1
|
Novak JS, Lischin A, Uapinyoying P, Hindupur R, Moon YJ, Bhattacharya S, Tiufekchiev S, Barone V, Mázala DAG, Gamu IH, Walters G, Jaiswal JK. Failure to resolve inflammation contributes to juvenile onset cardiac damage in a mouse model of Duchenne Muscular Dystrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.15.607998. [PMID: 39185176 PMCID: PMC11343189 DOI: 10.1101/2024.08.15.607998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Absence of dystrophin protein causes cardiac dysfunction in patients with Duchenne muscular dystrophy (DMD). Unlike boys with DMD, the common mouse model of DMD (B10-mdx) does not manifest cardiac deficits until late adulthood. This has limited our understanding of the mechanism and therapeutic approaches to target the pediatric onset of cardiac pathology in DMD. Here we show that the mdx mouse model on the DBA/2J genetic background (D2-mdx) displays juvenile-onset cardiac degeneration. Molecular and histological analysis revealed that cardiac damage in this model is linked to increased leukocyte chemotactic signaling and an inability to resolve inflammation. These deficiencies result in chronic inflammation and fibrotic conversion of the extracellular matrix (ECM) in the juvenile D2-mdx heart. To address these pathologies, we tested the utility of pro-resolution therapy to clear chronic cardiac inflammation. Use of an N-formyl peptide receptor (FPR) agonist helped physiologically resolve inflammation and mitigate the downstream events that lead to fibrotic degeneration of cardiomyocytes, preventing juvenile onset cardiac muscle loss. These results establish the utility of D2-mdx model to study events associated with pediatric-onset cardiac damage and demonstrates pro-resolution therapy as an alternate to anti-inflammatory therapy for treating cardiac degenerative pathology responsible for cardiomyopathy in DMD patients.
Collapse
Affiliation(s)
- James S. Novak
- Center for Genetic Medicine Research, Children’s National Research Institute, Children’s National Research and Innovation Campus, Children’s National Hospital, Washington, D.C., 20012, USA
- Departments of Pediatrics and Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, D.C., 20037, USA
| | - Amy Lischin
- Center for Genetic Medicine Research, Children’s National Research Institute, Children’s National Research and Innovation Campus, Children’s National Hospital, Washington, D.C., 20012, USA
- Columbian College of Arts and Sciences, The George Washington University, Washington, D.C. 20052, USA
| | - Prech Uapinyoying
- Center for Genetic Medicine Research, Children’s National Research Institute, Children’s National Research and Innovation Campus, Children’s National Hospital, Washington, D.C., 20012, USA
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ravi Hindupur
- Center for Genetic Medicine Research, Children’s National Research Institute, Children’s National Research and Innovation Campus, Children’s National Hospital, Washington, D.C., 20012, USA
| | - Young Jae Moon
- Center for Genetic Medicine Research, Children’s National Research Institute, Children’s National Research and Innovation Campus, Children’s National Hospital, Washington, D.C., 20012, USA
- Department of Biochemistry and Orthopaedic Surgery, Jeonbuk National University Medical School and Hospital, Jeonju, 54907, Republic of Korea
| | - Surajit Bhattacharya
- Center for Genetic Medicine Research, Children’s National Research Institute, Children’s National Research and Innovation Campus, Children’s National Hospital, Washington, D.C., 20012, USA
| | - Sarah Tiufekchiev
- Center for Genetic Medicine Research, Children’s National Research Institute, Children’s National Research and Innovation Campus, Children’s National Hospital, Washington, D.C., 20012, USA
- Integrated Biomedical Sciences, The George Washington University School of Medicine and Health Sciences, Washington, D.C., 20037, USA
| | - Victoria Barone
- Center for Genetic Medicine Research, Children’s National Research Institute, Children’s National Research and Innovation Campus, Children’s National Hospital, Washington, D.C., 20012, USA
- Columbian College of Arts and Sciences, The George Washington University, Washington, D.C. 20052, USA
| | - Davi A. G. Mázala
- Center for Genetic Medicine Research, Children’s National Research Institute, Children’s National Research and Innovation Campus, Children’s National Hospital, Washington, D.C., 20012, USA
- Department of Kinesiology, College of Health Professions, Towson University, Towson, MD, 21252, USA
| | - Iteoluwakishi H. Gamu
- Center for Genetic Medicine Research, Children’s National Research Institute, Children’s National Research and Innovation Campus, Children’s National Hospital, Washington, D.C., 20012, USA
| | - Gabriela Walters
- Center for Genetic Medicine Research, Children’s National Research Institute, Children’s National Research and Innovation Campus, Children’s National Hospital, Washington, D.C., 20012, USA
| | - Jyoti K. Jaiswal
- Center for Genetic Medicine Research, Children’s National Research Institute, Children’s National Research and Innovation Campus, Children’s National Hospital, Washington, D.C., 20012, USA
- Departments of Pediatrics and Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, D.C., 20037, USA
| |
Collapse
|
2
|
Milan M, Maiullari F, Chirivì M, Ceraolo MG, Zigiotto R, Soluri A, Maiullari S, Landoni E, Silvestre DD, Brambilla F, Mauri P, De Paolis V, Fratini N, Crosti MC, Cordiglieri C, Parisi C, Calogero A, Seliktar D, Torrente Y, Lanzuolo C, Dotti G, Toccafondi M, Bombaci M, De Falco E, Bearzi C, Rizzi R. Macrophages producing chondroitin sulfate proteoglycan-4 induce neuro-cardiac junction impairment in Duchenne muscular dystrophy. J Pathol 2025; 265:1-13. [PMID: 39523812 PMCID: PMC11638662 DOI: 10.1002/path.6362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/12/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024]
Abstract
Duchenne muscular dystrophy (DMD) is caused by the absence of the full form of the dystrophin protein, which is essential for maintaining the structural integrity of muscle cells, including those in the heart and respiratory system. Despite progress in understanding the molecular mechanisms associated with DMD, myocardial insufficiency persists as the primary cause of mortality, and existing therapeutic strategies remain limited. This study investigates the hypothesis that a dysregulation of the biological communication between infiltrating macrophages (MPs) and neurocardiac junctions exists in dystrophic cardiac tissue. In a mouse model of DMD (mdx), this phenomenon is influenced by the over-release of chondroitin sulfate proteoglycan-4 (CSPG4), a key inhibitor of nerve sprouting and a modulator of the neural function, by MPs infiltrating the cardiac tissue and associated with dilated cardiomyopathy, a hallmark of DMD. Givinostat, the histone deacetylase inhibitor under current development as a clinical treatment for DMD, is effective at both restoring a physiological microenvironment at the neuro-cardiac junction and cardiac function in mdx mice in addition to a reduction in cardiac fibrosis, MP-mediated inflammation, and tissue CSPG4 content. This study provides novel insight into the pathophysiology of DMD in the heart, identifying potential new biological targets. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Marika Milan
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
- Fondazione Istituto Nazionale di Genetica Molecolare (INGM) ‘Romeo ed Enrica Invernizzi’MilanItaly
| | - Fabio Maiullari
- Fondazione Istituto Nazionale di Genetica Molecolare (INGM) ‘Romeo ed Enrica Invernizzi’MilanItaly
- PhD Program in Cellular and Molecular Biology, Department of BiologyUniversity of Rome ‘Tor Vergata’RomeItaly
| | - Maila Chirivì
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
- Department of Molecular MedicineSapienza UniversityRomeItaly
| | - Maria Grazia Ceraolo
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
- Fondazione Istituto Nazionale di Genetica Molecolare (INGM) ‘Romeo ed Enrica Invernizzi’MilanItaly
| | - Rebecca Zigiotto
- Fondazione Istituto Nazionale di Genetica Molecolare (INGM) ‘Romeo ed Enrica Invernizzi’MilanItaly
| | - Andrea Soluri
- Unit of Molecular NeurosciencesUniversity Campus Bio‐Medico, RomeRomeItaly
- Institute of Biochemistry and Cell BiologyNational Research CouncilRomeItaly
| | - Silvia Maiullari
- Institute of Biochemistry and Cell BiologyNational Research CouncilRomeItaly
| | - Elisa Landoni
- Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | | | | | - Pierluigi Mauri
- Institute of Biomedical TechnologiesNational Research CouncilMilanItaly
| | - Veronica De Paolis
- Institute of Biochemistry and Cell BiologyNational Research CouncilRomeItaly
| | - Nicole Fratini
- Department of Molecular MedicineSapienza UniversityRomeItaly
| | - Maria Cristina Crosti
- Fondazione Istituto Nazionale di Genetica Molecolare (INGM) ‘Romeo ed Enrica Invernizzi’MilanItaly
| | - Chiara Cordiglieri
- Fondazione Istituto Nazionale di Genetica Molecolare (INGM) ‘Romeo ed Enrica Invernizzi’MilanItaly
| | - Chiara Parisi
- Institute of Biochemistry and Cell BiologyNational Research CouncilRomeItaly
| | - Antonella Calogero
- Department of Medical‐Surgical Sciences and BiotechnologiesSapienza University of RomeLatinaItaly
| | - Dror Seliktar
- Department of Biomedical EngineeringTechnion InstituteHaifaIsrael
| | - Yvan Torrente
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Chiara Lanzuolo
- Fondazione Istituto Nazionale di Genetica Molecolare (INGM) ‘Romeo ed Enrica Invernizzi’MilanItaly
- Institute of Biomedical TechnologiesNational Research CouncilMilanItaly
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Mirco Toccafondi
- Fondazione Istituto Nazionale di Genetica Molecolare (INGM) ‘Romeo ed Enrica Invernizzi’MilanItaly
| | - Mauro Bombaci
- Fondazione Istituto Nazionale di Genetica Molecolare (INGM) ‘Romeo ed Enrica Invernizzi’MilanItaly
| | - Elena De Falco
- Department of Medical‐Surgical Sciences and BiotechnologiesSapienza University of RomeLatinaItaly
| | - Claudia Bearzi
- Fondazione Istituto Nazionale di Genetica Molecolare (INGM) ‘Romeo ed Enrica Invernizzi’MilanItaly
- Institute of Biomedical TechnologiesNational Research CouncilMilanItaly
| | - Roberto Rizzi
- Fondazione Istituto Nazionale di Genetica Molecolare (INGM) ‘Romeo ed Enrica Invernizzi’MilanItaly
- Department of Medical‐Surgical Sciences and BiotechnologiesSapienza University of RomeLatinaItaly
| |
Collapse
|
3
|
Otake M, Imamura M, Enya S, Kangawa A, Shibata M, Ozaki K, Kimura K, Ono E, Aoki Y. Severe cardiac and skeletal manifestations in DMD-edited microminipigs: an advanced surrogate for Duchenne muscular dystrophy. Commun Biol 2024; 7:523. [PMID: 38702481 PMCID: PMC11068776 DOI: 10.1038/s42003-024-06222-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/19/2024] [Indexed: 05/06/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is an intractable X-linked muscular dystrophy caused by mutations in the DMD gene. While many animal models have been used to study the disease, translating findings to humans has been challenging. Microminipigs, with their pronounced physiological similarity to humans and notably compact size amongst pig models, could offer a more representative model for human diseases. Here, we accomplished precise DMD modification in microminipigs by co-injecting embryos with Cas9 protein and a single-guide RNA targeting exon 23 of DMD. The DMD-edited microminipigs exhibited pronounced clinical phenotypes, including perturbed locomotion and body-wide skeletal muscle weakness and atrophy, alongside augmented serum creatine kinase levels. Muscle weakness was observed as of one month of age, respiratory and cardiac dysfunctions emerged by the sixth month, and the maximum lifespan was 29.9 months. Histopathological evaluations confirmed dystrophin deficiency and pronounced dystrophic pathology in the skeletal and myocardial tissues, demonstrating that these animals are an unprecedented model for studying human DMD. The model stands as a distinct and crucial tool in biomedical research, offering deep understanding of disease progression and enhancing therapeutic assessments, with potential to influence forthcoming treatment approaches.
Collapse
Affiliation(s)
- Masayoshi Otake
- Swine and Poultry Research Center, Shizuoka Prefectural Research Institute of Animal Industry, Kikugawa, Shizuoka, 439-0037, Japan.
| | - Michihiro Imamura
- Department of Molecular Therapy, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Tokyo, 187-8502, Japan
| | - Satoko Enya
- Swine and Poultry Research Center, Shizuoka Prefectural Research Institute of Animal Industry, Kikugawa, Shizuoka, 439-0037, Japan
| | - Akihisa Kangawa
- Swine and Poultry Research Center, Shizuoka Prefectural Research Institute of Animal Industry, Kikugawa, Shizuoka, 439-0037, Japan
| | - Masatoshi Shibata
- Swine and Poultry Research Center, Shizuoka Prefectural Research Institute of Animal Industry, Kikugawa, Shizuoka, 439-0037, Japan
| | - Kinuyo Ozaki
- Department of Biomedicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
- Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Koichi Kimura
- Departments of Laboratory Medicine/Cardiology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Etsuro Ono
- Department of Biomedicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
- Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Tokyo, 187-8502, Japan.
| |
Collapse
|
4
|
Bencze M, Periou B, Punzón I, Barthélémy I, Taglietti V, Hou C, Zaidan L, Kefi K, Blot S, Agbulut O, Gervais M, Derumeaux G, Authier F, Tiret L, Relaix F. Receptor interacting protein kinase-3 mediates both myopathy and cardiomyopathy in preclinical animal models of Duchenne muscular dystrophy. J Cachexia Sarcopenia Muscle 2023; 14:2520-2531. [PMID: 37909859 PMCID: PMC10751447 DOI: 10.1002/jcsm.13265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 03/27/2023] [Accepted: 04/24/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a progressive muscle degenerative disorder, culminating in a complete loss of ambulation, hypertrophic cardiomyopathy and a fatal cardiorespiratory failure. Necroptosis is the form of necrosis that is dependent upon the receptor-interacting protein kinase (RIPK) 3; it is involved in several inflammatory and neurodegenerative conditions. We previously identified RIPK3 as a key player in the acute myonecrosis affecting the hindlimb muscles of the mdx dystrophic mouse model. Whether necroptosis also mediates respiratory and heart disorders in DMD is currently unknown. METHODS Evidence of activation of the necroptotic axis was examined in dystrophic tissues from Golden retriever muscular dystrophy (GRMD) dogs and R-DMDdel52 rats. A functional assessment of the involvement of necroptosis in dystrophic animals was performed on mdx mice that were genetically depleted for RIPK3. Dystrophic mice aged from 12 to 18 months were analysed by histology and molecular biology to compare the phenotype of muscles from mdxRipk3+/+ and mdxRipk3-/- mice. Heart function was also examined by echocardiography in 40-week-old mice. RESULTS RIPK3 expression in sartorius and biceps femoris muscles from GRMD dogs positively correlated to myonecrosis levels (r = 0.81; P = 0.0076). RIPK3 was also found elevated in the diaphragm (P ≤ 0.05). In the slow-progressing heart phenotype of GRMD dogs, the phosphorylated form of RIPK1 at the Serine 161 site was dramatically increased in cardiomyocytes. A similar p-RIPK1 upregulation characterized the cardiomyocytes of the severe DMDdel52 rat model, associated with a marked overexpression of Ripk1 (P = 0.007) and Ripk3 (P = 0.008), indicating primed activation of the necroptotic pathway in the dystrophic heart. MdxRipk3-/- mice displayed decreased compensatory hypertrophy of the heart (P = 0.014), and echocardiography showed a 19% increase in the relative wall thickness (P < 0.05) and 29% reduction in the left ventricle mass (P = 0.0144). Besides, mdxRipk3-/- mice presented no evidence of a regenerative default or sarcopenia in skeletal muscles, moreover around 50% less affected by fibrosis (P < 0.05). CONCLUSIONS Our data highlight molecular and histological evidence that the necroptotic pathway is activated in degenerative tissues from dystrophic animal models, including the diaphragm and the heart. We also provide the genetic proof of concept that selective inhibition of necroptosis in dystrophic condition improves both histological features of muscles and cardiac function, suggesting that prevention of necroptosis is susceptible to providing multiorgan beneficial effects for DMD.
Collapse
Affiliation(s)
- Maximilien Bencze
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| | - Baptiste Periou
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| | - Isabel Punzón
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| | - Inès Barthélémy
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| | - Valentina Taglietti
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| | - Cyrielle Hou
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| | - Louai Zaidan
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| | - Kaouthar Kefi
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| | - Stéphane Blot
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| | - Onnik Agbulut
- Institut de Biologie Paris‐Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and AgeingSorbonne UniversitéParisFrance
| | - Marianne Gervais
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| | - Geneviève Derumeaux
- Team Derumeaux, Department of Physiology, Henri Mondor Hospital, FHU‐SENEC, AP‐HPU955‐IMRB, Université Paris‐Est Créteil (UPEC)CréteilFrance
| | - François‐Jérôme Authier
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| | - Laurent Tiret
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| | - Fréderic Relaix
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| |
Collapse
|
5
|
Onódi Z, Szabó PL, Kucsera D, Pokreisz P, Dostal C, Hilber K, Oudit GY, Podesser BK, Ferdinandy P, Varga ZV, Kiss A. Inflammasome Activity in the Skeletal Muscle and Heart of Rodent Models for Duchenne Muscular Dystrophy. Int J Mol Sci 2023; 24:8497. [PMID: 37239853 PMCID: PMC10218525 DOI: 10.3390/ijms24108497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is characterized by wasting of muscles that leads to difficulty moving and premature death, mainly from heart failure. Glucocorticoids are applied in the management of the disease, supporting the hypothesis that inflammation may be driver as well as target. However, the inflammatory mechanisms during progression of cardiac and skeletal muscle dysfunction are still not well characterized. Our objective was to characterize the inflammasomes in myocardial and skeletal muscle in rodent models of DMD. Gastrocnemius and heart samples were collected from mdx mice and DMDmdx rats (3 and 9-10 months). Inflammasome sensors and effectors were assessed by immunoblotting. Histology was used to assess leukocyte infiltration and fibrosis. In gastrocnemius, a tendency towards elevation of gasdermin D irrespective of the age of the animal was observed. The adaptor protein was elevated in the mdx mouse skeletal muscle and heart. Increased cleavage of the cytokines was observed in the skeletal muscle of the DMDmdx rats. Sensor or cytokine expression was not changed in the tissue samples of the mdx mice. In conclusion, inflammatory responses are distinct between the skeletal muscle and heart in relevant models of DMD. Inflammation tends to decrease over time, supporting the clinical observations that the efficacy of anti-inflammatory therapies might be more prominent in the early stage.
Collapse
Affiliation(s)
- Zsófia Onódi
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; (Z.O.)
- HCEMM-SE Cardiometabolic Immunology Research Group, Semmelweis University, 1085 Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Semmelweis University, 1085 Budapest, Hungary
| | - Petra Lujza Szabó
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Dániel Kucsera
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; (Z.O.)
- HCEMM-SE Cardiometabolic Immunology Research Group, Semmelweis University, 1085 Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Semmelweis University, 1085 Budapest, Hungary
| | - Péter Pokreisz
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Christopher Dostal
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Karlheinz Hilber
- Department of Neurophysiology & Neuropharmacology, Center for Physiology & Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Gavin Y. Oudit
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Bruno K. Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; (Z.O.)
- Pharmahungary Group, 6728 Szeged, Hungary
| | - Zoltán V. Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; (Z.O.)
- HCEMM-SE Cardiometabolic Immunology Research Group, Semmelweis University, 1085 Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Semmelweis University, 1085 Budapest, Hungary
| | - Attila Kiss
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
6
|
Ueda J, Saito S. Evaluation of Cardiac Function in Young Mdx Mice Using MRI with Feature Tracking and Self-Gated Magnetic Resonance Cine Imaging. Diagnostics (Basel) 2023; 13:diagnostics13081472. [PMID: 37189573 DOI: 10.3390/diagnostics13081472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/31/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
This study aimed to evaluate cardiac function in a young mouse model of Duchenne muscular dystrophy (mdx) using cardiac magnetic resonance imaging (MRI) with feature tracking and self-gated magnetic resonance cine imaging. Cardiac function was evaluated in mdx and control mice (C57BL/6JJmsSlc mice) at 8 and 12 weeks of age. Preclinical 7-T MRI was used to capture short-axis, longitudinal two-chamber view and longitudinal four-chamber view cine images of mdx and control mice. Strain values were measured and evaluated from cine images acquired using the feature tracking method. The left ventricular ejection fraction was significantly less (p < 0.01 each) in the mdx group at both 8 (control, 56.6 ± 2.3% mdx, 47.2 ± 7.4%) and 12 weeks (control, 53.9 ± 3.3% mdx, 44.1 ± 2.7%). In the strain analysis, all strain value peaks were significantly less in mdx mice, except for the longitudinal strain of the four-chamber view at both 8 and 12 weeks of age. Strain analysis with feature tracking and self-gated magnetic resonance cine imaging is useful for assessing cardiac function in young mdx mice.
Collapse
Affiliation(s)
- Junpei Ueda
- Department of Medical Physics and Engineering, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita 560-0871, Osaka, Japan
| | - Shigeyoshi Saito
- Department of Medical Physics and Engineering, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita 560-0871, Osaka, Japan
- Department of Advanced Medical Technologies, National Cardiovascular and Cerebral Research Center, Suita 564-8565, Osaka, Japan
| |
Collapse
|
7
|
He X, Liu J, Gu F, Chen J, Lu YW, Ding J, Guo H, Nie M, Kataoka M, Lin Z, Hu X, Chen H, Liao X, Dong Y, Min W, Deng ZL, Pu WT, Huang ZP, Wang DZ. Cardiac CIP protein regulates dystrophic cardiomyopathy. Mol Ther 2022; 30:898-914. [PMID: 34400329 PMCID: PMC8822131 DOI: 10.1016/j.ymthe.2021.08.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/24/2021] [Accepted: 08/08/2021] [Indexed: 02/04/2023] Open
Abstract
Heart failure is a leading cause of fatality in Duchenne muscular dystrophy (DMD) patients. Previously, we discovered that cardiac and skeletal-muscle-enriched CIP proteins play important roles in cardiac function. Here, we report that CIP, a striated muscle-specific protein, participates in the regulation of dystrophic cardiomyopathy. Using a mouse model of human DMD, we found that deletion of CIP leads to dilated cardiomyopathy and heart failure in young, non-syndromic mdx mice. Conversely, transgenic overexpression of CIP reduces pathological dystrophic cardiomyopathy in old, syndromic mdx mice. Genome-wide transcriptome analyses reveal that molecular pathways involving fibrogenesis and oxidative stress are affected in CIP-mediated dystrophic cardiomyopathy. Mechanistically, we found that CIP interacts with dystrophin and calcineurin (CnA) to suppress the CnA-Nuclear Factor of Activated T cells (NFAT) pathway, which results in decreased expression of Nox4, a key component of the oxidative stress pathway. Overexpression of Nox4 accelerates the development of dystrophic cardiomyopathy in mdx mice. Our study indicates CIP is a modifier of dystrophic cardiomyopathy and a potential therapeutic target for this devastating disease.
Collapse
Affiliation(s)
- Xin He
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Jianming Liu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA
| | - Fei Gu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA
| | - Jinghai Chen
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA; Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yao Wei Lu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA
| | - Jian Ding
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA
| | - Haipeng Guo
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA; Department of Critical Care and Emergency Medicine, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Mao Nie
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA; Department of Orthopaedic Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Masaharu Kataoka
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA; Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Zhiqiang Lin
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA
| | - Xiaoyun Hu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA
| | - Huaqun Chen
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA; Department of Biology, Nanjing Normal University, Nanjing, China
| | - Xinxue Liao
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Yugang Dong
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Wang Min
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhong-Liang Deng
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA; Department of Orthopaedic Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Zhan-Peng Huang
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, China.
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
8
|
Uryash A, Mijares A, Esteve E, Adams JA, Lopez JR. Cardioprotective Effect of Whole Body Periodic Acceleration in Dystrophic Phenotype mdx Rodent. Front Physiol 2021; 12:658042. [PMID: 34017265 PMCID: PMC8129504 DOI: 10.3389/fphys.2021.658042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/09/2021] [Indexed: 01/14/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is characterized by progressive muscle wasting and the development of a dilated cardiomyopathy (DCM), which is the leading cause of death in DMD patients. Despite knowing the cause of DMD, there are currently no therapies which can prevent or reverse its inevitable progression. We have used whole body periodic acceleration (WBPA) as a novel tool to enhance intracellular constitutive nitric oxide (NO) production. WBPA adds small pulses to the circulation to increase pulsatile shear stress, thereby upregulating endothelial nitric oxide synthase (eNOS) and neuronal nitric oxide synthase (nNOS) and subsequently elevating the production of NO. Myocardial cells from dystrophin-deficient 15-month old mdx mice have contractile deficiency, which is associated with elevated concentrations of diastolic Ca2+ ([Ca2+]d), Na+ ([Na+]d), and reactive oxygen species (ROS), increased cell injury, and decreased cell viability. Treating 12-month old mdx mice with WBPA for 3 months reduced cardiomyocyte [Ca2+]d and [Na+]d overload, decreased ROS production, and upregulated expression of the protein utrophin resulting in increased cell viability, reduced cardiomyocyte damage, and improved contractile function compared to untreated mdx mice.
Collapse
Affiliation(s)
- Arkady Uryash
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, FL, United States
| | - Alfredo Mijares
- Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - Eric Esteve
- UMR 5525 UGA-CNRS-Grenoble INP-VetAgro Sup TIMC, Université Grenoble Alpes, Grenoble, France
| | - Jose A Adams
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, FL, United States
| | - Jose R Lopez
- Department of Molecular Biosciences, University of California, Davis, Davis, CA, United States.,Department of Research, Mount Sinai Medical Center, Miami Beach, FL, United States
| |
Collapse
|
9
|
Leng L, Dong X, Gao X, Ran N, Geng M, Zuo B, Wu Y, Li W, Yan H, Han G, Yin H. Exosome-mediated improvement in membrane integrity and muscle function in dystrophic mice. Mol Ther 2021; 29:1459-1470. [PMID: 33333294 PMCID: PMC8058444 DOI: 10.1016/j.ymthe.2020.12.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/28/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a devastating genetic disorder that leads to compromised cellular membranes, caused by the absence of membrane-bound dystrophin protein. Muscle membrane leakage results in disrupted intracellular homeostasis, protein degradation, and muscle wasting. Improving muscle membrane integrity may delay disease progression and extend the lifespan of DMD patients. Here, we demonstrate that exosomes, membranous extracellular vesicles, can elicit functional improvements in dystrophic mice by improving muscle membrane integrity. Systemic administration of exosomes from different sources induced phenotypic rescue and mitigated pathological progression in dystrophic mice without detectable toxicity. Improved membrane integrity conferred by exosomes inhibited intracellular calcium influx and calcium-dependent activation of calpain proteases, preventing the degradation of the destabilized dystrophin-associated protein complex. We show that exosomes, particularly myotube-derived exosomes, induced functional improvements and alleviated muscle deterioration by stabilizing damaged muscle membrane in dystrophic mice. Our findings suggest that exosomes may have therapeutic implications for DMD and other diseases with compromised membranes.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Calpain/genetics
- Cell Membrane/genetics
- Cell Membrane/pathology
- Disease Models, Animal
- Dystrophin/genetics
- Exosomes/genetics
- Exosomes/metabolism
- Humans
- Mice
- Mice, Inbred mdx
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/pathology
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/pathology
- Peptide Hydrolases/genetics
Collapse
Affiliation(s)
- Ling Leng
- Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Xue Dong
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin 300070, China; Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xianjun Gao
- Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Ning Ran
- Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Mengyuan Geng
- Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Bingfeng Zuo
- Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Yingjie Wu
- Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Wei Li
- Department of Technology, Tianjin Ever Union Biotechnology, Tianjin 301900, China
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Gang Han
- School of Medical Laboratory, Tianjin Medical University, Guangdong Road, Tianjin 300203, China.
| | - HaiFang Yin
- Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, China; School of Medical Laboratory, Tianjin Medical University, Guangdong Road, Tianjin 300203, China; Department of Neurology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
10
|
Kincl V, Panovský R, Pešl M, Máchal J, Juříková L, Haberlová J, Masárová L. Echocardiographic signs of subclinical cardiac function impairment in Duchenne dystrophy gene carriers. Sci Rep 2020; 10:20794. [PMID: 33247228 PMCID: PMC7695725 DOI: 10.1038/s41598-020-77882-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 11/17/2020] [Indexed: 11/16/2022] Open
Abstract
To assess subclinical cardiac function impairment in Duchenne dystrophy (DMD) female carriers. Forty-four female subjects proved as DMD carriers underwent echocardiographic examination including tissue Doppler imaging (TDI) of mitral and tricuspid annulus. Seventeen age-matched healthy female subjects served as controls. A significant differences in peak systolic annular velocity (Sa) between carriers and controls were found for lateral and septal part of the mitral annulus and for tricuspid annulus (0.09 vs. 0.11 m/s, p < 0.001, 0.08 vs. 0.09 m/s, p < 0.01 and 0.13 vs. 0.14 m/s, p = 0.02 respectively). There was also difference in early diastolic velocity (Ea) of the septal part of the mitral annulus (0.11 vs. 0.13 m/s, p = 0.03). The subclinical deterioration of systolic function is presented even in asymptomatic DMD female carriers.
Collapse
Affiliation(s)
- Vladimír Kincl
- Department of Internal Medicine/Cardiology, Faculty of Medicine, St. Anne's University Hospital, Masaryk University, Brno, Czech Republic. .,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
| | - Roman Panovský
- Department of Internal Medicine/Cardiology, Faculty of Medicine, St. Anne's University Hospital, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Martin Pešl
- Department of Internal Medicine/Cardiology, Faculty of Medicine, St. Anne's University Hospital, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Máchal
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.,Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lenka Juříková
- Department of Pediatric Neurology, Faculty of Medicine, University Hospital Brno, Masaryk University, Brno, Czech Republic
| | - Jana Haberlová
- Department of Pediatric Neurology, Second Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Lucia Masárová
- Department of Internal Medicine/Cardiology, Faculty of Medicine, St. Anne's University Hospital, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
11
|
Sayed A, Pal S, Poplawska M, Aronow WS, Frishman WH, Fuisz A, Jacobson JT. Arrhythmogenic Right Ventricular Cardiomyopathy Diagnosis. Cardiol Rev 2020; 28:319-324. [PMID: 32032135 DOI: 10.1097/crd.0000000000000292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Arrhythmogenic right ventricular cardiomyopathy, formerly called "arrhythmogenic right ventricular dysplasia," is an under-recognized clinical entity characterized by ventricular arrhythmias and a characteristic ventricular pathology. Diagnosis is often difficult due to the nonspecific nature of the disease and the broad spectrum of phenotypic variations. Therefore, consensus diagnostic criteria have been developed which combine electrocardiographic, echocardiographic, cardiac magnetic resonance imaging and histologic criteria. In 1994, an international task force first proposed the major and minor diagnostic criteria of arrhythmogenic right ventricular cardiomyopathy based on family history, arrhythmias, electrocardiographic abnormalities, tissue characterization, and structural and functional right ventricular abnormalities. In 2010, the task force criteria were revised to include quantitative abnormalities. These diagnostic modalities and the most recent task force criteria are discussed in this review.
Collapse
Affiliation(s)
- Amer Sayed
- From the Department of Medicine, Cardiology Division, New York Medical College/Westchester Medical Center, Valhalla, NY
| | | | | | | | | | | | | |
Collapse
|
12
|
Jiang K, Fang Y, Ferguson CM, Tang H, Mishra PK, Macura SI, Lerman LO. Quantitative Magnetization Transfer Detects Renal Fibrosis in Murine Kidneys With Renal Artery Stenosis. J Magn Reson Imaging 2020; 53:10.1002/jmri.27370. [PMID: 32964585 PMCID: PMC7965778 DOI: 10.1002/jmri.27370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Renal fibrosis is a common pathway in tubulointerstitial injury and a major determinant of renal insufficiency. Collagen deposition, a key feature of renal fibrosis, may serve as an imaging biomarker to differentiate scarred from healthy kidneys. PURPOSE To test the feasibility of using quantitative magnetization transfer (qMT), which assesses tissue macromolecule content, to measure renal fibrosis. STUDY TYPE Prospective. ANIMAL MODEL Fifteen 129S1 mice were studied 4 weeks after either sham (n = 7) or unilateral renal artery stenosis (RAS, n = 8) surgeries. FIELD STRENGTH/SEQUENCE Magnetization transfer (MT)-weighted images were acquired at 16.4T using an MT-prepared fast-low-angle-shot sequence. Renal B0, B1, and T1 maps were also acquired, using a dual-echo gradient echo, an actual flip angle, and inversion recovery method, respectively. ASSESSMENT A two-pool model was used to estimate the bound water fraction (f) and other tissue imaging biomarkers. Masson's trichrome staining was subsequently performed ex vivo to evaluate renal fibrosis. STATISTICAL TESTS Comparisons of renal parameters between sham and RAS were performed using independent samples t-tests. Pearson's correlation was conducted to investigate the relationship between renal fibrosis by histology and the qMT-derived bound pool fraction f. RESULTS The two-pool model provided accurate fittings of measured MT signal. The qMT-derived f of RAS kidneys was significantly increased compared to sham in all kidney zones (renal cortex [CO], 7.6 ± 2.4% vs. 4.6 ± 0.6%; outer medulla [OM], 8.2 ± 4.2% vs. 4.2 ± 0.9%; inner medulla [IM] + P, 5.8 ± 1.6% vs. 2.9 ± 0.6%, all P < 0.05). Measured f correlated well with histological fibrosis in all kidney zones (CO, Pearson's correlation coefficient r = 0.95; OM, r = 0.93; IM + P, r = 0.94, all P < 0.05). DATA CONCLUSION The bound pool fraction f can be quantified using qMT at 16.4T in murine kidneys, increases significantly in fibrotic RAS kidneys, and correlates well with fibrosis by histology. Therefore, qMT may constitute a valuable tool for measuring renal fibrosis in RAS. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY STAGE: 3.
Collapse
Affiliation(s)
- Kai Jiang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Yiyuan Fang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Prasanna K. Mishra
- Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Slobodan I. Macura
- Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
13
|
Cardiac MR segmentation based on sequence propagation by deep learning. PLoS One 2020; 15:e0230415. [PMID: 32271777 PMCID: PMC7144953 DOI: 10.1371/journal.pone.0230415] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 02/28/2020] [Indexed: 11/19/2022] Open
Abstract
Accurate segmentation of myocardial in cardiac MRI (magnetic resonance image) is key to effective rapid diagnosis and quantitative pathology analysis. However, a low-quality CMR (cardiac magnetic resonance) image with a large amount of noise makes it extremely difficult to accurately and quickly manually segment the myocardial. In this paper, we propose a method for CMR segmentation based on U-Net and combined with image sequence information. The method can effectively segment from the top slice to the bottom slice of the CMR. During training, each input slice depends on the slice below it. In other words, the predicted segmentation result depends on the existing segmentation label of the previous slice. 3D sequence information is fully utilized. Our method was validated on the ACDC dataset, which included CMR images of 100 patients (1700 2D MRI). Experimental results show that our method can segment the myocardial quickly and efficiently and is better than the current state-of-the-art methods. When evaluating 340 CMR image, our model yielded an average dice score of 85.02 ± 0.15, which is much higher than the existing classical segmentation method(Unet, Dice score = 0.78 ± 0.3).
Collapse
|
14
|
Panovský R, Pešl M, Holeček T, Máchal J, Feitová V, Mrázová L, Haberlová J, Slabá A, Vít P, Stará V, Kincl V. Cardiac profile of the Czech population of Duchenne muscular dystrophy patients: a cardiovascular magnetic resonance study with T1 mapping. Orphanet J Rare Dis 2019; 14:10. [PMID: 30626423 PMCID: PMC6327529 DOI: 10.1186/s13023-018-0986-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/21/2018] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The progressive cardiomyopathy that develops in boys with Duchenne and Becker muscular dystrophy (DMD/BMD) is presumed to be a secondary consequence of the fibrosis within the myocardium. There are only limited data on using parametric imaging in these patients. The purpose of this study was to assess native T1 and extracellular volume (ECV) values in DMD patients. METHODS The Czech population of males with DMD/BMD was screened. All eligible patients fulfilling the inclusion criteria were included. Forty nine males underwent cardiac magnetic resonance (MR) examination including T1 native and post-contrast mapping measurements. One DMD patient and all BMD patients were excluded from statistical analysis. Three groups were compared - Group D1 - DMD patients without late gadolinium enhancement (LGE) (n = 23), Group D2 - DMD patients with LGE (n = 20), and Group C - gender matched controls (n = 13). RESULTS Compared to controls, both DMD groups had prolonged T1 native relaxation time. These results are concordant in all 6 segments as well as in global values (1041 ± 31 ms and 1043 ± 37 ms vs. 983 ± 15 ms, both p < 0.05). Group D2 had significantly increased global ECV (0.28 ± 0.044 vs. 0.243 ± 0.013, p < 0.05) and segmental ECV in inferolateral and anterolateral segments in comparison with controls. The results were also significant after adjustment for subjects' age. CONCLUSION DMD males had increased native T1 relaxation time independent of the presence or absence of myocardial fibrosis. Cardiac MR may provide clinically useful information even without contrast media administration.
Collapse
Affiliation(s)
- Roman Panovský
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic. .,1st Department of Internal Medicine/Cardioangiology, St. Anne's University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | - Martin Pešl
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.,1st Department of Internal Medicine/Cardioangiology, St. Anne's University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Tomáš Holeček
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.,Department of Medical Imaging, St. Anne's University Hospital, Brno, Czech Republic
| | - Jan Máchal
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.,Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Věra Feitová
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.,Department of Medical Imaging, St. Anne's University Hospital, Brno, Czech Republic
| | - Lenka Mrázová
- Department of Pediatric Neurology, University Hospital Brno, Brno, Czech Republic
| | - Jana Haberlová
- Department of Pediatric Neurology, University Hospital Motol, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Alžběta Slabá
- Department of Pediatric Neurology, University Hospital Motol, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pavel Vít
- Pediatric Clinic, University Hospital Brno, Brno, Czech Republic
| | - Veronika Stará
- Department of Pediatrics, University Hospital Motol, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Vladimír Kincl
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.,1st Department of Internal Medicine/Cardioangiology, St. Anne's University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
15
|
Peterson JM, Wang DJ, Shettigar V, Roof SR, Canan BD, Bakkar N, Shintaku J, Gu JM, Little SC, Ratnam NM, Londhe P, Lu L, Gaw CE, Petrosino JM, Liyanarachchi S, Wang H, Janssen PML, Davis JP, Ziolo MT, Sharma SM, Guttridge DC. NF-κB inhibition rescues cardiac function by remodeling calcium genes in a Duchenne muscular dystrophy model. Nat Commun 2018; 9:3431. [PMID: 30143619 PMCID: PMC6109146 DOI: 10.1038/s41467-018-05910-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 07/25/2018] [Indexed: 12/20/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a neuromuscular disorder causing progressive muscle degeneration. Although cardiomyopathy is a leading mortality cause in DMD patients, the mechanisms underlying heart failure are not well understood. Previously, we showed that NF-κB exacerbates DMD skeletal muscle pathology by promoting inflammation and impairing new muscle growth. Here, we show that NF-κB is activated in murine dystrophic (mdx) hearts, and that cardiomyocyte ablation of NF-κB rescues cardiac function. This physiological improvement is associated with a signature of upregulated calcium genes, coinciding with global enrichment of permissive H3K27 acetylation chromatin marks and depletion of the transcriptional repressors CCCTC-binding factor, SIN3 transcription regulator family member A, and histone deacetylase 1. In this respect, in DMD hearts, NF-κB acts differently from its established role as a transcriptional activator, instead promoting global changes in the chromatin landscape to regulate calcium genes and cardiac function.
Collapse
Affiliation(s)
- Jennifer M Peterson
- Department of Cancer Biology and Genetics, Columbus, OH, 43210, USA.,Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Pharmacy and Pharmaceutical Sciences, SUNY Binghamton University, Binghamton, NY, 13902, USA
| | - David J Wang
- Department of Cancer Biology and Genetics, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, 29425, USA
| | - Vikram Shettigar
- Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, The Ohio State University Medical Center, Columbus, 43210, Ohio, USA
| | - Steve R Roof
- Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, The Ohio State University Medical Center, Columbus, 43210, Ohio, USA.,Q Test Labs, Columbus, OH, 43235, USA
| | - Benjamin D Canan
- Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, The Ohio State University Medical Center, Columbus, 43210, Ohio, USA
| | - Nadine Bakkar
- Department of Cancer Biology and Genetics, Columbus, OH, 43210, USA.,Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Neurobiology, St Joseph's Hospital and Medical Center-Barrow Neurological Institute, Phoenix, AZ, 85013, USA
| | - Jonathan Shintaku
- Department of Cancer Biology and Genetics, Columbus, OH, 43210, USA.,Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Jin-Mo Gu
- Department of Cancer Biology and Genetics, Columbus, OH, 43210, USA.,Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Biomedical Engineering and Pediatrics, Emory University, Decatur, GA, 30322, USA
| | - Sean C Little
- Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, The Ohio State University Medical Center, Columbus, 43210, Ohio, USA.,Bristol-Myers Squibb, Wallingford, CT, 06492, USA
| | - Nivedita M Ratnam
- Department of Cancer Biology and Genetics, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Priya Londhe
- Department of Cancer Biology and Genetics, Columbus, OH, 43210, USA.,Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA
| | - Leina Lu
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Christopher E Gaw
- The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jennifer M Petrosino
- Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Sandya Liyanarachchi
- Department of Cancer Biology and Genetics, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Huating Wang
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Paul M L Janssen
- Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, The Ohio State University Medical Center, Columbus, 43210, Ohio, USA
| | - Jonathan P Davis
- Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, The Ohio State University Medical Center, Columbus, 43210, Ohio, USA
| | - Mark T Ziolo
- Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, The Ohio State University Medical Center, Columbus, 43210, Ohio, USA
| | - Sudarshana M Sharma
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Denis C Guttridge
- Department of Cancer Biology and Genetics, Columbus, OH, 43210, USA. .,Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA. .,The Ohio State University Medical Center, Columbus, OH, 43210, USA. .,Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, 29425, USA.
| |
Collapse
|
16
|
Vohra R, Batra A, Forbes SC, Vandenborne K, Walter GA. Magnetic Resonance Monitoring of Disease Progression in mdx Mice on Different Genetic Backgrounds. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2060-2070. [PMID: 28826559 DOI: 10.1016/j.ajpath.2017.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/04/2017] [Indexed: 12/15/2022]
Abstract
Genetic modifiers alter disease progression in both preclinical models and subjects with Duchenne muscular dystrophy (DMD). Using multiparametric magnetic resonance (MR) techniques, we compared the skeletal and cardiac muscles of two different dystrophic mouse models of DMD, which are on different genetic backgrounds, the C57BL/10ScSn-Dmdmdx (B10-mdx) and D2.B10-Dmdmdx (D2-mdx). The proton transverse relaxation constant (T2) using both MR imaging and spectroscopy revealed significant age-related differences in dystrophic skeletal and cardiac muscles as compared with their age-matched controls. D2-mdx muscles demonstrated an earlier and accelerated decrease in muscle T2 compared with age-matched B10-mdx muscles. Diffusion-weighted MR imaging indicated differences in the underlying muscle structure between the mouse strains. The fractional anisotropy, mean diffusion, and radial diffusion of water varied significantly between the two dystrophic strains. Muscle structural differences were confirmed by histological analyses of the gastrocnemius, revealing a decreased muscle fiber size and increased fibrosis in skeletal muscle fibers of D2-mdx mice compared with B10-mdx and control. Cardiac involvement was also detected in D2-mdx myocardium based on both decreased function and myocardial T2. These data indicate that MR parameters may be used as sensitive biomarkers to detect fibrotic tissue deposition and fiber atrophy in dystrophic strains.
Collapse
Affiliation(s)
- Ravneet Vohra
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida
| | - Abhinandan Batra
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Sean C Forbes
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Krista Vandenborne
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Glenn A Walter
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida.
| |
Collapse
|
17
|
Spatial and age-related changes in the microstructure of dystrophic and healthy diaphragms. PLoS One 2017; 12:e0183853. [PMID: 28877195 PMCID: PMC5587283 DOI: 10.1371/journal.pone.0183853] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 08/11/2017] [Indexed: 12/21/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive degenerative disease that results in fibrosis and atrophy of muscles. The main cause of death associated with DMD is failure of the diaphragm. The diaphragm is a dome-shaped muscle with a fiber microstructure that differs across regions of the muscle. However, no studies to our knowledge have examined spatial variations of muscle fibers in dystrophic diaphragm or how aging affects those variations in DMD. In this study, diaphragms were obtained from mdx and healthy mice at ages three, seven, and ten months in the dorsal, midcostal, and ventral regions. Through immunostaining and confocal imaging, we quantified sarcomere length, interstitial space between fibers, fiber branching, fiber cross sectional area (CSA), and fiber regeneration measured by centrally located nuclei. Because DMD is associated with chronic inflammation, we also investigated the number of macrophages in diaphragm muscle cross-sections. We saw regional differences in the number of regenerating fibers and macrophages during the progression of DMD in the mdx diaphragm. Additionally, the number of regenerating fibers increased with age, while CSA and the number of branching fibers decreased. Dystrophic diaphragms had shorter sarcomere lengths than age-matched controls. Our results suggest that the dystrophic diaphragm in the mdx mouse is structurally heterogeneous and remodels non-uniformly over time. Understanding regional changes in dystrophic diaphragms over time will facilitate the development of targeted therapies to prevent or minimize respiratory failure in DMD patients.
Collapse
|
18
|
Li Z, Li Y, Zhang L, Zhang X, Sullivan R, Ai X, Szeto C, Cai A, Liu L, Xiao W, Li Q, Ge S, Chen X. Reduced Myocardial Reserve in Young X-Linked Muscular Dystrophy Mice Diagnosed by Two-Dimensional Strain Analysis Combined with Stress Echocardiography. J Am Soc Echocardiogr 2017; 30:815-827.e9. [PMID: 28511858 DOI: 10.1016/j.echo.2017.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Indexed: 01/16/2023]
Abstract
BACKGROUND Early, sensitive, and reproducible evaluation of left ventricular function is imperative for the diagnosis of cardiac dysfunction in patients with Duchene muscular dystrophy. The aim of this study was to test the hypothesis that combining two-dimensional strain analysis with catecholamine stress could be a sensitive method for detecting early cardiac dysfunction. METHODS Mdx (C57BL/10ScSn-Dmdmdx/J, a mouse model of DMD) and control (C57BL/10ScSn) mice were studied with conventional M-mode and high-frequency ultrasound-based two-dimensional speckle-tracking echocardiography using long- and short-axis images of the left ventricle at baseline and after intraperitoneal isoprenaline (ISO) administration (2 μg/g body weight). RESULTS Conventional M-mode analysis showed no differences in left ventricular fractional shortening, wall thickness, or internal diameter at diastole between mdx and control mice before the age of 6 months. ISO increased left ventricular ejection fraction and fractional shortening to the same extent in mdx and control mice at young ages (3, 4, and 5 months). No differences in basal peak systolic strain (PSS) but increased SDs of times to PSS between young mdx and control mice were found. After ISO, PSS and percentile changes of PSS were significantly diminished in mdx mice compared with control mice at young ages. ISO increased the normalized maximum difference of times to PSS in young mdx mice but not in young control mice, suggesting that ISO reduces cardiac contractile synchrony in young mdx mice. CONCLUSIONS This study suggests that catecholamine stress coupled with two-dimensional strain analysis is a feasible and sensitive approach for detecting early onset of cardiac dysfunction, which is instrumental for early diagnosis of cardiac dysfunction and early treatment.
Collapse
Affiliation(s)
- Zhenzhou Li
- Department of Ultrasound, The Second People's Hospital of Shenzhen, Shenzhen, China; Drexel University College of Medicine, Philadelphia, Pennsylvania; Department of Physiology and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Ying Li
- Department of Physiology and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania; The General Hospital of The PLA Rocket Force, Beijing, China
| | - Li Zhang
- Drexel University College of Medicine, Philadelphia, Pennsylvania; Department of Physiology and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania; Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoying Zhang
- Department of Physiology and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Rebecca Sullivan
- Department of Physiology and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Xiaojie Ai
- Department of Physiology and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania; College of Biological Sciences, Shanghai Jiaotong University, Shanghai, China
| | - Christopher Szeto
- Department of Physiology and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Angela Cai
- Department of Physiology and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Longjian Liu
- Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Weidong Xiao
- Department of Microbiology and Immunology and Sol Sherry Thrombosis Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Quanshui Li
- Department of Ultrasound, The Second People's Hospital of Shenzhen, Shenzhen, China
| | - Shuping Ge
- Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Xiongwen Chen
- Department of Physiology and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania.
| |
Collapse
|
19
|
Rahman ZU, Sethi P, Murtaza G, Virk HUH, Rai A, Mahmod M, Schoondyke J, Albalbissi K. Feature tracking cardiac magnetic resonance imaging: A review of a novel non-invasive cardiac imaging technique. World J Cardiol 2017; 9:312-319. [PMID: 28515849 PMCID: PMC5411965 DOI: 10.4330/wjc.v9.i4.312] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/01/2017] [Accepted: 03/23/2017] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease is a leading cause of morbidity and mortality globally. Early diagnostic markers are gaining popularity for better patient care disease outcomes. There is an increasing interest in noninvasive cardiac imaging biomarkers to diagnose subclinical cardiac disease. Feature tracking cardiac magnetic resonance imaging is a novel post-processing technique that is increasingly being employed to assess global and regional myocardial function. This technique has numerous applications in structural and functional diagnostics. It has been validated in multiple studies, although there is still a long way to go for it to become routine standard of care.
Collapse
Affiliation(s)
- Zia Ur Rahman
- Zia Ur Rahman, Pooja Sethi, Jeffrey Schoondyke, Kais Albalbissi, Department of Internal Medicine, Divison of Cardiology, East Tennessee State University, Johnson City, TN 37064, United States
| | - Pooja Sethi
- Zia Ur Rahman, Pooja Sethi, Jeffrey Schoondyke, Kais Albalbissi, Department of Internal Medicine, Divison of Cardiology, East Tennessee State University, Johnson City, TN 37064, United States
| | - Ghulam Murtaza
- Zia Ur Rahman, Pooja Sethi, Jeffrey Schoondyke, Kais Albalbissi, Department of Internal Medicine, Divison of Cardiology, East Tennessee State University, Johnson City, TN 37064, United States
| | - Hafeez Ul Hassan Virk
- Zia Ur Rahman, Pooja Sethi, Jeffrey Schoondyke, Kais Albalbissi, Department of Internal Medicine, Divison of Cardiology, East Tennessee State University, Johnson City, TN 37064, United States
| | - Aitzaz Rai
- Zia Ur Rahman, Pooja Sethi, Jeffrey Schoondyke, Kais Albalbissi, Department of Internal Medicine, Divison of Cardiology, East Tennessee State University, Johnson City, TN 37064, United States
| | - Masliza Mahmod
- Zia Ur Rahman, Pooja Sethi, Jeffrey Schoondyke, Kais Albalbissi, Department of Internal Medicine, Divison of Cardiology, East Tennessee State University, Johnson City, TN 37064, United States
| | - Jeffrey Schoondyke
- Zia Ur Rahman, Pooja Sethi, Jeffrey Schoondyke, Kais Albalbissi, Department of Internal Medicine, Divison of Cardiology, East Tennessee State University, Johnson City, TN 37064, United States
| | - Kais Albalbissi
- Zia Ur Rahman, Pooja Sethi, Jeffrey Schoondyke, Kais Albalbissi, Department of Internal Medicine, Divison of Cardiology, East Tennessee State University, Johnson City, TN 37064, United States
| |
Collapse
|
20
|
Saito S, Masuda K, Mori Y, Nakatani S, Yoshioka Y, Murase K. Mapping of left ventricle wall thickness in mice using 11.7-T magnetic resonance imaging. Magn Reson Imaging 2017; 36:128-134. [DOI: 10.1016/j.mri.2016.10.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/26/2016] [Indexed: 11/28/2022]
|
21
|
Vanhoutte L, Gerber BL, Gallez B, Po C, Magat J, Balligand JL, Feron O, Moniotte S. High field magnetic resonance imaging of rodents in cardiovascular research. Basic Res Cardiol 2016; 111:46. [PMID: 27287250 DOI: 10.1007/s00395-016-0565-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 06/01/2016] [Indexed: 02/07/2023]
Abstract
Transgenic and gene knockout rodent models are primordial to study pathophysiological processes in cardiovascular research. Over time, cardiac MRI has become a gold standard for in vivo evaluation of such models. Technical advances have led to the development of magnets with increasingly high field strength, allowing specific investigation of cardiac anatomy, global and regional function, viability, perfusion or vascular parameters. The aim of this report is to provide a review of the various sequences and techniques available to image mice on 7-11.7 T magnets and relevant to the clinical setting in humans. Specific technical aspects due to the rise of the magnetic field are also discussed.
Collapse
Affiliation(s)
- Laetitia Vanhoutte
- Department of Paediatric Cardiology, Cliniques universitaires Saint Luc, Université Catholique de Louvain (UCL), Brussels, Belgium. .,Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCL), Brussels, Belgium.
| | - Bernhard L Gerber
- Division of Cardiology, Cliniques universitaires Saint Luc, Université Catholique de Louvain (UCL), Brussels, Belgium.,Pole of Cardiovascular Research (CARD), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance Unit (REMA), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Chrystelle Po
- CNRS, ICube, FMTS, Institut de Physique Biologique, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Julie Magat
- L'Institut de RYthmologie et de Modélisation Cardiaque (LIRYC), Inserm U1045, Bordeaux, France
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Olivier Feron
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Stéphane Moniotte
- Department of Paediatric Cardiology, Cliniques universitaires Saint Luc, Université Catholique de Louvain (UCL), Brussels, Belgium
| |
Collapse
|
22
|
Chitiboi T, Schnell S, Collins J, Carr J, Chowdhary V, Honarmand AR, Hennemuth A, Linsen L, Hahn HK, Markl M. Analyzing myocardial torsion based on tissue phase mapping cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2016; 18:15. [PMID: 27062364 PMCID: PMC4826723 DOI: 10.1186/s12968-016-0234-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/15/2016] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The purpose of this work is to analyze differences in left ventricular torsion between volunteers and patients with non-ischemic cardiomyopathy based on tissue phase mapping (TPM) cardiovascular magnetic resonance (CMR). METHODS TPM was performed on 27 patients with non-ischemic cardiomyopathy and 14 normal volunteers. Patients underwent a standard CMR including late gadolinium enhancement (LGE) for the assessment of myocardial scar and ECG-gated cine CMR for global cardiac function. TPM was acquired in short-axis orientation at base, mid, and apex for all subjects. After evaluation by experienced observers, the patients were divided in subgroups according to the presence or absence of LGE (LGE+/LGE-), local wall motion abnormalities (WM+/WM-), and having a preserved (≥50%) or reduced (<50%) ejection fraction (EF+/EF-). TPM data was semi-automatically segmented and global LV torsion was computed for each cardiac time frame for endocardial and epicardial layers, and for the entire myocardium. RESULTS Maximum myocardial torsion was significantly lower for patients with reduced EF compared to controls (0.21 ± 0.15°/mm vs. 0.36 ± 0.11°/mm, p = 0.018), but also for patients with wall motion abnormalities (0.21 ± 0.13°/mm vs. 0.36 ± 0.11°/mm, p = 0.004). Global myocardial torsion showed a positive correlation (r = 0.54, p < 0.001) with EF. Moreover, endocardial torsion was significantly higher than epicardial torsion for EF+ subjects (0.56 ± 0.33°/mm vs. 0.34 ± 0.18°/mm, p = 0.039) and for volunteers (0.46 ± 0.16°/mm vs. 0.30 ± 0.09°/mm, p = 0.004). The difference in maximum torsion between endo- and epicardial layers was positively correlated with EF (r = 0.47, p = 0.002) and age (r = 0.37, p = 0.016) for all subjects. CONCLUSIONS TPM can be used to detect significant differences in LV torsion in patients with reduced EF and in the presence of local wall motion abnormalities. We were able to quantify torsion differences between the endocardium and epicardium, which vary between patient subgroups and are correlated to age and EF.
Collapse
Affiliation(s)
- Teodora Chitiboi
- />Jacobs University Bremen, Bremen, Germany
- />Fraunhofer MEVIS, Bremen, Germany
| | - Susanne Schnell
- />Department of Radiology, Northwestern University, Chicago, IL USA
| | - Jeremy Collins
- />Department of Radiology, Northwestern University, Chicago, IL USA
| | - James Carr
- />Department of Radiology, Northwestern University, Chicago, IL USA
| | - Varun Chowdhary
- />Department of Radiology, Northwestern University, Chicago, IL USA
| | | | | | | | - Horst K. Hahn
- />Jacobs University Bremen, Bremen, Germany
- />Fraunhofer MEVIS, Bremen, Germany
| | - Michael Markl
- />Department of Radiology, Northwestern University, Chicago, IL USA
| |
Collapse
|
23
|
Jiang K, Jiao S, Vitko M, Darrah R, Flask CA, Hodges CA, Yu X. The impact of Cystic Fibrosis Transmembrane Regulator Disruption on cardiac function and stress response. J Cyst Fibros 2016; 15:34-42. [PMID: 26119592 PMCID: PMC4691219 DOI: 10.1016/j.jcf.2015.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 06/10/2015] [Accepted: 06/10/2015] [Indexed: 01/05/2023]
Abstract
BACKGROUND Altered cardiac function has been observed in cystic fibrosis transmembrane regulator (CFTR) knockout mice. However, whether this alteration is a direct effect of CFTR disruption in the heart, or is secondary due to systemic loss of CFTR, remains to be elucidated. METHODS Cardiac function of mice with muscle-specific or global knockout of CFTR was evaluated at baseline and under β-stimulation by MRI in vivo. Myocyte contractility and Ca2+ transients were measured in vitro. RESULTS Both CFTR knockout models showed increased twist and torsion at baseline. Response to β-stimulation was unaltered in muscle-specific CFTR knockout mice and was slightly decreased in global CFTR knockout mice. Aortic diameter was also decreased in both mouse models. No difference was observed in myocyte contractility and Ca2+ transients. CONCLUSIONS CFTR disruption leads to increased myocardial contractility at baseline, which may trigger untoward myocardial remodeling in CF patients that is independent of lung diseases.
Collapse
Affiliation(s)
- Kai Jiang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA; Case Center for Imaging Research, Case Western Reserve University, Cleveland, OH, USA
| | - Sen Jiao
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA; Case Center for Imaging Research, Case Western Reserve University, Cleveland, OH, USA
| | - Megan Vitko
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Rebecca Darrah
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Chris A Flask
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA; Department of Radiology, Case Western Reserve University, Cleveland, OH, USA; Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA; Case Center for Imaging Research, Case Western Reserve University, Cleveland, OH, USA
| | - Craig A Hodges
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA; Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Xin Yu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA; Department of Radiology, Case Western Reserve University, Cleveland, OH, USA; Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA; Case Center for Imaging Research, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
24
|
Bakermans AJ, Abdurrachim D, Moonen RPM, Motaal AG, Prompers JJ, Strijkers GJ, Vandoorne K, Nicolay K. Small animal cardiovascular MR imaging and spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 88-89:1-47. [PMID: 26282195 DOI: 10.1016/j.pnmrs.2015.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 06/04/2023]
Abstract
The use of MR imaging and spectroscopy for studying cardiovascular disease processes in small animals has increased tremendously over the past decade. This is the result of the remarkable advances in MR technologies and the increased availability of genetically modified mice. MR techniques provide a window on the entire timeline of cardiovascular disease development, ranging from subtle early changes in myocardial metabolism that often mark disease onset to severe myocardial dysfunction associated with end-stage heart failure. MR imaging and spectroscopy techniques play an important role in basic cardiovascular research and in cardiovascular disease diagnosis and therapy follow-up. This is due to the broad range of functional, structural and metabolic parameters that can be quantified by MR under in vivo conditions non-invasively. This review describes the spectrum of MR techniques that are employed in small animal cardiovascular disease research and how the technological challenges resulting from the small dimensions of heart and blood vessels as well as high heart and respiratory rates, particularly in mice, are tackled.
Collapse
Affiliation(s)
- Adrianus J Bakermans
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Desiree Abdurrachim
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Rik P M Moonen
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Abdallah G Motaal
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeanine J Prompers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Gustav J Strijkers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Katrien Vandoorne
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Klaas Nicolay
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
25
|
Guiraud S, Squire SE, Edwards B, Chen H, Burns DT, Shah N, Babbs A, Davies SG, Wynne GM, Russell AJ, Elsey D, Wilson FX, Tinsley JM, Davies KE. Second-generation compound for the modulation of utrophin in the therapy of DMD. Hum Mol Genet 2015; 24:4212-24. [PMID: 25935002 PMCID: PMC4492389 DOI: 10.1093/hmg/ddv154] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/27/2015] [Indexed: 01/06/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal, X-linked muscle-wasting disease caused by lack of the cytoskeletal protein dystrophin. There is currently no cure for DMD although various promising approaches are progressing through human clinical trials. By pharmacologically modulating the expression of the dystrophin-related protein utrophin, we have previously demonstrated in dystrophin-deficient mdx studies, daily SMT C1100 treatment significantly reduced muscle degeneration leading to improved muscle function. This manuscript describes the significant disease modifying benefits associated with daily dosing of SMT022357, a second-generation compound in this drug series with improved physicochemical properties and a more robust metabolism profile. These studies in the mdx mouse demonstrate that oral administration of SMT022357 leads to increased utrophin expression in skeletal, respiratory and cardiac muscles. Significantly, utrophin expression is localized along the length of the muscle fibre, not just at the synapse, and is fibre-type independent, suggesting that drug treatment is modulating utrophin transcription in extra-synaptic myonuclei. This results in improved sarcolemmal stability and prevents dystrophic pathology through a significant reduction of regeneration, necrosis and fibrosis. All these improvements combine to protect the mdx muscle from contraction induced damage and enhance physiological function. This detailed evaluation of the SMT C1100 drug series strongly endorses the therapeutic potential of utrophin modulation as a disease modifying therapeutic strategy for all DMD patients irrespective of their dystrophin mutation.
Collapse
Affiliation(s)
- Simon Guiraud
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK,
| | - Sarah E Squire
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Benjamin Edwards
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Huijia Chen
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - David T Burns
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Nandini Shah
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Arran Babbs
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Stephen G Davies
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Graham M Wynne
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Angela J Russell
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3PT, UK and
| | - David Elsey
- Summit Therapeutics plc, 85b Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RY, UK
| | - Francis X Wilson
- Summit Therapeutics plc, 85b Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RY, UK
| | - Jon M Tinsley
- Summit Therapeutics plc, 85b Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RY, UK
| | - Kay E Davies
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK,
| |
Collapse
|
26
|
Richardson GD, Laval S, Owens WA. Cardiomyocyte Regeneration in the mdx Mouse Model of Nonischemic Cardiomyopathy. Stem Cells Dev 2015; 24:1672-9. [PMID: 25749191 PMCID: PMC4499792 DOI: 10.1089/scd.2014.0495] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Endogenous regeneration has been demonstrated in the mammalian heart after ischemic injury. However, approximately one-third of cases of heart failure are secondary to nonischemic heart disease and cardiac regeneration in these cases remains relatively unexplored. We, therefore, aimed at quantifying the rate of new cardiomyocyte formation at different stages of nonischemic cardiomyopathy. Six-, 12-, 29-, and 44-week-old mdx mice received a 7 day pulse of BrdU. Quantification of isolated cardiomyocyte nuclei was undertaken using cytometric analysis to exclude nondiploid nuclei. Between 6–7 and 12–13 weeks, there was a statistically significant increase in the number of BrdU-labeled nuclei in the mdx hearts compared with wild-type controls. This difference was lost by the 29–30 week time point, and a significant decrease in cardiomyocyte generation was observed in both the control and mdx hearts by 44–45 weeks. Immunohistochemical analysis demonstrated BrdU-labeled nuclei exclusively in mononucleated cardiomyocytes. This study demonstrates cardiomyocyte regeneration in a nonischemic model of mammalian cardiomyopathy, controlling for changes in nuclear ploidy, which is lost with age, and confirms a decrease in baseline rates of cardiomyocyte regeneration with aging. While not attempting to address the cellular source of regeneration, it confirms the potential utility of innate regeneration as a therapeutic target.
Collapse
Affiliation(s)
- Gavin David Richardson
- 1 Institute of Genetic Medicine, International Centre for Life, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Steven Laval
- 1 Institute of Genetic Medicine, International Centre for Life, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - William Andrew Owens
- 1 Institute of Genetic Medicine, International Centre for Life, Newcastle University , Newcastle upon Tyne, United Kingdom .,2 Department of Cardiothoracic Surgery, South Tees Hospitals NHS Foundation Trust , Middlesbrough, United Kingdom
| |
Collapse
|
27
|
Jiang K, Yu X. Quantification of regional myocardial wall motion by cardiovascular magnetic resonance. Quant Imaging Med Surg 2014; 4:345-57. [PMID: 25392821 DOI: 10.3978/j.issn.2223-4292.2014.09.01] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 09/12/2014] [Indexed: 12/12/2022]
Abstract
Cardiovascular magnetic resonance (CMR) is a versatile tool that also allows comprehensive and accurate measurement of both global and regional myocardial contraction. Quantification of regional wall motion parameters, such as strain, strain rate, twist and torsion, has been shown to be more sensitive to early-stage functional alterations. Since the invention of CMR tagging by magnetization saturation in 1988, several CMR techniques have been developed to enable the measurement of regional myocardial wall motion, including myocardial tissue tagging, phase contrast mapping, displacement encoding with stimulated echoes (DENSE), and strain encoded (SENC) imaging. These techniques have been developed with their own advantages and limitations. In this review, two widely used and closely related CMR techniques, i.e., tissue tagging and DENSE, will be discussed from the perspective of pulse sequence development and image-processing techniques. The clinical and preclinical applications of tissue tagging and DENSE in assessing wall motion mechanics in both normal and diseased hearts, including coronary artery diseases, hypertrophic cardiomyopathy, aortic stenosis, and Duchenne muscular dystrophies, will be discussed.
Collapse
Affiliation(s)
- Kai Jiang
- 1 Departments of Biomedical Engineering, 2 Case Center for Imaging Research, 3 Radiology, and 4 Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xin Yu
- 1 Departments of Biomedical Engineering, 2 Case Center for Imaging Research, 3 Radiology, and 4 Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
28
|
Nakamura K, Fujii W, Tsuboi M, Tanihata J, Teramoto N, Takeuchi S, Naito K, Yamanouchi K, Nishihara M. Generation of muscular dystrophy model rats with a CRISPR/Cas system. Sci Rep 2014; 4:5635. [PMID: 25005781 PMCID: PMC4088098 DOI: 10.1038/srep05635] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 06/23/2014] [Indexed: 12/28/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked lethal muscle disorder caused by mutations in the Dmd gene encoding Dystrophin12. DMD model animals, such as mdx mice and canine X-linked muscular dystrophy dogs, have been widely utilized in the development of a treatment for DMD3. Here, we demonstrate the generation of Dmd-mutated rats using a clustered interspaced short palindromic repeats (CRISPR)/Cas system, an RNA-based genome engineering technique that is also adaptive to rats. We simultaneously targeted two exons in the rat Dmd gene, which resulted in the absence of Dystrophin expression in the F0 generation. Dmd-mutated rats exhibited a decline in muscle strength, and the emergence of degenerative/regenerative phenotypes in the skeletal muscle, heart, and diaphragm. These mutations were heritable by the next generation, and F1 male rats exhibited similar phenotypes in their skeletal muscles. These model rats should prove to be useful for developing therapeutic methods to treat DMD.
Collapse
Affiliation(s)
- Katsuyuki Nakamura
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Wataru Fujii
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masaya Tsuboi
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Jun Tanihata
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Naomi Teramoto
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shiho Takeuchi
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kunihiko Naito
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Keitaro Yamanouchi
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masugi Nishihara
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
29
|
Ultrastructural and functional alterations of EC coupling elements in mdx cardiomyocytes: an analysis from membrane surface to depth. Cell Biochem Biophys 2014; 66:723-36. [PMID: 23400933 DOI: 10.1007/s12013-013-9517-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A dilated cardiomyopathy (DCM) is associated with Duchenne muscular dystrophy (DMD). The loss of dystrophin leads to membrane instability and calcium dysregulation in skeletal muscle but effects of such a loss are not elucidated at cardiomyocytes level. We sought to examine whether membrane and transverse tubules damages occur in ventricular myocytes from mdx mouse model of DMD and how they impact the function of single excitation-contraction coupling elements. Scanning ion conductance microscopy (SICM) was used to characterize the integrity loss of living mdx cardiomyocytes surface. 2D Fourier transform analysis of labeled internal networks (transverse tubules, alpha-actinin, dihydropyridine receptors, ryanodine receptors) was performed to evaluate internal alterations. During calcium measurements, "smart microperfusions" of depolarizing solutions were applied through SICM nanopipette, stimulating single tubules elements. These approaches revealed structural membrane surface (39% decrease for Z-groove ratio) and transverse tubules disorganization (21% transverse tubules ratio decrease) in mdx as compared to control. These disruptions were associated with functional alterations (sixfold increase of calcium signal duration and twofold increase of sparks frequency). In DCM associated with DMD, myocytes display evident membrane alterations at the surface level but also in the cell depth with a disruption of transverse tubules network as observed in other cases of heart failure. These ultrastructural changes are associated with changes in the function of some coupling elements. Thus, these profound disruptions may play a role in calcium dysregulation through excitation-contraction coupling elements perturbation and suggest a transverse tubules stabilizing role for dystrophin.
Collapse
|
30
|
Low dystrophin levels in heart can delay heart failure in mdx mice. J Mol Cell Cardiol 2014; 69:17-23. [PMID: 24486194 DOI: 10.1016/j.yjmcc.2014.01.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 12/25/2013] [Accepted: 01/21/2014] [Indexed: 01/16/2023]
Abstract
Duchenne muscular dystrophy is caused by mutations that prevent synthesis of functional dystrophin. All patients develop dilated cardiomyopathy. Promising therapeutic approaches are underway that successfully restore dystrophin expression in skeletal muscle. However, their efficiency in the heart is limited. Improved quality and function of only skeletal muscle potentially accelerate the development of cardiomyopathy. Our study aimed to elucidate which dystrophin levels in the heart are required to prevent or delay cardiomyopathy in mice. Heart function and pathology assessed with magnetic resonance imaging and histopathological analysis were compared between 2, 6 and 10-month-old female mdx-Xist(Δhs) mice, expressing low dystrophin levels (3-15%) in a mosaic manner based on skewed X-inactivation, dystrophin-negative mdx mice, and wild type mice of corresponding genetic backgrounds and gender. With age mdx mice developed dilated cardiomyopathy and hypertrophy, whereas the onset of heart pathology was delayed and function improved in mdx-Xist(Δhs) mice. The ejection fraction, the most severely affected parameter for both ventricles, correlated to dystrophin expression and the percentage of fibrosis. Fibrosis was partly reduced from 9.8% in mdx to 5.4% in 10 month old mdx-Xist(Δhs) mice. These data suggest that mosaic expression of 4-15% dystrophin in the heart is sufficient to delay the onset and ameliorate cardiomyopathy in mice.
Collapse
|
31
|
Sullivan KE, Black LD. The role of cardiac fibroblasts in extracellular matrix-mediated signaling during normal and pathological cardiac development. J Biomech Eng 2014; 135:71001. [PMID: 23720014 DOI: 10.1115/1.4024349] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 04/30/2013] [Indexed: 01/18/2023]
Abstract
The extracellular matrix is no longer considered a static support structure for cells but a dynamic signaling network with the power to influence cell, tissue, and whole organ physiology. In the myocardium, cardiac fibroblasts are the primary cell type responsible for the synthesis, deposition, and degradation of matrix proteins, and they therefore play a critical role in the development and maintenance of functional heart tissue. This review will summarize the extensive research conducted in vivo and in vitro, demonstrating the influence of both physical and chemical stimuli on cardiac fibroblasts and how these interactions impact both the extracellular matrix and, by extension, cardiomyocytes. This work is of considerable significance, given that cardiovascular diseases are marked by extensive remodeling of the extracellular matrix, which ultimately impairs the functional capacity of the heart. We seek to summarize the unique role of cardiac fibroblasts in normal cardiac development and the most prevalent cardiac pathologies, including congenital heart defects, hypertension, hypertrophy, and the remodeled heart following myocardial infarction. We will conclude by identifying existing holes in the research that, if answered, have the potential to dramatically improve current therapeutic strategies for the repair and regeneration of damaged myocardium via mechanotransductive signaling.
Collapse
|
32
|
Fiedler LR, Maifoshie E, Schneider MD. Mouse models of heart failure: cell signaling and cell survival. Curr Top Dev Biol 2014; 109:171-247. [PMID: 24947238 DOI: 10.1016/b978-0-12-397920-9.00002-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Heart failure is one of the paramount global causes of morbidity and mortality. Despite this pandemic need, the available clinical counter-measures have not altered substantially in recent decades, most notably in the context of pharmacological interventions. Cell death plays a causal role in heart failure, and its inhibition poses a promising approach that has not been thoroughly explored. In previous approaches to target discovery, clinical failures have reflected a deficiency in mechanistic understanding, and in some instances, failure to systematically translate laboratory findings toward the clinic. Here, we review diverse mouse models of heart failure, with an emphasis on those that identify potential targets for pharmacological inhibition of cell death, and on how their translation into effective therapies might be improved in the future.
Collapse
Affiliation(s)
- Lorna R Fiedler
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London, UK.
| | - Evie Maifoshie
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London, UK
| | - Michael D Schneider
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
33
|
Hollingsworth KG, Willis TA, Bates MG, Dixon BJ, Lochmüller H, Bushby K, Bourke J, MacGowan GA, Straub V. Subepicardial dysfunction leads to global left ventricular systolic impairment in patients with limb girdle muscular dystrophy 2I. Eur J Heart Fail 2013; 15:986-994. [DOI: 10.1093/eurjhf/hft057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Affiliation(s)
- Kieren G. Hollingsworth
- Newcastle Magnetic Resonance Centre, Institute of Cellular Medicine Newcastle University, Campus for Ageing and Vitality Newcastle upon Tyne NE4 5PL UK
| | - Tracey A. Willis
- Institute of Genetic Medicine Newcastle University, International Centre for Life Central Parkway, Newcastle upon Tyne UK
| | - Matthew G.D. Bates
- Wellcome Trust Centre for Mitochondrial Research Institute for Ageing and Health, Newcastle University Newcastle upon Tyne UK
- Cardiothoracic Centre, Freeman Hospital Newcastle upon Tyne NHS Foundation Trust Newcastle upon Tyne UK
| | - Ben J. Dixon
- Newcastle Magnetic Resonance Centre, Institute of Cellular Medicine Newcastle University, Campus for Ageing and Vitality Newcastle upon Tyne NE4 5PL UK
| | - Hanns Lochmüller
- Institute of Genetic Medicine Newcastle University, International Centre for Life Central Parkway, Newcastle upon Tyne UK
| | - Kate Bushby
- Institute of Genetic Medicine Newcastle University, International Centre for Life Central Parkway, Newcastle upon Tyne UK
| | - John Bourke
- Cardiothoracic Centre, Freeman Hospital Newcastle upon Tyne NHS Foundation Trust Newcastle upon Tyne UK
| | - Guy A. MacGowan
- Institute of Genetic Medicine Newcastle University, International Centre for Life Central Parkway, Newcastle upon Tyne UK
- Cardiothoracic Centre, Freeman Hospital Newcastle upon Tyne NHS Foundation Trust Newcastle upon Tyne UK
| | - Volker Straub
- Institute of Genetic Medicine Newcastle University, International Centre for Life Central Parkway, Newcastle upon Tyne UK
| |
Collapse
|
34
|
Tuazon MA, Henderson GC. Fatty acid profile of cardiac muscle phospholipid and triacylglycerol in MDX mice and C57BL/10ScSnJ controls. Lipids 2013; 48:849-51. [PMID: 23794139 DOI: 10.1007/s11745-013-3811-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 06/12/2013] [Indexed: 11/30/2022]
Abstract
The mdx mouse is a model for Duchenne muscular dystrophy (DMD), a debilitating disease affecting striated muscle. It is established that the fatty acid (FA) composition of skeletal muscle phospholipid (PL) is altered in mdx mice, but it is not known if cardiac muscle is similarly affected by dystrophin-deficiency. We tested FA profiles in PL and triacylglycerol (TAG) in cardiac muscle of 12-week old mdx and control (con) mice. Of 22 different FA, similar to our previous finding for skeletal muscle, the most abundant FA in heart PL were palmitic, stearic, cis-vaccenic, linoleic, and docosahexaenoic acid, while for TAG the most abundant FA were palmitic, oleic, cis-vaccenic, and linoleic acid. In comparing mdx and con, no significant group differences were detected for any FA in PL or TAG. Thus, unlike skeletal muscle, FA composition in cardiac muscle PL is not different between mdx and con at the age studied. The results can be understood in the context of tissue-specific disease severity in mdx mice, as pathology is quite modest in cardiac compared with skeletal muscle.
Collapse
Affiliation(s)
- Marc A Tuazon
- Department of Exercise Science and Rutgers Center for Lipid Research, Rutgers University, 70 Lipman Drive, Loree Building, New Brunswick, NJ 08901, USA
| | | |
Collapse
|
35
|
Akki A, Gupta A, Weiss RG. Magnetic resonance imaging and spectroscopy of the murine cardiovascular system. Am J Physiol Heart Circ Physiol 2013; 304:H633-48. [PMID: 23292717 DOI: 10.1152/ajpheart.00771.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Magnetic resonance imaging (MRI) has emerged as a powerful and reliable tool to noninvasively study the cardiovascular system in clinical practice. Because transgenic mouse models have assumed a critical role in cardiovascular research, technological advances in MRI have been extended to mice over the last decade. These have provided critical insights into cardiac and vascular morphology, function, and physiology/pathophysiology in many murine models of heart disease. Furthermore, magnetic resonance spectroscopy (MRS) has allowed the nondestructive study of myocardial metabolism in both isolated hearts and in intact mice. This article reviews the current techniques and important pathophysiological insights from the application of MRI/MRS technology to murine models of cardiovascular disease.
Collapse
Affiliation(s)
- Ashwin Akki
- Division of Cardiology, Department of Medicine, and Division of Magnetic Resonance Research, Department of Radiology, The Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
36
|
Tyrankiewicz U, Skorka T, Jablonska M, Petkow-Dimitrow P, Chlopicki S. Characterization of the cardiac response to a low and high dose of dobutamine in the mouse model of dilated cardiomyopathy by MRI in vivo. J Magn Reson Imaging 2012; 37:669-77. [DOI: 10.1002/jmri.23854] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 09/04/2012] [Indexed: 11/06/2022] Open
|
37
|
Young AA, Cowan BR. Evaluation of left ventricular torsion by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2012; 14:49. [PMID: 22827856 PMCID: PMC3461493 DOI: 10.1186/1532-429x-14-49] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 07/24/2012] [Indexed: 12/15/2022] Open
Abstract
Recently there has been considerable interest in LV torsion and its relationship with symptomatic and pre-symptomatic disease processes. Torsion gives useful additional information about myocardial tissue performance in both systolic and diastolic function. CMR assessment of LV torsion is simply and efficiently performed. However, there is currently a wide variation in the reporting of torsional motion and the procedures used for its calculation. For example, torsion has been presented as twist (degrees), twist per length (degrees/mm), shear angle (degrees), and shear strain (dimensionless). This paper reviews current clinical applications and shows how torsion can give insights into LV mechanics and the influence of LV geometry and myocyte fiber architecture on cardiac function. Finally, it provides recommendations for CMR measurement protocols, attempts to stimulate standardization of torsion calculation, and suggests areas of useful future research.
Collapse
Affiliation(s)
- Alistair A Young
- Department of Anatomy with Radiology, University of Auckland, Auckland, New Zealand
| | - Brett R Cowan
- Department of Anatomy with Radiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
38
|
Cheng YJ, Lang D, Caruthers SD, Efimov IR, Chen J, Wickline SA. Focal but reversible diastolic sheet dysfunction reflects regional calcium mishandling in dystrophic mdx mouse hearts. Am J Physiol Heart Circ Physiol 2012; 303:H559-68. [PMID: 22777417 DOI: 10.1152/ajpheart.00321.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cardiac dysfunction is a primary cause of patient mortality in Duchenne muscular dystrophy, potentially related to elevated cytosolic calcium. However, the regional versus global functional consequences of cellular calcium mishandling have not been defined in the whole heart. Here we sought for the first time to elucidate potential regional dependencies between calcium mishandling and myocardial fiber/sheet function as a manifestation of dystrophin-deficient (mdx) cardiomyopathy. Isolated-perfused hearts from 16-mo-old mdx (N = 10) and wild-type (WT; N = 10) were arrested sequentially in diastole and systole for diffusion tensor MRI quantification of myocardial sheet architecture and function. When compared with WT hearts, mdx hearts exhibited normal systolic sheet architecture but a lower diastolic sheet angle magnitude (|β|) in the basal region. The regional diastolic sheet dysfunction was normalized by reducing perfusate calcium concentrations. Optical mapping of calcium transients in isolated hearts (3 mdx and 4 WT) revealed a stretch-inducible regional defect of intracellular calcium reuptake, reflected by a 25% increase of decay times (T(50)) and decay constants, at the base of mdx hearts. The basal region of mdx hearts also exhibited greater fibrosis than did the apex, which matched the regional sheet dysfunction. We conclude that myocardial diastolic sheet dysfunction is observed initially in basal segments along with calcium mishandling, ultimately culminating in increased fibrosis. The preservation of relatively normal calcium reuptake and diastolic/systolic sheet mechanics throughout the rest of the heart, together with the rapid reversibility of functional defects by reducing cytosolic calcium, points to the significance of regional mechanical factors in the progression of the disease.
Collapse
Affiliation(s)
- Ya-Jian Cheng
- Cardiovascular Division, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
39
|
Bish LT, Sleeper MM, Forbes SC, Wang B, Reynolds C, Singletary GE, Trafny D, Morine KJ, Sanmiguel J, Cecchini S, Virag T, Vulin A, Beley C, Bogan J, Wilson JM, Vandenborne K, Kornegay JN, Walter GA, Kotin RM, Garcia L, Sweeney HL. Long-term restoration of cardiac dystrophin expression in golden retriever muscular dystrophy following rAAV6-mediated exon skipping. Mol Ther 2012; 20:580-9. [PMID: 22146342 PMCID: PMC3293605 DOI: 10.1038/mt.2011.264] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 11/09/2011] [Indexed: 12/23/2022] Open
Abstract
Although restoration of dystrophin expression via exon skipping in both cardiac and skeletal muscle has been successfully demonstrated in the mdx mouse, restoration of cardiac dystrophin expression in large animal models of Duchenne muscular dystrophy (DMD) has proven to be a challenge. In large animals, investigators have focused on using intravenous injection of antisense oligonucleotides (AO) to mediate exon skipping. In this study, we sought to optimize restoration of cardiac dystrophin expression in the golden retriever muscular dystrophy (GRMD) model using percutaneous transendocardial delivery of recombinant AAV6 (rAAV6) to deliver a modified U7 small nuclear RNA (snRNA) carrying antisense sequence to target the exon splicing enhancers of exons 6 and 8 and correct the disrupted reading frame. We demonstrate restoration of cardiac dystrophin expression at 13 months confirmed by reverse transcription-PCR (RT-PCR) and immunoblot as well as membrane localization by immunohistochemistry. This was accompanied by improved cardiac function as assessed by cardiac magnetic resonance imaging (MRI). Percutaneous transendocardial delivery of rAAV6 expressing a modified U7 exon skipping construct is a safe, effective method for restoration of dystrophin expression and improvement of cardiac function in the GRMD canine and may be easily translatable to human DMD patients.
Collapse
Affiliation(s)
- Lawrence T Bish
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Stuckey DJ, Carr CA, Camelliti P, Tyler DJ, Davies KE, Clarke K. In vivo MRI characterization of progressive cardiac dysfunction in the mdx mouse model of muscular dystrophy. PLoS One 2012; 7:e28569. [PMID: 22235247 PMCID: PMC3250389 DOI: 10.1371/journal.pone.0028569] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 11/10/2011] [Indexed: 11/18/2022] Open
Abstract
AIMS The mdx mouse has proven to be useful in understanding the cardiomyopathy that frequently occurs in muscular dystrophy patients. Here we employed a comprehensive array of clinically relevant in vivo MRI techniques to identify early markers of cardiac dysfunction and follow disease progression in the hearts of mdx mice. METHODS AND RESULTS Serial measurements of cardiac morphology and function were made in the same group of mdx mice and controls (housed in a non-SPF facility) using MRI at 1, 3, 6, 9 and 12 months after birth. Left ventricular (LV) and right ventricular (RV) systolic and diastolic function, response to dobutamine stress and myocardial fibrosis were assessed. RV dysfunction preceded LV dysfunction, with RV end systolic volumes increased and RV ejection fractions reduced at 3 months of age. LV ejection fractions were reduced at 12 months, compared with controls. An abnormal response to dobutamine stress was identified in the RV of mdx mice as early as 1 month. Late-gadolinium-enhanced MRI identified increased levels of myocardial fibrosis in 6, 9 and 12-month-old mdx mice, the extent of fibrosis correlating with the degree of cardiac remodeling and hypertrophy. CONCLUSIONS MRI could identify cardiac abnormalities in the RV of mdx mice as young as 1 month, and detected myocardial fibrosis at 6 months. We believe these to be the earliest MRI measurements of cardiac function reported for any mice, and the first use of late-gadolinium-enhancement in a mouse model of congenital cardiomyopathy. These techniques offer a sensitive and clinically relevant in vivo method for assessment of cardiomyopathy caused by muscular dystrophy and other diseases.
Collapse
Affiliation(s)
- Daniel J Stuckey
- Cardiac Metabolism Research Group, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.
| | | | | | | | | | | |
Collapse
|
41
|
Zhong X, Gibberman LB, Spottiswoode BS, Gilliam AD, Meyer CH, French BA, Epstein FH. Comprehensive cardiovascular magnetic resonance of myocardial mechanics in mice using three-dimensional cine DENSE. J Cardiovasc Magn Reson 2011; 13:83. [PMID: 22208954 PMCID: PMC3278394 DOI: 10.1186/1532-429x-13-83] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 12/30/2011] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Quantitative noninvasive imaging of myocardial mechanics in mice enables studies of the roles of individual genes in cardiac function. We sought to develop comprehensive three-dimensional methods for imaging myocardial mechanics in mice. METHODS A 3D cine DENSE pulse sequence was implemented on a 7T small-bore scanner. The sequence used three-point phase cycling for artifact suppression and a stack-of-spirals k-space trajectory for efficient data acquisition. A semi-automatic 2D method was adapted for 3D image segmentation, and automated 3D methods to calculate strain, twist, and torsion were employed. A scan protocol that covered the majority of the left ventricle in a scan time of less than 25 minutes was developed, and seven healthy C57Bl/6 mice were studied. RESULTS Using these methods, multiphase normal and shear strains were measured, as were myocardial twist and torsion. Peak end-systolic values for the normal strains at the mid-ventricular level were 0.29 ± 0.17, -0.13 ± 0.03, and -0.18 ± 0.14 for E(rr), E(cc), and E(ll), respectively. Peak end-systolic values for the shear strains were 0.00 ± 0.08, 0.04 ± 0.12, and 0.03 ± 0.07 for E(rc), E(rl), and E(cl), respectively. The peak end-systolic normalized torsion was 5.6 ± 0.9°. CONCLUSIONS Using a 3D cine DENSE sequence tailored for cardiac imaging in mice at 7 T, a comprehensive assessment of 3D myocardial mechanics can be achieved with a scan time of less than 25 minutes and an image analysis time of approximately 1 hour.
Collapse
Affiliation(s)
| | | | - Bruce S Spottiswoode
- MRC/UCT Medical Imaging Research Unit, University of Cape Town, Cape Town, South Africa
| | | | - Craig H Meyer
- Radiology Department, University of Virginia, Charlottesville, USA
- Biomedical Engineering Department, University of Virginia, Charlottesville, USA
| | - Brent A French
- Biomedical Engineering Department, University of Virginia, Charlottesville, USA
| | - Frederick H Epstein
- Radiology Department, University of Virginia, Charlottesville, USA
- Biomedical Engineering Department, University of Virginia, Charlottesville, USA
| |
Collapse
|
42
|
Verhaart IEC, van Duijn RJM, den Adel B, Roest AAW, Verschuuren JJGM, Aartsma-Rus A, van der Weerd L. Assessment of cardiac function in three mouse dystrophinopathies by magnetic resonance imaging. Neuromuscul Disord 2011; 22:418-26. [PMID: 22209498 DOI: 10.1016/j.nmd.2011.10.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 10/30/2011] [Indexed: 11/24/2022]
Abstract
Lack of dystrophin results in skeletal muscle dystrophy and dilated cardiomyopathy in humans and animal models. To achieve a basic understanding of the natural development of cardiomyopathy in different dystrophinopathy mouse models, left and right ventricular heart function was assessed at different ages in three dystrophinopathy mouse models (mdx, mdx/utrn(+/-) model and mdx/utrn(-/-)) using magnetic resonance imaging. Left ventricular function was significantly decreased, already at 2months in the most severely affected mdx/utrn(-/-) mice. Furthermore, whereas heart function was stable in wild-type mice over time, both mdx and mdx/utrn(+/-) showed a clear decrease at 10months of age, most prominently in the right ventricle. Therefore magnetic resonance imaging is an adequate technique to determine heart function in dystrophinopathy mouse models and can be used to assess the effect of potential therapies.
Collapse
Affiliation(s)
- Ingrid E C Verhaart
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
43
|
Pennell DJ, Firmin DN, Kilner PJ, Manning WJ, Mohiaddin RH, Prasad SK. Review of journal of cardiovascular magnetic resonance 2010. J Cardiovasc Magn Reson 2011; 13:48. [PMID: 21914185 PMCID: PMC3182946 DOI: 10.1186/1532-429x-13-48] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 09/13/2011] [Indexed: 12/15/2022] Open
Abstract
There were 75 articles published in the Journal of Cardiovascular Magnetic Resonance (JCMR) in 2010, which is a 34% increase in the number of articles since 2009. The quality of the submissions continues to increase, and the editors were delighted with the recent announcement of the JCMR Impact Factor of 4.33 which showed a 90% increase since last year. Our acceptance rate is approximately 30%, but has been falling as the number of articles being submitted has been increasing. In accordance with Open-Access publishing, the JCMR articles go on-line as they are accepted with no collating of the articles into sections or special thematic issues. Last year for the first time, the Editors summarized the papers for the readership into broad areas of interest or theme, which we felt would be useful to practitioners of cardiovascular magnetic resonance (CMR) so that you could review areas of interest from the previous year in a single article in relation to each other and other recent JCMR articles 1. This experiment proved very popular with a very high rate of downloading, and therefore we intend to continue this review annually. The papers are presented in themes and comparison is drawn with previously published JCMR papers to identify the continuity of thought and publication in the journal. We hope that you find the open-access system increases wider reading and citation of your papers, and that you will continue to send your quality manuscripts to JCMR for publication.
Collapse
Affiliation(s)
- Dudley J Pennell
- CMR Unit Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, Exhibition Road, London, SW7 2AZ, UK
| | - David N Firmin
- CMR Unit Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, Exhibition Road, London, SW7 2AZ, UK
| | - Philip J Kilner
- CMR Unit Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, Exhibition Road, London, SW7 2AZ, UK
| | - Warren J Manning
- Department of Medicine (Cardiovascular Division) and Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215 USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115 USA
| | - Raad H Mohiaddin
- CMR Unit Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, Exhibition Road, London, SW7 2AZ, UK
| | - Sanjay K Prasad
- CMR Unit Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, Exhibition Road, London, SW7 2AZ, UK
| |
Collapse
|
44
|
Rosales XQ, Moser SJ, Tran T, McCarthy B, Dunn N, Habib P, Simonetti OP, Mendell JR, Raman SV. Cardiovascular magnetic resonance of cardiomyopathy in limb girdle muscular dystrophy 2B and 2I. J Cardiovasc Magn Reson 2011; 13:39. [PMID: 21816046 PMCID: PMC3170213 DOI: 10.1186/1532-429x-13-39] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 08/04/2011] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Limb girdle muscular dystrophies (LGMD) are inclusive of 7 autosomal dominant and 14 autosomal recessive disorders featuring progressive muscle weakness and atrophy. Studies of cardiac function have not yet been well-defined in deficiencies of dysferlin (LGMD2B) and fukutin related protein (LGMD2I). In this study of patients with these two forms of limb girdle muscular dystrophy, cardiovascular magnetic resonance (CMR) was used to more specifically define markers of cardiomyopathy including systolic dysfunction, myocardial fibrosis, and diastolic dysfunction. METHODS Consecutive patients with genetically-proven LGMD types 2I (n = 7) and 2B (n = 9) and 8 control subjects were enrolled. All subjects underwent cardiac magnetic resonance (CMR) on a standard 1.5 Tesla clinical scanner with cine imaging for left ventricular (LV) volume and ejection fraction (EF) measurement, vector velocity analysis of cine data to calculate myocardial strain, and late post-gadolinium enhancement imaging (LGE) to assess for myocardial fibrosis. RESULTS Sixteen LGMD patients (7 LGMD2I, 9 LGMD2B), and 8 control subjects completed CMR. All but one patient had normal LV size and systolic function; one (type 2I) had severe dilated cardiomyopathy. Of 15 LGMD patients with normal systolic function, LGE imaging revealed focal myocardial fibrosis in 7 (47%). Peak systolic circumferential strain rates were similar in patients vs. controls: εendo was -23.8 ± 8.5vs. -23.9 ± 4.2%, εepi was -11.5 ± 1.7% vs. -10.1 ± 4.2% (p = NS for all). Five of 7 LGE-positive patients had grade I diastolic dysfunction [2I (n = 2), 2B (n = 3)]. that was not present in any LGE-negative patients or controls. CONCLUSIONS LGMD2I and LGMD2B generally result in mild structural and functional cardiac abnormalities, though severe dilated cardiomyopathy may occur. Long-term studies are warranted to evaluate the prognostic significance of subclinical fibrosis detected by CMR in these patients.
Collapse
Affiliation(s)
- Xiomara Q Rosales
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205, USA
- The Ohio State University, Department of Pediatrics and Neurology, Columbus, Ohio 43210, USA
| | - Sean J Moser
- The Ohio State University, Davis Heart and Lung Research Institute, Columbus, Ohio 43210, USA
| | - Tam Tran
- The Ohio State University, Davis Heart and Lung Research Institute, Columbus, Ohio 43210, USA
| | - Beth McCarthy
- The Ohio State University, Davis Heart and Lung Research Institute, Columbus, Ohio 43210, USA
| | - Nicholas Dunn
- The Ohio State University, Davis Heart and Lung Research Institute, Columbus, Ohio 43210, USA
| | - Philip Habib
- The Ohio State University, Davis Heart and Lung Research Institute, Columbus, Ohio 43210, USA
| | - Orlando P Simonetti
- The Ohio State University, Davis Heart and Lung Research Institute, Columbus, Ohio 43210, USA
| | - Jerry R Mendell
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205, USA
- The Ohio State University, Department of Pediatrics and Neurology, Columbus, Ohio 43210, USA
| | - Subha V Raman
- The Ohio State University, Davis Heart and Lung Research Institute, Columbus, Ohio 43210, USA
| |
Collapse
|
45
|
Spurney CF, Sali A, Guerron AD, Iantorno M, Yu Q, Gordish-Dressman H, Rayavarapu S, van der Meulen J, Hoffman EP, Nagaraju K. Losartan decreases cardiac muscle fibrosis and improves cardiac function in dystrophin-deficient mdx mice. J Cardiovasc Pharmacol Ther 2011; 16:87-95. [PMID: 21304057 DOI: 10.1177/1074248410381757] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent studies showed that chronic administration of losartan, an angiotensin II type I receptor antagonist, improved skeletal muscle function in dystrophin-deficient mdx mice. In this study, C57BL/10ScSn-Dmd(mdx)/J female mice were either untreated or treated with losartan (n = 15) in the drinking water at a dose of 600 mg/L over a 6-month period. Cardiac function was assessed via in vivo high frequency echocardiography and skeletal muscle function was assessed using grip strength testing, Digiscan monitoring, Rotarod timing, and in vitro force testing. Fibrosis was assessed using picrosirius red staining and Image J analysis. Gene expression was evaluated using real-time polymerized chain reaction (RT-PCR). Percentage shortening fraction was significantly decreased in untreated (26.9% ± 3.5%) mice compared to losartan-treated (32.2% ± 4.2%; P < .01) mice. Systolic blood pressure was significantly reduced in losartan-treated mice (56 ± 6 vs 69 ± 7 mm Hg; P < .0005). Percentage cardiac fibrosis was significantly reduced in losartan-treated hearts (P < .05) along with diaphragm (P < .01), extensor digitorum longus (P < .05), and gastrocnemius (P < .05) muscles compared to untreated mdx mice. There were no significant differences in skeletal muscle function between treated and untreated groups. Chronic treatment with losartan decreases cardiac and skeletal muscle fibrosis and improves cardiac systolic function in dystrophin-deficient mdx mice.
Collapse
|
46
|
Chuang JS, Zemljic-Harpf A, Ross RS, Frank LR, McCulloch AD, Omens JH. Determination of three-dimensional ventricular strain distributions in gene-targeted mice using tagged MRI. Magn Reson Med 2011; 64:1281-8. [PMID: 20981782 DOI: 10.1002/mrm.22547] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A model-based method for calculating three-dimensional (3D) cardiac wall strain distributions in the mouse has been developed and tested in a genetically engineered mouse model of dilated cardiomyopathy. Data from MR tagging and harmonic phase (HARP) tracking were used to measure material point displacements, and 3D Lagrangian strains were calculated throughout the entire left ventricle (LV) with a deformable parametric model. A mouse model where cardiomyocytes are specifically made deficient in vinculin (VclKO) were compared to wild-type (WT) littermates. 3D strain analysis revealed differences in LV wall mechanics between WT and VclKO mice at 8 weeks of age when systolic function had just begun to decline. Most notably, end-systolic radial strain and torsional shear were reduced in VclKO hearts which contributed to regional mechanical dysfunction. This study demonstrates the feasibility of using MRI tagging methods to detect alterations in 3D myocardial strain distributions in genetically engineered mouse models of cardiovascular disease.
Collapse
Affiliation(s)
- Joyce S Chuang
- Department of Bioengineering, University of California-San Diego, La Jolla, California, USA
| | | | | | | | | | | |
Collapse
|
47
|
Englund EK, Elder CP, Xu Q, Ding Z, Damon BM. Combined diffusion and strain tensor MRI reveals a heterogeneous, planar pattern of strain development during isometric muscle contraction. Am J Physiol Regul Integr Comp Physiol 2011; 300:R1079-90. [PMID: 21270344 DOI: 10.1152/ajpregu.00474.2010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The purposes of this study were to create a three-dimensional representation of strain during isometric contraction in vivo and to interpret it with respect to the muscle fiber direction. Diffusion tensor MRI was used to measure the muscle fiber direction of the tibialis anterior (TA) muscle of seven healthy volunteers. Spatial-tagging MRI was used to measure linear strains in six directions during separate 50% maximal isometric contractions of the TA. The strain tensor (E) was computed in the TA's deep and superficial compartments and compared with the respective diffusion tensors. Diagonalization of E revealed a planar strain pattern, with one nonzero negative strain (ε(N)) and one nonzero positive strain (ε(P)); both strains were larger in magnitude (P < 0.05) in the deep compartment [ε(N) = -40.4 ± 4.3%, ε(P) = 35.1 ± 3.5% (means ± SE)] than in the superficial compartment (ε(N) = -24.3 ± 3.9%, ε(P) = 6.3 ± 4.9%). The principal shortening direction deviated from the fiber direction by 24.0 ± 1.3° and 39.8 ± 6.1° in the deep and superficial compartments, respectively (P < 0.05, deep vs. superficial). The deviation of the shortening direction from the fiber direction was due primarily to the lower angle of elevation of the shortening direction over the axial plane than that of the fiber direction. It is concluded that three-dimensional analyses of strain interpreted with respect to the fiber architecture are necessary to characterize skeletal muscle contraction in vivo. The deviation of the principal shortening direction from the fiber direction may relate to intramuscle variations in fiber length and pennation angle.
Collapse
Affiliation(s)
- Erin K Englund
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|
48
|
Li W, Yu X. Quantification of myocardial strain at early systole in mouse heart: restoration of undeformed tagging grid with single-point HARP. J Magn Reson Imaging 2011; 32:608-14. [PMID: 20815058 DOI: 10.1002/jmri.22256] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To develop accurate strain and torsion quantification method for the assessment of myocardial contraction in mice by MRI tagging. MATERIALS AND METHODS Ventricular wall motion at baseline and during beta-adrenergic stimulation was assessed in mice using MRI tagging. Myocardial strain and torsion were quantified using finite element analysis method. A harmonic phase (HARP) based method was developed for the restoration of undeformed taglines for more accurate calculation of myocardial wall strain and torsion. RESULTS Myocardial deformation was observed at early systole (<20 msec after QRS) both at baseline and during beta-adrenergic stimulation. The HARP-based method allowed robust restoration of undeformed taglines that can be used as the reference in finite element analysis of the tagged images. Without such correction for myocardial deformation in the reference image, inaccuracy in strain quantification underestimated significant strain development at early systole in dobutamine-stimulated hearts. CONCLUSION The HARP-based method developed in the current study enabled automated restoration of undeformed taglines in mouse hearts, leading to more accurate calculation of myocardial wall strain and torsion during dobutamine stimulation.
Collapse
Affiliation(s)
- Wei Li
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44122, USA
| | | |
Collapse
|
49
|
Zhong J, Yu X. Strain and torsion quantification in mouse hearts under dobutamine stimulation using 2D multiphase MR DENSE. Magn Reson Med 2010; 64:1315-22. [PMID: 20740659 DOI: 10.1002/mrm.22530] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 05/13/2010] [Accepted: 05/17/2010] [Indexed: 11/08/2022]
Abstract
In this study, a 2D multiphase magnetic resonance displacement encoding with stimulated echoes (DENSE) imaging and analysis method was developed for direct quantification of Lagrangian strain in the mouse heart. Using the proposed method, <10 ms temporal resolution and 0.56 mm in-plane resolution were achieved. A validation study that compared strain calculation by displacement encoding with stimulated echoes and by magnetic resonance tagging showed high correlation between the two methods (R(2) > 0.80). Regional ventricular wall strain and twist were characterized in mouse hearts at baseline and under dobutamine stimulation. Dobutamine stimulation induced significant increase in radial and circumferential strains and torsion at peak systole. A rapid untwisting was also observed during early diastole. This work demonstrates the capability of characterizing cardiac functional response to dobutamine stimulation in the mouse heart using 2D multiphase magnetic resonance displacement encoding with stimulated echoes.
Collapse
Affiliation(s)
- Jia Zhong
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | | |
Collapse
|
50
|
Current awareness in NMR in biomedicine. NMR IN BIOMEDICINE 2010; 23:651-658. [PMID: 20684066 DOI: 10.1002/nbm.1454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
|