1
|
Yang AX, Norbrun C, Sorkhdini P, Zhou Y. Phospholipid scramblase 1: a frontline defense against viral infections. Front Cell Infect Microbiol 2025; 15:1573373. [PMID: 40248364 PMCID: PMC12003403 DOI: 10.3389/fcimb.2025.1573373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 03/17/2025] [Indexed: 04/19/2025] Open
Abstract
Phospholipid scramblase 1 (PLSCR1) is the most studied member of the phospholipid scramblase protein family. Its main function is to catalyze calcium (Ca2+)-dependent, ATP-independent, bidirectional and non-specific translocation of phospholipids between inner and outer leaflets of plasma membrane. Additionally, PLSCR1 is identified as an interferon-stimulated gene (ISG) with antiviral activities, and its expression can be highly induced by all types of interferons in various viral infections. Indeed, numerous studies have reported the direct antiviral activities of PLSCR1 through interrupting the replication processes of a variety of viruses, including entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), nuclear localization of influenza A virus (IAV), and transactivation of human immunodeficiency virus (HIV), Epstein-Barr virus (EBV), human T-cell leukemia virus type-1 (HTLV1), human cytomegalovirus (HCMV) and hepatitis B virus (HBV). In addition to these direct antiviral activities, PLSCR1 also regulates endogenous immune components to defend against viruses in both nonimmune and immune cells. Such activities include potentiation of ISG transcription, activation of JAK/STAT pathway, upregulation of type 3 interferon receptor (IFN-λR1) and recruitment of Toll-like receptor 9 (TLR9). This review aims to summarize the current understanding of PLSCR1's multiple roles as a frontline defense against viral infections.
Collapse
Affiliation(s)
| | | | | | - Yang Zhou
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| |
Collapse
|
2
|
Amiri A, Mardi S, Bahavar A, Sheikhi M, Yaslianifard S, Mozhgani SH. Investigating the circadian rhythm signaling pathway in HTLV-1 pathogenesis using Boolean analysis. Virus Res 2025; 353:199539. [PMID: 39892646 PMCID: PMC11872412 DOI: 10.1016/j.virusres.2025.199539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
The Human T-cell lymphotropic virus type 1 (HTLV-1), an oncogenic virus belonging to the Deltaretrovirus genus, expresses various proteins, including Tax and HBZ, which can affect many cellular pathways. In this study, we have investigated the role of the circadian rhythm signaling pathway, a key regulator of human health, in the pathogenesis of HTLV-1 using Boolean Network analysis and laboratory methods. After an extensive search of the circadian rhythm pathway, we analyzed the relationships between the genes of this pathway using the R programming language and the BoolNet package. Subsequently, we examined the impact of viral proteins on the cellular clock rhythm genes. Finally, we identified three genes, PER2, CRY1, and DEC1, as the main checkpoints from the attractors obtained. These three genes and two viral genes, Tax and HBZ, were quantitatively assessed on two groups of individuals, including ten asymptomatic carriers infected with HTLV-1 and ten healthy individuals using the qRT-PCR method. Our results showed that the expression level of PER2 and DEC1 genes was significantly higher in the asymptomatic carriers compared to the healthy control group. Also, we recorded positive correlations between PER2 and DEC1, CRY1 and DEC1, and negative correlations between HBZ and CRY1 and DEC1. In this study, we suggested that in asymptomatic carriers, the virus might try to induce a chronic infection by escaping from the immune system due to an alteration in circadian rhythm pathways. We also detected three promising genes in this pathway that could have therapeutic or diagnostic value in these individuals. However, this possibility requires further research in different periods, different groups (e.g., ATLL and HAM/TSP), and examining a more significant number of circadian rhythm genes.
Collapse
Affiliation(s)
- Abdollah Amiri
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Shayan Mardi
- Student Research Committee, Arak University of Medical Sciences, Arak, Iran
| | - Atefeh Bahavar
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohsen Sheikhi
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Somayeh Yaslianifard
- Department of Microbiology and Virology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| | - Sayed-Hamidreza Mozhgani
- Department of Microbiology and Virology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran; Noncommunicable Disease Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
3
|
Sato H, Okada F, Asayama Y, Ogata M, Takano K, Ohtsuka E. Centrilobular nodules are predictive chest computed tomography (CT) findings related to adult T-cell leukemia/lymphoma development in human T-lymphotropic virus type I carriers. Clin Radiol 2025; 81:106765. [PMID: 39733476 DOI: 10.1016/j.crad.2024.106765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/23/2024] [Accepted: 11/19/2024] [Indexed: 12/31/2024]
Abstract
AIM To evaluate predictive chest computed tomography (CT) findings associated with the development of adult T-cell leukemia/lymphoma (ATLL) in human T-lymphotropic virus type I (HTLV-1) carriers. MATERIALS AND METHODS This retrospective study examined 171 adult T-cell leukemia/lymphoma and 158 HTLV-1 carriers who were treated from November 2004 to April 2021. The radiological features of 888 chest CT scans in total were retrospectively assessed by two chest radiologists who were unaware of the underlying diagnoses and compared between the groups. RESULTS In patients with aggressive type ATLL (acute type and lymphoma type), lymph node enlargement was the most frequently observed abnormality (65.2%), followed by ground-glass opacity (33.3%) and pleural effusion (30.4%). In patients with indolent type (chronic type and smoldering type), lymph node enlargement, and bronchiectasis were the most frequently observed abnormalities (5.6% and 5.6%, respectively). In each type, centrilobular nodules were observed in none and in one patient, respectively. In the 158 HTLV-1 carriers, centrilobular nodules (n = 62; 39.2%) were the most frequently observed abnormality. Centrilobular nodules were significantly frequently observed in HTLV-1 carriers compared with ATLL patients. No HTLV-1 carrier with centrilobular nodules on CT developed ATLL during the duration of care. A comparative analysis between CT scans performed before ATLL development in ATLL patients and those of HTLV-1 carriers showed that no centrilobular nodules were observed on the pre-ATLL CT scans, and a statistically-significant difference in centrilobular nodules was found between these two groups. CONCLUSION The presence of centrilobular nodules may be an indicative CT finding in HTLV-1 carriers who are less likely to develop ATLL.
Collapse
Affiliation(s)
- H Sato
- Department of Radiology, Oita University Faculty of Medicine, Oita, Japan.
| | - F Okada
- Department of Radiology, Oita Prefectural Hospital, Oita, Japan
| | - Y Asayama
- Department of Radiology, Oita University Faculty of Medicine, Oita, Japan
| | - M Ogata
- Department of Medical Oncology and Hematology, Oita University Faculty of Medicine, Oita, Japan
| | - K Takano
- Department of Medical Oncology and Hematology, Oita University Faculty of Medicine, Oita, Japan
| | - E Ohtsuka
- Department of Hematology, Oita Prefectural Hospital, Oita, Japan
| |
Collapse
|
4
|
Khader TA, Ahmad W, Akhlaq S, Panicker NG, Gull B, Baby J, Rizvi TA, Mustafa F. Transactivation of the novel 5' cis-acting element of mouse mammary tumor virus (MMTV) by human retroviral transactivators Tat and Tax. Commun Biol 2024; 7:1521. [PMID: 39550519 PMCID: PMC11569226 DOI: 10.1038/s42003-024-07139-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 10/24/2024] [Indexed: 11/18/2024] Open
Abstract
The mouse mammary tumor virus (MMTV) encodes a 5' element crucial for transcription of its genome along with the Rem/Rem-responsive element (RmRE) responsible for nuclear export of this unspliced RNA. Whether the 5' element is Rem-responsive or has any functional interaction with host/viral factors to facilitate MMTV gene expression was tested in this study. Our results reveal that the 5' element is non-responsive to Rem, but can be transactivated by both HIV Tat and HTLV-1 Tax activators. Reciprocally, MMTV could transactivate not only HIV TAR (similar to HTLV Tax), but also its 5' element. Furthermore, we reveal involvement of pTEFb, a general elongation factor associated with transactivation by Tat/Tax. This makes MMTV the first betaretrovirus to encode both Rem/RRE and Tat/TAR-Tax/TRE-like transcription regulatory systems. This study should enhance not only our understanding of retrovirus replication and virally-induced cancers/immunodeficiency syndromes, but also development of improved retroviral vectors for human gene therapy.
Collapse
Affiliation(s)
- Thanumol Abdul Khader
- Department of Biochemistry and Molecular Biology, College of Medicine & Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain, UAE
- ASPIRE Research Institute in Precision Medicine, Abu Dhabi, UAE
| | - Waqar Ahmad
- Department of Biochemistry and Molecular Biology, College of Medicine & Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain, UAE
| | - Shaima Akhlaq
- Department of Biochemistry and Molecular Biology, College of Medicine & Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain, UAE
| | - Neena Gopinathan Panicker
- Department of Biochemistry and Molecular Biology, College of Medicine & Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain, UAE
| | - Bushra Gull
- Department of Biochemistry and Molecular Biology, College of Medicine & Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain, UAE
| | - Jasmin Baby
- Department of Biochemistry and Molecular Biology, College of Medicine & Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain, UAE
| | - Tahir A Rizvi
- ASPIRE Research Institute in Precision Medicine, Abu Dhabi, UAE.
- Department of Microbiology and Immunology, CMHS, UAE University, Al Ain, UAE.
- Zayed Center for Health Sciences (ZCHS), UAE University, Al Ain, UAE.
| | - Farah Mustafa
- Department of Biochemistry and Molecular Biology, College of Medicine & Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain, UAE.
- ASPIRE Research Institute in Precision Medicine, Abu Dhabi, UAE.
- Zayed Center for Health Sciences (ZCHS), UAE University, Al Ain, UAE.
| |
Collapse
|
5
|
Zhang X, Yi K, Wang B, Chu K, Liu J, Zhang J, Fang J, Zhao T. EZH2 Activates HTLV-1 bZIP Factor-Mediated TGF-β Signaling in Adult T-Cell Leukemia. J Med Virol 2024; 96:e70025. [PMID: 39530290 DOI: 10.1002/jmv.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/20/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024]
Abstract
Adult T-cell leukemia (ATL) is an aggressive malignancy caused by human T-cell leukemia virus type 1 (HTLV-1) infection. Enhancer of zeste homolog 2 (EZH2) has been implicated in the development and progression of multiple cancers, including virus-induced malignancies. However, the potential function of EZH2 in HTLV-1-induced oncogenesis has not been clearly elucidated. In the present study, we showed that EZH2 was overexpressed and activated in HTLV-1-infected cell lines, potentially due to the activation of EZH2 promoter by HTLV-1 Tax and NF-κB p65 subunit. In addition, we found that EZH2 enhanced the HBZ-induced activation of TGF-β signaling in a histone methyltransferase-independent manner. As a mechanism for these actions, we found that EZH2 targeted Smad3/Smad4 to form a ternary complex, and the association between Smad3 and Smad4 was markedly enhanced in the presence of EZH2. Knockdown of EZH2 in ATL cells indeed repressed the expressions of the TGF-β target genes. In particular, EZH2 synergistically enhanced the HBZ/TGF-β-induced Foxp3 expression. Treatment of 3-Deazaneplanocin A, a specific inhibitor of EZH2 significantly inhibited the Foxp3 expression. Taken together, our results suggest that EZH2 may be involved in the differentiation of regulatory T cells through activating the HBZ-Smad3-TGF-β signaling axis, which is considered to be a key strategy for viral persistence.
Collapse
Affiliation(s)
- Xu Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Kaining Yi
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Bingbing Wang
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Kaifei Chu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Jie Liu
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Jie Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Jiaqi Fang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Tiejun Zhao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
6
|
Wang TT, Hirons A, Doerflinger M, Morris KV, Ledger S, Purcell DFJ, Kelleher AD, Ahlenstiel CL. Current State of Therapeutics for HTLV-1. Viruses 2024; 16:1616. [PMID: 39459949 PMCID: PMC11512412 DOI: 10.3390/v16101616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Human T cell leukaemia virus type-1 (HTLV-1) is an oncogenic retrovirus that causes lifelong infection in ~5-10 million individuals globally. It is endemic to certain First Nations populations of Northern and Central Australia, Japan, South and Central America, Africa, and the Caribbean region. HTLV-1 preferentially infects CD4+ T cells and remains in a state of reduced transcription, often being asymptomatic in the beginning of infection, with symptoms developing later in life. HTLV-1 infection is implicated in the development of adult T cell leukaemia/lymphoma (ATL) and HTLV-1-associated myelopathies (HAM), amongst other immune-related disorders. With no preventive or curative interventions, infected individuals have limited treatment options, most of which manage symptoms. The clinical burden and lack of treatment options directs the need for alternative treatment strategies for HTLV-1 infection. Recent advances have been made in the development of RNA-based antiviral therapeutics for Human Immunodeficiency Virus Type-1 (HIV-1), an analogous retrovirus that shares modes of transmission with HTLV-1. This review highlights past and ongoing efforts in the development of HTLV-1 therapeutics and vaccines, with a focus on the potential for gene therapy as a new treatment modality in light of its successes in HIV-1, as well as animal models that may help the advancement of novel antiviral and anticancer interventions.
Collapse
Affiliation(s)
- Tiana T. Wang
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
| | - Ashley Hirons
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3052, Australia; (A.H.); (D.F.J.P.)
| | - Marcel Doerflinger
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3050, Australia
| | - Kevin V. Morris
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia;
| | - Scott Ledger
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
| | - Damian F. J. Purcell
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3052, Australia; (A.H.); (D.F.J.P.)
| | - Anthony D. Kelleher
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
- UNSW RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Chantelle L. Ahlenstiel
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
- UNSW RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
7
|
Mardi S, Letafati A, Hosseini A, Faraji R, Hosseini P, Mozhgani SH. Analysis of the Main Checkpoints of the JNK-MAPK Pathway in HTLV-1-Associated Leukemia/Lymphoma via Boolean Network Simulation. Biochem Genet 2024:10.1007/s10528-024-10916-0. [PMID: 39320417 DOI: 10.1007/s10528-024-10916-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
The c-Jun N-terminal kinase (JNK) pathway is a signal transduction pathway that plays a critical role in cell growth and survival. Its dysregulation is related to various cancers, including adult T-cell leukemia/lymphoma (ATLL), an aggressive peripheral T-cell malignancy caused by human T-cell lymphotropic virus type 1 (HTLV-1) infection. There is currently no vaccine or definitive treatment for ATLL. This research aimed to identify the JNK-MAPK pathway checkpoints to identify possible therapeutic targets using Boolean network analysis. First, the genes involved in the JNK pathway and their interactions were identified and mapped. Next, a Boolean network analysis was performed using the R programming language, which suggested protein kinase B (AKT) and MAP kinase phosphatase (MKP) for further evaluation. Finally, to confirm the effect of these two genes, a clinical study was conducted among ATLL patients and healthy individuals. The quantitative real time polymerase chain reaction (qRT‒PCR) results revealed a statistically significant decrease in the expression of AKT and MKP in ATLL patients compared to normal controls. This highlights the potential role of these two genes as potential therapeutic targets in ATLL.
Collapse
Affiliation(s)
- Shayan Mardi
- Student Research Committee, Arak University of Medical Sciences, Arak, Iran
| | - Arash Letafati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Hosseini
- Department of Computer Engineering, Faculty of Engineering, Raja University, Qazvin, Iran
| | - Reza Faraji
- Department of Animal Sciences, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
| | - Parastoo Hosseini
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed-Hamidreza Mozhgani
- Noncommunicable Disease Research Center, Alborz University of Medical Sciences, Karaj, Iran.
- Department of Microbiology and Virology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
8
|
Guillon C, Robert X, Gouet P. "It's Only a Model": When Protein Structure Predictions Need Experimental Validation, the Case of the HTLV-1 Tax Protein. Pathogens 2024; 13:241. [PMID: 38535584 PMCID: PMC10976231 DOI: 10.3390/pathogens13030241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 02/11/2025] Open
Abstract
Human T-cell Leukemia Virus type 1 (HTLV-1) is a human retrovirus responsible for leukaemia in 5 to 10% of infected individuals. Among the viral proteins, Tax has been described as directly involved in virus-induced leukemogenesis. Tax is therefore an interesting therapeutic target. However, its 3D structure is still unknown and this hampers the development of drug-design-based therapeutic strategies. Several algorithms are available that can be used to predict the structure of proteins, particularly with the recent appearance of artificial intelligence (AI)-driven pipelines. Here, we review how the structure of Tax is predicted by several algorithms using distinct modelling strategies. We discuss the consequences for the understanding of Tax structure/function relationship, and more generally for the use of structure models for modular and/or flexible proteins, which are frequent in retroviruses.
Collapse
Affiliation(s)
- Christophe Guillon
- Retroviruses and Structural Biochemistry Team, Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS-Lyon 1, CNRS, Université de Lyon, 69007 Lyon, France; (X.R.); (P.G.)
| | | | | |
Collapse
|
9
|
Yamaoka S. RelA and mitogen-activated protein kinase kinase kinases potently enhance lentiviral vector production. Biochem Biophys Rep 2024; 37:101637. [PMID: 38328371 PMCID: PMC10847020 DOI: 10.1016/j.bbrep.2024.101637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 02/09/2024] Open
Abstract
The growing demands for gene therapy have encouraged development of safe and efficient lentiviral vector (LV) preparation. While much progress has been made in this field, it remains to be explored how to boost its production from producer cells. This paper reports that transient co-expression of RelA or several mitogen-activated protein kinase kinase kinases (MAP3Ks) with packaging constructs can potently enhance LV production in HEK293T producer cells. Adding in transfection a small amount of effector plasmid is sufficient to achieve 3- to 4-fold enhancement, which can further be augmented by co-expression of IκB kinase 2 or HIV Tat. It is also shown that expression of RelA or MAP3K1 can increase LV production in HEK293T/17SF cells grown in suspension. These results indicate that stimulation of intracellular signaling pathways in producer cells represents a powerful means for enhancing LV production.
Collapse
Affiliation(s)
- Shoji Yamaoka
- Department of Parasitology and Tropical Medicine, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan.
| |
Collapse
|
10
|
Dutta S, Ganguly A, Ghosh Roy S. An Overview of the Unfolded Protein Response (UPR) and Autophagy Pathways in Human Viral Oncogenesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 386:81-131. [PMID: 38782502 DOI: 10.1016/bs.ircmb.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Autophagy and Unfolded Protein Response (UPR) can be regarded as the safe keepers of cells exposed to intense stress. Autophagy maintains cellular homeostasis, ensuring the removal of foreign particles and misfolded macromolecules from the cytoplasm and facilitating the return of the building blocks into the system. On the other hand, UPR serves as a shock response to prolonged stress, especially Endoplasmic Reticulum Stress (ERS), which also includes the accumulation of misfolded proteins in the ER. Since one of the many effects of viral infection on the host cell machinery is the hijacking of the host translational system, which leaves in its wake a plethora of misfolded proteins in the ER, it is perhaps not surprising that UPR and autophagy are common occurrences in infected cells, tissues, and patient samples. In this book chapter, we try to emphasize how UPR, and autophagy are significant in infections caused by six major oncolytic viruses-Epstein-Barr (EBV), Human Papilloma Virus (HPV), Human Immunodeficiency Virus (HIV), Human Herpesvirus-8 (HHV-8), Human T-cell Lymphotropic Virus (HTLV-1), and Hepatitis B Virus (HBV). Here, we document how whole-virus infection or overexpression of individual viral proteins in vitro and in vivo models can regulate the different branches of UPR and the various stages of macro autophagy. As is true with other viral infections, the relationship is complicated because the same virus (or the viral protein) exerts different effects on UPR and Autophagy. The nature of this response is determined by the cell types, or in some cases, the presence of diverse extracellular stimuli. The vice versa is equally valid, i.e., UPR and autophagy exhibit both anti-tumor and pro-tumor properties based on the cell type and other factors like concentrations of different metabolites. Thus, we have tried to coherently summarize the existing knowledge, the crux of which can hopefully be harnessed to design vaccines and therapies targeted at viral carcinogenesis.
Collapse
Affiliation(s)
- Shovan Dutta
- Center for Immunotherapy & Precision Immuno-Oncology (CITI), Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Anirban Ganguly
- Department of Biochemistry, All India Institute of Medical Sciences, Deoghar, Jharkhand, India
| | - Sounak Ghosh Roy
- Henry M Jackson for the Advancement of Military Medicine, Naval Medical Research Command, Silver Spring, MD, United States.
| |
Collapse
|
11
|
Terada Y, Miyata K, Shoji N, Mochizuki M. Human T-cell Leukemia Virus Type 1 (HTLV-1)-induced Uveitis. Ocul Immunol Inflamm 2023; 31:1416-1424. [PMID: 36803501 DOI: 10.1080/09273948.2023.2175697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/18/2022] [Accepted: 01/29/2023] [Indexed: 02/23/2023]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is a human retrovirus that causes T-cell malignant diseases (adult T-cell leukemia/lymphoma) and HTLV-1-related non-malignant inflammatory diseases, such as HTLV-1 uveitis. Although the symptoms and signs of HTLV-1 uveitis are nonspecific, intermediate uveitis with various degrees of vitreous opacity is the most common clinical presentation. It can occur in one or both eyes and its onset is acute or subacute. Intraocular inflammation can be managed with topical and/or systemic corticosteroids; however, recurrence of uveitis is common. The visual prognosis is generally favorable, but a certain proportion of patients have a poor visual prognosis. Systemic complications of patients with HTLV-1 uveitis include Graves' disease and HTLV-1-associated myelopathy/tropical spastic paraparesis. This review describes the clinical characteristics, diagnosis, ocular manifestations, management, and immunopathogenic mechanisms of HTLV-1 uveitis.
Collapse
Affiliation(s)
| | | | - Nobuyuki Shoji
- Department of Ophthalmology, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Manabu Mochizuki
- Miyata Eye Hospital, Miyazaki, Japan
- Department of Ophthalmology and Visual Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
12
|
Maseko SB, Brammerloo Y, Van Molle I, Sogues A, Martin C, Gorgulla C, Plant E, Olivet J, Blavier J, Ntombela T, Delvigne F, Arthanari H, El Hajj H, Bazarbachi A, Van Lint C, Salehi-Ashtiani K, Remaut H, Ballet S, Volkov AN, Twizere JC. Identification of small molecule antivirals against HTLV-1 by targeting the hDLG1-Tax-1 protein-protein interaction. Antiviral Res 2023; 217:105675. [PMID: 37481039 DOI: 10.1016/j.antiviral.2023.105675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 07/15/2023] [Indexed: 07/24/2023]
Abstract
Human T-cell leukemia virus type-1 (HTLV-1) is the first pathogenic retrovirus discovered in human. Although HTLV-1-induced diseases are well-characterized and linked to the encoded Tax-1 oncoprotein, there is currently no strategy to target Tax-1 functions with small molecules. Here, we analyzed the binding of Tax-1 to the human homolog of the drosophila discs large tumor suppressor (hDLG1/SAP97), a multi-domain scaffolding protein involved in Tax-1-transformation ability. We have solved the structures of the PDZ binding motif (PBM) of Tax-1 in complex with the PDZ1 and PDZ2 domains of hDLG1 and assessed the binding of 10 million molecules by virtual screening. Among the 19 experimentally confirmed compounds, one systematically inhibited the Tax-1-hDLG1 interaction in different biophysical and cellular assays, as well as HTLV-1 cell-to-cell transmission in a T-cell model. Thus, our work demonstrates that interactions involving Tax-1 PDZ-domains are amenable to small-molecule inhibition, which provides a framework for the design of targeted therapies for HTLV-1-induced diseases.
Collapse
Affiliation(s)
- Sibusiso B Maseko
- Laboratory of Viral Interactomes, Unit of Molecular Biology of Diseases, GIGA Institute, University of Liege, Liège, Belgium
| | - Yasmine Brammerloo
- Laboratory of Viral Interactomes, Unit of Molecular Biology of Diseases, GIGA Institute, University of Liege, Liège, Belgium
| | - Inge Van Molle
- VIB-VUB Center for Structural Biology, Flemish Institute of Biotechnology (VIB), Brussels, Belgium
| | - Adrià Sogues
- VIB-VUB Center for Structural Biology, Flemish Institute of Biotechnology (VIB), Brussels, Belgium
| | - Charlotte Martin
- Research Group of Organic Chemistry, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Christoph Gorgulla
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Department of Physics, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Estelle Plant
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Julien Olivet
- Laboratory of Viral Interactomes, Unit of Molecular Biology of Diseases, GIGA Institute, University of Liege, Liège, Belgium; Structural Biology Unit, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research and Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Jeremy Blavier
- Laboratory of Viral Interactomes, Unit of Molecular Biology of Diseases, GIGA Institute, University of Liege, Liège, Belgium
| | | | - Frank Delvigne
- TERRA Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro Bio-tech, University of Liege Belgium
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Department of Physics, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Hiba El Hajj
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali Bazarbachi
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Kourosh Salehi-Ashtiani
- Laboratory of Algal Synthetic and Systems Biology, Division of Science and Math, New York University of Abu Dhabi, Abu Dhabi United Arab Emirates
| | - Han Remaut
- VIB-VUB Center for Structural Biology, Flemish Institute of Biotechnology (VIB), Brussels, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Alexander N Volkov
- VIB-VUB Center for Structural Biology, Flemish Institute of Biotechnology (VIB), Brussels, Belgium; Jean Jeener NMR Centre, Vrije Universiteit Brussel (VUB), Brussels Belgium.
| | - Jean-Claude Twizere
- Laboratory of Viral Interactomes, Unit of Molecular Biology of Diseases, GIGA Institute, University of Liege, Liège, Belgium; TERRA Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro Bio-tech, University of Liege Belgium; Laboratory of Algal Synthetic and Systems Biology, Division of Science and Math, New York University of Abu Dhabi, Abu Dhabi United Arab Emirates.
| |
Collapse
|
13
|
Pereira-Santos TA, da Rocha AS, Lopes-Ribeiro Á, Corrêa-Dias LC, Melo-Oliveira P, Reis EVDS, da Fonseca FG, Barbosa-Stancioli EF, Tsuji M, Coelho-dos-Reis JGA. Diversity of HLA-A2-Restricted and Immunodominant Epitope Repertoire of Human T-Lymphotropic Virus Type 1 (HTLV-1) Tax Protein: Novel Insights among N-Terminal, Central and C-Terminal Regions. Biomolecules 2023; 13:biom13030545. [PMID: 36979478 PMCID: PMC10046496 DOI: 10.3390/biom13030545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/24/2023] [Indexed: 03/19/2023] Open
Abstract
The present study sought to search for the immunodominance related to the N-terminal, Central and C-terminal regions of HTLV-1 Tax using novel, cutting-edge peptide microarray analysis. In addition, in silico predictions were performed to verify the presence of nine amino acid peptides present along Tax restricted to the human leukocyte antigen (HLA)-A2.02*01 haplotype, as well as to verify the ability to induce pro-inflammatory and regulatory cytokines, such as IFN-γ and IL-4, respectively. Our results indicated abundant dose-dependent reactivity for HLA-A*02:01 in all regions (N-terminal, Central and C-terminal), but with specific hotspots. Furthermore, the results of fold-change over the Tax11–19 reactivity obtained at lower concentrations of HLA-A*02:01 reveal that peptides from the three regions contain sequences that react 100 times more than Tax11–19. On the other hand, Tax11–19 has similar or superior HLA-A*02:01 reactivity at higher concentrations of this haplotype. The in silico analysis showed a higher frequency of IFN-γ-inducing peptides in the N-terminal portion, while the C-terminal portion showed a higher frequency of IL-4 inducers. Taken together, these results shed light on the search for new Tax immunodominant epitopes, in addition to the canonic Tax11–19, for the rational design of immunomodulatory strategies for HTLV-1 chronic diseases.
Collapse
Affiliation(s)
- Thaiza Aline Pereira-Santos
- Laboratório de Virologia Básica e Aplicada (LVBA), Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Anderson Santos da Rocha
- Laboratório de Virologia Básica e Aplicada (LVBA), Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Ágata Lopes-Ribeiro
- Laboratório de Virologia Básica e Aplicada (LVBA), Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Laura Cardoso Corrêa-Dias
- Laboratório de Virologia Básica e Aplicada (LVBA), Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Patrícia Melo-Oliveira
- Laboratório de Virologia Básica e Aplicada (LVBA), Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Erik Vinicius de Sousa Reis
- Laboratório de Virologia Básica e Aplicada (LVBA), Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Flávio Guimarães da Fonseca
- Laboratório de Virologia Básica e Aplicada (LVBA), Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- Centro de Tecnologia em Vacinas (CT-Vacinas), Parque Tecnológico de Belo Horizonte, Belo Horizonte 31310-260, MG, Brazil
| | - Edel Figueiredo Barbosa-Stancioli
- Laboratório de Virologia Básica e Aplicada (LVBA), Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, Division of Infectious Disease, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jordana Grazziela Alves Coelho-dos-Reis
- Laboratório de Virologia Básica e Aplicada (LVBA), Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- Correspondence: or
| |
Collapse
|
14
|
Viral, genetic, and immune factors in the oncogenesis of adult T-cell leukemia/lymphoma. Int J Hematol 2023; 117:504-511. [PMID: 36705848 DOI: 10.1007/s12185-023-03547-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/28/2023]
Abstract
Adult T-cell leukemia/lymphoma (ATL) is a malignancy of mature CD4 + T cells induced by human T-cell leukemia virus type I (HTLV-1). HTLV-1 maintains life-long infection in the human host by clonal proliferation of infected cells and cell-to-cell spread of the virus. Two viral genes, tax and HTLV-1 bZIP factor (HBZ), promote expansion of infected cells through the important roles they play in acceleration of cell proliferation and protection from cell death. Long-term survival of infected clones in vivo causes genetic mutations and aberrant epigenetic changes to accumulate in host genes, resulting in the emergence of an ATL clone. Recent advances in sequencing technology have revealed the broad picture of genetic and transcriptional abnormalities in ATL cells. ATL cells have hyper-proliferative and anti-apoptotic signatures like those observed in other malignancies, but also notably have traits related to immune evasion. ATL cells exhibit a regulatory T-cell-like immuno-phenotype due to both the function of HBZ and mutation of several host genes, such as CCR4 and CIC. These findings suggest that immune evasion is a critical step in the oncogenesis of ATL, and thus novel therapies that activate anti-ATL/HTLV-1 immunity may be effective in the treatment and prevention of ATL.
Collapse
|
15
|
Kato N, Kozako T, Ohsugi T, Uchida Y, Yoshimitsu M, Ishitsuka K, Aikawa A, Honda SI. CDK9 Inhibitor Induces Apoptosis, Autophagy, and Suppression of Tumor Growth in Adult T-Cell Leukemia/Lymphoma. Biol Pharm Bull 2023; 46:1269-1276. [PMID: 37661406 DOI: 10.1248/bpb.b23-00228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Adult T-cell leukemia/lymphoma (ATL) is a hematopoietic malignancy with a poor prognosis that develops in approximately 5% of human T-cell leukemia virus type 1 (HTLV-1) carriers. Cyclin-dependent kinase 9 (CDK9), together with Cyclin T, forms a transcription elongation factor, positive transcription elongation factor b (P-TEFb). P-TEFb promotes transcriptional elongation by phosphorylating the second serine (Ser2) of the seven amino acid repeat sequence in the C-terminal domain of RNA polymerase II (RNAP II). CDK9 inhibitors suppress cell proliferation by inducing apoptosis in chronic lymphocytic leukemia and breast cancer but there are no reports on autophagy of CDK9 inhibitors. Here, we investigated the effect of LY2857785, a novel CDK9 selective inhibitor, on cell death in ATL-related cell lines in vitro, freshly isolated cells from ATL patients ex vivo, and on ATL tumor xenografts in NOD/SCID mice in vivo. LY2857785 significantly reduced cell viability and induced apoptosis, as shown by annexin V-positive cells, cleaved poly(ADP-ribose) polymerase (PARP), and cleaved caspase-3, and suppressed the levels of anti-apoptotic protein myeloid cell leukemia-1 (MCL-1). LY2857785 decreased RNAP II Ser2 phosphorylation and downstream c-Myc protein levels. Interestingly, LY2857785 also increased microtubule-associated proteins 1A/1B light chain 3B (LC3)-II binding to autophagosome membranes. Furthermore, LY2857785 decreased the viability of freshly isolated ATL cells and induced apoptosis. Finally, LY2857785 significantly decreased the growth of ATL tumor xenografts. These results suggest that LY2857785 induces cell death of ATL cells by MCL-1-dependent apoptosis and autophagy and has anti-tumor activity.
Collapse
Affiliation(s)
- Naho Kato
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University
| | - Tomohiro Kozako
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University
| | - Takeo Ohsugi
- Department of Laboratory Animal Science, School of Veterinary Medicine, Rakuno Gakuen University
| | - Yuichiro Uchida
- Department of Hematology and Rheumatology, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Makoto Yoshimitsu
- Department of Hematology and Rheumatology, Graduate School of Medical and Dental Sciences, Kagoshima University
- Department of Hematology and Rheumatology, Kagoshima University Hospital
| | - Kenji Ishitsuka
- Department of Hematology and Rheumatology, Graduate School of Medical and Dental Sciences, Kagoshima University
- Department of Hematology and Rheumatology, Kagoshima University Hospital
| | - Akiyoshi Aikawa
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University
| | - Shin-Ichiro Honda
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University
| |
Collapse
|
16
|
HTLV-1 infection of donor-derived T cells might promote acute graft-versus-host disease following liver transplantation. Nat Commun 2022; 13:7368. [PMID: 36450748 PMCID: PMC9712688 DOI: 10.1038/s41467-022-35111-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
Acute graft versus host disease (aGVHD) is a rare, but severe complication of liver transplantation (LT). It is caused by the activation of donor immune cells in the graft against the host shortly after transplantation, but the contributing pathogenic factors remain unclear. Here we show that human T cell lymphotropic virus type I (HTLV-1) infection of donor T cells is highly associated with aGVHD following LT. The presence of HTLV-1 in peripheral blood and tissue samples from a discovery cohort of 7 aGVHD patients and 17 control patients is assessed with hybridization probes (TargetSeq), mass cytometry (CyTOF), and multiplex immunohistology (IMC). All 7 of our aGVHD patients display detectable HTLV-1 Tax signals by IMC. We identify donor-derived cells based on a Y chromosome-specific genetic marker, EIF1AY. Thus, we confirm the presence of CD4+Tax+EIF1AY+ T cells and Tax+CD68+EIF1AY+ antigen-presenting cells, indicating HTLV-1 infection of donor immune cells. In an independent cohort of 400 patients, we verify that HTLV-1 prevalence correlates with aGVHD incidence, while none of the control viruses shows significant associations. Our findings thus provide new insights into the aetio-pathology of liver-transplantation-associated aGVHD and raise the possibility of preventing aGVHD prior to transplantation.
Collapse
|
17
|
Ramanayake S, Moulding DA, Tanaka Y, Singh A, Bangham CRM. Dynamics and consequences of the HTLV-1 proviral plus-strand burst. PLoS Pathog 2022; 18:e1010774. [PMID: 36441826 PMCID: PMC9731428 DOI: 10.1371/journal.ppat.1010774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 12/08/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022] Open
Abstract
Expression of the transcriptional transactivator protein Tax, encoded on the proviral plus-strand of human T-cell leukaemia virus type 1 (HTLV-1), is crucial for the replication of the virus, but Tax-expressing cells are rarely detected in fresh blood ex vivo. The dynamics and consequences of the proviral plus-strand transcriptional burst remain insufficiently characterised. We combined time-lapse live-cell imaging, single-cell tracking and mathematical modelling to study the dynamics of Tax expression at single-cell resolution in two naturally-infected, non-malignant T-cell clones transduced with a short-lived enhanced green fluorescent protein (d2EGFP) Tax reporter system. Five different patterns of Tax expression were observed during the 30-hour observation period; the distribution of these patterns differed between the two clones. The mean duration of Tax expression in the two clones was 94 and 417 hours respectively, estimated from mathematical modelling of the experimental data. Tax expression was associated with a transient slowing in cell-cycle progression and proliferation, increased apoptosis, and enhanced activation of the DNA damage response pathways. Longer-term follow-up (14 days) revealed an increase in the proportion of proliferating cells and a decrease in the fraction of apoptotic cells as the cells ceased Tax expression, resulting in a greater net expansion of the initially Tax-positive population. Time-lapse live-cell imaging showed enhanced cell-to-cell adhesion among Tax-expressing cells, and decreased cell motility of Tax-expressing cells at the single-cell level. The results demonstrate the within-clone and between-clone heterogeneity in the dynamics and patterns of HTLV-1 plus-strand transcriptional bursts and the balance of positive and negative consequences of the burst for the host cell.
Collapse
Affiliation(s)
- Saumya Ramanayake
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Dale A. Moulding
- Light Microscopy Core Facility, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Yuetsu Tanaka
- Department of Infectious Disease and Immunology, Okinawa-Asia Research Center of Medical Science, Faculty of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Charles R. M. Bangham
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Zhang J, Meng S, Wang X, Wang J, Fan X, Sun H, Ning R, Xiao B, Li X, Jia Y, Kong D, Chen R, Wang C, Ma D, Li S. Sequential gene expression analysis of cervical malignant transformation identifies RFC4 as a novel diagnostic and prognostic biomarker. BMC Med 2022; 20:437. [PMID: 36352434 PMCID: PMC9648022 DOI: 10.1186/s12916-022-02630-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 10/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cervical squamous cell carcinoma (SCC) is known to arise through increasingly higher-grade squamous intraepithelial lesions (SILs) or cervical intraepithelial neoplasias (CINs). This study aimed to describe sequential molecular changes and identify biomarkers in cervical malignant transformation. METHODS Multidimensional data from five publicly available microarray and TCGA-CESC datasets were analyzed. Immunohistochemistry was carried out on 354 cervical tissues (42 normal, 62 CIN1, 26 CIN2, 47 CIN3, and 177 SCC) to determine the potential diagnostic and prognostic value of identified biomarkers. RESULTS We demonstrated that normal epithelium and SILs presented higher molecular homogeneity than SCC. Genes in the region (e.g., 3q, 12q13) with copy number alteration or HPV integration were more likely to lose or gain expression. The IL-17 signaling pathway was enriched throughout disease progression with downregulation of IL17C and decreased Th17 cells at late stage. Furthermore, we identified AURKA, TOP2A, RFC4, and CEP55 as potential causative genes gradually upregulated during the normal-SILs-SCC transition. For detecting high-grade SIL (HSIL), TOP2A and RFC4 showed balanced sensitivity (both 88.2%) and specificity (87.1 and 90.1%), with high AUC (0.88 and 0.89). They had equivalent diagnostic performance alone to the combination of p16INK4a and Ki-67. Meanwhile, increased expression of RFC4 significantly and independently predicted favorable outcomes in multi-institutional cohorts of SCC patients. CONCLUSIONS Our comprehensive study of gene expression profiling has identified dysregulated genes and biological processes during cervical carcinogenesis. RFC4 is proposed as a novel surrogate biomarker for determining HSIL and HSIL+, and an independent prognostic biomarker for SCC.
Collapse
Affiliation(s)
- Jianwei Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.,Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Silu Meng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.,Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xiaoyan Wang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jun Wang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xinran Fan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.,Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Haiying Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.,Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ruoqi Ning
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.,Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Bing Xiao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.,Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xiangqin Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.,Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yao Jia
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.,Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Dongli Kong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.,Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ruqi Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.,Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Changyu Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China. .,Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Ding Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China. .,Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Shuang Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China. .,Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
19
|
Qin B, Zhou L, Wang F, Wang Y. Ubiquitin-specific protease 20 in human disease: emerging role and therapeutic implications. Biochem Pharmacol 2022; 206:115352. [DOI: 10.1016/j.bcp.2022.115352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/06/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
|
20
|
Nakano K, Watanabe T. Tuning Rex rules HTLV-1 pathogenesis. Front Immunol 2022; 13:959962. [PMID: 36189216 PMCID: PMC9523361 DOI: 10.3389/fimmu.2022.959962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
HTLV-1 is an oncovirus causing ATL and other inflammatory diseases such as HAM/TSP and HU in about 5% of infected individuals. It is also known that HTLV-1-infected cells maintain a disease-free, immortalized, latent state throughout the lifetimes of about 95% of infected individuals. We believe that the stable maintenance of disease-free infected cells in the carrier is an intrinsic characteristic of HTLV-1 that has been acquired during its evolution in the human life cycle. We speculate that the pathogenesis of the virus is ruled by the orchestrated functions of viral proteins. In particular, the regulation of Rex, the conductor of viral replication rate, is expected to be closely related to the viral program in the early active viral replication followed by the stable latency in HTLV-1 infected T cells. HTLV-1 and HIV-1 belong to the family Retroviridae and share the same tropism, e.g., human CD4+ T cells. These viruses show significant similarities in the viral genomic structure and the molecular mechanism of the replication cycle. However, HTLV-1 and HIV-1 infected T cells show different phenotypes, especially in the level of virion production. We speculate that how the activity of HTLV-1 Rex and its counterpart HIV-1 Rev are regulated may be closely related to the properties of respective infected T cells. In this review, we compare various pathological aspects of HTLV-1 and HIV-1. In particular, we investigated the presence or absence of a virally encoded "regulatory valve" for HTLV-1 Rex or HIV-1 Rev to explore its importance in the regulation of viral particle production in infected T cells. Finally, wereaffirm Rex as the key conductor for viral replication and viral pathogenesis based on our recent study on the novel functional aspects of Rex. Since the activity of Rex is closely related to the viral replication rate, we hypothesize that the "regulatory valve" on the Rex activity may have been selectively evolved to achieve the "scenario" with early viral particle production and the subsequent long, stable deep latency in HTLV-1 infected cells.
Collapse
Affiliation(s)
- Kazumi Nakano
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshiki Watanabe
- Department of Practical Management of Medical Information, Graduate School of Medicine, St. Marianna University, Kawasaki, Japan
| |
Collapse
|
21
|
Machado LFA, Filho LRG, Santos FAA, Siravenha LQ, Silva ANMR, Queiroz MAF, Vallinoto ACR, Ishak MOG, Ishak R. Bioprospection and Selection of Peptides by Phage Display as Novel Epitope-Based Diagnostic Probes for Serological Detection of HTLV-1 and Use in Future Vaccines. Front Med (Lausanne) 2022; 9:884738. [PMID: 35755076 PMCID: PMC9218527 DOI: 10.3389/fmed.2022.884738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022] Open
Abstract
Human T-lymphotropic virus 1 (HTLV-1) is endemic worldwide and the infection results in severe diseases, including Adult T-cell Leukemia (ATL) and HTLV-1 associated myelopathy (HAM). There are some limitations of employing the present commercial serological assays for both diagnostic and epidemiological purposes in different geographical areas of the Brazil, such as the Amazon Region. Currently, methods for diagnosis are usually expensive to adapt for routine use. The aim of this work was to identify and characterize specific ligands to IgG that mimic HTLV-1 epitopes through the Phage Display technique, which could be used for diagnosis and as future vaccine candidates. Initially, IgG from 10 patients with HTLV-1 and 20 negative controls were covalently coupled to protein G-magnetic beads. After biopanning, genetic sequencing, bioinformatics analysis and Phage-ELISA were performed. The technique allowed the identification of 4 clones with HTLV-1 mimetic peptides, three aligned with gp46, A6 (SPYW), B6 (SQLP) and D7 (PLIL), and one with the protease and Tax, A8 (SPPR). Clones A6 and B6 showed higher values of accessibility, antigenicity and hydrophilicity. The reactivity of the clones evaluated by the Receiver Operating Characteristic (ROC) curve showed that the B6 clone had the highest Area Under Curve (0.83) and sensitivity and specificity values (both were 77.27 %; p < 0.001). The study showed that the Phage Display technique is effective for the identification of HTLV-1-related peptides. Clone B6 indicated to be a good marker for bioprospecting diagnostic test for HTLV-1 infection and could be used as a possible vaccine candidate for future studies.
Collapse
Affiliation(s)
- Luiz Fernando Almeida Machado
- Biology of Infectious and Parasitic Agents Post-Graduate Program, Federal University of Pará, Belém, Brazil
- Virology Laboratory, Institute of Biological Sciences, Federal University of Pará, Belem, Brazil
- *Correspondence: Luiz Fernando Almeida Machado
| | - Luiz Ricardo Goulart Filho
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, Brazil
| | | | - Leonardo Quintão Siravenha
- Biology of Infectious and Parasitic Agents Post-Graduate Program, Federal University of Pará, Belém, Brazil
| | | | | | - Antonio Carlos Rosário Vallinoto
- Biology of Infectious and Parasitic Agents Post-Graduate Program, Federal University of Pará, Belém, Brazil
- Virology Laboratory, Institute of Biological Sciences, Federal University of Pará, Belem, Brazil
| | | | - Ricardo Ishak
- Biology of Infectious and Parasitic Agents Post-Graduate Program, Federal University of Pará, Belém, Brazil
- Virology Laboratory, Institute of Biological Sciences, Federal University of Pará, Belem, Brazil
| |
Collapse
|
22
|
Sakihama S, Karube K. Genetic Alterations in Adult T-Cell Leukemia/Lymphoma: Novel Discoveries with Clinical and Biological Significance. Cancers (Basel) 2022; 14:2394. [PMID: 35625999 PMCID: PMC9139356 DOI: 10.3390/cancers14102394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/30/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is a refractory T-cell neoplasm that develops in human T-cell leukemia virus type-I (HTLV-1) carriers. Large-scale comprehensive genomic analyses have uncovered the landscape of genomic alterations of ATLL and have identified several altered genes related to prognosis. The genetic alterations in ATLL are extremely enriched in the T-cell receptor/nuclear factor-κB pathway, suggesting a pivotal role of deregulation in this pathway in the transformation of HTLV-1-infected cells. Recent studies have revealed the process of transformation of HTLV-1-infected cells by analyzing longitudinal samples from HTLV-1 carriers and patients with overt ATLL, an endeavor that might enable earlier ATLL diagnosis. The latest whole-genome sequencing study discovered 11 novel alterations, including CIC long isoform, which had been overlooked in previous studies employing exome sequencing. Our study group performed the targeted sequencing of ATLL in Okinawa, the southernmost island in Japan and an endemic area of HTLV-1, where the comprehensive genetic alterations had never been analyzed. We found associations of genetic alterations with HTLV-1 strains phylogenetically classified based on the tax gene, an etiological virus factor in ATLL. This review summarizes the genetic alterations in ATLL, with a focus on their clinical significance, geographical heterogeneity, and association with HTLV-1 strains.
Collapse
Affiliation(s)
- Shugo Sakihama
- Department of Pathology and Cell Biology, Graduate School of Medicine, University of the Ryukyus, Nishihara 903-0215, Japan
| | - Kennosuke Karube
- Department of Pathology and Laboratory Medicine, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| |
Collapse
|
23
|
Abstract
The Hippo pathway plays critical roles in controlling cell proliferation, and its dysregulation is widely implicated in numerous human cancers. YAP, a Hippo signaling effector, often acts as a nexus and integrator for multiple prominent signaling networks. In this study, we discover NF-κB cross talk with the Hippo pathway and identify p65 as a critical regulator for YAP nuclear retention and transcriptional activity. Furthermore, we find that p65-induced YAP activation is essential for maintaining the proliferation of ATL cells in vitro and in vivo. Our findings unravel the functional interplay between NF-κB and YAP signaling and provide mechanistic insights into the YAP-dependent growth control pathway and tumorigenesis. Adult T-cell leukemia/lymphoma (ATL) is an aggressive malignancy caused by human T-cell leukemia virus type 1 (HTLV-1) infection. HTLV-1 exerts its oncogenic functions by interacting with signaling pathways involved in cell proliferation and transformation. Dysregulation of the Hippo/YAP pathway is associated with multiple cancers, including virus-induced malignancies. In the present study, we observe that expression of YAP, which is the key effector of Hippo signaling, is elevated in ATL cells by the action of the HTLV-1 Tax protein. YAP transcriptional activity is remarkably enhanced in HTLV-1–infected cells and ATL patients. In addition, Tax activates the YAP protein via a mechanism involving the NF-κB/p65 pathway. As a mechanism for this cross talk between the Hippo and NF-κB pathways, we found that p65 abrogates the interaction between YAP and LATS1, leading to suppression of YAP phosphorylation, inhibition of ubiquitination-dependent degradation of YAP, and YAP nuclear accumulation. Finally, knockdown of YAP suppresses the proliferation of ATL cells in vitro and tumor formation in ATL-engrafted mice. Taken together, our results suggest that p65-induced YAP activation is essential for ATL pathogenesis and implicate YAP as a potential therapeutic target for ATL treatment.
Collapse
|
24
|
Characterizing the Interaction between the HTLV-1 Transactivator Tax-1 with Transcription Elongation Factor ELL2 and Its Impact on Viral Transactivation. Int J Mol Sci 2021; 22:ijms222413597. [PMID: 34948391 PMCID: PMC8705299 DOI: 10.3390/ijms222413597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
The human T-cell leukemia virus type 1 (HTLV-1)-encoded transactivator and oncoprotein Tax-1 is essential for HTLV-1 replication. We recently found that Tax-1 interacts with transcription elongation factor for RNA polymerase II 2, ELL2, which enhances Tax-1-mediated transactivation of the HTLV-1 promotor. Here, we characterize the Tax-1:ELL2 interaction and its impact on viral transactivation by confocal imaging, co-immunoprecipitation, and luciferase assays. We found that Tax-1 and ELL2 not only co-precipitate, but also co-localize in dot-like structures in the nucleus. Tax-1:ELL2 complex formation occurred independently of Tax-1 point mutations, which are crucial for post translational modifications (PTMs) of Tax-1, suggesting that these PTMs are irrelevant for Tax-1:ELL2 interaction. In contrast, Tax-1 deletion mutants lacking either N-terminal (aa 1-37) or C-terminal regions (aa 150-353) of Tax-1 were impaired in interacting with ELL2. Contrary to Tax-1, the related, non-oncogenic Tax-2B from HTLV-2B did not interact with ELL2. Finally, we found that ELL2-R1 (aa 1-353), which carries an RNA polymerase II binding domain, and ELL2-R3 (aa 515-640) are sufficient to interact with Tax-1; however, only ELL2-truncations expressing R1 could enhance Tax-1-mediated transactivation of the HTLV-1 promoter. Together, this study identifies domains in Tax-1 and ELL2 being required for Tax-1:ELL2 complex formation and for viral transactivation.
Collapse
|
25
|
Zarei Ghobadi M, Mozhgani SH, Erfani Y. Identification of dysregulated pathways underlying HTLV-1-associated myelopathy/tropical spastic paraparesis through co-expression network analysis. J Neurovirol 2021; 27:820-830. [PMID: 33405203 DOI: 10.1007/s13365-020-00919-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/29/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022]
Abstract
Human T cell lymphotropic virus-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a pathogen-caused disease which is associated with the progressive neurological disorder. HAM/TSP affects the expression level of several proteins and dysregulates some biological pathways. To identify the interaction patterns among expressed genes in HAM/TSP patients, weighted gene co-expression network analysis (WGCNA) was applied. Three microarray datasets regarding HAM/TSP were merged, and the co-expression network was constructed among genes. A total of 38 modules were identified. Three preserved modules in HAM/TSP in comparison to the healthy subjects which also had the most connected proteins and enriched in the biological pathways were selected. These modules were enriched in pathways related to immune systems, cell cycle, viral infection, and neuronal systems. Moreover, the involvement of novel immunological-related proteins including C1QB, GBP5, PSME1, SERPING1, and UBE2C; neurological-related proteins including TUBA4A, TUBB8, and TP63; and also proteins including TRPC6, PRKG2, OPRD1, PRKACA, and TUBB4A involved in the cGMP-PKG signaling pathway, thyroid hormone synthesis, and recruitment of mitotic centrosome proteins and complexes were found. Therefore, tracing these proteins and the identified modules can shed light on the pathogenesis mechanism of HAM/TSP and help to find potential therapeutic targets. However, further experimental validation should be performed to confirm the proposed functional players.
Collapse
Affiliation(s)
- Mohadeseh Zarei Ghobadi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Sayed-Hamidreza Mozhgani
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Yousef Erfani
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Ikebe E, Shimosaki S, Hasegawa H, Iha H, Tsukamoto Y, Wang Y, Sasaki D, Imaizumi Y, Miyazaki Y, Yanagihara K, Hamaguchi I, Morishita K. TAS-116 (pimitespib), a heat shock protein 90 inhibitor, shows efficacy in preclinical models of adult T-cell leukemia. Cancer Sci 2021; 113:684-696. [PMID: 34794206 PMCID: PMC8819293 DOI: 10.1111/cas.15204] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
Adult T‐cell leukemia/lymphoma (ATL) is a highly chemoresistant malignancy of peripheral T lymphocytes caused by human T‐cell leukemia virus type 1 infection, for which there is an urgent need for more effective therapeutic options. The molecular chaperone heat shock protein 90 (HSP90) plays a crucial role in nuclear factor‐κB (NF‐κB)‐mediated antiapoptosis in ATL cells, and HSP90 inhibitors are new candidate therapeutics for ATL. Accordingly, we investigated the anti‐ATL effects of a novel oral HSP90 inhibitor, TAS‐116 (pimitespib), and the mechanisms involved in ex vivo and in vivo preclinical models. TAS‐116 achieved IC50 values of less than 0.5 μmol/L in 10 ATL‐related cell lines and less than 1 μmol/L in primary peripheral blood cells of nine ATL patients; no toxicity was observed toward CD4+ lymphocytes from healthy donors, indicating the safety of this agent. Given orally, TAS‐116 also showed significant inhibitory effects against tumor cell growth in ATL cell‐xenografted mice. Furthermore, gene expression profiling of TAS‐116‐treated Tax‐positive or ‐negative cell lines and primary ATL cells using DNA microarray and multiple pathway analysis revealed the significant downregulation of the NF‐κB pathway in Tax‐positive cells and cell‐cycle arrest in Tax‐negative cells and primary ATL cells. TAS‐116 suppressed the activator protein‐1 and tumor necrosis factor pathways in all examined cells. These findings strongly indicate the efficacy of TAS‐116, regardless of the stage of ATL progression, and its potential application as a novel clinical anti‐ATL therapeutic agent.
Collapse
Affiliation(s)
- Emi Ikebe
- Department of Microbiology, Oita University Faculty of Medicine, Yufu, Japan.,Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shunsuke Shimosaki
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hiroo Hasegawa
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Hidekatsu Iha
- Department of Microbiology, Oita University Faculty of Medicine, Yufu, Japan
| | - Yoshiyuki Tsukamoto
- Department of Molecular Pathology, Oita University Faculty of Medicine, Yufu, Japan
| | - Yu Wang
- Department of Microbiology, Oita University Faculty of Medicine, Yufu, Japan
| | - Daisuke Sasaki
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | | | - Yasushi Miyazaki
- Department of Hematology, Nagasaki University Hospital, Nagasaki, Japan.,Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuhiro Morishita
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
27
|
Espíndola ODM, Siteur-van Rijnstra E, Frankin E, Weijer K, van der Velden YU, Berkhout B, Blom B, Villaudy J. Early Effects of HTLV-1 Infection on the Activation, Exhaustion, and Differentiation of T-Cells in Humanized NSG Mice. Cells 2021; 10:2514. [PMID: 34685494 PMCID: PMC8534134 DOI: 10.3390/cells10102514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 12/14/2022] Open
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is an aggressive malignancy of CD4+ T-cells associated with HTLV-1 infection. In this study, we used the model of immunodeficient NSG mice reconstituted with a functional human immune system (HIS) to investigate early events in HTLV-1 pathogenesis. Upon infection, human T-cells rapidly increased in the blood and lymphoid tissues, particularly CD4+CD25+ T-cells. Proliferation of CD4+ T-cells in the spleen and mesenteric lymph nodes (MLN) correlated with HTLV-1 proviral load and CD25 expression. In addition, splenomegaly, a common feature of ATLL in humans, was also observed. CD4+ and CD8+ T-cells predominantly displayed an effector memory phenotype (CD45RA-CCR7-) and expressed CXCR3 and CCR5 chemokine receptors, suggesting the polarization into a Th1 phenotype. Activated CD8+ T-cells expressed granzyme B and perforin; however, the interferon-γ response by these cells was limited, possibly due to elevated PD-1 expression and increased frequency of CD4+FoxP3+ regulatory T-cells in MLN. Thus, HTLV-1-infected HIS-NSG mice reproduced several characteristics of infection in humans, and it may be helpful to investigate ATLL-related events and to perform preclinical studies. Moreover, aspects of chronic infection were already present at early stages in this experimental model. Collectively, we suggest that HTLV-1 infection modulates host immune responses to favor viral persistence.
Collapse
Affiliation(s)
- Otávio de Melo Espíndola
- Laboratory for Clinical Research in Neuroinfections, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
- Department of Experimental Immunology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (E.S.-v.R.); (E.F.); (K.W.); (B.B.)
| | - Esther Siteur-van Rijnstra
- Department of Experimental Immunology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (E.S.-v.R.); (E.F.); (K.W.); (B.B.)
| | - Esmay Frankin
- Department of Experimental Immunology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (E.S.-v.R.); (E.F.); (K.W.); (B.B.)
| | - Kees Weijer
- Department of Experimental Immunology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (E.S.-v.R.); (E.F.); (K.W.); (B.B.)
| | - Yme Ubeles van der Velden
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (Y.U.v.d.V.); (B.B.); (J.V.)
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (Y.U.v.d.V.); (B.B.); (J.V.)
| | - Bianca Blom
- Department of Experimental Immunology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (E.S.-v.R.); (E.F.); (K.W.); (B.B.)
| | - Julien Villaudy
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (Y.U.v.d.V.); (B.B.); (J.V.)
- J&S Preclinical Solutions, 5345 RR Oss, The Netherlands
| |
Collapse
|
28
|
Vandermeulen C, O’Grady T, Wayet J, Galvan B, Maseko S, Cherkaoui M, Desbuleux A, Coppin G, Olivet J, Ben Ameur L, Kataoka K, Ogawa S, Hermine O, Marcais A, Thiry M, Mortreux F, Calderwood MA, Van Weyenbergh J, Peloponese JM, Charloteaux B, Van den Broeke A, Hill DE, Vidal M, Dequiedt F, Twizere JC. The HTLV-1 viral oncoproteins Tax and HBZ reprogram the cellular mRNA splicing landscape. PLoS Pathog 2021; 17:e1009919. [PMID: 34543356 PMCID: PMC8483338 DOI: 10.1371/journal.ppat.1009919] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/30/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Viral infections are known to hijack the transcription and translation of the host cell. However, the extent to which viral proteins coordinate these perturbations remains unclear. Here we used a model system, the human T-cell leukemia virus type 1 (HTLV-1), and systematically analyzed the transcriptome and interactome of key effectors oncoviral proteins Tax and HBZ. We showed that Tax and HBZ target distinct but also common transcription factors. Unexpectedly, we also uncovered a large set of interactions with RNA-binding proteins, including the U2 auxiliary factor large subunit (U2AF2), a key cellular regulator of pre-mRNA splicing. We discovered that Tax and HBZ perturb the splicing landscape by altering cassette exons in opposing manners, with Tax inducing exon inclusion while HBZ induces exon exclusion. Among Tax- and HBZ-dependent splicing changes, we identify events that are also altered in Adult T cell leukemia/lymphoma (ATLL) samples from two independent patient cohorts, and in well-known cancer census genes. Our interactome mapping approach, applicable to other viral oncogenes, has identified spliceosome perturbation as a novel mechanism coordinated by Tax and HBZ to reprogram the transcriptome. Tax and HBZ are two viral regulatory proteins encoded by the human T-cell leukemia virus type 1 (HTLV-1) via sense and antisense transcripts, respectively. Both proteins are known to drive oncogenic processes that culminate in a T-cell neoplasm, known as Adult T cell leukemia/lymphoma (ATLL). We measured the effects of Tax and HBZ on host gene expression pathway by analyzing the interactome with cellular transcriptional and post-transcriptional regulators, and the transcriptome and mRNA splicing of cell lines expressing either Tax or HBZ. We compared our results with data obtained from independent cohorts of Japanese and Afro-Caribbean patients, and identified common splicing changes that might represent clinically useful biomarkers for ATLL. Finally, we provide evidence that the viral protein Tax can reprogram initial steps of the T-cell transcriptome diversification by hijacking the U2AF complex, a key cellular regulator of pre-mRNA splicing.
Collapse
Affiliation(s)
- Charlotte Vandermeulen
- Laboratory of Viral Interactomes, GIGA Institute, University of Liege, Liege, Belgium
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Laboratory of Gene Expression and Cancer, GIGA Institute, University of Liege, Liege, Belgium
| | - Tina O’Grady
- Laboratory of Gene Expression and Cancer, GIGA Institute, University of Liege, Liege, Belgium
| | - Jerome Wayet
- Unit of Animal Genomics, GIGA, Université de Liège (ULiège), Liège, Belgium
| | - Bartimee Galvan
- Laboratory of Gene Expression and Cancer, GIGA Institute, University of Liege, Liege, Belgium
| | - Sibusiso Maseko
- Laboratory of Viral Interactomes, GIGA Institute, University of Liege, Liege, Belgium
| | - Majid Cherkaoui
- Laboratory of Viral Interactomes, GIGA Institute, University of Liege, Liege, Belgium
| | - Alice Desbuleux
- Laboratory of Viral Interactomes, GIGA Institute, University of Liege, Liege, Belgium
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Georges Coppin
- Laboratory of Viral Interactomes, GIGA Institute, University of Liege, Liege, Belgium
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Julien Olivet
- Laboratory of Viral Interactomes, GIGA Institute, University of Liege, Liege, Belgium
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Lamya Ben Ameur
- Laboratory of Biology and Modeling of the Cell, CNRS UMR 5239, INSERM U1210, University of Lyon, Lyon, France
| | - Keisuke Kataoka
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Olivier Hermine
- Service Hématologie Adultes, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants Malades, Université de Paris, Laboratoire d’onco-hématologie, Institut Necker-Enfants Malades, INSERM U1151, Université de Paris, Paris, France
| | - Ambroise Marcais
- Service Hématologie Adultes, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants Malades, Université de Paris, Laboratoire d’onco-hématologie, Institut Necker-Enfants Malades, INSERM U1151, Université de Paris, Paris, France
| | - Marc Thiry
- Unit of Cell and Tissue Biology, GIGA Institute, University of Liege, Liege, Belgium
| | - Franck Mortreux
- Laboratory of Biology and Modeling of the Cell, CNRS UMR 5239, INSERM U1210, University of Lyon, Lyon, France
| | - Michael A. Calderwood
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Johan Van Weyenbergh
- Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Catholic University of Leuven, Leuven, Belgium
| | | | - Benoit Charloteaux
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Human Genetics, CHU of Liege, University of Liege, Liege, Belgium
| | - Anne Van den Broeke
- Unit of Animal Genomics, GIGA, Université de Liège (ULiège), Liège, Belgium
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
- * E-mail: (AVdB); (DEH); (MV); (FD); (J-CT)
| | - David E. Hill
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- * E-mail: (AVdB); (DEH); (MV); (FD); (J-CT)
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (AVdB); (DEH); (MV); (FD); (J-CT)
| | - Franck Dequiedt
- Laboratory of Gene Expression and Cancer, GIGA Institute, University of Liege, Liege, Belgium
- * E-mail: (AVdB); (DEH); (MV); (FD); (J-CT)
| | - Jean-Claude Twizere
- Laboratory of Viral Interactomes, GIGA Institute, University of Liege, Liege, Belgium
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- * E-mail: (AVdB); (DEH); (MV); (FD); (J-CT)
| |
Collapse
|
29
|
Gomes YCP, Silva MTT, Leite ACCB, Lima MASD, Araújo AQC, Silva Filho IL, Vicente ACP, Espíndola ODM. Polymorphisms in HTLV-1 Tax-responsive elements in HTLV-1-associated myelopathy/tropical spastic paraparesis patients are associated with reduced proviral load but not with disease progression. J Gen Virol 2021; 102. [PMID: 34494950 DOI: 10.1099/jgv.0.001649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) provirus expression is mainly directed by Tax-responsive elements (TRE) within the long terminal repeats (LTR). Mutations in TRE can reduce provirus expression and since a high proviral load (PVL) is a risk factor for the development of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), we evaluated polymorphisms in the 5' LTR and the association with PVL and disease progression. HTLV-1 LTR and tax sequences derived from asymptomatic carriers (AC) and HAM/TSP patients followed in a longitudinal study were analysed according to PVL and clinical severity. Individuals infected with HTLV-1 presenting the canonical TRE, considering strain ATK-1 as the consensus, displayed sustained higher PVL. By contrast, an LTR A125G mutation in TRE was associated with slightly reduced PVL only in HAM/TSP patients, although it did not influence the speed of disease progression. Moreover, this polymorphism was frequent in Latin American strains of the HTLV-1 Cosmopolitan Transcontinental subtype. Therefore, polymorphisms in the 5' TRE of HTLV-1 may represent one of the factors influencing PVL in HAM/TSP patients, especially in the Latin American population. Indeed, higher PVL in the peripheral blood has been associated with an increased inflammatory activity in the spinal cord and to a poorer prognosis in HAM/TSP. However, this event was not associated with TRE polymorphisms.
Collapse
Affiliation(s)
- Yago Côrtes Pinheiro Gomes
- Laboratory for Clinical Research in Neuroinfections, Evandro Chagas National Institute of Infectious Diseases (INI), Oswaldo Cruz Foundation (FIOCRUZ), Brazil
| | - Marcus Tulius Teixeira Silva
- Laboratory for Clinical Research in Neuroinfections, Evandro Chagas National Institute of Infectious Diseases (INI), Oswaldo Cruz Foundation (FIOCRUZ), Brazil
| | - Ana Claudia Celestino Bezerra Leite
- Laboratory for Clinical Research in Neuroinfections, Evandro Chagas National Institute of Infectious Diseases (INI), Oswaldo Cruz Foundation (FIOCRUZ), Brazil
| | - Marco Antonio Sales Dantas Lima
- Laboratory for Clinical Research in Neuroinfections, Evandro Chagas National Institute of Infectious Diseases (INI), Oswaldo Cruz Foundation (FIOCRUZ), Brazil
| | - Abelardo Queiroz Campos Araújo
- Laboratory for Clinical Research in Neuroinfections, Evandro Chagas National Institute of Infectious Diseases (INI), Oswaldo Cruz Foundation (FIOCRUZ), Brazil
| | - Isaac Lima Silva Filho
- Laboratory for Clinical Research in Neuroinfections, Evandro Chagas National Institute of Infectious Diseases (INI), Oswaldo Cruz Foundation (FIOCRUZ), Brazil
| | - Ana Carolina Paulo Vicente
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Brazil
| | - Otávio de Melo Espíndola
- Laboratory for Clinical Research in Neuroinfections, Evandro Chagas National Institute of Infectious Diseases (INI), Oswaldo Cruz Foundation (FIOCRUZ), Brazil
| |
Collapse
|
30
|
Comprehensive high-throughput meta-analysis of differentially expressed microRNAs in transcriptomic datasets reveals significant disruption of MAPK/JNK signal transduction pathway in Adult T-cell leukemia/lymphoma. Infect Agent Cancer 2021; 16:49. [PMID: 34187521 PMCID: PMC8244200 DOI: 10.1186/s13027-021-00390-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/16/2021] [Indexed: 12/16/2022] Open
Abstract
Background Human T-lymphotropic virus 1 (HTLV-1) infection may lead to the development of Adult T-cell leukemia/lymphoma (ATLL). To further elucidate the pathophysiology of this aggressive CD4+ T-cell malignancy, we have performed an integrated systems biology approach to analyze previous transcriptome datasets focusing on differentially expressed miRNAs (DEMs) in peripheral blood of ATLL patients. Methods Datasets GSE28626, GSE31629, GSE11577 were used to identify ATLL-specific DEM signatures. The target genes of each identified miRNA were obtained to construct a protein-protein interactions network using STRING database. The target gene hubs were subjected to further analysis to demonstrate significantly enriched gene ontology terms and signaling pathways. Quantitative reverse transcription Polymerase Chain Reaction (RTqPCR) was performed on major genes in certain pathways identified by network analysis to highlight gene expression alterations. Results High-throughput in silico analysis revealed 9 DEMs hsa-let-7a, hsa-let-7g, hsa-mir-181b, hsa-mir-26b, hsa-mir-30c, hsa-mir-186, hsa-mir-10a, hsa-mir-30b, and hsa-let-7f between ATLL patients and healthy donors. Further analysis revealed the first 5 of DEMs were directly associated with previously identified pathways in the pathogenesis of HTLV-1. Network analysis demonstrated the involvement of target gene hubs in several signaling cascades, mainly in the MAPK pathway. RT-qPCR on human ATLL samples showed significant upregulation of EVI1, MKP1, PTPRR, and JNK gene vs healthy donors in MAPK/JNK pathway. Discussion The results highlighted the functional impact of a subset dysregulated microRNAs in ATLL on cellular gene expression and signal transduction pathways. Further studies are needed to identify novel biomarkers to obtain a comprehensive mapping of deregulated biological pathways in ATLL.
Collapse
|
31
|
Atabati H, Esmaeili SA, Allahyari A, Shirdel A, Rahimi H, Rezaee SA, Momtazi-Borojeni AA, Rafatpanah H. Evaluating mRNA expression of tax, B chain of PDGF and PDGF-β receptors as well as HTLV-I proviral load in ATL patients and healthy carriers. J Med Virol 2021; 93:3865-3870. [PMID: 32918495 DOI: 10.1002/jmv.26510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022]
Abstract
Adult T-cell leukemia (ATL) is a life-threatening malignant neoplasm of CD4+ T cells resulted from human T-cell leukemia virus type I (HTLV-I). Tax1 protein of HTLV-I can induce malignant proliferation of T-cells by modulating the expression of growth factors such as platelet-derived growth factor (PDGF). Here, we aimed to investigate the proviral load (PVL) of HTLV-I in ATL and also to evaluate the mRNA expression of B chain of PDGF and PDGF-β receptors in ATL patients and HTLV-I-infected healthy carriers. To this end, peripheral blood mononuclear cells (PBMCs) were isolated by using Ficoll-Histophaque density centrifugation. The mean of HTLV-I PVL in ATL patients (42,759 ± 15,737 copies/104 cells [95% CI, 9557-75962]) was significantly (p = .01) higher than that in healthy carriers (650 ± 107 copies/104 cells [95% CI, 422-879], respectively. The HTLV-I PVL in ATL patients exhibited a significant correlation with PBMC count (R = .495, p = .001). The mRNA expression of Tax, B chain of PDGF, and PDGF-β receptor genes was significantly higher in healthy carriers than in patients with ATL. In conclusion, the expression of the canonical PDGFβ and its receptor, and their correlation with Tax expression cannot be a suitable indicator and/or prognostic factor for progression of ATL in HTLV-I carriers.
Collapse
Affiliation(s)
- Hadi Atabati
- Immunology Research Centre, Division of Inflammation and Inflammatory Diseases, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolghasem Allahyari
- Department of Internal Medicine, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Shirdel
- Department of Internal Medicine, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Rahimi
- Department of Internal Medicine, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Immunology Research Centre, Division of Inflammation and Inflammatory Diseases, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir A Momtazi-Borojeni
- Halal Research Center of IRI, FDA, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Immunology Research Centre, Division of Inflammation and Inflammatory Diseases, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
32
|
Raza MT, Mizan S, Yasmin F, Akash AS, Shahik SM. Epitope-based universal vaccine for Human T-lymphotropic virus-1 (HTLV-1). PLoS One 2021; 16:e0248001. [PMID: 33798232 PMCID: PMC8018625 DOI: 10.1371/journal.pone.0248001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/17/2021] [Indexed: 12/26/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) was the first oncogenic human retrovirus identified in humans which infects at least 10-15 million people worldwide. Large HTLV-1 endemic areas exist in Southern Japan, the Caribbean, Central and South America, the Middle East, Melanesia, and equatorial regions of Africa. HTLV-1 TAX viral protein is thought to play a critical role in HTLV-1 associated diseases. We have used numerous bio-informatics and immuno-informatics implements comprising sequence and construction tools for the construction of a 3D model and epitope prediction for HTLV-1 Tax viral protein. The conformational linear B-cell and T-cell epitopes for HTLV-1 TAX viral protein have been predicted for their possible collective use as vaccine candidates. Based on in silico investigation two B cell epitopes, KEADDNDHEPQISPGGLEPPSEKHFR and DGTPMISGPCPKDGQPS spanning from 324-349 and 252-268 respectively; and T cell epitopes, LLFGYPVYV, ITWPLLPHV and GLLPFHSTL ranging from 11-19, 163-171 and 233-241 were found most antigenic and immunogenic epitopes. Among different vaccine constructs generated by different combinations of these epitopes our predicted vaccine construct was found to be most antigenic with a score of 0.57. T cell epitopes interacted strongly with HLA-A*0201 suggesting a significant immune response evoked by these epitopes. Molecular docking study also showed a high binding affinity of the vaccine construct for TLR4. The study was carried out to predict antigenic determinants of the Tax protein along with the 3D protein modeling. The study revealed a potential multi epitope vaccine that can raise the desired immune response against HTLV-1 and be useful in developing effective vaccines against Human T-lymphotropic virus.
Collapse
Affiliation(s)
- Md. Thosif Raza
- Faculty of Biological Sciences, Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
| | - Shagufta Mizan
- Faculty of Biological Sciences, Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
| | - Farhana Yasmin
- Faculty of Biological Sciences, Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
| | - Al-Shahriar Akash
- Faculty of Biological Sciences, Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
| | - Shah Md. Shahik
- Bioinformatics Division, Disease Biology and Molecular Epidemiology Research Group, Chattogram, Bangladesh
| |
Collapse
|
33
|
Ahmadi Ghezeldasht S, Shamsian SAA, Gholizadeh Navashenaq J, Miri R, Ashrafi F, Mosavat A, Rezaee SA. HTLV-1 oncovirus-host interactions: From entry to the manifestation of associated diseases. Rev Med Virol 2021; 31:e2235. [PMID: 33742509 DOI: 10.1002/rmv.2235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 12/19/2022]
Abstract
Human T lymphotropic virus type-1 (HTLV-1) is a well-known human oncovirus, associated with two life-threatening diseases, adult T cell leukaemia/lymphoma (ATL) and HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). The study of this oncogenic virus is significant from two different aspects. First, HTLV-1 can be considered as a neglected public health problem, which may spread slowly worldwide. Second, the incidence of HTLV-1 associated diseases due to oncogenic effects and deterioration of the immune system towards autoimmune diseases are not fully understood. Furthermore, knowledge about viral routes of transmission is important for considering potential interventions, treatments or vaccines in endemic regions. In this review, novel characteristics of HTLV-1, such as the unusual infectivity of virions through the virological synapse, are discussed in the context of the HTLV-1 associated diseases (ATL and HAM/TSP).
Collapse
Affiliation(s)
- Sanaz Ahmadi Ghezeldasht
- Inflammation and Inflammatory Diseases Division, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ali Akbar Shamsian
- Department of Parasitology and Mycology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Mashhad, Iran
| | | | - Raheleh Miri
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Mashhad, Iran
| | - Fereshteh Ashrafi
- Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Arman Mosavat
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Inflammation and Inflammatory Diseases Division, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
34
|
|
35
|
Aghajanian S, Teymoori-Rad M, Molaverdi G, Mozhgani SH. Immunopathogenesis and Cellular Interactions in Human T-Cell Leukemia Virus Type 1 Associated Myelopathy/Tropical Spastic Paraparesis. Front Microbiol 2020; 11:614940. [PMID: 33414779 PMCID: PMC7783048 DOI: 10.3389/fmicb.2020.614940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/17/2020] [Indexed: 01/15/2023] Open
Abstract
HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP) is a neuropathological disorder in 1–3% of individuals infected with Human T-lymphotropic virus 1 (HTLV-1). This condition is characterized by progressive spastic lower limb weakness and paralysis, lower back pain, bladder incontinence, and mild sensory disturbances resembling spinal forms of multiple sclerosis. This disease also causes chronic disability and is therefore associated with high health burden in areas where HTLV-1 infection is endemic. Despite various efforts in understanding the virus and discovery of novel diagnostic markers, and cellular and viral interactions, HAM/TSP management is still unsatisfactory and mainly focused on symptomatic alleviation, and it hasn’t been explained why only a minority of the virus carriers develop HAM/TSP. This comprehensive review focuses on host and viral factors in association with immunopathology of the disease in hope of providing new insights for drug therapies or other forms of intervention.
Collapse
Affiliation(s)
- Sepehr Aghajanian
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Majid Teymoori-Rad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazale Molaverdi
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Sayed-Hamidreza Mozhgani
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
36
|
Uchida Y, Yoshimitsu M, Hachiman M, Kusano S, Arima N, Shima K, Hayashida M, Kamada Y, Nakamura D, Arai A, Tanaka Y, Hara H, Ishitsuka K. RLTPR Q575E: A novel recurrent gain-of-function mutation in patients with adult T-cell leukemia/lymphoma. Eur J Haematol 2020; 106:221-229. [PMID: 33098696 DOI: 10.1111/ejh.13540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Adult T-cell leukemia/lymphoma (ATL) is an intractable T-cell malignancy caused by long-term infection with human T-cell leukemia virus type-1 (HTLV-1). While ATL pathogenesis has been associated with HTLV-1-derived oncogenic proteins, including Tax and HBZ, the contribution of genomic aberrations remains poorly defined. METHODS To elucidate the genomic basis of ATL, whole exome sequencing was performed on cells from 47 patients with aggressive ATL. RESULTS We discovered the novel mutation RLTPR Q575E in four patients (8.5%) with a median variant allele frequency of 0.52 (range 0.11-0.68). Despite being reported in cutaneous T-cell lymphoma, three ATL patients carrying RLTPR Q575E lacked skin involvement. Patients carrying RLTPR Q575E also harbored CARD11 (75%), PLCG1 (25%), PRKCB (25%), or IKBKB (25%) mutations related to TCR/NF-κB signaling. Jurkat cells transfected with RLTPR Q575E cDNA displayed increased NF-κB activity and significantly increased IL-2 mRNA levels under stimulation. RLTPR Q575E increased the interaction between RLTPR and CARD11, while RLTPR directly interacted with Tax. CONCLUSIONS We identified, and functionally validated, a novel gain-of-function mutation in patients with aggressive ATL. During TCR activation by Tax or gain-of-function mutations, RLTPR Q575E selectively upregulates NF-κB signaling and may exert oncogenic effects on ATL pathogenesis.
Collapse
Affiliation(s)
- Yuichiro Uchida
- Department of Hematology and Rheumatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Makoto Yoshimitsu
- Department of Hematology and Rheumatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.,Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| | - Miho Hachiman
- Department of Hematology and Rheumatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shuichi Kusano
- Division of Biological Information Technology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| | - Naosuke Arima
- Department of Hematology and Rheumatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.,Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| | - Kodai Shima
- Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| | - Maiko Hayashida
- Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| | - Yuhei Kamada
- Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| | - Daisuke Nakamura
- Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| | - Akihiko Arai
- Department of Hematology and Rheumatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.,Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| | - Yuetsu Tanaka
- Laboratory of Hematoimmunology, School of Health Sciences, Faculty of Medicine, Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hiromitsu Hara
- Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kenji Ishitsuka
- Department of Hematology and Rheumatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.,Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| |
Collapse
|
37
|
Millen S, Meretuk L, Göttlicher T, Schmitt S, Fleckenstein B, Thoma-Kress AK. A novel positive feedback-loop between the HTLV-1 oncoprotein Tax and NF-κB activity in T-cells. Retrovirology 2020; 17:30. [PMID: 32912211 PMCID: PMC7488018 DOI: 10.1186/s12977-020-00538-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/28/2020] [Indexed: 12/30/2022] Open
Abstract
Background Human T-cell leukemia virus type 1 (HTLV-1) infects primarily CD4+ T-lymphocytes and evoques severe diseases, predominantly Adult T-Cell Leukemia/ Lymphoma (ATL/L) and HTLV-1-associated Myelopathy/ Tropical Spastic Paraparesis (HAM/TSP). The viral transactivator of the pX region (Tax) is important for initiating malignant transformation, and deregulation of the major signaling pathway nuclear factor of kappa B (NF-κB) by Tax represents a hallmark of HTLV-1 driven cancer. Results Here we found that Tax mutants which are defective in NF-κB signaling showed diminished protein expression levels compared to Tax wildtype in T-cells, whereas Tax transcript levels were comparable. Strikingly, constant activation of NF-κB signaling by the constitutive active mutant of inhibitor of kappa B kinase (IKK2, IKK-β), IKK2-EE, rescued protein expression of the NF-κB defective Tax mutants M22 and K1-10R and even increased protein levels of Tax wildtype in various T-cell lines while Tax transcript levels were only slightly affected. Using several Tax expression constructs, an increase of Tax protein occurred independent of Tax transcripts and independent of the promoter used. Further, Tax and M22 protein expression were strongly enhanced by 12-O-Tetradecanoylphorbol-13-Acetate [TPA; Phorbol 12-myristate 13-acetate (PMA)]/ ionomycin, inducers of NF-κB and cytokine signaling, but not by tumor necrosis factor alpha (TNF-α). On the other hand, co-expression of Tax with a dominant negative inhibitor of κB, IκBα-DN, or specific inhibition of IKK2 by the compound ACHP, led to a vast decrease in Tax protein levels to some extent independent of Tax transcripts in transiently transfected and Tax-transformed T-cells. Cycloheximide chase experiments revealed that co-expression of IKK2-EE prolongs the half-life of M22, and constant repression of NF-κB signaling by IκBα-DN strongly reduces protein stability of Tax wildtype suggesting that NF-κB activity is required for Tax protein stability. Finally, protein expression of Tax and M22 could be recovered by NH4Cl and PYR-41, inhibitors of the lysosome and the ubiquitin-activating enzyme E1, respectively. Conclusions Together, these findings suggest that Tax’s capability to induce NF-κB is critical for protein expression and stabilization of Tax itself. Overall, identification of this novel positive feedback loop between Tax and NF-κB in T-cells improves our understanding of Tax-driven transformation.
Collapse
Affiliation(s)
- Sebastian Millen
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lina Meretuk
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tim Göttlicher
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sarah Schmitt
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Bernhard Fleckenstein
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andrea K Thoma-Kress
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
38
|
Rauch DA, Olson SL, Harding JC, Sundaramoorthi H, Kim Y, Zhou T, MacLeod AR, Challen G, Ratner L. Interferon regulatory factor 4 as a therapeutic target in adult T-cell leukemia lymphoma. Retrovirology 2020; 17:27. [PMID: 32859220 PMCID: PMC7456374 DOI: 10.1186/s12977-020-00535-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/17/2020] [Indexed: 12/30/2022] Open
Abstract
Background Adult T-cell leukemia lymphoma (ATLL) is a chemotherapy-resistant malignancy with a median survival of less than one year that will afflict between one hundred thousand and one million individuals worldwide who are currently infected with human T-cell leukemia virus type 1. Recurrent somatic mutations in host genes have exposed the T-cell receptor pathway through nuclear factor κB to interferon regulatory factor 4 (IRF4) as an essential driver for this malignancy. We sought to determine if IRF4 represents a therapeutic target for ATLL and to identify downstream effectors and biomarkers of IRF4 signaling in vivo. Results ATLL cell lines, particularly Tax viral oncoprotein-negative cell lines, that most closely resemble ATLL in humans, were sensitive to dose- and time-dependent inhibition by a next-generation class of IRF4 antisense oligonucleotides (ASOs) that employ constrained ethyl residues that mediate RNase H-dependent RNA degradation. ATLL cell lines were also sensitive to lenalidomide, which repressed IRF4 expression. Both ASOs and lenalidomide inhibited ATLL proliferation in vitro and in vivo. To identify biomarkers of IRF4-mediated CD4 + T-cell expansion in vivo, transcriptomic analysis identified several genes that encode key regulators of ATLL, including interleukin 2 receptor subunits α and β, KIT ligand, cytotoxic T-lymphocyte-associated protein 4, and thymocyte selection-associated high mobility group protein TOX 2. Conclusions These data support the pursuit of IRF4 as a therapeutic target in ATLL with the use of either ASOs or lenalidomide.
Collapse
Affiliation(s)
- Daniel A Rauch
- Division of Oncology, Department of Medicine, Washington University in St. Louis, 660 S Euclid Ave, Box 8069, St Louis, MO, 63110, USA
| | - Sydney L Olson
- Division of Oncology, Department of Medicine, Washington University in St. Louis, 660 S Euclid Ave, Box 8069, St Louis, MO, 63110, USA
| | - John C Harding
- Division of Oncology, Department of Medicine, Washington University in St. Louis, 660 S Euclid Ave, Box 8069, St Louis, MO, 63110, USA
| | - Hemalatha Sundaramoorthi
- Division of Oncology, Department of Medicine, Washington University in St. Louis, 660 S Euclid Ave, Box 8069, St Louis, MO, 63110, USA
| | | | | | | | - Grant Challen
- Division of Oncology, Department of Medicine, Washington University in St. Louis, 660 S Euclid Ave, Box 8069, St Louis, MO, 63110, USA
| | - Lee Ratner
- Division of Oncology, Department of Medicine, Washington University in St. Louis, 660 S Euclid Ave, Box 8069, St Louis, MO, 63110, USA.
| |
Collapse
|
39
|
Paulino-Ramirez R, Tapia L, Ruiz-Matuk C, Charow R, Budhwani H, Routy JP. Human T-cell lymphotropic virus 1/2 and human immunodeficiency virus antibodies identification among transactional sex workers and drug users in the Dominican Republic. Trans R Soc Trop Med Hyg 2020; 113:293-297. [PMID: 30892643 DOI: 10.1093/trstmh/trz012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 02/09/2019] [Accepted: 02/15/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Human immunodeficiency virus (HIV) increases the risk of acquiring human T-cell lymphotropic virus (HTLV) and subsequently HTLV's progression to tropical spastic paraparesis/HTLV-1-associated myelopathy (TSP/HAM). Existing data have exclusively reported generalized rates of HIV and HTLV-1 chronic viral infections in the Dominican Republic. To our knowledge, no published studies have focused on the rates of HTLV-1/2 in transactional sex workers and drug users, both higher risk groups, in the Dominican Republic. METHODS From December 2012 to April 2013 we conducted a study to estimate the seroprevalence of HTLV-1/2 immunoglobulin G (IgG) and HIV antibodies among transactional sex workers and intravenous drug users in Santo Domingo, Dominican Republic. Serological status was analysed with behaviour and demographic data. RESULTS We collected and analysed plasma from 200 participants with a mean age of 27.4 y in men and 25.2 y in women. The overall weighted seroprevalence of HTLV-1/2 IgG antibodies was 13.91% (95% CI 7.59 to 20.23) in men and 10.59% (95% CI 4.05 to 17.13) in women. The overall weighted seroprevalence of HIV-1 was 13.91% (95% CI 7.59 to 20.23%) in men and 17.65% (95% CI 9.55 to 25.75) in women. Male intravenous drug users had an exceptionally high rate of HTLV-positive HIV co-infection, at 75% (95% CI 44.99 to 105.01). Although there an association has been found between HTLV/HIV co-infections and sex work, the adjusted odds revealed a confounding role of HIV infection. CONCLUSIONS The results highlight the urgent need for enhanced public health preventive strategies among high-risk populations in the Dominican Republic and other resource-constrained Caribbean settings, as well as global adoption of routine screening for HTLV-associated infections, particularly in these high-risk, underserved populations.
Collapse
Affiliation(s)
- Robert Paulino-Ramirez
- Instituto de Medicina Tropical & Salud Global, Universidad Iberoamericana (UNIBE), Calle Majoma 13, Los Rios, Santo Domingo, Dominican Republic
| | - Leandro Tapia
- Instituto de Medicina Tropical & Salud Global, Universidad Iberoamericana (UNIBE), Calle Majoma 13, Los Rios, Santo Domingo, Dominican Republic
| | - Carlos Ruiz-Matuk
- Instituto de Medicina Tropical & Salud Global, Universidad Iberoamericana (UNIBE), Calle Majoma 13, Los Rios, Santo Domingo, Dominican Republic
| | - Rebecca Charow
- Centro de Orientación e Investigación Integral (COIN), Calle Anibal de Espinosa 352, Santo Domingo, Dominican Republic
| | - Henna Budhwani
- University of Alabama at Birmingham (UAB), School of Public Health, Department of Health Care Organization and Policy, 1720 2nd Avenue South, Birmingham, AL
| | - Jean-Pierre Routy
- McGill University Health Centre: Glenn Site, Research Institute, Block E Suite EM 3-3232, Mezzanine 3M, 1001 Boulevard Décaire, Montreal, Quebec, Canada
| |
Collapse
|
40
|
Maeda M, Tanabe-Shibuya J, Miyazato P, Masutani H, Yasunaga JI, Usami K, Shimizu A, Matsuoka M. IL-2/IL-2 Receptor Pathway Plays a Crucial Role in the Growth and Malignant Transformation of HTLV-1-Infected T Cells to Develop Adult T-Cell Leukemia. Front Microbiol 2020; 11:356. [PMID: 32210945 PMCID: PMC7067701 DOI: 10.3389/fmicb.2020.00356] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/18/2020] [Indexed: 11/13/2022] Open
Abstract
T cells infected with human T-cell leukemia virus type 1 (HTLV-1) transform into malignant/leukemic cells and develop adult T-cell leukemia (ATL) after a long latency period. The tax (transactivator from the X-gene region) and HBZ (HTLV-1 bZIP factor) genes of HTLV-1 play crucial roles in the development of ATL. The process and mechanism by which HTLV-1-infected T cells acquire malignancy and develop ATL remain to be elucidated. Constitutive expression of interleukin-2 (IL-2) receptor α-chain (IL-2Rα/CD25), induced by the tax and HBZ genes of HTLV-1, on ATL cells implicates the involvement of IL-2/IL-2R pathway in the growth and development of ATL cells in vivo. However, the leukemic cells in the majority of ATL patients appeared unresponsive to IL-2, raising controversies on the role of this pathway for the growth of ATL cells in vivo. Here, we report the establishment of 32 IL-2-dependent T-cell lines infected with HTLV-1 from 26 ATL patients, including eight leukemic cell lines derived from five ATL patients, while no T-cell lines were established without IL-2. We have shown that the IL-2-dependent ATL cell lines evolved into IL-2-independent/-unresponsive growth phase, resembling ATL cells in vivo. Moreover, the IL-2-dependent non-leukemic T-cell lines infected with HTLV-1 acquired IL-2-independency and turned into tumor-producing cancer cells as with the ATL cell lines. HTLV-1-infected T cells in vivo could survive and proliferate depending on IL-2 that was produced in vivo by the HTLV-1-infected T cells of ATL patients and patients with HTLV-1-associated diseases and, acts as a physiological molecule to regulate T-cell growth. These results suggest that ATL cells develop among the HTLV-1-infected T cells growing dependently on IL-2 and that most of the circulating ATL cells progressed to become less responsive to IL-2, acquiring the ability to proliferate without IL-2.
Collapse
Affiliation(s)
- Michiyuki Maeda
- Laboratory of Virus Control, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Junko Tanabe-Shibuya
- Laboratory of Virus Control, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Paola Miyazato
- Laboratory of Virus Control, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Center for AIDS Research, School of Medicine, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Masutani
- Laboratory of Infection and Prevention, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Department of Clinical Laboratory Sciences, Tenri Health Care University, Tenri, Japan
| | - Jun-Ichirou Yasunaga
- Laboratory of Virus Control, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Institute for Advancement for Clinical and Translational Science, Kyoto University Hospital, Kyoto University, Kyoto, Japan
| | | | - Akira Shimizu
- Institute for Advancement for Clinical and Translational Science, Kyoto University Hospital, Kyoto University, Kyoto, Japan
| | - Masao Matsuoka
- Laboratory of Virus Control, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Department of Hematology, School of Medicine, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
41
|
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is a horizontally transmitted virus infection of CD4+ lymphocytes which causes adult T cell leukemia-lymphoma (ATLL) and HTLV-associated myelopathy (HAM). The viral genome encodes two oncoproteins, transactivator protein (Tax) and helix basic zipper protein (HBZ), which are considered tumor initiator and maintenance factors, respectively. Tax is the primary inducer of clonal infected T cell expansion, and genetic instability. The immune response to Tax results in the selection of cells with little or no Tax expression, which have undergone genetic and epigenetic alterations that promote T cell activation, proliferation, and resistance to apoptosis. This selection of malignant cells occurs over several decades in 5% of infected individuals. Novel insights into the molecular details of each of these events has led to targeted therapies for ATLL.
Collapse
Affiliation(s)
- Lee Ratner
- Division of Oncology, Washington University School of Medicine, Box 8069, 660 S Euclid Ave, St Louis, MO 63110, United States.
| |
Collapse
|
42
|
Naito T, Ushirogawa H, Fukushima T, Tanaka Y, Saito M. EOS, an Ikaros family zinc finger transcription factor, interacts with the HTLV-1 oncoprotein Tax and is downregulated in peripheral blood mononuclear cells of HTLV-1-infected individuals, irrespective of clinical statuses. Virol J 2019; 16:160. [PMID: 31856855 PMCID: PMC6923961 DOI: 10.1186/s12985-019-1270-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 12/10/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND EOS plays an important role in maintaining the suppressive function of regulatory T cells (Tregs), and induces a regulated transformation of Tregs into T helper-like cells, which are capable of secreting proinflammatory cytokines in response to specific inflammatory signals. Meanwhile, significant reduction in Treg activity along with production of proinflammatory cytokines has been reported in patients with HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). METHODS In this study, to examine whether there is an alteration in EOS expression in peripheral blood mononuclear cells (PBMCs) derived from HTLV-1-infected individuals especially HAM/TSP, we investigated the expression of HTLV-1 tax genotype, proviral load (PVL), and the mRNA expression of tax, HBZ and EOS in HTLV-1 infected individuals including adult T-cell leukemia/lymphoma (ATL), HAM/TSP, or asymptomatic carriers. The expression levels of EOS mRNA and protein in various HTLV-1-infected or uninfected human T-cell lines were also investigated. RESULTS EOS was highly expressed at the protein level in most HTLV-1 infected T-cell lines, and was augmented after the HTLV-1 regulatory factor Tax was induced in a Tax-inducible JPX-9 cell line. Immunoprecipitation experiments demonstrated a physical interaction between EOS and the viral regulatory protein Tax, but not HBZ. Meanwhile, there was a significant decrease in EOS mRNA levels in PBMCs of HTLV-1 infected individuals irrespective of their clinical statuses. We found an inverse correlation between EOS mRNA levels and HTLV-1 PVL in ATL patients, and positive correlations between both EOS mRNA load and PVL, and EOS and HBZ mRNA load in HAM/TSP patients, whereas this correlation was not observed in other clinical statuses. CONCLUSIONS These findings suggest that both Tax and HBZ can alter the expression of EOS through undetermined mechanisms, and dysregulated expression of EOS in PBMCs of HTLV-1 infected individuals may contribute to the pathological progression of HTLV-1-associated diseases, such as ATL and HAM/TSP.
Collapse
Affiliation(s)
- Tadasuke Naito
- Department of Microbiology, Kawasaki Medical School, 577 Matsushima, Okayama, 701-0192, Japan
| | - Hiroshi Ushirogawa
- Department of Microbiology, Kawasaki Medical School, 577 Matsushima, Okayama, 701-0192, Japan
| | - Takuya Fukushima
- Laboratory of Hematoimmnology, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, 207 Uehara, Okinawa, 903-0215, Japan
| | - Yuetsu Tanaka
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Okinawa, 903-0215, Japan
| | - Mineki Saito
- Department of Microbiology, Kawasaki Medical School, 577 Matsushima, Okayama, 701-0192, Japan.
| |
Collapse
|
43
|
Miura M, Dey S, Ramanayake S, Singh A, Rueda DS, Bangham CRM. Kinetics of HTLV-1 reactivation from latency quantified by single-molecule RNA FISH and stochastic modelling. PLoS Pathog 2019; 15:e1008164. [PMID: 31738810 PMCID: PMC6886867 DOI: 10.1371/journal.ppat.1008164] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 12/02/2019] [Accepted: 10/29/2019] [Indexed: 01/16/2023] Open
Abstract
The human T cell leukemia virus HTLV-1 establishes a persistent infection in vivo in which the viral sense-strand transcription is usually silent at a given time in each cell. However, cellular stress responses trigger the reactivation of HTLV-1, enabling the virus to transmit to a new host cell. Using single-molecule RNA FISH, we measured the kinetics of the HTLV-1 transcriptional reactivation in peripheral blood mononuclear cells (PBMCs) isolated from HTLV-1+ individuals. The abundance of the HTLV-1 sense and antisense transcripts was quantified hourly during incubation of the HTLV-1-infected PBMCs ex vivo. We found that, in each cell, the sense-strand transcription occurs in two distinct phases: the initial low-rate transcription is followed by a phase of rapid transcription. The onset of transcription peaked between 1 and 3 hours after the start of in vitro incubation. The variance in the transcription intensity was similar in polyclonal HTLV-1+ PBMCs (with tens of thousands of distinct provirus insertion sites), and in samples with a single dominant HTLV-1+ clone. A stochastic simulation model was developed to estimate the parameters of HTLV-1 proviral transcription kinetics. In PBMCs from a leukemic subject with one dominant T-cell clone, the model indicated that the average duration of HTLV-1 sense-strand activation by Tax (i.e. the rapid transcription) was less than one hour. HTLV-1 antisense transcription was stable during reactivation of the sense-strand. The antisense transcript HBZ was produced at an average rate of ~0.1 molecules per hour per HTLV-1+ cell; however, between 20% and 70% of HTLV-1-infected cells were HBZ-negative at a given time, the percentage depending on the individual subject. HTLV-1-infected cells are exposed to a range of stresses when they are drawn from the host, which initiate the viral reactivation. We conclude that whereas antisense-strand transcription is stable throughout the stress response, the HTLV-1 sense-strand reactivation is highly heterogeneous and occurs in short, self-terminating bursts.
Collapse
Affiliation(s)
- Michi Miura
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Supravat Dey
- Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Saumya Ramanayake
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware, United States of America
| | - David S. Rueda
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
- Single Molecule Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, United Kingdom
| | - Charles R. M. Bangham
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
44
|
Martinez MP, Al-Saleem J, Green PL. Comparative virology of HTLV-1 and HTLV-2. Retrovirology 2019; 16:21. [PMID: 31391116 PMCID: PMC6686503 DOI: 10.1186/s12977-019-0483-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/01/2019] [Indexed: 12/22/2022] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) was the first discovered human retrovirus and the etiologic agent of adult T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis. Shortly after the discovery of HTLV-1, human T-cell leukemia virus type 2 (HTLV-2) was isolated from a patient with hairy cell leukemia. Despite possession of similar structural features to HTLV-1, HTLV-2 has not been definitively associated with lymphoproliferative disease. Since their discovery, studies have been performed with the goal of highlighting the differences between HTLV-1 and HTLV-2. A better understanding of these differences will shed light on the specific pathogenic mechanisms of HTLV-1 and lead to novel therapeutic targets. This review will compare and contrast the two oldest human retroviruses with regards to epidemiology, genomic structure, gene products, and pathobiology.
Collapse
Affiliation(s)
- Michael P Martinez
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA.,Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Jacob Al-Saleem
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA.,Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Patrick L Green
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA. .,Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA. .,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
45
|
Gutiérrez-González LH, Santos-Mendoza T. Viral targeting of PDZ polarity proteins in the immune system as a potential evasion mechanism. FASEB J 2019; 33:10607-10617. [PMID: 31336050 DOI: 10.1096/fj.201900518r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PDZ proteins are highly conserved through evolution; the principal function of this large family of proteins is to assemble protein complexes that are involved in many cellular processes, such as cell-cell junctions, cell polarity, recycling, or trafficking. Many PDZ proteins that have been identified as targets of viral pathogens by promoting viral replication and spread are also involved in epithelial cell polarity. Here, we briefly review the PDZ polarity proteins in cells of the immune system to subsequently focus on our hypothesis that the viral PDZ-dependent targeting of PDZ polarity proteins in these cells may alter the cellular fitness of the host to favor that of the virus; we further hypothesize that this modification of the cellular fitness landscape occurs as a common and widespread mechanism for immune evasion by viruses and possibly other pathogens.-Gutiérrez-González, L. H., Santos-Mendoza, T. Viral targeting of PDZ polarity proteins in the immune system as a potential evasion mechanism.
Collapse
Affiliation(s)
- Luis H Gutiérrez-González
- Department of Virology and Mycology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Teresa Santos-Mendoza
- Laboratory of Autoimmunity, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
46
|
Fatfat M, Fakhoury I, Habli Z, Mismar R, Gali-Muhtasib H. Thymoquinone enhances the anticancer activity of doxorubicin against adult T-cell leukemia in vitro and in vivo through ROS-dependent mechanisms. Life Sci 2019; 232:116628. [PMID: 31278946 DOI: 10.1016/j.lfs.2019.116628] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/23/2019] [Accepted: 07/01/2019] [Indexed: 02/06/2023]
Abstract
AIMS Adult T-cell leukemia (ATL) is a mature T-cell neoplasm associated with human T-cell lymphotropic virus (HTLV-1) infection. Major limitations in Doxorubicin (Dox) chemotherapy are tumor resistance and severe drug complications. Here, we combined Thymoquinone (TQ) with low concentrations of Dox and determined anticancer effects against ATL in cell culture and animal model. MAIN METHODS HTLV-1 positive (HuT-102) and HTLV-1 negative (Jurkat) CD4+ malignant T-cell lines were treated with TQ, Dox and combinations. Viability and cell cycle effects were determined by MTT assay and flow cytometry analysis, respectively. Combination effects on mitochondrial membrane potential and generation of reactive oxygen species (ROS) were assessed. Expression levels of key cell death proteins were investigated by western blotting. A mouse xenograft model of ATL in NOD/SCID was used for testing drug effects and tumor tissues were stained for Ki67 and TUNEL. KEY FINDINGS TQ and Dox caused greater inhibition of cell viability and increased sub-G1 cells in both cell lines compared to Dox or TQ alone. The combination induced apoptosis by increasing ROS and causing disruption of mitochondrial membrane potential. Pretreatment with N-acetyl cysteine (NAC) or pan caspase inhibitor significantly inhibited the apoptotic response suggesting that cell death is ROS- and caspase-dependent. TQ and Dox combination reduced tumor volume in NOD/SCID mice more significantly than single treatments through enhanced apoptosis without affecting the survival of mice. SIGNIFICANCE Our combination model offers the possibility to use up to twofold lower doses of Dox against ATL while exhibiting the same cancer inhibitory effects.
Collapse
Affiliation(s)
- Maamoun Fatfat
- Department of Biology, Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Riad El Solh, 1107 2020, Beirut, Lebanon; Center for Drug Discovery, American University of Beirut, Lebanon
| | - Isabelle Fakhoury
- Department of Biology, Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Riad El Solh, 1107 2020, Beirut, Lebanon
| | - Zeina Habli
- Department of Biology, Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Riad El Solh, 1107 2020, Beirut, Lebanon
| | - Rasha Mismar
- Department of Biology, Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Riad El Solh, 1107 2020, Beirut, Lebanon
| | - Hala Gali-Muhtasib
- Department of Biology, Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Riad El Solh, 1107 2020, Beirut, Lebanon; Center for Drug Discovery, American University of Beirut, Lebanon.
| |
Collapse
|
47
|
Lyngdoh D, Shukla H, Sonkar A, Anupam R, Tripathi T. Portrait of the Intrinsically Disordered Side of the HTLV-1 Proteome. ACS OMEGA 2019; 4:10003-10018. [PMID: 31460093 PMCID: PMC6648719 DOI: 10.1021/acsomega.9b01017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/28/2019] [Indexed: 05/07/2023]
Abstract
Intrinsically disordered proteins (IDPs) lack an ordered 3D structure. These proteins contain one or more intrinsically disordered protein regions (IDPRs). IDPRs interact promiscuously with other proteins, which leads to their structural transition from a disordered to an ordered state. Such interaction-prone regions of IDPs are known as molecular recognition features. Recent studies suggest that IDPs provide structural plasticity and functional diversity to viral proteins that are involved in rapid replication and immune evasion within the host cells. In the present study, we evaluated the prevalence of IDPs and IDPRs in human T lymphotropic virus type 1 (HTLV-1) proteome. We also investigated the presence of MoRF regions in the structural and nonstructural proteins of HTLV-1. We found abundant IDPRs in HTLV-1 bZIP factor, p30, Rex, and structural nucleocapsid p15 proteins, which are involved in diverse functions such as virus proliferation, mRNA export, and genomic RNA binding. Our study analyzed the HTLV-1 proteome with the perspective of intrinsic disorder identification. We propose that the intrinsic disorder analysis of HTLV-1 proteins may form the basis for the development of protein disorder-based drugs.
Collapse
Affiliation(s)
- Denzelle
L. Lyngdoh
- Molecular
and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Harish Shukla
- Molecular
and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Amit Sonkar
- Molecular
and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Rajaneesh Anupam
- Department
of Biotechnology, Dr. Harisingh Gour Central
University, Sagar 470003, India
| | - Timir Tripathi
- Molecular
and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
- E-mail: , . Phone: +91-364-2722141. Fax: +91-364-2550108
| |
Collapse
|
48
|
Xu L, Zhang X, Cheng W, Wang Y, Yi K, Wang Z, Zhang Y, Shao L, Zhao T. Hypericin-photodynamic therapy inhibits the growth of adult T-cell leukemia cells through induction of apoptosis and suppression of viral transcription. Retrovirology 2019; 16:5. [PMID: 30782173 PMCID: PMC6381730 DOI: 10.1186/s12977-019-0467-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/10/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Adult T-cell leukemia (ATL) is an aggressive neoplasm caused by human T-cell leukemia virus type 1 (HTLV-1). ATL carries a poor prognosis due to chemotherapy resistance. Thus, it is urgent to develop new treatment strategies. Hypericin (HY) is a new-type of photosensitizer in the context of photodynamic therapy (PDT) due to its excellent photosensitizing properties and anti-tumor activities. RESULTS In the present study, we investigated the efficacy of hypericin in ATL cells. Clinically achievable concentrations of hypericin in association with PDT induced the inhibition of cell proliferation in ATL cell lines with minimal effect on peripheral blood CD4+ T lymphocytes. Moreover, hypericin-PDT treatment caused apoptosis and G2/M phase cell cycle arrest in leukemic cells. Western blot analyses revealed that hypericin-PDT treatment resulted in downregulation of Bcl-2 and enhanced the expression of Bad, cytochrome C, and AIF. Cleavage of caspases-3/-7/-9/-8, Bid, and PARP was increased in hypericin-PDT-treated ATL cells. In a luciferase assay, hypericin-PDT treatment was able to activate the promoter activity of Bax and p53, resulting in enhanced expression of Bax and p53 proteins. Finally, hypericin-PDT treatment suppressed the expression of viral protein HBZ and Tax by blocking the promoter activity via HTLV-1 5'LTR and 3'LTR. CONCLUSIONS Our results revealed that hypericin-PDT is highly effective against ATL cells by induction of apoptosis and suppression of viral transcription. These studies highlight the promising use of hypericin-PDT as a targeted therapy for ATL.
Collapse
Affiliation(s)
- Lingling Xu
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, Zhejiang, China
| | - Xueqing Zhang
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, Zhejiang, China
| | - Wenzhao Cheng
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, Zhejiang, China.,Biomedical Department, Huaqiao University, Quanzhou, China
| | - Yong Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, Zhejiang, China
| | - Kaining Yi
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, Zhejiang, China
| | - Zhilong Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, Zhejiang, China
| | - Yiling Zhang
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, Zhejiang, China
| | - Linxiang Shao
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, Zhejiang, China
| | - Tiejun Zhao
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, Zhejiang, China.
| |
Collapse
|
49
|
[Astute strategies of HTLV-1 with driven viral genes]. Uirusu 2019; 69:37-46. [PMID: 32938893 DOI: 10.2222/jsv.69.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the world's first retrovirus with pathogenicity to cause adult T-cell leukemia-lymphoma (ATL) and chronic inflammatory diseases,such as HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP) and HTLV-1 uveitis. As the virological characteristic, HTLV-1 can transmit efficiently only through cell-to-cell contact. Spread of infection and viral persistence is ingeniously driven by several viral genes as exemplified by HTLV-1 bZIP factor (HBZ) and tax. After the infection, the virus promotes proliferation and immortalization of the infected cells with acculturating immunophenotype into effector/memory T cells. In addition, HBZ enhances expression of co-inhibitory receptors on the surface of infected cells, potentially leading to suppression of host immune responses. These viral strategies can also result in unforeseen by-product, the pathogenicity of HTLV-1-associated diseases. In this review, with recent progress of HTLV-1 researches, we focus on astute regulation systems of the viral genes developed by HTLV-1.
Collapse
|
50
|
Pandey RK, Ojha R, Chatterjee N, Upadhyay N, Mishra A, Prajapati VK. Combinatorial screening algorithm to engineer multiepitope subunit vaccine targeting human T-lymphotropic virus-1 infection. J Cell Physiol 2018; 234:8717-8726. [PMID: 30370533 DOI: 10.1002/jcp.27531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/10/2018] [Indexed: 12/17/2022]
Abstract
Human T-lymphotropic virus (HTLV), the first human retrovirus has been discovered which is known to cause the age-old assassinating disease HTLV-1 associated myelopathy. Cancer caused by this virus is adult T cell leukemia/lymphoma which targets 10-20 million throughout the world. The effect of this virus extends to the fact that it causes chronic disease to the spinal cord resulting in loss of sensation and further causes blood cancer. So, to overcome the complications, we designed a subunit vaccine by the assimilation of B-cell, cytotoxic T-lymphocyte , and helper T-lymphocyte epitopes. The epitopes were joined together along with adjuvant and linkers and a vaccine was fabricated which was further subjected to 3D modeling. The physiochemical properties, allergenicity, and antigenicity were evaluated. Molecular docking and dynamics were performed with the obtained 3D model against toll like receptor (TLR-3) immune receptor. Lastly, in silico cloning was performed to ensure the expression of the designed vaccine in pET28a(+) expression vector. The future prospects of the study entailed the in vitro and in vivo experimental analysis for evaluating the immune response of the designed vaccine construct.
Collapse
Affiliation(s)
- Rajan K Pandey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Rupal Ojha
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Nina Chatterjee
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Nitesh Upadhyay
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Vijay K Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|