1
|
Häsler R, Mikš MH, Bajic D, Soyyilmaz B, Bendik I, van Buul VJ, Steinert RE, Rehman A. Human milk oligosaccharides modulating inflammation in infants, adults and older individuals - from concepts to applications. Adv Nutr 2025:100433. [PMID: 40287068 DOI: 10.1016/j.advnut.2025.100433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025] Open
Abstract
The increasing global prevalence of inflammatory diseases such as ulcerative colitis and irritable bowel syndrome, represents a challenging task for healthcare systems. Several approaches to disease management target the intestinal microbiome, which plays a key role in health and disease. One promising approach is modulating the microbiome using human milk oligosaccharides (HMOs). Originating from human milk, HMOs are indigestible carbohydrates which act in a host-optimized prebiotic fashion by providing an energy source for health-promoting intestinal bacteria and exhibiting systemic effects. Commercial products supporting infant health and development have been the primary fields of HMO application. Advancements in the large-scale production of HMOs through bioengineering and precision fermentation have led to evaluating their potential for managing inflammatory diseases. Several in vitro studies and observations on model systems have been clinically validated in infants, resulting in a large body of evidence supporting the safety and efficacy of HMOs in inflammatory disorders. While novel approaches seek to explore interventions in adults, the primary goal for the future is to provide cost-efficient, safe, and reliable healthcare compounds across all age groups.
Collapse
Affiliation(s)
- Robert Häsler
- Department of Dermatology and Allergology, University Kiel, Rosalind-Franklin-Straße 9, 24105 Kiel, Germany
| | - Marta Hanna Mikš
- University of Warmia and Mazury in Olsztyn, Faculty of Food Science, Plac Cieszynski 1, 10-726, Olsztyn, Poland; dsm-firmenich, Kogle Allé 4, Hørsholm, DK-2970, Denmark
| | - Danica Bajic
- dsm-firmenich, Wurmisweg 576, CH-4303 Kaiseraugst, Switzerland
| | | | - Igor Bendik
- dsm-firmenich, Wurmisweg 576, CH-4303 Kaiseraugst, Switzerland
| | | | | | - Ateequr Rehman
- dsm-firmenich, Wurmisweg 576, CH-4303 Kaiseraugst, Switzerland
| |
Collapse
|
2
|
Lwere K, Muwonge H, Sendagire H, Sajatovic M, Williams SM, Gumukiriza-Onoria JL, Buwembo D, Buwembo W, Nassanga R, Nakimbugwe R, Nazziwa A, Munabi IG, Nakasujja N, Kaddumukasa M. Characterization of the gut microbiome in Alzheimer disease and mild cognitive impairment among older adults in Uganda: A case-control study. Medicine (Baltimore) 2025; 104:e42100. [PMID: 40258729 PMCID: PMC12014080 DOI: 10.1097/md.0000000000042100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/22/2024] [Indexed: 04/23/2025] Open
Abstract
Alzheimer disease (AD) is associated with significant shifts in the gut microbiome and is characterized by reduced microbial diversity and changes in the abundance of specific taxa. These alterations can disrupt the gut-brain axis, leading to increased intestinal permeability ("leaky gut"), systemic inflammation, and oxidative stress. Such microbial changes are thought to contribute to neurodegenerative changes, as observed in AD and cognitive decline, thus emphasizing the role of the microbiome in aging-related neurological health. Our study in urban and rural population in Uganda recruited 104 participants aged 60 years and older, categorized into AD, mild cognitive impairment (MCI), and control groups based on Montreal Cognitive Assessment (MoCA) scores and ICD-11/DSM-V criteria. DNA was extracted from fecal samples using a QIAamp kit and polymerase chain reaction (PCR) products were sequenced using Nanopore. We used diversity indices, principal coordinate analysis (PCoA), permutational multivariate analysis of variance (PERMANOVA), and linear discriminant analysis effect size (LefSe) to identify significant microbial differences among groups. Gut microbiome diversity, as measured by the Chao1 and Shannon indices, was significantly reduced in patients with AD. The AD group had the lowest diversity compared to that of the control group (P < .05). PCoA showed distinct microbial shifts between patients with AD and controls, with MCI showing an intermediate profile. Genera such as Novosphingobium and Staphylococcus were more prevalent in the controls, whereas Hafnia-Obesumbacterium and Dickeya were more common in AD. Age-related changes included increases in Exiguobacterium and Carnobacterium and decreases in Acinetobacter and Klebsiella. Distinct microbial profiles were identified in the AD, MCI, and control groups, suggesting potential microbiome markers of cognitive impairment in the Ugandan population.
Collapse
Affiliation(s)
- Kamada Lwere
- Department of Microbiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
- Department of Microbiology, Faculty of Health Sciences, Soroti University, Soroti, Uganda
- Habib Medical School, Faculty of Health Sciences, Islamic University in Uganda, Kampala, Uganda
| | - Haruna Muwonge
- Department of Physiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Hakim Sendagire
- Department of Microbiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Martha Sajatovic
- Neurological and Behavioral Outcomes Center, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Scott M. Williams
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH
| | | | - Denis Buwembo
- School of Public Health, College of Health Sciences, Makerere University, Kampala, Uganda
| | - William Buwembo
- Department of Anatomy, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Rita Nassanga
- Department of Radiology, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Rheem Nakimbugwe
- Habib Medical School, Faculty of Health Sciences, Islamic University in Uganda, Kampala, Uganda
| | - Aisha Nazziwa
- Habib Medical School, Faculty of Health Sciences, Islamic University in Uganda, Kampala, Uganda
| | - Ian Guyton Munabi
- Department of Anatomy, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Noeline Nakasujja
- Department of Psychiatry, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Mark Kaddumukasa
- Department of Medicine, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| |
Collapse
|
3
|
Zhang ZJ, Gao R, Lu YT, Zuo ZL, Li YH, Liu S, Song SY, Wang Y, Lai H. Factors affecting dysbiosis of the gut microbiota in the elderly and the progress of interventions in traditional Chinese and Western medicine. Front Cell Infect Microbiol 2025; 15:1529347. [PMID: 40196043 PMCID: PMC11973376 DOI: 10.3389/fcimb.2025.1529347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 02/27/2025] [Indexed: 04/09/2025] Open
Abstract
As the population ages, intestinal health in the elderly has become a key area of concern, with gut microbiota dysbiosis emerging as a significant issue. This review summarizes the factors influencing dysbiosis and interventions from both traditional Chinese medicine (TCM) and Western medicine, offering a reference for future research. A comprehensive search of global databases up to March 2024 identified 617 original studies on gut microbiota dysbiosis in individuals aged 65 and older. After applying strict PRISMA guidelines, 20 articles met the inclusion criteria. Key findings are summarized in four areas: 1) the definition and mechanisms of dysbiosis, 2) evaluation tools for gut microbiota imbalance, 3) factors contributing to dysbiosis in the elderly, and 4) pharmacological treatments. Both TCM and Western medicine offer unique advantages in managing gut microbiota dysbiosis, and the choice of intervention should be tailored to the individual's condition. Future research should focus on optimizing integrated TCM and Western medicine approaches to improve outcomes for elderly patients with gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Zhi-Jun Zhang
- Hepatological surgery department, The People’s Hospital of Wenjiang Chengdu, Chengdu, China
| | - Ru Gao
- Nursing Department, The People’s Hospital of Wenjiang Chengdu, Chengdu, China
| | - Yu-Tong Lu
- Nursing Department, The People’s Hospital of Wenjiang Chengdu, Chengdu, China
| | - Zhi-Liang Zuo
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yu-Huan Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Shan Liu
- Nursing Department, The People’s Hospital of Wenjiang Chengdu, Chengdu, China
| | - Si-Yuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan, Chengdu, China
| | - Hongyan Lai
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
| |
Collapse
|
4
|
Mehta I, Juneja K, Nimmakayala T, Bansal L, Pulekar S, Duggineni D, Ghori HK, Modi N, Younas S. Gut Microbiota and Mental Health: A Comprehensive Review of Gut-Brain Interactions in Mood Disorders. Cureus 2025; 17:e81447. [PMID: 40303511 PMCID: PMC12038870 DOI: 10.7759/cureus.81447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2025] [Indexed: 05/02/2025] Open
Abstract
The human gut flora of trillions of bacteria is vital for general health and greatly influences digestion, immune system function, and brain development. Through neuronal, hormonal, and immunological channels, the gut-brain axis (GBA), a bidirectional communication network, links the gut microbiota to the central nervous system (CNS). This relationship has been linked to affective diseases, including depression and anxiety, as well as mental health issues. This review explores the intricate relationship between gut bacteria and mood disorders, focusing on how gut microbiota-host interactions, immune system modulation, and neurotransmitter control support mental health. The function of important microbial metabolites, including short-chain fatty acids (SCFAs), in preserving blood-brain barrier integrity and modulating neuroinflammation is covered in this review. It also examines the bidirectional impact between gut health and mental health, including how dysbiosis could aggravate mood disorders and how depressed states might change the composition of gut bacteria. Furthermore, we discuss how psychotropic drugs affect gut flora and consider other elements such as nutrition and lifestyle that affect gut microbiome composition. Potential paths for treating mood disorders through gut microbiota modification are presented as emerging treatment techniques, including probiotics, nutritional therapies, and precision medicine. The development of new therapeutic approaches for mood disorders depends on the awareness of the GBA. Gut bacteria significantly affect mental health through immune modulation, neurotransmitter generation, and other intricate processes. Future studies should concentrate on large, varied populations to better understand these interactions and to create customized treatments that combine gut microbiota modulation with conventional mental health therapies.
Collapse
Affiliation(s)
- Ishani Mehta
- Psychiatry and Behavioral Sciences, Maharaja Agrasen Institute of Medical Research and Education, Hisar, IND
| | | | - Tharun Nimmakayala
- Medicine and Surgery, Apollo Institute of Medical Sciences and Research, Chittoor, IND
| | - Lajpat Bansal
- Psychiatry and Behavioral Sciences, Maharaja Agrasen Institute of Medical Research and Education, Hisar, IND
| | - Shivani Pulekar
- General Practice, Davao Medical School Foundation, Davao, PHL
| | | | | | - Nishi Modi
- Medicine, Government Medical College, Surat, Surat, IND
| | - Salma Younas
- Pharmacy, Punjab University College of Pharmacy, Lahore, PAK
| |
Collapse
|
5
|
Khaledi M, Poureslamfar B, Alsaab HO, Tafaghodi S, Hjazi A, Singh R, Alawadi AH, Alsaalamy A, Qasim QA, Sameni F. The role of gut microbiota in human metabolism and inflammatory diseases: a focus on elderly individuals. ANN MICROBIOL 2024; 74:1. [DOI: 10.1186/s13213-023-01744-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2025] Open
Abstract
Abstract
Background
The gut microbiota plays a crucial role in regulating the host’s immune responses during aging, which was characterized by a different abundance of bacteria in several age groups.
Main body
Gut microbiota dysbiosis is associated with aging, antibiotic exposure, underlying diseases, infections, hormonal variations, circadian rhythm, and malnutrition, either singularly or in combination. The appropriate use of prebiotics and probiotics may be able to prevent or reduce this disruption.
Conclusion
The current review focuses on the gut microbiota composition across the life cycle, factors affecting gut microbiota changes with aging, and interventions to modulate gut microbiota.
Collapse
|
6
|
Kim CS, Jung MH, Choi EY, Shin DM. Probiotic supplementation has sex-dependent effects on immune responses in association with the gut microbiota in community-dwelling older adults: a randomized, double-blind, placebo-controlled, multicenter trial. Nutr Res Pract 2023; 17:883-898. [PMID: 37780220 PMCID: PMC10522805 DOI: 10.4162/nrp.2023.17.5.883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND/OBJECTIVES Probiotics have been suggested as potent modulators of age-related disorders in immunological functions, yet little is known about sex-dependent effects of probiotic supplements. Therefore, we aimed to investigate sex-dependent effects of probiotics on profiles of the gut microbiota and peripheral immune cells in healthy older adults. SUBJECTS/METHODS In a randomized, double-blind, placebo-controlled, multicenter trial, healthy elderly individuals ≥ 65 yrs old were administered probiotic capsules (or placebo) for 12 wk. Gut microbiota was analyzed using 16S rRNA gene sequencing and bioinformatic analyses. Peripheral immune cells were profiled using flow cytometry for lymphocytes (natural killer, B, CD4+ T, and CD8+ T cells), dendritic cells, monocytes, and their subpopulations. RESULTS Compared with placebo, phylum Firmicutes was significantly reduced in the probiotic group in women, but not in men. At the genus level, sex-specific responses included reductions in the relative abundances of pro-inflammatory gut microbes, including Catabacter and unclassified_Coriobacteriales, and Burkholderia and unclassified Enterobacteriaceae, in men and women, respectively. Peripheral immune cell profiling analysis revealed that in men, probiotics significantly reduced the proportions of dendritic cells and CD14+ CD16- monocytes; however, these effects were not observed in women. In contrast, the proportion of total CD4+ T cells was significantly reduced in women in the probiotic group. Additionally, serum lipopolysaccharide-binding protein levels showed a decreasing tendency that were positively associated with changes in gut bacteria, including Catabacter (ρ = 0.678, P < 0.05) and Burkholderia (ρ = 0.673, P < 0.05) in men and women, respectively. CONCLUSIONS These results suggest that probiotic supplementation may reduce the incidence of inflammation-related diseases by regulating the profiles of the gut microbiota and peripheral immune cells in healthy elders in a sex-specific manner.
Collapse
Affiliation(s)
- Chong-Su Kim
- Department of Food and Nutrition, College of Natural Information Sciences, Dongduk Women's University, Seoul 02748, Korea
| | - Min Ho Jung
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Eun Young Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Dong-Mi Shin
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
7
|
Zeng X, Li J, Shan W, Lai Z, Zuo Z. Gut microbiota of old mice worsens neurological outcome after brain ischemia via increased valeric acid and IL-17 in the blood. MICROBIOME 2023; 11:204. [PMID: 37697393 PMCID: PMC10496352 DOI: 10.1186/s40168-023-01648-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/09/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Aging is a significant risk factor for ischemic stroke and worsens its outcome. However, the mechanisms for this worsened neurological outcome with aging are not clearly defined. RESULTS Old C57BL/6J male mice (18 to 20 months old) had a poorer neurological outcome and more severe inflammation after transient focal brain ischemia than 8-week-old C57BL/6J male mice (young mice). Young mice with transplantation of old mouse gut microbiota had a worse neurological outcome, poorer survival curve, and more severe inflammation than young mice receiving young mouse gut microbiota transplantation. Old mice and young mice transplanted with old mouse gut microbiota had an increased level of blood valeric acid. Valeric acid worsened neurological outcome and heightened inflammatory response including blood interleukin-17 levels after brain ischemia. The increase of interleukin-17 caused by valeric acid was inhibited by a free fatty acid receptor 2 antagonist. Neutralizing interleukin-17 in the blood by its antibody improved neurological outcome and attenuated inflammatory response in mice with brain ischemia and receiving valeric acid. Old mice transplanted with young mouse feces had less body weight loss and better survival curve after brain ischemia than old mice transplanted with old mouse feces or old mice without fecal transplantation. CONCLUSIONS These results suggest that the gut microbiota-valeric acid-interleukin-17 pathway contributes to the aging-related changes in the outcome after focal brain ischemia and response to stimulus. Valeric acid may activate free fatty acid receptor 2 to increase interleukin-17.
Collapse
Affiliation(s)
- Xianzhang Zeng
- Department of Anesthesiology, University of Virginia, 1 Hospital Drive, PO Box 800710, Charlottesville, VA 22901 USA
- Department of Anesthesiology, Second Affiliated Hospital, Harbin Medical University, Harbin, 150001 Heilongjiang People’s Republic of China
| | - Jun Li
- Department of Anesthesiology, University of Virginia, 1 Hospital Drive, PO Box 800710, Charlottesville, VA 22901 USA
| | - Weiran Shan
- Department of Anesthesiology, University of Virginia, 1 Hospital Drive, PO Box 800710, Charlottesville, VA 22901 USA
| | - Zhongmeng Lai
- Department of Anesthesiology, University of Virginia, 1 Hospital Drive, PO Box 800710, Charlottesville, VA 22901 USA
- Department of Anesthesiology, Fujian Medical University Union Hospital, 29 Xin-Quan Road, Fuzhou, 350001 People’s Republic of China
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia, 1 Hospital Drive, PO Box 800710, Charlottesville, VA 22901 USA
- Departments of Neuroscience and Neurosurgery, University of Virginia, Charlottesville, VA 22901 USA
| |
Collapse
|
8
|
Finnegan D, Tocmo R, Loscher C. Targeted Application of Functional Foods as Immune Fitness Boosters in the Defense against Viral Infection. Nutrients 2023; 15:3371. [PMID: 37571308 PMCID: PMC10421353 DOI: 10.3390/nu15153371] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
In recent times, the emergence of viral infections, including the SARS-CoV-2 virus, the monkeypox virus, and, most recently, the Langya virus, has highlighted the devastating effects of viral infection on human life. There has been significant progress in the development of efficacious vaccines for the prevention and control of viruses; however, the high rates of viral mutation and transmission necessitate the need for novel methods of control, management, and prevention. In recent years, there has been a shift in public awareness on health and wellbeing, with consumers making significant dietary changes to improve their immunity and overall health. This rising health awareness is driving a global increase in the consumption of functional foods. This review delves into the benefits of functional foods as potential natural means to modulate the host immune system to enhance defense against viral infections. We provide an overview of the functional food market in Europe and discuss the benefits of enhancing immune fitness in high-risk groups, including the elderly, those with obesity, and people with underlying chronic conditions. We also discuss the immunomodulatory mechanisms of key functional foods, including dairy proteins and hydrolysates, plant-based functional foods, fermentates, and foods enriched with vitamin D, zinc, and selenium. Our findings reveal four key immunity boosting mechanisms by functional foods, including inhibition of viral proliferation and binding to host cells, modulation of the innate immune response in macrophages and dendritic cells, enhancement of specific immune responses in T cells and B cells, and promotion of the intestinal barrier function. Overall, this review demonstrates that diet-derived nutrients and functional foods show immense potential to boost viral immunity in high-risk individuals and can be an important approach to improving overall immune health.
Collapse
Affiliation(s)
| | | | - Christine Loscher
- School of Biotechnology, Dublin City University, D09 DX63 Dublin, Ireland; (D.F.); (R.T.)
| |
Collapse
|
9
|
Li H, Gao X, Chen Y, Wang M, Xu C, Yu Q, Jin Y, Song J, Zhu Q. Potential risk of tamoxifen: gut microbiota and inflammation in mice with breast cancer. Front Oncol 2023; 13:1121471. [PMID: 37469407 PMCID: PMC10353877 DOI: 10.3389/fonc.2023.1121471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 05/31/2023] [Indexed: 07/21/2023] Open
Abstract
Objective Tamoxifen is an effective anti-tumor medicine, but evidence has been provided on tamoxifen-related inflammation as well as its impact on gut microbiota. In this study, we aimed to investigate tamoxifen-induced gut microbiota and inflammation alteration. Methods We established a BC xenograft mouse model using the MCF-7 cell line. 16S rRNA gene sequencing was used to investigate gut microbiota. qRT-PCR, western blotting, and cytometric bead array were used to investigate inflammation-related biomarkers. Various bioinformatic approaches were used to analyze the data. Results Significant differences in gut microbial composition, characteristic taxa, and microbiome phenotype prediction were observed between control, model, and tamoxifen-treated mice. Furthermore, protein expression of IL-6 and TLR5 was up-regulated in tamoxifen-treated mice, while the mRNA of Tlr5 and Il-6, as well as protein expression of IL-6 and TLR5 in the model group, were down-regulated in the colon. The concentration of IFN-γ, IL-6, and IL12P70 in serum was up-regulated in tamoxifen-treated mice. Moreover, correlation-based clustering analysis demonstrated that inflammation-negatively correlated taxa, including Lachnospiraceae-UCG-006 and Anaerotruncus, were enriched in the model group, while inflammation-positively correlated taxa, including Prevotellaceae_UCG_001 and Akkermansia, were enriched in the tamoxifen-treated group. Finally, colon histologic damage was observed in tamoxifen-treated mice. Conclusion Tamoxifen treatment significantly altered gut microbiota and increased inflammation in the breast cancer xenograft mice model. This may be related to tamoxifen-induced intestinal epithelial barrier damage and TLR5 up-regulation.
Collapse
Affiliation(s)
- Hailong Li
- School of Green Intelligent Pharmaceutical Industry, Zhejiang Guangsha Vocational and Technical University of Construction, Dongyang, Zhejiang, China
| | - Xiufei Gao
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Yian Chen
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Mengqian Wang
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chuchu Xu
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qinghong Yu
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ying Jin
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jiaqing Song
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qi Zhu
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Li Q, Tian C, Liu X, Li D, Liu H. Anti-inflammatory and antioxidant traditional Chinese Medicine in treatment and prevention of osteoporosis. Front Pharmacol 2023; 14:1203767. [PMID: 37441527 PMCID: PMC10335577 DOI: 10.3389/fphar.2023.1203767] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
A metabolic bone disorder called osteoporosis is characterized by decreased bone mass and compromised microarchitecture. This condition can deteriorate bones and raise the risk of fractures. The two main causes of osteoporosis are an increase in osteoclast activity or quantity and a decrease in osteoblast viability. Numerous mechanisms, including estrogen shortage, aging, chemical agents, and decreased mechanical loads, have been linked to osteoporosis. Inflammation and oxidative stress have recently been linked to osteoporosis, according to an increasing number of studies. The two primary medications used to treat osteoporosis at the moment are bisphosphonates and selective estrogen receptor modulators (SERMs). These medications work well for osteoporosis brought on by aging and estrogen deprivation, however, they do not target inflammation and oxidative stress-induced osteoporosis. In addition, these drugs have some limitations that are attributed to various side effects that have not been overcome. Traditional Chinese medicine (TCM) has been applied in osteoporosis for many years and has a high safety profile. Therefore, in this review, literature related to botanical drugs that have an effect on inflammation and oxidative stress-induced osteoporosis was searched for. Moreover, the pharmacologically active ingredients of these herbs and the pathways were discussed and may contribute to the discovery of more safe and effective drugs for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Qian Li
- Laboratory of Metabolic Abnormalities and Vascular Aging, Liyuan Hospital Affiliated to Huazhong University of Science and Technology, Department of Integrated Chinese and Western Medicine, City Wuhan, Hubei Province, China
| | - Ciqiu Tian
- Hubei University of Chinese Medicine, City Wuhan, Hubei Province, China
| | - Xiangjie Liu
- Liyuan Hospital Affiliated to Huazhong University of Science and Technology, Geriatric Department, City Wuhan, Hubei Province, China
| | - Dinglin Li
- Laboratory of Metabolic Abnormalities and Vascular Aging, Liyuan Hospital Affiliated to Huazhong University of Science and Technology, Department of Integrated Chinese and Western Medicine, City Wuhan, Hubei Province, China
| | - Hao Liu
- Laboratory of Metabolic Abnormalities and Vascular Aging, Liyuan Hospital Affiliated to Huazhong University of Science and Technology, Department of Integrated Chinese and Western Medicine, City Wuhan, Hubei Province, China
| |
Collapse
|
11
|
Xie H, Hua Z, Guo M, Lin S, Zhou Y, Weng Z, Wu L, Chen Z, Xu Z, Li W. Gut microbiota and metabonomics used to explore the mechanism of Qing'e Pills in alleviating osteoporosis. PHARMACEUTICAL BIOLOGY 2022; 60:785-800. [PMID: 35387559 PMCID: PMC9004512 DOI: 10.1080/13880209.2022.2056208] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 01/20/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
CONTEXT The traditional Chinese medicine Qing'e Pills (QEP) has been used to treat postmenopausal osteoporosis (PMO). OBJECTIVE We evaluated the regulatory effects of QEP on gut microbiota in osteoporosis. MATERIALS AND METHODS Eighteen female SD rats were divided into three groups: sham surgery (SHAM), ovariectomized (OVX) and ovariectomized treated with QEP (OVX + QEP). Six weeks after ovariectomy, QEP was administered to OVX + QEP rats for eight weeks (4.5 g/kg/day, i.g.). After 14 weeks, the bone microstructure was evaluated. Differences in gut microbiota were analysed via 16S rRNA gene sequencing. Changes in endogenous metabolites were studied using UHPLC-Q-TOF/MS technology. GC-MS was used to detect short-chain fatty acids. Furthermore, we measured serum inflammatory factors, such as IL-6, TNF-α and IFN-γ, which may be related to gut microbiota. RESULTS OVX + QEP exhibited increased bone mineral density (0.11 ± 0.03 vs. 0.21 ± 0.02, p< 0.001) compared to that of OVX. QEP altered the composition of gut microbiota. We identified 19 potential biomarkers related to osteoporosis. QEP inhibited the elevation of TNF-α (38.86 ± 3.19 vs. 29.43 ± 3.65, p< 0.05) and IL-6 (83.38 ± 16.92 vs. 45.26 ± 3.94, p< 0.05) levels, while it increased the concentrations of acetic acid (271.95 ± 52.41 vs. 447.73 ± 46.54, p< 0.001), propionic acid (28.96 ± 5.73 vs. 53.41 ± 14.26, p< 0.01) and butyric acid (24.92 ± 18.97 vs. 67.78 ± 35.68, p< 0.05). CONCLUSIONS These results indicate that QEP has potential of regulating intestinal flora and improving osteoporosis. The combination of anti-osteoporosis drugs and intestinal flora could become a new treatment for osteoporosis.
Collapse
Affiliation(s)
- Hui Xie
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhengying Hua
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengyu Guo
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shangyang Lin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yaqian Zhou
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zebin Weng
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhipeng Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zisheng Xu
- Wuhu Pure Sunshine Natural Medicine Company Limited, Wuhu, China
| | - Weidong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
12
|
Sidenkova AP, Myakotnykh VS, Voroshilina ES, Melnik AA, Borovkova TA, Proshchenko DA. Mechanisms of Influence of Intestinal Microbiota on the Processes of Aging of the CNS and the Formation of Cognitive Disorders in Alzheimer’s Disease. PSIKHIATRIYA 2022; 20:98-111. [DOI: 10.30629/2618-6667-2022-20-3-98-111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2024]
Abstract
Background: the increase in the life expectancy of a modern person is accompanied by an increase in the prevalence of neurocognitive disorders. Various indicators associated with biological age are consistent with neurocognitive deficits. In the process of ontogeny, a complex symbiotic relationship develops between the host and the microbe. Presumably, they are realized along the microbiota-gut-brain axis. The participation of the intestinal microbiota in the ontogeny of the brain is assumed. The purpose of review: based on a systematic review of the scientific literature, to summarize research data on the mechanisms of the influence of the intestinal microbiota on the aging processes of the central nervous system and the formation of cognitive disorders in Alzheimer’s disease.Materials and methods: 27 Russian-language and 257 English-language articles were selected from MedLine/PubMed and eLibrary from 2000 to 2022 by the keywords “gut microbiota”, “neurocognitive disorders”, “aging”, “neurodegeneration”, “Alzheimer’s disease”. The hypothesis about the participation of the microbiota in cerebral ontogeny made it possible to select 110 articles for analysis.Conclusion: this scientific review reflects the authors’ ideas about the systemic mechanisms of normal and pathological aging of the CNS and the multifactorial nature of the pathogenesis of neurocognitive disorders.
Collapse
Affiliation(s)
- A. P. Sidenkova
- Federal State Budgetary Educational Institution of Higher Education Ural State Medical University
| | - V. S. Myakotnykh
- Federal State Budgetary Educational Institution of Higher Education Ural State Medical University
| | - E. S. Voroshilina
- Federal State Budgetary Educational Institution of Higher Education Ural State Medical University
| | - A. A. Melnik
- Federal State Budgetary Educational Institution of Higher Education Ural State Medical University
| | - T. A. Borovkova
- Federal State Budgetary Educational Institution of Higher Education Ural State Medical University
| | - D. A. Proshchenko
- Federal State Budgetary Educational Institution of Higher Education Ural State Medical University
| |
Collapse
|
13
|
Hohman LS, Osborne LC. A gut-centric view of aging: Do intestinal epithelial cells contribute to age-associated microbiota changes, inflammaging, and immunosenescence? Aging Cell 2022; 21:e13700. [PMID: 36000805 PMCID: PMC9470900 DOI: 10.1111/acel.13700] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/07/2022] [Accepted: 08/03/2022] [Indexed: 01/25/2023] Open
Abstract
Intestinal epithelial cells (IECs) serve as both a physical and an antimicrobial barrier against the microbiota, as well as a conduit for signaling between the microbiota and systemic host immunity. As individuals age, the balance between these systems undergoes a myriad of changes due to age-associated changes to the microbiota, IECs themselves, immunosenescence, and inflammaging. In this review, we discuss emerging data related to age-associated loss of intestinal barrier integrity and posit that IEC dysfunction may play a central role in propagating age-associated alterations in microbiota composition and immune homeostasis.
Collapse
Affiliation(s)
- Leah S. Hohman
- Department of Microbiology & Immunology, Life Sciences InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Lisa C. Osborne
- Department of Microbiology & Immunology, Life Sciences InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
14
|
Zhang S, Paul S, Kundu P. NF-κB Regulation by Gut Microbiota Decides Homeostasis or Disease Outcome During Ageing. Front Cell Dev Biol 2022; 10:874940. [PMID: 35846362 PMCID: PMC9285657 DOI: 10.3389/fcell.2022.874940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/13/2022] [Indexed: 11/15/2022] Open
Abstract
Human beings and their indigenous microbial communities have coexisted for centuries, which led to the development of co-evolutionary mechanisms of communication and cooperation. Such communication machineries are governed by sophisticated multi-step feedback loops, which typically begin with the recognition of microbes by pattern recognition receptors (PRRs), followed by a host transcriptional response leading to the release of effector molecules. Our gastrointestinal tract being the main platform for this interaction, a variety of host intestinal cells tightly regulate these loops to establish tolerance towards the microbial communities of the gut and maintain homeostasis. The transcription factor, nuclear factor kappa B (NF-κB) is an integral component of such a communication apparatus, which plays a critical role in determining the state of homeostasis or inflammation associated with dysbiosis in the host. Here we outline the crucial role of NF-κB in host response to microbial cues in the context of ageing and associated diseases.
Collapse
Affiliation(s)
- Shuning Zhang
- Laboratory for Microbiota-Host Interactions, The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Soumyajeet Paul
- Laboratory for Microbiota-Host Interactions, The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Parag Kundu
- Laboratory for Microbiota-Host Interactions, The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Parag Kundu,
| |
Collapse
|
15
|
Wang T, Yan X, Zhou Q. Effect of acupuncture on gut microbiota in participants with subjective cognitive decline. Medicine (Baltimore) 2022; 101:e27743. [PMID: 35550457 PMCID: PMC9276146 DOI: 10.1097/md.0000000000027743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 10/24/2021] [Indexed: 12/18/2022] Open
Abstract
A close relationship has recently been described between subjective cognitive decline (SCD) and gut microbiota disorders. Herein, we aim to investigate the effect of electroacupuncture (EA) on gut microbiota in participants with SCD.We conducted a study of 60 participants with SCD. Sixty participants were allocated to either EA group (n = 30) or sham acupuncture group (n = 30). Both groups received 24 sessions of real acupuncture treatment or identical treatment sessions using the placebo needle. Global cognitive change based on a comprehensive neuropsychological test battery was evaluated to detect the clinical efficacy of acupuncture treatment at the baseline and the end of treatment. Faecal microbial analyses were carried out after collecting stools at T0 and T12 weeks. Microbiomes were analyzed by 16S ribosomal RNA gene sequencing. Correlation analyses were performed to investigate the relationships between the changes in gut microbiota and symptom improvement.Age is a particularly important factor leading to the severity of dementia. Compared with sham acupuncture group, the number of Escherichia-Shigella in EA group decreased after treatment. The number of Escherichia-Shigella in EA group decreased after treatment compared with EA group before treatment. Bifidobacterium is positively correlated with clinical efficacy Z-score and Montreal Cognitive Assessment Scale (both P < .005).Acupuncture could improve global cognitive change among SCD participants by regulating the intestinal flora. Dysbiosis was found in the gut microbiome in SCD and partially relieved by acupuncture. Our study suggests that gut microbiota could be a potential therapeutic target and diagnostic biomarker for SCD.
Collapse
Affiliation(s)
- Tianqi Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaoying Yan
- Department of Obstetrics and Gynecology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qi Zhou
- Department of Obstetrics and Gynecology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Lee SHF, Ahmad SR, Lim YC, Zulkipli IN. The Use of Probiotic Therapy in Metabolic and Neurological Diseases. Front Nutr 2022; 9:887019. [PMID: 35592636 PMCID: PMC9110960 DOI: 10.3389/fnut.2022.887019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/29/2022] [Indexed: 12/20/2022] Open
Abstract
The human gut is home to trillions of microbes that interact with host cells to influence and contribute to body functions. The number of scientific studies focusing on the gut microbiome has exponentially increased in recent years. Studies investigating factors that may potentially affect the gut microbiome and may be used for therapeutic purposes in diseases where dysbioses in the gut microbiome have been shown are of particular interest. This review compiles current evidence available in the scientific literature on the use of probiotics to treat metabolic diseases and autism spectrum disorders (ASDs) to analyze the efficacy of probiotics in these diseases. To do this, we must first define the healthy gut microbiome before looking at the interplay between the gut microbiome and diseases, and how probiotics affect this interaction. In metabolic diseases, such as obesity and diabetes, probiotic supplementation positively impacts pathological parameters. Conversely, the gut-brain axis significantly impacts neurodevelopmental disorders such as ASDs. However, manipulating the gut microbiome and disease symptoms using probiotics has less pronounced effects on neurodevelopmental diseases. This may be due to a more complex interplay between genetics and the environment in these diseases. In conclusion, the use of microbe-based probiotic therapy may potentially have beneficial effects in ameliorating the pathology of various diseases. Validation of available data for the development of personalized treatment regimens for affected patients is still required.
Collapse
Affiliation(s)
| | | | | | - Ihsan N. Zulkipli
- Pengiran Anak Puteri Rashidah Sa’adatul Bolkiah (PAPRSB) Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei
| |
Collapse
|
17
|
The Potential Roles of Probiotics, Resistant Starch, and Resistant Proteins in Ameliorating Inflammation during Aging (Inflammaging). Nutrients 2022; 14:nu14040747. [PMID: 35215397 PMCID: PMC8879781 DOI: 10.3390/nu14040747] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/29/2022] [Accepted: 02/07/2022] [Indexed: 12/23/2022] Open
Abstract
Aging is typically accompanied by biological and physiological changes that alter cellular functions. Two of the most predominant phenomena in aging include chronic low-grade inflammation (inflammaging) and changes in the gut microbiota composition (dysbiosis). Although a direct causal relationship has not been established, many studies have reported significant reductions in inflammation during aging through well-maintained gut health and microbial balance. Prebiotics and probiotics are known to support gut health and can be easily incorporated into the daily diet. Unfortunately, few studies specifically focus on their significance in reducing inflammation during aging. Therefore, this review summarizes the scientific evidence of the potential roles of probiotics and two types of prebiotics, resistant starch and resistant proteins, in later age. Studies have demonstrated that the oral consumption of bacteria that may contribute to anti-inflammatory response, such as Bifidobacterium spp., Akkermansia munichipilla, and Faecalis praunitzii, contributes significantly to the suppression of pro-inflammatory markers in elderly humans and aged animals. Colonic fermentation of resistant starch and proteins also demonstrates anti-inflammatory activity owing to the production of butyrate and an improvement in the gut microbiota composition. Collectively, probiotics, resistant starch, and resistant proteins have the potential to promote healthy aging.
Collapse
|
18
|
Shen J, Yang L, You K, Chen T, Su Z, Cui Z, Wang M, Zhang W, Liu B, Zhou K, Lu H. Indole-3-Acetic Acid Alters Intestinal Microbiota and Alleviates Ankylosing Spondylitis in Mice. Front Immunol 2022; 13:762580. [PMID: 35185872 PMCID: PMC8854167 DOI: 10.3389/fimmu.2022.762580] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 01/14/2022] [Indexed: 12/24/2022] Open
Abstract
Ankylosing spondylitis (AS) is a systemic, chronic, and inflammatory autoimmune disease associated with the disorder of intestinal microbiota. Unfortunately, effective therapies for AS are lacking. Recent evidence has indicated that indole-3-acetic acid (IAA), an important microbial tryptophan metabolite, can modulate intestinal homeostasis and suppress inflammatory responses. However, reports have not examined the in vivo protective effects of IAA against AS. In this study, we investigated the protective effects and underlying mechanisms through which IAA acts against AS. We constructed a proteoglycan (PG)-induced AS mouse model and administered IAA (50 mg/kg body weight) by intraperitoneal injection daily for 4 weeks. The effects of IAA on AS mice were evaluated by examining disease severity, intestinal barrier function, aryl hydrocarbon receptor (AhR) pathway, T-helper 17 (Th17)/T regulatory (Treg) balance, and inflammatory cytokine levels. The intestinal microbiota compositions were profiled through whole-genome sequencing. We observed that IAA decreased the incidence and severity of AS in mice, inhibited the production of pro-inflammatory cytokines (tumor necrosis factor α [TNF-α], interleukin [IL]-6, IL-17A, and IL-23), promoted the production of the anti-inflammatory cytokine IL-10, and reduced the ratios of pro-/anti- inflammatory cytokines. IAA ameliorated pathological changes in the ileum and improved intestinal mucosal barrier function. IAA also activated the AhR pathway, upregulated the transcription factor forehead box protein P3 (FoxP3) and increased Treg cells, and downregulated the transcription factors retinoic acid receptor–related orphan receptor gamma t (RORγt) and signal transducer and activator of transcription 3 (STAT3) and decreased Th17 cells. Furthermore, IAA altered the composition of the intestinal microbiota composition by increasing Bacteroides and decreasing Proteobacteria and Firmicutes, in addition to increasing the abundances of Bifidobacterium pseudolongum and Mucispirillum schaedleri. In conclusion, IAA exerted several protective effects against PG-induced AS in mice, which was mediated by the restoration of balance among the intestinal microbial community, activating the AhR pathway, and inhibiting inflammation. IAA might represent a novel therapeutic approach for AS.
Collapse
Affiliation(s)
- Jun Shen
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Lianjun Yang
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Ke You
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Tao Chen
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Zhihai Su
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Zhifei Cui
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Min Wang
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Weicong Zhang
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Bin Liu
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Kai Zhou
- Shenzhen Institute of Respiratory Diseases, Second Clinical Medical College (Shenzhen People’s Hospital), Jinan University, First Affiliated Hospital (Shenzhen People’s Hospital), Southern University of Science and Technology, Shenzhen, China
| | - Hai Lu
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- *Correspondence: Hai Lu,
| |
Collapse
|
19
|
Forssten SD, Ouwehand AC. Contribution of the Microbiota to Healthy Aging. COMPREHENSIVE GUT MICROBIOTA 2022:69-84. [DOI: 10.1016/b978-0-12-819265-8.00059-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
20
|
Wang X, Liu D, Wang Z, Cai C, Jiang H, Yu G. Porphyran-derived oligosaccharides alleviate NAFLD and related cecal microbiota dysbiosis in mice. FASEB J 2021; 35:e21458. [PMID: 33948987 DOI: 10.1096/fj.202000763rrr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/18/2022]
Abstract
Porphyran and its derivatives possess a variety of biological activities, such as ameliorations of oxidative stress, inflammation, hyperlipemia, and immune deficiencies. In this study, we evaluated the potential efficacy of porphyran-derived oligosaccharides from Porphyra yezoensis (PYOs) in alleviating nonalcoholic fatty liver disease (NAFLD) and preliminarily clarified the underlying mechanism. NAFLD was induced by a high-fat diet for six months in C57BL/6J mice, followed by treatment with PYOs (100 or 300 mg/kg/d) for another six weeks. We found that PYOs reduced hepatic oxidative stress in mice with NAFLD, which plays a critical role in the occurrence and development of NAFLD. In addition, PYOs could markedly decrease lipid accumulation in liver by activating the IRS-1/AKT/GSK-3β signaling pathway and the AMPK signaling pathway in mice with NAFLD. PYOs also apparently relieved the hepatic fibrosis induced by oxidative stress via downregulation of TGF-β and its related proteins, so that liver injury was markedly alleviated. Furthermore, PYOs treatment relieved cecal microbiota dysbiosis (such as increasing the relative abundance of Akkermansia, while decreasing the Helicobacter abundance), which could alleviate oxidative stress, inflammation, and lipid metabolism, and protect the liver to a certain degree. In summary, PYOs treatment remarkably improved NAFLD via a specific molecular mechanism and reshaped the cecal microbiota.
Collapse
Affiliation(s)
- Xueliang Wang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Di Liu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Zhe Wang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Chao Cai
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Hao Jiang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Guangli Yu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
21
|
Guo M, Peng J, Huang X, Xiao L, Huang F, Zuo Z. Gut Microbiome Features of Chinese Patients Newly Diagnosed with Alzheimer's Disease or Mild Cognitive Impairment. J Alzheimers Dis 2021; 80:299-310. [PMID: 33523001 DOI: 10.3233/jad-201040] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Patients with Alzheimer's disease (AD) have gut microbiome alterations compared with healthy controls. However, previous studies often assess AD patients who have been on medications or other interventions for the disease. Also, simultaneous determination of gut microbiome in patients with mild cognitive impairment (MCI) or AD in a study is rare. OBJECTIVE To determine whether there was a gut microbiome alteration in patients newly diagnosed with AD or MCI and whether the degree of gut microbiome alteration was more severe in patients with AD than patients with MCI. METHODS Fecal samples of 18 patients with AD, 20 patients with MCI, and 18 age-matched healthy controls were collected in the morning for 16S ribosomal RNA sequencing. No patient had medications or interventions for AD or MCI before the samples were collected. RESULTS Although there was no difference in the microbial α-diversity among the three groups, patients with AD or MCI had increased β-diversity compared with healthy controls. Patients with AD had decreased Bacteroides, Lachnospira, and Ruminiclostridium_9 and increased Prevotella at the genus level compared with healthy controls. The changing direction of these genera in patients with MCI was the same as patients with AD. However, Lachnospira was the only genus whose abundance in patients with MCI was statistically significantly lower than healthy controls. Bacteroides, Lachnospira, and Ruminiclostridium_9 were positively associated with better cognitive functions whereas Prevotella was on the contrary when subjects of all three groups were considered. The negative correlation of Prevotella with cognitive functions remained among patients with MCI. CONCLUSION Patients newly diagnosed with AD or MCI have gut dysbiosis that includes the decrease of potentially protective microbiome, such as Bacteroides, and the increase of microbiome that can promote inflammation, such as Prevotella. Our results support a novel idea that the degree of gut dysbiosis is worsened with the disease stage from MCI to AD.
Collapse
Affiliation(s)
- Mingyan Guo
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Peng
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Huang
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lingjun Xiao
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fenyan Huang
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, USA
| |
Collapse
|
22
|
Ragonnaud E, Biragyn A. Gut microbiota as the key controllers of "healthy" aging of elderly people. IMMUNITY & AGEING 2021; 18:2. [PMID: 33397404 PMCID: PMC7784378 DOI: 10.1186/s12979-020-00213-w] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022]
Abstract
Extrinsic factors, such as lifestyle and diet, are shown to be essential in the control of human healthy aging, and thus, longevity. They do so by targeting at least in part the gut microbiome, a collection of commensal microorganisms (microbiota), which colonize the intestinal tract starting after birth, and is established by the age of three. The composition and abundance of individual microbiota appears to continue to change until adulthood, presumably reflecting lifestyle and geographic, racial, and individual differences. Although most of these changes appear to be harmless, a major shift in their composition in the gut (dysbiosis) can trigger harmful local and systemic inflammation. Recent reports indicate that dysbiosis is increased in aging and that the gut microbiota of elderly people is enriched in pro-inflammatory commensals at the expense of beneficial microbes. The clinical consequence of this change remains confusing due to contradictory reports and a high degree of variability of human microbiota and methodologies used. Here, we present the authors’ thoughts that underscore dysbiosis as a primary cause of aging-associated morbidities, and thus, premature death of elderly people. We provide evidence that the dysbiosis triggers a chain of pathological and inflammatory events. Examples include alteration of levels of microbiota-affected metabolites, impaired function and integrity of the gastrointestinal tract, and increased gut leakiness. All of these enhance systemic inflammation, which when associated with aging is termed inflammaging, and result in consequent aging-associated pathologies.
Collapse
Affiliation(s)
- Emeline Ragonnaud
- Immunoregulation Section, Laboratory of Immunology and Molecular Biology, National Institute on Aging, 251 Bayview Blvd, Suite 100, Baltimore, MD, 21224, USA
| | - Arya Biragyn
- Immunoregulation Section, Laboratory of Immunology and Molecular Biology, National Institute on Aging, 251 Bayview Blvd, Suite 100, Baltimore, MD, 21224, USA.
| |
Collapse
|
23
|
Appropriate exercise level attenuates gut dysbiosis and valeric acid increase to improve neuroplasticity and cognitive function after surgery in mice. Mol Psychiatry 2021; 26:7167-7187. [PMID: 34663905 PMCID: PMC8873004 DOI: 10.1038/s41380-021-01291-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/19/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
Postoperative cognitive dysfunction (POCD) affects the outcome of millions of patients each year. Aging is a risk factor for POCD. Here, we showed that surgery induced learning and memory dysfunction in adult mice. Transplantation of feces from surgery mice but not from control mice led to learning and memory impairment in non-surgery mice. Low intensity exercise improved learning and memory in surgery mice. Exercise attenuated surgery-induced neuroinflammation and decrease of gut microbiota diversity. These exercise effects were present in non-exercise mice receiving feces from exercise mice. Exercise reduced valeric acid, a gut microbiota product, in the blood. Valeric acid worsened neuroinflammation, learning and memory in exercise mice with surgery. The downstream effects of exercise included attenuating growth factor decrease, maintaining astrocytes in the A2 phenotypical form possibly via decreasing C3 signaling and improving neuroplasticity. Similar to these results from adult mice, exercise attenuated learning and memory impairment in old mice with surgery. Old mice receiving feces from old exercise mice had better learning and memory than those receiving control old mouse feces. Surgery increased blood valeric acid. Valeric acid blocked exercise effects on learning and memory in old surgery mice. Exercise stabilized gut microbiota, reduced neuroinflammation, attenuated growth factor decrease and preserved neuroplasticity in old mice with surgery. These results provide direct evidence that gut microbiota alteration contributes to POCD development. Valeric acid is a mediator for this effect and a potential target for brain health. Low intensity exercise stabilizes gut microbiota in the presence of insult, such as surgery.
Collapse
|
24
|
Holmes A, Finger C, Morales-Scheihing D, Lee J, McCullough LD. Gut dysbiosis and age-related neurological diseases; an innovative approach for therapeutic interventions. Transl Res 2020; 226:39-56. [PMID: 32755639 PMCID: PMC7590960 DOI: 10.1016/j.trsl.2020.07.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/14/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
Abstract
The gut microbiota is a complex ecosystem of bacteria, fungi, and viruses that acts as a critical regulator in microbial, metabolic, and immune responses in the host organism. Imbalances in the gut microbiota, termed "dysbiosis," often induce aberrant immune responses, which in turn disrupt the local and systemic homeostasis of the host. Emerging evidence has highlighted the importance of gut microbiota in intestinal diseases, and more recently, in age-related central nervous systems diseases, for example, stroke and Alzheimer's disease. It is now generally recognized that gut microbiota significantly influences host behaviors and modulates the interaction between microbiota, gut, and brain, via the "microbiota-gut-brain axis." Several approaches have been utilized to reduce age-related dysbiosis in experimental models and in clinical studies. These include strategies to manipulate the microbiome via fecal microbiota transplantation, administration of prebiotics and probiotics, and dietary interventions. In this review, we explore both clinical and preclinical therapies for treating age-related dysbiosis.
Collapse
Affiliation(s)
- Aleah Holmes
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Carson Finger
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Diego Morales-Scheihing
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Juneyoung Lee
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.
| |
Collapse
|
25
|
Mukherjee A, Lordan C, Ross RP, Cotter PD. Gut microbes from the phylogenetically diverse genus Eubacterium and their various contributions to gut health. Gut Microbes 2020; 12:1802866. [PMID: 32835590 PMCID: PMC7524325 DOI: 10.1080/19490976.2020.1802866] [Citation(s) in RCA: 339] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/10/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
Over the last two decades our understanding of the gut microbiota and its contribution to health and disease has been transformed. Among a new 'generation' of potentially beneficial microbes to have been recognized are members of the genus Eubacterium, who form a part of the core human gut microbiome. The genus consists of phylogenetically, and quite frequently phenotypically, diverse species, making Eubacterium a taxonomically unique and challenging genus. Several members of the genus produce butyrate, which plays a critical role in energy homeostasis, colonic motility, immunomodulation and suppression of inflammation in the gut. Eubacterium spp. also carry out bile acid and cholesterol transformations in the gut, thereby contributing to their homeostasis. Gut dysbiosis and a consequently modified representation of Eubacterium spp. in the gut, have been linked with various human disease states. This review provides an overview of Eubacterium species from a phylogenetic perspective, describes how they alter with diet and age and summarizes its association with the human gut and various health conditions.
Collapse
Affiliation(s)
- Arghya Mukherjee
- Department of Food Biosciences, Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Cathy Lordan
- Department of Food Biosciences, Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - R. Paul Ross
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul D. Cotter
- Department of Food Biosciences, Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
26
|
Liu J, Luthuli S, Yang Y, Cheng Y, Zhang Y, Wu M, Choi J, Tong H. Therapeutic and nutraceutical potentials of a brown seaweed Sargassum fusiforme. Food Sci Nutr 2020; 8:5195-5205. [PMID: 33133523 PMCID: PMC7590327 DOI: 10.1002/fsn3.1835] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 12/11/2022] Open
Abstract
Sargassum fusiforme, also known as Yangqicai () in Chinese and Hijiki in Japanese, is a brown seaweed that grows abundantly along the rocky coastlines of Asian countries such as Japan, Korea, and China. The first use of S. fusiforme as a traditional Chinese medicinal plant was recorded in the Shennong Bencao Jing, dated 200 AD. It was referred to as Haizao (seaweed), renowned for treating Yinglu (tumor-like induration), dysuria, and edema. Currently, it is commonly used in traditional cuisine as it is rich in dietary fiber and minerals such as calcium, iron, and magnesium. Owing to its health benefits, S. fusiforme remains popular in China, Korea, and Japan, as well as in the UK and in North America. Currently, there is a lack of research on S. fusiforme; thus, we review the therapeutic effects of S. fusiforme, such as anticancer, antiangiogenic, and antiviral effects, in vitro and in vivo as reported during the past two decades. This review may promote further research on the therapeutic uses of S. fusiforme. Furthermore, we discuss the processes and considerations involved in using drugs produced from marine sources.
Collapse
Affiliation(s)
- Jian Liu
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
- Department of Biotechnology and BioengineeringChonnam National UniversityGwangjuKorea
| | - Sibusiso Luthuli
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
| | - Yue Yang
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
| | - Yang Cheng
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
| | - Ya Zhang
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
| | - Mingjiang Wu
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
| | - Jong‐il Choi
- Department of Biotechnology and BioengineeringChonnam National UniversityGwangjuKorea
| | - Haibin Tong
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
| |
Collapse
|
27
|
Catalkaya G, Venema K, Lucini L, Rocchetti G, Delmas D, Daglia M, De Filippis A, Xiao H, Quiles JL, Xiao J, Capanoglu E. Interaction of dietary polyphenols and gut microbiota: Microbial metabolism of polyphenols, influence on the gut microbiota, and implications on host health. FOOD FRONTIERS 2020; 1:109-133. [DOI: 10.1002/fft2.25] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
AbstractThe human gastrointestinal tract is inhabited by a vast number of microorganisms that are called as the microbiota. Each individual harbors a unique gut microbial composition, this composition evolves throughout the host's lifetime and it is easily affected by internal or external changes. It has been shown that gut microbiota plays a crucial role in host's health and as this complex community has the ability to interact with each other and with the host's immune system, the presence or absence of some major species can affect the homeostasis. Diet can be considered as one of the pivotal factors in modulating the functionality, integrity, and composition of the gut microbiota as the gastrointestinal tract is the first organ exposed to components of the diet. In this review, we have focused on the effects of polyphenols, key compounds of a healthy diet with several biological activities, on the gut microbial composition, their biotransformation by the gut microbiota, and the effect of their reciprocal interactions in human health and disease.
Collapse
Affiliation(s)
- Gizem Catalkaya
- Department of Food Engineering Faculty of Chemical and Metallurgical Engineering Istanbul Technical University Istanbul Turkey
| | - Koen Venema
- Centre for Healthy Eating & Food Innovation Faculty of Science and Engineering Maastricht University ‐ Campus Venlo Venlo The Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM) Maastricht University Maastricht The Netherlands
| | - Luigi Lucini
- Department for Sustainable Food Process Università Cattolica del Sacro Cuore Piacenza Italy
| | - Gabriele Rocchetti
- Department for Sustainable Food Process Università Cattolica del Sacro Cuore Piacenza Italy
| | - Dominique Delmas
- INSERM Research Center U1231 Université de Bourgogne Franche‐Comté Centre anticancéreux Georges François Leclerc Université de Bourgogne Franche‐Comté Dijon 21000 France
| | - Maria Daglia
- Department of Pharmacy University of Naples Federico II Naples Italy
- International Research Center for Food Nutrition and Safety Jiangsu University Zhenjiang China
| | - Anna De Filippis
- Department of Pharmacy University of Naples Federico II Naples Italy
| | - Hang Xiao
- Department of Food Science University of Massachusetts Amherst MA USA
| | - José L. Quiles
- Department of Physiology Institute of Nutrition and Food Technology ‘‘José Mataix” Biomedical Research Centre University of Granada Granada Spain
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine University of Macau Taipa Macau
| | - Esra Capanoglu
- Department of Food Engineering Faculty of Chemical and Metallurgical Engineering Istanbul Technical University Istanbul Turkey
| |
Collapse
|
28
|
Gasser M, Lissner R, Nawalaniec K, Hsiao LL, Waaga-Gasser AM. KMP01D Demonstrates Beneficial Anti-inflammatory Effects on Immune Cells: An ex vivo Preclinical Study of Patients With Colorectal Cancer. Front Immunol 2020; 11:684. [PMID: 32425932 PMCID: PMC7205007 DOI: 10.3389/fimmu.2020.00684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/26/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Colorectal cancer (CRC) is frequently associated with dysbiosis of the gut microbiome which, together with a compromised gut barrier, can result in perioperative endotoxin leakage into the circulation. Constant local and systemic inflammatory activity is suggested to facilitate metastases formation. Previous studies have pointed to the capacity of a colostrum preparation to neutralize endotoxins within the gastrointestinal tract which could ameliorate associated inflammatory responses and tumor recurrence in affected patients. This study aimed to examine the effects of the colostrum preparation, KMP01D, on the inflammatory activity of patient-derived immune cells. Methods: The effects of KMP01D on pro-/anti-inflammatory cytokine responses and apoptosis were examined ex vivo using immune cells from CRC patients (stages I-IV, n = 48). The expression of CD14, CD68, Toll-like receptor (TLR)4, and insulin-like growth factor (IGF)-1 was also analyzed. Results: KMP01D increased interleukin (IL)-10 and IL-13 anti-inflammatory cytokine expression in patient-derived peripheral blood mononuclear cells (PBMCs). Interestingly, KMP01D also decreased the secretion of IL-1β, IL-6, interferon (IFN)-γ, tumor necrosis factor (TNF)-α, IL-12 inflammatory cytokines, and IGF-1 in these cells. Moreover, CD14 and TLR4 expression involved in endotoxin signaling was downregulated in PBMCs and tumor-derived cells. Apoptosis of immune cells and tumor-derived cells was likewise enhanced with KMP01D. Addition of vitamin D3 as a cofactor demonstrated enhanced anti-inflammatory effects. Conclusions: KMP01D demonstrated beneficial ex vivo effects on inflammatory cytokine responses in PBMCs and enhanced apoptosis of immune cells from CRC patients. In line with previous clinical trials, we present new evidence endorsing KMP01D as a treatment strategy to regulate stage-dependent local and systemic inflammation in CRC patients.
Collapse
Affiliation(s)
- Martin Gasser
- Department of Surgery I, University of Wuerzburg, Wuerzburg, Germany
| | - Reinhard Lissner
- Department of Surgery I, Molecular Oncology and Immunology, University of Wuerzburg, Wuerzburg, Germany
| | - Karol Nawalaniec
- Renal Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Li-Li Hsiao
- Renal Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Ana Maria Waaga-Gasser
- Department of Surgery I, Molecular Oncology and Immunology, University of Wuerzburg, Wuerzburg, Germany.,Renal Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
29
|
Xie W, Han Y, Li F, Gu X, Su D, Yu W, Li Z, Xiao J. Neuropeptide Y1 Receptor Antagonist Alters Gut Microbiota and Alleviates the Ovariectomy-Induced Osteoporosis in Rats. Calcif Tissue Int 2020; 106:444-454. [PMID: 31844916 DOI: 10.1007/s00223-019-00647-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/06/2019] [Indexed: 12/21/2022]
Abstract
A plethora of evidence has suggested that gut microbiota is involved in the occurrence and development of postmenopausal osteoporosis (PMO). It has been suggested that neuropeptide Y (NPY) modulates the bone metabolism through Y1 receptor (Y1R), and might be associated with gut microbiota. The present study aims to evaluate the anti-osteoporotic effects of Y1R antagonist and to investigate the potential mechanism by which Y1R antagonist regulates gut microbiota. In this study, eighteen female rats were randomly divided into three groups: the sham surgery (SHAM) group, the ovariectomized (OVX) group, and OVX+BIBO3304 group. After 6 weeks following surgery, Y1R antagonist BIBO3304 was administered to the rats in OVX+BIBO3304 group for 7 days. The bone microstructure and serum biochemical parameters were measured at 12 weeks after operation. The differences in the gut microbiota were analyzed by 16S rDNA gene sequencing. Heat-map and Spearman's correlation analyses were constructed to investigate the correlations between microbiota and bone metabolism-related parameters. The results indicated that OVX+BIBO3304 group showed significantly higher BMD, BV/TV, Tb.Th, Tb.N, Conn.D, and serum Ca2+ level than those in OVX group. Additionally, Y1R antagonist changed the gut microbiota composition with lower Firmicutes/Bacteroidetes ratio and higher proportions of some probiotics, including Lactobacillus. The correlation analysis showed that the changes of gut microbiota were closely associated with bone microstructure and serum Ca2+ levels. Our results suggested that Y1R antagonist played an anti-osteoporotic effect and regulated gut microbiota in OVX rats, indicating the potential to utilize Y1R antagonist as a novel treatment for PMO.
Collapse
Affiliation(s)
- Weixin Xie
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Yi Han
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Fan Li
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Xiyao Gu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Diansan Su
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Zhanchun Li
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 1630 Dongfang Rd, Shanghai, 200127, China.
| | - Jie Xiao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 1630 Dongfang Rd, Shanghai, 200127, China.
| |
Collapse
|
30
|
Bellucci A, Bubacco L, Longhena F, Parrella E, Faustini G, Porrini V, Bono F, Missale C, Pizzi M. Nuclear Factor-κB Dysregulation and α-Synuclein Pathology: Critical Interplay in the Pathogenesis of Parkinson's Disease. Front Aging Neurosci 2020; 12:68. [PMID: 32265684 PMCID: PMC7105602 DOI: 10.3389/fnagi.2020.00068] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/25/2020] [Indexed: 12/13/2022] Open
Abstract
The loss of dopaminergic neurons of the nigrostriatal system underlies the onset of the typical motor symptoms of Parkinson's disease (PD). Lewy bodies (LB) and Lewy neurites (LN), proteinaceous inclusions mainly composed of insoluble α-synuclein (α-syn) fibrils are key neuropathological hallmarks of the brain of affected patients. Compelling evidence supports that in the early prodromal phases of PD, synaptic terminal and axonal alterations initiate and drive a retrograde degeneration process culminating with the loss of nigral dopaminergic neurons. This notwithstanding, the molecular triggers remain to be fully elucidated. Although it has been shown that α-syn fibrillary aggregation can induce early synaptic and axonal impairment and cause nigrostriatal degeneration, we still ignore how and why α-syn fibrillation begins. Nuclear factor-κB (NF-κB) transcription factors, key regulators of inflammation and apoptosis, are involved in the brain programming of systemic aging as well as in the pathogenesis of several neurodegenerative diseases. The NF-κB family of factors consists of five different subunits (c-Rel, p65/RelA, p50, RelB, and p52), which combine to form transcriptionally active dimers. Different findings point out a role of RelA in PD. Interestingly, the nuclear content of RelA is abnormally increased in nigral dopamine (DA) neurons and glial cells of PD patients. Inhibition of RelA exert neuroprotection against (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) MPTP and 1-methyl-4-phenylpyridinium (MPP+) toxicity, suggesting that this factor decreases neuronal resilience. Conversely, the c-Rel subunit can exert neuroprotective actions. We recently described that mice deficient for c-Rel develop a PD-like motor and non-motor phenotype characterized by progressive brain α-syn accumulation and early synaptic changes preceding the frank loss of nigrostriatal neurons. This evidence supports that dysregulations in this transcription factors may be involved in the onset of PD. This review highlights observations supporting a possible interplay between NF-κB dysregulation and α-syn pathology in PD, with the aim to disclose novel potential mechanisms involved in the pathogenesis of this disorder.
Collapse
Affiliation(s)
- Arianna Bellucci
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luigi Bubacco
- Department of Biology, University of Padua, Padua, Italy
| | - Francesca Longhena
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Edoardo Parrella
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Gaia Faustini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Vanessa Porrini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Federica Bono
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Cristina Missale
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marina Pizzi
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
31
|
Bufan B, Arsenović-Ranin N, Petrović R, Živković I, Stoiljković V, Leposavić G. Strain specificities in influence of ageing on germinal centre reaction to inactivated influenza virus antigens in mice: Sex-based differences. Exp Gerontol 2020; 133:110857. [PMID: 32006634 DOI: 10.1016/j.exger.2020.110857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/04/2019] [Accepted: 01/28/2020] [Indexed: 12/21/2022]
Abstract
Considering variability in vaccine responsiveness across human populations, in respect to magnitude and quality, and importance of vaccines in the elderly, the influence of recipient genetic background on the kinetics of age-related changes in the serum IgG antibody responses to seasonal trivalent inactivated split-virus influenza bulk (TIV) was studied in BALB/c and C57BL/6 mice showing quantitative and qualitative differences in this responses in young adult ages. With ageing the total serum IgG response to influenza viruses declined, in a strain-specific manner, so the strain disparity observed in young adult mice (the greater magnitude of IgG response in BALB/c mice) disappeared in aged mice. However, the sexual dimorphisms in this response (more prominent in females of both strains) remained in aged ones. The strain-specific differences in age-related decline in the magnitude of IgG response to TIV correlated with the number of germinal centre (GC) B splenocytes. The age-related decline in GC B cell number was consistent with the decrease in the proliferation of B cells and CD4+ cells in splenocyte cultures upon restimulation with TIV. Additionally, the age-related decrease in the magnitude of IgG response correlated with the increase in follicular T regulatory (fTreg)/follicular T helper (fTh) and fTreg/GC B splenocyte ratios (reflecting decrease in fTh and GC B numbers without changes in fTreg number), and the frequency of CD4+ splenocytes producing IL-21, a key factor in balancing the B cell and fTreg cell activity. With ageing the avidity of virus influenza-specific antibody increased in females of both strains. Moreover, ageing affected IgG2a/IgG1 and IgG2c/IgG1 ratios (reflecting Th1/Th2 balance) in male BALB/c mice and female C57BL/6 mice, respectively. Consequently, differently from young mice exhibiting the similar ratios in male and female mice, in aged female mice of both strains IgG2a(c)/IgG1 ratios were shifted towards a less effective IgG1 response (stimulated by IL-4 cytokines) compared with males. The age-related alterations in IgG subclass profiles in both strains correlated with those in IFN-γ/IL-4 production level ratio in splenocyte cultures restimulated with TIV. These findings stimulate further research to formulate sex-specific strategies to improve efficacy of influenza vaccine in the elderly.
Collapse
Affiliation(s)
- Biljana Bufan
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Nevena Arsenović-Ranin
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Raisa Petrović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Irena Živković
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Vera Stoiljković
- Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Gordana Leposavić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia.
| |
Collapse
|
32
|
Magrone T, Spagnoletta A, Magrone M, Russo MA, Corriero A, Jirillo E, Passantino L. Effects of Polyphenol Administration to European Farmed Sea Bass ( Dicentrharcus labrax L.): Special Focus on Hepatopancreas Morphology. Endocr Metab Immune Disord Drug Targets 2020; 19:526-533. [PMID: 30306883 DOI: 10.2174/1871530318666181009111214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/26/2018] [Accepted: 09/03/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Hepatopancreas is an accessory organ associated with the liver in some fish, even including sea bass (Dicentrharcus labrax L.). Hepatopancreas contains an exocrine portion but until now its function has poorly been investigated. METHODS Here, European farmed sea bass have been treated with a feed enriched in polyphenols extracted from seeds of red grape (Nero di Troia cultivar) at two different doses (100 and 200 mg/kg, respectively) from day 273 to day 323. In fish samples, hepatopancreas area sizes have been measured to evaluate the effects of this dietary regimen on its morphology. RESULTS Quite interestingly, in treated fish area sizes of hepatopancreas were higher than those detected in untreated fish. Two hundred mg dose of polyphenols was more effective than that of 100 mg/kg polyphenols. Finally, hepatic polyphenol concentration was diminished in fish receiving 100 mg dose polyphenols and normalized with 200 mg dose in comparison to untreated fish. This evidence suggests the utilization of polyphenols for liver function, even including hepatopancreas development. CONCLUSION Our data suggest an expansion of hepatopancreas induced by polyphenol administration that is also associated with less mortality in farmed fish.
Collapse
Affiliation(s)
- Thea Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Anna Spagnoletta
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy.,ENEA Research Centre Trisaia, Laboratory "BioProducts and BioProcesses", Rotondella (MT), Italy
| | - Manrico Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Matteo Antonio Russo
- MEBIC Consortium, San Raffaele Open University of Rome and IRCCS San Raffaele Pisana of Rome, Rome, Italy
| | - Aldo Corriero
- Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Letizia Passantino
- Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
| |
Collapse
|
33
|
Hosgorler F, Kizildag S, Koc B, Yüksel O, Kırık ABT, Ilgin R, Kandis S, Güvendi G, Ates M, Uysal N. Mild-intensity Exercise Triggers VEGF in the Digestive Tract Via Both Hypoxic and Nonhypoxic Mechanisms. BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY 2020; 63. [DOI: 10.1590/1678-4324-2020200059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
34
|
Xavier-Santos D, Bedani R, Lima ED, Saad SMI. Impact of probiotics and prebiotics targeting metabolic syndrome. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103666] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
35
|
Micronutrients that Affect Immunosenescence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1260:13-31. [DOI: 10.1007/978-3-030-42667-5_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
36
|
Valentini Neto J, Chella TP, Rudnik DP, Ribeiro SML. EFFECTS OF SYNBIOTIC SUPPLEMENTATION ON GUT FUNCTIONING AND SYSTEMIC INFLAMMATION OF COMMUNITY-DWELLING ELDERS - SECONDARY ANALYSES FROM A RANDOMIZED CLINICAL TRIAL. ARQUIVOS DE GASTROENTEROLOGIA 2020; 57:24-30. [PMID: 32294732 DOI: 10.1590/s0004-2803.202000000-06] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/27/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Aging is a complex process marked by alterations on gut functioning and physiology, accompanied by an increase on the inflammatory status, leading to a scenario called "inflammaging". OBJECTIVE To evaluate the effects of a synbiotic substance on systemic inflammation, gut functioning of community-dwelling elders. METHODS This is a secondary analysis from a randomized clinical trial, lasting 24 weeks, including 49 elders, distributed into two groups: SYN (n=25), which received a synbiotic substance (Frutooligossacaride 6g, Lactobacillus paracasei LPC-31 109 to 108 UFC, Lactobacillus rhamnosus HN001 109 to 108 UFC, Lactobacillus acidophilus NCFM 109 to 108 UFC e Bifidobacterium lactis HN019 109 to 108 UFC), or PLA (n=24), receiving placebo. The evaluations consisted of serum IL-10 e TNF-α (after overnight fasting), evaluation of chronic constipation (by Rome III Criteria) and faeces types (by Bristol Stool Form Scale). Data were compared before and after the supplementation time, and between groups. RESULTS No significant differences were found between baseline and final values of serum inflammatory markers. Some subtle beneficial changes were observed in SYN, concerning both gut functioning and faeces types. CONCLUSION From our data, synbiotic supplementation showed a subtle benefit in gut functioning in apparently healthy community-dwelling elders. Our findings can suggest that the benefits in healthy individuals were less expressive than the ones presented in studies with individuals previously diagnosed as dysbiosis. Future studies, comparing elders with and without gut dysbiosis can confirm our findings.
Collapse
Affiliation(s)
- João Valentini Neto
- Universidade de São Paulo, Faculdade de Saúde Pública, Departamento de Nutrição, São Paulo, SP, Brasil
| | - Terezinha Perricci Chella
- Universidade de São Paulo, Faculdade de Saúde Pública, Departamento de Nutrição, São Paulo, SP, Brasil
| | - Danielle Panipucci Rudnik
- Universidade de São Paulo, Faculdade de Saúde Pública, Departamento de Nutrição, São Paulo, SP, Brasil
| | - Sandra Maria Lima Ribeiro
- Universidade de São Paulo, Faculdade de Saúde Pública, Departamento de Nutrição, São Paulo, SP, Brasil
| |
Collapse
|
37
|
Luo D, Chen K, Li J, Fang Z, Pang H, Yin Y, Rong X, Guo J. Gut microbiota combined with metabolomics reveals the metabolic profile of the normal aging process and the anti-aging effect of FuFang Zhenshu TiaoZhi(FTZ) in mice. Biomed Pharmacother 2019; 121:109550. [PMID: 31704617 DOI: 10.1016/j.biopha.2019.109550] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/06/2019] [Accepted: 10/08/2019] [Indexed: 12/19/2022] Open
Abstract
The aging process is accompanied by changes in the gut microbiota and metabolites. This study aimed to reveal the relationship between gut microbiota and the metabolome at different ages, as well as the anti-aging effect of FTZ, which is an effective clinical prescription for the treatment of hyperlipidemia and diabetes. METHODS In the present study, mice were randomly divided into different age and FTZ treatment groups. The aging-relevant behavioral phenotype the levels of blood glucose, cholesterol, triglycerides, low density lipoprotein cholesterol, free fatty acids, high density lipoprotein-cholesterol and cytokine TNF-α,IL-6, IL-8 in the serum were measured. Changes of serum metabolties were analyzed by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-Q-TOF/MS). Gut microbiota were identified using 16S rDNA sequencing. RESULTS Our results indicated that with age, the aging-relevant behavioral phenotype appeared, glucose and lipid metabolism disordered, secretion levels of cytokine TNF-α, IL-6 and IL-8 increased.The Firmicutes/Bacteroidetes ratio changed with age, first increasing and then decreasing, and the microbial diversity and the community richness of the aging mice were improved by FTZ. The abundance of opportunistic bacteria decreased (Lactobacillus murinus, Erysipelatoclostridium), while the levels of protective bacteria such as Butyricimonas, Clostridium and Akkermansia increased. Metabolic analysis identified 24 potential biomarkers and 10 key pathways involving arachidonic acid metabolism, phospholipid metabolism, fatty acid metabolism, taurine and hypotaurine metabolism. Correlation analysis between the gut microbiota and biomarkers suggested that the relative abundance of protective bacteria was negatively correlated with the levels of leukotriene E4, 20-HETE and arachidonic acid, which was different from protective bacteria. CONCLUSION Shifts of gut microbiota and metabolomic profiles were observed in the mice during the normal aging process, and treatment with FTZ moderately corrected the aging, which may be mediated via interference with arachidonic acid metabolism, sphingolipid metabolism, glycerophospholipid metabolism, taurine and hypotaurine metabolism and gut microbiota in mice.
Collapse
Affiliation(s)
- Duosheng Luo
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Kechun Chen
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Jingbiao Li
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Zhaoyan Fang
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Huiting Pang
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Yifan Yin
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Xianglu Rong
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Jiao Guo
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China.
| |
Collapse
|
38
|
Yang L, Liu B, Zheng J, Huang J, Zhao Q, Liu J, Su Z, Wang M, Cui Z, Wang T, Zhang W, Li Q, Lu H. Rifaximin Alters Intestinal Microbiota and Prevents Progression of Ankylosing Spondylitis in Mice. Front Cell Infect Microbiol 2019; 9:44. [PMID: 30886835 PMCID: PMC6409347 DOI: 10.3389/fcimb.2019.00044] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/12/2019] [Indexed: 12/11/2022] Open
Abstract
Recently, accumulating evidence has suggested that gut microbiota may be involved in the occurrence and development of ankylosing spondylitis (AS). It has been suggested that rifaximin have the ability to modulate the gut bacterial communities, prevent inflammatory response, and modulate gut barrier function. The goal of this work is to evaluate the protective effects of rifaximin in fighting AS and to elucidate the potential underlying mechanism. Rifaximin were administered to the proteoglycan (PG)-induced AS mice for 4 consecutive weeks. The disease severity was measured with the clinical and histological of arthritis and spondylitis. Intestinal histopathological, pro-inflammatory cytokine levels and the intestinal mucosal barrier were evaluated. Then, western blot was performed to explore the toll-like receptor 4 (TLR-4) signal transducer and NF-κB expression. Stool samples were collected to analyze the differences in the gut microbiota via next-generation sequencing of 16S rDNA. We found that rifaximin significantly reduced the severity of AS and resulted in down-regulation of inflammatory factors, such as TNF-α, IL-6, IL-17A, and IL-23. Meanwhile, rifaximin prevented ileum histological alterations, restored intestinal barrier function and inhibited TLR-4/NF-κB signaling pathway activation. Rifaximin also changed the gut microbiota composition with increased Bacteroidetes/Firmicutes phylum ratio, as well as selectively promoting some probiotic populations, including Lactobacillales. Our results suggest that rifaximin suppressed progression of AS and regulated gut microbiota in AS mice. Rifaximin might be useful as a novel treatment for AS.
Collapse
Affiliation(s)
- Lianjun Yang
- Department of Orthopedic Surgery, Orthopaedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Bin Liu
- Department of Orthopedic Surgery, Orthopaedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Junchi Zheng
- Department of Orthopedic Surgery, Orthopaedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Jincheng Huang
- Department of Orthopedics, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Qinghao Zhao
- Department of Orthopedic Surgery, Orthopaedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Jinshi Liu
- Department of Orthopedic Surgery, Orthopaedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Zhihai Su
- Department of Orthopedic Surgery, Orthopaedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Min Wang
- Department of Orthopedic Surgery, Orthopaedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Zhifei Cui
- Department of Orthopedic Surgery, Orthopaedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Tingxuan Wang
- Department of Orthopedic Surgery, Orthopaedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Weicong Zhang
- Department of Orthopedic Surgery, Orthopaedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Qingchu Li
- Department of Orthopedic Surgery, Orthopaedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Hai Lu
- Department of Orthopedic Surgery, Orthopaedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
39
|
Magrone T, Jirillo E. Development and Organization of the Secondary and Tertiary Lymphoid Organs: Influence of Microbial and Food Antigens. Endocr Metab Immune Disord Drug Targets 2019; 19:128-135. [DOI: 10.2174/1871530319666181128160411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 12/11/2022]
Abstract
Background:Secondary lymphoid organs (SLO) are distributed in many districts of the body and, especially, lymph nodes, spleen and gut-associated lymphoid tissue are the main cellular sites. On the other hand, tertiary lymphoid organs (TLO) are formed in response to inflammatory, infectious, autoimmune and neoplastic events. </P><P> Developmental Studies: In the present review, emphasis will be placed on the developmental differences of SLO and TLO between small intestine and colon and on the role played by various chemokines and cell receptors. Undoubtedly, microbiota is indispensable for the formation of SLO and its absence leads to their poor formation, thus indicating its strict interaction with immune and non immune host cells. Furthermore, food antigens (for example, tryptophan derivatives, flavonoids and byphenils) bind the aryl hydrocarbon receptor on innate lymphoid cells (ILCs), thus promoting the development of postnatal lymphoid tissues. Also retinoic acid, a metabolite of vitamin A, contributes to SLO development during embryogenesis. Vitamin A deficiency seems to account for reduction of ILCs and scarce formation of solitary lymphoid tissue. </P><P> Translational Studies: The role of lymphoid organs with special reference to intestinal TLO in the course of experimental and human disease will also be discussed. </P><P> Future Perspectives: Finally, a new methodology, the so-called “gut-in-a dish”, which has facilitated the in vitro interaction study between microbe and intestinal immune cells, will be described.
Collapse
Affiliation(s)
- Thea Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, School of Medicine, Bari, Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, School of Medicine, Bari, Italy
| |
Collapse
|
40
|
Dumic I, Nordin T, Jecmenica M, Stojkovic Lalosevic M, Milosavljevic T, Milovanovic T. Gastrointestinal Tract Disorders in Older Age. Can J Gastroenterol Hepatol 2019; 2019:6757524. [PMID: 30792972 PMCID: PMC6354172 DOI: 10.1155/2019/6757524] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 02/07/2023] Open
Abstract
Considering an increase in the life expectancy leading to a rise in the elderly population, it is important to recognize the changes that occur along the process of aging. Gastrointestinal (GI) changes in the elderly are common, and despite some GI disorders being more prevalent in the elderly, there is no GI disease that is limited to this age group. While some changes associated with aging GI system are physiologic, others are pathological and particularly more prevalent among those above age 65 years. This article reviews the most important GI disorders in the elderly that clinicians encounter on a daily basis. We highlight age-related changes of the oral cavity, esophagus, stomach, small and large bowels, and the clinical implications of these changes. We review epidemiology and pathophysiology of common diseases, especially as they relate to clinical manifestation in elderly. Details regarding management of specific disease are discussed in detail if they significantly differ from the management for younger groups or if they are associated with significant challenges due to side effects or polypharmacy. Cancers of GI tract are not included in the scope of this article.
Collapse
Affiliation(s)
- Igor Dumic
- Division of Hospital Medicine, Mayo Clinic Health System, Eau Claire, WI, USA
- Mayo Clinic College of Medicine and Sciences, Rochester, MN, USA
| | - Terri Nordin
- Mayo Clinic College of Medicine and Sciences, Rochester, MN, USA
- Department of Family Medicine, Mayo Clinic Health System, Eau Claire WI, USA
| | - Mladen Jecmenica
- Gastroenterology Fellowship Program, The Wright Center for Graduate Medical Education, Scranton, PA, USA
| | | | - Tomica Milosavljevic
- Clinic for Gastroenterology and Hepatology, Clinical Center of Serbia, Belgrade, Serbia
- School of Medicine, Belgrade University, Belgrade, Serbia
| | - Tamara Milovanovic
- Clinic for Gastroenterology and Hepatology, Clinical Center of Serbia, Belgrade, Serbia
- School of Medicine, Belgrade University, Belgrade, Serbia
| |
Collapse
|
41
|
Liu M, Zhang X, Hao Y, Ding J, Shen J, Xue Z, Qi W, Li Z, Song Y, Zhang T, Wang N. Protective effects of a novel probiotic strain, Lactococcus lactis ML2018, in colitis: in vivo and in vitro evidence. Food Funct 2019; 10:1132-1145. [DOI: 10.1039/c8fo02301h] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Multiple articles have confirmed that an imbalance of the intestinal microbiota is closely related to aberrant immune responses of the intestines and to the pathogenesis of inflammatory bowel diseases (IBDs).
Collapse
|
42
|
Zhu Q, Huang L, Zhu J, Lu J, Qin H. RETRACTED: Analysis of gut microbiota in long-lived older adults and their relatives: a gradual change with ageing. Mech Ageing Dev 2018; 178:1-8. [PMID: 30471326 DOI: 10.1016/j.mad.2018.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/01/2018] [Accepted: 11/20/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Qi Zhu
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, No. 301 Yanchangzhong Road, Shanghai 200072, China
| | - Linsheng Huang
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, No. 301 Yanchangzhong Road, Shanghai 200072, China
| | - Jian Zhu
- Department of Etiology, Qidong People's Hospital/Qidong Liver Cancer Institute, No. 753 Jianghaizhong Road, Qidong, Jiangsu 226200, China
| | - Jianquan Lu
- Qidong People's Hospital/Qidong Liver Cancer Institute, No. 753 Jianghaizhong Road, Qidong, Jiangsu 226200, China
| | - Huanlong Qin
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, No. 301 Yanchangzhong Road, Shanghai 200072, China
| |
Collapse
|
43
|
Predictors of fluoroquinolone-resistant bacteria in the rectal vault of men undergoing prostate biopsy. Prostate Cancer Prostatic Dis 2018; 22:268-275. [PMID: 30279581 DOI: 10.1038/s41391-018-0092-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/19/2018] [Accepted: 08/25/2018] [Indexed: 11/08/2022]
Abstract
IMPORTANCE Fluoroquinolone (FQ)-resistant rectal vault flora is associated with infectious complications in men undergoing transrectal ultrasound-guided prostate needle biopsy (TRUS-PNB). OBJECTIVE To determine the patient factors that predict FQ-resistant rectal cultures in men who are undergoing transrectal ultrasound-guided prostate needle biopsy. METHODS An IRB approved retrospective review of 6183 consecutive men who had undergone a rectal swab culture in preparation for TRUS-PNB between January 2013 and December 2014 was performed. Multivariable logistic regression was used to determine the clinical and demographic factors associated with FQ-resistant Enterobacteriaceae in the rectal vault. RESULTS Of the 6179 rectal swabs analyzed, 4842 (78%) were FQ-sensitive, and 1337 (22%) were FQ-resistant. On univariable analysis, increasing age, prior TRUS-PNB, higher number of biopsy cores obtained, diabetes mellitus, antimicrobial use within the past 6 months and non-Caucasian race were predictors of FQ-resistance (all p < 0.05). Men with FQ-resistant cultures were more likely to have benign pathology on TRUS-PNB (p = 0.004). On multivariable analysis, increasing patient age (OR = 1.01/year [1.00-1.02]), use of antimicrobials in the last 6 months (OR = 2.85[2.18-3.72]), African American (OR = 1.99 [1.66-2.37]), Asian (OR = 3.39 [2.63-4.37]), and Hispanic (OR = 2.10 [1.72-2.55]) races were independently associated with FQ-resistant rectal cultures. The overall infectious rate was 1.1% (56/5214) and the sepsis rate was 0.46% (24/5214). The infection rate in the FQ-resistant group was 3.9% (43/1107) compared to FQ-sensitive group 0.3% (13/4107), p < 0.001. CONCLUSION In this cohort, increasing age, recent antimicrobial-use, and non-Caucasian race were independent predictors of FQ-resistance in the rectal vault. As FQ-resistance is associated with infectious complications from transrectal ultrasound-guided prostate needle biopsy, understanding risk factors may assist infection control efforts.
Collapse
|
44
|
Rossi M, Mirbagheri SEYEDS, Keshavarzian A, Bishehsari F. Nutraceuticals in colorectal cancer: A mechanistic approach. Eur J Pharmacol 2018; 833:396-402. [PMID: 29935172 PMCID: PMC6063737 DOI: 10.1016/j.ejphar.2018.06.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 06/19/2018] [Indexed: 12/19/2022]
Abstract
Colorectal cancer (CRC) is one of the most diagnosed cancers in the world. Even though screening, surgery and oncology have greatly advanced, CRC is still one of the leading causes of cancer deaths, with 700,000 annual mortalities in both men and women. Environmental and lifestyle factors brought up by industrialization, such as an altered diet, lack of physical activity, increase in alcohol consumption, and circadian disruption, have greatly affected the burden of CRC. These factors increase the CRC risk, at least partly, by pathologically altering the colonic environment, including composition of the gut microbiota, referred to as dysbiosis. Colonic dysbiosis can promote pro-carcinogenic immune signaling cascades, leading to pro-tumorigenic inflammation, carcinogen production, and altered cellular responses in susceptible host resulting to development and/or progression of CRC. Nutraceuticals such as prebiotic molecules and probiotic bacterial species can help maintain intestinal microbial homeostasis and thus mitigate this pathological processes. Therefore, prebiotics and probiotics can hinder the effects of dysbiosis by encouraging anti-carcinogenic, anti-inflammatory immunity, the maintenance of the intestinal epithelial barrier, pro-apoptotic mechanisms, and carcinogen inactivation. In addition to its implications in preventing CRC, because of the mechanisms affected, nutraceuticals are being discovered as potential adjuncts to immune checkpoint inhibitors in the treatment of CRC. In this review, we provide an overview of the potential implications of prebiotics and probiotics in the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Marco Rossi
- Department of Internal Medicine, Division of Digestive Diseases, Hepatology, and Nutrition, Rush University Medical Center, Chicago, IL 60612, USA
| | - S E Y E D Sina Mirbagheri
- Department of Internal Medicine, Division of Digestive Diseases, Hepatology, and Nutrition, Rush University Medical Center, Chicago, IL 60612, USA
| | - Ali Keshavarzian
- Department of Internal Medicine, Division of Digestive Diseases, Hepatology, and Nutrition, Rush University Medical Center, Chicago, IL 60612, USA
| | - Faraz Bishehsari
- Department of Internal Medicine, Division of Digestive Diseases, Hepatology, and Nutrition, Rush University Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
45
|
Yamamoto K, Kushida M, Tsuduki T. The effect of dietary lipid on gut microbiota in a senescence-accelerated prone mouse model (SAMP8). Biogerontology 2018; 19:367-383. [DOI: 10.1007/s10522-018-9764-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/30/2018] [Indexed: 12/26/2022]
|
46
|
Spychala MS, Venna VR, Jandzinski M, Doran SJ, Durgan DJ, Ganesh BP, Ajami NJ, Putluri N, Graf J, Bryan RM, McCullough LD. Age-related changes in the gut microbiota influence systemic inflammation and stroke outcome. Ann Neurol 2018; 84:23-36. [PMID: 29733457 PMCID: PMC6119509 DOI: 10.1002/ana.25250] [Citation(s) in RCA: 310] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 12/13/2022]
Abstract
Objective Chronic systemic inflammation contributes to the pathogenesis of many age‐related diseases. Although not well understood, alterations in the gut microbiota, or dysbiosis, may be responsible for age‐related inflammation. Methods Using stroke as a disease model, we tested the hypothesis that a youthful microbiota, when established in aged mice, produces positive outcomes following ischemic stroke. Conversely, an aged microbiota, when established in young mice, produces negative outcomes after stroke. Young and aged male mice had either a young or an aged microbiota established by fecal transplant gavage (FTG). Mice were subjected to ischemic stroke (middle cerebral artery occlusion; MCAO) or sham surgery. During the subsequent weeks, mice underwent behavioral testing and fecal samples were collected for 16S ribosomal RNA analysis of bacterial content. Results We found that the microbiota is altered after experimental stroke in young mice and resembles the biome of uninjured aged mice. In aged mice, the ratio of Firmicutes to Bacteroidetes (F:B), two main bacterial phyla in gut microbiota, increased ∼9‐fold (p < 0.001) compared to young. This increased F:B ratio in aged mice is indicative of dysbiosis. Altering the microbiota in young by fecal gavage to resemble that of aged mice (∼6‐fold increase in F:B ratio, p < 0.001) increased mortality following MCAO, decreased performance in behavioral testing, and increased cytokine levels. Conversely, altering the microbiota in aged to resemble that of young (∼9‐fold decrease in F:B ratio, p < 0.001) increased survival and improved recovery following MCAO. Interpretation Aged biome increased the levels of systemic proinflammatory cytokines. We conclude that the gut microbiota can be modified to positively impact outcomes from age‐related diseases. Ann Neurol 2018;83:23–36
Collapse
Affiliation(s)
- Monica S Spychala
- Department of Neurology, McGovern Medical School at University of Texas Health Science Center Houston, TX
| | - Venugopal Reddy Venna
- Department of Neurology, McGovern Medical School at University of Texas Health Science Center Houston, TX
| | - Michal Jandzinski
- Department of Neurology, McGovern Medical School at University of Texas Health Science Center Houston, TX
| | - Sarah J Doran
- Department of Anesthesiology, University of Maryland, Baltimore, MD
| | - David J Durgan
- Department of Anesthesiology, Baylor College of Medicine, Houston, TX
| | - Bhanu Priya Ganesh
- Department of Neurology, McGovern Medical School at University of Texas Health Science Center Houston, TX
| | - Nadim J Ajami
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX
| | - Nagireddy Putluri
- Dan L. Duncan Comprehensive Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Joerg Graf
- Department of Molecular and Cell Biology, Institute of Systems Genomics, University of Connecticut, Storrs, CT
| | - Robert M Bryan
- Department of Anesthesiology, Baylor College of Medicine, Houston, TX
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School at University of Texas Health Science Center Houston, TX
| |
Collapse
|
47
|
Immunity and Inflammation: From Jekyll to Hyde. Exp Gerontol 2018; 107:98-101. [DOI: 10.1016/j.exger.2017.11.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/19/2017] [Accepted: 11/25/2017] [Indexed: 01/13/2023]
|
48
|
Louzada ER, Ribeiro SML. Synbiotic supplementation, systemic inflammation, and symptoms of brain disorders in elders: A secondary study from a randomized clinical trial. Nutr Neurosci 2018; 23:93-100. [DOI: 10.1080/1028415x.2018.1477349] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Eliana Regina Louzada
- University of São Paulo- Graduation Program in Human Applied Nutrition, São Paulo, SP, Brazil
| | | |
Collapse
|
49
|
Gut Microbial Changes, Interactions, and Their Implications on Human Lifecycle: An Ageing Perspective. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4178607. [PMID: 29682542 PMCID: PMC5846367 DOI: 10.1155/2018/4178607] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/23/2018] [Indexed: 02/07/2023]
Abstract
Gut microbiota is established during birth and evolves with age, mostly maintaining the commensal relationship with the host. A growing body of clinical evidence suggests an intricate relationship between the gut microbiota and the immune system. With ageing, the gut microbiota develops significant imbalances in the major phyla such as the anaerobic Firmicutes and Bacteroidetes as well as a diverse range of facultative organisms, resulting in impaired immune responses. Antimicrobial therapy is commonly used for the treatment of infections; however, this may also result in the loss of normal gut flora. Advanced age, antibiotic use, underlying diseases, infections, hormonal differences, circadian rhythm, and malnutrition, either alone or in combination, contribute to the problem. This nonbeneficial gastrointestinal modulation may be reversed by judicious and controlled use of antibiotics and the appropriate use of prebiotics and probiotics. In certain persistent, recurrent settings, the option of faecal microbiota transplantation can be explored. The aim of the current review is to focus on the establishment and alteration of gut microbiota, with ageing. The review also discusses the potential role of gut microbiota in regulating the immune system, together with its function in healthy and diseased state.
Collapse
|
50
|
García-Peña C, Álvarez-Cisneros T, Quiroz-Baez R, Friedland RP. Microbiota and Aging. A Review and Commentary. Arch Med Res 2017; 48:681-689. [PMID: 29229199 DOI: 10.1016/j.arcmed.2017.11.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/15/2017] [Indexed: 12/18/2022]
Abstract
Although there is a consensus that the dominant species that make up the adult microbiota remains unchanged in elderly people, it has been reported that there are significant alterations in the proportion and composition of the different taxa, leading to reduced microbiota diversity, as well as an increase of enteropathogens that may lead to chronic inflammation. The ageing of mucosal immune and motor systems also contributes to these changes. As the individual ages, there is a loss in the number of Peyer's patches, an altered local capacity of T and B cell functions as well as chronic macrophage activation. Also, environment, diet, place of residence and biogeography are regulatory factors of the microbiota. Communication in the gut-brain-axis is regulated by many intermediaries including diverse metabolites of the microbiota. Microbial changes have been observed in several geriatric diseases, like Parkinson's and Alzheimer's. In addition, evidence has shown that individuals with high frailty scores had a significant reduction on lactobacilli species when compared to non-frail individuals. Oral microbiota may be also especially important because of the opportunities for access to the brain through the olfactory nerve at the roof of the nose or through the abundant innervations of the oral cavity by the trigeminal and other cranial nerves. Also, there are an increasing number of reports that have suggested potential mechanisms by which the microbiota promote human health span and aging. The study of the microbiota represents an important advance in the understanding of the aging process.
Collapse
Affiliation(s)
- Carmen García-Peña
- Dirección de Investigación, Instituto Nacional de Geriatría, Ciudad de México, México
| | | | - Ricardo Quiroz-Baez
- Dirección de Investigación, Instituto Nacional de Geriatría, Ciudad de México, México
| | - Robert P Friedland
- Departament of Neurology, School of Medicine, University of Louisville, Kentucky, USA.
| |
Collapse
|