1
|
Mochnáčová E, Bhide K, Kucková K, Jozefiaková J, Maľarik T, Bhide M. Antimicrobial cyclic peptides effectively inhibit multiple forms of Borrelia and cross the blood-brain barrier model. Sci Rep 2025; 15:6147. [PMID: 39979461 PMCID: PMC11842550 DOI: 10.1038/s41598-025-90605-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/14/2025] [Indexed: 02/22/2025] Open
Abstract
Infection caused by neuroinvasive Borrelia often manifests long-term CNS disorders and is difficult to treat as most antibiotics fail to attain an effective concentration within the brain or cannot kill the persister forms of Borrelia (cysts and round bodies). Thus, this study focused on developing antimicrobial cyclic peptides (AMPs) from a combinatorial phage display library that target phosphatidylcholine of the borrelial cell membrane. Isolated cyclic peptides with anti-Borrelia properties were then fused with the CNS homing peptide developed in this study (designated as O-BBB) to facilitate AMP transport across the blood-brain barrier. Among all O-BBB fused AMPs, Bor-18 had half maximal effective concentration (EC50) 0.83 µM when tested against spirochetal Borrelia. Bor-16, Bor-18, and Bor-26 inhibited the cystic form with EC50 0.83 µM, while Bor-11 had EC50 0.41 µM. Within an hour, all four peptides caused a permeability breach in the borrelial cell membrane, causing depolarization of the membrane. Bor peptides did not inhibit eukaryotic cell metabolism or proliferation, nor did they cause erythrocyte lysis. Peptides were stable in serum, could cross the BBB in-vitro, and remained effective against Borrelia. Cyclic AMPs fused with a CNS homing moiety, the Bor peptides, deserve further investigation for their potential use in neuroborreliosis therapy.
Collapse
Affiliation(s)
- Evelína Mochnáčová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181, Košice, Slovakia
| | - Katarína Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181, Košice, Slovakia
| | - Katarína Kucková
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181, Košice, Slovakia
| | - Jana Jozefiaková
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181, Košice, Slovakia
| | - Tomáš Maľarik
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181, Košice, Slovakia
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181, Košice, Slovakia.
- Institute of Neuroimmunology of Slovak Academy of Sciences, 84510, Bratislava, Slovakia.
| |
Collapse
|
2
|
Sloupenska K, Koubkova B, Horak P, Dolezilkova J, Hutyrova B, Racansky M, Miklusova M, Mares J, Raska M, Krupka M. Antigenicity and immunogenicity of different morphological forms of Borrelia burgdorferi sensu lato spirochetes. Sci Rep 2024; 14:4014. [PMID: 38369537 PMCID: PMC10874929 DOI: 10.1038/s41598-024-54505-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/13/2024] [Indexed: 02/20/2024] Open
Abstract
Borrelia burgdorferi sensu lato is a species complex of pleomorphic spirochetes, including species that cause Lyme disease (LD) in humans. In addition to classic spiral forms, these bacteria are capable of creating morphological forms referred to as round bodies and aggregates. The subject of discussion is their possible contribution to the persistence of infection or post-infection symptoms in LD. This study investigates the immunological properties of these forms by monitoring reactivity with early (n = 30) and late stage (n = 30) LD patient sera and evaluating the immune response induced by vaccination of mice. In patient sera, we found a quantitative difference in reactivity with individual morphotypes, when aggregates were recognized most intensively, but the difference was statistically significant in only half of the tested strains. In post-vaccination mouse sera, we observed a statistically significant higher reactivity with antigens p83 and p25 (OspC) in mice vaccinated with aggregates compared to mice vaccinated with spiral forms. The importance of the particulate nature of the antigen for the induction of a Th1-directed response has also been demonstrated. In any of morphological forms, the possibility of inducing antibodies cross-reacting with human nuclear and myositis specific/associated autoantigens was not confirmed by vaccination of mice.
Collapse
Affiliation(s)
- Kristyna Sloupenska
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, 779 00, Olomouc, Czech Republic
| | - Barbora Koubkova
- Department of Allergology and Clinical Immunology, University Hospital Olomouc, Zdravotniku 248/7, 779 00, Olomouc, Czech Republic
| | - Pavel Horak
- Third Department of Internal Medicine-Nephrology, Rheumatology and Endocrinology, University Hospital Olomouc, Zdravotniku 248/7, 779 00, Olomouc, Czech Republic
- Third Department of Internal Medicine-Nephrology, Rheumatology and Endocrinology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, 779 00, Olomouc, Czech Republic
| | - Jana Dolezilkova
- Laboratory of Medical Parasitology and Zoology, Public Health Institute Ostrava, Partyzanske Namesti 2633/7, Moravska Ostrava, 702 00, Ostrava, Czech Republic
| | - Beata Hutyrova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, 779 00, Olomouc, Czech Republic
- Department of Allergology and Clinical Immunology, University Hospital Olomouc, Zdravotniku 248/7, 779 00, Olomouc, Czech Republic
| | - Mojmir Racansky
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, 779 00, Olomouc, Czech Republic
- Department of Allergology and Clinical Immunology, University Hospital Olomouc, Zdravotniku 248/7, 779 00, Olomouc, Czech Republic
| | - Martina Miklusova
- Department of Neurology, University Hospital Olomouc, Zdravotniku 248/7, 779 00, Olomouc, Czech Republic
| | - Jan Mares
- Department of Neurology, University Hospital Olomouc, Zdravotniku 248/7, 779 00, Olomouc, Czech Republic
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, 779 00, Olomouc, Czech Republic
| | - Milan Raska
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, 779 00, Olomouc, Czech Republic
- Department of Immunology, University Hospital Olomouc, Zdravotniku 248/7, 779 00, Olomouc, Czech Republic
| | - Michal Krupka
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, 779 00, Olomouc, Czech Republic.
| |
Collapse
|
3
|
Golovchenko M, Opelka J, Vancova M, Sehadova H, Kralikova V, Dobias M, Raska M, Krupka M, Sloupenska K, Rudenko N. Concurrent Infection of the Human Brain with Multiple Borrelia Species. Int J Mol Sci 2023; 24:16906. [PMID: 38069228 PMCID: PMC10707132 DOI: 10.3390/ijms242316906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Lyme disease (LD) spirochetes are well known to be able to disseminate into the tissues of infected hosts, including humans. The diverse strategies used by spirochetes to avoid the host immune system and persist in the host include active immune suppression, induction of immune tolerance, phase and antigenic variation, intracellular seclusion, changing of morphological and physiological state in varying environments, formation of biofilms and persistent forms, and, importantly, incursion into immune-privileged sites such as the brain. Invasion of immune-privileged sites allows the spirochetes to not only escape from the host immune system but can also reduce the efficacy of antibiotic therapy. Here we present a case of the detection of spirochetal DNA in multiple loci in a LD patient's post-mortem brain. The presence of co-infection with Borrelia burgdorferi sensu stricto and Borrelia garinii in this LD patient's brain was confirmed by PCR. Even though both spirochete species were simultaneously present in human brain tissue, the brain regions where the two species were detected were different and non-overlapping. The presence of atypical spirochete morphology was noted by immunohistochemistry of the brain samples. Atypical morphology was also found in the tissues of experimentally infected mice, which were used as a control.
Collapse
Affiliation(s)
- Maryna Golovchenko
- Biology Centre Czech Academy of Sciences, Institute of Parasitology, 37005 Ceske Budejovice, Czech Republic;
| | - Jakub Opelka
- Biology Centre Czech Academy of Sciences, Institute of Entomology, 37005 Ceske Budejovice, Czech Republic; (J.O.); (H.S.)
- Faculty of Sciences, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | - Marie Vancova
- Biology Centre Czech Academy of Sciences, Institute of Parasitology, 37005 Ceske Budejovice, Czech Republic;
- Faculty of Sciences, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | - Hana Sehadova
- Biology Centre Czech Academy of Sciences, Institute of Entomology, 37005 Ceske Budejovice, Czech Republic; (J.O.); (H.S.)
- Faculty of Sciences, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | - Veronika Kralikova
- Institute of Forensic Medicine and Medical Law, University Hospital Olomouc, 77900 Olomouc, Czech Republic; (V.K.); (M.D.)
| | - Martin Dobias
- Institute of Forensic Medicine and Medical Law, University Hospital Olomouc, 77900 Olomouc, Czech Republic; (V.K.); (M.D.)
| | - Milan Raska
- Department of Immunology, University Hospital Olomouc, 77900 Olomouc, Czech Republic;
| | - Michal Krupka
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic; (M.K.); (K.S.)
| | - Kristyna Sloupenska
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic; (M.K.); (K.S.)
| | - Natalie Rudenko
- Biology Centre Czech Academy of Sciences, Institute of Parasitology, 37005 Ceske Budejovice, Czech Republic;
| |
Collapse
|
4
|
Khatri VA, Paul S, Patel NJ, Thippani S, Sawant JY, Durkee KL, Murphy CL, Aleman GO, Valentino JA, Jathan J, Melillo A, Sapi E. Global transcriptomic analysis of breast cancer and normal mammary epithelial cells infected with Borrelia burgdorferi. Eur J Microbiol Immunol (Bp) 2023; 13:63-76. [PMID: 37856211 PMCID: PMC10668924 DOI: 10.1556/1886.2023.00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/26/2023] [Indexed: 10/21/2023] Open
Abstract
The bacterial spirochete Borrelia burgdorferi, the causative agent of Lyme Disease, can disseminate and colonize various tissues and organs, orchestrating severe clinical symptoms including arthritis, carditis, and neuroborreliosis. Previous research has demonstrated that breast cancer tissues could provide an ideal habitat for diverse populations of bacteria, including B. burgdorferi, which is associated with a poor prognosis. Recently, we demonstrated that infection with B. burgdorferi enhances the invasion and migration of triple-negative MDA-MB-231 cells which represent a type of breast tumor with more aggressive cancer traits. In this study, we hypothesized that infection by B. burgdorferi affects the expression of cancer-associated genes to effectuate breast cancer phenotypes. We applied the high-throughput technique of RNA-sequencing on B. burgdorferi-infected MDA-MB-231 breast cancer and normal-like MCF10A cells to determine the most differentially expressed genes (DEG) upon infection. Overall, 142 DEGs were identified between uninfected and infected samples in MDA-MB-231 while 95 DEGs were found in MCF10A cells. A major trend of the upregulation of C-X-C and C-C motif chemokine family members as well as genes and pathways was associated with infection, inflammation, and cancer. These genes could serve as potential biomarkers for pathogen-related tumorigenesis and cancer progression which could lead to new therapeutic opportunities.
Collapse
Affiliation(s)
- Vishwa A. Khatri
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA
| | - Sambuddha Paul
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA
| | - Niraj Jatin Patel
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA
| | - Sahaja Thippani
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA
| | - Janhavi Y. Sawant
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA
| | - Katie L. Durkee
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA
| | - Cassandra L. Murphy
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA
| | - Geneve Ortiz Aleman
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA
| | - Justine A. Valentino
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA
| | - Jasmine Jathan
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA
| | - Anthony Melillo
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA
| | - Eva Sapi
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA
| |
Collapse
|
5
|
Horowitz RI, Fallon J, Freeman PR. Comparison of the Efficacy of Longer versus Shorter Pulsed High Dose Dapsone Combination Therapy in the Treatment of Chronic Lyme Disease/Post Treatment Lyme Disease Syndrome with Bartonellosis and Associated Coinfections. Microorganisms 2023; 11:2301. [PMID: 37764145 PMCID: PMC10537894 DOI: 10.3390/microorganisms11092301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/27/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Twenty-five patients with relapsing and remitting Borreliosis, Babesiosis, and bartonellosis despite extended anti-infective therapy were prescribed double-dose dapsone combination therapy (DDDCT), followed by one or several courses of High Dose Dapsone Combination Therapy (HDDCT). A retrospective chart review of these 25 patients undergoing DDDCT therapy and HDDCT demonstrated that 100% improved their tick-borne symptoms, and patients completing 6-7 day pulses of HDDCT had superior levels of improvement versus 4-day pulses if Bartonella was present. At the completion of treatment, 7/23 (30.5%) who completed 8 weeks of DDDCT followed by a 5-7 day pulse of HDDCT remained in remission for 3-9 months, and 3/23 patients (13%) who recently finished treatment were 1 ½ months in full remission. In conclusion, DDDCT followed by 6-7 day pulses of HDDCT could represent a novel, effective anti-infective strategy in chronic Lyme disease/Post Treatment Lyme Disease Syndrome (PTLDS) and associated co-infections, including Bartonella, especially in individuals who have failed standard antibiotic protocols.
Collapse
Affiliation(s)
- Richard I. Horowitz
- Lyme and Tick-Borne Diseases Working Group, New York State Department of Health, Albany, NY 12224, USA
- Hudson Valley Healing Arts Center, Hyde Park, NY 12538, USA; (J.F.); (P.R.F.)
| | - John Fallon
- Hudson Valley Healing Arts Center, Hyde Park, NY 12538, USA; (J.F.); (P.R.F.)
| | - Phyllis R. Freeman
- Hudson Valley Healing Arts Center, Hyde Park, NY 12538, USA; (J.F.); (P.R.F.)
| |
Collapse
|
6
|
Hu YT, Wu KX, Wang XT, Zhao YY, Jiang XY, Liu D, Tong ML, Liu LL. Treponema pallidum promoted microglia apoptosis and prevented itself from clearing by human microglia via blocking autophagic flux. PLoS Pathog 2023; 19:e1011594. [PMID: 37611054 PMCID: PMC10446187 DOI: 10.1371/journal.ppat.1011594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/02/2023] [Indexed: 08/25/2023] Open
Abstract
Treponema pallidum (Tp) has a well-known ability to evade the immune system and can cause neurosyphilis by invading the central nervous system (CNS). Microglia are resident macrophages of the CNS that are essential for host defense against pathogens, this study aims to investigate the interaction between Tp and microglia and the potential mechanism. Here, we found that Tp can exert significant toxic effects on microglia in vivo in Tg (mpeg1: EGFP) transgenic zebrafish embryos. Single-cell RNA sequencing results showed that Tp downregulated autophagy-related genes in human HMC3 microglial cells, which is negatively associated with apoptotic gene expression. Biochemical and cell biology assays further established that Tp inhibits microglial autophagy by interfering with the autophagosome-lysosome fusion process. Transcription factor EB (TFEB) is a master regulator of lysosome biogenesis, Tp activates the mechanistic target of rapamycin complex 1 (mTORC1) signaling to inhibit the nuclear translocation of TFEB, leading to decreased lysosomal biogenesis and accumulated autophagosome. Importantly, the inhibition of autophagosome formation reversed Tp-induced apoptosis and promoted microglial clearance of Tp. Taken together, these findings show that Tp blocks autophagic flux by inhibiting TFEB-mediated lysosomal biosynthesis in human microglia. Autophagosome accumulation was demonstrated to be a key mechanism underlying the effects of Tp in promoting apoptosis and preventing itself from clearing by human microglia. This study offers novel perspectives on the potential mechanism of immune evasion employed by Tp within CNS. The results not only establish the pivotal role of autophagy dysregulation in the detrimental effects of Tp on microglial cells but also bear considerable implications for the development of therapeutic strategies against Tp, specifically involving mTORC1 inhibitors and autophagosome formation inhibitors, in the context of neurosyphilis patients.
Collapse
Affiliation(s)
- Yun-Ting Hu
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Kai-Xuan Wu
- Department of Clinical Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, China
| | - Xiao-Tong Wang
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin, China
| | - Yuan-Yi Zhao
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiao-Yong Jiang
- Department of Dermatology, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Dan Liu
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Man-Li Tong
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Li Liu
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
7
|
Flynn CD, Sandomierski M, Kim K, Lewis J, Lloyd V, Ignaszak A. Electrochemical Detection of Borrelia burgdorferi Using a Biomimetic Flow Cell System. ACS MEASUREMENT SCIENCE AU 2023; 3:208-216. [PMID: 37360035 PMCID: PMC10288608 DOI: 10.1021/acsmeasuresciau.3c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 06/28/2023]
Abstract
Lyme disease, caused by infection with pathogenic Borrelia bacteria, has emerged as a pervasive illness throughout North America and many other regions of the world in recent years, owing in part to climate-mediated habitat expansion of the tick vectors. Standard diagnostic testing has remained largely unchanged over the past several decades and is indirect, relying on detection of antibodies against the Borrelia pathogen, rather than detection of the pathogen itself. The development of new rapid, point-of-care tests for Lyme disease that directly detects the pathogen could drastically improve patient health by enabling faster and more frequent testing that could better inform patient treatment. Here, we describe a proof-of-concept electrochemical sensing approach to the detection of the Lyme disease-causing bacteria, which utilizes a biomimetic electrode to interact with the Borrelia bacteria that induce impedance alterations. In addition, the catch-bond mechanism between bacterial BBK32 protein and human fibronectin protein, which exhibits improved bond strength with increased tensile force, is tested within an electrochemical injection flow-cell to achieve Borrelia detection under shear stress.
Collapse
Affiliation(s)
- Connor D. Flynn
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Chemistry, University of Toronto, Toronto, ON M5S 3G8, Canada
- Department
of Chemistry, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Mariusz Sandomierski
- Department
of Chemistry, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
- Institute
of Chemical Technology and Engineering, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznań, Poland
| | - Kelly Kim
- Department
of Chemistry, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Julie Lewis
- Department
of Biology, Mount Allison University, Sackville, NB E4L 1E2, Canada
| | - Vett Lloyd
- Department
of Biology, Mount Allison University, Sackville, NB E4L 1E2, Canada
| | - Anna Ignaszak
- Department
of Chemistry, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
8
|
Adkison H, Embers ME. Lyme disease and the pursuit of a clinical cure. Front Med (Lausanne) 2023; 10:1183344. [PMID: 37293310 PMCID: PMC10244525 DOI: 10.3389/fmed.2023.1183344] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023] Open
Abstract
Lyme disease, caused by the spirochete Borrelia burgdorferi, is the most common vector-borne illness in the United States. Many aspects of the disease are still topics of controversy within the scientific and medical communities. One particular point of debate is the etiology behind antibiotic treatment failure of a significant portion (10-30%) of Lyme disease patients. The condition in which patients with Lyme disease continue to experience a variety of symptoms months to years after the recommended antibiotic treatment is most recently referred to in the literature as post treatment Lyme disease syndrome (PTLDS) or just simply post treatment Lyme disease (PTLD). The most commonly proposed mechanisms behind treatment failure include host autoimmune responses, long-term sequelae from the initial Borrelia infection, and persistence of the spirochete. The aims of this review will focus on the in vitro, in vivo, and clinical evidence that either validates or challenges these mechanisms, particularly with regard to the role of the immune response in disease and resolution of the infection. Next generation treatments and research into identifying biomarkers to predict treatment responses and outcomes for Lyme disease patients are also discussed. It is essential that definitions and guidelines for Lyme disease evolve with the research to translate diagnostic and therapeutic advances to patient care.
Collapse
Affiliation(s)
| | - Monica E. Embers
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA, United States
| |
Collapse
|
9
|
Čorak N, Anniko S, Daschkin-Steinborn C, Krey V, Koska S, Futo M, Široki T, Woichansky I, Opašić L, Kifer D, Tušar A, Maxeiner HG, Domazet-Lošo M, Nicolaus C, Domazet-Lošo T. Pleomorphic Variants of Borreliella (syn. Borrelia) burgdorferi Express Evolutionary Distinct Transcriptomes. Int J Mol Sci 2023; 24:5594. [PMID: 36982667 PMCID: PMC10057712 DOI: 10.3390/ijms24065594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/07/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Borreliella (syn. Borrelia) burgdorferi is a spirochete bacterium that causes tick-borne Lyme disease. Along its lifecycle B. burgdorferi develops several pleomorphic forms with unclear biological and medical relevance. Surprisingly, these morphotypes have never been compared at the global transcriptome level. To fill this void, we grew B. burgdorferi spirochete, round body, bleb, and biofilm-dominated cultures and recovered their transcriptomes by RNAseq profiling. We found that round bodies share similar expression profiles with spirochetes, despite their morphological differences. This sharply contrasts to blebs and biofilms that showed unique transcriptomes, profoundly distinct from spirochetes and round bodies. To better characterize differentially expressed genes in non-spirochete morphotypes, we performed functional, positional, and evolutionary enrichment analyses. Our results suggest that spirochete to round body transition relies on the delicate regulation of a relatively small number of highly conserved genes, which are located on the main chromosome and involved in translation. In contrast, spirochete to bleb or biofilm transition includes substantial reshaping of transcription profiles towards plasmids-residing and evolutionary young genes, which originated in the ancestor of Borreliaceae. Despite their abundance the function of these Borreliaceae-specific genes is largely unknown. However, many known Lyme disease virulence genes implicated in immune evasion and tissue adhesion originated in this evolutionary period. Taken together, these regularities point to the possibility that bleb and biofilm morphotypes might be important in the dissemination and persistence of B. burgdorferi inside the mammalian host. On the other hand, they prioritize the large pool of unstudied Borreliaceae-specific genes for functional characterization because this subset likely contains undiscovered Lyme disease pathogenesis genes.
Collapse
Affiliation(s)
- Nina Čorak
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
| | - Sirli Anniko
- BCA-Research, BCA-Clinic Betriebs GmbH & Co. KG, D-86159 Augsburg, Germany
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | | | - Viktoria Krey
- BCA-Research, BCA-Clinic Betriebs GmbH & Co. KG, D-86159 Augsburg, Germany
- Physics of Synthetic Biological Systems-E14, Physics Department and ZNN, Technische Universität München, D-85748 Garching, Germany
| | - Sara Koska
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
| | - Momir Futo
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
- Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, HR-10000 Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Ilica 242, HR-10000 Zagreb, Croatia
| | - Tin Široki
- Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, HR-10000 Zagreb, Croatia
| | | | - Luka Opašić
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
| | - Domagoj Kifer
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, HR-10000 Zagreb, Croatia
| | - Anja Tušar
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
| | - Horst-Günter Maxeiner
- BCA-Research, BCA-Clinic Betriebs GmbH & Co. KG, D-86159 Augsburg, Germany
- Comlamed, Friedrich-Bergius Ring 15, D-97076 Würzburg, Germany
| | - Mirjana Domazet-Lošo
- Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, HR-10000 Zagreb, Croatia
| | - Carsten Nicolaus
- BCA-Research, BCA-Clinic Betriebs GmbH & Co. KG, D-86159 Augsburg, Germany
| | - Tomislav Domazet-Lošo
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Ilica 242, HR-10000 Zagreb, Croatia
| |
Collapse
|
10
|
Adams Y, Clausen AS, Jensen PØ, Lager M, Wilhelmsson P, Henningson AJ, Lindgren PE, Faurholt-Jepsen D, Mens H, Kraiczy P, Kragh KN, Bjarnsholt T, Kjaer A, Lebech AM, Jensen AR. 3D blood-brain barrier-organoids as a model for Lyme neuroborreliosis highlighting genospecies dependent organotropism. iScience 2023; 26:105838. [PMID: 36686395 PMCID: PMC9851883 DOI: 10.1016/j.isci.2022.105838] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/16/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Lyme neuroborreliosis (LNB), a tick-borne infection caused by spirochetes within the Borrelia burgdorferi sensu lato (s.L.) complex, is among the most prevalent bacterial central nervous system (CNS) infections in Europe and the US. Here we have screened a panel of low-passage B. burgdorferi s.l. isolates using a novel, human-derived 3D blood-brain barrier (BBB)-organoid model. We show that human-derived BBB-organoids support the entry of Borrelia spirochetes, leading to swelling of the organoids and a loss of their structural integrity. The use of the BBB-organoid model highlights the organotropism between B. burgdorferi s.l. genospecies and their ability to cross the BBB contributing to CNS infection.
Collapse
Affiliation(s)
- Yvonne Adams
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Anne Skovsbo Clausen
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Peter Østrup Jensen
- Department of Biomedical Sciences, University of Copenhagen, University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Malin Lager
- National Reference Laboratory for Borrelia and Other Tick-Borne Bacteria, Division of Clinical Microbiology, Laboratory Medicine, Region Jönköping County and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Peter Wilhelmsson
- National Reference Laboratory for Borrelia and Other Tick-Borne Bacteria, Division of Clinical Microbiology, Laboratory Medicine, Region Jönköping County and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Anna J. Henningson
- National Reference Laboratory for Borrelia and Other Tick-Borne Bacteria, Division of Clinical Microbiology, Laboratory Medicine, Region Jönköping County and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Per-Eric Lindgren
- National Reference Laboratory for Borrelia and Other Tick-Borne Bacteria, Division of Clinical Microbiology, Laboratory Medicine, Region Jönköping County and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Daniel Faurholt-Jepsen
- Department of Infectious Diseases, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Helene Mens
- Department of Infectious Diseases, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Kasper Nørskov Kragh
- Department of Clinical Microbiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Department of Clinical Microbiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Anne-Mette Lebech
- Department of Infectious Diseases, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anja R. Jensen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| |
Collapse
|
11
|
Courtier A, Potheret D, Giannoni P. Environmental bacteria as triggers to brain disease: Possible mechanisms of toxicity and associated human risk. Life Sci 2022; 304:120689. [DOI: 10.1016/j.lfs.2022.120689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/11/2022] [Accepted: 06/01/2022] [Indexed: 11/24/2022]
|
12
|
Sohrabi M, Sahu B, Kaur H, Hasler WA, Prakash A, Combs CK. Gastrointestinal Changes and Alzheimer's Disease. Curr Alzheimer Res 2022; 19:335-350. [PMID: 35718965 PMCID: PMC10497313 DOI: 10.2174/1567205019666220617121255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/08/2022] [Accepted: 03/06/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND There is a well-described mechanism of communication between the brain and gastrointestinal system in which both organs influence the function of the other. This bi-directional communication suggests that disease in either organ may affect function in the other. OBJECTIVE To assess whether the evidence supports gastrointestinal system inflammatory or degenerative pathophysiology as a characteristic of Alzheimer's disease (AD). METHODS A review of both rodent and human studies implicating gastrointestinal changes in AD was performed. RESULTS Numerous studies indicate that AD changes are not unique to the brain but also occur at various levels of the gastrointestinal tract involving both immune and neuronal changes. In addition, it appears that numerous conditions and diseases affecting regions of the tract may communicate to the brain to influence disease. CONCLUSION Gastrointestinal changes represent an overlooked aspect of AD, representing a more system influence of this disease.
Collapse
Affiliation(s)
- Mona Sohrabi
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037, USA
| | - Bijayani Sahu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037, USA
| | - Harpreet Kaur
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037, USA
| | - Wendie A Hasler
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037, USA
| | - Atish Prakash
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037, USA
| | - Colin K Combs
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037, USA
| |
Collapse
|
13
|
Karvonen K, Nykky J, Marjomäki V, Gilbert L. Distinctive Evasion Mechanisms to Allow Persistence of Borrelia burgdorferi in Different Human Cell Lines. Front Microbiol 2021; 12:711291. [PMID: 34712208 PMCID: PMC8546339 DOI: 10.3389/fmicb.2021.711291] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
Lyme borreliosis is a multisystemic disease caused by the pleomorphic bacteria of the Borrelia burgdorferi sensu lato complex. The exact mechanisms for the infection to progress into a prolonged sequelae of the disease are currently unknown, although immune evasion and persistence of the bacteria in the host are thought to be major contributors. The current study investigated B. burgdorferi infection processes in two human cell lines, both non-immune and non-phagocytic, to further understand the mechanisms of infection of this bacterium. By utilizing light, confocal, helium ion, and transmission electron microscopy, borrelial infection of chondrosarcoma (SW1353) and dermal fibroblast (BJ) cells were examined from an early 30-min time point to a late 9-days post-infection. Host cell invasion, viability of both the host and B. burgdorferi, as well as, co-localization with lysosomes and the presence of different borrelial pleomorphic forms were analyzed. The results demonstrated differences of infection between the cell lines starting from early entry as B. burgdorferi invaded BJ cells in coiled forms with less pronounced host cell extensions, whereas in SW1353 cells, micropodial interactions with spirochetes were always seen. Moreover, infection of BJ cells increased in a dose dependent manner throughout the examined 9 days, while the percentage of infection, although dose dependent, decreased in SW1353 cells after reaching a peak at 48 h. Furthermore, blebs, round body and damaged B. burgdorferi forms, were mostly observed from the infected SW1353 cells, while spirochetes dominated in BJ cells. Both infected host cell lines grew and remained viable after 9 day post-infection. Although damaged forms were noticed in both cell lines, co-localization with lysosomes was low in both cell lines, especially in BJ cells. The invasion of non-phagocytic cells and the lack of cytopathic effects onto the host cells by B. burgdorferi indicated one mechanism of immune evasion for the bacteria. The differences in attachment, pleomorphic form expressions, and the lack of lysosomal involvement between the infected host cells likely explain the ability of a bacterium to adapt to different environments, as well as, a strategy for persistence inside a host.
Collapse
Affiliation(s)
- Kati Karvonen
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Jonna Nykky
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Varpu Marjomäki
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | | |
Collapse
|
14
|
Allen HB. A Novel Approach to the Treatment and Prevention of Alzheimer's Disease Based on the Pathology and Microbiology. J Alzheimers Dis 2021; 84:61-67. [PMID: 34542071 PMCID: PMC8609710 DOI: 10.3233/jad-210429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Utilizing the pathology and microbiology found in tissue from patients with documented Alzheimer's disease (AD), the pathogenesis of this fateful disorder has been made clear. Borrelia burgdorferi and Treponema denticola spirochetes enter the brain, mostly via neuronal pathways and the entorhinal circulation. These organisms easily pass through the blood-brain barrier and have an affinity for neural tissue. Once in the brain, the spirochetes make intra- and extracellular biofilms, and it is the biofilms that create the pathology. Specifically, it is the intracellular biofilms that are ultimately responsible for neurofibrillary tangles and dendritic disintegration. The extracellular biofilms are responsible for the inflammation that initially is generated by the first responder, Toll-like receptor 2. The hypothesis that arises from this work is two-pronged: one is related to prevention; the other to treatment. Regarding prevention, it is very likely possible that AD could be prevented by periodic administration of penicillin (PCN), which would kill the spirochetes before they made biofilms; this would prevent the disease and would not allow any of the above deleterious changes generated by the biofilms to occur. As regards treatment, it may be possible to slow or prevent further decline in early AD by administration of PCN together with a biofilm disperser. The disperser would disrupt the biofilm coating and enable the PCN to kill the spirochetes. This protocol could be administered in a trial with the control arm utilizing the current treatment. The progress of the treatment could be evaluated by one of the current blood tests that is semi-quantitative. The specific protocols are listed.
Collapse
Affiliation(s)
- Herbert B Allen
- Department of Dermatology, Drexel University College of Medicine, Philadelphia, PA, USA.,Dermatology, Eastern Virginia Medical School, Norfolk, VA, USA.,Geriatrics and Gerontology, Rowan School of Osteopathic Medicine, Stratford, NJ, USA
| |
Collapse
|
15
|
Werber T, Bata Z, Vaszine ES, Berente DB, Kamondi A, Horvath AA. The Association of Periodontitis and Alzheimer's Disease: How to Hit Two Birds with One Stone. J Alzheimers Dis 2021; 84:1-21. [PMID: 34511500 DOI: 10.3233/jad-210491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of cognitive impairment in the elderly. Recent evidence suggests that preventive interventional trials could significantly reduce the risk for development of dementia. Periodontitis is the most common dental disease characterized by chronic inflammation and loss of alveolar bone and perialveolar attachment of teeth. Growing number of studies propose a potential link between periodontitis and neurodegeneration. In the first part of the paper, we overview case-control studies analyzing the prevalence of periodontitis among AD patients and healthy controls. Second, we survey observational libraries and cross-sectional studies investigating the risk of cognitive decline in patients with periodontitis. Next, we describe the current view on the mechanism of periodontitis linked neural damage, highlighting bacterial invasion of neural tissue from dental plaques, and periodontitis induced systemic inflammation resulting in a neuroinflammatory process. Later, we summarize reports connecting the four most common periodontal pathogens to AD pathology. Finally, we provide a practical guide for further prevalence and interventional studies on the management of cognitively high-risk patients with and without periodontitis. In this section, we highlight strategies for risk control, patient information, dental evaluation, reporting protocol and dental procedures in the clinical management of patients with a risk for periodontitis and with diagnosed periodontitis. In conclusion, our review summarizes the current view on the association between AD and periodontitis and provides a research and intervention strategy for harmonized interventional trials and for further case-control or cross-sectional studies.
Collapse
Affiliation(s)
- Tom Werber
- Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zsofia Bata
- Department of Conservative Dentistry, Semmelweis University, Budapest, Hungary
| | - Eniko Szabo Vaszine
- Department of Conservative Dentistry, Semmelweis University, Budapest, Hungary
| | - Dalida Borbala Berente
- Faculty of Medicine, Semmelweis University, Budapest, Hungary.,Neurocognitive Research Center, National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
| | - Anita Kamondi
- Neurocognitive Research Center, National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary.,Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Andras Attila Horvath
- Neurocognitive Research Center, National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary.,Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
16
|
Ford L, Tufts DM. Lyme Neuroborreliosis: Mechanisms of B. burgdorferi Infection of the Nervous System. Brain Sci 2021; 11:brainsci11060789. [PMID: 34203671 PMCID: PMC8232152 DOI: 10.3390/brainsci11060789] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
Lyme borreliosis is the most prevalent tick-borne disease in the United States, infecting ~476,000 people annually. Borrelia spp. spirochetal bacteria are the causative agents of Lyme disease in humans and are transmitted by Ixodes spp ticks. Clinical manifestations vary depending on which Borrelia genospecies infects the patient and may be a consequence of distinct organotropism between species. In the US, B. burgdorferi sensu stricto is the most commonly reported genospecies and infection can manifest as mild to severe symptoms. Different genotypes of B. burgdorferi sensu stricto may be responsible for causing varying degrees of clinical manifestations. While the majority of Lyme borreliae-infected patients fully recover with antibiotic treatment, approximately 15% of infected individuals experience long-term neurological and psychological symptoms that are unresponsive to antibiotics. Currently, long-term antibiotic treatment remains the only FDA-approved option for those suffering from these chronic effects. Here, we discuss the current knowledge pertaining to B. burgdorferi sensu stricto infection in the central nervous system (CNS), termed Lyme neuroborreliosis (LNB), within North America and specifically the United States. We explore the molecular mechanisms of spirochete entry into the brain and the role B. burgdorferi sensu stricto genotypes play in CNS infectivity. Understanding infectivity can provide therapeutic targets for LNB treatment and offer public health understanding of the B. burgdorferi sensu stricto genotypes that cause long-lasting symptoms.
Collapse
Affiliation(s)
- Lenzie Ford
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
- Correspondence: (L.F.); (D.M.T.)
| | - Danielle M. Tufts
- Infectious Diseases and Microbiology Department, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Correspondence: (L.F.); (D.M.T.)
| |
Collapse
|
17
|
The Brilliance of Borrelia: Mechanisms of Host Immune Evasion by Lyme Disease-Causing Spirochetes. Pathogens 2021; 10:pathogens10030281. [PMID: 33801255 PMCID: PMC8001052 DOI: 10.3390/pathogens10030281] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 01/31/2023] Open
Abstract
Lyme disease (LD) has become the most common vector-borne illness in the northern hemisphere. The causative agent, Borrelia burgdorferi sensu lato, is capable of establishing a persistent infection within the host. This is despite the activation of both the innate and adaptive immune responses. B. burgdorferi utilizes several immune evasion tactics ranging from the regulation of surface proteins, tick saliva, antimicrobial peptide resistance, and the disabling of the germinal center. This review aims to cover the various methods by which B. burgdorferi evades detection and destruction by the host immune response, examining both the innate and adaptive responses. By understanding the methods employed by B. burgdorferi to evade the host immune response, we gain a deeper knowledge of B. burgdorferi pathogenesis and Lyme disease, and gain insight into how to create novel, effective treatments.
Collapse
|
18
|
Effects of different culture media on growth of Treponema spp. isolated from digital dermatitis. Anaerobe 2021; 69:102345. [PMID: 33596466 DOI: 10.1016/j.anaerobe.2021.102345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 01/10/2021] [Accepted: 02/07/2021] [Indexed: 12/21/2022]
Abstract
Digital dermatitis (DD) lesions in cattle are characterized by the presence of multiple Treponema species. Current culture media for isolating treponemes generally uses serum supplementation from different animals to target particular Treponema sp.; however, their suitability for DD Treponema isolation has not been fully determined. We studied the effect of culture media (OTEB, NOS and TYGV) and serum supplementation on mixed Treponema spp. dynamics. Bacterial growth was evaluated by direct microscopic count, optical density, wet weight and a species-specific qPCR and the correlations between these independent methods were calculated. Wet weight, optical density and bacterial count correlated best with each other. Different Treponema species performed differently under the tested culture media. T. phagedenis growth was enhanced in OTEB media supplemented with bovine fetal serum (BFS) or horse serum (HS). T. medium had lower generation time when culture media were supplemented with rabbit serum (RS). Lowest generation time for T. pedis and T. denticola were obtained in NOS media supplemented with HS and OTEB media supplemented with BFS, respectively. Detection of cystic forms observed after 5 days of culture did not differ among the culture media. Correlation between different Treponema spp. growth quantification techniques indicated that alternative quantification methods such as qPCR and wet weight could be used depending on the purpose. We conclude that effects of culture media and serum supplementation on mixed Treponema spp. communities should be taken into account when isolating a specific Treponema species.
Collapse
|
19
|
I. Horowitz R, R. Freeman P. Efficacy of Double-Dose Dapsone Combination Therapy in the Treatment of Chronic Lyme Disease/Post-Treatment Lyme Disease Syndrome (PTLDS) and Associated Co-infections: A Report of Three Cases and Retrospective Chart Review. Antibiotics (Basel) 2020; 9:E725. [PMID: 33105645 PMCID: PMC7690415 DOI: 10.3390/antibiotics9110725] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 02/03/2023] Open
Abstract
Three patients with multi-year histories of relapsing and remitting Lyme disease and associated co-infections despite extended antibiotic therapy were each given double-dose dapsone combination therapy (DDD CT) for a total of 7-8 weeks. At the completion of therapy, all three patients' major Lyme symptoms remained in remission for a period of 25-30 months. A retrospective chart review of 37 additional patients undergoing DDD CT therapy (40 patients in total) was also performed, which demonstrated tick-borne symptom improvements in 98% of patients, with 45% remaining in remission for 1 year or longer. In conclusion, double-dose dapsone therapy could represent a novel and effective anti-infective strategy in chronic Lyme disease/ post-treatment Lyme disease syndrome (PTLDS), especially in those individuals who have failed regular dose dapsone combination therapy (DDS CT) or standard antibiotic protocols. A randomized, blinded, placebo-controlled trial is warranted to evaluate the efficacy of DDD CT in those individuals with chronic Lyme disease/PTLDS.
Collapse
Affiliation(s)
- Richard I. Horowitz
- HHS Babesia and Tick-borne Pathogens Subcommittee, Washington, DC 20201, USA
- Hudson Valley Healing Arts Center, Hyde Park, NY 12538, USA;
| | | |
Collapse
|
20
|
Arrazuria R, Knight CG, Lahiri P, Cobo ER, Barkema HW, De Buck J. Treponema spp. Isolated from Bovine Digital Dermatitis Display Different Pathogenicity in a Murine Abscess Model. Microorganisms 2020; 8:E1507. [PMID: 33007829 PMCID: PMC7600977 DOI: 10.3390/microorganisms8101507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 01/13/2023] Open
Abstract
Digital dermatitis (DD) causes lameness in cattle with substantial negative impact on sustainability and animal welfare. Although several species of Treponema bacteria have been isolated from various DD stages, their individual or synergistic roles in the initiation or development of lesions remain largely unknown. The objective of this study was to compare effects of the three most common Treponema species isolated from DD lesions in cattle (T. phagedenis, T. medium and T. pedis), both as individual and as mixed inoculations, in a murine abscess model. A total of 109 or 5 × 108Treponema spp. were inoculated subcutaneously, and produced abscess was studied after 7 days post infection. There were no synergistic effects when two or three species were inoculated together; however, T. medium produced the largest abscesses, whereas those produced by T. phagedenis were the smallest and least severe. Treponema species were cultured from skin lesions at 7 days post infection and, additionally, from the kidneys of some mice (2/5), confirming systemic infection may occur. Taken together, these findings suggest that T. medium and T. pedis may have more important roles in DD lesion initiation and development than T. phagedenis.
Collapse
Affiliation(s)
- Rakel Arrazuria
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N1N4, Canada; (R.A.); (P.L.); (E.R.C.); (H.W.B.)
| | - Cameron G. Knight
- Department of Veterinary Clinical and Diagnostic Sciences, Veterinary Medicine, University of Calgary, Calgary, AB T2N1N4, Canada;
| | - Priyoshi Lahiri
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N1N4, Canada; (R.A.); (P.L.); (E.R.C.); (H.W.B.)
| | - Eduardo R. Cobo
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N1N4, Canada; (R.A.); (P.L.); (E.R.C.); (H.W.B.)
| | - Herman W. Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N1N4, Canada; (R.A.); (P.L.); (E.R.C.); (H.W.B.)
| | - Jeroen De Buck
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N1N4, Canada; (R.A.); (P.L.); (E.R.C.); (H.W.B.)
| |
Collapse
|
21
|
Horowitz RI, Murali K, Gaur G, Freeman PR, Sapi E. Effect of dapsone alone and in combination with intracellular antibiotics against the biofilm form of B. burgdorferi. BMC Res Notes 2020; 13:455. [PMID: 32993780 PMCID: PMC7523330 DOI: 10.1186/s13104-020-05298-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/18/2020] [Indexed: 12/04/2022] Open
Abstract
Objective Lyme disease is a tick-borne, multisystemic disease caused by Borrelia burgdorferi. Standard treatments for early Lyme disease include short courses of oral antibiotics but relapses often occur after discontinuation of treatment. Several studies have suggested that ongoing symptoms may be due to a highly antibiotic resistant form of B. burgdorferi called biofilms. Our recent clinical study reported the successful use of an intracellular mycobacterium persister drug used in treating leprosy, diaminodiphenyl sulfone (dapsone), in combination therapy for the treatment of Lyme disease. In this in vitro study, we evaluated the effectiveness of dapsone individually and in combination with cefuroxime and/or other antibiotics with intracellular activity including doxycycline, rifampin, and azithromycin against Borrelia biofilm forms utilizing crystal violet biofilm mass, and dimethyl methylene blue glycosaminoglycan assays combined with Live/Dead fluorescent microscopy analyses. Results Dapsone, alone or in various combinations with doxycycline, rifampin and azithromycin produced a significant reduction in the mass and protective glycosaminoglycan layer and overall viability of B. burgdorferi biofilm forms. This in vitro study strongly suggests that dapsone combination therapy could represent a novel and effective treatment option against the biofilm form of B. burgdorferi.
Collapse
Affiliation(s)
- Richard I Horowitz
- HHS Babesia and Tick-borne Pathogens Subcommittee, Washington, DC, 20201, USA. .,Hudson Valley Healing Arts Center, 4232 Albany Post Road, Hyde Park, NY, 12538, USA.
| | - Krithika Murali
- Department of Biology and Environmental Science, University of New Haven, West Haven, CT, USA
| | - Gauri Gaur
- Department of Biology and Environmental Science, University of New Haven, West Haven, CT, USA
| | - Phyllis R Freeman
- Hudson Valley Healing Arts Center, 4232 Albany Post Road, Hyde Park, NY, 12538, USA
| | - Eva Sapi
- Department of Biology and Environmental Science, University of New Haven, West Haven, CT, USA
| |
Collapse
|
22
|
Torres JP, Senejani AG, Gaur G, Oldakowski M, Murali K, Sapi E. Ex Vivo Murine Skin Model for B. burgdorferi Biofilm. Antibiotics (Basel) 2020; 9:E528. [PMID: 32824942 PMCID: PMC7558507 DOI: 10.3390/antibiotics9090528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/06/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease, has been recently shown to form biofilm structures in vitro and in vivo. Biofilms are tightly clustered microbes characterized as resistant aggregations that allow bacteria to withstand harsh environmental conditions, including the administration of antibiotics. Novel antibiotic combinations have recently been identified for B. burgdorferi in vitro, however, due to prohibiting costs, those agents have not been tested in an environment that can mimic the host tissue. Therefore, researchers cannot evaluate their true effectiveness against B. burgdorferi, especially its biofilm form. A skin ex vivo model system could be ideal for these types of experiments due to its cost effectiveness, reproducibility, and ability to investigate host-microbial interactions. Therefore, the main goal of this study was the establishment of a novel ex vivo murine skin biopsy model for B. burgdorferi biofilm research. Murine skin biopsies were inoculated with B. burgdorferi at various concentrations and cultured in different culture media. Two weeks post-infection, murine skin biopsies were analyzed utilizing immunohistochemical (IHC), reverse transcription PCR (RT-PCR), and various microscopy methods to determine B. burgdorferi presence and forms adopted as well as whether it remained live in the skin tissue explants. Our results showed that murine skin biopsies inoculated with 1 × 107 cells of B. burgdorferi and cultured in BSK-H + 6% rabbit serum media for two weeks yielded not just significant amounts of live B. burgdorferi spirochetes but biofilm forms as well. IHC combined with confocal and atomic force microscopy techniques identified specific biofilm markers and spatial distribution of B. burgdorferi aggregates in the infected skin tissues, confirming that they are indeed biofilms. In the future, this ex vivo skin model can be used to study development and antibiotic susceptibility of B. burgdorferi biofilms in efforts to treat Lyme disease effectively.
Collapse
Affiliation(s)
| | | | | | | | | | - Eva Sapi
- Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA; (J.P.T.); (A.G.S.); (G.G.); (M.O.); (K.M.)
| |
Collapse
|
23
|
Scott JD. Presentation of Acrodermatitis Chronica Atrophicans Rashes on Lyme Disease Patients in Canada. Healthcare (Basel) 2020; 8:E157. [PMID: 32512846 PMCID: PMC7349802 DOI: 10.3390/healthcare8020157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 01/11/2023] Open
Abstract
Lyme disease (Lyme borreliosis) is a complex multisystem illness with varying clinical manifestations. This tick-borne zoonosis is caused by the spirochetal bacterium, Borrelia burgdorferi sensu lato (Bbsl) and, worldwide, presents with at least 20 different types of rashes. Certain cutaneous rashes are inherently interconnected to various stages of Lyme disease. In this study, five Canadian Lyme disease patients from a multi-age range presented various phases of the acrodermatitis chronica atrophicans (ACA) rash. In each case of ACA, the underlying etiological pathogen was the Lyme disease spirochete. Although ACA rashes are normally found on the lower extremities, this study illustrates that ACA rashes are not directly correlated with a tick bite, geographic area, age, Bbsl genospecies, exercise, or any given surface area of the body. Case 4 provides confirmation for an ACA rash and gestational Lyme disease. One patient (Case 5) puts forth a Bbsl and Bartonella sp. co-infection with a complex ACA rash. This study documents ACA rashes on Lyme disease patients for the first time in Canada.
Collapse
Affiliation(s)
- John D Scott
- International Lyme and Associated Diseases Society, 2 Wisconsin Circle, Suite 700, Chevy Chase, MD 20815-7007, USA
| |
Collapse
|
24
|
Effect of Borrelia burgdorferi Outer Membrane Vesicles on Host Oxidative Stress Response. Antibiotics (Basel) 2020; 9:antibiotics9050275. [PMID: 32466166 PMCID: PMC7277464 DOI: 10.3390/antibiotics9050275] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
Outer membrane vesicles (OMVs) are spherical bodies containing proteins and nucleic acids that are released by Gram-negative bacteria, including Borrelia burgdorferi, the causative agent of Lyme disease. The functional relationship between B. burgdorferi OMVs and host neuron homeostasis is not well understood. The objective of this study was to examine how B. burgdorferi OMVs impact the host cell environment. First, an in vitro model was established by co-culturing human BE2C neuroblastoma cells with B. burgdorferi B31. B. burgdorferi was able to invade BE2C cells within 24 h. Despite internalization, BE2C cell viability and levels of apoptosis remained unchanged, but resulted in dramatically increased production of MCP-1 and MCP-2 cytokines. Elevated secretion of MCP-1 has previously been associated with changes in oxidative stress. BE2C cell mitochondrial superoxides were reduced as early as 30 min after exposure to B. burgdorferi and OMVs. To rule out whether BE2C cell antioxidant response is the cause of decline in superoxides, superoxide dismutase 2 (SOD2) gene expression was assessed. SOD2 expression was reduced upon exposure to B. burgdorferi, suggesting that B. burgdorferi might be responsible for superoxide reduction. These results suggest that B. burgdorferi modulates cell antioxidant defense and immune system reaction in response to the bacterial infection. In summary, these results show that B. burgdorferi OMVs serve to directly counter superoxide production in BE2C neurons, thereby 'priming' the host environment to support B. burgdorferi colonization.
Collapse
|
25
|
Monitoring of Nesting Songbirds Detects Established Population of Blacklegged Ticks and Associated Lyme Disease Endemic Area in Canada. Healthcare (Basel) 2020; 8:healthcare8010059. [PMID: 32183171 PMCID: PMC7151351 DOI: 10.3390/healthcare8010059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 12/18/2022] Open
Abstract
This study provides a novel method of documenting established populations of bird-feeding ticks. Single populations of the blacklegged tick, Ixodes scapularis, and the rabbit tick, Haemaphysalis leporispalustris, were revealed in southwestern Québec, Canada. Blacklegged tick nymphs and, similarly, larval and nymphal rabbit ticks were tested for the Lyme disease bacterium, Borrelia burgdorferi sensu lato (Bbsl), using PCR and the flagellin (flaB) gene, and 14 (42%) of 33 of blacklegged tick nymphs tested were positive. In contrast, larval and nymphal H. leporsipalustris ticks were negative for Bbsl. The occurrence of Bbsl in I. scapularis nymphs brings to light the presence of a Lyme disease endemic area at this songbird nesting locality. Because our findings denote that this area is a Lyme disease endemic area, and I. scapularis is a human-biting tick, local residents and outdoor workers must take preventive measures to avoid tick bites. Furthermore, local healthcare practitioners must include Lyme disease in their differential diagnosis.
Collapse
|
26
|
Bamm VV, Ko JT, Mainprize IL, Sanderson VP, Wills MKB. Lyme Disease Frontiers: Reconciling Borrelia Biology and Clinical Conundrums. Pathogens 2019; 8:E299. [PMID: 31888245 PMCID: PMC6963551 DOI: 10.3390/pathogens8040299] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/06/2019] [Accepted: 12/12/2019] [Indexed: 12/18/2022] Open
Abstract
Lyme disease is a complex tick-borne zoonosis that poses an escalating public health threat in several parts of the world, despite sophisticated healthcare infrastructure and decades of effort to address the problem. Concepts like the true burden of the illness, from incidence rates to longstanding consequences of infection, and optimal case management, also remain shrouded in controversy. At the heart of this multidisciplinary issue are the causative spirochetal pathogens belonging to the Borrelia Lyme complex. Their unusual physiology and versatile lifestyle have challenged microbiologists, and may also hold the key to unlocking mysteries of the disease. The goal of this review is therefore to integrate established and emerging concepts of Borrelia biology and pathogenesis, and position them in the broader context of biomedical research and clinical practice. We begin by considering the conventions around diagnosing and characterizing Lyme disease that have served as a conceptual framework for the discipline. We then explore virulence from the perspective of both host (genetic and environmental predispositions) and pathogen (serotypes, dissemination, and immune modulation), as well as considering antimicrobial strategies (lab methodology, resistance, persistence, and clinical application), and borrelial adaptations of hypothesized medical significance (phenotypic plasticity or pleomorphy).
Collapse
Affiliation(s)
| | | | | | | | - Melanie K. B. Wills
- G. Magnotta Lyme Disease Research Lab, Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (V.V.B.); (J.T.K.); (I.L.M.); (V.P.S.)
| |
Collapse
|
27
|
Scott JD, Clark KL, Coble NM, Ballantyne TR. Detection and Transstadial Passage of Babesia Species and Borrelia burgdorferi Sensu Lato in Ticks Collected from Avian and Mammalian Hosts in Canada. Healthcare (Basel) 2019; 7:E155. [PMID: 31810270 PMCID: PMC6955799 DOI: 10.3390/healthcare7040155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 11/17/2022] Open
Abstract
Lyme disease and human babesiosis are the most common tick-borne zoonoses in the Temperate Zone of North America. The number of infected patients has continued to rise globally, and these zoonoses pose a major healthcare threat. This tick-host-pathogen study was conducted to test for infectious microbes associated with Lyme disease and human babesiosis in Canada. Using the flagellin (flaB) gene, three members of the Borrelia burgdorferi sensu lato (Bbsl) complex were detected, namely a Borrelia lanei-like spirochete, Borrelia burgdorferi sensu stricto (Bbss), and a distinct strain that may represent a separate Bbsl genospecies. This novel Bbsl strain was detected in a mouse tick, Ixodes muris, collected from a House Wren, Troglodytes aedon, in Quebec during the southward fall migration. The presence of Bbsl in bird-feeding larvae of I. muris suggests reservoir competency in three passerines (i.e., Common Yellowthroat, House Wren, Magnolia Warbler). Based on the 18S ribosomal RNA (rRNA) gene, three Babesia species (i.e., Babesia divergens-like, Babesia microti, Babesia odocoilei) were detected in field-collected ticks. Not only was B. odocoilei found in songbird-derived ticks, this piroplasm was apparent in adult questing blacklegged ticks, Ixodes scapularis, in southern Canada. By allowing live, engorged ticks to molt, we confirm the transstadial passage of Bbsl in I. muris and B. odocoilei in I. scapularis. Bbss and Babesia microti were detected concurrently in a groundhog tick, Ixodes cookei, in Western Ontario. In Alberta, a winter tick, Dermacentor albipictus, which was collected from a moose, Alces alces, tested positive for Bbss. Notably, a B. divergens-like piroplasm was detected in a rabbit tick, Haemaphysalis leporispalustris, collected from an eastern cottontail in southern Manitoba; this Babesia species is a first-time discovery in Canada. This rabbit tick was also co-infected with Borrelia lanei-like spirochetes, which constitutes a first in Canada. Overall, five ticks were concurrently infected with Babesia and Bbsl pathogens and, after the molt, could potentially co-infect humans. Notably, we provide the first authentic report of I. scapularis ticks co-infected with Bbsl and B. odocoilei in Canada. The full extent of infectious microorganisms transmitted to humans by ticks is not fully elucidated, and clinicians need to be aware of the complexity of these tick-transmitted enzootic agents on human health. Diagnosis and treatment must be administered by those with accredited medical training in tick-borne zoonosis.
Collapse
Affiliation(s)
- John D. Scott
- International Lyme and Associated Diseases Society, 2 Wisconsin Circle, Suite 700, Chevy Chase, MD 20815-7007, USA
| | - Kerry L. Clark
- Environmental Epidemiology Research Laboratory, Department of Public Health, University of North Florida, Jacksonville, FL 32224, USA; (K.L.C.); (N.M.C.); (T.R.B.)
| | - Nikki M. Coble
- Environmental Epidemiology Research Laboratory, Department of Public Health, University of North Florida, Jacksonville, FL 32224, USA; (K.L.C.); (N.M.C.); (T.R.B.)
| | - Taylor R. Ballantyne
- Environmental Epidemiology Research Laboratory, Department of Public Health, University of North Florida, Jacksonville, FL 32224, USA; (K.L.C.); (N.M.C.); (T.R.B.)
| |
Collapse
|
28
|
Weiss T, Zhu P, White H, Posner M, Wickiser JK, Washington MA, Barnhill J. Latent Lyme Disease Resulting in Chronic Arthritis and Early Career Termination in a United States Army Officer. Mil Med 2019; 184:e368-e370. [PMID: 30839071 DOI: 10.1093/milmed/usz026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/07/2019] [Accepted: 02/05/2019] [Indexed: 11/12/2022] Open
Abstract
Lyme disease is a continuing threat to military personnel operating in arboriferous and mountainous environments. Here we present the case of a 24-year-old Second Lieutenant, a recent graduate from the United States Military Academy, with a history of Lyme disease who developed recurrent knee effusions following surgery to correct a hip impingement. Although gonococcal arthritis was initially suspected from preliminary laboratory results, a comprehensive evaluation contradicted this diagnosis. Despite antibiotic therapy, aspiration of the effusions, and steroid treatment to control inflammation, the condition of the patient deteriorated to the point where he was found to be unfit for duty and subsequently discharged from active military service. This case illustrates the profound effect that latent Lyme disease can have on the quality of life and the career of an active duty military member. It highlights the need for increased surveillance for Borrelia burgdorferi (B. burgdorferi) in military training areas and for the early and aggressive diagnosis and treatment of military personnel who present with the symptoms of acute Lyme disease.
Collapse
Affiliation(s)
- Thomas Weiss
- Department of Chemistry and Life Science, Bartlett Hall, 753 Cullum Road, West Point, NY
| | - Peter Zhu
- Department of Chemistry and Life Science, Bartlett Hall, 753 Cullum Road, West Point, NY
| | - Hannah White
- Department of Chemistry and Life Science, Bartlett Hall, 753 Cullum Road, West Point, NY
| | - Matthew Posner
- Department of Chemistry and Life Science, Bartlett Hall, 753 Cullum Road, West Point, NY
| | - J Kenneth Wickiser
- Department of Chemistry and Life Science, Bartlett Hall, 753 Cullum Road, West Point, NY
| | - Michael A Washington
- Department of Chemistry and Life Science, Bartlett Hall, 753 Cullum Road, West Point, NY
| | - Jason Barnhill
- Department of Chemistry and Life Science, Bartlett Hall, 753 Cullum Road, West Point, NY
| |
Collapse
|
29
|
Liegner KB. Disulfiram (Tetraethylthiuram Disulfide) in the Treatment of Lyme Disease and Babesiosis: Report of Experience in Three Cases. Antibiotics (Basel) 2019; 8:antibiotics8020072. [PMID: 31151194 PMCID: PMC6627205 DOI: 10.3390/antibiotics8020072] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/20/2019] [Accepted: 05/25/2019] [Indexed: 12/16/2022] Open
Abstract
Three patients, each of whom had required intensive open-ended antimicrobial therapy for control of the symptoms of chronic relapsing neurological Lyme disease and relapsing babesiosis, were able to discontinue treatment and remain clinically well for periods of observation of 6–23 months following the completion of a finite course of treatment solely with disulfiram. One patient relapsed at six months and is being re-treated with disulfiram.
Collapse
Affiliation(s)
- Kenneth B Liegner
- 592 Route 22-Suite 1B, Pawling, NY 12564, USA.
- Northwell System, Northern Westchester Hospital, Mount Kisco, NY 10549, USA.
- Health Quest System, Sharon Hospital, Sharon, CT 06069, USA.
| |
Collapse
|
30
|
Rudenko N, Golovchenko M, Kybicova K, Vancova M. Metamorphoses of Lyme disease spirochetes: phenomenon of Borrelia persisters. Parasit Vectors 2019; 12:237. [PMID: 31097026 PMCID: PMC6521364 DOI: 10.1186/s13071-019-3495-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/09/2019] [Indexed: 12/22/2022] Open
Abstract
The survival of spirochetes from the Borrelia burgdorferi (sensu lato) complex in a hostile environment is achieved by the regulation of differential gene expression in response to changes in temperature, salts, nutrient content, acidity fluctuation, multiple host or vector dependent factors, and leads to the formation of dormant subpopulations of cells. From the other side, alterations in the level of gene expression in response to antibiotic pressure leads to the establishment of a persisters subpopulation. Both subpopulations represent the cells in different physiological states. "Dormancy" and "persistence" do share some similarities, e.g. both represent cells with low metabolic activity that can exist for extended periods without replication, both constitute populations with different gene expression profiles and both differ significantly from replicating forms of spirochetes. Persisters are elusive, present in low numbers, morphologically heterogeneous, multi-drug-tolerant cells that can change with the environment. The definition of "persisters" substituted the originally-used term "survivors", referring to the small bacterial population of Staphylococcus that survived killing by penicillin. The phenomenon of persisters is present in almost all bacterial species; however, the reasons why Borrelia persisters form are poorly understood. Persisters can adopt varying sizes and shapes, changing from well-known forms to altered morphologies. They are capable of forming round bodies, L-form bacteria, microcolonies or biofilms-like aggregates, which remarkably change the response of Borrelia to hostile environments. Persisters remain viable despite aggressive antibiotic challenge and are able to reversibly convert into motile forms in a favorable growth environment. Persisters are present in significant numbers in biofilms, which has led to the explanation of biofilm tolerance to antibiotics. Considering that biofilms are associated with numerous chronic diseases through their resilient presence in the human body, it is not surprising that interest in persisting cells has consequently accelerated. Certain diseases caused by pathogenic bacteria (e.g. tuberculosis, syphilis or leprosy) are commonly chronic in nature and often recur despite antibiotic treatment. Three decades of basic and clinical research have not yet provided a definite answer to the question: is there a connection between persisting spirochetes and recurrence of Lyme disease in patients?
Collapse
Affiliation(s)
- Natalie Rudenko
- Biology Centre CAS, Institute of Parasitology, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
| | - Maryna Golovchenko
- Biology Centre CAS, Institute of Parasitology, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
| | - Katerina Kybicova
- National Institute of Public Health, Srobarova 48, 100 42 Prague 10, Czech Republic
| | - Marie Vancova
- Biology Centre CAS, Institute of Parasitology, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
| |
Collapse
|
31
|
Value of Patient Population Selection and Lyme Borreliosis Tests. J Clin Microbiol 2019; 57:57/3/e01517-18. [DOI: 10.1128/jcm.01517-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
32
|
Di Domenico EG, Cavallo I, Bordignon V, D'Agosto G, Pontone M, Trento E, Gallo MT, Prignano G, Pimpinelli F, Toma L, Ensoli F. The Emerging Role of Microbial Biofilm in Lyme Neuroborreliosis. Front Neurol 2018; 9:1048. [PMID: 30559713 PMCID: PMC6287027 DOI: 10.3389/fneur.2018.01048] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/19/2018] [Indexed: 01/04/2023] Open
Abstract
Lyme borreliosis (LB) is the most common tick-borne disease caused by the spirochete Borrelia burgdorferi in North America and Borrelia afzelii or Borrelia garinii in Europe and Asia, respectively. The infection affects multiple organ systems, including the skin, joints, and the nervous system. Lyme neuroborreliosis (LNB) is the most dangerous manifestation of Lyme disease, occurring in 10-15% of infected individuals. During the course of the infection, bacteria migrate through the host tissues altering the coagulation and fibrinolysis pathways and the immune response, reaching the central nervous system (CNS) within 2 weeks after the bite of an infected tick. The early treatment with oral antimicrobials is effective in the majority of patients with LNB. Nevertheless, persistent forms of LNB are relatively common, despite targeted antibiotic therapy. It has been observed that the antibiotic resistance and the reoccurrence of Lyme disease are associated with biofilm-like aggregates in B. burgdorferi, B. afzelii, and B. garinii, both in vitro and in vivo, allowing Borrelia spp. to resist to adverse environmental conditions. Indeed, the increased tolerance to antibiotics described in the persisting forms of Borrelia spp., is strongly reminiscent of biofilm growing bacteria, suggesting a possible role of biofilm aggregates in the development of the different manifestations of Lyme disease including LNB.
Collapse
Affiliation(s)
- Enea Gino Di Domenico
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Ilaria Cavallo
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Valentina Bordignon
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Giovanna D'Agosto
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Martina Pontone
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Elisabetta Trento
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Maria Teresa Gallo
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Grazia Prignano
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Fulvia Pimpinelli
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Luigi Toma
- Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute IRCCS, Rome, Italy
| | - Fabrizio Ensoli
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| |
Collapse
|
33
|
Miziara CSMG, Gelmeti Serrano VA, Yoshinari N. Passage of Borrelia burgdorferi through diverse Ixodid hard ticks causes distinct diseases: Lyme borreliosis and Baggio-Yoshinari syndrome. Clinics (Sao Paulo) 2018; 73:e394. [PMID: 30462754 PMCID: PMC6218955 DOI: 10.6061/clinics/2018/e394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 06/05/2018] [Indexed: 02/06/2023] Open
Abstract
Baggio-Yoshinari syndrome is an emerging, tick-borne, infectious disease recently discovered in Brazil. This syndrome is similar to Lyme disease, which is common in the United States of America, Europe and Asia; however, Brazilian borreliosis diverges from the disease observed in the Northern Hemisphere in its epidemiological, microbiological, laboratory and clinical characteristics. Polymerase chain reaction procedures showed that Baggio-Yoshinari syndrome is caused by the Borrelia burgdorferi sensu stricto spirochete. This bacterium has not yet been isolated or cultured in adequate culture media. In Brazil, this zoonosis is transmitted to humans through the bite of Amblyomma and Rhipicephalus genera ticks; these vectors do not belong to the usual Lyme disease transmitters, which are members of the Ixodes ricinus complex. The adaptation of Borrelia burgdorferi to Brazilian vectors and reservoirs probably originated from spirochetes with atypical morphologies (cysts or cell-wall-deficient bacteria) exhibiting genetic adjustments, such as gene suppression. These particularities could explain the protracted survival of these bacteria in hosts, beyond the induction of a weak immune response and the emergence of serious reactive symptoms. The aim of the present report is to note differences between Baggio-Yoshinari syndrome and Lyme disease, to help health professionals recognize this exotic and neglected zoonosis.
Collapse
Affiliation(s)
| | | | - Natalino Yoshinari
- Reumatologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| |
Collapse
|
34
|
Garg K, Meriläinen L, Franz O, Pirttinen H, Quevedo-Diaz M, Croucher S, Gilbert L. Evaluating polymicrobial immune responses in patients suffering from tick-borne diseases. Sci Rep 2018; 8:15932. [PMID: 30374055 PMCID: PMC6206025 DOI: 10.1038/s41598-018-34393-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/15/2018] [Indexed: 02/06/2023] Open
Abstract
There is insufficient evidence to support screening of various tick-borne diseases (TBD) related microbes alongside Borrelia in patients suffering from TBD. To evaluate the involvement of multiple microbial immune responses in patients experiencing TBD we utilized enzyme-linked immunosorbent assay. Four hundred and thirty-two human serum samples organized into seven categories followed Centers for Disease Control and Prevention two-tier Lyme disease (LD) diagnosis guidelines and Infectious Disease Society of America guidelines for post-treatment Lyme disease syndrome. All patient categories were tested for their immunoglobulin M (IgM) and G (IgG) responses against 20 microbes associated with TBD. Our findings recognize that microbial infections in patients suffering from TBDs do not follow the one microbe, one disease Germ Theory as 65% of the TBD patients produce immune responses to various microbes. We have established a causal association between TBD patients and TBD associated co-infections and essential opportunistic microbes following Bradford Hill's criteria. This study indicated an 85% probability that a randomly selected TBD patient will respond to Borrelia and other related TBD microbes rather than to Borrelia alone. A paradigm shift is required in current healthcare policies to diagnose TBD so that patients can get tested and treated even for opportunistic infections.
Collapse
Affiliation(s)
- Kunal Garg
- Department of Biological and Environmental Sciences, NanoScience Center, University of Jyväskylä, Jyväskylä, Finland
- Te?ted Ltd, Mattilaniemi 6-8, Jyväskylä, Finland
| | - Leena Meriläinen
- Department of Biological and Environmental Sciences, NanoScience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Ole Franz
- Department of Biological and Environmental Sciences, NanoScience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Heidi Pirttinen
- Department of Biological and Environmental Sciences, NanoScience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Marco Quevedo-Diaz
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Stephen Croucher
- School of Communication, Journalism, and Marketing, Massey University, Wellington, New Zealand
| | - Leona Gilbert
- Department of Biological and Environmental Sciences, NanoScience Center, University of Jyväskylä, Jyväskylä, Finland.
- Te?ted Ltd, Mattilaniemi 6-8, Jyväskylä, Finland.
| |
Collapse
|
35
|
|
36
|
Di Battista ME, Dell'Acqua C, Baroni L, Fenoglio C, Galimberti D, Gallucci M. Frontotemporal Dementia Misdiagnosed for Post-Treatment Lyme Disease Syndrome or vice versa? A Treviso Dementia (TREDEM) Registry Case Report. J Alzheimers Dis 2018; 66:445-451. [PMID: 30282363 DOI: 10.3233/jad-180524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We describe the case of a 61-year-old woman diagnosed with Borreliosis at the age of 57. Subsequently, the patient developed depression, anxiety, and behavioral disturbances. A lumbar puncture excluded the condition of Neuroborreliosis. The diagnostic workup included: an MRI scan, a 18F-FDG PET, a 123I-ioflupane-SPECT, an amyloid-β PET, a specific genetic analysis, and a neuropsychological evaluation. Based on our investigation, the patient was diagnosed with probable behavioral-frontotemporal dementia (bvFTD), whereas in the previous years, the patient had been considered firstly as a case of Post-Treatment-Lyme Disease and, secondly, a psychiatric patient. We believe that, in the present case, such initial symptoms of Borrelia infection may have superimposed on those of bvFTD rather than playing as a contributory cause.
Collapse
Affiliation(s)
| | - Carola Dell'Acqua
- Cognitive Impairment Center, Local Health Autority n.2 Marca Trevigiana, Treviso, Italy
| | - Luciana Baroni
- Cognitive Impairment Center, Local Health Autority n.2 Marca Trevigiana, Treviso, Italy
| | | | - Daniela Galimberti
- University of Milan, Centro Dino Ferrari, Milan, Italy.,Fondazione IRCSS Ca' Granda, Ospedale Policlinico, Neurodegenerative Diseases Unit, Milan, Italy
| | - Maurizio Gallucci
- Cognitive Impairment Center, Local Health Autority n.2 Marca Trevigiana, Treviso, Italy
| |
Collapse
|
37
|
Pothineni VR, Parekh MB, Babar MM, Ambati A, Maguire P, Inayathullah M, Kim KM, Tayebi L, Potula HHS, Rajadas J. In vitro and in vivo evaluation of cephalosporins for the treatment of Lyme disease. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2915-2921. [PMID: 30254421 PMCID: PMC6141111 DOI: 10.2147/dddt.s164966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Lyme disease accounts for >90% of all vector-borne disease cases in the United States and affect ~300,000 persons annually in North America. Though traditional tetracycline antibiotic therapy is generally prescribed for Lyme disease, still 10%–20% of patients treated with current antibiotic therapy still show lingering symptoms. Methods In order to identify new drugs, we have evaluated four cephalosporins as a therapeutic alternative to commonly used antibiotics for the treatment of Lyme disease by using microdilution techniques like minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC). We have determined the MIC and MBC of four drugs for three Borrelia burgdorferi s.s strains namely CA8, JLB31 and NP40. The binding studies were performed using in silico analysis. Results The MIC order of the four drugs tested is cefoxitin (1.25 µM/mL) > cefamandole (2.5 µM/mL), > cefuroxime (5 µM/mL) > cefapirin (10 µM/mL). Among the drugs that are tested in this study using in vivo C3H/HeN mouse model, cefoxitin effectively kills B. burgdorferi. The in silico analysis revealed that all four cephalosporins studied binds effectively to B. burgdorferi proteins, SecA subunit penicillin-binding protein (PBP) and Outer surface protein E (OspE). Conclusion Based on the data obtained, cefoxitin has shown high efficacy killing B. burgdorferi at concentration of 1.25 µM/mL. In addition to it, cefoxitin cleared B. burgdorferi infection in C3H/HeN mice model at 20 mg/kg.
Collapse
Affiliation(s)
- Venkata Raveendra Pothineni
- Biomaterials and Advanced Drug Delivery, Stanford Cardiovascular Pharmacology Division, Cardiovascular Institute, School of Medicine, Stanford University, Palo Alto, CA, USA,
| | - Mansi B Parekh
- Biomaterials and Advanced Drug Delivery, Stanford Cardiovascular Pharmacology Division, Cardiovascular Institute, School of Medicine, Stanford University, Palo Alto, CA, USA,
| | - Mustafeez Mujtaba Babar
- Biomaterials and Advanced Drug Delivery, Stanford Cardiovascular Pharmacology Division, Cardiovascular Institute, School of Medicine, Stanford University, Palo Alto, CA, USA,
| | - Aditya Ambati
- Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Peter Maguire
- Biomaterials and Advanced Drug Delivery, Stanford Cardiovascular Pharmacology Division, Cardiovascular Institute, School of Medicine, Stanford University, Palo Alto, CA, USA,
| | - Mohammed Inayathullah
- Biomaterials and Advanced Drug Delivery, Stanford Cardiovascular Pharmacology Division, Cardiovascular Institute, School of Medicine, Stanford University, Palo Alto, CA, USA,
| | - Kwang-Min Kim
- Biomaterials and Advanced Drug Delivery, Stanford Cardiovascular Pharmacology Division, Cardiovascular Institute, School of Medicine, Stanford University, Palo Alto, CA, USA,
| | - Lobat Tayebi
- Department of Developmental Sciences, Marquette University School of Dentistry, Milwaukee, WI, USA
| | - Hari-Hara Sk Potula
- Biomaterials and Advanced Drug Delivery, Stanford Cardiovascular Pharmacology Division, Cardiovascular Institute, School of Medicine, Stanford University, Palo Alto, CA, USA,
| | - Jayakumar Rajadas
- Biomaterials and Advanced Drug Delivery, Stanford Cardiovascular Pharmacology Division, Cardiovascular Institute, School of Medicine, Stanford University, Palo Alto, CA, USA, .,Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, CA, USA,
| |
Collapse
|
38
|
Blood cell disruption to significantly improve the Borrelia PCR detection sensitivity in borreliosis in humans. Med Hypotheses 2018; 116:1-3. [PMID: 29857888 DOI: 10.1016/j.mehy.2018.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 11/23/2022]
Abstract
Lyme disease is the most frequently reported zoonotic tick-borne disease worldwide, and the number of infected humans is increasing. Lyme disease (or Lyme borreliosis) is an affection caused by the spirochete Borrelia burgdorferi, sensu lato. Lyme disease is also reported as a variety of misleading clinical symptomatologies. Infected patient's blood serology is the most currently test used for its diagnosis. However, serology has a low sensitivity, which ranges from 34% to 70%. Thus, there are numerous subsequent false-negative diagnoses despite an active clinical infection profile. Therefore, alternative and more sensitive techniques are required to detect the antigens or nucleic acids of Borrelia. Actually, the most appropriate methodological approach seems to be the polymerase chain reaction (PCR). However, PCR will detect the only "visible" part available of the targeted DNA presence in the blood of the infected patients. Consequently PCR alone will not be conclusive enough to reach the final diagnosis. Considering the ability of Borrelia to invade host cells, we hypothesize that a selective lysis of all blood cells should improve the diagnostic sensitivity of the detection of Borrelia by PCR in whole blood, and subsequently reduce the false-negative diagnostic rate, thus improving the patient's diagnosis and therapeutic management.
Collapse
|
39
|
Lacout A, Dacher V, El Hajjam M, Marcy PY, Perronne C. Biofilms busters to improve the detection of Borrelia using PCR. Med Hypotheses 2018; 112:4-6. [PMID: 29447935 DOI: 10.1016/j.mehy.2018.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 01/13/2018] [Indexed: 11/24/2022]
Abstract
Lyme disease is an affection caused by a spirochete infection called Borrelia Burgdorferi which may harbor a varied and misleading clinical symptomatology. The serology tests commonly used for diagnosis show a wide sensitivity varying from 34% to 70,5%, leaving many infected patients with false negative tests. Alternative techniques such as polymerase chain reaction (PCR) could be helpful but not conclusive enough. Using biofilm busters, such as stevia and serratiopeptidase, could lead to bacterial blood release, thus increasing the spirochete load, making PCR test more sensitive, thus improving the patient's diagnosis and management.
Collapse
Affiliation(s)
- Alexis Lacout
- Centre de diagnostic, ELSAN, Centre médico - chirurgical, 83 avenue Charles de Gaulle, 15000 Aurillac, France.
| | - Véronique Dacher
- Centre de diagnostic, 29 ter Avenue Jean Jaurès, 63200 Mozac, France.
| | - Mostafa El Hajjam
- Service de diagnostic, Hôpital Ambroise PARE (APHP), 9, Avenue Charles de GAULLE, 92100 Boulogne Billancourt, France.
| | - Pierre Yves Marcy
- Radiodiagnostics and Interventional Radiology Department, Polyclinique Les Fleurs, Quartier Quiez, 83190 Ollioules, France.
| | - Christian Perronne
- Infectious Diseases Unit, University Hospital Raymond Poincaré, APHP, Versailles Saint Quentin University, Garches, France.
| |
Collapse
|
40
|
Miklossy J. Bacterial Amyloid and DNA are Important Constituents of Senile Plaques: Further Evidence of the Spirochetal and Biofilm Nature of Senile Plaques. J Alzheimers Dis 2018; 53:1459-73. [PMID: 27314530 PMCID: PMC4981904 DOI: 10.3233/jad-160451] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
It has long been known that spirochetes form clumps or micro colonies in vitro and in vivo. Cortical spirochetal colonies in syphilitic dementia were considered as reproductive centers for spirochetes. Historic and recent data demonstrate that senile plaques in Alzheimer’s disease (AD) are made up by spirochetes. Spirochetes, are able to form biofilm in vitro. Senile plaques are also reported to contain elements of biofilm constituents. We expected that AβPP and Aβ (the main components of senile plaques) also occur in pure spirochetal biofilms, and bacterial DNA (an important component of biofilm) is also present in senile plaques. Histochemical, immunohistochemical, and in situ hybridization techniques and the TUNEL assay were used to answer these questions. The results obtained demonstrate that Aβ and DNA, including spirochete-specific DNA, are key components of both pure spirochetal biofilms and senile plaques in AD and confirm the biofilm nature of senile plaques. These results validate validate previous observations that AβPP and/or an AβPP-like amyloidogenic protein are an integral part of spirochetes, and indicate that bacterial and host derived Aβ are both constituents of senile plaques. DNA fragmentation in senile plaques further confirms their bacterial nature and provides biochemical evidence for spirochetal cell death. Spirochetes evade host defenses, locate intracellularly, form more resistant atypical forms and notably biofilms, which contribute to sustain chronic infection and inflammation and explain the slowly progressive course of dementia in AD. To consider co-infecting microorganisms is equally important, as multi-species biofilms result in a higher resistance to treatments and a more severe dementia.
Collapse
Affiliation(s)
- Judith Miklossy
- Correspondence to: Judith Miklossy, Prevention Alzheimer International Foundation, International Alzheimer Research Centre, Martigny-Croix, CP 16, 1921, Switzerland. Tel.: +41 79 207 4442/27 722 0652; E-mail:
| |
Collapse
|
41
|
Lacout A, El Hajjam M, Marcy PY, Perronne C. The Persistent Lyme Disease: "True Chronic Lyme Disease" rather than "Post-treatment Lyme Disease Syndrome". J Glob Infect Dis 2018; 10:170-171. [PMID: 30166820 PMCID: PMC6100330 DOI: 10.4103/jgid.jgid_152_17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alexis Lacout
- Diagnostic Unit, Medico-Surgical Center, Elsan, 15000 Aurillac, France
| | - Mostafa El Hajjam
- Medical Imaging Unit, 92 100 Boulogne-Billancourt, Ollioules, France
| | - Pierre-Yves Marcy
- Medical Imaging Center, 34 Polyclinique Les Fleurs, Elsan, Ollioules, France
| | - Christian Perronne
- Infectious Diseases Unit, University 35 Hospital Raymond Poincaré, APHP Versailles Saint Quentin University Garches, France
| |
Collapse
|
42
|
Ali A. Lyme Disease. Integr Med (Encinitas) 2018. [DOI: 10.1016/b978-0-323-35868-2.00023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Socarras KM, Theophilus PAS, Torres JP, Gupta K, Sapi E. Antimicrobial Activity of Bee Venom and Melittin against Borrelia burgdorferi. Antibiotics (Basel) 2017; 6:antibiotics6040031. [PMID: 29186026 PMCID: PMC5745474 DOI: 10.3390/antibiotics6040031] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 01/12/2023] Open
Abstract
Lyme disease is a tick-borne, multi-systemic disease, caused by the bacterium Borrelia burgdorferi. Though antibiotics are used as a primary treatment, relapse often occurs after the discontinuation of antimicrobial agents. The reason for relapse remains unknown, however previous studies suggest the possible presence of antibiotic resistant Borrelia round bodies, persisters and attached biofilm forms. Thus, there is an urgent need to find antimicrobial agents suitable to eliminate all known forms of B. burgdorferi. In this study, natural antimicrobial agents such as Apis mellifera venom and a known component, melittin, were tested using SYBR Green I/PI, direct cell counting, biofilm assays combined with LIVE/DEAD and atomic force microscopy methods. The obtained results were compared to standalone and combinations of antibiotics such as Doxycycline, Cefoperazone, Daptomycin, which were recently found to be effective against Borrelia persisters. Our findings showed that both bee venom and melittin had significant effects on all the tested forms of B. burgdorferi. In contrast, the control antibiotics when used individually or even in combinations had limited effects on the attached biofilm form. These findings strongly suggest that whole bee venom or melittin could be effective antimicrobial agents for B. burgdorferi; however, further research is necessary to evaluate their effectiveness in vivo, as well as their safe and effective delivery method for their therapeutic use.
Collapse
Affiliation(s)
- Kayla M Socarras
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, West Haven, CT 06519, USA.
| | - Priyanka A S Theophilus
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, West Haven, CT 06519, USA.
| | - Jason P Torres
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, West Haven, CT 06519, USA.
| | - Khusali Gupta
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, West Haven, CT 06519, USA.
| | - Eva Sapi
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, West Haven, CT 06519, USA.
| |
Collapse
|
44
|
Goc A, Niedzwiecki A, Rath M. Reciprocal cooperation of phytochemicals and micronutrients against typical and atypical forms of Borrelia sp. J Appl Microbiol 2017. [PMID: 28644529 DOI: 10.1111/jam.13523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS Borrelia sp., a causative pathogenic factor of Lyme disease (LD), has become a major public health threat. Current treatments based on antibiotics often lead to relapse after their withdrawal. Naturally derived substances that could work synergistically to display higher efficacy compared with the individual components may serve as a resource for the development of novel approaches to combat both active and latent forms of Borrelia sp. METHODS AND RESULTS Using checkerboard assay, we investigated the anti-borreliae reciprocal cooperation of phytochemicals and micronutrients against two species of Borrelia selected as prevalent causes of LD in the United States and Europe. We tested 28 combinations of phytochemicals such as polyphenols (baicalein, luteolin, rosmarinic acids), fatty acids (monolaurin, cis-2-decenoic acid) and micronutrients (ascorbic acid, cholecalciferol and iodine). The results showed that the combinations of baicalein with luteolin as well as monolaurin with cis-2-decenoic acid expressed synergistic anti-spirochetal effects. Moreover, baicalein and luteolin, when combined with rosmarinic acid or iodine, produced additive bacteriostatic and bactericidal effects against typical corkscrew motile spirochaetes and persistent knob/round-shaped forms, respectively. An additive anti-biofilm effect was noticed between baicalein with luteolin and monolaurin with cis-2-decenoic acid. Finally, application of the combination of baicalein with luteolin increased cytoplasmic permeability of Borrelia sp. but did not cause DNA damage. CONCLUSIONS These results show that a specific combination of flavones might play a supporting role in combating Borrelia sp. through either synergistic or additive anti-borreliae effects. SIGNIFICANCE AND IMPACT OF THE STUDY Presented here in vitro results might help advancing our knowledge and improving the approach to target Borrelia sp.
Collapse
Affiliation(s)
- A Goc
- Dr Rath Research Institute BV, Santa Clara, CA, USA
| | | | - M Rath
- Dr Rath Research Institute BV, Santa Clara, CA, USA
| |
Collapse
|
45
|
Lacout A, Marcy PY, El Hajjam M, Thariat J, Perronne C. Dealing with Lyme Disease Treatment. Am J Med 2017; 130:e221. [PMID: 28431674 DOI: 10.1016/j.amjmed.2016.12.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 12/18/2016] [Accepted: 12/19/2016] [Indexed: 10/19/2022]
Affiliation(s)
| | - Pierre Yves Marcy
- Polyclinique Les Fleurs, Service Imagerie Médicale, Ollioule, France
| | - Mostafa El Hajjam
- Department of Radiology, Centre Hospitalier Universitaire Ambroise Paré, APHP, Université de Versailles, Saint-Quentin en Yvelines, Boulogne-Billancourt, France
| | | | - Christian Perronne
- Infectious Diseases Unit, University Hospital Raymond Poincaré, APHP, Versailles Saint Quentin University, Garches, France
| |
Collapse
|
46
|
Vancová M, Rudenko N, Vaněček J, Golovchenko M, Strnad M, Rego ROM, Tichá L, Grubhoffer L, Nebesářová J. Pleomorphism and Viability of the Lyme Disease Pathogen Borrelia burgdorferi Exposed to Physiological Stress Conditions: A Correlative Cryo-Fluorescence and Cryo-Scanning Electron Microscopy Study. Front Microbiol 2017; 8:596. [PMID: 28443079 PMCID: PMC5387694 DOI: 10.3389/fmicb.2017.00596] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/23/2017] [Indexed: 11/13/2022] Open
Abstract
To understand the response of the Lyme disease spirochete Borrelia burgdorferi exposed to stress conditions and assess the viability of this spirochete, we used a correlative cryo-fluorescence and cryo-scanning microscopy approach. This approach enables simple exposition of bacteria to various experimental conditions that can be stopped at certain time intervals by cryo-immobilization, examination of cell viability without necessity to maintain suitable culture conditions during viability assays, and visualization of structures in their native state at high magnification. We focused on rare and transient events e.g., the formation of round bodies and the presence of membranous blebs in spirochetes exposed to culture medium, host sera either without or with the bacteriolytic effect and water. We described all crucial steps of the workflow, particularly the influence of freeze-etching and accelerating voltage on the visualization of topography. With the help of newly designed cryo-transport device, we achieved greater reproducibility.
Collapse
Affiliation(s)
- Marie Vancová
- Biology Centre CAS, Institute of ParasitologyČeské Budějovice, Czechia.,Faculty of Science, University of South BohemiaČeské Budějovice, Czechia
| | - Nataliia Rudenko
- Biology Centre CAS, Institute of ParasitologyČeské Budějovice, Czechia
| | - Jiří Vaněček
- Biology Centre CAS, Institute of ParasitologyČeské Budějovice, Czechia
| | | | - Martin Strnad
- Biology Centre CAS, Institute of ParasitologyČeské Budějovice, Czechia.,Faculty of Science, University of South BohemiaČeské Budějovice, Czechia
| | - Ryan O M Rego
- Biology Centre CAS, Institute of ParasitologyČeské Budějovice, Czechia.,Faculty of Science, University of South BohemiaČeské Budějovice, Czechia
| | - Lucie Tichá
- Biology Centre CAS, Institute of ParasitologyČeské Budějovice, Czechia.,Faculty of Science, University of South BohemiaČeské Budějovice, Czechia
| | - Libor Grubhoffer
- Biology Centre CAS, Institute of ParasitologyČeské Budějovice, Czechia.,Faculty of Science, University of South BohemiaČeské Budějovice, Czechia
| | - Jana Nebesářová
- Biology Centre CAS, Institute of ParasitologyČeské Budějovice, Czechia.,Faculty of Science, Charles University in PragueCzechia
| |
Collapse
|
47
|
Hyde JA. Borrelia burgdorferi Keeps Moving and Carries on: A Review of Borrelial Dissemination and Invasion. Front Immunol 2017; 8:114. [PMID: 28270812 PMCID: PMC5318424 DOI: 10.3389/fimmu.2017.00114] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/25/2017] [Indexed: 12/21/2022] Open
Abstract
Borrelia burgdorferi is the etiological agent of Lyme disease, a multisystemic, multistage, inflammatory infection resulting in patients experiencing cardiac, neurological, and arthritic complications when not treated with antibiotics shortly after exposure. The spirochetal bacterium transmits through the Ixodes vector colonizing the dermis of a mammalian host prior to hematogenous dissemination and invasion of distal tissues all the while combating the immune response as it traverses through its pathogenic lifecycle. The innate immune response controls the borrelial burden in the dermis, but is unable to clear the infection and thereby prevent progression of disease. Dissemination in the mammalian host requires temporal regulation of virulence determinants to allow for vascular interactions, invasion, and colonization of distal tissues. Virulence determinants and/or adhesins are highly heterogenetic among environmental B. burgdorferi strains with particular genotypes being associated with the ability to disseminate to specific tissues and the severity of disease, but fail to generate cross-protective immunity between borrelial strains. The unique motility of B. burgdorferi rendered by the endoflagella serves a vital function for dissemination and protection from immune recognition. Progress has been made toward understanding the chemotactic regulation coordinating the activity of the two polar localized flagellar motors and their role in borrelial virulence, but this regulation is not yet fully understood. Distinct states of motility allow for dynamic interactions between several B. burgdorferi adhesins and host targets that play roles in transendothelial migration. Transmigration across endothelial and blood-brain barriers allows for the invasion of tissues and elicits localized immune responses. The invasive nature of B. burgdorferi is lacking in proactive mechanisms to modulate disease, such as secretion systems and toxins, but recent work has shown degradation of host extracellular matrices by B. burgdorferi contributes to the invasive capabilities of the pathogen. Additionally, B. burgdorferi may use invasion of eukaryotic cells for immune evasion and protection against environmental stresses. This review provides an overview of B. burgdorferi mechanisms for dissemination and invasion in the mammalian host, which are essential for pathogenesis and the development of persistent infection.
Collapse
Affiliation(s)
- Jenny A Hyde
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center , Bryan, TX , USA
| |
Collapse
|
48
|
Scott JD, Foley JE, Anderson JF, Clark KL, Durden LA. Detection of Lyme Disease Bacterium, Borrelia burgdorferi sensu lato, in Blacklegged Ticks Collected in the Grand River Valley, Ontario, Canada. Int J Med Sci 2017; 14:150-158. [PMID: 28260991 PMCID: PMC5332844 DOI: 10.7150/ijms.17763] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/28/2016] [Indexed: 01/08/2023] Open
Abstract
We document the presence of blacklegged ticks, Ixodes scapularis, in the Grand River valley, Centre Wellington, Ontario. Overall, 15 (36%) of 42 I. scapularis adults collected from 41 mammalian hosts (dogs, cats, humans) were positive for the Lyme disease bacterium, Borrelia burgdorferi sensu lato (s.l.). Using real-time PCR testing and DNA sequencing of the flagellin (fla) gene, we determined that Borrelia amplicons extracted from I. scapularis adults belonged to B. burgdorferi sensu stricto (s.s.), which is pathogenic to humans and certain domestic animals. Based on the distribution of I. scapularis adults within the river basin, it appears likely that migratory birds provide an annual influx of I. scapularis immatures during northward spring migration. Health-care providers need to be aware that local residents can present with Lyme disease symptoms anytime during the year.
Collapse
Affiliation(s)
- John D Scott
- Research Division, Lyme Ontario, Fergus, Ontario Canada N1M 2L7
| | - Janet E Foley
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, USA 95616
| | - John F Anderson
- Department of Entomology and Center for Vector Ecology and Zoonotic Diseases. The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA 06504
| | - Kerry L Clark
- Epidemiology & Environmental Health, Department of Public Health, University of North Florida, Jacksonville, USA 32224
| | - Lance A Durden
- Department of Biology, Georgia Southern University, Statesboro, Georgia 30458, USA
| |
Collapse
|
49
|
Shaikh S, Timmaraju VA, Torres JP, Socarras KM, Theophilus PAS, Sapi E. Influence of tick and mammalian physiological temperatures on Borrelia burgdorferi biofilms. MICROBIOLOGY-SGM 2016; 162:1984-1995. [PMID: 27902419 DOI: 10.1099/mic.0.000380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The spirochaete bacterium Borrelia burgdorferisensu lato is the aetiologic agent of Lyme disease. Borrelia is transmitted to mammals through tick bite and is adapted to survive at tick and mammalian physiological temperatures. We have previously shown that B. burgdorferi can exist in different morphological forms, including the antibiotic-resistant biofilm form, in vitro and in vivo. B. burgdorferi forms aggregates in ticks as well as in humans, indicating potential of biofilm formation at both 23 and 37 °C. However, the role of various environmental factors that influence Borrelia biofilm formation remains unknown. In this study, we investigated the effect of tick (23 °C), mammalian physiological (37 °C) and standard in vitro culture (33 °C) temperatures with the objective of elucidating the effect of temperature on Borrelia biofilm phenotypes invitro using two B. burgdorferisensu stricto strains (B31 and 297). Our findings show increased biofilm quantity, biofilm size, exopolysaccharide content and enhanced adherence as well as reduced free spirochaetes at 37 °C for both strains, when compared to growth at 23 and 33 °C. There were no significant variations in the biofilm nano-topography and the type of extracellular polymeric substance in Borrelia biofilms formed at all three temperatures. Significant variations in extracellular DNA content were observed in the biofilms of both strains cultured at the three temperatures. Our results indicate that temperature is an important regulator of Borrelia biofilm development, and that the mammalian physiological temperature favours increased biofilm formation in vitro compared to tick physiological temperature and in vitro culture temperature.
Collapse
Affiliation(s)
- Shafiq Shaikh
- Lyme Disease Research Group, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA
| | - Venkata Arun Timmaraju
- Lyme Disease Research Group, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA
| | - Jason P Torres
- Lyme Disease Research Group, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA
| | - Kayla M Socarras
- Lyme Disease Research Group, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA
| | - Priyanka A S Theophilus
- Lyme Disease Research Group, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA
| | - Eva Sapi
- Lyme Disease Research Group, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA
| |
Collapse
|
50
|
Sapi E, Theophilus PAS, Pham TV, Burugu D, Luecke DF. Effect of RpoN, RpoS and LuxS Pathways on the Biofilm Formation and Antibiotic Sensitivity of Borrelia Burgdorferi. Eur J Microbiol Immunol (Bp) 2016; 6:272-286. [PMID: 27980856 PMCID: PMC5146646 DOI: 10.1556/1886.2016.00026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 08/15/2016] [Indexed: 01/25/2023] Open
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease, is capable of forming biofilm in vivo and in vitro, a structure well known for its resistance to antimicrobial agents. For the formation of biofilm, signaling processes are required to communicate with the surrounding environment such as it was shown for the RpoN–RpoS alternative sigma factor and for the LuxS quorum-sensing pathways. Therefore, in this study, the wild-type B. burgdorferi and different mutant strains lacking RpoN, RpoS, and LuxS genes were studied for their growth characteristic and development of biofilm structures and markers as well as for their antibiotic sensitivity. Our results showed that all three mutants formed small, loosely formed aggregates, which expressed previously identified Borrelia biofilm markers such as alginate, extracellular DNA, and calcium. All three mutants had significantly different sensitivity to doxycyline in the early log phase spirochete cultures; however, in the biofilm rich stationary cultures, only LuxS mutant showed increased sensitivity to doxycyline compared to the wild-type strain. Our findings indicate that all three mutants have some effect on Borrelia biofilm, but the most dramatic effect was found with LuxS mutant, suggesting that the quorum-sensing pathway plays an important role of Borrelia biofilm formation and antibiotic sensitivity.
Collapse
Affiliation(s)
- Eva Sapi
- Department of Biology and Environmental Science, University of New Haven , West Haven, CT 06516, USA
| | - Priyanka A S Theophilus
- Department of Biology and Environmental Science, University of New Haven , West Haven, CT 06516, USA
| | - Truc V Pham
- Department of Biology and Environmental Science, University of New Haven , West Haven, CT 06516, USA
| | - Divya Burugu
- Department of Biology and Environmental Science, University of New Haven , West Haven, CT 06516, USA
| | - David F Luecke
- Department of Biology and Environmental Science, University of New Haven , West Haven, CT 06516, USA
| |
Collapse
|