1
|
Srivastava S, Ratho RK, Singh MP, Sarkar S, Pati BK. Molecular characterization and evolutionary dynamics of influenza A(H1N1) strains isolated from 2015 to 2017 in North India. IRANIAN JOURNAL OF MICROBIOLOGY 2024; 16:243-250. [PMID: 38854978 PMCID: PMC11162167 DOI: 10.18502/ijm.v16i2.15358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background and Objectives The influenza A(H1N1) virus is known for large outbreaks, epidemics and pandemics worldwide owing to its genome plasticity which evolves constantly. In the year 2015 and then in 2017, India witnessed an upsurge in cases. Materials and Methods The study was carried out in this period (2015-2017) with samples from 5 states across north India. The hemagglutinin 1 (HA1) and non-structural 1 (NS1) gene segments of the viral genome were characterised by phylogenetic analysis, selection pressure analysis, prediction of potential glycosylation sites and phylodynamic analysis of the study strains. Results The study strains belonged to genogroup 6B. A total of 12 mutations were observed, half of which were located on the key receptor binding region of the HA1 protein. Established virulence markers D222G, S183P were observed in 2017 samples. Acquisition of an extra glycosylation site was observed in few strains from 2017 and 2016. Selection pressure analysis found the average dN/dS (v) ratio of 0.2106 and few codon sites in particular showed significant evidence of being under negative selection. Conclusion The genogroup 6B continues to be the dominant circulating strain in Indian subcontinent region however the presence of pathogenic mutations in the 2017 strains from north India underlines the importance of continued molecular surveillance.
Collapse
Affiliation(s)
- Sonakshi Srivastava
- Department of Virology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
- Department of Microbiology, Hind Institute of Medical Sciences, Barabanki, India
| | - Radha Kanta Ratho
- Department of Virology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Mini P Singh
- Department of Virology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Subhabrata Sarkar
- Department of Virology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Binod K Pati
- Department of Virology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
2
|
Identification of a novel antiviral micro-RNA targeting the NS1 protein of the H1N1 pandemic human influenza virus and a corresponding viral escape mutation. Antiviral Res 2019; 171:104593. [PMID: 31470040 DOI: 10.1016/j.antiviral.2019.104593] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/22/2019] [Accepted: 08/25/2019] [Indexed: 12/20/2022]
Abstract
The influenza A virus (IAV) NS1 protein is one of the major regulators of pathogenicity, being able to suppress innate immune response and host protein synthesis. In this study we identified the human micro RNA hsa-miR-1307-3p as a novel potent suppressor of NS1 expression and influenza virus replication. Transcriptomic analysis indicates that hsa-miR-1307-3p also negatively regulates apoptosis and promotes cell proliferation. In addition, we identified a novel mutation in the NS1 gene of A(H1N1)pdm09 strains circulating in Italy in the 2010-11 season, which enabled the virus to escape the hsa-miR-1307-3p inhibition, conferring replicative advantage to the virus in human cells. To the best of our knowledge, this is the first validation of suppression of IAV H1N1 NS1 by a human micro RNA and the first example of an escape mutation from micro RNA-mediated antiviral response for the A(H1N1)pdm09 virus.
Collapse
|
3
|
Nogales A, Martinez-Sobrido L, Topham DJ, DeDiego ML. NS1 Protein Amino Acid Changes D189N and V194I Affect Interferon Responses, Thermosensitivity, and Virulence of Circulating H3N2 Human Influenza A Viruses. J Virol 2017; 91:e01930-16. [PMID: 28003482 PMCID: PMC5309952 DOI: 10.1128/jvi.01930-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/11/2016] [Indexed: 11/20/2022] Open
Abstract
Influenza virus NS1 protein is a nonstructural, multifunctional protein that counteracts host innate immune responses, modulating virus pathogenesis. NS1 protein variability in subjects infected with H3N2 influenza A viruses (IAVs) during the 2010/2011 season was analyzed, and amino acid changes in residues 86, 189, and 194 were found. The consequences of these mutations for the NS1-mediated inhibition of IFN responses and the pathogenesis of the virus were evaluated, showing that NS1 mutations D189N and V194I impaired the ability of the NS1 protein to inhibit general gene expression, most probably because these mutations decreased the binding of NS1 to the cleavage and polyadenylation specificity factor 30 (CPSF30). A recombinant A/Puerto Rico/8/34 (PR8) H1N1 virus encoding the H3N2 NS1-D189N protein was slightly attenuated, whereas the virus encoding the H3N2 NS1-V194I protein was further attenuated in mice. The higher attenuation of this virus could not be explained by differences in the ability of the two NS1 proteins to counteract host innate immune responses, indicating that another factor must be responsible. In fact, we showed that the virus encoding the H3N2 NS1-V194I protein demonstrated a temperature-sensitive (ts) phenotype, providing a most likely explanation for the stronger attenuation observed. As far as we know, this is the first description of a mutation in NS1 residue 194 conferring a ts phenotype. These studies are relevant in order to identify new residues important for NS1 functions and in human influenza virus surveillance to assess mutations affecting the pathogenicity of circulating viruses.IMPORTANCE Influenza viral infections represent a serious public health problem, with influenza virus causing a contagious respiratory disease that is most effectively prevented through vaccination. The multifunctional nonstructural protein 1 (NS1) is the main viral factor counteracting the host antiviral response. Therefore, influenza virus surveillance to identify new mutations in the NS1 protein affecting the pathogenicity of the circulating viruses is highly important. In this work, we evaluated amino acid variability in the NS1 proteins from H3N2 human seasonal viruses and the effect of the mutations on innate immune responses and virus pathogenesis. NS1 mutations D189N and V194I impaired the ability of the NS1 protein to inhibit general gene expression, and recombinant viruses harboring these mutations were attenuated in a mouse model of influenza infection. Interestingly, a virus encoding the H3N2 NS1-V194I protein demonstrated a temperature-sensitive phenotype, further attenuating the virus in vivo.
Collapse
Affiliation(s)
- Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Luis Martinez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - David J Topham
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Marta L DeDiego
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| |
Collapse
|
4
|
DeDiego ML, Nogales A, Lambert-Emo K, Martinez-Sobrido L, Topham DJ. NS1 Protein Mutation I64T Affects Interferon Responses and Virulence of Circulating H3N2 Human Influenza A Viruses. J Virol 2016; 90:9693-9711. [PMID: 27535054 PMCID: PMC5068522 DOI: 10.1128/jvi.01039-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/07/2016] [Indexed: 01/03/2023] Open
Abstract
Influenza NS1 protein is the main viral protein counteracting host innate immune responses, allowing the virus to efficiently replicate in interferon (IFN)-competent systems. In this study, we analyzed NS1 protein variability within influenza A (IAV) H3N2 viruses infecting humans during the 2012-2013 season. We also evaluated the impact of the mutations on the ability of NS1 proteins to inhibit host innate immune responses and general gene expression. Surprisingly, a previously unidentified mutation in the double-stranded RNA (dsRNA)-binding domain (I64T) decreased NS1-mediated general inhibition of host protein synthesis by decreasing its interaction with cleavage and polyadenylation specificity factor 30 (CPSF30), leading to increased innate immune responses after viral infection. Notably, a recombinant A/Puerto Rico/8/34 H1N1 virus encoding the H3N2 NS1-T64 protein was highly attenuated in mice, most likely because of its ability to induce higher antiviral IFN responses at early times after infection and because this virus is highly sensitive to the IFN-induced antiviral state. Interestingly, using peripheral blood mononuclear cells (PBMCs) collected at the acute visit (2 to 3 days after infection), we show that the subject infected with the NS1-T64 attenuated virus has diminished responses to interferon and to interferon induction, suggesting why this subject could be infected with this highly IFN-sensitive virus. These data demonstrate the importance of influenza virus surveillance in identifying new mutations in the NS1 protein, affecting its ability to inhibit innate immune responses and, as a consequence, the pathogenicity of the virus. IMPORTANCE Influenza A and B viruses are one of the most common causes of respiratory infections in humans, causing 1 billion infections and between 300,000 and 500,000 deaths annually. Influenza virus surveillance to identify new mutations in the NS1 protein affecting innate immune responses and, as a consequence, the pathogenicity of the circulating viruses is highly relevant. Here, we analyzed amino acid variability in the NS1 proteins from human seasonal viruses and the effect of the mutations in innate immune responses and virus pathogenesis. A previously unidentified mutation in the dsRNA-binding domain decreased NS1-mediated general inhibition of host protein synthesis and the interaction of the protein with CPSF30. This mutation led to increased innate immune responses after viral infection, augmented IFN sensitivity, and virus attenuation in mice. Interestingly, using PBMCs, the subject infected with the virus encoding the attenuating mutation induced decreased antiviral responses, suggesting why this subject could be infected with this virus.
Collapse
MESH Headings
- A549 Cells
- Animals
- Antiviral Agents/pharmacology
- Cell Line
- Cell Line, Tumor
- Chlorocebus aethiops
- Cleavage And Polyadenylation Specificity Factor/genetics
- HEK293 Cells
- Humans
- Immune Evasion/drug effects
- Immune Evasion/genetics
- Immunity, Innate/genetics
- Influenza A Virus, H1N1 Subtype/drug effects
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/pathogenicity
- Influenza A Virus, H3N2 Subtype/drug effects
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/pathogenicity
- Influenza, Human/virology
- Interferons/pharmacology
- Leukocytes, Mononuclear/virology
- Mutation/genetics
- RNA, Double-Stranded/genetics
- Vero Cells
- Viral Nonstructural Proteins/genetics
- Virulence/drug effects
Collapse
Affiliation(s)
- Marta L DeDiego
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, USA Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Kris Lambert-Emo
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, USA Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Luis Martinez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - David J Topham
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, USA Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| |
Collapse
|
5
|
Pedrazzoli P, Baldanti F, Donatelli I, Castrucci MR, Puglisi F, Silvestris N, Cinieri S. Vaccination for seasonal influenza in patients with cancer: recommendations of the Italian Society of Medical Oncology (AIOM). Ann Oncol 2014; 25:1243-7. [PMID: 24618150 PMCID: PMC7109906 DOI: 10.1093/annonc/mdu114] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Influenza virus causes annual epidemics in the winter–spring season with significant morbidity in the general population and important mortality in high-risk groups, including cancer patients. Opinions on the suitability of patients with malignancies not undergoing active treatment and in different phases of antineoplastic therapy, to receive influenza vaccination, vary considerably among oncologists, sometimes even within one center. Methods We reviewed available data, including recommendations by national health authorities, on impact of influenza in patients with cancer and their capacity to mount protective immunological responses to vaccination, thus allowing, on behalf of Italian Association of Medical Oncology, to make suitable recommendations for the prevention and treatment of seasonal influenza. Results and discussion Patients with cancer often have disease- or treatment-related immunosuppression, and as a consequence, they may have a suboptimal serologic response to influenza vaccination. The protective effect of the different preparations of influenza vaccines in patients with cancer has not been widely investigated, especially in adult patients harboring solid tumors. The optimal timing for administration of influenza vaccines in patients receiving chemotherapy is also not clearly defined. However, since vaccination is the most effective method, along with antiviral drugs in selected patients, for preventing influenza infection, it has to be recommended for cancer patients. Implementing vaccination of close contacts of oncology patients would be an additional tool for enhancing protection in fragile patient populations.
Collapse
Affiliation(s)
- P Pedrazzoli
- Division of Medical Oncology, Department of Hemato-oncology
| | - F Baldanti
- Molecular Virology Unit, Virology, Department of Microbiology, IRCCS Policlinico 'San Matteo' Foundation, Pavia
| | - I Donatelli
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Rome
| | - M R Castrucci
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Rome
| | - F Puglisi
- Department of Oncology, University Hospital of Udine, Udine
| | - N Silvestris
- Division of Medical Oncology, 'Giovanni Paolo II' Cancer Institute, Bari
| | - S Cinieri
- Medical Oncology Division and Breast Unit, Sen. Antonio Perrino Hospital, Brindisi, Italy
| | | |
Collapse
|
6
|
Cheng VCC, To KKW, Tse H, Hung IFN, Yuen KY. Two years after pandemic influenza A/2009/H1N1: what have we learned? Clin Microbiol Rev 2012; 25:223-63. [PMID: 22491771 PMCID: PMC3346300 DOI: 10.1128/cmr.05012-11] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The world had been anticipating another influenza pandemic since the last one in 1968. The pandemic influenza A H1N1 2009 virus (A/2009/H1N1) finally arrived, causing the first pandemic influenza of the new millennium, which has affected over 214 countries and caused over 18,449 deaths. Because of the persistent threat from the A/H5N1 virus since 1997 and the outbreak of the severe acute respiratory syndrome (SARS) coronavirus in 2003, medical and scientific communities have been more prepared in mindset and infrastructure. This preparedness has allowed for rapid and effective research on the epidemiological, clinical, pathological, immunological, virological, and other basic scientific aspects of the disease, with impacts on its control. A PubMed search using the keywords "pandemic influenza virus H1N1 2009" yielded over 2,500 publications, which markedly exceeded the number published on previous pandemics. Only representative works with relevance to clinical microbiology and infectious diseases are reviewed in this article. A significant increase in the understanding of this virus and the disease within such a short amount of time has allowed for the timely development of diagnostic tests, treatments, and preventive measures. These findings could prove useful for future randomized controlled clinical trials and the epidemiological control of future pandemics.
Collapse
Affiliation(s)
- Vincent C C Cheng
- Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | | | | | | | | |
Collapse
|
7
|
Bavagnoli L, Dundon WG, Garbelli A, Zecchin B, Milani A, Parakkal G, Baldanti F, Paolucci S, Volmer R, Tu Y, Wu C, Capua I, Maga G. The PDZ-ligand and Src-homology type 3 domains of epidemic avian influenza virus NS1 protein modulate human Src kinase activity during viral infection. PLoS One 2011; 6:e27789. [PMID: 22110760 PMCID: PMC3215730 DOI: 10.1371/journal.pone.0027789] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 10/25/2011] [Indexed: 01/29/2023] Open
Abstract
The Non-structural 1 (NS1) protein of avian influenza (AI) viruses is important for pathogenicity. Here, we identify a previously unrecognized tandem PDZ-ligand (TPL) domain in the extreme carboxy terminus of NS1 proteins from a subset of globally circulating AI viruses. By using protein arrays we have identified several human PDZ-cellular ligands of this novel domain, one of which is the RIL protein, a known regulator of the cellular tyrosine kinase Src. We found that the AI NS1 proteins bind and stimulate human Src tyrosine kinase, through their carboxy terminal Src homology type 3-binding (SHB) domain. The physical interaction between NS1 and Src and the ability of AI viruses to modulate the phosphorylation status of Src during the infection, were found to be influenced by the TPL arrangement. These results indicate the potential for novel host-pathogen interactions mediated by the TPL and SHB domains of AI NS1 protein.
Collapse
Affiliation(s)
- Laura Bavagnoli
- Institute of Molecular Genetics National Research Council, Pavia, Italy
| | - William G. Dundon
- World Organization for Animal Health, Food and Agriculture Organization and National Reference Laboratory for Newcastle Disease and Avian Influenza, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Anna Garbelli
- Institute of Molecular Genetics National Research Council, Pavia, Italy
| | - Bianca Zecchin
- World Organization for Animal Health, Food and Agriculture Organization and National Reference Laboratory for Newcastle Disease and Avian Influenza, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Adelaide Milani
- World Organization for Animal Health, Food and Agriculture Organization and National Reference Laboratory for Newcastle Disease and Avian Influenza, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Geetha Parakkal
- Institute of Molecular Genetics National Research Council, Pavia, Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Virology and Microbiology, Fondazione Istituto Ricovero e Cura a Carattere Scientifico Policlinico S. Matteo, Pavia, Italy
| | - Stefania Paolucci
- Molecular Virology Unit, Virology and Microbiology, Fondazione Istituto Ricovero e Cura a Carattere Scientifico Policlinico S. Matteo, Pavia, Italy
| | - Romain Volmer
- Université de Toulouse, Institut National Polytechnique, Ecole Nationale de Veterinaire, Unitè Mixte de Recherche 1225, Interactions Hotes-Agents Pathogènes, Toulouse, France
| | - Yizeng Tu
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Chuanyue Wu
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ilaria Capua
- World Organization for Animal Health, Food and Agriculture Organization and National Reference Laboratory for Newcastle Disease and Avian Influenza, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Giovanni Maga
- Institute of Molecular Genetics National Research Council, Pavia, Italy
| |
Collapse
|