore, an adenovirus vector encoding conserved influenza antigens holds promise in the development of a universal influenza vaccine. This review will summarize the progress in adenovirus-vectored universal flu vaccines and discuss future novel approaches.
Collapse
Key Words
- ADCC, antibody-dependent cell-mediated cytotoxicity
- APC, antigen-presenting cell
- Ad: adenovirus
- CAR, Coxsackie-Adenovirus Receptor
- CTLs, cytotoxic T lymphocytes
- DC, lung dendritic cells
- DVD, drug–vaccine duo
- FcγRs, Fc receptors for IgG
- HA, hemagglutinin
- HDAd, helper-dependent adenoviral
- HEK293, human embryonic kidney 293 cell
- HI, hemagglutination inhibition
- HLA, human leukocyte antigen
- IF-γ, interferon-γ
- IFV, Influenza virus
- IIVV, inactivated influenza virus vaccine
- IL-2, interleukin-2
- ITRs, inverted terminal repeats
- LAIV, live attenuated influenza vaccine
- M1, matrix protein 1
- M2, matrix protein 2
- MHC-I, major histocompatibility complex class I
- NA, neuraminidase
- NP, nucleoprotein
- RCA, replication competent adenovirus
- VAERD, vaccine-associated enhanced respiratory disease
- adenovirus vector
- broadly neutralizing antibodies
- cellular immunity
- flu, influenza
- hemagglutinin
- humoral immunity
- influenza
- mAbs, monoclonal antibodies
- mucosal immunity
- rAd, recombinant adenovirus
- universal vaccine
Collapse
Affiliation(s)
- Kui Xiang
- a Department of Molecular Biology; Institute of Medical Biology; Chinese Academy of Medical Sciences; Peking Union Medical College ; Kunming , Yunnan , PR China
| | | | | | | | | | | | | |
Collapse
|
12
|
Moon SK, Lim DJ. Intratympanic Gene Delivery of Antimicrobial Molecules in Otitis Media. Curr Allergy Asthma Rep 2015; 15:14. [PMID: 26130474 DOI: 10.1007/s11882-015-0517-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Otitis media (OM) in children is clinically important because of its detrimental effects on the development of language and motor coordination and is the most common reason for prescription of antibiotics. A recent bacteriological change in OM pathogens such as emergence of antibiotic resistance and vaccination-mediated pathogenic shift urges us to develop a new non-antibiotic strategy. The middle ear epithelium abundantly secretes a variety of antimicrobial molecules suppressing the viability of the common OM pathogens. Recently, we have demonstrated that the adenoviral vector is able to deliver the β-defensin 2 gene to the middle ear epithelial cells in vitro and in vivo, and adenovirus-mediated overexpression of β-defensin 2 is protective for experimental OM. There are many hurdles limiting successful clinical application of gene delivery to the respiratory epithelium of the tubotympanum; however, intratympanic gene therapy with β-defensin 2 is a promising alternative or adjuvant strategy for the management of OM.
Collapse
Affiliation(s)
- Sung K Moon
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, 2100 W. 3rd Street, Los Angeles, CA, 90057, USA,
| | | |
Collapse
|
13
|
Jonsson-Schmunk K, Croyle MA. A long-lasting, single-dose nasal vaccine for Ebola: a practical armament for an outbreak with significant global impact. Expert Rev Anti Infect Ther 2015; 13:527-30. [PMID: 25796987 DOI: 10.1586/14787210.2015.1028368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In response to the severity and scale of the 2014 Ebola outbreak, several experimental vaccines were granted fast-track status for clinical testing. Although they may provide long-lasting protection from Ebola, they are, in their current states, far from optimal for populations that need them the most. In this context, nasal immunization addresses the: immune response required at the mucosa where Ebola initiates infection; needs of a population in terms of cost and compliance; and potency of each platform as they contain viruses that naturally infect the respiratory tract. Understanding the attributes of nasal immunization and its application will lead to potent vaccines that can effectively end Ebola and other emerging infectious diseases in developing and industrialized countries.
Collapse
Affiliation(s)
- Kristina Jonsson-Schmunk
- Division of Pharmaceutics, University of Texas at Austin, College of Pharmacy, 2409 W University Ave, Austin, TX 78712, USA
| | | |
Collapse
|
14
|
Leunda A, Baldo A, Goossens M, Huygen K, Herman P, Romano M. Novel GMO-Based Vaccines against Tuberculosis: State of the Art and Biosafety Considerations. Vaccines (Basel) 2014; 2:463-99. [PMID: 26344627 PMCID: PMC4494264 DOI: 10.3390/vaccines2020463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/24/2014] [Accepted: 05/06/2014] [Indexed: 12/13/2022] Open
Abstract
Novel efficient vaccines are needed to control tuberculosis (TB), a major cause of morbidity and mortality worldwide. Several TB vaccine candidates are currently in clinical and preclinical development. They fall into two categories, the one of candidates designed as a replacement of the Bacille Calmette Guérin (BCG) to be administered to infants and the one of sub-unit vaccines designed as booster vaccines. The latter are designed as vaccines that will be administered to individuals already vaccinated with BCG (or in the future with a BCG replacement vaccine). In this review we provide up to date information on novel tuberculosis (TB) vaccines in development focusing on the risk assessment of candidates composed of genetically modified organisms (GMO) which are currently evaluated in clinical trials. Indeed, these vaccines administered to volunteers raise biosafety concerns with respect to human health and the environment that need to be assessed and managed.
Collapse
Affiliation(s)
- Amaya Leunda
- Biosafety and Biotechnology Unit, Scientific Institute of Public Health, 14 Juliette Wytsman Street, Brussels 1050, Belgium.
| | - Aline Baldo
- Biosafety and Biotechnology Unit, Scientific Institute of Public Health, 14 Juliette Wytsman Street, Brussels 1050, Belgium.
| | - Martine Goossens
- Biosafety and Biotechnology Unit, Scientific Institute of Public Health, 14 Juliette Wytsman Street, Brussels 1050, Belgium.
| | - Kris Huygen
- Immunology Unit, Scientific Institute of Public Health, 642 Engeland Street, Brussels 1180, Belgium.
| | - Philippe Herman
- Biosafety and Biotechnology Unit, Scientific Institute of Public Health, 14 Juliette Wytsman Street, Brussels 1050, Belgium.
| | - Marta Romano
- Immunology Unit, Scientific Institute of Public Health, 642 Engeland Street, Brussels 1180, Belgium.
| |
Collapse
|
15
|
Harmon BT, Aly AE, Padegimas L, Sesenoglu-Laird O, Cooper MJ, Waszczak BL. Intranasal administration of plasmid DNA nanoparticles yields successful transfection and expression of a reporter protein in rat brain. Gene Ther 2014; 21:514-21. [PMID: 24670994 DOI: 10.1038/gt.2014.28] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 02/12/2014] [Accepted: 02/17/2014] [Indexed: 12/19/2022]
Abstract
Viral vectors are a commonly used method for gene therapy because of their highly efficient transduction of cells. However, many vectors have a small genetic capacity, and their potential for immunogenicity can limit their usefulness. Moreover, for disorders of the central nervous system (CNS), the need for invasive surgical delivery of viruses to the brain also detracts from their clinical applicability. Here, we show that intranasal delivery of unimolecularly compacted DNA nanoparticles (DNA NPs), which consist of single molecules of plasmid DNA encoding enhanced green fluorescent protein (eGFP) compacted with 10 kDa polyethylene glycol (PEG)-substituted lysine 30-mers (CK30PEG10k), successfully transfect cells in the rat brain. Direct eGFP fluorescence microscopy, eGFP-immunohistochemistry (IHC) and eGFP-ELISA all demonstrated eGFP protein expression 2 days after intranasal delivery. eGFP-positive cells were found throughout the rostral-caudal axis of the brain, most often adjacent to capillary endothelial cells. This localization provides evidence for distribution of the nasally administered DNA NPs via perivascular flow. These results are the first report that intranasal delivery of DNA NPs can bypass the blood-brain barrier and transfect and express the encoded protein in the rat brain, affording a non-invasive approach for gene therapy of CNS disorders.
Collapse
Affiliation(s)
- B T Harmon
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - A E Aly
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - L Padegimas
- Copernicus Therapeutics, Inc., Cleveland, OH, USA
| | | | - M J Cooper
- Copernicus Therapeutics, Inc., Cleveland, OH, USA
| | - B L Waszczak
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| |
Collapse
|
16
|
Fu YH, Jiao YY, He JS, Giang GY, Zhang W, Yan YF, Ma Y, Hua Y, Zhang Y, Peng XL, Shi CX, Hong T. Sublingual administration of a helper-dependent adenoviral vector expressing the codon-optimized soluble fusion glycoprotein of human respiratory syncytial virus elicits protective immunity in mice. Antiviral Res 2014; 105:72-9. [PMID: 24560779 DOI: 10.1016/j.antiviral.2014.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 11/29/2022]
Abstract
Sublingual (s.l.) immunization has been described as a convenient and safe way to induce mucosal immune responses in the respiratory and genital tracts. We constructed a helper-dependent adenoviral (HDAd) vector expressing a condon-optimized soluble fusion glycoprotein (sFsyn) of respiratory syncytial virus (HDAd-sFsyn) and explored the potential of s.l. immunization with HDAd-sFsyn to stimulate immune responses in the respiratory mucosa. The RSV specific systemic and mucosal immune responses were generated in BALB/c mice, and the serum IgG with neutralizing activity was significantly elevated after homologous boost with s.l. application of HDAd-sFsyn. Humoral immune responses could be measured even 14weeks after a single immunization. Upon challenge, s.l. immunization with HDAd-sFsyn displayed an effective protection against RSV infection. These findings suggest that s.l. administration of HDAd-sFsyn acts as an effective and safe mucosal vaccine against RSV infection, and may be a useful tool in the prevention of RSV infection.
Collapse
Affiliation(s)
- Yuan-hui Fu
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Yue-Ying Jiao
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jin-sheng He
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing 100044, China.
| | - Gui-Yuan Giang
- Department of Immunology, Anhui Medical University, Hefei, Anhui 230032, China
| | - Wei Zhang
- Department of Gastrointestinal Oncological Surgery, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Yi-Fei Yan
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Yao Ma
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Ying Hua
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Ying Zhang
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Xiang-Lei Peng
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Chang-Xin Shi
- Division of Hematology-Oncology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Tao Hong
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing 100044, China; Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| |
Collapse
|
17
|
Knuchel MC, Marty RR, Morin TNA, Ilter O, Zuniga A, Naim HY. Relevance of a pre-existing measles immunity prior immunization with a recombinant measles virus vector. Hum Vaccin Immunother 2013; 9:599-606. [PMID: 23324399 DOI: 10.4161/hv.23241] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Measles virus (MV) vectors are promising candidates for designing new recombinant vaccines since the parental live vaccines have a well-known safety and efficacy record. Like all viral vectors, the MV vector efficacy in inducing a protecting immune answer could be affected by the pre-existing immunity among the human population. In order to determine the optimal immunization route and regimen, we mimicked a MV pre-immunity by passively administrating MV neutralizing antibodies (MV-nAb) prior intramuscular (i.m.) and/or intranasal (i.n.) immunization with recombinant MV expressing the SIV-gag antigen (rMV-SIVgag). Our results revealed that 500 mIU of MV-nAb allowed the induction of a humoral and cellular immune response against the vector and the transgene, while higher titers of the MV-nAb were significantly inhibitory. In a prime-boost regimen, in the presence of MV-nAb, the intranasal-intramuscular (i.n.-i.m.) or intramuscular-intramuscular (i.m.-i.m.) routes induced higher humoral immune responses against the vector and the transgene (SIV-gag). In naive animals, cellular immune response was significantly higher by i.m. immunization; however, MV pre-immunity did not seem to affect the cellular immune response after an i.n. immunization. In summary, we show that a pre-existing immunity of up to 500 mIU anti-MV neutralizing antibodies had little effect on the replication of rMV and did not inhibit the induction of significant humoral and cellular immune responses in immune-competent mice.
Collapse
|
18
|
Abstract
The emergence of a highly pathogenic avian influenza virus H5N1 has increased the potential for a new pandemic to occur. This event highlights the necessity for developing a new generation of influenza vaccines to counteract influenza disease. These vaccines must be manufactured for mass immunization of humans in a timely manner. Poultry should be included in this policy, since persistent infected flocks are the major source of avian influenza for human infections. Recombinant adenoviral vectored H5N1 vaccines are an attractive alternative to the currently licensed influenza vaccines. This class of vaccines induces a broadly protective immunity against antigenically distinct H5N1, can be manufactured rapidly, and may allow mass immunization of human and poultry. Recombinant adenoviral vectors derived from both human and non-human adenoviruses are currently being investigated and appear promising both in nonclinical and clinical studies. This review will highlight the current status of various adenoviral vectored H5N1 vaccines and will outline novel approaches for the future.
Collapse
|
19
|
Shim BS, Stadler K, Nguyen HH, Yun CH, Kim DW, Chang J, Czerkinsky C, Song MK. Sublingual immunization with recombinant adenovirus encoding SARS-CoV spike protein induces systemic and mucosal immunity without redirection of the virus to the brain. Virol J 2012; 9:215. [PMID: 22995185 PMCID: PMC3489719 DOI: 10.1186/1743-422x-9-215] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 09/19/2012] [Indexed: 11/29/2022] Open
Abstract
Background Sublingual (s.l.) administration of soluble protein antigens, inactivated viruses, or virus-like particles has been shown to induce broad immune responses in mucosal and extra-mucosal tissues. Recombinant replication-defective adenovirus vectors (rADVs) infect mucosa surface and therefore can serve as a mucosal antigen delivery vehicle. In this study we examined whether s.l. immunization with rADV encoding spike protein (S) (rADV-S) of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) induces protective immunity against SARS-CoV and could serve as a safe mucosal route for delivery of rADV. Results Here, we show that s.l. administration of rADV-S induced serum SARS-CoV neutralizing and airway IgA antibodies in mice. These antibody responses are comparable to those induced by intranasal (i.n.) administration. In addition, s.l. immunization induced antigen-specific CD8+ T cell responses in the lungs that are superior to those induced by intramuscular immunization. Importantly, unlike i.n. administration, s.l. immunization with rADV did not redirect the rADV vector to the olfactory bulb. Conclusion Our study indicates that s.l. immunization with rADV-S is safe and effective in induction of a broad spectrum of immune responses and presumably protection against infection with SARS-CoV.
Collapse
Affiliation(s)
- Byoung-Shik Shim
- Laboratory Sciences Division, International Vaccine Institute, Seoul, 151-919, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Choi JH, Schafer SC, Zhang L, Kobinger GP, Juelich T, Freiberg AN, Croyle MA. A single sublingual dose of an adenovirus-based vaccine protects against lethal Ebola challenge in mice and guinea pigs. Mol Pharm 2011; 9:156-67. [PMID: 22149096 DOI: 10.1021/mp200392g] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Sublingual (SL) delivery, a noninvasive immunization method that bypasses the intestinal tract for direct entry into the circulation, was evaluated with an adenovirus (Ad5)-based vaccine for Ebola. Mice and guinea pigs were immunized via the intramuscular (IM), nasal (IN), oral (PO) and SL routes. SL immunization elicited strong transgene expression in and attracted CD11c(+) antigen presenting cells to the mucosa. A SL dose of 1 × 10⁸ infectious particles induced Ebola Zaire glycoprotein (ZGP)-specific IFN-γ⁺ T cells in spleen, bronchoalveolar lavage, mesenteric lymph nodes and submandibular lymph nodes (SMLN) of naive mice in a manner similar to the same dose given IN. Ex vivo CFSE and in vivo cytotoxic T lymphocyte (CTL) assays confirmed that SL immunization elicits a notable population of effector memory CD8+ T cells and strong CTL responses in spleen and SMLN. SL immunization induced significant ZGP-specific Th1 and Th2 type responses unaffected by pre-existing immunity (PEI) that protected mice and guinea pigs from lethal challenge. SL delivery protected more mice with PEI to Ad5 than IM injection. SL immunization also reduced systemic anti-Ad5 T and B cell responses in naive mice and those with PEI, suggesting that secondary immunizations could be highly effective for both populations.
Collapse
Affiliation(s)
- Jin Huk Choi
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | | | | | | | | | | | | |
Collapse
|
21
|
Chartoff EH, Damez-Werno D, Sonntag KC, Hassinger L, Kaufmann DE, Peterson J, McPhie D, Cataldo AM, Cohen BM. Detection of intranasally delivered bone marrow-derived mesenchymal stromal cells in the lesioned mouse brain: a cautionary report. Stem Cells Int 2011; 2011:586586. [PMID: 22190964 PMCID: PMC3236385 DOI: 10.4061/2011/586586] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 08/23/2011] [Indexed: 01/04/2023] Open
Abstract
Bone marrow-derived mesenchymal stromal cells (MSCs) hold promise for autologous treatment of neuropathologies. Intranasal delivery is relatively noninvasive and has recently been reported to result in transport of MSCs to the brain. However, the ability of MSCs to migrate from nasal passages to sites of neuropathology and ultimately survive has not been fully examined. In this paper, we harvested MSCs from transgenic mice expressing enhanced green fluorescent protein (cells hereafter referred to as MSC-EGFP) and delivered them intranasally to wild-type mice sustaining mechanical lesions in the striatum. Using fluorescent, colorimetric, and ultrastructural detection methods, GFP-expressing cells were undetectable in the brain from 3 hours to 2 months after MSC delivery. However, bright autofluorescence that strongly resembled emission from GFP was observed in the olfactory bulb and striatum of lesioned control and MSC-EGFP-treated mice. In a control experiment, we directly implanted MSC-EGFPs into the mouse striatum and detected robust GFP expression 1 and 7 days after implantation. These findings suggest that-under our conditions-intranasally delivered MSC-EGFPs do not survive or migrate in the brain. Furthermore, our observations highlight the necessity of including appropriate controls when working with GFP as a cellular marker.
Collapse
Affiliation(s)
- Elena H. Chartoff
- Department of Psychiatry, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA 02478, USA
| | - Diane Damez-Werno
- Department of Psychiatry, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA 02478, USA
| | - Kai C. Sonntag
- Department of Psychiatry, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA 02478, USA
| | - Linda Hassinger
- Department of Psychiatry, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA 02478, USA
| | - Daniel E. Kaufmann
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Charlestown, MA 02129, USA
| | - Jesse Peterson
- Department of Psychiatry, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA 02478, USA
| | - Donna McPhie
- Department of Psychiatry, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA 02478, USA
| | - Anne M. Cataldo
- Department of Psychiatry, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA 02478, USA
| | - Bruce M. Cohen
- Department of Psychiatry, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA 02478, USA
| |
Collapse
|
22
|
Jiang Y, Wei N, Zhu J, Zhai D, Wu L, Chen M, Xu G, Liu X. A new approach with less damage: intranasal delivery of tetracycline-inducible replication-defective herpes simplex virus type-1 vector to brain. Neuroscience 2011; 201:96-104. [PMID: 22101000 DOI: 10.1016/j.neuroscience.2011.10.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 10/14/2011] [Accepted: 10/22/2011] [Indexed: 11/25/2022]
Abstract
Gene therapy holds great potential for treating neurological disorders. However, delivering gene vectors to the brain has been either invasive or inefficacious in most studies to date. The aim of this study was to develop a safe and efficacious strategy for delivering gene vectors to the brain. A tetracycline-inducible replication-defective herpes simplex virus type-1 vector, QR9TO-LacZ, was administered to rats intranasally. QR9TO-LacZ could infect primary cortical neurons and express the reporter gene without detectable replication. QR9TO-LacZ was observed in the olfactory bulb, hippocampus, striatum, cortex, medulla, cerebellum, ventricles, and nasal septum after intranasal administration. Expression of the reporter gene could be controlled effectively by tetracycline. In vitro, introduction of QR9TO-LacZ did not change the structure of transfected neurons. In vivo, QR9TO-LacZ did not increase apoptosis in neurons and did not alter levels of interleukin 6 and tumor necrosis factor α in the brain after intranasal delivery. Our data suggest that intranasally applied QR9TO-LacZ has a wide distribution and expresses the reporter gene in the brain under the control of tetracycline with less cytotoxicity than intravenous or stereotactic delivery methods.
Collapse
Affiliation(s)
- Y Jiang
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, PR China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
The subcellular location of antigen expressed by adenoviral vectors modifies adaptive immunity but not dependency on cross-presenting dendritic cells. Eur J Immunol 2011; 41:2185-96. [DOI: 10.1002/eji.201041009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 03/06/2011] [Accepted: 04/29/2011] [Indexed: 11/07/2022]
|
24
|
Wu Q, Jiang D, Minor MN, Martin RJ, Chu HW. In vivo function of airway epithelial TLR2 in host defense against bacterial infection. Am J Physiol Lung Cell Mol Physiol 2011; 300:L579-86. [PMID: 21239529 DOI: 10.1152/ajplung.00336.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Decreased Toll-like receptor 2 (TLR2) expression has been reported in patients with chronic obstructive pulmonary disease and in a murine asthma model, which may predispose the hosts to bacterial infections, leading to disease exacerbations. Since airway epithelial cells serve as the first line of respiratory mucosal defense, the present study aimed to reveal the role of airway epithelial TLR2 signaling to lung bacterial [i.e., Mycoplasma pneumoniae (Mp)] clearance. In vivo TLR2 gene transfer via intranasal inoculation of adenoviral vector was performed to reconstitute TLR2 expression in airway epithelium of TLR2(-/-) BALB/c mice, with or without ensuing Mp infection. TLR2 and lactotransferrin (LTF) expression in airway epithelial cells and lung Mp load were assessed. Adenovirus-mediated TLR2 gene transfer to airway epithelial cells of TLR2(-/-) mice reconstituted 30-40% TLR2 expression compared with TLR2(+/+) cells. Such airway epithelial TLR2 reconstitution in TLR2(-/-) mice significantly reduced lung Mp load (an appropriate 45% reduction), coupled with elevated LTF expression. LTF expression in mice was shown to be mainly dependent on TLR2 signaling in response to Mp infection. Exogenous human LTF protein dose-dependently decreased lung bacterial load in Mp-infected TLR2(-/-) mice. In addition, human LTF protein directly dose-dependently decreased Mp levels in vitro. These data indicate that reconstitution of airway epithelial TLR2 signaling in TLR2(-/-) mice significantly restores lung defense against bacteria (e.g., Mp) via increased lung antimicrobial protein LTF production. Our findings may offer a deliverable approach to attenuate bacterial infections in airways of asthma or chronic obstructive pulmonary disease patients with impaired TLR2 function.
Collapse
Affiliation(s)
- Qun Wu
- Department of Medicine, National Jewish Health and University of Colorado Denver, Denver, Colorado 80206, USA
| | | | | | | | | |
Collapse
|
25
|
Gau P, Rodriguez S, De Leonardis C, Chen P, Lin DM. Air-assisted intranasal instillation enhances adenoviral delivery to the olfactory epithelium and respiratory tract. Gene Ther 2010; 18:432-6. [PMID: 21085195 DOI: 10.1038/gt.2010.153] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Intranasal instillation is used to deliver adenoviral vectors to the olfactory epithelium and respiratory tract. The success of this approach, however, has been tempered by inconsistent infectivity in both the epithelium and lungs. Infection of the epithelium may be hampered in part by the convoluted structure of the cavity, the presence of mucus or poor airflow in the posterior cavity. Delivery of adenovirus to the lungs can be uneven in the various lobes and distal bronchioles may be poorly infected. Current approaches to circumvent these issues rely principally on intubation or intratracheal instillation. Here we describe a technique that significantly improves adenoviral infectivity rates without requiring surgical intervention. We use compressed air to increase circulation of instilled adenovirus, resulting in enhanced infection in both the epithelium and lungs. This procedure is straightforward, simple to perform and requires no specialized equipment. In the epithelium, neurons and sustentacular cells are both labeled. In the lungs, all lobes can be infected, with penetration to the most distal bronchioles. The use of compressed air will likely also be useful for enhancing the distribution of other, desired agents within the epithelium, central nervous system and respiratory tract.
Collapse
Affiliation(s)
- P Gau
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
26
|
Price GE, Soboleski MR, Lo CY, Misplon JA, Quirion MR, Houser KV, Pearce MB, Pappas C, Tumpey TM, Epstein SL. Single-dose mucosal immunization with a candidate universal influenza vaccine provides rapid protection from virulent H5N1, H3N2 and H1N1 viruses. PLoS One 2010; 5:e13162. [PMID: 20976273 PMCID: PMC2953831 DOI: 10.1371/journal.pone.0013162] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 09/01/2010] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The sudden emergence of novel influenza viruses is a global public health concern. Conventional influenza vaccines targeting the highly variable surface glycoproteins hemagglutinin and neuraminidase must antigenically match the emerging strain to be effective. In contrast, "universal" vaccines targeting conserved viral components could be used regardless of viral strain or subtype. Previous approaches to universal vaccination have required protracted multi-dose immunizations. Here we evaluate a single dose universal vaccine strategy using recombinant adenoviruses (rAd) expressing the conserved influenza virus antigens matrix 2 and nucleoprotein. METHODOLOGY/PRINCIPAL FINDINGS In BALB/c mice, administration of rAd via the intranasal route was superior to intramuscular immunization for induction of mucosal responses and for protection against highly virulent H1N1, H3N2, or H5N1 influenza virus challenge. Mucosally vaccinated mice not only survived, but had little morbidity and reduced lung virus titers. Protection was observed as early as 2 weeks post-immunization, and lasted at least 10 months, as did antibodies and lung T cells with activated phenotypes. Virus-specific IgA correlated with but was not essential for protection, as demonstrated in studies with IgA-deficient animals. CONCLUSION/SIGNIFICANCE Mucosal administration of NP and M2-expressing rAd vectors provided rapid and lasting protection from influenza viruses in a subtype-independent manner. Such vaccines could be used in the interval between emergence of a new virus strain and availability of strain-matched vaccines against it. This strikingly effective single-dose vaccination thus represents a candidate off-the-shelf vaccine for emergency use during an influenza pandemic.
Collapse
MESH Headings
- Administration, Intranasal
- Antigens, Viral/immunology
- Humans
- Immunity, Mucosal
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/isolation & purification
- Influenza A Virus, H1N1 Subtype/pathogenicity
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/isolation & purification
- Influenza A Virus, H3N2 Subtype/pathogenicity
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/isolation & purification
- Influenza A Virus, H5N1 Subtype/pathogenicity
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Virulence
Collapse
Affiliation(s)
- Graeme E. Price
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, Maryland, United States of America
| | - Mark R. Soboleski
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, Maryland, United States of America
| | - Chia-Yun Lo
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, Maryland, United States of America
| | - Julia A. Misplon
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, Maryland, United States of America
| | - Mary R. Quirion
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, Maryland, United States of America
| | - Katherine V. Houser
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Melissa B. Pearce
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Claudia Pappas
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Terrence M. Tumpey
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Suzanne L. Epstein
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
27
|
Rudraraju R, Ramsay AJ. Single-shot immunization with recombinant adenovirus encoding vaccinia virus glycoprotein A27L is protective against a virulent respiratory poxvirus infection. Vaccine 2010; 28:4997-5004. [PMID: 20653083 DOI: 10.1016/j.vaccine.2010.05.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Significant safety issues have emerged concerning the general use of DRYVAX vaccine. Vaccination with replication-defective recombinant adenovirus (rAd) vaccines may offer a safer and effective alternative to live vaccinia virus (VV) vaccination. Six individual poxvirus glycoproteins: A33R, A34R, A36R, B5R, A27L or L1R that are normally expressed on the surface of infectious vaccinia virus were encoded in rAd vaccines and tested in mice in this study. A single-shot intramuscular injection of rAd encoding A27L protected mice against a lethal intranasal challenge with VV at 4 weeks post-vaccination. By 10 weeks post-vaccination, a significant decrease in post-challenge morbidity was observed that correlated with potent neutralizing antibody responses and the emergence of specific polyfunctional T cell responses. The immunogenicity and protective efficacy of rAd-A27L immunization persisted for at least 35 weeks post-vaccination. This study is the first demonstration that a single-shot subunit vaccine encoding a poxvirus protein confers protection against the mortality and morbidity associated with poxvirus infection.
Collapse
Affiliation(s)
- Rajeev Rudraraju
- Gene Therapy Program, and Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | | |
Collapse
|
28
|
Thacker EE, Timares L, Matthews QL. Strategies to overcome host immunity to adenovirus vectors in vaccine development. Expert Rev Vaccines 2009; 8:761-77. [PMID: 19485756 DOI: 10.1586/erv.09.29] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The first clinical evaluations of adenovirus (Ad)-based vectors for gene therapy were initiated in the mid-1990s and led to great anticipation for future utility. However, excitement surrounding gene therapy, particularly Ad-based therapy, was diminished upon the death of Jesse Gelsinger, and recent discouraging results from the HIV vaccine STEP trial have brought efficacy and safety issues to the forefront again. Even so, Ad vectors are still considered among the safest and most effective vaccine vectors. Innate and pre-existing immunity to Ad mediate much of the acute toxicities and reduced therapeutic efficacies observed following vaccination with this vector. Thus, innovative strategies must continue to be developed to reduce Ad-specific antigenicity and immune recognition. This review provides an overview and critique of the most promising strategies, including results from preclinical trials in mice and nonhuman primates, which aim to revive the future of Ad-based vaccines.
Collapse
Affiliation(s)
- Erin E Thacker
- Division of Human Gene Therapy, Departments of Medicine, University of Alabama at Birmingham, BMR2 470, 901 19th Street South, Birmingham, AL 35294-32172, USA.
| | | | | |
Collapse
|
29
|
Intranasal mucosal boosting with an adenovirus-vectored vaccine markedly enhances the protection of BCG-primed guinea pigs against pulmonary tuberculosis. PLoS One 2009; 4:e5856. [PMID: 19516906 PMCID: PMC2689939 DOI: 10.1371/journal.pone.0005856] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 05/15/2009] [Indexed: 11/19/2022] Open
Abstract
Background Recombinant adenovirus-vectored (Ad) tuberculosis (TB) vaccine platform has demonstrated great potential to be used either as a stand-alone or a boost vaccine in murine models. However, Ad TB vaccine remains to be evaluated in a more relevant and sensitive guinea pig model of pulmonary TB. Many vaccine candidates shown to be effective in murine models have subsequently failed to pass the test in guinea pig models. Methods and Findings Specific pathogen-free guinea pigs were immunized with BCG, AdAg85A intranasally (i.n), AdAg85A intramuscularly (i.m), BCG boosted with AdAg85A i.n, BCG boosted with AdAg85A i.m, or treated only with saline. The animals were then infected by a low-dose aerosol of M. tuberculosis (M.tb). At the specified times, the animals were sacrificed and the levels of infection in the lung and spleen were assessed. In separate studies, the long-term disease outcome of infected animals was monitored until the termination of this study. Immunization with Ad vaccine alone had minimal beneficial effects. Immunization with BCG alone and BCG prime-Ad vaccine boost regimens significantly reduced the level of M.tb infection in the tissues to a similar extent. However, while BCG alone prolonged the survival of infected guinea pigs, the majority of BCG-immunized animals succumbed by 53 weeks post-M.tb challenge. In contrast, intranasal or intramuscular Ad vaccine boosting of BCG-primed animals markedly improved the survival rate with 60% of BCG/Ad i.n- and 40% of BCG/Ad i.m-immunized guinea pigs still surviving by 74 weeks post-aerosol challenge. Conclusions Boosting, particularly via the intranasal mucosal route, with AdAg85A vaccine is able to significantly enhance the long-term survival of BCG-primed guinea pigs following pulmonary M.tb challenge. Our results thus support further evaluation of this viral-vectored TB vaccine in clinical trials.
Collapse
|
30
|
Kurosaki T, Kishikawa R, Matsumoto M, Kodama Y, Hamamoto T, To H, Niidome T, Takayama K, Kitahara T, Sasaki H. Pulmonary gene delivery of hybrid vector, lipopolyplex containing N-lauroylsarcosine, via the systemic route. J Control Release 2009; 136:213-9. [DOI: 10.1016/j.jconrel.2009.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 02/09/2009] [Accepted: 02/10/2009] [Indexed: 10/21/2022]
|