1
|
Hung YC, Wu JR, Periasamy AP, Aoki N, Chuang C. Advances in spin properties of plant leaf-derived graphene quantum dots from materials to applications. NANOTECHNOLOGY 2025; 36:165002. [PMID: 39977954 DOI: 10.1088/1361-6528/adb851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/20/2025] [Indexed: 02/22/2025]
Abstract
Over the past decade, graphene quantum dots (GQDs) have gained an inexhaustible deal of attention due to their unique zero-dimensional (0D) and quantum confinement properties, which boosted their wide research implication and reliable applications. As one of the promising 0D member and rising star of the carbon family, plant leaf-derived GQDs have attracted significant attention from scholars working in different research fields. Owing to its novel photophysical properties including high photo-stability, plant leaf-derived GQDs have been increasingly utilized in the fabrication of optoelectronic devices. Their superior biocompatibility finds their use in biotechnology applications, while their fascinating spin and magnetic properties have maximized their utilization in spin-manipulation devices. In order to promote the applications of plant leaf-derived GQDs in different fields, several studies over the past decade have successfully utilized plant leaf as sustainable precursor and synthesized GQDs with various sizes using different chemical and physical methods. In this review, we summarize the Neem and Fenugreek leaves based methods of synthesis of plant leaf-derived GQDs, discussing their surface characteristics and photophysical properties. We highlight the size and wavelength dependent photoluminescence properties of plant leaf-derived GQDs towards their applications in optoelectronic devices such as white light-emitting diodes and photodetectors, as well as biotechnology applications such asin vivoimaging of apoptotic cells and spin related devices as magnetic storage medium. Finally, we particularly discuss possible ways of fine tuning the spin properties of plant leaf-derived GQD clusters by incorporation with superconducting quantum interference device, followed by utilization of atomic force microscopy and magnetic force microscopy measurements for the construction of future spin-based magnetic storage media and spin manipulation quantum devices so as to provide an outlook on the future spin applications of plant leaf-derived GQDs.
Collapse
Affiliation(s)
- Yuan-Chih Hung
- Department of Electronic Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Jia-Ren Wu
- Department of Electronic Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Arun Prakash Periasamy
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Nobuyuki Aoki
- Department of Materials Science, Chiba University, Chiba 263-8522, Japan
| | - Chiashain Chuang
- Department of Electronic Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan
- Research Center for Semiconductor Materials and Advanced Optics, Chung Yuan Christian University, Taoyuan 320, Taiwan
| |
Collapse
|
2
|
Qasim M, Clarkson AN, Hinkley SFR. Green Synthesis of Carbon Nanoparticles (CNPs) from Biomass for Biomedical Applications. Int J Mol Sci 2023; 24:ijms24021023. [PMID: 36674532 PMCID: PMC9863453 DOI: 10.3390/ijms24021023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/07/2023] Open
Abstract
In this review, we summarize recent work on the "green synthesis" of carbon nanoparticles (CNPs) and their application with a focus on biomedical applications. Recent developments in the green synthesis of carbon nanoparticles, from renewable precursors and their application for environmental, energy-storage and medicinal applications are discussed. CNPs, especially carbon nanotubes (CNTs), carbon quantum dots (CQDs) and graphene, have demonstrated utility as high-density energy storage media, environmental remediation materials and in biomedical applications. Conventional fabrication of CNPs can entail the use of toxic catalysts; therefore, we discuss low-toxicity manufacturing as well as sustainable and environmentally friendly methodology with a focus on utilizing readily available biomass as the precursor for generating CNPs.
Collapse
Affiliation(s)
- Muhammad Qasim
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin 9054, New Zealand
| | - Andrew N. Clarkson
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin 9054, New Zealand
- Correspondence: (A.N.C.); (S.F.R.H.); Tel.: +64-3-279-7326 (A.N.C.); +64-4-463-0052 (S.F.R.H)
| | - Simon F. R. Hinkley
- Ferrier Research Institute, Victoria University of Wellington, Wellington 5012, New Zealand
- Correspondence: (A.N.C.); (S.F.R.H.); Tel.: +64-3-279-7326 (A.N.C.); +64-4-463-0052 (S.F.R.H)
| |
Collapse
|
3
|
Bio-Inspired Synthesis of Carbon-Based Nanomaterials and Their Potential Environmental Applications: A State-of-the-Art Review. INORGANICS 2022. [DOI: 10.3390/inorganics10100169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Providing safe drinking water and clean water is becoming a more challenging task all around the world. Although some critical issues and limits remain unsolved, implementing ecologically sustainable nanomaterials (NMs) with unique features, e.g., highly efficient and selective, earth-abundance, renewability, low-cost manufacturing procedures, and stability, has become a priority. Carbon nanoparticles (NPs) offer tremendous promise in the sectors of energy and the environment. However, a series of far more ecologically friendly synthesis techniques based on natural, renewable, and less expensive waste resources must be explored. This will reduce greenhouse gas emissions and harmful material extraction and assist the development of green technologies. The progress achieved in the previous 10 years in the fabrication of novel carbon-based NMs utilizing waste materials as well as natural precursors is reviewed in this article. Research on carbon-based NPs and their production using naturally occurring precursors and waste materials focuses on this review research. Water treatment and purification using carbon NMs, notably for industrial and pharmaceutical wastes, has shown significant potential. Research in this area focuses on enhanced carbonaceous NMs, methods, and novel nano-sorbents for wastewater, drinking water, groundwater treatment, as well as ionic metal removal from aqueous environments. Discussed are the latest developments and challenges in environmentally friendly carbon and graphene quantum dot NMs.
Collapse
|
4
|
Aghaei A, Shaterian M, Hosseini-Monfared H, Farokhi A. Single-walled carbon nanotubes: synthesis and quantitative purification evaluation by acid/base treatment for high carbon impurity elimination. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Mostafavi E, Iravani S, Varma RS, Khatami M, Rahbarizadeh F. Eco-friendly synthesis of carbon nanotubes and their cancer theranostic applications. MATERIALS ADVANCES 2022; 3:4765-4782. [PMID: 35812837 PMCID: PMC9207599 DOI: 10.1039/d2ma00341d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Carbon nanotubes (CNTs) with attractive physicochemical characteristics such as high surface area, mechanical strength, functionality, and electrical/thermal conductivity have been widely studied in different fields of science. However, the preparation of these nanostructures on a large scale is either expensive or sometimes ecologically unfriendly. In this context, plenty of studies have been conducted to discover innovative methods to fabricate CNTs in an eco-friendly and inexpensive manner. CNTs have been synthesized using various natural hydrocarbon precursors, including plant extracts (e.g., tea-tree extract), essential oils (e.g., eucalyptus and sunflower oil), biodiesel, milk, honey, and eggs, among others. Additionally, agricultural bio-wastes have been widely studied for synthesizing CNTs. Researchers should embrace the usage of natural and renewable precursors as well as greener methods to produce various types of CNTs in large quantities with the advantages of cost-effectiveness and environmentally benign features. In addition, multifunctionalized CNTs with improved biocompatibility and targeting features are promising candidates for cancer theranostic applications owing to their attractive optical, chemical, thermal, and electrical properties. This perspective discusses the recent developments in eco-friendly synthesis of CNTs using green chemistry-based techniques, natural renewable resources, and sustainable catalysts, with emphasis on important challenges and future perspectives and highlighting techniques for the functionalization or modification of CNTs. Significant and promising cancer theranostic applications as well as their biocompatibility and cytotoxicity issues are also discussed.
Collapse
Affiliation(s)
- Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine CA 94305 USA
- Department of Medicine, Stanford University School of Medicine Stanford CA 94305 USA
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences 81746-73461 Isfahan Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University in Olomouc Slechtitelu 27 783 71 Olomouc Czech Republic
| | - Mehrdad Khatami
- Non-communicable Diseases Research Center, Bam University of Medical Sciences Bam Iran
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University Tehran Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University Tehran Iran
| |
Collapse
|
6
|
Wani TU, Mohi-Ud-Din R, Wani TA, Mir RH, Itoo AM, Sheikh FA, Khan NA, Pottoo FH. Green Synthesis, Spectroscopic Characterization and Biomedical Applications of Carbon Nanotubes. Curr Pharm Biotechnol 2021; 22:793-807. [PMID: 33176640 DOI: 10.2174/1389201021999201110205615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/03/2020] [Accepted: 09/16/2020] [Indexed: 11/22/2022]
Abstract
Carbon nanotubes are nano-sized cylindrical chicken wire-like structures made of carbon atoms. Carbon nanotubes have applications in electronics, energy storage, electromagnetic devices, environmental remediation and medicine as well. The biomedical applications of carbon nanotubes can be owed to features like low toxicity, non-immunogenicity, high in vivo stability and rapid cell entry. Carbon nanotubes have a great prospect in the treatment of diseases through diagnostic as well as therapeutic approaches. These nanostructures are interesting carriers for delivery and translocation of therapeutic molecules e.g. proteins, peptides, nucleic acids, drugs, etc. to various organs like the brain, lungs, liver, and pancreas. Commonly used methods to synthesize carbon nanotubes are arc discharge, chemical vapor deposition, pyrolysis, laser ablation etc. These methods have many disadvantages such as operation at high temperature, use of chemical catalysts, prolonged synthesis time and inclusion of toxic metallic particles in the final product requiring additional purification processes. In order to avoid these setbacks, various green chemistry-based synthetic methods have been devised, e.g., those involving interfacial polymerization, supercritical carbon dioxide drying, plant extract assisted synthesis, water- assisted synthesis, etc. This review will provide a thorough outlook of the eco-friendly synthesis of carbon nanotubes reported in the literature and their biomedical applications. Besides, the most commonly used spectroscopic techniques used for the characterization of carbon nanotubes are also discussed.
Collapse
Affiliation(s)
- Taha U Wani
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Roohi Mohi-Ud-Din
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Taseen A Wani
- Department of Analytical Chemistry, School of Chemical Sciences, Guindy Campus, University of Madras, Chennai, Tamil Nadu - 600085, India
| | - Reyaz H Mir
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Asif M Itoo
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Faheem A Sheikh
- Departmentof Nanotechnology, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Nisar A Khan
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Faheem H Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O.BOX 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
7
|
Moro G, Bottari F, Van Loon J, Du Bois E, De Wael K, Moretto LM. Disposable electrodes from waste materials and renewable sources for (bio)electroanalytical applications. Biosens Bioelectron 2019; 146:111758. [PMID: 31605984 DOI: 10.1016/j.bios.2019.111758] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/23/2019] [Accepted: 10/01/2019] [Indexed: 11/19/2022]
Abstract
The numerous advantages of disposable and screen-printed electrodes (SPEs) particularly in terms of portability, sensibility, sensitivity and low-cost led to the massive application of these electroanalytical devices. To limit the electronic waste and recover precious materials, new recycling processes were developed together with alternative SPEs fabrication procedures based on renewable, biocompatible sources or waste materials, such as paper, agricultural byproducts or spent batteries. The increased interest in the use of eco-friendly materials for electronics has given rise to a new generation of highly performing green modifiers. From paper based electrodes to disposable electrodes obtained from CD/DVD, in the last decades considerable efforts were devoted to reuse and recycle in the field of electrochemistry. Here an overview of recycled and recyclable disposable electrodes, sustainable electrode modifiers and alternative fabrication processes is proposed aiming to provide meaningful examples to redesign the world of disposable electrodes.
Collapse
Affiliation(s)
- Giulia Moro
- LSE Research Group, Department of Molecular Science and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172, Mestre, Italy; AXES Research Group, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Fabio Bottari
- AXES Research Group, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Joren Van Loon
- AXES Research Group, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium; Product Development Research Group, Faculty of Design Sciences, University of Antwerp, Ambtmanstraat 1, 2000, Antwerp, Belgium
| | - Els Du Bois
- Product Development Research Group, Faculty of Design Sciences, University of Antwerp, Ambtmanstraat 1, 2000, Antwerp, Belgium
| | - Karolien De Wael
- AXES Research Group, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - Ligia Maria Moretto
- LSE Research Group, Department of Molecular Science and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172, Mestre, Italy.
| |
Collapse
|
8
|
Al Sheheri SZ, Al-Amshany ZM, Al Sulami QA, Tashkandi NY, Hussein MA, El-Shishtawy RM. The preparation of carbon nanofillers and their role on the performance of variable polymer nanocomposites. Des Monomers Polym 2019; 22:8-53. [PMID: 30833877 PMCID: PMC6394319 DOI: 10.1080/15685551.2019.1565664] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/16/2018] [Indexed: 02/07/2023] Open
Abstract
New synergic behavior is always inspiring scientists toward the formation of nanocomposites aiming at getting advanced materials with superior performance and/or novel properties. Carbon nanotubes (CNT), graphene, fullerene, and graphite as carbon-based are great fillers for polymeric materials. The presence of these materials in the polymeric matrix would render it several characteristics, such as electrical and thermal conductivity, magnetic, mechanical, and as sensor materials for pressure and other environmental changes. This review presents the most recent works in the use of CNT, graphene, fullerene, and graphite as filler in different polymeric matrixes. The primary emphasis of this review is on CNT preparation and its composites formation, while others carbon-based nano-fillers are also introduced. The methods of making polymer nanocomposites using these fillers and their impact on the properties obtained are also presented and discussed.
Collapse
Affiliation(s)
- Soad Z. Al Sheheri
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Zahra M. Al-Amshany
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Qana A. Al Sulami
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Nada Y. Tashkandi
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Mahmoud A. Hussein
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Polymer Chemistry Lab. 122, Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Reda M. El-Shishtawy
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Dyeing, Printing and Textile Auxiliaries Department, Textile Research Division, National Research Centre, Cairo, Egypt
| |
Collapse
|
9
|
Graphene oxide: An efficient material and recent approach for biotechnological and biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018. [DOI: 10.1016/j.msec.2018.01.004] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Wu H, Huang K, Li J, Jiang F, Zhao X, Wang L, Jiang S. Tribo-induced photoluminescent behavior of graphene and YSZ:Er/graphene composite films. RSC Adv 2018; 8:1436-1442. [PMID: 35540874 PMCID: PMC9077046 DOI: 10.1039/c7ra09134f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/22/2017] [Indexed: 11/21/2022] Open
Abstract
In the present work, a novel method was developed to study the evolving surface state of graphene film as it is subject to friction, characterized by photoluminescence properties. We prepared the graphene film (GF) and YSZ:Er (Er3+-Y3+ co-doped ZrO2)/graphene composite films (ZGCF). The Raman spectra and photoluminescence properties of the GF and ZGCF were characterized before and after the sliding friction. A remarkable phenomenon was observed that after friction the GF generated a more pronounced luminescence response than it had prior, apparently due to graphene quantum dots which were found in the wear debris of the GF. Furthermore, the introduction of graphene into YSZ:Er nanoparticles (NPs) resulted in an unmistakable red-shift on the main luminescence bands of ZGCF after the applied friction. This is explained by the formation of considerable graphene scrolls in the wear debris of ZGCF due to the interaction of the graphene and the YSZ:Er NPs. It can be concluded that changes to the configuration of graphene greatly influence the tribo-induced photoluminescence response. Our findings justify further investigation into the composition and morphology of worn surfaces in order to better understand how photoluminescence relates to frictional effects. In addition, this work proposes the in situ fabrication of graphene quantum dots and nanoscale scrolls as a new potential application of the tribo-induced photoluminescence study.
Collapse
Affiliation(s)
- Hongyan Wu
- Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean, School of Physics & Optoelectronic Engineering, Nanjing University of Information Science & Technology Nanjing China
| | - Ke Huang
- Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean, School of Physics & Optoelectronic Engineering, Nanjing University of Information Science & Technology Nanjing China
| | - Jianliang Li
- College of Material Science and Technology, Nanjing University of Science and Technology Nanjing China
| | - Fan Jiang
- Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean, School of Physics & Optoelectronic Engineering, Nanjing University of Information Science & Technology Nanjing China
| | - Xingming Zhao
- Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean, School of Physics & Optoelectronic Engineering, Nanjing University of Information Science & Technology Nanjing China
| | - Lu Wang
- Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean, School of Physics & Optoelectronic Engineering, Nanjing University of Information Science & Technology Nanjing China
| | - Shan Jiang
- Department of Mechanical Engineering, University of Mississippi, University MS 38677 USA
| |
Collapse
|
11
|
Lara-Romero J, Campos-García J, Dasgupta-Schubert N, Borjas-García S, Tiwari DK, Paraguay-Delgado F, Jiménez-Sandoval S, Alonso-Nuñez G, Gómez-Romero M, Lindig-Cisneros R, Reyes De la Cruz H, Villegas JA. Biological effects of carbon nanotubes generated in forest wildfire ecosystems rich in resinous trees on native plants. PeerJ 2017; 5:e3658. [PMID: 28828256 PMCID: PMC5562139 DOI: 10.7717/peerj.3658] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/15/2017] [Indexed: 12/12/2022] Open
Abstract
Carbon nanotubes (CNTs) have a broad range of applications and are generally considered human-engineered nanomaterials. However, carbon nanostructures have been found in ice cores and oil wells, suggesting that nature may provide appropriate conditions for CNT synthesis. During forest wildfires, materials such as turpentine and conifer tissues containing iron under high temperatures may create chemical conditions favorable for CNT generation, similar to those in synthetic methods. Here, we show evidence of naturally occurring multiwalled carbon nanotubes (MWCNTs) produced from Pinus oocarpa and Pinus pseudostrobus, following a forest wildfire. The MWCNTs showed an average of 10 walls, with internal diameters of ∼2.5 nm and outer diameters of ∼14.5 nm. To verify whether MWCNT generation during forest wildfires has a biological effect on some characteristic plant species of these ecosystems, germination and development of seedlings were conducted. Results show that the utilization of comparable synthetic MWCNTs increased seed germination rates and the development of Lupinus elegans and Eysenhardtia polystachya, two plants species found in the burned forest ecosystem. The finding provides evidence that supports the generation and possible ecological functions of MWCNTs in nature.
Collapse
Affiliation(s)
- Javier Lara-Romero
- Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Jesús Campos-García
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | | | | | - D K Tiwari
- CONACYT-El Colegio de Michoacán/Ladipa, La Piedad, México
| | | | - Sergio Jiménez-Sandoval
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Querétaro, Querétaro, México
| | - Gabriel Alonso-Nuñez
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, Mexico
| | - Mariela Gómez-Romero
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, Mexico
| | - Roberto Lindig-Cisneros
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, Mexico
| | - Homero Reyes De la Cruz
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Javier A Villegas
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| |
Collapse
|
12
|
|
13
|
Pramanick B, Martinez-Chapa SO, Madou M, Hwang H. Fabrication of 3D Carbon Microelectromechanical Systems (C-MEMS). J Vis Exp 2017. [PMID: 28654068 DOI: 10.3791/55649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
A wide range of carbon sources are available in nature, with a variety of micro-/nanostructure configurations. Here, a novel technique to fabricate long and hollow glassy carbon microfibers derived from human hairs is introduced. The long and hollow carbon structures were made by the pyrolysis of human hair at 900 °C in a N2 atmosphere. The morphology and chemical composition of natural and pyrolyzed human hairs were investigated using scanning electron microscopy (SEM) and electron-dispersive X-ray spectroscopy (EDX), respectively, to estimate the physical and chemical changes due to pyrolysis. Raman spectroscopy was used to confirm the glassy nature of the carbon microstructures. Pyrolyzed hair carbon was introduced to modify screen-printed carbon electrodes ; the modified electrodes were then applied to the electrochemical sensing of dopamine and ascorbic acid. Sensing performance of the modified sensors was improved as compared to the unmodified sensors. To obtain the desired carbon structure design, carbon micro-/nanoelectromechanical system (C-MEMS/C-NEMS) technology was developed. The most common C-MEMS/C-NEMS fabrication process consists of two steps: (i) the patterning of a carbon-rich base material, such as a photosensitive polymer, using photolithography; and (ii) carbonization through the pyrolysis of the patterned polymer in an oxygen-free environment. The C-MEMS/NEMS process has been widely used to develop microelectronic devices for various applications, including in micro-batteries, supercapacitors, glucose sensors, gas sensors, fuel cells, and triboelectric nanogenerators. Here, recent developments of a high-aspect ratio solid and hollow carbon microstructures with SU8 photoresists are discussed. The structural shrinkage during pyrolysis was investigated using confocal microscopy and SEM. Raman spectroscopy was used to confirm the crystallinity of the structure, and the atomic percentage of the elements present in the material before and after pyrolysis was measured using EDX.
Collapse
Affiliation(s)
| | | | - Marc Madou
- School of Engineering and Sciences, Tecnologico de Monterrey; Department of Mechanical and Aerospace Engineering, University of California
| | - Hyundoo Hwang
- School of Engineering and Sciences, Tecnologico de Monterrey; BBB Inc;
| |
Collapse
|
14
|
Fathy NA. Carbon nanotubes synthesis using carbonization of pretreated rice straw through chemical vapor deposition of camphor. RSC Adv 2017. [DOI: 10.1039/c7ra04882c] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
There is a pressing demand to prepare low-cost carbon nanotubes (CNTs) from renewable biomass resources as cheap carbon precursors and catalyst supports during chemical vapor deposition (CVD).
Collapse
Affiliation(s)
- Nady A. Fathy
- Physical Chemistry Department
- National Research Centre
- Giza
- Egypt
| |
Collapse
|
15
|
Bazaka K, Jacob MV, Ostrikov KK. Sustainable Life Cycles of Natural-Precursor-Derived Nanocarbons. Chem Rev 2015; 116:163-214. [PMID: 26717047 DOI: 10.1021/acs.chemrev.5b00566] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sustainable societal and economic development relies on novel nanotechnologies that offer maximum efficiency at minimal environmental cost. Yet, it is very challenging to apply green chemistry approaches across the entire life cycle of nanotech products, from design and nanomaterial synthesis to utilization and disposal. Recently, novel, efficient methods based on nonequilibrium reactive plasma chemistries that minimize the process steps and dramatically reduce the use of expensive and hazardous reagents have been applied to low-cost natural and waste sources to produce value-added nanomaterials with a wide range of applications. This review discusses the distinctive effects of nonequilibrium reactive chemistries and how these effects can aid and advance the integration of sustainable chemistry into each stage of nanotech product life. Examples of the use of enabling plasma-based technologies in sustainable production and degradation of nanotech products are discussed-from selection of precursors derived from natural resources and their conversion into functional building units, to methods for green synthesis of useful naturally degradable carbon-based nanomaterials, to device operation and eventual disintegration into naturally degradable yet potentially reusable byproducts.
Collapse
Affiliation(s)
- Kateryna Bazaka
- Institute for Future Environments, School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology , Brisbane, Queensland 4000, Australia.,Electronics Materials Lab, College of Science, Technology and Engineering, James Cook University , Townsville, Queensland 4811, Australia.,CSIRO-QUT Joint Sustainable Materials and Devices Laboratory, Commonwealth Scientific and Industrial Research Organization , P.O. Box 218, Lindfield, New South Wales 2070, Australia
| | - Mohan V Jacob
- Electronics Materials Lab, College of Science, Technology and Engineering, James Cook University , Townsville, Queensland 4811, Australia
| | - Kostya Ken Ostrikov
- Institute for Future Environments, School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology , Brisbane, Queensland 4000, Australia.,CSIRO-QUT Joint Sustainable Materials and Devices Laboratory, Commonwealth Scientific and Industrial Research Organization , P.O. Box 218, Lindfield, New South Wales 2070, Australia.,School of Physics, The University of Sydney , Sydney, New South Wales 2006, Australia
| |
Collapse
|
16
|
Raman Spectra of Luminescent Graphene Oxide (GO)-Phosphor Hybrid Nanoscrolls. MATERIALS 2015; 8:8460-8466. [PMID: 28793723 PMCID: PMC5458848 DOI: 10.3390/ma8125470] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/27/2015] [Accepted: 11/30/2015] [Indexed: 11/17/2022]
Abstract
Graphene oxide (GO)-phosphor hybrid nanoscrolls were synthesized using a simple chemical method. The GO-phosphor ratio was varied to find the optimum ratio for enhanced optical characteristics of the hybrid. A scanning electron microscope analysis revealed that synthesized GO scrolls achieved a length of over 20 μm with interior cavities. The GO-phosphor hybrid is extensively analyzed using Raman spectroscopy, suggesting that various Raman combination modes are activated with the appearance of a low-frequency radial breathing-like mode (RBLM) of the type observed in carbon nanotubes. All of the synthesized GO-phosphor hybrids exhibit an intense luminescent emission around 540 nm along with a broad emission at approximately 400 nm, with the intensity ratio varying with the GO-phosphor ratio. The photoluminescence emissions were gauged using Commission Internationale d'Eclairage (CIE) coordinates and at an optimum ratio. The coordinates shift to the white region of the color spectra. Our study suggests that the GO-phosphor hybrid nanoscrolls are suitable candidates for light-emitting applications.
Collapse
|
17
|
Abstract
Research innovation in finding new carbon sources for carbon nanostructured material production was intensively done lately. In this review, we present the production of carbon nanostructures such as carbon fibers, nanotubes, nanowhiskers, microspheres and porous carbon from several waste materials. The benefit of the use of waste materials such as waste cooking palm oil, chicken fat, waste natural oil, glycerol, printed circuit board, plastic wastes, waste engine oil, scrap tyre, heavy oil residue and deoiled asphalt is not only in the term of their environmentally friendly approach but also the economic value to reduce the high cost of carbon material production using common sources. On the other hand, these materials are easy access sources and can be alternative utilization to convert waste materials into high value nanomaterials.
Collapse
|
18
|
Rani JR, Oh SI, Woo JM, Tarwal NL, Kim HW, Mun BS, Lee S, Kim KJ, Jang JH. Graphene oxide-phosphor hybrid nanoscrolls with high luminescent quantum yield: synthesis, structural, and X-ray absorption studies. ACS APPLIED MATERIALS & INTERFACES 2015; 7:5693-5700. [PMID: 25710469 DOI: 10.1021/am507342w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Highly luminescent graphene oxide (GO)-phosphor hybrid thin films with a maximum quantum yield of 9.6% were synthesized via a simple chemical method. An intense luminescence emission peak at 537 nm and a broad emission peak at 400 nm were observed from the GO-phosphor hybrid films. The maximum quantum yield of the emissions from the hybrid films was found to be 9.6%, which is 48 times higher than that of pristine GO films. The GO-phosphor hybrids were prepared via spin-coating and subsequent postannealing of the films, resulting in scrolling of the GO sheets. The resulting GO nanoscrolls exhibited a length of ∼2 μm with nanoscale interior cavities. Transmission electron microscopy and selected-area electron diffraction analyses revealed that the lattice structure of the tubular scrolls is similar to that of carbon nanotubes. While pristine GO films are p-type, in the GO-phosphor hybrids, the Fermi level shifted upward and fell between the HOMO-LUMO gap due to phosphor attachment via C-N bonding. The highly luminescent GO-phosphor hybrids will find important applications in graphene-based optoelectronic devices.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ki-Jeong Kim
- §Beamline Research Division, Pohang Accelerator Laboratory, Pohang, Kyungbuk 790-784, South Korea
| | | |
Collapse
|
19
|
Makama AB, Salmiaton A, Abdullah N, Choong TSY, Saion EB. Recent Developments in Purification of Single Wall Carbon Nanotubes. SEP SCI TECHNOL 2014. [DOI: 10.1080/01496395.2013.815628] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
The Effect of Synthesis Temperature on the Growth of Carbon Nanotubes from Waste Chicken Fat Precursor. ACTA ACUST UNITED AC 2013. [DOI: 10.4028/www.scientific.net/amr.832.798] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effects of synthesis temperatures on the growth of carbon nanotubes (CNT) from waste chicken fat as carbon source were systematically studied. The synthesis was carried out in dual heating zone tube furnace at synthesis temperature between the ranges of 600-900 °C. The waste chicken fat vaporization temperature was fixed at 470°C. The samples were characterized using field emission scanning electron microscopy, micro-Raman spectroscopy and thermogravimetric analyzer. In this experiment, vertically aligned CNT (VACNT) were identified at synthesis temperature ranged of 750-800°C. Among all, the synthesis temperature of 800 °C produced highest yield of VACNT with growth rate of 282 nmmin-1, small nanotubes diameter of 19.8-31.7 nm, 91% pure and high crystallinity (ID/IG ratio of 0.39). At low synthesis temperatures of 600-650°C, no CNT was produced. At high synthesis temperatures of 850-900°C, bigger nanotubes diameter and higher ID/IG ratio were observed which indicates lower nanotubes quality were produced at this temperature range.
Collapse
|
21
|
Abstract
In this work, we have synthesized carbon nanotubes (CNT) using different bio-hydrocarbon precursors namely palm, olive, coconut, corn and sesame oils. Prior to the synthesis process, thermogravimetric analysis (TGA) characterization was performed on the carbon precursors to facilitate the optimization procedures of CNT and reach maximum yield and higher quality CNT. The CNT arrays were deposited on a silicon substrate by thermal catalytic decomposition of the precursor using 5.33 wt% ferrocene. The synthesis was carried out at 750 °C for 60 min under argon ambient. The samples were characterized using field emission scanning electron microscopy, micro-Raman spectroscopy and TGA analysis. The difference in oil density resulted in different quality and tube diameter of CNT produced. Among all, the CNT synthesized from coconut oil can be considered as the best bio-hydrocarbon precursor for higher quality (ID/IG ~0.62) and good purity (81.95 %) CNT.
Collapse
|
22
|
|
23
|
Temperature Effects on the Production of Carbon Nanotubes from Palm Oil by Thermal Chemical Vapor Deposition Method. ACTA ACUST UNITED AC 2011. [DOI: 10.4028/www.scientific.net/amr.364.359] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study we report the effect of various synthesis temperatures of 600 - 1000°C for the synthesis of carbon nanotubes (CNT). Bio-hydrocarbon precursor namely palm oil was utilized as a starting material by thermal vapor deposition method. Ferrocene at 5.33 wt% was directly mixed with palm oil precursor for 30 mins synthesis time. The prepared CNT was collected from the furnace wall and then characterized by field emission scanning electron microscopy, scanning transmission electron microscopy, fourier transform infrared spectroscopy and thermogravimetric analysis. The density, diameter and the purities of the CNT were found to be highly dependent on the temperature changes. The synthesis temperature of 800°C was considered to be the optimum temperature for higher quality and quantity of CNT production.
Collapse
|