1
|
Tao J, Zhang XY, Tan HB, Huang MY, Yang YQ, Guo J. FTZ alleviates lipid deposition in diabetic kidney disease by AMPK/ACC/SREBP signaling pathway. Acta Diabetol 2025:10.1007/s00592-025-02492-5. [PMID: 40167639 DOI: 10.1007/s00592-025-02492-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 03/17/2025] [Indexed: 04/02/2025]
Abstract
Fufang Zhenzhu Tiaozhi capsule (FTZ) is a patented traditional Chinese medicine preparation that has been used clinically for nearly 10 years to treat hyperglycemia, hyperlipidemia, and other glucolipid metabolic diseases. Previous studies have shown that FTZ can improve diabetic kidney disease (DKD). However, the role and mechanism of FTZ in reducing renal lipid accumulation in DKD remain unclear. Phosphorylation of Adenosine 5'-Monophosphate-Activated Protein Kinase (AMPK), a key regulator of energy homeostasis, inhibits Acetyl-CoA Carboxylase (ACC) signaling, thereby reducing fatty acid synthesis and promoting fatty acid oxidation via carnitine palmitoyltransferase-1 (CPT-1). Sterol regulatory element-binding protein 1 (SREBP-1), a transcription factor, regulates lipid metabolism through fatty acid synthesis. This study investigated the anti-lipid accumulation effect and mechanism of FTZ in vitro and in vivo. Streptozotocin (40 mg/kg/d, i.p. for 5 days, consecutively) combined with a high-fat diet (HFD) were used to induce a DKD model in C57BL/6J mice, followed by FTZ (1, 2 g/kg/d, i.g.) or Losartan (30 mg/kg/d, i.g.) treatments for 12 weeks. High glucose (HG, 30 mM) combined with palmitic-acid (PA, 250 µM) were used to induce HK-2 cells injury, followed by FTZ (25, 50, or 100 µg/ml) or Compound C (an AMPK inhibitor, 10 µM) treatments for 24 h. Results showed that FTZ reduced blood lipids and improved renal function in DKD mice. In addition, compared with the control group, DKD mice and cells exhibited significantly increased lipid deposition. However, the effect of FTZ in alleviating lipid accumulation was reversed by Compound C. Furthermore, FTZ increased p-AMPK, p-ACC and CPT-1 protein expression while decreasing SREBP-1. These results indicate that FTZ effectively protects against lipid accumulation in DKD by regulating the AMPK/ACC/SREBP pathway, inhibiting de novo lipogenesis, providing a novel therapeutic strategy for DKD.
Collapse
Affiliation(s)
- Jie Tao
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, The Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Xiao-Yu Zhang
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, The Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Hai-Bo Tan
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, The Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Min-Yi Huang
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, The Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Yi-Qi Yang
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, The Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.
| | - Jiao Guo
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, The Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
2
|
Shen S, Zhong H, Zhou X, Li G, Zhang C, Zhu Y, Yang Y. Advances in Traditional Chinese Medicine research in diabetic kidney disease treatment. PHARMACEUTICAL BIOLOGY 2024; 62:222-232. [PMID: 38357845 PMCID: PMC10877659 DOI: 10.1080/13880209.2024.2314705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
CONTEXT Diabetic kidney disease (DKD) is a prominent complication arising from diabetic microangiopathy, and its prevalence and renal impact have placed it as the primary cause of end-stage renal disease. Traditional Chinese Medicine (TCM) has the distinct advantage of multifaceted and multilevel therapeutic attributes that show efficacy in improving clinical symptoms, reducing proteinuria, protecting renal function, and slowing DKD progression. Over recent decades, extensive research has explored the mechanisms of TCM for preventing and managing DKD, with substantial studies that endorse the therapeutic benefits of TCM compounds and single agents in the medical intervention of DKD. OBJECTIVE This review lays the foundation for future evidence-based research efforts and provide a reference point for DKD investigation. METHODS The relevant literature published in Chinese and English up to 30 June 2023, was sourced from PubMed, Cochrane Library, VIP Database for Chinese Technical Periodicals (VIP), Wanfang Data, CNKI, and China Biology Medicine disc (CBM). The process involved examining and summarizing research on TCM laboratory tests and clinical randomized controlled trials for DKD treatment. RESULTS AND CONCLUSIONS The TCM intervention has shown the potential to inhibit the expression of inflammatory cytokines and various growth factors, lower blood glucose levels, and significantly affect insulin resistance, lipid metabolism, and improved renal function. Furthermore, the efficacy of TCM can be optimized by tailoring personalized treatment regimens based on the unique profiles of individual patients. We anticipate further rigorous and comprehensive clinical and foundational investigations into the mechanisms underlying the role of TCM in treating DKD.
Collapse
Affiliation(s)
- Shiyi Shen
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, China
| | - Huiyun Zhong
- School of Medicine and Food, Sichuan Vocational College of Health and Rehabilitation, Zigong, China
| | - Xiaoshi Zhou
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, China
| | - Guolin Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Changji Zhang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yulian Zhu
- Department of Pharmacy, Ziyang People’s Hospital, Ziyang, China
| | - Yong Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, China
| |
Collapse
|
3
|
Wang Y, Lai J, Chen Z, Sun L, Ma Y, Wu J. Exploring the therapeutic mechanisms of heart failure with Chinese herbal medicine: a focus on miRNA-mediated regulation. Front Pharmacol 2024; 15:1475975. [PMID: 39564110 PMCID: PMC11573571 DOI: 10.3389/fphar.2024.1475975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/23/2024] [Indexed: 11/21/2024] Open
Abstract
Heart failure (HF) is a clinical condition caused by abnormalities in the heart's structure or function, primarily manifested as diminished ability of the heart to pump blood, which leads to compensatory activation of neurohormones and increased left ventricular filling pressure. HF is one of the fastest-growing cardiovascular diseases globally in terms of incidence and mortality, negatively impacting patients' quality of life and imposing significant medical and economic burdens. Despite advancements in the treatment of HF, hospitalization and mortality remain rates high. In China, Chinese herbal medicine (CHM) has historically played a prominent role in addressing HF, with significant proven efficacy. MicroRNA (miRNA) exerts a pivotal regulatory influence on the maintenance of regular cardiac activity and the progression of HF. MiRNAs, a category of single-stranded RNA molecules, are characterized by their inability to code for proteins. They regulate gene expression by binding to the 3'-untranslated region (3'-UTR) of target mRNAs, thereby influencing the onset and progression of various diseases. Abnormal expression of specific miRNAs is closely associated with HF pathological processes, such as cardiomyocyte apoptosis, myocardial fibrosis, and cardiac hypertrophy. This abnormal expression can influence the pathological progression of HF through the regulation of miRNA expression. This article reviews the regulatory role of miRNAs in HF pathology discusses how CHM compounds and their active ingredients can ameliorate HF pathology through the regulation of miRNA expression. In conclusion, miRNAs represent promising therapeutic targets for HF, and CHM provides a novel strategy for treatment through the regulation of miRNA expression. Future studies must delve deeper into the precise mechanisms by which CHM modulates miRNAs and fully explore its potential for clinical application in HF treatment.
Collapse
Affiliation(s)
- Yang Wang
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Junyu Lai
- Department of Cardiovascular, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Zhengtao Chen
- Department of Cardiovascular, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Liqiang Sun
- Department of Cardiovascular, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Yirong Ma
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jianguang Wu
- Department of Cardiovascular, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
4
|
Shao X, Zeng W, Wang Q, Liu S, Guo Q, Luo D, Luo Q, Wang D, Wang L, Zhang Y, Diao H, Piao S, Yan M, Guo J. Fufang Zhenzhu Tiaozhi (FTZ) suppression of macrophage pyroptosis: Key to stabilizing rupture-prone plaques. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117705. [PMID: 38219878 DOI: 10.1016/j.jep.2024.117705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
BACKGROUND Research on the Chinese herbal formula Fufang Zhenzhu Tiaozhi (FTZ) has demonstrated its effectiveness in treating hyperlipidemia and glycolipid metabolic disorders. Additionally, FTZ has shown inhibitory effects on oxidative stress, regulation of lipid metabolism, and reduction of inflammation in these conditions. However, the precise mechanisms through which FTZ modulates macrophage function in atherosclerosis remain incompletely understood. Therefore, this study aims to investigate whether FTZ can effectively stabilize rupture-prone plaques by suppressing macrophage pyroptosis and impeding the development of M1 macrophage polarization in ApoE-/- mice. METHODS To assess the impact of FTZ on macrophage function and atherosclerosis in ApoE-/- mice, we orally administered FTZ at a dosage of 1.2 g/kg body weight daily for 14 weeks. Levels of interleukin-18 and interleukin-1β were quantified using ELISA kits to gauge FTZ's influence on inflammation. Total cholesterol content was measured with a Cholesterol Assay Kit to evaluate FTZ's effect on lipid metabolism. Aortic tissues were stained with Oil Red O, and immunohistochemistry techniques were applied to assess atherosclerotic lesions and plaque stability. To evaluate the effects of FTZ on macrophage pyroptosis and oxidative damage, immunofluorescence staining was utilized. Additionally, we conducted an analysis of protein and mRNA expression levels of NLRP3 inflammasome-related genes and macrophage polarization-related genes using RT-PCR and western blotting techniques. RESULTS This study illustrates the potential therapeutic effectiveness of FTZ in mitigating the severity of atherosclerosis and improving serum lipid profiles by inhibiting inflammation. The observed enhancements in atherosclerosis severity and inflammation can be attributed to the suppression of NLRP3 inflammasome activity and M1 polarization by FTZ. CONCLUSION The current findings indicate that FTZ provides protection against atherosclerosis, positioning it as a promising candidate for novel therapies targeting atherosclerosis and related cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaoqi Shao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Wenru Zeng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Qing Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Suping Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Qiaoling Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Duosheng Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Qingmao Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Dongwei Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Lexun Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Yue Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Hongtao Diao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Shenghua Piao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Meiling Yan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
5
|
Xu W, Lai S, Zhao J, Wei S, Fang X, Liu Y, Rong X, Guo J. The blockade of the TGF-β pathway alleviates abnormal glucose and lipid metabolism of lipodystrophy not obesity. Pharmacol Res Perspect 2024; 12:e1160. [PMID: 38174807 PMCID: PMC10765454 DOI: 10.1002/prp2.1160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024] Open
Abstract
TGF-β is thought to be involved in the physiological functions of early organ development and pathological changes in substantial organ fibrosis, while studies around adipose tissue function and systemic disorders of glucolipid metabolism are still scarce. In this investigation, two animal models, aP2-SREBP-1c mice and ob/ob mice, were used. TGF-β pathway showed up-regulated in the inguinal white adipose tissue (iWAT) of the two models. SB431542, a TGF-β inhibitor, successfully increased inguinal white adipocyte size by more than 1.5 times and decreased the weight of Peripheral organs including liver, Spleen and Kidney to 73.05%/62.18%/73.23% of pre-administration weights. The iWAT showed elevated expression of GLUTs and lipases, followed by a recovery of circulation GLU, TG, NEFA, and GLYCEROL to the wild-type levels in aP2-SREBP-1c mice. In contrast, TGF-β inhibition did not have similar effects on that of ob/ob mice. In vitro, TGF-β blocker treated mature adipocytes had considerably higher levels of glycerol and triglycerides than the control group, whereas GLUTs and lipases expression levels were unchanged. These findings show that inhibiting the abnormally upregulated TGF-β pathway will only restore iWAT expansion and ameliorate the global metabolic malfunction of glucose and lipids in lipodystrophy, not obesity.
Collapse
Affiliation(s)
- Wen‐Dong Xu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of ChinaGuangdong Pharmaceutical UniversityGuangzhouChina
- Institute of Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Guangdong TCM Key Laboratory for Metabolic DiseasesGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Shui‐Zheng Lai
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of ChinaGuangdong Pharmaceutical UniversityGuangzhouChina
- Institute of Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Guangdong TCM Key Laboratory for Metabolic DiseasesGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Jia Zhao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of ChinaGuangdong Pharmaceutical UniversityGuangzhouChina
- Institute of Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Guangdong TCM Key Laboratory for Metabolic DiseasesGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Shi‐Jie Wei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of ChinaGuangdong Pharmaceutical UniversityGuangzhouChina
- Institute of Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Guangdong TCM Key Laboratory for Metabolic DiseasesGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Xue‐Ying Fang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of ChinaGuangdong Pharmaceutical UniversityGuangzhouChina
- Institute of Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Guangdong TCM Key Laboratory for Metabolic DiseasesGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Yi‐Yi Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of ChinaGuangdong Pharmaceutical UniversityGuangzhouChina
- Institute of Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Guangdong TCM Key Laboratory for Metabolic DiseasesGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Xiang‐Lu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of ChinaGuangdong Pharmaceutical UniversityGuangzhouChina
- Institute of Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Guangdong TCM Key Laboratory for Metabolic DiseasesGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of ChinaGuangdong Pharmaceutical UniversityGuangzhouChina
- Institute of Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Guangdong TCM Key Laboratory for Metabolic DiseasesGuangdong Pharmaceutical UniversityGuangzhouChina
| |
Collapse
|
6
|
Li B, Li X, Zeng Y, Zhou Z, Zhao D, Qin F, Zhang B, Yao W, Mao Y, Zhou L, Li K, Zhu Q, Rong X, Guo J. Network pharmacology combined with molecular docking and experimental verification to elucidate functional mechanism of Fufang Zhenzhu Tiaozhi against type 2 diabetes mellitus. J Biomol Struct Dyn 2023; 42:13751-13767. [PMID: 37942992 DOI: 10.1080/07391102.2023.2278082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/29/2023] [Indexed: 11/10/2023]
Abstract
Fufang Zhenzhu Tiaozhi (FTZ) capsules have been prescribed for treating glucose and lipid metabolism disorders such as type 2 diabetes mellitus (T2DM). However, the underlying mechanism remains unknown. In this study, network pharmacology and experimental verification were combined to investigate the mechanisms of FTZ in treating T2DM. A total of 176 active ingredients and 1169 corresponding targets were screened using biological databases. 598 potential targets of T2DM were retrieved from GeneCards, PharmGKB, OMIM, Drugbank, and TTD. The Venn diagram was employed to identify the 194 intersection targets, which were employed to construct the "Herb-Compound-Target" interacting networks. These common targets were also used to prepare a protein-protein interaction (PPI) network to uncover potential targets. The four core targets were docked to their corresponding targets for binding analysis. Additionally, the top-ranked poses of ingredients and the positive compounds from each protein were evaluated for stability using molecular dynamics. Our results suggest that core active ingredients such as kaempferol, luteolin, and baicalein have high binding affinity and stability with AKT1, PTGS2 (also known as COX-2), DPP4, and PAPRG. GO and KEGG analyses indicated that the treatment T2DM by FTZ might be related to different pathway like AMPK and EGFR pathways. The experimental validation results proved that kaempferol, luteolin, and baicalein could significantly inhibit the activity of DPP4 and COX-2, kaempferol and luteolin were also able to activate AKT and AMPK signaling pathway. This study further validated previous findings and enhanced our understanding of the potential effects of FTZ on T2DM.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bo Li
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research, Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Ministry of Education, Key Laboratory of Glucolipid Metabolic Disorder, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xinying Li
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research, Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Ministry of Education, Key Laboratory of Glucolipid Metabolic Disorder, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Youyan Zeng
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research, Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Ministry of Education, Key Laboratory of Glucolipid Metabolic Disorder, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhenhua Zhou
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research, Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Ministry of Education, Key Laboratory of Glucolipid Metabolic Disorder, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dongyu Zhao
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research, Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Ministry of Education, Key Laboratory of Glucolipid Metabolic Disorder, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fei Qin
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research, Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Ministry of Education, Key Laboratory of Glucolipid Metabolic Disorder, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Bin Zhang
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research, Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Ministry of Education, Key Laboratory of Glucolipid Metabolic Disorder, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Weiwei Yao
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research, Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Ministry of Education, Key Laboratory of Glucolipid Metabolic Disorder, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yongxin Mao
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research, Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Ministry of Education, Key Laboratory of Glucolipid Metabolic Disorder, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Li Zhou
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research, Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Ministry of Education, Key Laboratory of Glucolipid Metabolic Disorder, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Kunping Li
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research, Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Ministry of Education, Key Laboratory of Glucolipid Metabolic Disorder, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qing Zhu
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research, Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Ministry of Education, Key Laboratory of Glucolipid Metabolic Disorder, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xianglu Rong
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research, Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Ministry of Education, Key Laboratory of Glucolipid Metabolic Disorder, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiao Guo
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research, Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Ministry of Education, Key Laboratory of Glucolipid Metabolic Disorder, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
7
|
Zhong Q, Yin J, Wang K, Chen X, Wang H, Hu X, Wang W, Wang L, Bei W, Guo J. FTZ promotes islet β-cell regeneration in T1DM mice via the regulation of nuclear proliferation factors. JOURNAL OF ETHNOPHARMACOLOGY 2023:116564. [PMID: 37244407 DOI: 10.1016/j.jep.2023.116564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fufang-Zhenzhu-Tiaozhi capsule (FTZ), a Traditional Chinese Medicine (TCM) patent prescription commonly used in clinical practice, has a significant curative effect on hyperglycemia and hyperlipidemia. Previous studies have shown that FTZ can treat diabetes, but the effect of FTZ on β-cell regeneration needs to be further explored in T1DM mice. AIM OF THE STUDY The aim is to investigate the role of FTZ in promoting β-cell regeneration in T1DM mice, and to further explore its mechanism. MATERIALS AND METHODS C57BL/6 mice were used as control. NOD/LtJ mice were divided into the Model group and FTZ group. Oral glucose tolerance, fasting blood glucose, and fasting insulin level were measured. Immunofluorescence staining was used to detect the level of β-cell regeneration and the composition of α-cells and β-cells in islets. Hematoxylin and eosin staining was used to detect the infiltration degree of inflammatory cells. The apoptosis of islet cells was detected by terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling. Western blotting was used to detect the expression levels of Pancreas/duodenum homeobox protein 1 (PDX-1), V-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MAFA), and Neurogenin-3 (NGN3). RESULTS FTZ could increase insulin levels and reduce the glucose level of T1DM mice and promote β-cell regeneration. FTZ also inhibited the invasion of inflammatory cells and the islet cell apoptosis, and maintained the normal composition of islet cells, thus preserving the quantity and quality of β-cells. Furthermore, FTZ promoting β-cell regeneration was accompanied by increasing the expression of PDX-1, MAFA, and NGN3. CONCLUSION FTZ can restore the insulin-secreting function of the impaired pancreatic islet, improve blood glucose level, possibly via the enhancing β cell regeneration via upregulation of PDX-1, MAFA, and NGN3 in T1DM mice, and may be a potential therapeutic drug for T1DM.
Collapse
Affiliation(s)
- Qin Zhong
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
| | - Jianying Yin
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
| | - Ke Wang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
| | - Xu Chen
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
| | - Hong Wang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
| | - Xuguang Hu
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
| | - Weixuan Wang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
| | - Lexun Wang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
| | - Weijian Bei
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), China; Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory against Metabolic Diseases, China.
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), China; Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory against Metabolic Diseases, China.
| |
Collapse
|
8
|
Xiong P, Zhang F, Liu F, Zhao J, Huang X, Luo D, Guo J. Metaflammation in glucolipid metabolic disorders: Pathogenesis and treatment. Biomed Pharmacother 2023; 161:114545. [PMID: 36948135 DOI: 10.1016/j.biopha.2023.114545] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
The public health issue of glucolipid metabolic disorders (GLMD) has grown significantly, posing a grave threat to human wellness. Its prevalence is rising yearly and tends to affect younger people. Metaflammation is an important mechanism regulating body metabolism. Through a complicated multi-organ crosstalk network involving numerous signaling pathways such as NLRP3/caspase-1/IL-1, NF-B, p38 MAPK, IL-6/STAT3, and PI3K/AKT, it influences systemic metabolic regulation. Numerous inflammatory mediators are essential for preserving metabolic balance, but more research is needed to determine how they contribute to the co-morbidities of numerous metabolic diseases. Whether controlling the inflammatory response can influence the progression of GLMD determines the therapeutic strategy for such diseases. This review thoroughly examines the role of metaflammation in GLMD and combs the research progress of related therapeutic approaches, including inflammatory factor-targeting drugs, traditional Chinese medicine (TCM), and exercise therapy. Multiple metabolic diseases, including diabetes, non-alcoholic fatty liver disease (NAFLD), cardiovascular disease, and others, respond therapeutically to anti-inflammatory therapy on the whole. Moreover, we emphasize the value and open question of anti-inflammatory-based means for treating GLMD.
Collapse
Affiliation(s)
- Pingjie Xiong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China.
| | - Fan Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China.
| | - Fang Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China.
| | - Jiayu Zhao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China.
| | - Xiaoqiang Huang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China.
| | - Duosheng Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China.
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China.
| |
Collapse
|
9
|
Chen X, Yin J, Zhong Q, Wang K, Zhang X, Liang M, Lin Q, Wang H, Wang W, Wang L, Hu X, Bei W, Guo J. Fufang-zhenzhu-tiaozhi formula protects islet against injury and promotes β cell regeneration in diabetic mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115791. [PMID: 36240976 DOI: 10.1016/j.jep.2022.115791] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/24/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fufang-zhenzhu-tiaozhi formula (FTZ) is a patented preparation of traditional Chinese medicine that has been used to treat hyperglycemia and hyperlipidemia in the clinic for almost 10 years. Our previous study had demonstrated that FTZ can protect islet β cell injury in vitro. However, the efficacy of FTZ on β cell regeneration in vivo and the involved anti-diabetic mechanism remains unknown. AIM OF THE STUDY We aim to investigate the effects of FTZ as a good remedy for islet protection and β cell regeneration, and to reveal the underlying mechanism. MATERIALS AND METHODS C57BL/6 mice were fed with high-fat diet for 3 weeks and then intraperitoneally injected with streptozotocin (90 mg/kg/d × 1 d) to establish type 2 diabetes (T2D) models. Mice in each group were divided into three batches that sacrificed after 3, 7 and 28 days of FTZ administration. Body weight, blood glucose, and oral glucose tolerance test were measured at indicated time points. Fasting insulin was determined by enzyme-linked immunosorbent assay (ELISA) kit. Neonatal β cell was assessed by insulin & PCNA double immunofluorescence staining, and the underlying mechanisms related to β cell regeneration were further performed by hematoxylin-eosin staining, insulin & glucagon double immunofluorescence staining and Western blot. RESULTS FTZ and metformin can significantly help with the symptoms of DM, such as alleviating weight loss, reducing blood glucose, improving the level of insulin in vivo, and relieving insulin resistance, suggesting FTZ and metformin treatment maintained the normal morphological function of islet. Notably, β cell regeneration, which is indicated by insulin and PCNA double-positive cells, was promoted by FTZ, whereas few neonatal β cells were observed in metformin group. Hematoxylin-eosin staining, and its quantification results showed that FTZ effectively prevented the invasion of inflammatory cells into the islets in diabetic mice. Most β cells in the islets of diabetic model mice were devoid, and the islets were almost all α cells, while the diabetic mice administered FTZ could still maintain about half of the β cells in the islet. Furthermore, FTZ upregulated the expression of critical transcription factors during β cell development and maturation (such as PDX-1, MAFA and NGN3) in diabetic mice. CONCLUSIONS FTZ can alleviate diabetes symptoms and promote β cell regeneration in diabetic mice. Moreover, FTZ promotes β cell regeneration by preserving islet (resisting inflammatory cells invading islets), maintaining the number of β cells in islets, and increasing the expression of PDX-1, MAFA and NGN3.
Collapse
Affiliation(s)
- Xu Chen
- Key Laboratory of Glucolipid Metabolic Disorder of Ministry of Education, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, China; Chinese Medicine Institute, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Jianying Yin
- Key Laboratory of Glucolipid Metabolic Disorder of Ministry of Education, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, China; Chinese Medicine Institute, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Qin Zhong
- Key Laboratory of Glucolipid Metabolic Disorder of Ministry of Education, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, China; Chinese Medicine Institute, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Ke Wang
- Key Laboratory of Glucolipid Metabolic Disorder of Ministry of Education, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, China; Chinese Medicine Institute, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Xiaoyu Zhang
- Key Laboratory of Glucolipid Metabolic Disorder of Ministry of Education, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, China; Chinese Medicine Institute, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Mingjie Liang
- Key Laboratory of Glucolipid Metabolic Disorder of Ministry of Education, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, China; Chinese Medicine Institute, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Quanyou Lin
- Key Laboratory of Glucolipid Metabolic Disorder of Ministry of Education, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, China; Chinese Medicine Institute, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Hong Wang
- Key Laboratory of Glucolipid Metabolic Disorder of Ministry of Education, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, China; Chinese Medicine Institute, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Weixuan Wang
- Key Laboratory of Glucolipid Metabolic Disorder of Ministry of Education, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, China; Chinese Medicine Institute, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Lexun Wang
- Key Laboratory of Glucolipid Metabolic Disorder of Ministry of Education, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, China; Chinese Medicine Institute, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Xuguang Hu
- Key Laboratory of Glucolipid Metabolic Disorder of Ministry of Education, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, China; Chinese Medicine Institute, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Weijian Bei
- Key Laboratory of Glucolipid Metabolic Disorder of Ministry of Education, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, China; Chinese Medicine Institute, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Jiao Guo
- Key Laboratory of Glucolipid Metabolic Disorder of Ministry of Education, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, China; Chinese Medicine Institute, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
10
|
Zhao X, An X, Yang C, Sun W, Ji H, Lian F. The crucial role and mechanism of insulin resistance in metabolic disease. Front Endocrinol (Lausanne) 2023; 14:1149239. [PMID: 37056675 PMCID: PMC10086443 DOI: 10.3389/fendo.2023.1149239] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Insulin resistance (IR) plays a crucial role in the development and progression of metabolism-related diseases such as diabetes, hypertension, tumors, and nonalcoholic fatty liver disease, and provides the basis for a common understanding of these chronic diseases. In this study, we provide a systematic review of the causes, mechanisms, and treatments of IR. The pathogenesis of IR depends on genetics, obesity, age, disease, and drug effects. Mechanistically, any factor leading to abnormalities in the insulin signaling pathway leads to the development of IR in the host, including insulin receptor abnormalities, disturbances in the internal environment (regarding inflammation, hypoxia, lipotoxicity, and immunity), metabolic function of the liver and organelles, and other abnormalities. The available therapeutic strategies for IR are mainly exercise and dietary habit improvement, and chemotherapy based on biguanides and glucagon-like peptide-1, and traditional Chinese medicine treatments (e.g., herbs and acupuncture) can also be helpful. Based on the current understanding of IR mechanisms, there are still some vacancies to follow up and consider, and there is also a need to define more precise biomarkers for different chronic diseases and lifestyle interventions, and to explore natural or synthetic drugs targeting IR treatment. This could enable the treatment of patients with multiple combined metabolic diseases, with the aim of treating the disease holistically to reduce healthcare expenditures and to improve the quality of life of patients to some extent.
Collapse
Affiliation(s)
| | | | | | | | - Hangyu Ji
- *Correspondence: Fengmei Lian, ; Hangyu Ji,
| | | |
Collapse
|
11
|
Traditional Uses, Phytochemical Composition, Pharmacological Properties, and the Biodiscovery Potential of the Genus Cirsium. CHEMISTRY 2022. [DOI: 10.3390/chemistry4040079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Medicinal plants are rich in phytochemicals, which have been used as a source of raw material in medicine since ancient times. Presently they are mostly used to treat Henoch–Schonlein purpura, hemoptysis, and bleeding. The manuscript covers the classification, traditional applications, phytochemistry, pharmacology, herbal formulations, and patents of Cirsium. The main goal of this review is to impart recent information to facilitate future comprehensive research and use of Cirsium for the development of therapeutics. We investigated numerous databases PubMed, Google Scholar, Springer, Elsevier, Taylor and Francis imprints, and books on ethnopharmacology. The plants of the genus Cirsium of the family Asteraceae contain 350 species across the world. Phytochemical investigations showed that it contains flavonoids, phenols, polyacetylenes, and triterpenoids. The biological potential of this plant is contributed by these secondary metabolites. Cirsium plants are an excellent and harmless agent for the cure of liver diseases; therefore, they might be a good clinical option for the development of therapeutics for hepatic infections. The phytochemical studies of different Cirsium species and their renowned pharmacological activities could be exploited for pharmaceutic product development. Furthermore, studies are required on less known Cirsium species, particularly on the elucidation of the mode of action of their activities.
Collapse
|
12
|
Song L, Wang K, Yin J, Yang Y, Li B, Zhang D, Wang H, Wang W, Zhan W, Guo C, Gu Z, Wang L, Zeng Z, Bei W, Rong X, Guo J. Traditional Chinese Medicine Fufang-Zhenzhu-Tiaozhi capsule prevents renal injury in diabetic minipigs with coronary heart disease. Chin Med 2022; 17:102. [PMID: 36042482 PMCID: PMC9429629 DOI: 10.1186/s13020-022-00648-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/29/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Renal injury is one of the common microvascular complications of diabetes, known as diabetic kidney disease (DKD) seriously threatening human health. Previous research has reported that the Chinese Medicine Fufang-Zhenzhu-Tiaozhi (FTZ) capsule protected myocardia from injury in diabetic minipigs with coronary heart disease (DM-CHD). And we found significant renal injury in the minipigs. Therefore, we further investigated whether FTZ prevents renal injury of DM-CHD minipig and H2O2-induced oxidative injury of HK-2 cells. METHODS DM-CHD model was established by streptozotocin injection, high fat/high-sucrose/high-cholesterol diet combined with balloon injury in the coronary artery. Blood lipid profile, fasting blood glucose (FBG), and SOD were measured with kits. The levels of blood urea nitrogen (BUN), serum creatinine (Scr), urine trace albumin (UALB), urine creatinine (UCR) (calculate UACR), cystatin (Cys-C), and β-microglobulin (β-MG) were measured by ELISA kits to evaluate renal function. TUNEL assay was performed to observe the apoptosis. qPCR was used to detect the mRNA expression levels of HO-1, NQO1, and SOD in kidney tissue. The protein expressions of Nrf2, HO-1, NQO1, Bax, Bcl-2, and Caspase 3 in the kidney tissue and HK-2 cells were detected by western blot. Meanwhile, HK-2 cells were induced by H2O2 to establish an oxidative stress injury model to verify the protective effect and mechanisms of FTZ. RESULTS In DM-CHD minipigs, blood lipid profile and FBG were elevated significantly, and the renal function was decreased with the increase of BUN, Scr, UACR, Cys-c, and β-MG. A large number of inflammatory and apoptotic cells in the kidney were observed accompanied with lower levels of SOD, Bcl-2, Nrf2, HO-1, and NQO1, but high levels of Bax and Cleaved-caspase 3. FTZ alleviated glucose-lipid metabolic disorders and the pathological morphology of the kidney. The renal function was improved and the apoptotic cells were reduced by FTZ administration. FTZ could also enhance the levels of SOD, Nrf2, HO-1, and NQO1 proteins to promote antioxidant effect, down-regulate the expression of Bax and Caspase3, as well as up-regulate the expression of Bcl-2 to inhibit cell apoptosis in the kidney tissue and HK-2 cells. CONCLUSIONS We concluded that FTZ prevents renal injury of DM-CHD through activating anti-oxidative capacity to reduce apoptosis and inhibiting inflammation, which may be a new candidate for DKD treatment.
Collapse
Affiliation(s)
- Lixia Song
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong, China
| | - Ke Wang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong, China
| | - Jianying Yin
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong, China
| | - Yiqi Yang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong, China
| | - Bo Li
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong, China
| | - Dongxing Zhang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong, China
| | - Hong Wang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong, China
| | - Weixuan Wang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong, China
| | - Wenjing Zhan
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong, China
| | - Caijuan Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong, China
| | - Zhanhui Gu
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong, China
| | - Lexun Wang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong, China
| | - Zhihuan Zeng
- Department of Cardiovascular Diseases, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong, China
| | - Weijian Bei
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong, China.
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong, China.
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong, China.
- Institute of Chinese Medicinal Sciences, Guangdong TCM Key Laboratory Against Metabolic Diseases, Guangdong Pharmaceutical University, Guangdong, China.
| | - Xianglu Rong
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong, China
- Institute of Chinese Medicinal Sciences, Guangdong TCM Key Laboratory Against Metabolic Diseases, Guangdong Pharmaceutical University, Guangdong, China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong, China.
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong, China.
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong, China.
- Institute of Chinese Medicinal Sciences, Guangdong TCM Key Laboratory Against Metabolic Diseases, Guangdong Pharmaceutical University, Guangdong, China.
| |
Collapse
|
13
|
Diao H, Cheng J, Huang X, Huang B, Shao X, Zhao J, Lan D, Zhu Q, Yan M, Zhang Y, Rong X, Guo J. The Chinese medicine Fufang Zhenzhu Tiaozhi capsule protects against atherosclerosis by suppressing EndMT via modulating Akt1/β-catenin signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115261. [PMID: 35447198 DOI: 10.1016/j.jep.2022.115261] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/17/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fufang Zhenzhu Tiaozhi (FTZ) is a traditional Chinese herbal prescription that has been used to treat dyslipidemia, nonalcoholic fatty liver disease, atherosclerosis, diabetes and its complications in the clinic for almost ten years. Endothelial-mesenchymal transition (EndMT) is the key driver of atherosclerosis. However, the effects of FTZ on endothelial dysfunction and EndMT remain unknown. AIM OF THE STUDY To evaluate the therapeutic effects of FTZ against EndMT and the underlying mechanisms. MATERIALS AND METHODS An in vivo model of atherosclerosis was established by feeding ApoE-/- mice with a high-fat diet (HFD). The body weight, lipid levels, plaque area, lipid deposition and EndMT were evaluated using standard assays 12 weeks after intragastric administration of FTZ and simvastatin. Human umbilical vein endothelial cells (HUVECs) were treated with oxidized low-density lipoprotein (ox-LDL) to simulate EndMT in vitro. The degree of EndMT was assessed after treating the cells with FTZ or transfection with si-Akt1. The expression levels of genes involved in EndMT were quantified by real-time PCR or western blotting. RESULTS FTZ ameliorated dyslipidemia and endothelial dysfunction in the atherosclerotic mice. In addition, FTZ reduced body weight and the total cholesterol, triglycerides and low-density lipoprotein levels, and increased that of high-density lipoproteins. FTZ also upregulated the expression of endothelial markers (CD31 and VE-cadherin) and decreased that of mesenchymal markers (ɑ-SMA and FSP1), indicating that it inhibits EndMT. Knocking down Akt1 exacerbated EndMT and reversed the therapeutic effect of FTZ. CONCLUSION FTZ delayed atherosclerosis by inhibiting EndMT via the Akt1/β-catenin pathway.
Collapse
Affiliation(s)
- Hongtao Diao
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Jiawen Cheng
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Xueying Huang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Bingying Huang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Xiaoqi Shao
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Jingjing Zhao
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Dingming Lan
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Qing Zhu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Meiling Yan
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Yue Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| |
Collapse
|
14
|
Chen X, Wang J, Tang L, Ye Q, Dong Q, Li Z, Hu L, Ma C, Xu J, Sun P. The therapeutic effect of Fufang Zhenshu Tiaozhi (FTZ) on osteoclastogenesis and ovariectomized-induced bone loss: evidence from network pharmacology, molecular docking and experimental validation. Aging (Albany NY) 2022; 14:5727-5748. [PMID: 35832025 PMCID: PMC9365554 DOI: 10.18632/aging.204172] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/23/2022] [Indexed: 11/25/2022]
Abstract
Fufang Zhenshu Tiaozhi (FTZ) has been widely used in clinical practice and proven to be effective against aging-induced osteoporosis in mice. This study aimed to explore the mechanism of FTZ against osteoclastogenesis and ovariectomized-induced (OVX) bone loss through the network pharmacology approach. The ingredients of FTZ were collected from the previous UPLC results, and their putative targets were obtained through multiple databases. Differentially expressed genes (DEGs) during osteoclastogenesis were identified through multi-microarrays analysis. The common genes between FTZ targets and DEGs were used to perform enrichment analyses through the clusterProfier package. The affinity between all FTZ compounds and enriched genes was validated by molecular docking. The effects of FTZ on osteoclastogenesis and bone resorption were evaluated by TRAP staining, bone resorption assay and RT-qPCR in vitro, while its effects on bone loss by ELISA and Micro-CT in vivo. Enrichment analyses indicated that the inhibitory effects of FTZ may primarily involve the regulation of inflammation, osteoclastogenesis, as well as TNF-α signaling pathway. 130 pairs docking results confirmed FTZ ingredients have good binding activities with TNF-α pathway enriched genes. FTZ treatment significantly reduced TRAP, TNF-α, IL-6 serum levels and increased bone volume in OVX mice. Consistently, in vitro experiments revealed that FTZ-containing serum significantly inhibited osteoclast differentiation, bone resorption, and osteoclast related mRNA expression. This study revealed the candidate targets of FTZ and its potential mechanism in inhibiting osteoclastogenesis and bone loss induced by OVX, which will pave the way for the application of FTZ in the postmenopausal osteoporosis treatment.
Collapse
Affiliation(s)
- Xiaojun Chen
- School of Molecular Sciences, University of Western Australia, Perth 6009, Western Australia, Australia
| | - Jiangyan Wang
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510000, Guangdong, China
| | - Lin Tang
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510000, Guangdong, China
| | - Qiuying Ye
- College of Food and Medicine, Qingyuan Polytechnic, Qingyuan 511510, Guangdong, China
| | - Qunwei Dong
- Department of Orthopedic, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510000, Guangdong, China
- Department of Orthopedic, Yunfu Hospital of Traditional Chinese Medicine, Yunfu 527300, Guangdong, China
| | - Zhangwei Li
- Department of Stomatology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510000, Guangdong, China
| | - Li Hu
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510000, Guangdong, China
| | - Chenghong Ma
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510000, Guangdong, China
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth 6009, Western Australia, Australia
| | - Ping Sun
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510000, Guangdong, China
| |
Collapse
|
15
|
Yang YQ, Tan HB, Zhang XY, Zhang YZ, Lin QY, Huang MY, Lin ZY, Mo JZ, Zhang Y, Lan T, Bei WJ, Guo J. The Chinese medicine Fufang Zhenzhu Tiaozhi capsule protects against renal injury and inflammation in mice with diabetic kidney disease. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115165. [PMID: 35247475 DOI: 10.1016/j.jep.2022.115165] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fufang Zhenzhu Tiaozhi capsule (FTZ) is a patented preparation of Chinese herbal medicine that has been used to treat hyperlipidemia, nonalcoholic fatty liver disease, atherosclerosis, and other glucolipid metabolic diseases (GLMDs) in the clinic for almost 10 years. However, how FTZ reduces albuminuria and attenuates diabetic kidney disease (DKD) progression is unknown. AIM OF THE STUDY To clarify the effects of FTZ on DKD mice model and to explore the underlying mechanisms. MATERIALS AND METHODS We used streptozotocin (STZ) (40 mg/kg/d, i.p. for 5 days, consecutively) combined with a high-fat diet (HFD) to induce a DKD mouse model, followed by FTZ (1, 2 g/kg/d, i.g.) treatment for 12 weeks. Losartan (30 mg/kg/d, i.g.) was used as a positive control. Measurements of 24 h proteinuria, serum creatinine (SCr), fasting blood glucose (FBG), total cholesterol (TC), triglyceride (TG), and low density lipoprotein cholesterol (LDL-C) levels and expression levels of fibronectin (FN), collagen IV, inflammatory cytokines, inflammatory cells, interleukin-17A (IL-17A) and the nuclear transcription factor-κB (NF-κB) signaling pathway in the kidney were examined. RESULTS FTZ effectively decreased 24 h proteinuria, Scr, FBG, TC, TG, and LDL-C levels, inhibited mesangial cell expansion, reduced FN and collagen IV accumulation, and F4/80+ macrophage cell infiltration and Ly-6G+ neutrophil infiltration in glomerulus and tubulointerstitium. Furthermore, IL-17A production and the NF-κB signaling pathway were also downregulated after the administration of FTZ. CONCLUSION FTZ might attenuate DKD progression, and inhibited kidney inflammation and fibrosis by inhibiting the expression of RORγT and IL-17A in vivo, offering novel insights for the clinical application of FTZ.
Collapse
Affiliation(s)
- Yi-Qi Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Hai-Bo Tan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Xiao-Yu Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Yu-Zhen Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Quan-You Lin
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Min-Yi Huang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Zi-Yang Lin
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Jia-Zhi Mo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Yue Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Tian Lan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Wei-Jian Bei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| |
Collapse
|
16
|
Lan T, Xu T, Fu Y, Jiang S, Liang X, Yu Z, Pan L, Rong X, Guo J. Fufang Zhenzhu Tiaozhi Capsule Prevents Intestinal Inflammation and Barrier Disruption in Mice With Non-Alcoholic Steatohepatitis. Front Endocrinol (Lausanne) 2022; 13:864703. [PMID: 35784533 PMCID: PMC9243428 DOI: 10.3389/fendo.2022.864703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/10/2022] [Indexed: 11/30/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) has become a major cause of liver transplantation and liver-associated death. Targeting the gut-liver axis is a potential therapy for NASH. The Fufang Zhenzhu Tiaozhi (FTZ) capsule, a traditional Chinese medicine commonly used in clinical practice, has recently emerged as a promising drug candidate for metabolic diseases such as NASH. The present study aimed to investigate whether FTZ exerts an anti-NASH effect by targeting the gut-liver axis. Mice were fed with a high-fat diet (HFD) for 20 weeks to induce NASH. HFD-fed mice were daily intragastrically administrated with FTZ at 10 weeks after tbe initiation of HFD feeding. The mRNA levels of genes associated with the intestinal tight junction, lipid metabolism, and inflammation were determined by the q-PCR assay. Hepatic pathology was evaluated by H&E staining. The gut microbiota was analyzed by 16S rRNA gene sequencing. FTZ attenuated HFD-induced obesity, insulin resistance, and hepatic steatosis in mice. FTZ treatment decreased the elevated levels of serum aminotransferases and liver triglyceride in NASH mice. Furthermore, FTZ treatment reduced hepatic inflammatory cell infiltration and fibrosis in mice. In addition, FTZ attenuated the intestinal inflammatory response and improved intestinal barrier function. Mechanistically, FTZ-treated mice showed a different gut microbiota composition compared with that in HFD-fed mice. Finally, we identified eight differential metabolites that may contribute to the improvement of NASH with FTZ treatment. In summary, FTZ ameliorates NASH by inhibiting gut inflammation, improving intestinal barrier function, and modulating intestinal microbiota composition.
Collapse
Affiliation(s)
- Tian Lan
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China
- Guangdong Traditional Chinese Medicine Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Tonghao Xu
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China
- Guangdong Traditional Chinese Medicine Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanfang Fu
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China
- Guangdong Traditional Chinese Medicine Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shuo Jiang
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China
- Guangdong Traditional Chinese Medicine Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaolin Liang
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China
- Guangdong Traditional Chinese Medicine Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ze Yu
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China
- Guangdong Traditional Chinese Medicine Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Linyu Pan
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China
- Guangdong Traditional Chinese Medicine Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xianglu Rong
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China
- Guangdong Traditional Chinese Medicine Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiao Guo
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China
- Guangdong Traditional Chinese Medicine Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
17
|
The Traditional Chinese Medicine Formula FTZ Protects against Cardiac Fibrosis by Suppressing the TGFβ1-Smad2/3 Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5642307. [PMID: 35497919 PMCID: PMC9042631 DOI: 10.1155/2022/5642307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/09/2022] [Accepted: 03/30/2022] [Indexed: 11/26/2022]
Abstract
Background Fu fang Zhen Zhu Tiao Zhi (FTZ) is a patented preparation of Chinese herbal medicine that has been used as a natural medicine to treat several chronic diseases including cardiovascular disease. However, its effects on cardiac fibrosis remain unclear. Therefore, this study was designed to investigate the effects and potential mechanisms of FTZ in treating cardiac fibrosis. Methods FTZ was administered to mice by oral gavage daily at a dosage of 1.2 g/kg or 2.4 g/kg of body weight for 7 weeks after a transverse aorta constriction (TAC) surgery. Doppler echocardiography, hematoxylin and eosin staining, and Masson's trichrome staining were used to assess the effect of FTZ on the cardiac structure and function of mice that had undergone TAC. EdU and wound-healing assays were performed to measure the proliferative and migratory abilities of cardiac fibroblasts. Western blotting and qRT-PCR were used to determine the expression of TGFβ1, Col1A2, Col3, and α-SMA proteins and mRNA levels. Results FTZ treatment reduced collagen synthesis, attenuated cardiac fibrosis, and improved cardiac function in mice subjected to TAC. Moreover, FTZ treatment prevented the proliferation and migration of cardiac fibroblasts and reduced Ang-II-induced collagen synthesis. Furthermore, FTZ downregulated the expression of TGFβ1, p-smad2, and p-smad3 and inhibited the TGFβ1-Smad2/3 pathway in the setting of cardiac fibrosis. Conclusion FTZ alleviated the proliferation and migration of cardiac fibroblasts and suppressed collagen synthesis via the TGFβ1-Smad2/3 pathway during the progression of cardiac fibrosis. These findings indicated the therapeutic potential of FTZ in treating cardiac fibrosis.
Collapse
|
18
|
Zhang Y, Sun M, Wang D, Hu Y, Wang R, Diao H, Shao X, Li Y, Li X, Leng M, Wang L, Yan M, Rong X, Guo J. FTZ protects against cardiac hypertrophy and oxidative injury via microRNA-214 / SIRT3 signaling pathway. Biomed Pharmacother 2022; 148:112696. [PMID: 35183007 DOI: 10.1016/j.biopha.2022.112696] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/19/2022] [Accepted: 02/02/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Despite the fact that the initial hypertrophic response to ventricular pressure overload is thought to be compensatory, prolonged stress often leads to heart failure. Previous studies have shown that the Fufang-Zhenzhu-Tiaozhi (FTZ) formula is beneficial for the treatment of dyslipidemia and hyperglycemia. However, the effects of FTZ on cardiac hypertrophy remain unclear. OBJECTIVE The aim of this study is to evaluate the protective effects of FTZ on cardiac hypertrophy and determine the underlying mechanisms. METHODS TAC was utilized to establish a cardiac hypertrophy animal model, and FTZ was given via gavage for four weeks. Next, echocardiographic measurements were made. The morphology of mouse cardiomyocytes was examined using H&E and WGA staining. In vitro, the neonatal cardiomyocytes were stimulated with angiotensin Ⅱ (Ang Ⅱ). In addition to measuring the size of cardiomyocytes, qRT-PCR and western blotting were conducted to measure cardiac stress markers and pathway. RESULTS According to our findings, FTZ alleviated cardiac hypertrophy in mice and cell models. Furthermore, expression of miR-214 was down-regulated following FTZ, whereas the effect of FTZ therapy was reversed using miR-214 transfection. Furthermore, the expression of Sirtuin 3 (SIRT3) was decreased in Ang Ⅱ-induced oxidative damage, which was associated with a reduction in SOD-1, GPX1, and HO-1 and an increase in MDA, while SIRT3 expression was restored following FTZ treatment. CONCLUSIONS Collectively, these findings indicate that FTZ is a protective factor for cardiac hypertrophy due to its regulation of the miR-214-SIRT3 axis, which suggests that FTZ may be a therapeutic target for cardiac hypertrophy.
Collapse
Affiliation(s)
- Yue Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mengxian Sun
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dongwei Wang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yaju Hu
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ruonan Wang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hongtao Diao
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaoqi Shao
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yun Li
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xu Li
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mingyang Leng
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lexun Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
| | - Meiling Yan
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China.
| |
Collapse
|
19
|
FTZ Ameliorates Diabetic Cardiomyopathy by Inhibiting Inflammation and Cardiac Fibrosis in the Streptozotocin-Induced Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5582567. [PMID: 34621323 PMCID: PMC8492284 DOI: 10.1155/2021/5582567] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/16/2021] [Accepted: 09/11/2021] [Indexed: 11/17/2022]
Abstract
Background The pathogenesis and clinical features of diabetic cardiomyopathy (DCM) have been well studied in the past decade; however, effective approaches to prevent and treat this disease are limited. Fufang Zhenzhu Tiaozhi (FTZ) formula, a traditional Chinese prescription, is habitually used to treat dyslipidemia and diabetes. Recently, several studies have reported the therapeutic effects of FTZ on cardiovascular diseases. However, the effects of FTZ on DCM have not yet been fully elucidated. This study investigated the effects of FTZ on DCM and determined the mechanisms underlying its efficacy. Methods Diabetes was induced in mice by intraperitoneal injection of streptozotocin; the mice were randomly divided into a control group (Con), diabetes group (DCM), and diabetes-treated with FTZ (DCM + FTZ). Myocardial structural alterations, fibrosis biomarkers, and inflammation were observed. Besides, the potential targets and their related signaling pathways were analyzed using network pharmacology and further verified by Western blot. Results Diabetic mice showed significant body weight loss, hyperglycemia, and excessive collagen content in the cardiac tissue, while serum and myocardial inflammatory factors significantly increased. Nerveless, treatment with FTZ for 1 month significantly improved body weight, attenuated hyperglycemia, and alleviated diabetes-associated myocardial structure and function abnormalities. Furthermore, the serum levels of interleukin 12 (IL-12) and chemokine (C–C motif) ligand 2 (CCL2) as well as the mRNA levels of cardiac IL-12, IL-6, and C–C motif chemokine receptor 2 (Ccr2) reduced after FTZ treatment. Additionally, a total of 67 active compounds and 76 potential targets related to DCM were analyzed. Pathway and functional enrichment analyses showed that FTZ mainly regulates inflammation-related pathways, including MAPK and PI3K-AKT signaling pathways. Further investigation revealed that the activities of STAT3, AKT, and ERK were augmented in diabetic hearts but decreased in FTZ-treated cardiac tissues. Conclusion Our results suggest that FTZ exhibits therapeutic properties against DCM by ameliorating hyperglycemia-induced inflammation and fibrosis via at least partial inhibition of AKT, ERK, and STAT3 signaling pathways.
Collapse
|
20
|
Palla AH, Amin F, Fatima B, Shafiq A, Rehman NU, Haq IU, Gilani AUH. Systematic Review of Polyherbal Combinations Used in Metabolic Syndrome. Front Pharmacol 2021; 12:752926. [PMID: 34690784 PMCID: PMC8529216 DOI: 10.3389/fphar.2021.752926] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/20/2021] [Indexed: 01/05/2023] Open
Abstract
Background: Metabolic syndrome (MetS) is a multifactorial disease, whose main stay of prevention and management is life-style modification which is difficult to attain. Combination of herbs have proven more efficacious in multi-targeted diseases, as compared to individual herbs owing to the "effect enhancing and side-effect neutralizing" properties of herbs, which forms the basis of polyherbal therapies This led us to review literature on the efficacy of herbal combinations in MetS. Methods: Electronic search of literature was conducted by using Cinnahl, Pubmed central, Cochrane and Web of Science, whereas, Google scholar was used as secondary search tool. The key words used were "metabolic syndrome, herbal/poly herbal," metabolic syndrome, clinical trial" and the timings were limited between 2005-2020. Results: After filtering and removing duplications by using PRISMA guidelines, search results were limited to 41 studies, out of which 24 studies were evaluated for combinations used in animal models and 15 in clinical trials related to metabolic syndrome. SPICE and SPIDER models were used to assess the clinical trials, whereas, a checklist and a qualitative and a semi-quantitative questionnaire was formulated to report the findings for animal based studies. Taxonomic classification of Poly herbal combinations used in animal and clinical studies was designed. Conclusion: With this study we have identified the potential polyherbal combinations along with a proposed method to validate animal studies through systematic qualitative and quantitative review. This will help researchers to study various herbal combinations in MetS, in the drug development process and will give a future direction to research on prevention and management of MetS through polyherbal combinations.
Collapse
Affiliation(s)
- Amber Hanif Palla
- Department of Biological and Biomedical Sciences, Aga Khan University Hospital, Karachi, Pakistan
| | - Faridah Amin
- Family Medicine, Liaquat National Hospital, Karachi, Pakistan
| | - Bilqees Fatima
- Department of Pharmaceutics, Faculty of Pharmacy, Hamdard University, Karachi, Pakistan
| | - Arooj Shafiq
- Department of Bioscience, Salim Habib University, Karachi, Pakistan
| | - Najeeb Ur Rehman
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Al Kharj, Saudi Arabia
| | - Ikram ul Haq
- National Institute of Health, Islamabad, Pakistan
| | | |
Collapse
|
21
|
Lv B, Wu Y, Lian J, Yu N, An T, Wang T, Bao X, Mo F, Zhao D, Yang X, Zhang J, Zhang Z, Gao S, Jiang G. Effects of Salvianolic acid B on RNA expression and co-expression network of lncRNAs in brown adipose tissue of obese mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114289. [PMID: 34090908 DOI: 10.1016/j.jep.2021.114289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/09/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvianolic acid B (SalB) is a polyphenolic compound in Salvia miltiorrhiza Bunge ("Danshen"), which has been largely used in Traditional Chinese Medicine for the treatment of metabolic syndrome, obesity, diabetes, among others. AIM OF STUDY This study was to investigate the effects of Salvianolic acid B (SalB) on mRNA, lncRNA and circRNA's expression profile in brown adipose tissue (BAT) of obese mice. MATERIALS AND METHODS High-fat-diet induced obese C57BL/6J mice were treated with SalB (100 mg/kg/day) for 8 weeks. Then, BAT was harvested for RNA-Seq analysis. Differentially expressed mRNAs, lncRNAs and circRNAs were analyzed using the Illumina Hiseq 4000. Following this procedure, bioinformatic tools including Gene ontology (GO), KEGG pathway and lncRNA-mRNA co-network analysis were utilized. Finally, RT-qPCR was performed to validate the differentially expressed RNAs. RESULTS Compared with control group, 2532 mRNAs, 774 lncRNAs and 25 circRNAs were differentially expressed in SalB group. Additionally, 40 upregulated and 109 downregulated gene-related pathways were identified in the SalB group. Among them, metabolic pathways showed the highest enrichment coefficient in upregulated genes. Moreover, 54 up-regulated and 626 down-regulated coding mRNAs associated with lncRNA-Hsd11b1 and lncRNA-Vmp1. CONCLUSIONS SalB may play an anti-obesity role by adjusting the expression of mRNAs correlated with inflammatory response and energy metabolism through regulating the expression of lncRNA-Hsd11b1. The findings of this research provide new directions to study the mechanisms of SalB, and would open therapeutic avenues for the treatment of obesity.
Collapse
Affiliation(s)
- Bohan Lv
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Yanxiang Wu
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Juan Lian
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Na Yu
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China; Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Tian An
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Tingye Wang
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Xueli Bao
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fangfang Mo
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Dandan Zhao
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Xiuyan Yang
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Zhang
- Department of Endocrinology, Workers' Hospital of Tangshan City, Tangshan, China
| | - Zhiyong Zhang
- Department of Endocrinology, Workers' Hospital of Tangshan City, Tangshan, China
| | - Sihua Gao
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China.
| | - Guangjian Jiang
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
22
|
Wang H, Tan H, Zhan W, Song L, Zhang D, Chen X, Lin Z, Wang W, Yang Y, Wang L, Bei W, Guo J. Molecular mechanism of Fufang Zhenzhu Tiaozhi capsule in the treatment of type 2 diabetes mellitus with nonalcoholic fatty liver disease based on network pharmacology and validation in minipigs. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114056. [PMID: 33771638 DOI: 10.1016/j.jep.2021.114056] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fufang Zhenzhu Tiaozhi formula (FTZ) of which a patented preparation of Chinese herbal medicine has been well documented with significant clinical curative effect for hyperglycemia and hyperlipidemia. Because of the complexity of the chemical constituents of Chinese herbal formulas, the holistic pharmacological mechanism of FTZ acting on type 2 diabetes mellitus (T2DM) and nonalcoholic fatty liver disease (NAFLD) remains unclear. AIM OF THE STUDY To investigate the pharmacological efficacy and mechanism of FTZ in the treatment of T2DM accompanied by NAFLD. MATERIALS AND METHODS Network pharmacology and validation in minipigs were used in this study. First, potential bioactive compounds of FTZ were identified by the traditional Chinese medicine system pharmacology technology platform (TCMSP). Then, targets of compounds were gathered using DrugBank, SwissTargetPrediction and TCMSP, while targets for T2DM and NAFLD were collected from CTD (compounds-targets-diseases network) and GeneCards. Common targets were defined as direct therapeutic targets acting on T2DM with NAFLD. In addition, crucial targets were chosen by the protein-protein interaction (PPI) network and contribution to compound-therapeutic targets in T2DM with the NAFLD network. Furthermore, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to analyze the metabolism-related signaling pathways affected by FTZ. Candidate patterns selected by network pharmacology were tested in the minipigs model of T2DM with NAFLD. Measurements of triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), fasting insulin (FINS) and fasting blood glucose (FBG) in the blood and the expression levels of proteins, including PI3K-AKT and HIF-1α, in the livers of the minipigs were followed by the administration of FTZ. RESULTS A total of 116 active compounds and 82 potential targets related to T2DM and NAFLD were found. Pathway and functional enrichment analysis showed that FTZ mainly regulates metabolism-related pathways, including PI3K-AKT, HIF-1α, TNFα and MAPK. Animal experiments showed that FTZ treatment significantly reduced the serum levels of TG, TC, LDL-C and FBG, increased serum levels of HDL-C, ameliorated systemic insulin resistance (IR), and attenuated liver damage in minipigs with T2DM and NAFLD. FTZ treatment has an obviously favorable influence on hepatic steatosis and liver lipid accumulation in the histopathologic features of HE, Oil red O staining, and electron microscopy. Mechanistically, FTZ improved liver metabolism by increasing the phosphorylation of PI3K-AKT and decreasing the expression of HIF-1α. CONCLUSION Network pharmacology was supported by experimental studies, which indicated that FTZ has demonstrated therapeutic benefits in T2DM and NAFLD by regulating the PI3K-AKT and HIF-1α signaling pathways.
Collapse
MESH Headings
- Animals
- Blood Glucose/drug effects
- Capsules
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Drugs, Chinese Herbal/chemistry
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Hypoglycemic Agents/chemistry
- Hypoglycemic Agents/pharmacology
- Hypoglycemic Agents/therapeutic use
- Hypolipidemic Agents/chemistry
- Hypolipidemic Agents/pharmacology
- Hypolipidemic Agents/therapeutic use
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Insulin/blood
- Lipid Metabolism/drug effects
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Male
- Metabolic Networks and Pathways/drug effects
- Non-alcoholic Fatty Liver Disease/drug therapy
- Non-alcoholic Fatty Liver Disease/metabolism
- Non-alcoholic Fatty Liver Disease/pathology
- Pharmacology/methods
- Phosphatidylinositol 3-Kinases/metabolism
- Phytochemicals/analysis
- Phytochemicals/pharmacology
- Phytochemicals/therapeutic use
- Proto-Oncogene Proteins c-akt/metabolism
- Reproducibility of Results
- Swine
- Swine, Miniature
Collapse
Affiliation(s)
- Hong Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Haibo Tan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Wenjing Zhan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Lixia Song
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Dongxing Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Xu Chen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Ziyang Lin
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Weixuan Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Yiqi Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Lexun Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Weijian Bei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| |
Collapse
|
23
|
Wang L, Xiang L, Piao S, Gong X, Zhou W, Feng W, Li H, Li L, Wei A, Zhu Q, Rong X, Guo J. The Efficacy and Safety of Chinese Medicine Fufang Zhenzhu Tiaozhi Capsule (FTZ) in the Treatment of Diabetic Coronary Heart Disease: Study Protocol for Multicenter, Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Diabetes Metab Syndr Obes 2021; 14:2651-2659. [PMID: 34163193 PMCID: PMC8214008 DOI: 10.2147/dmso.s309419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/13/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Diabetic coronary heart disease (DCHD), the main macrovascular complication of type 2 diabetes mellitus (T2DM), is greatly harmful to T2DM patients. Traditional Chinese medicine (TCM) is an alternative and effective therapy to delay the development of macrovascular diseases, but the existing evidence of its efficacy and safety is insufficient. The aim of this multicenter, randomized, double-blind, placebo-controlled trial is to evaluate the efficacy and safety of Chinese Medicine Fufang Zhenzhu Tiaozhi capsule (FTZ) in treating DCHD. PATIENTS AND METHODS This study includes a 2-week run-in, 52-week treatment, and 52-week post-treatment follow-up. A total of 160 participants will be recruited and randomized into two groups. The treatment group will receive FTZ and basic treatment, while the control group will receive the placebo and basic treatment. The primary outcome is the combined outcome including the major adverse cardiovascular events, coronary restenosis, and unplanned revascularization. The combined secondary outcomes include all-cause mortality, acute coronary syndrome, ischemic stroke, heart failure, unplanned re-hospitalization mainly caused by acute complications of diabetes, other thromboembolic events, and TCM symptom indicators. The safety outcomes and adverse events will also be evaluated in this trial. DISCUSSION This trial evaluates the clinical effectiveness and safety of FTZ in patients with DCHD. The results are important to further explore the effectiveness of the comprehensive strategy "Tiao Gan Qi Shu Hua Zhuo" (modulating Gan, trigging key metabolic system to resolve pathogenic factors such as phlegm retention and dampness) in the prevention and control of glucolipid metabolic disorders (GLMD) including DCHD and T2DM. On the other hand, this study is the first trial of FTZ to observe cardiovascular outcomes through long-term follow-up after treatment of DCHD, which is of great value. TRIAL REGISTRATION This trial was registered in the Chinese Clinical Trial Registry on April 07, 2019 (No. ChiCTR1900022345).
Collapse
Affiliation(s)
- Lexun Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, People’s Republic of China
| | - Lei Xiang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, People’s Republic of China
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Shenghua Piao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, People’s Republic of China
| | - Xiao Gong
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Wanxing Zhou
- Department of Internal Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Weixun Feng
- Famous Doctor’s Studio, Qingyuan Hospital of Traditional Chinese Medicine, Qingyuan, People’s Republic of China
| | - Huilin Li
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
| | - Leyu Li
- Department of Endocrinology, Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, People’s Republic of China
| | - Aisheng Wei
- Department of Endocrinology, Foshan Hospital of Traditional Chinese Medicine, Foshan, People’s Republic of China
| | - Qing Zhu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, People’s Republic of China
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, People’s Republic of China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, People’s Republic of China
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| |
Collapse
|
24
|
Xu Y, Tang J, Guo Q, Xu Y, Yan K, Wu L, Xie K, Zhu A, Rong X, Ye D, Guo J. Traditional Chinese Medicine formula FTZ protects against polycystic ovary syndrome through modulating adiponectin-mediated fat-ovary crosstalk in mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113587. [PMID: 33212180 DOI: 10.1016/j.jep.2020.113587] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE FuFang ZhenZhu TiaoZhi (FTZ) is a hospitalized traditional Chinese medicine herbal formula with documented metabolic benefits. Polycystic ovary syndrome (PCOS) characterized by ovarian dysfunction and insulin resistance represents one of the most common endocrine disorders in close association with metabolic dysfunction in premenopausal women. AIM OF THE STUDY The present study aimed to investigate the preventive effect of FTZ on letrozole-induced experimental PCOS and its associated insulin resistance in mice. MATERIALS AND METHODS Prepubertal female mice in the experimental groups (letrozole and FTZ) received continuous infusion of letrozole (50 μg/day) for 35 days. FTZ was administrated to mice by oral gavage daily at dosage of 2.892 g/kg body weight for 5 weeks. All groups of mice were fed a high-fat diet (HFD). Ovary and adipose tissue were collected from all mice after 5 weeks and adiponectin, testosterone, estradiol, and luteinizing hormone level determined. RESULTS Letrozole-induced morphological changes in the ovary, including a decreased number of corpora lutea and antral follicles, and increased cystic follicles, were significantly attenuated in FTZ-treated mice. Additionally, FTZ treatment notably reversed PCOS-related disruption of estrous status. PCOS-related insulin resistance was markedly alleviated. Mechanistically, FTZ treatment notably enhanced circulating level and transcriptional abundance of adiponectin in adipose tissue, thereby orchestrating fat-ovary crosstalk. CONCLUSIONS Our data collectively demonstrate that FTZ exerted preventive benefits in an experimental model of PCOS, at least partially by potentiating the production of adiponectin from adipose tissues. This suggests that FTZ is a promising treatment for PCOS.
Collapse
Affiliation(s)
- Ying Xu
- The First Affiliated Hospital/School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Jialing Tang
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Qianyu Guo
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Yidan Xu
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Kaixuan Yan
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Lihong Wu
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Kang Xie
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Anming Zhu
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Xianglu Rong
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Dewei Ye
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Jiao Guo
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
25
|
Chávez-Castillo M, Nuñez V, Rojas M, Ortega Á, Durán P, Pirela D, Marquina M, Cano C, Chacín M, Velasco M, Rojas-Quintero J, Bermúdez V. Exploring Phytotherapeutic Alternatives for Obesity, Insulin Resistance and Diabetes Mellitus. Curr Pharm Des 2021; 26:4430-4443. [PMID: 32611293 DOI: 10.2174/1381612826666200701205132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/29/2020] [Indexed: 11/22/2022]
Abstract
At present, the pathologic spectrum of obesity-insulin resistance (IR)-diabetes mellitus (DM) represents not only a pressing matter in public health but also a paramount object of study in biomedical research, as they constitute major risk factors for cardiovascular disease (CVD), and other chronic non-communicable diseases (NCD). Phytotherapy, the use of medicinal herbs (MH) with treatment purposes, offers a wide array of opportunities for innovation in the management of these disorders; mainly as pharmacological research on small molecules accumulates. Several MH has displayed varied mechanisms of action relevant to the pathogenesis of obesity, IR and DM, including immunological and endocrine modulation, reduction of inflammation and oxidative stress (OS), regulation of appetite, thermogenesis and energy homeostasis, sensitisation to insulin function and potentiation of insulin release, among many others. However, the clinical correlates of these molecular phenomena remain relatively uncertain, with only a handful of MH boasting convincing clinical evidence in this regard. This review comprises an exploration of currently available preclinical and clinical research on the role of MH in the management of obesity, IR, and DM.
Collapse
Affiliation(s)
- Mervin Chávez-Castillo
- Psychiatric Hospital of Maracaibo, Maracaibo, Venezuela,Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Victoria Nuñez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Milagros Rojas
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Ángel Ortega
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Pablo Durán
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Daniela Pirela
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - María Marquina
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Maricarmen Chacín
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| | - Manuel Velasco
- Clinical Pharmacology Unit, José María Vargas School of Medicine, Central University of Venezuela, Caracas-Venezuela
| | - Joselyn Rojas-Quintero
- Pulmonary and Critical Care Medicine Department, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Valmore Bermúdez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| |
Collapse
|
26
|
The lignan-rich fraction from Sambucus Williamsii Hance ameliorates dyslipidemia and insulin resistance and modulates gut microbiota composition in ovariectomized rats. Biomed Pharmacother 2021; 137:111372. [PMID: 33761598 DOI: 10.1016/j.biopha.2021.111372] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/25/2021] [Accepted: 01/31/2021] [Indexed: 12/13/2022] Open
Abstract
Menopausal women are susceptible to have high risk of cardiovascular diseases, type II diabetes and osteoporosis due to the metabolic disorder caused by estrogen deficiency. Accumulating evidence supports that gut microbiota is a key regulator of metabolic diseases. Our previous metabolomics study interestingly demonstrated that the anti-osteoporotic effects of lignan-rich fraction (SWCA) from Sambucus wialliamsii Hance were related to the restoration of a series of lipid and glucose metabolites. This study aims to investigate how SWCA modulates lipid and glucose metabolism and the underlying mechanism. Our results show that oral administration of SWCA (140 mg/kg and 280 mg/kg) for 10 weeks alleviated dyslipidemia, improved liver functions, prevented glucose tolerance and insulin actions, attenuated system inflammation and improved intestinal barrier in OVX rats. It also induced a high abundance of Actinobacteria, and restored microbial composition. We are the first to report the protective effects of the lignan-rich fraction from S. williamsii on dyslipidemia and insulin resistance. Our findings provide strong evidence for the application of this lignan-rich fraction to treat menopausal lipid disorder and insulin resistance-related diseases.
Collapse
|
27
|
Zhang L, Zhou Q, Chen M, Yang X, Lu C, Sun W, Hui Q, Wang X. Hypoglycemic Efficacy of Rh-aFGF Variants in Treatment of Diabetes in ZDF Rats. Front Cell Dev Biol 2021; 9:609383. [PMID: 33681196 PMCID: PMC7930327 DOI: 10.3389/fcell.2021.609383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/01/2021] [Indexed: 11/24/2022] Open
Abstract
Acidic fibroblast growth factor (aFGF) is a promising regulator of glucose with no adverse effects of hypoglycemia. Previous researches revealed that aFGF mediated adipose tissue remodeling and insulin sensitivity. These findings supported rh-aFGF135 would be used as a new candidate for the treatment of insulin resistance and type 2 diabetes. In this study, we aimed to investigate the hypoglycemic efficacy of recombinant human acidic fibroblast growth factor 135 (rh-aFGF135) with low mitogenic in type 2 diabetic ZDF rats. ZDF rats were treated with rh-aFGF135 at a daily dosage of 0.25 and 0.50 mg/kg by tail intravenous injection for 5 weeks. The blood glucose levels, oral glucose tolerance test, insulin tolerance test, HOMA-IR for insulin resistance, serum biochemical parameters, and the histopathological changes of adipose tissue, liver and other organs were detected at designed time point. The glucose uptake activity and anti-insulin resistance effect of rh-aFGF135 were also detected in HepG2 cells. Results revealed that rh-aFGF135 exhibited a better hypoglycemic effect compared with vehicle group and without the adverse effect of hypoglycemia in ZDF rats. Compared with vehicle group, rh-aFGF135 significantly improved the situation of hyperglycemia and insulin resistance. Rh-aFGF135 decreased ALT, AST, GSP, and FFA levels noticeably compared with vehicle control group (P < 0.01 or P < 0.001). After 5 weeks of treatment, high-dosage rh-aFGF135 could remodel adipose tissue, and has no influence on other organs. H&E staining showed that rh-aFGF135 reduced the size of adipocytes. In addition, rh-aFGF135 may improve insulin resistance partly by increasing the protein expression of p-IRS-1 (human Ser 307). As a hypoglycemic drug for long-term treatment, rh-aFGF135 would be a potentially safe candidate for the therapy of type 2 diabetes.
Collapse
Affiliation(s)
- Li Zhang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qingde Zhou
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Min Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xuanxin Yang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chao Lu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wenzhe Sun
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qi Hui
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaojie Wang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
28
|
Cai J, Zhang J, Li S, Lin Y, Xiao X, Guo J. Comprehensive chemical analysis of Zhenshu Tiaozhi formula and its effect on ameliorating glucolipid metabolic disorders in diabetic rats. Biomed Pharmacother 2021; 133:111060. [PMID: 33378969 DOI: 10.1016/j.biopha.2020.111060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 10/22/2022] Open
Abstract
The present study aims to reveal the compositions of Zhenshu TiaoZhi formula (FTZ) comprehensively, and investigate whether FTZ ameliorate glucolipid metabolism disorders in diabetic rats with the involvement of glucocorticoids in peripheral insulin-sensitive tissues. The fingerprint was established based on 11 batches of FTZ samples and chemical compostions of FTZ were identified by ultra performance liquid chromatography-time of flight/mass spectrometry (UPLC-TOF/MS). High-fat diet (HFD) and streptozotocin (STZ) induced diabetic rats were orally administrated with 3 and 6 g/kg body weight of FTZ for 8 weeks. Indices of glucolipid metabolism, including fasting blood glucose (FBG), fasting insulin, insulin resistance index (IRI) and blood lipids were evaluated after treatment of FTZ. The levels of HPA axis hormones were examined. Reverse transcription-polymerase chain reaction (RT-PCR) was adopted to investigate the relative mRNA expressions of 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) and glucolipid metabolic indicators. A reference fingerprint was established and 93 compounds of FTZ were tentatively identified. In vivo, FTZ treatment exerted antidiabetic and antidyslipidemic effects while decreased the level of corticotropin releasing hormone (CRH). 11β-HSD1 mRNA showed similar trajectory in both liver, adipose and skeletal muscle tissues, which was up-regulated in diabetic group and ameliorated in FTZ groups. Furthermore, the expressions of glucose-6-phosphatase (G6Pase), phosphoenolpyruvate carboxykinase (PEPCK) and adipose triglyceride lipase (ATGL) were down-regulated in liver and skeletal muscle. These results elucidated the compositions of FTZ comprehensively and indicated its effect on ameliorating glucolipid metabolism of diabetic rats involved hypothalamus-pituitary-adrenal (HPA) axis homeostasis. Down-regulating 11β-HSD1 in insulin-sensitive tissues might be a potential mechanism of FTZ in treating type 2 diabetes mellitus (T2DM).
Collapse
Affiliation(s)
- Jinyan Cai
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Jingjing Zhang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Shanshan Li
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yanduan Lin
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Xue Xiao
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| |
Collapse
|
29
|
Huang X, Zhan H, Yang J, Peng L, Piao S, Wang L, Lan T, Rong X, Guo J. Long-Term Effect of Zhenzhu Tiaozhi Capsule (FTZ) on Hyperlipidemia: 2-Year Results from a Retrospective Study Using Electronic Medical Records. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6264414. [PMID: 34707672 PMCID: PMC8545570 DOI: 10.1155/2021/6264414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/29/2021] [Indexed: 11/18/2022]
Abstract
The objective of this work was to study the lipid profile (LDL, TC, TG, and HDL) over 2 years in patients with hyperlipidemia in a real-world clinical setting and to describe the dynamical trajectory of lipid profile change in response to lipid-lowering treatment (Zhenzhu Tiaozhi capsule (FTZ) vs. general lipid-lowering treatment, i.e., statins, fibrates, and Xuezhikang). We conducted a retrospective study that included people aged ≥18 years with hyperlipidemia that initiated lipid-lowering treatment between January 2010 and December 2020. Demographic, diagnosis, and laboratory data were retrieved from hospital's electronic medical records, including hospital information system (HIS) and the laboratory information system (LIS). Follow-up trajectories of lipid profile were plotted in a generalized additive mixed model (GAMM) with smooth splines. A total of 839 patients with hyperlipidemia were included. Within 2 years, LDL, TC, and TG descended steadily and gently in the FTZ group (N = 99), while the general lipid-lowering treatment (N = 740) shortly improved LDL, TC, and TG before 11 weeks and was no longer present around 30 weeks. After 30 weeks, the trajectory of LDL, TC, and TG fluctuated up and down. Also, for HDL, a similar trajectory was observed before 40 weeks between 2 groups, but the FTZ group showed an increasing trend after 40 weeks, while a similar trend was not seen in the general lipid-lowering group. In this study, FTZ was shown to have similar long-term effectiveness as an alternative lipid-lowering treatment to the general lipid-lowering treatment. The findings of this study provide observational evidence for further studies of FTZ, but more prospective studies are needed to determine the impacts of FTZ on lipid profile.
Collapse
Affiliation(s)
- Xiaoqiang Huang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Huixia Zhan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Jin Yang
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Liufen Peng
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shenghua Piao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lexun Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tian Lan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
30
|
Hsieh SK, Lin NH, Chen YJ, Lee MR, Chen WY, Tzen JT. Therapeutic Effects of Lithospermate B Complexed with Mg 2+ or Zn 2+ on Metabolic Syndrome Induced in Rats Fed with High-Fat Diet. Molecules 2020; 25:molecules25040983. [PMID: 32098371 PMCID: PMC7070705 DOI: 10.3390/molecules25040983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/24/2022] Open
Abstract
Excessive food consumption and insufficient exercise lead to the prevalence of metabolic syndrome in modern life, which consequently increases the risk of many chronic diseases. Magnesium lithospermate B (MLB) from Danshen has been demonstrated to improve metabolic changes in high-fat diet–fed rats with metabolic syndrome. In this study, Mg2+ in MLB was successfully replaced with Zn2+ to form zinc lithospermate B (ZLB) complex. MLB (10 mg/kg /day) and ZLB of various concentrations (1, 2.5, 5, and 10 mg/kg/day) were prepared and examined for their therapeutic effects on metabolic syndrome induced in rats fed with a high-fat diet. The results showed that both MLB and ZLB were able to recover or alleviate the abnormal physiological states of high-fat diet–fed rats including weight gain, epididymal fat accumulation, fatty liver, retarded blood lipid and glucose metabolism putatively caused by insulin resistance, and elevated levels of proinflammatory cytokine, leptin, and oxidative stress. In an overall view of the animal study, the effectiveness of ZLB supplementation seemed to be better than that of MLB supplementation for the recovery of high-fat-fed rats from metabolic syndrome.
Collapse
Affiliation(s)
- Sheng-Kuo Hsieh
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan; (S.-K.H.); (Y.-J.C.)
| | - Nan-Hei Lin
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan;
| | - Ying-Jie Chen
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan; (S.-K.H.); (Y.-J.C.)
| | - Maw-Rong Lee
- Department of Chemistry, National Chung-Hsing University, Taichung 402, Taiwan;
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung-Hsing University, Taichung 402, Taiwan
- Correspondence: (W.-Y.C.); (J.T.C.T.); Tel.: +886-4-22840328 (ext. 776) (J.T.C.T.); Fax: +886-4-22853527 (J.T.C.T.)
| | - Jason T.C. Tzen
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan; (S.-K.H.); (Y.-J.C.)
- Correspondence: (W.-Y.C.); (J.T.C.T.); Tel.: +886-4-22840328 (ext. 776) (J.T.C.T.); Fax: +886-4-22853527 (J.T.C.T.)
| |
Collapse
|
31
|
Yang Q, Wen YM, Shen J, Chen MM, Wen JH, Li ZM, Liang YZ, Xia N. Guava Leaf Extract Attenuates Insulin Resistance via the PI3K/Akt Signaling Pathway in a Type 2 Diabetic Mouse Model. Diabetes Metab Syndr Obes 2020; 13:713-718. [PMID: 32214834 PMCID: PMC7078673 DOI: 10.2147/dmso.s231979] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 02/05/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Insulin resistance is well known to exhibit essential effects on the progression of diabetes mellitus (DM). Guava leaf was also reported to exhibit anti-diabetic effects including decreasing blood glucose. Therefore, this present study aims to explore the role guava leaf extract (GLE) plays in insulin resistance and its mechanism of action via the PI3K/Akt signaling pathway. METHODS KK-Ay mice is a spontaneous genetic type 2 diabetes mouse model induced by feeding a high fat and high sugar diet. Mice were randomly assigned into three groups: diabetic mice (DM), DM + MET (diabetic mice treated with metformin) and DM + GLE (diabetic mice treated with GLE) groups. After 8 weeks of treatment, body weight and levels of fasting plasma glucose (FPG), fasting insulin and lipids in plasma were measured. Mice were sacrificed and mRNA and protein expression of insulin receptor substrate1 (IRS1), phosphatidylinositol 3-kinase (PI3K) and serine/threonine kinase protein B (Akt) in livers were measured. RESULTS GLE markedly reduced body weight, FPG, fasting insulin and insulin resistance index but increased the insulin sensitivity index of diabetic KK-Ay mice. Moreover, GLE upregulated the expression of IRS-1, PI3K and Akt mRNAs in livers of diabetic KK-Ay mice. In addition, GLE also elevated IRS-1, PI3K, Akt, p-PI3K and p-Akt protein expression in their livers. The results of the DM + MET group were similar to those of the DM + GLE group. CONCLUSION GLE plays anti-diabetic roles by ameliorating insulin resistance in KK-Ay diabetic mice and this is related to the activation of PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Qiong Yang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Guangxi Medical University, Nanning530021, People’s Republic of China
| | - Yu-Mei Wen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Guangxi Medical University, Nanning530021, People’s Republic of China
| | - Jing Shen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Guangxi Medical University, Nanning530021, People’s Republic of China
| | - Mei-Mei Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Guangxi Medical University, Nanning530021, People’s Republic of China
| | - Jiang-Hua Wen
- Department of Health Examination, Jiangmen Central Hospital, Jiangmen, Guangdong529070, People’s Republic of China
| | - Zheng-Ming Li
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guangxi Medical University, Nanning530021, People’s Republic of China
| | - Yu-Zhen Liang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guangxi Medical University, Nanning530021, People’s Republic of China
| | - Ning Xia
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Guangxi Medical University, Nanning530021, People’s Republic of China
- Correspondence: Ning Xia Department of Endocrinology and Metabolism, The First Affiliated Hospital of Guangxi Medical University, Nanning530021, People’s Republic of ChinaTel +86 77 1280 2380 Email
| |
Collapse
|
32
|
Shenghua P, Ziqin Z, Shuyu T, Huixia Z, Xianglu R, Jiao G. An integrated fecal microbiome and metabolome in the aged mice reveal anti-aging effects from the intestines and biochemical mechanism of FuFang zhenshu TiaoZhi(FTZ). Biomed Pharmacother 2020; 121:109421. [DOI: 10.1016/j.biopha.2019.109421] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/17/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022] Open
|
33
|
Luo D, Chen K, Li J, Fang Z, Pang H, Yin Y, Rong X, Guo J. Gut microbiota combined with metabolomics reveals the metabolic profile of the normal aging process and the anti-aging effect of FuFang Zhenshu TiaoZhi(FTZ) in mice. Biomed Pharmacother 2019; 121:109550. [PMID: 31704617 DOI: 10.1016/j.biopha.2019.109550] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/06/2019] [Accepted: 10/08/2019] [Indexed: 12/19/2022] Open
Abstract
The aging process is accompanied by changes in the gut microbiota and metabolites. This study aimed to reveal the relationship between gut microbiota and the metabolome at different ages, as well as the anti-aging effect of FTZ, which is an effective clinical prescription for the treatment of hyperlipidemia and diabetes. METHODS In the present study, mice were randomly divided into different age and FTZ treatment groups. The aging-relevant behavioral phenotype the levels of blood glucose, cholesterol, triglycerides, low density lipoprotein cholesterol, free fatty acids, high density lipoprotein-cholesterol and cytokine TNF-α,IL-6, IL-8 in the serum were measured. Changes of serum metabolties were analyzed by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-Q-TOF/MS). Gut microbiota were identified using 16S rDNA sequencing. RESULTS Our results indicated that with age, the aging-relevant behavioral phenotype appeared, glucose and lipid metabolism disordered, secretion levels of cytokine TNF-α, IL-6 and IL-8 increased.The Firmicutes/Bacteroidetes ratio changed with age, first increasing and then decreasing, and the microbial diversity and the community richness of the aging mice were improved by FTZ. The abundance of opportunistic bacteria decreased (Lactobacillus murinus, Erysipelatoclostridium), while the levels of protective bacteria such as Butyricimonas, Clostridium and Akkermansia increased. Metabolic analysis identified 24 potential biomarkers and 10 key pathways involving arachidonic acid metabolism, phospholipid metabolism, fatty acid metabolism, taurine and hypotaurine metabolism. Correlation analysis between the gut microbiota and biomarkers suggested that the relative abundance of protective bacteria was negatively correlated with the levels of leukotriene E4, 20-HETE and arachidonic acid, which was different from protective bacteria. CONCLUSION Shifts of gut microbiota and metabolomic profiles were observed in the mice during the normal aging process, and treatment with FTZ moderately corrected the aging, which may be mediated via interference with arachidonic acid metabolism, sphingolipid metabolism, glycerophospholipid metabolism, taurine and hypotaurine metabolism and gut microbiota in mice.
Collapse
Affiliation(s)
- Duosheng Luo
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Kechun Chen
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Jingbiao Li
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Zhaoyan Fang
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Huiting Pang
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Yifan Yin
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Xianglu Rong
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Jiao Guo
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China.
| |
Collapse
|
34
|
Luo D, Li J, Chen K, Yin Y, Fang Z, Pang H, Rong X, Guo J. Study on Metabolic Trajectory of Liver Aging and the Effect of Fufang Zhenzhu Tiaozhi on Aging Mice. Front Pharmacol 2019; 10:926. [PMID: 31555127 PMCID: PMC6722462 DOI: 10.3389/fphar.2019.00926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/22/2019] [Indexed: 01/22/2023] Open
Abstract
The aim of this study was to investigate the metabolic trajectory of liver aging, the effect of FTZ against liver aging in aging mice, and its mechanism using ultraperformance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF/MS). Methods: A total of 80 C57BL/6J Narl mice were randomly divided into five groups: 3-month-old group, 9-month-old group, 14-month-old group, 20-month-old group, and FTZ treatment group (20 months old). The mice in the treatment group received a therapeutic dose of oral FTZ extract (1.0 g/kg, on raw material weight basis) once daily during the experiment. The other groups received the corresponding volume of oral normal saline solution. Liver samples of all five groups were collected after 12 weeks, and UPLC-Q-TOF/MS was used to analyze metabolic changes. Orthogonal partial least squares-discriminant analysis (OPLS-DA) was used to analyze the resulting data. Additionally, cholesterol (TC), triglyceride (TG), aspartate aminotransferase (AST), alanine aminotransferase (ALT), secretion levels of TNF-α, IL-6, 5-LOX, and COX-2, as well as their relative mRNA expression in the liver were determined. Results: The levels of TC, TG, AST, and ALT were increased, and liver tissue structure was damaged. The secretion levels of TNF-α, IL-6, 5-LOX, and COX-2, as well as their relative mRNA expression in the liver also increased with aging. FTZ administration reduced the symptoms of liver aging. The OPLS-DA score plot illustrated the effect of FTZ against liver aging, with N-acetyl-leukotriene E4, 20-hydroxy-leukotriene E4, leukotriene E4, and arachidonic acid among the key biomarkers. The pivotal pathways revealed by pathway analysis included arachidonic acid metabolism and biosynthesis of unsaturated fatty acids. The mechanism by which FTZ reduces the symptoms of liver aging in mice might be related to disorders of the abovementioned pathways. Conclusion: A metabolomic approach based on UPLC-Q-TOF/MS and multivariate statistical analysis was successfully applied to investigate the metabolic trajectory of liver aging. FTZ has a protective effect against liver aging, which may be mediated via interference with the metabolism of arachidonic acid, biosynthesis of unsaturated fatty acids, and downregulation of pro-inflammatory factors in the liver in mice in vivo.
Collapse
Affiliation(s)
- Duosheng Luo
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Jingbiao Li
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Kechun Chen
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Yifan Yin
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Zhaoyan Fang
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Huiting Pang
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Xianglu Rong
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Jiao Guo
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| |
Collapse
|
35
|
Li J, Bai L, Wei F, Zhao J, Wang D, Xiao Y, Yan W, Wei J. Therapeutic Mechanisms of Herbal Medicines Against Insulin Resistance: A Review. Front Pharmacol 2019; 10:661. [PMID: 31258478 PMCID: PMC6587894 DOI: 10.3389/fphar.2019.00661] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/23/2019] [Indexed: 12/16/2022] Open
Abstract
Insulin resistance is a condition in which insulin sensitivity is reduced and the insulin signaling pathway is impaired. Although often expressed as an increase in insulin concentration, the disease is characterized by a decrease in insulin action. This increased workload of the pancreas and the consequent decompensation are not only the main mechanisms for the development of type 2 diabetes (T2D), but also exacerbate the damage of metabolic diseases, including obesity, nonalcoholic fatty liver disease, polycystic ovary syndrome, metabolic syndrome, and others. Many clinical trials have suggested the potential role of herbs in the treatment of insulin resistance, although most of the clinical trials included in this review have certain flaws and bias risks in their methodological design, including the generation of randomization, the concealment of allocation, blinding, and inadequate reporting of sample size estimates. These studies involve not only the single-flavored herbs, but also herbal formulas, extracts, and active ingredients. Numerous of in vitro and in vivo studies have pointed out that the role of herbal medicine in improving insulin resistance is related to interventions in various aspects of the insulin signaling pathway. The targets involved in these studies include insulin receptor substrate, phosphatidylinositol 3-kinase, glucose transporter, AMP-activated protein kinase, glycogen synthase kinase 3, mitogen-activated protein kinases, c-Jun-N-terminal kinase, nuclear factor-kappaB, protein tyrosine phosphatase 1B, nuclear factor-E2-related factor 2, and peroxisome proliferator-activated receptors. Improved insulin sensitivity upon treatment with herbal medicine provides considerable prospects for treating insulin resistance. This article reviews studies of the target mechanisms of herbal treatments for insulin resistance.
Collapse
Affiliation(s)
- Jun Li
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Litao Bai
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fan Wei
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Zhao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Danwei Wang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yao Xiao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weitian Yan
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junping Wei
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
36
|
Baicalein improves glucose metabolism in insulin resistant HepG2 cells. Eur J Pharmacol 2019; 854:187-193. [PMID: 30970232 DOI: 10.1016/j.ejphar.2019.04.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/30/2019] [Accepted: 04/02/2019] [Indexed: 01/06/2023]
Abstract
Insulin resistance (IR) is the primary pathogenesis of Type 2 diabetes mellitus (T2DM). Scutellaria baicalensis Georgi is a traditional Chinese herbal medicine, often used in the clinical treatment of T2DM. Baicalein which is considered to have anti-IR effects is one of its active ingredients. IR-induced HepG2 cells were used to investigate the effect of baicalein on glucose metabolism and insulin-signaling pathway, using metformin as a positive control. We found that the use of both baicalein and metformin increased the glucose consumption of IR cells, as well as increasing the pyruvate kinase (PK) and glucokinase (GCK) activity. Also increased was the expression levels of insulin receptor (InsR), insulin receptor substrate-1 (IRS-1), phosphoinositide 3-kinase (PI3K), protein kinase B (AKT) pathway and glucose transporter 2 (GLUT2). Reduced expression levels were found in that of glucose 6 phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK) mRNA. The results confirmed that baicalein (10-6 and 10-5 mol/L) promotes glucose uptake and glycolysis, inhibits gluconeogenesis of hepatocytes to improve glucose metabolism, and may be as a result from regulation of InsR/IRS-1/PI3K/AKT pathway. Additionally, baicalein has large concentration range on inhibiting IR, and at lower concentrations has strong anti-IR hepatocyte activity.
Collapse
|
37
|
Chinese Medicine FTZ Recipe Protects against High-Glucose-Induced Beta Cell Injury through Alleviating Oxidative Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:6378786. [PMID: 30941199 PMCID: PMC6421024 DOI: 10.1155/2019/6378786] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/04/2018] [Indexed: 12/21/2022]
Abstract
Objective To investigate the effect of FTZ on high-glucose-induced oxidative stress and underlying mechanisms. Methods We used a β cell dysfunction and diabetes model that was induced in rats fed a high-fat high-sugar diet (HFHSD) for 6 weeks and injected once with 35 mg/kg streptozocin (STZ). Then, 3 and 6 g/kg of FTZ were administered by gavage for 8 weeks. In addition, an ex vivo model of oxidative stress was induced by stimulating INS-1 cells with 25 mmol/L glucose for 48 h. Result The levels of fasting blood glucose (FBG) in diabetic model rats were obviously higher than those in the normal group; furthermore with reduced levels of β cells, catalase (CAT), superoxide dismutase (SOD), and Bcl-2 increased lipid peroxide malondialdehyde (MDA) and caspase-3 in the pancreatic tissue of the diabetic model rats. Afterward, the cells were incubated with FTZ-containing serum and edaravone. The 25 mmol/L glucose-induced SOD reduction increased MDA and intracellular ROS. The protein expression level of Mn-SOD and CAT in the model group decreased significantly compared with that in the control group. Conclusion FTZ treatment significantly improved the alteration in the level of SOD, CAT, Bcl-2, caspase-3, and MDA coupled with β cell dysfunction in diabetic rats. Oxidative stress in INS-1 cells was closely associated with a higher rate of apoptosis, increased production of ROS and MDA, enhanced Bax expression, and caspase-3, -9 activities and markedly decreased protein expression of Mn-SOD and CAT. FTZ-containing serum incubation notably reversed the high-glucose-evoked increase in cell apoptosis, production of ROS and MDA, and Bax protein levels. Furthermore, FTZ stimulation upregulated the expression levels of several genes, including Mn-SOD, CAT, and Bcl-2/Bcl-xl. In addition, FTZ decreased the intracellular activity of caspase-3, -9 in INS-1 cells. FTZ protected β-cells from oxidative stress induced by high glucose in vivo and in vitro. The beneficial effect of FTZ was closely associated with a decrease in the activity of caspase-3, -9 and intracellular production of ROS, MDA, and Bax coupled with an increase in the expression of Mn-SOD, CAT, and Bcl-2/Bcl-xl.
Collapse
|
38
|
Li H, Yu L, Zhao C. Dioscin attenuates high‑fat diet‑induced insulin resistance of adipose tissue through the IRS‑1/PI3K/Akt signaling pathway. Mol Med Rep 2018; 19:1230-1237. [PMID: 30483735 DOI: 10.3892/mmr.2018.9700] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 10/10/2018] [Indexed: 11/05/2022] Open
Abstract
Insulin resistance, as a common metabolic disorder, may be caused by diet‑induced obesity. The aim of the present study is to investigate the effects of dioscin on regulating insulin resistance of adipose tissue induced by a high‑fat diet (HFD). An animal model was established successfully using C57BL/6J mice with high‑fat feeding, followed by treatment with 5, 10 and 20 mg/kg dioscin through gavage for 18 weeks, and randomly divided into a control group, a HFD model group and a dioscin group treated with 5, 10 and 20 mg/kg/day dioscin for 12 weeks. Histopathological changes in adipose tissues were examined using hematoxylin and eosin staining. Biochemical parameters of the serum were also monitored, including glucose, insulin, total triglyceride, homeostasis model assessment of insulin resistance (HOMA‑IR) and adipose insulin resistance (Adipo‑IR) levels. Expression of the mRNA and associated proteins of the insulin receptor substrate 1 (IRS‑1)/phosphoinositide 3‑kinase (PI3K)/protein kinase B (Akt) pathways were determined using reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and western blot analysis, respectively. HOMA‑IR and Adipo‑IR values of mice fed with a HFD were significantly higher compared with those in the control group (P<0.01). However, dioscin administration significantly decreased HOMA‑IR and Adipo‑IR values in a dose‑dependent manner (P<0.05), suggesting the effects of dioscin on attenuating insulin resistance. RT‑qPCR results indicated that the associated genes of the IRS‑1/PI3K/Akt pathway were significantly downregulated by HFD compared with the control group (P<0.05), while dioscin significantly increased the expression of those genes compared with the control group (P<0.05). Similarly, the significant increase in phosphorylated (p‑)IRS‑1/IRS‑1 (P<0.05) and p‑Akt/Akt (P<0.05) values were substantially reversed by dioscin treatment. Dioscin pronouncedly mitigated insulin resistance in adipose tissues through the IRS‑1/PI3K/Akt pathway and has potential to be used as a novel therapeutic agent for the therapy of HFD‑induced insulin resistance in adipose tissue.
Collapse
Affiliation(s)
- Haijuan Li
- Department of Clinical Nutrition, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Lianzhi Yu
- Health Check Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Changsheng Zhao
- Department of Nutrition, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
39
|
Chen Y, He X, Yuan X, Hong J, Bhat O, Li G, Li PL, Guo J. NLRP3 Inflammasome Formation and Activation in Nonalcoholic Steatohepatitis: Therapeutic Target for Antimetabolic Syndrome Remedy FTZ. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2901871. [PMID: 30140364 PMCID: PMC6081604 DOI: 10.1155/2018/2901871] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/16/2018] [Accepted: 04/26/2018] [Indexed: 12/14/2022]
Abstract
The Nod-like receptor protein 3 (NLRP3) inflammasome activation not only serves as an intracellular machinery triggering inflammation but also produces uncanonical effects beyond inflammation such as changing cell metabolism and increasing cell membrane permeability. The present study was designed to test whether this NLRP3 inflammasome activation contributes to the "two-hit" injury during nonalcoholic steatohepatitis (NASH) and whether it can be a therapeutic target for the action of Fufang Zhenzhu Tiaozhi (FTZ), a widely used herbal remedy for hyperlipidemia and metabolic syndrome in China. We first demonstrated that NLRP3 inflammasome formation and activation as well as lipid deposition occurred in the liver of mice on the high-fat diet (HFD), as shown by increased NLRP3 aggregation, enhanced production of IL-1β and high mobility group box 1 (HMGB1), and remarkable lipid deposition in liver cells. FTZ extracts not only significantly reduced the NLRP3 inflammasome formation and activation but also attenuated the liver steatosis and fibrogenic phenotype changed. In in vitro studies, palmitic acid (PA) was found to increase colocalization of NLRP3 components and enhanced caspase-1 activity in hepatic stellate cells (HSCs), indicating enhanced formation and activation of NLRP3 inflammasomes by PA. PA also increased lipid deposition. Nlrp3 siRNA can reverse this effect by silencing the NLRP3 inflammasome and both with FTZ. In FTZ-treated cells, not only inflammasome formation and activation was substantially attenuated but also lipid deposition in HSCs was blocked. This inhibition of FTZ on lipid deposition was similar to the effects of glycyrrhizin, an HMGB1 inhibitor. Mechanistically, stimulated membrane raft redox signaling platform formation and increased O2•- production by PA to activate NLRP3 inflammasomes in HSCs was blocked by FTZ treatment. It is concluded that FTZ extracts inhibit NASH by its action on both inflammatory response and liver lipid metabolism associated with NLRP3 inflammasome formation and activation.
Collapse
Affiliation(s)
- Yu Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, China
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Xingxiang He
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, China
| | - Xinxu Yuan
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jinni Hong
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Owais Bhat
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Guangbi Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jiao Guo
- Department of Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Joint Laboratory of Guangdong Province and Hongkong and Macao Regions on Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
40
|
Yang SQ, Chen YD, Li H, Hui X, Gao WY. Geniposide and Gentiopicroside Suppress Hepatic Gluconeogenesis via Regulation of AKT-FOXO1 Pathway. Arch Med Res 2018; 49:314-322. [DOI: 10.1016/j.arcmed.2018.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/26/2018] [Accepted: 10/15/2018] [Indexed: 10/27/2022]
|
41
|
High fructose diet-induced metabolic syndrome: Pathophysiological mechanism and treatment by traditional Chinese medicine. Pharmacol Res 2018; 130:438-450. [PMID: 29471102 DOI: 10.1016/j.phrs.2018.02.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/09/2018] [Accepted: 02/14/2018] [Indexed: 02/08/2023]
Abstract
Fructose is a natural monosaccharide broadly used in modern society. Over the past few decades, epidemiological studies have demonstrated that high fructose intake is an etiological factor of metabolic syndrome (MetS). This review highlights research advances on fructose-induced MetS, especially the underlying pathophysiological mechanism as well as pharmacotherapy by traditional Chinese medicine (TCM), using the PubMed, Web of science, China National Knowledge Infrastructure, China Science and Technology Journal and Wanfang Data. This review focuses on de novo lipogenesis (DNL) and uric acid (UA) production, two unique features of fructolysis different from glucose glycolysis. High level of DNL and UA production can result in insulin resistance, the key pathological event in developing MetS, mostly through oxidative stress and inflammation. Some other pathologies like the disturbance in brain and gut microbiota in the development of fructose-induced MetS in the past years, are also discussed. In management of MetS, TCM is an excellent representative in alternative and complementary medicine with a complete theory system and substantial herbal remedies. TCMs against MetS or MetS components, including Chinese patent medicines, TCM compound formulas, single TCM herbs and active compounds of TCM herbs, are reviewed on their effects and molecular mechanisms. TCMs with hypouricemic activity, which specially target fructose-induced MetS, are highlighted. And new technologies and strategies (such as high-throughput assay and systems biology) in this field are further discussed. In summary, fructose-induced MetS is a multifactorial disorder with the underlying complex mechanisms. Current clinical and pre-clinical evidence supports the potential of TCMs in management of MetS. Additionally, TCMs may show some advantages against complex MetS as their holistic feature through multiple target actions. However, further work is needed to confirm the effectivity and safety of TCMs by high-standard clinical trials, clarify the molecular mechanisms, and develop new anti-MetS drugs by development and application of optimized and feasible strategies and methods.
Collapse
|
42
|
Ye DW, Rong XL, Xu AM, Guo J. Liver-adipose tissue crosstalk: A key player in the pathogenesis of glucolipid metabolic disease. Chin J Integr Med 2017; 23:410-414. [PMID: 28795382 DOI: 10.1007/s11655-017-2810-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Indexed: 02/06/2023]
Abstract
Glucolipid metabolic disease (GLMD), a complex of interrelated disorders in glucose and lipid metabolism, has become one of the leading chronic diseases causing public and clinical problem worldwide. As the metabolism of lipid and glucose is a highly coordinated process under both physiological and diseased conditions, the impairment in the signals corresponding to the metabolism of either lipid or glucose represents the common mechanism underlying the pathogenesis of GLMD. The liver and adipose tissue are the major metabolic organs responsible for energy utilization and storage, respectively. This review article aims to summarize the current advances in the investigation of the functional roles and the underling mechanisms of the interplay between the liver and adipose tissue in the modulation of GLMD development. Fibroblast growth factor 21 (FGF21) and adiponectin represent the two major hormones secreted from the liver and adipose tissues, respectively. FGF21 exerts pleiotropic effects on regulating glucose and lipid homeostasis majorly through inducing the expression and secretion of adiponectin. Therefore, FGF21-adiponectin axis functions as the key mediator for the crosstalk between the liver and adipose tissue to exert the beneficial effects on the maintenance of the homeostasis of energy consumption. The liver- and adipose tissue-derived factors with pleiotropic effects on regulating of lipid and glucose metabolism function as the key mediator for the crosstalk between these two highly active metabolic organs, thereby coordinating the initiation and development of GLMD.
Collapse
Affiliation(s)
- De-Wei Ye
- Guangdong Research Center of Metabolic Diseases of Integrated Western and Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.,Joint Laboratory between Guangdong and Hong Kong on Metabolic Disease, Guangdong Pharmaceutical University, Guangzhou, 510006, China.,State Key Laboratory of Pharmaceutical Biotechnology, the University of Hong Kong, Hong Kong SAR, China
| | - Xiang-Lu Rong
- Guangdong Research Center of Metabolic Diseases of Integrated Western and Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.,Joint Laboratory between Guangdong and Hong Kong on Metabolic Disease, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ai-Min Xu
- Joint Laboratory between Guangdong and Hong Kong on Metabolic Disease, Guangdong Pharmaceutical University, Guangzhou, 510006, China. .,State Key Laboratory of Pharmaceutical Biotechnology, the University of Hong Kong, Hong Kong SAR, China.
| | - Jiao Guo
- Guangdong Research Center of Metabolic Diseases of Integrated Western and Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.,Joint Laboratory between Guangdong and Hong Kong on Metabolic Disease, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| |
Collapse
|
43
|
Guo J. Research progress on prevention and treatment of glucolipid metabolic disease with integrated traditional Chinese and Western medicine. Chin J Integr Med 2017; 23:403-409. [DOI: 10.1007/s11655-017-2811-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Indexed: 02/02/2023]
|
44
|
Insulin upregulates betatrophin expression via PI3K/Akt pathway. Sci Rep 2017; 7:5594. [PMID: 28717133 PMCID: PMC5514142 DOI: 10.1038/s41598-017-06052-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 06/07/2017] [Indexed: 12/24/2022] Open
Abstract
Betatrophin is regarded as a liver-produced hormone induced by insulin resistance (IR). However, it remains largely unknown how IR regulates betatrophin expression. To study whether IR could regulate betatrophin expression and the corresponding molecular mechanisms, betatrophin levels were examined in 6 in vitro IR models which were established using human hepatocytes L02 with different agents, including tumor necrosis factor-α, interleukin-1β, dexamethasone, palmitate, high glucose and insulin and betatrophin levels were elevated only in the insulin group. These results suggest that it is insulin, not IR that promotes betatrophin expression. In the meantime, PI3K/Akt pathway was activated by insulin and suppressed by above agents that caused IR. Insulin-upregulated betatrophin expression was suppressed by PI3K/Akt inhibitors and IR, suggesting that insulin upregulates and IR decreases betatrophin production through PI3K/Akt pathway. Consistently, the treatment of insulin in mice dose-dependently upregulated betatrophin levels, and the administration of metformin in IR mice also stimulated betatrophin production since published study showed metformin improved PI3K/Akt pathway and IR. In humans, compared with those without insulin treatment, serum betatrophin levels were increased in type 2 diabetic patients with insulin treatment. In conclusion, insulin stimulates betatrophin secretion through PI3K/Akt pathway and IR may play an opposite role.
Collapse
|
45
|
Analysis of altered microRNA expression profiles in the kidney tissues of ethylene glycol-induced hyperoxaluric rats. Mol Med Rep 2016; 14:4650-4658. [PMID: 27748900 PMCID: PMC5102036 DOI: 10.3892/mmr.2016.5833] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 08/26/2016] [Indexed: 11/25/2022] Open
Abstract
Calcium oxalate stones account for >80% of urinary stones, however the mechanisms underlying their formation remains to be elucidated. Hyperoxaluria serves an important role in the pathophysiological process of stone formation. In the present study, differences in the miRNA expression profiles between experimental hyperoxaluric rats and normal rats were analyzed, in order to identify target genes and signaling pathways involved in the pathogenesis of hyperoxaluria. Ethylene glycol and ammonium chloride was fed to male hyperoxaluric rats (EXP) and normal age-matched male rats (CON). The oxalate concentration in the urine of each experimental rat was collected every 24 h and measured on day 14. Three rats exhibiting the highest concentrations were selected for microarray analysis. Microarray analysis was performed to evaluate differences in the expression of microRNA (miRNA) in the kidney tissues from EXP and CON groups, and miRNAs that exhibited a >2-fold or a <0.5-fold alteration in expression between these groups were screened for differential expression patterns according to the threshold P-values. Reverse transcription-quantitative polymerase chain reaction analysis was employed to confirm the microarray results. In order to predict the potential role of miRNAs in pathophysiological processes, gene ontology (GO), pathway and target prediction analyses were conducted. A total of 28 miRNAs were observed to be differentially expressed (>2-fold change) between EXP and CON groups. Among these miRNAs, 20 were upregulated and 8 were downregulated. GO and pathway analyses revealed that the insulin resistance and phosphatidylinositol-bisphosphonate 3-kinase/AKT serine threonine kinase signaling pathways were potentially associated with miRNA regulation in this setting. In conclusion, the results of the present study identified differentially expressed miRNAs in hyperoxaluric rats, and provided a novel perspective for the role of miRNAs in the formation of calcium oxalate stones.
Collapse
|
46
|
Ma K, Miao Y, Gao Y, Tian J, Gao L, Ye D, Qin X. Increasing the Level of IRS-1 and Insulin Pathway Sensitivity by Natural Product Carainterol A. Molecules 2016; 21:E1303. [PMID: 27689988 PMCID: PMC6274213 DOI: 10.3390/molecules21101303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 09/21/2016] [Accepted: 09/23/2016] [Indexed: 01/18/2023] Open
Abstract
Carainterol A is a eudesmane sesquiterpenoid extracted from Caragana intermedia. We have reported that carainterol A showed potent glucose consumption activity in C₂C12 muscle cells and the db/db mouse model. However, the mechanism of the hypoglycemic effect of carainterol A remains elusive. In this article, we present a network pharmacology approach to predict the target and signaling pathway of carainterol A which was subsequently validated in HepG2 cells. It was demonstrated that carainterol A could increase the protein levels of IRS-1 and the downstream protein kinase AKT phosphorylation at a low micromolar level. These findings suggest that carainterol A can be a valuable lead compound and a promising chemical probe for the insulin signaling pathway.
Collapse
Affiliation(s)
- Kaiqing Ma
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China.
| | - Yanhong Miao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China.
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | - Yao Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China.
| | - Junsheng Tian
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China.
| | - Li Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China.
| | - Deyong Ye
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
47
|
Oleanolic Acid Attenuates Insulin Resistance via NF-κB to Regulate the IRS1-GLUT4 Pathway in HepG2 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:643102. [PMID: 26843885 PMCID: PMC4710921 DOI: 10.1155/2015/643102] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 12/09/2015] [Accepted: 12/15/2015] [Indexed: 12/16/2022]
Abstract
The aim of our study is to elucidate the mechanisms of oleanolic acid (OA) on insulin resistance (IR) in HepG2 cells. HepG2 cells were induced with FFA as the insulin resistance model and were treated with OA. Then the glucose content and the levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were analyzed. Moreover, protein expression of nuclear factor kappa B (NF-κB), insulin receptor substrate 1(IRS1), and glucose transporter 4 (GLUT4) in cells treated with OA were measured by Western blot analysis. Additionally, IRS1 protein expression exposed to OA was detected after using pyrrolidine dithiocarbamate (PDTC).Our results revealed that OA decreased the glucose content in HepG2 cells in vitro. Moreover, OA reduced the levels of TNF-α and IL-6 and upregulated IRS1 and GLUT4 protein expression. Furthermore, OA also reduced NF-κB protein expression in insulin-resistant HepG2 cells. After blocking NF-κB, the expression of IRS1 protein had no obvious changes when treated with OA. OA attenuated insulin resistance and decreased the levels of TNF-α and IL-6. Meanwhile, OA decreased NF-κB protein expression and upregulated IRS1 and GLUT4 protein expression. Therefore, regulating the IRS1-GLUT4 pathway via NF-κB was the underlying mechanism of OA on insulin resistance.
Collapse
|
48
|
Magnesium lithospermate B improves metabolic changes in high-fat diet-fed rats with metabolic syndrome. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.01.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|