1
|
Yoo J, Shin JC, Lim KB, Kim SH, Kim HS, Kim SH, Baek D, Jo S, Kim J, Baek A, Cho SR. Exposure to an enriched environment modulates the synaptic vesicle cycle in a mouse spinal cord injury model. Sci Rep 2024; 14:11946. [PMID: 38789574 PMCID: PMC11126684 DOI: 10.1038/s41598-024-62112-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Spinal cord injury (SCI) leads to motor and sensory impairment below the site of injury, thereby necessitating rehabilitation. An enriched environment (EE) increases social interaction and locomotor activity in a mouse model, similar to human rehabilitation. However, the impact of EE on presynaptic plasticity in gene expression levels remains unclear. Hence, this study aimed to investigate the therapeutic potential of EE in an SCI mouse model. Mice with spinal cord contusion were divided into two groups: those housed in standard cages (control) and those in EE conditions (EE). Each group was housed separately for either 2- or 8-weeks post-injury, after which RNA sequencing was performed and compared to a sham group (receiving only a dorsal laminectomy). The synaptic vesicle cycle (SVC) pathway and related genes showed significant downregulation after SCI at both time points. Subsequently, we investigated whether exposure to EE for 2- and 8-weeks post-SCI could modulate the SVC pathway and its related genes. Notably, exposure to EE for 8 weeks resulted in a marked reversal effect of SVC-related gene expression, along with stimulation of axon regeneration and mitigation of locomotor activity loss. Thus, prolonged exposure to EE increased presynaptic activity, fostering axon regeneration and functional improvement by modulating the SVC in the SCI mouse model. These findings suggest that EE exposure proves effective in inducing activity-dependent plasticity, offering a promising therapeutic approach akin to rehabilitation training in patients with SCI.
Collapse
Affiliation(s)
- Jeehyun Yoo
- Department of Rehabilitation Medicine, Ilsan Paik Hospital, Inje University, Gyeonggi-do, South Korea
- Department of Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji Cheol Shin
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Kil-Byung Lim
- Department of Rehabilitation Medicine, Ilsan Paik Hospital, Inje University, Gyeonggi-do, South Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyun Seok Kim
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, South Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Hoon Kim
- Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Dawoon Baek
- Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Seongmoon Jo
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Jinyoung Kim
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Graduate Program of Biomedical Engineering, Yonsei University College of Medicine, Seoul, South Korea
| | - Ahreum Baek
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea.
- Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea.
| | - Sung-Rae Cho
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea.
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea.
- Graduate Program of Biomedical Engineering, Yonsei University College of Medicine, Seoul, South Korea.
- Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
2
|
Zhang ZL, Wu ZY, Liu FY, Hang-YuChen, Zhai SD. Tetrandrine alleviates oxaliplatin-induced mechanical allodynia via modulation of inflammation-related genes. Front Mol Neurosci 2024; 17:1333842. [PMID: 38419796 PMCID: PMC10899404 DOI: 10.3389/fnmol.2024.1333842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/18/2024] [Indexed: 03/02/2024] Open
Abstract
Oxaliplatin, a platinum-based chemotherapy drug, causes neuropathic pain, yet effective pharmacological treatments are lacking. Previously, we showed that tetrandrine (TET), with anti-inflammatory properties, reduces mechanical allodynia in nerve-injured mice. This study explores the effect of TET on oxaliplatin-induced mechanical allodynia and gene changes in mice. Male C57BL/6J mice received oxaliplatin intraperitoneally to induce mechanical allodynia. Post-treatment with TET or vehicle, the mechanical withdrawal threshold (WMT) was assessed using von Frey filaments. TET alleviated oxaliplatin-induced mechanical allodynia. RNA sequencing identified 365 differentially expressed genes (DEGs) in the Control vs. Oxaliplatin group and 229 DEGs in the Oxaliplatin vs. TET group. Pearson correlation analysis of co-regulated DEGs and inflammation-related genes (IRGs) revealed 104 co-regulated inflammation-related genes (Co-IRGs) (|cor| > 0.8, P < 0.01). The top 30 genes in the PPI network were identified. Arg2, Cxcl12, H2-Q6, Kdr, and Nfkbia were highlighted based on ROC analysis. Subsequently, Arg2, Cxcl12, Kdr, and Nfkbia were further verified by qRCR. Immune infiltration analysis indicated increased follicular CD4 T cell infiltration in oxaliplatin-treated mice, reduced by TET. Molecular docking showed strong binding affinity between TET and proteins encoded by Arg2, Cxcl12, Kdr, and Nfkbia. In summary, TET may alleviate oxaliplatin-induced peripheral neuropathy in clinical conditions.
Collapse
Affiliation(s)
- Zhi-Ling Zhang
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| | - Zi-Yang Wu
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| | - Feng-Yu Liu
- Key Laboratory for Neuroscience, Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Ministry of Education/National Health Commission, Peking University, Beijing, China
| | - Hang-YuChen
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| | - Suo-Di Zhai
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| |
Collapse
|
3
|
Jang K, Garraway SM. A review of dorsal root ganglia and primary sensory neuron plasticity mediating inflammatory and chronic neuropathic pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100151. [PMID: 38314104 PMCID: PMC10837099 DOI: 10.1016/j.ynpai.2024.100151] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/04/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024]
Abstract
Pain is a sensory state resulting from complex integration of peripheral nociceptive inputs and central processing. Pain consists of adaptive pain that is acute and beneficial for healing and maladaptive pain that is often persistent and pathological. Pain is indeed heterogeneous, and can be expressed as nociceptive, inflammatory, or neuropathic in nature. Neuropathic pain is an example of maladaptive pain that occurs after spinal cord injury (SCI), which triggers a wide range of neural plasticity. The nociceptive processing that underlies pain hypersensitivity is well-studied in the spinal cord. However, recent investigations show maladaptive plasticity that leads to pain, including neuropathic pain after SCI, also exists at peripheral sites, such as the dorsal root ganglia (DRG), which contains the cell bodies of sensory neurons. This review discusses the important role DRGs play in nociceptive processing that underlies inflammatory and neuropathic pain. Specifically, it highlights nociceptor hyperexcitability as critical to increased pain states. Furthermore, it reviews prior literature on glutamate and glutamate receptors, voltage-gated sodium channels (VGSC), and brain-derived neurotrophic factor (BDNF) signaling in the DRG as important contributors to inflammatory and neuropathic pain. We previously reviewed BDNF's role as a bidirectional neuromodulator of spinal plasticity. Here, we shift focus to the periphery and discuss BDNF-TrkB expression on nociceptors, non-nociceptor sensory neurons, and non-neuronal cells in the periphery as a potential contributor to induction and persistence of pain after SCI. Overall, this review presents a comprehensive evaluation of large bodies of work that individually focus on pain, DRG, BDNF, and SCI, to understand their interaction in nociceptive processing.
Collapse
Affiliation(s)
- Kyeongran Jang
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| | - Sandra M. Garraway
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
4
|
Cuevas-Diaz Duran R, Li Y, Garza Carbajal A, You Y, Dessauer CW, Wu J, Walters ET. Major Differences in Transcriptional Alterations in Dorsal Root Ganglia Between Spinal Cord Injury and Peripheral Neuropathic Pain Models. J Neurotrauma 2023; 40:883-900. [PMID: 36178348 PMCID: PMC10150729 DOI: 10.1089/neu.2022.0238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chronic, often intractable, pain is caused by neuropathic conditions such as traumatic peripheral nerve injury (PNI) and spinal cord injury (SCI). These conditions are associated with alterations in gene and protein expression correlated with functional changes in somatosensory neurons having cell bodies in dorsal root ganglia (DRGs). Most studies of DRG transcriptional alterations have utilized PNI models where axotomy-induced changes important for neural regeneration may overshadow changes that drive neuropathic pain. Both PNI and SCI produce DRG neuron hyperexcitability linked to pain, but contusive SCI produces little peripheral axotomy or peripheral nerve inflammation. Thus, comparison of transcriptional signatures of DRGs across PNI and SCI models may highlight pain-associated transcriptional alterations in sensory ganglia that do not depend on peripheral axotomy or associated effects such as peripheral Wallerian degeneration. Data from our rat thoracic SCI experiments were combined with meta-analysis of published whole-DRG RNA-seq datasets from prominent rat PNI models. Striking differences were found between transcriptional responses to PNI and SCI, especially in regeneration-associated genes (RAGs) and long noncoding RNAs (lncRNAs). Many transcriptomic changes after SCI also were found after corresponding sham surgery, indicating they were caused by injury to surrounding tissue, including bone and muscle, rather than to the spinal cord itself. Another unexpected finding was of few transcriptomic similarities between rat neuropathic pain models and the only reported transcriptional analysis of human DRGs linked to neuropathic pain. These findings show that DRGs exhibit complex transcriptional responses to central and peripheral neural injury and associated tissue damage. Although only a few genes in DRG cells exhibited similar changes in expression across all the painful conditions examined here, these genes may represent a core set whose transcription in various DRG cell types is sensitive to significant bodily injury, and which may play a fundamental role in promoting neuropathic pain.
Collapse
Affiliation(s)
- Raquel Cuevas-Diaz Duran
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo Leon, Mexico
| | - Yong Li
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Anibal Garza Carbajal
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yanan You
- Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, Texas, USA
| | - Carmen W. Dessauer
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jiaqian Wu
- Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, Texas, USA
| | - Edgar T. Walters
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
5
|
Li S, Feng X, Bian H. Optogenetics: Emerging strategies for neuropathic pain treatment. Front Neurol 2022; 13:982223. [PMID: 36536805 PMCID: PMC9758006 DOI: 10.3389/fneur.2022.982223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/10/2022] [Indexed: 10/13/2023] Open
Abstract
Neuropathic pain (NP) is a chronic health condition that presents a significant burden on patients, society, and even healthcare systems. However, in recent years, an emerging field in the treatment of neuropathic pain - optogenetic technology has dawned, heralding a new era in the field of medicine, and which has brought with it unlimited possibilities for studying the mechanism of NP and the treatment of research. Optogenetics is a new and growing field that uses the combination of light and molecular genetics for the first time ever. This rare combination is used to control the activity of living cells by expressing photosensitive proteins to visualize signaling events and manipulate cell activity. The treatments for NP are limited and have hardly achieved the desirable efficacy. NP differs from other types of pain, such as nociceptive pain, in that the treatments for NP are far more complex and highly challenging for clinical practice. This review presents the background of optogenetics, current applications in various fields, and the findings of optogenetics in NP. It also elaborates on the basic concepts of neuropathy, therapeutic applications, and the potential of optogenetics from the bench to the bedside in the near future.
Collapse
Affiliation(s)
- Siyu Li
- Department of Physiology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, China
| | - Xiaoli Feng
- Department of Physiology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Hui Bian
- Department of Physiology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
6
|
Huang J, Lin F, Hu Y, Bloe CB, Wang D, Zhang W. From Initiation to Maintenance: HIV-1 Gp120-induced Neuropathic Pain Exhibits Different Molecular Mechanisms in the Mouse Spinal Cord Via Bioinformatics Analysis Based on RNA Sequencing. J Neuroimmune Pharmacol 2022; 17:553-575. [PMID: 35059976 DOI: 10.1007/s11481-021-10044-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/09/2021] [Indexed: 01/13/2023]
Abstract
Human immunodeficiency virus (HIV), which causes acquired immunodeficiency syndrome (AIDS), remains one of the most diverse crucial health and development challenges around the world. People infected with HIV constitute a large patient population, and a significant number of them experience neuropathic pain. To study the key mechanisms that mediate HIV-induced neuropathic pain (HNP), we established an HNP mouse model via intrathecal injection of the HIV-1 envelope glycoprotein gp120. The L3~L5 spinal cord was isolated on postoperative days 1/12 (POD1/12), 1 (POD1), and 14 (POD14) for RNA sequencing to investigate the gene expression profiles of the initiation, transition, and maintenance stages of HNP. A total of 1682, 430, and 413 differentially expressed genes were obtained in POD1/12, POD1, and POD14, respectively, and their similarity was low. Bioinformatics analysis confirmed that POD1/12, POD1, and POD14 exhibited different biological processes and signaling pathways. Inflammation, oxidative damage, apoptosis, and inflammation-related signaling pathways were enriched on POD1/12. Inflammation, chemokine activity, and downstream signaling regulated by proinflammatory cytokines, such as the MTOR signaling pathway, were enriched on POD1, while downregulation of ion channel activity, mitochondrial damage, endocytosis, MAPK and neurotrophic signaling pathways developed on POD14. Additionally, we screened key genes and candidate genes, which were verified at the transcriptional and translational levels. Our results suggest that the initiation and maintenance of HNP are regulated by different molecular mechanisms. Therefore, our research may yield a fresh and deeper understanding of the mechanisms underlying HNP, providing accurate molecular targets for HNP therapy.
Collapse
Affiliation(s)
- Jian Huang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Fei Lin
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Yanling Hu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Chris Bloe Bloe
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Dan Wang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Wenping Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Xu L, Chen Z, Li X, Xu H, Zhang Y, Yang W, Chen J, Zhang S, Xu L, Zhou S, Li G, Yu B, Gu X, Yang J. Integrated analyses reveal evolutionarily conserved and specific injury response genes in dorsal root ganglion. Sci Data 2022; 9:666. [PMID: 36323676 PMCID: PMC9630366 DOI: 10.1038/s41597-022-01783-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/17/2022] [Indexed: 01/24/2023] Open
Abstract
Rodent dorsal root ganglion (DRG) is widely used for studying axonal injury. Extensive studies have explored genome-wide profiles on rodent DRGs under peripheral nerve insults. However, systematic integration and exploration of these data still be limited. Herein, we re-analyzed 21 RNA-seq datasets and presented a web-based resource (DRGProfile). We identified 53 evolutionarily conserved injury response genes, including well-known injury genes (Atf3, Npy and Gal) and less-studied transcriptional factors (Arid5a, Csrnp1, Zfp367). Notably, we identified species-preference injury response candidates (e.g. Gpr151, Lipn, Anxa10 in mice; Crisp3, Csrp3, Vip, Hamp in rats). Temporal profile analysis reveals expression patterns of genes related to pre-regenerative and regenerating states. Finally, we found a large sex difference in response to sciatic nerve injury, and identified four male-specific markers (Uty, Eif2s3y, Kdm5d, Ddx3y) expressed in DRG. Our study provides a comprehensive integrated landscape for expression change in DRG upon injury which will greatly contribute to the neuroscience community.
Collapse
Affiliation(s)
- Lian Xu
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Zhifeng Chen
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Xiaodi Li
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Xu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yu Zhang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiwei Yang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Chen
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Shuqiang Zhang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Lingchi Xu
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Songlin Zhou
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Guicai Li
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Bin Yu
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China.
- Nanjing University of Chinese Medicine, Nanjing, China.
| | - Jian Yang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
8
|
Matsui Y, Kadoya K, Nagano Y, Endo T, Hara M, Matsumae G, Suzuki T, Yamamoto Y, Terkawi MA, Iwasaki N. IL4 stimulated macrophages promote axon regeneration after peripheral nerve injury by secreting uPA to stimulate uPAR upregulated in injured axons. Cell Mol Life Sci 2022; 79:289. [PMID: 35536429 PMCID: PMC11072050 DOI: 10.1007/s00018-022-04310-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/03/2022] [Accepted: 04/14/2022] [Indexed: 12/19/2022]
Abstract
Accumulating evidences suggest that M2 macrophages are involved with repair processes in the nervous system. However, whether M2 macrophages can promote axon regeneration by directly stimulating axons nor its precise molecular mechanism remains elusive. Here, the current study demonstrated that typical M2 macrophages, which were generated by IL4 simulation, had the capacity to stimulate axonal growth by their direct effect on axons and that the graft of IL4 stimulated macrophages into the region of Wallerian degeneration enhanced axon regeneration and improved functional recovery after PNI. Importantly, uPA (urokinase plasminogen activator)-uPA receptor (uPAR) was identified as the central axis underlying the axon regeneration effect of IL4 stimulated macrophages. IL4 stimulated macrophages secreted uPA, and its inhibition abolished their axon regeneration effect. Injured but not intact axons expressed uPAR to be sensitive to uPA. These results unveil a cellular and molecular mechanism underlying the macrophage related axon regeneration and provide a basis of a novel therapy for PNI.
Collapse
Affiliation(s)
- Yuki Matsui
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Ken Kadoya
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan.
| | - Yusuke Nagano
- Department of Orthopaedic Surgery, National Hospital Organization, Hokkaido Medical Center, Sapporo, Japan
| | - Takeshi Endo
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Masato Hara
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Gen Matsumae
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Tomoaki Suzuki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Yasuhiro Yamamoto
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Mohamad Alaa Terkawi
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| |
Collapse
|
9
|
Kim MA, Lee EJ, Yang W, Shin HY, Kim YH, Kim JH. Identification of a novel gene signature in second-trimester amniotic fluid for the prediction of preterm birth. Sci Rep 2022; 12:3085. [PMID: 35361790 PMCID: PMC8971495 DOI: 10.1038/s41598-021-04709-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 11/30/2021] [Indexed: 11/09/2022] Open
Abstract
Preterm birth affects approximately 5% to 7% of live births worldwide and is the leading cause of neonatal morbidity and mortality. Amniotic fluid supernatant (AFS) contains abundant cell-free nucleic acids (cfNAs) that can provide genetic information associated with pregnancy complications. In the current study, cfNAs of AFS in the early second-trimester before the onset of symptoms of preterm birth were analyzed, and we compared gene expression levels between spontaneous preterm birth (n = 5) and term birth (n = 5) groups using sequencing analysis. Differential expression analyses detected 24 genes with increased and 6 genes with decreased expression in the preterm birth group compared to term birth. Upregulated expressions of RDH14, ZNF572, VOPP1, SERPINA12, and TCF15 were validated in an extended AFS sample by quantitative PCR (preterm birth group, n = 21; term birth group, n = 40). Five candidate genes displayed a significant increase in mRNA expression in immortalized trophoblast HTR-8/SVneo cell with H2O2 treatment. Moreover, the expression of five candidate genes was increased to more than twofold by pretreatment with lipopolysaccharide in HTR-8/SVneo cells. Changes in gene expression between preterm birth and term birth is strongly correlated with oxidative stress and infection during pregnancy. Specific expression patterns of genes could be used as potential markers for the early identification of women at risk of having a spontaneous preterm birth.
Collapse
Affiliation(s)
- Min-A Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Eun-Ju Lee
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Wookyeom Yang
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Ha-Yeon Shin
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Young-Han Kim
- Department of Obstetrics and Gynecology, Severance Hospital, Institute of Women's Life Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
10
|
Su XJ, Shen BD, Wang K, Song QX, Yang X, Wu DS, Shen HX, Zhu C. Roles of the Neuron-Restrictive Silencer Factor in the Pathophysiological Process of the Central Nervous System. Front Cell Dev Biol 2022; 10:834620. [PMID: 35300407 PMCID: PMC8921553 DOI: 10.3389/fcell.2022.834620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 11/29/2022] Open
Abstract
The neuron-restrictive silencer factor (NRSF), also known as repressor element 1 (RE-1) silencing transcription factor (REST) or X2 box repressor (XBR), is a zinc finger transcription factor that is widely expressed in neuronal and non-neuronal cells. It is a master regulator of the nervous system, and the function of NRSF is the basis of neuronal differentiation, diversity, plasticity, and survival. NRSF can bind to the neuron-restrictive silencer element (NRSE), recruit some co-repressors, and then inhibit transcription of NRSE downstream genes through epigenetic mechanisms. In neurogenesis, NRSF functions not only as a transcriptional silencer that can mediate the transcriptional inhibition of neuron-specific genes in non-neuronal cells and thus give neuron cells specificity, but also as a transcriptional activator to induce neuronal differentiation. Many studies have confirmed the association between NRSF and brain disorders, such as brain injury and neurodegenerative diseases. Overexpression, underexpression, or mutation may lead to neurological disorders. In tumorigenesis, NRSF functions as an oncogene in neuronal tumors, such as neuroblastomas, medulloblastomas, and pheochromocytomas, stimulating their proliferation, which results in poor prognosis. Additionally, NRSF-mediated selective targets gene repression plays an important role in the development and maintenance of neuropathic pain caused by nerve injury, cancer, and diabetes. At present, several compounds that target NRSF or its co-repressors, such as REST-VP16 and X5050, have been shown to be clinically effective against many brain diseases, such as seizures, implying that NRSF and its co-repressors may be potential and promising therapeutic targets for neural disorders. In the present review, we introduced the biological characteristics of NRSF; reviewed the progress to date in understanding the roles of NRSF in the pathophysiological processes of the nervous system, such as neurogenesis, brain disorders, neural tumorigenesis, and neuropathic pain; and suggested new therapeutic approaches to such brain diseases.
Collapse
Affiliation(s)
- Xin-Jin Su
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Bei-Duo Shen
- Department of Spine Surgery, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Kun Wang
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qing-Xin Song
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xue Yang
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - De-Sheng Wu
- Department of Spine Surgery, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Hong-Xing Shen
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Zhu
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Felix R, Muñoz-Herrera D, Corzo-López A, Fernández-Gallardo M, Leyva-Leyva M, González-Ramírez R, Sandoval A. Ion channel long non-coding RNAs in neuropathic pain. Pflugers Arch 2022; 474:457-468. [PMID: 35235008 DOI: 10.1007/s00424-022-02675-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023]
Abstract
Neuropathic pain is one of the primary forms of chronic pain and is the consequence of the somatosensory system's direct injury or disease. It is a relevant public health problem that affects about 10% of the world's general population. In neuropathic pain, alteration in neurotransmission occurs at various levels, including the dorsal root ganglia, the spinal cord, and the brain, resulting from the malfunction of diverse molecules such as receptors, ion channels, and elements of specific intracellular signaling pathways. In this context, there have been exciting advances in elucidating neuropathic pain's cellular and molecular mechanisms in the last decade, including the possible role that long non-coding RNAs (lncRNAs) may play, which open up new alternatives for the development of diagnostic and therapeutic strategies for this condition. This review focuses on recent studies associated with the possible relevance of lncRNAs in the development and maintenance of neuropathic pain through their actions on the functional expression of ion channels. Recognizing the changes in the function and spatio-temporal patterns of expression of these membrane proteins is crucial to understanding the control of neuronal excitability in chronic pain syndromes.
Collapse
Affiliation(s)
- Ricardo Felix
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), 07360, Mexico City, Mexico.
| | - David Muñoz-Herrera
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), 07360, Mexico City, Mexico
| | - Alejandra Corzo-López
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), 07360, Mexico City, Mexico
| | | | - Margarita Leyva-Leyva
- Department of Molecular Biology and Histocompatibility, "Dr. Manuel Gea González" General Hospital, Mexico City, Mexico
| | - Ricardo González-Ramírez
- Department of Molecular Biology and Histocompatibility, "Dr. Manuel Gea González" General Hospital, Mexico City, Mexico
| | - Alejandro Sandoval
- School of Medicine FES Iztacala, National Autonomous University of Mexico (UNAM), Tlalnepantla, Mexico
| |
Collapse
|
12
|
Nuñez R, Rodriguez MJ, Palomares F, Gomez F, Jabato FM, Cordoba-Caballero J, Seoane P, Losada J, Rojo J, Torres MJ, Perkins JR, Mayorga C. Transcriptional changes in dendritic cells underlying allergen specific induced tolerance in a mouse model. Sci Rep 2022; 12:2797. [PMID: 35181694 PMCID: PMC8857182 DOI: 10.1038/s41598-022-06186-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
To investigate food allergy-tolerance mechanisms induced through allergen-specific immunotherapy we used RNA-Sequencing to measure gene expression in lymph-node-derived dendritic cells from Pru p 3-anaphylactic mice after immunotherapy with glycodendropeptides at 2 nM and 5 nM, leading to permanent tolerance and short-term desensitization, respectively. Gene expression was also measured in mice receiving no immunotherapy (anaphylaxis); and in which anaphylaxis could never occur (antigen-only). Compared to anaphylaxis, the antigen-only group showed the greatest number of expression-changes (411), followed by tolerant (186) and desensitized (119). Only 29 genes changed in all groups, including Il12b, Cebpb and Ifngr1. The desensitized group showed enrichment for genes related to chronic inflammatory response, secretory granule, and regulation of interleukin-12 production; the tolerant group showed genes related to cytokine receptor activity and glucocorticoid receptor binding, suggesting distinct pathways for similar outcomes. We identified genes and processes potentially involved in the restoration of long-term tolerance via allergen-specific immunotherapy, representing potential prognostic biomarkers.
Collapse
Affiliation(s)
- Rafael Nuñez
- Allergy Research Group, Research Laboratory, Allergy Unit, Hospital Regional Universitario de Málaga-IBIMA, Instituto de Investigación Biomédica de Málaga-IBIMA, 29009, Málaga, Spain
| | - Maria Jose Rodriguez
- Allergy Research Group, Research Laboratory, Allergy Unit, Hospital Regional Universitario de Málaga-IBIMA, Instituto de Investigación Biomédica de Málaga-IBIMA, 29009, Málaga, Spain
| | - Francisca Palomares
- Allergy Research Group, Research Laboratory, Allergy Unit, Hospital Regional Universitario de Málaga-IBIMA, Instituto de Investigación Biomédica de Málaga-IBIMA, 29009, Málaga, Spain
| | - Francisca Gomez
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Fernando M Jabato
- Department of Molecular Biology and Biochemistry, University of Malaga, Malaga, Spain
| | | | - Pedro Seoane
- Department of Molecular Biology and Biochemistry, University of Malaga, Malaga, Spain
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Jorge Losada
- Laboratory of Carbohydrates, Instituto de Investigaciones Químicas (IIQ), CSIC-Universidad de Sevilla, Sevilla, Spain
| | - Javier Rojo
- Laboratory of Carbohydrates, Instituto de Investigaciones Químicas (IIQ), CSIC-Universidad de Sevilla, Sevilla, Spain
| | - Maria Jose Torres
- Allergy Research Group, Research Laboratory, Allergy Unit, Hospital Regional Universitario de Málaga-IBIMA, Instituto de Investigación Biomédica de Málaga-IBIMA, 29009, Málaga, Spain
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, Málaga, Spain
- Nanostructures for Diagnosing and Treatment of Allergic Diseases Laboratory, Centro Andaluz de Nanomedicina y Biotecnología-BIONAND, Málaga, Spain
- Medicine Department, Universidad de Málaga-UMA, Málaga, Spain
| | - James Richard Perkins
- Allergy Research Group, Research Laboratory, Allergy Unit, Hospital Regional Universitario de Málaga-IBIMA, Instituto de Investigación Biomédica de Málaga-IBIMA, 29009, Málaga, Spain
- Department of Molecular Biology and Biochemistry, University of Malaga, Malaga, Spain
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristobalina Mayorga
- Allergy Research Group, Research Laboratory, Allergy Unit, Hospital Regional Universitario de Málaga-IBIMA, Instituto de Investigación Biomédica de Málaga-IBIMA, 29009, Málaga, Spain.
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, Málaga, Spain.
- Nanostructures for Diagnosing and Treatment of Allergic Diseases Laboratory, Centro Andaluz de Nanomedicina y Biotecnología-BIONAND, Málaga, Spain.
| |
Collapse
|
13
|
Zhang C, Hu MW, Wang XW, Cui X, Liu J, Huang Q, Cao X, Zhou FQ, Qian J, He SQ, Guan Y. scRNA-sequencing reveals subtype-specific transcriptomic perturbations in DRG neurons of PirtEGFPf mice in neuropathic pain condition. eLife 2022; 11:76063. [PMID: 36264609 PMCID: PMC9584610 DOI: 10.7554/elife.76063] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 10/03/2022] [Indexed: 01/22/2023] Open
Abstract
Functionally distinct subtypes/clusters of dorsal root ganglion (DRG) neurons may play different roles in nerve regeneration and pain. However, details about their transcriptomic changes under neuropathic pain conditions remain unclear. Chronic constriction injury (CCI) of the sciatic nerve represents a well-established model of neuropathic pain, and we conducted single-cell RNA-sequencing (scRNA-seq) to characterize subtype-specific perturbations of transcriptomes in lumbar DRG neurons on day 7 post-CCI. By using PirtEGFPf mice that selectively express an enhanced green fluorescent protein in DRG neurons, we established a highly efficient purification process to enrich neurons for scRNA-seq. We observed the emergence of four prominent CCI-induced clusters and a loss of marker genes in injured neurons. Importantly, a portion of injured neurons from several clusters were spared from injury-induced identity loss, suggesting subtype-specific transcriptomic changes in injured neurons. Moreover, uninjured neurons, which are necessary for mediating the evoked pain, also demonstrated cell-type-specific transcriptomic perturbations in these clusters, but not in others. Notably, male and female mice showed differential transcriptomic changes in multiple neuronal clusters after CCI, suggesting transcriptomic sexual dimorphism in DRG neurons after nerve injury. Using Fgf3 as a proof-of-principle, RNAscope study provided further evidence of increased Fgf3 in injured neurons after CCI, supporting scRNA-seq analysis, and calcium imaging study unraveled a functional role of Fgf3 in neuronal excitability. These findings may contribute to the identification of new target genes and the development of DRG neuron cell-type-specific therapies for optimizing neuropathic pain treatment and nerve regeneration.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Ming-Wen Hu
- Department of Ophthalmology, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Xue-Wei Wang
- Department of Orthopaedic Surgery, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Xiang Cui
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Jing Liu
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Qian Huang
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Xu Cao
- Department of Orthopaedic Surgery, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Feng-Quan Zhou
- Department of Orthopaedic Surgery, The Johns Hopkins University School of MedicineBaltimoreUnited States,The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Jiang Qian
- Department of Ophthalmology, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Shao-Qiu He
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of MedicineBaltimoreUnited States,Department of Neurological Surgery, The Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
14
|
Chernov AV, Shubayev VI. Sexual Dimorphism of Early Transcriptional Reprogramming in Dorsal Root Ganglia After Peripheral Nerve Injury. Front Mol Neurosci 2021; 14:779024. [PMID: 34966260 PMCID: PMC8710713 DOI: 10.3389/fnmol.2021.779024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/19/2021] [Indexed: 01/18/2023] Open
Abstract
Peripheral nerve injury induces genome-wide transcriptional reprogramming of first-order neurons and auxiliary cells of dorsal root ganglia (DRG). Accumulating experimental evidence suggests that onset and mechanistic principles of post-nerve injury processes are sexually dimorphic. We examined largely understudied aspects of early transcriptional events in DRG within 24 h after sciatic nerve axotomy in mice of both sexes. Using high-depth RNA sequencing (>50 million reads/sample) to pinpoint sexually dimorphic changes related to regeneration, immune response, bioenergy, and sensory functions, we identified a higher number of transcriptional changes in male relative to female DRG. In males, the decline in ion channel transcripts was accompanied by the induction of innate immune cascades via TLR, chemokine, and Csf1-receptor axis and robust regenerative programs driven by Sox, Twist1/2, and Pax5/9 transcription factors. Females demonstrated nerve injury-specific transcriptional co-activation of the actinin 2 network. The predicted upstream regulators and interactive networks highlighted the role of novel epigenetic factors and genetic linkage to sex chromosomes as hallmarks of gene regulation post-axotomy. We implicated epigenetic X chromosome inactivation in the regulation of immune response activity uniquely in females. Sexually dimorphic regulation of MMP/ADAMTS metalloproteinases and their intrinsic X-linked regulator Timp1 contributes to extracellular matrix remodeling integrated with pro-regenerative and immune functions. Lexis1 non-coding RNA involved in LXR-mediated lipid metabolism was identified as a novel nerve injury marker. Together, our data identified unique early response triggers of sex-specific peripheral nerve injury regulation to gain mechanistic insights into the origin of female- and male-prevalent sensory neuropathies.
Collapse
Affiliation(s)
- Andrei V Chernov
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States.,VA San Diego Healthcare System, San Diego, CA, United States
| | - Veronica I Shubayev
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States.,VA San Diego Healthcare System, San Diego, CA, United States
| |
Collapse
|
15
|
Korczeniewska OA, James MH, Eliav T, Katzmann Rider G, Mehr JB, Affendi H, Aston-Jones G, Benoliel R. Chemogenetic inhibition of trigeminal ganglion neurons attenuates behavioural and neural pain responses in a model of trigeminal neuropathic pain. Eur J Pain 2021; 26:634-647. [PMID: 34767278 DOI: 10.1002/ejp.1887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Nerve injury can lead to ectopic activation of injured nociceptorsand central sensitization characterized by allodynia and hyperalgesia. Reduction in the activity of primary afferent neurons has been shown to be sufficient in alleviating peripherally generated pain. The cell bodies of such trigeminal nociceptors are located in the trigeminal ganglia (TG) with central processes that terminate in the brainstem trigeminal nucleus caudalis (TNC). The TG is therefore a strategic locus where afferent input can be manipulated. We hypothesized that chemogenetic inhibition of TG would suppress TNC neuronal activity and attenuate pain behaviour in a rat model of painful traumatic trigeminal neuropathy (PTTN). METHODS Trigeminal neuropathic pain was induced in adult male Sprague-Dawley rats (n = 24) via chronic constriction injury to the infraorbital nerve (ION-CCI). Naïve and sham rats were used as controls (n = 20/group). Rats within each group received TG-directed microinjections of AAV virus containing either the inhibitory hM4Di-DREADD construct or EGFP. RESULTS In the ION-CCI group, systemic administration of the DREADD agonist clozapine N-oxide (CNO) reversed the hypersensitivity phenotype in animals expressing hM4Di but not EGFP. CNO-mediated activation of hM4Di DREADD in ION-CCI animals was also associated with reduced Fos expression in the TNC elicited by repeated mechanical stimulation of the dermatome ipsilateral to the injury. There was no effect of CNO on pain behaviour or TNC Fos expression in eGFP animals. CONCLUSION Our results indicate that DREADDs may offer an effective therapeutic approach for treatment of trigeminal neuropathic pain. SIGNIFICANCE Trigeminal neuropathic pain is highly resistant to therapy and we are in dire need of novel approaches. This study provides further evidence for the successful application of DREADDs as an effective tool for modulating central nervous system function. CNO mediated activation of hM4Di-DREADDs in the trigeminal ganglion (TG) attenuates nerve injury induced neuropathic pain by acting on hyperactive TG cells. It also establishes the TG as an effective target to manage pain in the face and head. Accessing the TG in clinical populations is a relatively simple and safe procedure, making this approach highly significant. Moreover, the methodology described here has applications in trigeminal neuropathic pain from traumatic other etiologies and in spinal neuropathic pain. Chronic pain syndromes are characterized by a progressive failure of brain centers to adequately inhibit pain and as these are identified, we may be able to target them for therapy. Therefore, our findings might have wide application in chronic pain syndromes.
Collapse
Affiliation(s)
- Olga A Korczeniewska
- Center for Orofacial Pain and Temporomandibular Disorders, Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Rutgers University, Newark, New Jersey, USA.,Brain Health Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Morgan H James
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA.,Brain Health Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Tali Eliav
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA
| | - Giannina Katzmann Rider
- Center for Orofacial Pain and Temporomandibular Disorders, Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Rutgers University, Newark, New Jersey, USA
| | - Jacqueline B Mehr
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA.,Brain Health Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Hafsa Affendi
- Center for Orofacial Pain and Temporomandibular Disorders, Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Rutgers University, Newark, New Jersey, USA
| | - Gary Aston-Jones
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA.,Brain Health Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Rafael Benoliel
- Center for Orofacial Pain and Temporomandibular Disorders, Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Rutgers University, Newark, New Jersey, USA.,Brain Health Institute, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
16
|
Yang L, Tochitsky I, Woolf CJ, Renthal W. Isolation of Nuclei from Mouse Dorsal Root Ganglia for Single-nucleus Genomics. Bio Protoc 2021; 11:e4102. [PMID: 34458396 DOI: 10.21769/bioprotoc.4102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 11/02/2022] Open
Abstract
Primary somatosensory neurons, whose cell bodies reside in the dorsal root ganglion (DRG) and trigeminal ganglion, are specialized to transmit sensory information from the periphery to the central nervous system. Our molecular understanding of peripheral sensory neurons has been limited by both their heterogeneity and low abundance compared with non-neuronal cell types in sensory ganglia. We describe a protocol to isolate nuclei from mouse DRGs using iodixanol density gradient centrifugation, which enriches for neuronal nuclei while still sampling non-neuronal cells such as satellite glia and Schwann cells. This protocol is compatible with a range of downstream applications such as single-nucleus transcriptional and epigenomic assays.
Collapse
Affiliation(s)
- Lite Yang
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Ivan Tochitsky
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, USA
| | - William Renthal
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| |
Collapse
|
17
|
Application of Bioinformatics Methods to Identify Key Genes and Functions in Chronic Pelvic Pain. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:7257405. [PMID: 34381521 PMCID: PMC8352682 DOI: 10.1155/2021/7257405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/19/2021] [Indexed: 11/17/2022]
Abstract
Neuropathologic pain (NPP) occurs in most patients with chronic pelvic pain (CPP), and the unique physiological characteristics of visceral sensory neurons make the current analgesic effect of CPP patients not optimistic. Therefore, this study explored the possible biological characteristics of key genes in CPP through the bioinformatics method. CPP-related dataset GSE131619 was downloaded from Gene Expression Omnibus to investigate the differentially expressed genes (DEGs) between lumbar dorsal root ganglia (DRG) and sacral DRG, and the functional enrichment analysis was performed. A protein-protein interaction (PPI) network was constructed to search subnet modules of specific biological processes, and then, the genes in the subnet were enriched by single gene set analysis. A CPP mouse model was established, and the expression of key genes were identified by qPCR. The results showed that 127 upregulated DEGs and 103 downregulated DEGs are identified. Functional enrichment analysis showed that most of the genes involved in signal transduction were involved in the pathway of receptor interaction. A subnet module related to neural signal regulation was identified in PPI, including CHRNB4, CHRNA3, and CHRNB2. All three genes were associated with neurological or inflammatory activity and are downregulated in the sacral spinal cord of CPP mice. This study provided three key candidate genes for CPP: CHRNB4, CHRNA3, and CHRNB2, which may be involved in the occurrence and development of CPP, and provided a powerful molecular target for the clinical diagnosis and treatment of CPP.
Collapse
|
18
|
Tran PV, Johns ME, McAdams B, Abrahante JE, Simone DA, Banik RK. Global transcriptome analysis of rat dorsal root ganglia to identify molecular pathways involved in incisional pain. Mol Pain 2021; 16:1744806920956480. [PMID: 32909881 PMCID: PMC7493244 DOI: 10.1177/1744806920956480] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
To develop non-opioid therapies for postoperative incisional pain, we must understand its underlying molecular mechanisms. In this study, we assessed global gene expression changes in dorsal root ganglia neurons in a model of incisional pain to identify pertinent molecular pathways. Male, Sprague-Dawley rats underwent infiltration of 1% capsaicin or vehicle into the plantar hind paw (n = 6-9/group) 30 min before plantar incision. Twenty-four hours after incision or sham (control) surgery, lumbar L4-L6 dorsal root ganglias were collected from rats pretreated with vehicle or capsaicin. RNA was isolated and sequenced by next generation sequencing. The genes were then annotated to functional networks using a knowledge-based database, Ingenuity Pathway Analysis. In rats pretreated with vehicle, plantar incision caused robust hyperalgesia, up-regulated 36 genes and downregulated 90 genes in dorsal root ganglias one day after plantar incision. Capsaicin pretreatment attenuated pain behaviors, caused localized denervation of the dermis and epidermis, and prevented the incision-induced changes in 99 of 126 genes. The pathway analyses showed altered gene networks related to increased pro-inflammatory and decreased anti-inflammatory responses in dorsal root ganglias. Insulin-like growth factor signaling was identified as one of the major gene networks involved in the development of incisional pain. Expression of insulin-like growth factor -2 and IGFBP6 in dorsal root ganglia were independently validated with quantitative real-time polymerase chain reaction. We discovered a distinct subset of dorsal root ganglia genes and three key signaling pathways that are altered 24 h after plantar incision but are unchanged when incision was made after capsaicin infiltration in the skin. Further exploration of molecular mechanisms of incisional pain may yield novel therapeutic targets.
Collapse
Affiliation(s)
- Phu V Tran
- Department of Pediatrics, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Malcolm E Johns
- Department of Anesthesiology, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Brian McAdams
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Juan E Abrahante
- Informatics Institute, University of Minnesota, Minneapolis, MN, USA
| | - Donald A Simone
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Ratan K Banik
- Department of Anesthesiology, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
19
|
Wack G, Metzner K, Kuth MS, Wang E, Bresnick A, Brandes RP, Schröder K, Wittig I, Schmidtko A, Kallenborn-Gerhardt W. Nox4-dependent upregulation of S100A4 after peripheral nerve injury modulates neuropathic pain processing. Free Radic Biol Med 2021; 168:155-167. [PMID: 33789124 DOI: 10.1016/j.freeradbiomed.2021.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/23/2021] [Accepted: 03/17/2021] [Indexed: 11/24/2022]
Abstract
Previous studies suggested that reactive oxygen species (ROS) produced by NADPH oxidase 4 (Nox4) affect the processing of neuropathic pain. However, mechanisms underlying Nox4-dependent pain signaling are incompletely understood. In this study, we aimed to identify novel Nox4 downstream interactors in the nociceptive system. Mice lacking Nox4 specifically in sensory neurons were generated by crossing Advillin-Cre mice with Nox4fl/fl mice. Tissue-specific deletion of Nox4 in sensory neurons considerably reduced mechanical hypersensitivity and neuronal action potential firing after peripheral nerve injury. Using a proteomic approach, we detected various proteins that are regulated in a Nox4-dependent manner after injury, including the small calcium-binding protein S100A4. Immunofluorescence staining and Western blot experiments confirmed that S100A4 expression is massively up-regulated in peripheral nerves and dorsal root ganglia after injury. Furthermore, mice lacking S100A4 showed increased mechanical hypersensitivity after peripheral nerve injury and after delivery of a ROS donor. Our findings suggest that S100A4 expression is up-regulated after peripheral nerve injury in a Nox4-dependent manner and that deletion of S100A4 leads to an increased neuropathic pain hypersensitivity.
Collapse
Affiliation(s)
- Gesine Wack
- Institute of Pharmacology and Clinical Pharmacy, Goethe University, 60438 Frankfurt am Main, Germany
| | - Katharina Metzner
- Institute of Pharmacology and Clinical Pharmacy, Goethe University, 60438 Frankfurt am Main, Germany
| | - Miriam S Kuth
- Institute of Pharmacology and Clinical Pharmacy, Goethe University, 60438 Frankfurt am Main, Germany
| | - Elena Wang
- Institute of Pharmacology and Clinical Pharmacy, Goethe University, 60438 Frankfurt am Main, Germany
| | - Anne Bresnick
- Albert Einstein College of Medicine, Department of Biochemistry, Bronx, NY 10461, USA
| | - Ralf P Brandes
- Institute of Cardiovascular Physiology, Goethe University, 60590 Frankfurt am Main, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, 60590 Frankfurt am Main, Germany
| | - Katrin Schröder
- Institute of Cardiovascular Physiology, Goethe University, 60590 Frankfurt am Main, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, 60590 Frankfurt am Main, Germany
| | - Ilka Wittig
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, 60590 Frankfurt am Main, Germany; Functional Proteomics, ZBC, Medical School, Goethe University, 60590 Frankfurt am Main, Germany; Cluster of Excellence "Macromolecular Complexes", Goethe University, 60590 Frankfurt am Main, Germany
| | - Achim Schmidtko
- Institute of Pharmacology and Clinical Pharmacy, Goethe University, 60438 Frankfurt am Main, Germany
| | | |
Collapse
|
20
|
Long Acellular Nerve Allografts Cap Transected Nerve to Arrest Axon Regeneration and Alter Upstream Gene Expression in a Rat Neuroma Model. Plast Reconstr Surg 2021; 148:32e-41e. [PMID: 34014904 DOI: 10.1097/prs.0000000000008051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Treatments to manage painful neuroma are needed. An operative strategy that isolates and controls chaotic axonal growth could prevent neuroma. Using long acellular nerve allograft to "cap" damaged nerve could control axonal regeneration and, in turn, regulate upstream gene expression patterns. METHODS Rat sciatic nerve was transected, and the distal nerve end was reversed and ligated to generate a model end-neuroma. Three groups were used to assess their effects immediately following this nerve injury: no treatment (control), traction neurectomy, or 5-cm acellular nerve allograft cap attached to the proximal nerve. Regeneration of axons from the injured nerve was assessed over 5 months and paired with concurrent measurements of gene expression from upstream affected dorsal root ganglia. RESULTS Both control and traction neurectomy groups demonstrated uncontrolled axon regeneration revealed using Thy1-GFP rat axon imaging and histomorphometric measures of regenerated axons within the most terminal region of regenerated tissue. The acellular nerve allograft group arrested axons within the acellular nerve allograft, where no axons reached the most terminal region even after 5 months. At 5 months, gene expression associated with regeneration and pain sensitization, including Bdnf, cfos, and Gal, was decreased within dorsal root ganglia obtained from the acellular nerve allograft group compared to control or traction neurectomy group dorsal root ganglia. CONCLUSIONS Long acellular nerve allografts to cap a severed nerve arrested axon regeneration within the acellular nerve allograft. This growth arrest corresponded with changes in regenerative and pain-related genes upstream. Acellular nerve allografts may be useful for surgical intervention of neuroma.
Collapse
|
21
|
Abstract
Supplemental Digital Content is Available in the Text. Analysis of multiple rodent RNAseq after nerve injury reveals a common gene signature, with suppression of endogenous opioid signalling and overlap with human pain genes The dorsal root ganglia (DRG) are key structures in nociception and chronic pain disorders. Several gene expression studies of DRG in preclinical pain models have been performed, but it is unclear if consistent gene changes are identifiable. We, therefore, compared several recent RNA-Seq data sets on the whole DRG in rodent models of nerve injury. Contrary to previous findings, we show hundreds of common differentially expressed genes and high positive correlation between studies, despite model and species differences. We also find, in contrast to previous studies, that 60% of the common rodent gene response after injury is likely to occur in nociceptors of the DRG. Substantial expression changes are observed at a 1-week time-point, with smaller changes in the same genes at a later 3- to 4-week time-point. However, a subset of genes shows a similar magnitude of changes at both early and late time-points, suggesting their potential involvement in the maintenance of chronic pain. These genes are centred around suppression of endogenous opioid signalling. Reversal of this suppression could allow endogenous and exogenous opioids to exert their analgesic functions and may be an important strategy for treating chronic pain disorders. Currently used drugs, such as amitriptyline and duloxetine, do not seem to appropriately modulate many of the critical pain genes and indeed may transcriptionally suppress endogenous opioid signalling further.
Collapse
|
22
|
Hong T, Wood I, Hunter DA, Yan Y, Mackinnon SE, Wood MD, Moore AM. Neuroma Management: Capping Nerve Injuries With an Acellular Nerve Allograft Can Limit Axon Regeneration. Hand (N Y) 2021; 16:157-163. [PMID: 31137979 PMCID: PMC8041431 DOI: 10.1177/1558944719849115] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Management of painful neuromas continues to challenge clinicians. Controlling axon growth to prevent neuroma has gained considerable traction. A logical extension of this idea is to therefore develop an approach to control and arrest axon growth. Given the limits in axonal regeneration across acellular nerve allografts (ANAs), these constructs could provide a means to reliably terminate axon regeneration from an injured nerve. The purpose of this study was to determine if attaching an ANA to an injured nerve could provide a means to control and limit axon regeneration in a predictable manner. Methods: Twenty (20) adult rats received a sciatic nerve transection, where only the proximal nerve was repaired using an ANA of variable length (0.5, 2.5, and 5.0 cm) or left unrepaired (control). The nerves were harvested 5 weeks post-operatively for gross and histomorphometric analysis. The extent of myelinated axons in regenerated tissue was quantified. Results: At 5 weeks, limited axon regeneration within the ANAs was observed. All lengths of ANAs lead to reduced myelinated axon numbers in the most terminal tissue region compared to untreated injured nerve (P = .002). Additionally, ANA length 2.5 cm or greater did not contain any axons at the most terminal tissue region. Conclusions: This study demonstrates a proof of concept that ANAs attached to the proximal end of an injured nerve can limit axon growth in a controlled manner. Furthermore, the extent of axon growth from the injured nerve into the ANA is dependent on the ANA length.
Collapse
Affiliation(s)
- Thomas Hong
- Washington University School of Medicine, St. Louis, MO, USA
| | - Ian Wood
- Washington University School of Medicine, St. Louis, MO, USA
| | | | - Ying Yan
- Washington University School of Medicine, St. Louis, MO, USA
| | | | - Matthew D. Wood
- Washington University School of Medicine, St. Louis, MO, USA
| | - Amy M. Moore
- Washington University School of Medicine, St. Louis, MO, USA,Amy M. Moore, Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8238, St. Louis, MO 63110, USA.
| |
Collapse
|
23
|
Systematic comparison and assessment of RNA-seq procedures for gene expression quantitative analysis. Sci Rep 2020; 10:19737. [PMID: 33184454 PMCID: PMC7665074 DOI: 10.1038/s41598-020-76881-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/03/2020] [Indexed: 01/16/2023] Open
Abstract
RNA-seq is currently considered the most powerful, robust and adaptable technique for measuring gene expression and transcription activation at genome-wide level. As the analysis of RNA-seq data is complex, it has prompted a large amount of research on algorithms and methods. This has resulted in a substantial increase in the number of options available at each step of the analysis. Consequently, there is no clear consensus about the most appropriate algorithms and pipelines that should be used to analyse RNA-seq data. In the present study, 192 pipelines using alternative methods were applied to 18 samples from two human cell lines and the performance of the results was evaluated. Raw gene expression signal was quantified by non-parametric statistics to measure precision and accuracy. Differential gene expression performance was estimated by testing 17 differential expression methods. The procedures were validated by qRT-PCR in the same samples. This study weighs up the advantages and disadvantages of the tested algorithms and pipelines providing a comprehensive guide to the different methods and procedures applied to the analysis of RNA-seq data, both for the quantification of the raw expression signal and for the differential gene expression.
Collapse
|
24
|
Linher-Melville K, Shah A, Singh G. Sex differences in neuro(auto)immunity and chronic sciatic nerve pain. Biol Sex Differ 2020; 11:62. [PMID: 33183347 PMCID: PMC7661171 DOI: 10.1186/s13293-020-00339-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/20/2020] [Indexed: 01/13/2023] Open
Abstract
Chronic pain occurs with greater frequency in women, with a parallel sexually dimorphic trend reported in sufferers of many autoimmune diseases. There is a need to continue examining neuro-immune-endocrine crosstalk in the context of sexual dimorphisms in chronic pain. Several phenomena in particular need to be further explored. In patients, autoantibodies to neural antigens have been associated with sensory pathway hyper-excitability, and the role of self-antigens released by damaged nerves remains to be defined. In addition, specific immune cells release pro-nociceptive cytokines that directly influence neural firing, while T lymphocytes activated by specific antigens secrete factors that either support nerve repair or exacerbate the damage. Modulating specific immune cell populations could therefore be a means to promote nerve recovery, with sex-specific outcomes. Understanding biological sex differences that maintain, or fail to maintain, neuroimmune homeostasis may inform the selection of sex-specific treatment regimens, improving chronic pain management by rebalancing neuroimmune feedback. Given the significance of interactions between nerves and immune cells in the generation and maintenance of neuropathic pain, this review focuses on sex differences and possible links with persistent autoimmune activity using sciatica as an example.
Collapse
Affiliation(s)
- Katja Linher-Melville
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada
| | - Anita Shah
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gurmit Singh
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
25
|
Zhang Z, Wan J, Liu X, Zhang W. Strategies and technologies for exploring long noncoding RNAs in heart failure. Biomed Pharmacother 2020; 131:110572. [PMID: 32836073 DOI: 10.1016/j.biopha.2020.110572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/23/2020] [Accepted: 07/26/2020] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNA (lncRNA) was once considered to be the "noise" of genome transcription without biological function. However, increasing evidence shows that lncRNA is dynamically expressed in developmental stage or disease status, playing a regulatory role in the process of gene expression and translation. In recent years, lncRNA is considered to be a core node of functional regulatory networks that controls cardiac and also involves in multiple process of heart failure such as myocardial hypertrophy, fibrosis, angiogenesis, etc., which would be a therapeutic target for diseases. In fact, it is the development of technology that has improved our understanding of lncRNAs and broadened our perspective on heart failure. From transcriptional "noise" to star molecule, progress of lncRNAs can't be achieved without the combination of multidisciplinary technologies, especially the emergence of high-throughput approach. Thus, here, we review the strategies and technologies available for the exploration lncRNAs and try to yield insights into the prospect of lncRNAs in clinical diagnosis and treatment in heart failure.
Collapse
Affiliation(s)
- Zhen Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jingjing Wan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Xia Liu
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Weidong Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China; School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
26
|
Renthal W, Tochitsky I, Yang L, Cheng YC, Li E, Kawaguchi R, Geschwind DH, Woolf CJ. Transcriptional Reprogramming of Distinct Peripheral Sensory Neuron Subtypes after Axonal Injury. Neuron 2020; 108:128-144.e9. [PMID: 32810432 PMCID: PMC7590250 DOI: 10.1016/j.neuron.2020.07.026] [Citation(s) in RCA: 307] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/27/2020] [Accepted: 07/22/2020] [Indexed: 12/27/2022]
Abstract
Primary somatosensory neurons are specialized to transmit specific types of sensory information through differences in cell size, myelination, and the expression of distinct receptors and ion channels, which together define their transcriptional and functional identity. By profiling sensory ganglia at single-cell resolution, we find that all somatosensory neuronal subtypes undergo a similar transcriptional response to peripheral nerve injury that both promotes axonal regeneration and suppresses cell identity. This transcriptional reprogramming, which is not observed in non-neuronal cells, resolves over a similar time course as target reinnervation and is associated with the restoration of original cell identity. Injury-induced transcriptional reprogramming requires ATF3, a transcription factor that is induced rapidly after injury and necessary for axonal regeneration and functional recovery. Our findings suggest that transcription factors induced early after peripheral nerve injury confer the cellular plasticity required for sensory neurons to transform into a regenerative state.
Collapse
Affiliation(s)
- William Renthal
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd., Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA.
| | - Ivan Tochitsky
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, 3 Blackfan Cir., Boston, MA 02115, USA
| | - Lite Yang
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd., Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, 3 Blackfan Cir., Boston, MA 02115, USA
| | - Yung-Chih Cheng
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, 3 Blackfan Cir., Boston, MA 02115, USA
| | - Emmy Li
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA
| | - Riki Kawaguchi
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Clifford J Woolf
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, 3 Blackfan Cir., Boston, MA 02115, USA.
| |
Collapse
|
27
|
Kim HK, Lee SY, Koike N, Kim E, Wirianto M, Burish MJ, Yagita K, Lee HK, Chen Z, Chung JM, Abdi S, Yoo SH. Circadian regulation of chemotherapy-induced peripheral neuropathic pain and the underlying transcriptomic landscape. Sci Rep 2020; 10:13844. [PMID: 32796949 PMCID: PMC7427990 DOI: 10.1038/s41598-020-70757-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022] Open
Abstract
Growing evidence demonstrates circadian rhythms of pain hypersensitivity in various chronic disorders. In chemotherapy-induced peripheral neuropathy (CIPN), agents such as paclitaxel are known to elicit chronic neuropathic pain in cancer patients and seriously compromise their quality of life. Here, we report that the mechanical threshold for allodynia in paclitaxel-treated rats exhibited a robust circadian oscillation, reaching the nadir during the daytime (inactive phase). Using Per2::LucSV circadian reporter mice expressing a PER2::LUC fusion protein, we isolated dorsal root ganglia (DRG), the primary sensory cell body for peripheral nerve injury generated hypersensitivity, and monitored ex vivo reporter bioluminescence. We observed strong circadian reporter rhythms in DRG neurons which are highly entrainable by external cues. Paclitaxel treatment significantly lengthened DRG circadian periods, with little effects on the amplitude of oscillation. We further observed the core protein BMAL1 and PER2 in DRG neurons and satellite cells. Using DRG and dorsal horn (DH; another key structure for CIPN pain response) tissues from vehicle and paclitaxel treated rats, we performed RNA-sequencing and identified diurnal expression of core clock genes as well as clock-controlled genes in both sites. Interestingly, 20.1% and 30.4% of diurnal differentially expressed genes (DEGs) overlapped with paclitaxel-induced DEGs in the DRG and the DH respectively. In contrast, paclitaxel-induced DEGs displayed only a modest overlap between daytime and nighttime (Zeitgeber Time 8 and 20). Furthermore, paclitaxel treatment induced de novo diurnal DEGs, suggesting reciprocal interaction of circadian rhythms and chemotherapy. Our study therefore demonstrates a circadian oscillation of CIPN and its underlying transcriptomic landscape.
Collapse
Affiliation(s)
- Hee Kee Kim
- Division of Anesthesiology, Critical Care and Pain Medicine, Department of Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sun-Yeul Lee
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center At Houston, 6431 Fannin St., Houston, TX, 77030, USA
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon, South Korea
| | - Nobuya Koike
- Department of Physiology and Systems Bioscience, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Eunju Kim
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center At Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Marvin Wirianto
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center At Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Mark J Burish
- Department of Neurosurgery, The University of Texas Health Science Center at Houston, 6400 Fannin St., Houston, TX, 77030, USA
| | - Kazuhiro Yagita
- Department of Physiology and Systems Bioscience, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hyun Kyoung Lee
- Department of Pediatrics, Baylor College of Medicine, Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center At Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Jin Mo Chung
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX, USA
| | - Salahadin Abdi
- Division of Anesthesiology, Critical Care and Pain Medicine, Department of Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center At Houston, 6431 Fannin St., Houston, TX, 77030, USA.
| |
Collapse
|
28
|
Schmalzl J, Plumhoff P, Gilbert F, Gohlke F, Konrads C, Brunner U, Jakob F, Ebert R, Steinert AF. The inflamed biceps tendon as a pain generator in the shoulder: A histological and biomolecular analysis. J Orthop Surg (Hong Kong) 2020; 27:2309499018820349. [PMID: 30739571 DOI: 10.1177/2309499018820349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
INTRODUCTION The long head of the biceps (LHB) is often resected in shoulder surgery. However, its contribution to inflammatory processes in the shoulder remains unclear. In the present study, inflamed and noninflamed human LHBs were comparatively characterized for features of inflammation. MATERIALS AND METHODS Twenty-two resected LHB tendons were classified into inflamed ( n = 11) and noninflamed ( n = 11) samples. For histological examination, samples were stained with hematoxylin eosin, Azan, van Gieson, and Masson Goldner trichrome. Neuronal tissue was immunohistochemically visualized. In addition, specific inflammatory marker gene expression of primary LHB-derived cell cultures were analyzed. RESULTS Features of tendinopathy, such as collagen disorganization, infiltration by inflammatory cells, neovascularization, and extensive neuronal innervation were found in the tendinitis group. Compared to noninflamed samples, inflamed LHBs showed a significantly increased inflammatory marker gene expression. CONCLUSION Structural and biomolecular differences of both groups suggest that the LHB tendon acts as an important pain generator in the shoulder joint. These findings can, on the one hand, contribute to the understanding of the biomolecular genesis of LHB tendinitis and, on the other hand, provide possibilities for new therapeutic approaches.
Collapse
Affiliation(s)
- J Schmalzl
- 1 Department of Orthopaedic Surgery, Julius Maximilians University of Wuerzburg, Wuerzburg, Germany.,2 Department of Traumatology and Hand Surgery, St. Vincentius Clinic, Suedendstraße Karlsruhe, Germany
| | - P Plumhoff
- 1 Department of Orthopaedic Surgery, Julius Maximilians University of Wuerzburg, Wuerzburg, Germany
| | - F Gilbert
- 1 Department of Orthopaedic Surgery, Julius Maximilians University of Wuerzburg, Wuerzburg, Germany.,3 Department of Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - F Gohlke
- 1 Department of Orthopaedic Surgery, Julius Maximilians University of Wuerzburg, Wuerzburg, Germany.,4 Clinic for Shoulder Surgery, Rhoen Klinikum AG, Bad Neustadt/Saale, Germany
| | - C Konrads
- 1 Department of Orthopaedic Surgery, Julius Maximilians University of Wuerzburg, Wuerzburg, Germany
| | - U Brunner
- 5 Department of Orthopaedic and Trauma Surgery, Norbert-Kerkel-Platz, Krankenhaus Agatharied GmbH, Hausham, Germany
| | - F Jakob
- 1 Department of Orthopaedic Surgery, Julius Maximilians University of Wuerzburg, Wuerzburg, Germany
| | - R Ebert
- 1 Department of Orthopaedic Surgery, Julius Maximilians University of Wuerzburg, Wuerzburg, Germany
| | - A F Steinert
- 1 Department of Orthopaedic Surgery, Julius Maximilians University of Wuerzburg, Wuerzburg, Germany.,5 Department of Orthopaedic and Trauma Surgery, Norbert-Kerkel-Platz, Krankenhaus Agatharied GmbH, Hausham, Germany
| |
Collapse
|
29
|
Abstract
Chronic pain is a major clinical problem of which the mechanisms are incompletely understood. Here, we describe the concept that PI16, a protein of unknown function mainly produced by fibroblasts, controls neuropathic pain. The spared nerve injury (SNI) model of neuropathic pain increases PI16 protein levels in fibroblasts in dorsal root ganglia (DRG) meninges and in the epi/perineurium of the sciatic nerve. We did not detect PI16 expression in neurons or glia in spinal cord, DRG, and nerve. Mice deficient in PI16 are protected against neuropathic pain. In vitro, PI16 promotes transendothelial leukocyte migration. In vivo, Pi16 -/- mice show reduced endothelial barrier permeability, lower leukocyte infiltration and reduced activation of the endothelial barrier regulator MLCK, and reduced phosphorylation of its substrate MLC2 in response to SNI. In summary, our findings support a model in which PI16 promotes neuropathic pain by mediating a cross-talk between fibroblasts and the endothelial barrier leading to barrier opening, cellular influx, and increased pain. Its key role in neuropathic pain and its limited cellular and tissue distribution makes PI16 an attractive target for pain management.
Collapse
|
30
|
Karu K, Swanwick RS, Novejarque-Gadea A, Antunes-Martins A, Thomas B, Yoshimi E, Foster W, Fang M, McMahon SB, Bennett DLH, Rice ASC, Okuse K. Quantitative Proteomic Analysis of the Central Amygdala in Neuropathic Pain Model Rats. J Proteome Res 2020; 19:1592-1619. [DOI: 10.1021/acs.jproteome.9b00805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kersti Karu
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Richard S. Swanwick
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Amparo Novejarque-Gadea
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW10 9NH, U.K
| | - Ana Antunes-Martins
- The Wolfson Centre for Age-Related Diseases, King’s College London, Guy’s Campus, London SE1 1UL, U.K
| | - Benjamin Thomas
- Central Proteomics Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, U.K
| | - Eiji Yoshimi
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, U.K
| | - William Foster
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Min Fang
- Public Health England, London SE1 8UG, U.K
| | - Stephen B. McMahon
- The Wolfson Centre for Age-Related Diseases, King’s College London, Guy’s Campus, London SE1 1UL, U.K
| | - David L. H. Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, U.K
| | - Andrew S. C. Rice
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW10 9NH, U.K
| | - Kenji Okuse
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, U.K
| |
Collapse
|
31
|
Sapio MR, Iadarola MJ, Loydpierson AJ, Kim JJ, Thierry-Mieg D, Thierry-Mieg J, Maric D, Mannes AJ. Dynorphin and Enkephalin Opioid Peptides and Transcripts in Spinal Cord and Dorsal Root Ganglion During Peripheral Inflammatory Hyperalgesia and Allodynia. THE JOURNAL OF PAIN 2020; 21:988-1004. [PMID: 31931229 DOI: 10.1016/j.jpain.2020.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 10/30/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022]
Abstract
Understanding molecular alterations associated with peripheral inflammation is a critical factor in selectively controlling acute and persistent pain. The present report employs in situ hybridization of the 2 opioid precursor mRNAs coupled with quantitative measurements of 2 peptides derived from the prodynorphin and proenkephalin precursor proteins: dynorphin A 1-8 and [Met5]-enkephalin-Arg6-Gly7-Leu8. In dorsal spinal cord ipsilateral to the inflammation, dynorphin A 1-8 was elevated after inflammation, and persisted as long as the inflammation was sustained. Qualitative identification by high performance liquid chromatography and gel permeation chromatography revealed the major immunoreactive species in control and inflamed extracts to be dynorphin A 1-8. In situ hybridization in spinal cord after administration of the inflammatory agent, carrageenan, showed increased expression of prodynorphin (Pdyn) mRNA somatotopically in medial superficial dorsal horn neurons. The fold increase in preproenkephalin mRNA (Penk) was comparatively lower, although the basal expression is substantially higher than Pdyn. While Pdyn is not expressed in the dorsal root ganglion (DRG) in basal conditions, it can be induced by nerve injury, but not by inflammation alone. A bioinformatic meta-analysis of multiple nerve injury datasets confirmed Pdyn upregulation in DRG across different nerve injury models. These data support the idea that activation of endogenous opioids, notably dynorphin, is a dynamic indicator of persistent pain states in spinal cord and of nerve injury in DRG. PERSPECTIVE: This is a systematic, quantitative assessment of dynorphin and enkephalin peptides and mRNA in dorsal spinal cord and DRG neurons in response to peripheral inflammation and axotomy. These studies form the foundational framework for understanding how endogenous spinal opioid peptides are involved in nociceptive circuit modulation.
Collapse
Affiliation(s)
- Matthew R Sapio
- Department of Perioperative Medicine, National Institutes of Health, Clinical Center, Bethesda, Maryland
| | - Michael J Iadarola
- Department of Perioperative Medicine, National Institutes of Health, Clinical Center, Bethesda, Maryland.
| | - Amelia J Loydpierson
- Department of Perioperative Medicine, National Institutes of Health, Clinical Center, Bethesda, Maryland
| | - Jenny J Kim
- Department of Perioperative Medicine, National Institutes of Health, Clinical Center, Bethesda, Maryland
| | - Danielle Thierry-Mieg
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland
| | - Jean Thierry-Mieg
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Andrew J Mannes
- Department of Perioperative Medicine, National Institutes of Health, Clinical Center, Bethesda, Maryland
| |
Collapse
|
32
|
Sosanya NM, Kumar R, Clifford JL, Chavez R, Dimitrov G, Srinivasan S, Gautam A, Trevino AV, Williams M, Hammamieh R, Cheppudira BP, Christy RJ, Crimmins SL. Identifying Plasma Derived Extracellular Vesicle (EV) Contained Biomarkers in the Development of Chronic Neuropathic Pain. THE JOURNAL OF PAIN 2020; 21:82-96. [DOI: 10.1016/j.jpain.2019.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/09/2019] [Accepted: 05/24/2019] [Indexed: 12/29/2022]
|
33
|
Liu K, Wang L. Optogenetics: Therapeutic spark in neuropathic pain. Bosn J Basic Med Sci 2019; 19:321-327. [PMID: 30995901 DOI: 10.17305/bjbms.2019.4114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/11/2019] [Indexed: 01/14/2023] Open
Abstract
Optogenetics is an emerging field, which uses light and molecular genetics to manipulate the activity of live cells by expressing light-sensitive proteins. With the discovery of bacteriorhodopsin, a light-sensitive bacterial protein, in 1971 Oesterhelt and Stoeckenius laid the pavement of optogenetics. However, the cross-integration of different disciplines is a little more than a decade old. The toolbox contains fluorescent sensors and optogenetic actuators that enable visualization of signaling events and manipulation of cellular activities, respectively. Neuropathic pain is pain caused either by damage or disease that affects the somatosensory system. The exact mechanism for neuropathic pain is not known, however proposed mechanisms include immune reactions, ion channel expressions, and inflammation. Current regimen for the disease provides about 50% relief for only 40-60% of patients. Recent in vivo and in vitro studies demonstrate the potential therapeutic applications of optogenetics by manipulating the activity of neurons. This review summarizes the basic concept, therapeutic applications for neuropathy, and potential of optogenetics to reach from bench to bedside in the near future.
Collapse
Affiliation(s)
- Kang Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.
| | | |
Collapse
|
34
|
Bennett DL, Clark AJ, Huang J, Waxman SG, Dib-Hajj SD. The Role of Voltage-Gated Sodium Channels in Pain Signaling. Physiol Rev 2019; 99:1079-1151. [DOI: 10.1152/physrev.00052.2017] [Citation(s) in RCA: 256] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acute pain signaling has a key protective role and is highly evolutionarily conserved. Chronic pain, however, is maladaptive, occurring as a consequence of injury and disease, and is associated with sensitization of the somatosensory nervous system. Primary sensory neurons are involved in both of these processes, and the recent advances in understanding sensory transduction and human genetics are the focus of this review. Voltage-gated sodium channels (VGSCs) are important determinants of sensory neuron excitability: they are essential for the initial transduction of sensory stimuli, the electrogenesis of the action potential, and neurotransmitter release from sensory neuron terminals. Nav1.1, Nav1.6, Nav1.7, Nav1.8, and Nav1.9 are all expressed by adult sensory neurons. The biophysical characteristics of these channels, as well as their unique expression patterns within subtypes of sensory neurons, define their functional role in pain signaling. Changes in the expression of VGSCs, as well as posttranslational modifications, contribute to the sensitization of sensory neurons in chronic pain states. Furthermore, gene variants in Nav1.7, Nav1.8, and Nav1.9 have now been linked to human Mendelian pain disorders and more recently to common pain disorders such as small-fiber neuropathy. Chronic pain affects one in five of the general population. Given the poor efficacy of current analgesics, the selective expression of particular VGSCs in sensory neurons makes these attractive targets for drug discovery. The increasing availability of gene sequencing, combined with structural modeling and electrophysiological analysis of gene variants, also provides the opportunity to better target existing therapies in a personalized manner.
Collapse
Affiliation(s)
- David L. Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Alex J. Clark
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Jianying Huang
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Stephen G. Waxman
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Sulayman D. Dib-Hajj
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
35
|
Martínez-Navarro M, Lara-Mayorga I, Negrete R, Bilecki W, Wawrzczak-Bargieła A, Gonçalves L, Dickenson A, Przewłocki R, Baños J, Maldonado R. Influence of behavioral traits in the inter-individual variability of nociceptive, emotional and cognitive manifestations of neuropathic pain. Neuropharmacology 2019; 148:291-304. [DOI: 10.1016/j.neuropharm.2019.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/20/2022]
|
36
|
Ray P, Torck A, Quigley L, Wangzhou A, Neiman M, Rao C, Lam T, Kim JY, Kim TH, Zhang MQ, Dussor G, Price TJ. Comparative transcriptome profiling of the human and mouse dorsal root ganglia: an RNA-seq-based resource for pain and sensory neuroscience research. Pain 2019; 159:1325-1345. [PMID: 29561359 DOI: 10.1097/j.pain.0000000000001217] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Molecular neurobiological insight into human nervous tissues is needed to generate next-generation therapeutics for neurological disorders such as chronic pain. We obtained human dorsal root ganglia (hDRG) samples from organ donors and performed RNA-sequencing (RNA-seq) to study the hDRG transcriptional landscape, systematically comparing it with publicly available data from a variety of human and orthologous mouse tissues, including mouse DRG (mDRG). We characterized the hDRG transcriptional profile in terms of tissue-restricted gene coexpression patterns and putative transcriptional regulators, and formulated an information-theoretic framework to quantify DRG enrichment. Relevant gene families and pathways were also analyzed, including transcription factors, G-protein-coupled receptors, and ion channels. Our analyses reveal an hDRG-enriched protein-coding gene set (∼140), some of which have not been described in the context of DRG or pain signaling. Most of these show conserved enrichment in mDRG and were mined for known drug-gene product interactions. Conserved enrichment of the vast majority of transcription factors suggests that the mDRG is a faithful model system for studying hDRG, because of evolutionarily conserved regulatory programs. Comparison of hDRG and tibial nerve transcriptomes suggests trafficking of neuronal mRNA to axons in adult hDRG, and are consistent with studies of axonal transport in rodent sensory neurons. We present our work as an online, searchable repository (https://www.utdallas.edu/bbs/painneurosciencelab/sensoryomics/drgtxome), creating a valuable resource for the community. Our analyses provide insight into DRG biology for guiding development of novel therapeutics and a blueprint for cross-species transcriptomic analyses.
Collapse
Affiliation(s)
- Pradipta Ray
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA.,Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Andrew Torck
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Lilyana Quigley
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Andi Wangzhou
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Matthew Neiman
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Chandranshu Rao
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Tiffany Lam
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Ji-Young Kim
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Tae Hoon Kim
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Michael Q Zhang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Gregory Dussor
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Theodore J Price
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
37
|
Baskozos G, Dawes JM, Austin JS, Antunes-Martins A, McDermott L, Clark AJ, Trendafilova T, Lees JG, McMahon SB, Mogil JS, Orengo C, Bennett DL. Comprehensive analysis of long noncoding RNA expression in dorsal root ganglion reveals cell-type specificity and dysregulation after nerve injury. Pain 2019; 160:463-485. [PMID: 30335683 PMCID: PMC6343954 DOI: 10.1097/j.pain.0000000000001416] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/26/2016] [Accepted: 10/09/2018] [Indexed: 12/19/2022]
Abstract
Dorsal root ganglion (DRG) neurons provide connectivity between peripheral tissues and the spinal cord. Transcriptional plasticity within DRG sensory neurons after peripheral nerve injury contributes to nerve repair but also leads to maladaptive plasticity, including the development of neuropathic pain. This study presents tissue and neuron-specific expression profiling of both known and novel long noncoding RNAs (LncRNAs) in the rodent DRG after nerve injury. We have identified a large number of novel LncRNAs expressed within the rodent DRG, a minority of which were syntenically conserved between the mouse, rat, and human, and including, both intergenic and antisense LncRNAs. We have also identified neuron type-specific LncRNAs in the mouse DRG and LncRNAs that are expressed in human IPS cell-derived sensory neurons. We show significant plasticity in LncRNA expression after nerve injury, which in mice is strain and gender dependent. This resource is publicly available and will aid future studies of DRG neuron identity and the transcriptional landscape in both the naive and injured DRG. We present our work regarding novel antisense and intergenic LncRNAs as an online searchable database, accessible from PainNetworks (http://www.painnetworks.org/). We have also integrated all annotated gene expression data in PainNetworks, so they can be examined in the context of their protein interactions.
Collapse
Affiliation(s)
- Georgios Baskozos
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - John M. Dawes
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Jean S. Austin
- Departments of Psychology and
- Anesthesia, Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Ana Antunes-Martins
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Lucy McDermott
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Alex J. Clark
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Teodora Trendafilova
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Jon G. Lees
- Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Stephen B. McMahon
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Jeffrey S. Mogil
- Departments of Psychology and
- Anesthesia, Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Christine Orengo
- Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - David L. Bennett
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
38
|
Epigenetic regulator UHRF1 inactivates REST and growth suppressor gene expression via DNA methylation to promote axon regeneration. Proc Natl Acad Sci U S A 2018; 115:E12417-E12426. [PMID: 30530687 DOI: 10.1073/pnas.1812518115] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Injured peripheral sensory neurons switch to a regenerative state after axon injury, which requires transcriptional and epigenetic changes. However, the roles and mechanisms of gene inactivation after injury are poorly understood. Here, we show that DNA methylation, which generally leads to gene silencing, is required for robust axon regeneration after peripheral nerve lesion. Ubiquitin-like containing PHD ring finger 1 (UHRF1), a critical epigenetic regulator involved in DNA methylation, increases upon axon injury and is required for robust axon regeneration. The increased level of UHRF1 results from a decrease in miR-9. The level of another target of miR-9, the transcriptional regulator RE1 silencing transcription factor (REST), transiently increases after injury and is required for axon regeneration. Mechanistically, UHRF1 interacts with DNA methyltransferases (DNMTs) and H3K9me3 at the promoter region to repress the expression of the tumor suppressor gene phosphatase and tensin homolog (PTEN) and REST. Our study reveals an epigenetic mechanism that silences tumor suppressor genes and restricts REST expression in time after injury to promote axon regeneration.
Collapse
|
39
|
Abstract
Voltage-gated calcium (CaV) channels are associated with β and α2δ auxiliary subunits. This review will concentrate on the function of the α2δ protein family, which has four members. The canonical role for α2δ subunits is to convey a variety of properties on the CaV1 and CaV2 channels, increasing the density of these channels in the plasma membrane and also enhancing their function. More recently, a diverse spectrum of non-canonical interactions for α2δ proteins has been proposed, some of which involve competition with calcium channels for α2δ or increase α2δ trafficking and others which mediate roles completely unrelated to their calcium channel function. The novel roles for α2δ proteins which will be discussed here include association with low-density lipoprotein receptor-related protein 1 (LRP1), thrombospondins, α-neurexins, prion proteins, large conductance (big) potassium (BK) channels, and N-methyl-d-aspartate (NMDA) receptors.
Collapse
Affiliation(s)
- Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
40
|
Transcriptomic profiling of trigeminal nucleus caudalis and spinal cord dorsal horn. Brain Res 2018; 1692:23-33. [DOI: 10.1016/j.brainres.2018.04.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/15/2018] [Accepted: 04/29/2018] [Indexed: 12/13/2022]
|
41
|
Mesnage R, Phedonos A, Arno M, Balu S, Corton JC, Antoniou MN. Editor's Highlight: Transcriptome Profiling Reveals Bisphenol A Alternatives Activate Estrogen Receptor Alpha in Human Breast Cancer Cells. Toxicol Sci 2018; 158:431-443. [PMID: 28591870 PMCID: PMC5837682 DOI: 10.1093/toxsci/kfx101] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Plasticizers with estrogenic activity, such as bisphenol A (BPA), have potential adverse
health effects in humans. Due to mounting evidence of these health effects, BPA is being
phased out and replaced by other bisphenol variants in “BPA-free” products. We have
compared estrogenic activity of BPA with 6 bisphenol analogues [bisphenol S (BPS);
bisphenol F (BPF); bisphenol AP (BPAP); bisphenol AF (BPAF); bisphenol Z (BPZ); bisphenol
B (BPB)] in 3 human breast cancer cell lines. Estrogenicity was assessed
(10−11–10−4 M) by cell growth in an estrogen receptor
(ER)-mediated cell proliferation assay, and by the induction of estrogen response
element-mediated transcription in a luciferase assay. BPAF was the most potent bisphenol,
followed by BPB > BPZ ∼ BPA > BPF ∼ BPAP > BPS. The addition of ICI 182,780
antagonized the activation of ERs. Data mining of ToxCast high-throughput screening assays
confirm our results but also show divergence in the sensitivities of the assays. Gene
expression profiles were determined in MCF-7 cells by microarray analysis. The comparison
of transcriptome profile alterations resulting from BPA alternatives with an ERα gene
expression biomarker further indicates that all BPA alternatives act as ERα agonists in
MCF-7 cells. These results were confirmed by Illumina-based RNA sequencing. In conclusion,
BPA alternatives are not necessarily less estrogenic than BPA in human breast cancer
cells. BPAF, BPB, and BPZ were more estrogenic than BPA. These findings point to the
importance of better understanding the risk of adverse effects from exposure to BPA
alternatives, including hormone-dependent breast cancer.
Collapse
Affiliation(s)
- Robin Mesnage
- Gene Expression and Therapy Group, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, King's College London, London SE1 9RT, United Kingdom
| | - Alexia Phedonos
- Gene Expression and Therapy Group, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, King's College London, London SE1 9RT, United Kingdom
| | - Matthew Arno
- Genomics Centre, King's College London, London SE1 9NH, United Kingdom
| | - Sucharitha Balu
- Genomics Centre, King's College London, London SE1 9NH, United Kingdom
| | - J Christopher Corton
- Integrated Systems Toxicology Division National Health and Environmental Effects Research Lab, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Michael N Antoniou
- Gene Expression and Therapy Group, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, King's College London, London SE1 9RT, United Kingdom
| |
Collapse
|
42
|
St John Smith E. Advances in understanding nociception and neuropathic pain. J Neurol 2018; 265:231-238. [PMID: 29032407 PMCID: PMC5808094 DOI: 10.1007/s00415-017-8641-6] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 12/11/2022]
Abstract
Pain results from the activation of a subset of sensory neurones termed nociceptors and has evolved as a "detect and protect" mechanism. However, lesion or disease in the sensory system can result in neuropathic pain, which serves no protective function. Understanding how the sensory nervous system works and what changes occur in neuropathic pain are vital in identifying new therapeutic targets and developing novel analgesics. In recent years, technologies such as optogenetics and RNA-sequencing have been developed, which alongside the more traditional use of animal neuropathic pain models and insights from genetic variations in humans have enabled significant advances to be made in the mechanistic understanding of neuropathic pain.
Collapse
Affiliation(s)
- Ewan St John Smith
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK.
| |
Collapse
|
43
|
Korczeniewska OA, Husain S, Khan J, Eliav E, Soteropoulos P, Benoliel R. Differential gene expression in trigeminal ganglia of male and female rats following chronic constriction of the infraorbital nerve. Eur J Pain 2018; 22:875-888. [PMID: 29350446 DOI: 10.1002/ejp.1174] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2017] [Indexed: 11/07/2022]
Abstract
BACKGROUND The mechanisms underlying sex-based differences in pain and analgesia are poorly understood. In this study, we investigated gene expression changes in trigeminal ganglia (TG) of male and female rats exposed to infraorbital nerve chronic constriction injury (IoN-CCI). METHODS Somatosensory assessments were performed prior to IoN-CCI and at selected time points postsurgery. Selected gene expression changes were examined with real-time quantitative polymerase chain reaction (RT-PCR) in ipsilateral TG at 21 days postsurgery. RESULTS Rats exposed to IoN-CCI developed significant mechanical allodynia and hyperalgesia on days 19 and 21 postsurgery. During this period, females developed significantly more allodynia but not hyperalgesia compared to males. At 21 days postsurgery, expression levels of 44 of the 84 investigated pain-related genes in ipsilateral TG were significantly regulated relative to naïve rats in either sex. Csf1 and Cx3cr1 were up-regulated in both sexes, but the magnitude of regulation was significantly higher in females (p = 0.02 and p = 0.001, respectively). Htr1a and Scn9a were down-regulated in both sexes, but the down-regulation was significantly more pronounced in males (p = 0.04 and p = 0.02, respectively). Additionally, Cck, Il1a, Pla2g1b and Tnf genes were significantly regulated in females but not in males, and Chrna4 gene was significantly down-regulated in males but not in females. CONCLUSIONS Our findings suggest sex-dependent gene regulation in response to nerve injury, which may contribute to sex dimorphism of trigeminal neuropathic pain. Further studies are needed to establish gene expression changes over time and correlate these with hormonal and other physiological parameters in male and female. SIGNIFICANCE We present novel sex-specific transcriptional regulation in trigeminal ganglia that may contribute to male-/female-based differences in trigeminal neuropathic pain. These findings are expected to open new research horizons, particularly in male versus female targeted therapeutic regimens.
Collapse
Affiliation(s)
- O A Korczeniewska
- Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - S Husain
- The Genomics Center, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - J Khan
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA
| | - E Eliav
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA
| | - P Soteropoulos
- The Genomics Center, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - R Benoliel
- Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Rutgers, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
44
|
Starobova H, S. W. A. H, Lewis RJ, Vetter I. Transcriptomics in pain research: insights from new and old technologies. Mol Omics 2018; 14:389-404. [DOI: 10.1039/c8mo00181b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Physiological and pathological pain involves a complex interplay of multiple cell types and signaling pathways.
Collapse
Affiliation(s)
- H. Starobova
- Centre for Pain Research
- Institute for Molecular Bioscience
- University of Queensland
- St Lucia
- Australia
| | - Himaya S. W. A.
- Centre for Pain Research
- Institute for Molecular Bioscience
- University of Queensland
- St Lucia
- Australia
| | - R. J. Lewis
- Centre for Pain Research
- Institute for Molecular Bioscience
- University of Queensland
- St Lucia
- Australia
| | - I. Vetter
- Centre for Pain Research
- Institute for Molecular Bioscience
- University of Queensland
- St Lucia
- Australia
| |
Collapse
|
45
|
Dapas M, Kandpal M, Bi Y, Davuluri RV. Comparative evaluation of isoform-level gene expression estimation algorithms for RNA-seq and exon-array platforms. Brief Bioinform 2017; 18:260-269. [PMID: 26944083 PMCID: PMC5444266 DOI: 10.1093/bib/bbw016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Indexed: 01/04/2023] Open
Abstract
Given that the majority of multi-exon genes generate diverse functional products, it is important to evaluate expression at the isoform level. Previous studies have demonstrated strong gene-level correlations between RNA sequencing (RNA-seq) and microarray platforms, but have not studied their concordance at the isoform level. We performed transcript abundance estimation on raw RNA-seq and exon-array expression profiles available for common glioblastoma multiforme samples from The Cancer Genome Atlas using different analysis pipelines, and compared both the isoform- and gene-level expression estimates between programs and platforms. The results showed better concordance between RNA-seq/exon-array and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) platforms for fold change estimates than for raw abundance estimates, suggesting that fold change normalization against a control is an important step for integrating expression data across platforms. Based on RT-qPCR validations, eXpress and Multi-Mapping Bayesian Gene eXpression (MMBGX) programs achieved the best performance for RNA-seq and exon-array platforms, respectively, for deriving the isoform-level fold change values. While eXpress achieved the highest correlation with the RT-qPCR and exon-array (MMBGX) results overall, RSEM was more highly correlated with MMBGX for the subset of transcripts that are highly variable across the samples. eXpress appears to be most successful in discriminating lowly expressed transcripts, but IsoformEx and RSEM correlate more strongly with MMBGX for highly expressed transcripts. The results also reinforce how potentially important isoform-level expression changes can be masked by gene-level estimates, and demonstrate that exon arrays yield comparable results to RNA-seq for evaluating isoform-level expression changes.
Collapse
Affiliation(s)
| | - Manoj Kandpal
- Department of Veterinary Surgery & Radiology, College of Veterinary & Animal Sciences, GBPUAT, Pantnagar - 263 145, Uttarakhand, India
| | - Yingtao Bi
- Center for Systems and Computational Biology, Molecular and Cellular Oncogenesis Program, The Wistar Institute, 19104 Philadelphia, PA, USA
| | - Ramana V Davuluri
- Center for Systems and Computational Biology, Molecular and Cellular Oncogenesis Program, The Wistar Institute, 19104 Philadelphia, PA, USA
| |
Collapse
|
46
|
Tokunaga T, Ninomiya T, Kato Y, Imoto Y, Sakashita M, Takabayashi T, Noguchi E, Fujieda S. The significant expression of TRPV3 in nasal polyps of eosinophilic chronic rhinosinusitis. Allergol Int 2017; 66:610-616. [PMID: 28462829 DOI: 10.1016/j.alit.2017.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 03/02/2017] [Accepted: 03/15/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The number of patients with eosinophilic chronic rhinosinusitis (ECRS) has been increasing in recent years in Japan. In ECRS, nasal polyps recur immediately after endoscopic sinus surgery. The molecular biological mechanism underlying the refractoriness of ECRS is unclear. METHODS Whole-transcriptome analysis with next-generation sequencing (RNA-seq) was conducted to investigate the molecular biological mechanism of ECRS. Real-time PCR, immunohistochemical staining, and immunofluorescence staining were performed to validate the results of RNA-seq. RESULTS RNA-seq analysis revealed that in the nasal polyps of ECRS, the levels of 3 transcripts were elevated significantly and those of 7 transcripts were diminished significantly. Among the genes encoding these transcripts, TRPV3 (transient receptor potential cation channel, subfamily V, member 3) was identified as the only gene that is highly expressed in ECRS nasal polyps but this gene's expression was not previously detected using DNA microarray analysis in peripheral blood eosinophils. TRPV3 is newly identified here as a gene transcribed in ECRS. Our analysis also revealed that TRPV3 was highly expressed in the infiltrating eosinophils and mucosal epithelium of the nasal polyps of ECRS, and further that the more severe the refractoriness was after surgery, the higher the TRPV3 expression was in nasal polyps. CONCLUSIONS TRPV3 might play a role in the refractoriness of ECRS. Additional studies are required to evaluate the function of TRPV3 in ECRS.
Collapse
Affiliation(s)
- Takahiro Tokunaga
- Division of Otorhinolaryngology - Head & Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Science, University of Fukui, Fukui, Japan; Department of Medical Genetics, Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan.
| | - Takahiro Ninomiya
- Division of Otorhinolaryngology - Head & Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Science, University of Fukui, Fukui, Japan; Department of Medical Genetics, Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Yukinori Kato
- Division of Otorhinolaryngology - Head & Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Yoshimasa Imoto
- Division of Otorhinolaryngology - Head & Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Masafumi Sakashita
- Division of Otorhinolaryngology - Head & Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Tetsuji Takabayashi
- Division of Otorhinolaryngology - Head & Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Emiko Noguchi
- Department of Medical Genetics, Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Shigeharu Fujieda
- Division of Otorhinolaryngology - Head & Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Science, University of Fukui, Fukui, Japan
| |
Collapse
|
47
|
Lopes DM, Denk F, McMahon SB. The Molecular Fingerprint of Dorsal Root and Trigeminal Ganglion Neurons. Front Mol Neurosci 2017; 10:304. [PMID: 29018326 PMCID: PMC5623188 DOI: 10.3389/fnmol.2017.00304] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/11/2017] [Indexed: 12/15/2022] Open
Abstract
The dorsal root ganglia (DRG) and trigeminal ganglia (TG) are clusters of cell bodies of highly specialized sensory neurons which are responsible for relaying information about our environment to the central nervous system. Despite previous efforts to characterize sensory neurons at the molecular level, it is still unknown whether those present in DRG and TG have distinct expression profiles and therefore a unique molecular fingerprint. To address this question, we isolated lumbar DRG and TG neurons using fluorescence-activated cell sorting from Advillin-GFP transgenic mice and performed RNA sequencing. Our transcriptome analyses showed that, despite being overwhelmingly similar, a number of genes are differentially expressed in DRG and TG neurons. Importantly, we identified 24 genes which were uniquely expressed in either ganglia, including an arginine vasopressin receptor and several homeobox genes, giving each population a distinct molecular fingerprint. We compared our findings with published studies to reveal that many genes previously reported to be present in neurons are in fact likely to originate from other cell types in the ganglia. Additionally, our neuron-specific results aligned well with a dataset examining whole human TG and DRG. We propose that the data can both improve our understanding of primary afferent biology and help contribute to the development of drug treatments and gene therapies which seek targets with unique or restricted expression patterns.
Collapse
Affiliation(s)
- Douglas M Lopes
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Franziska Denk
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Stephen B McMahon
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| |
Collapse
|
48
|
Nazarov PV, Muller A, Kaoma T, Nicot N, Maximo C, Birembaut P, Tran NL, Dittmar G, Vallar L. RNA sequencing and transcriptome arrays analyses show opposing results for alternative splicing in patient derived samples. BMC Genomics 2017; 18:443. [PMID: 28587590 PMCID: PMC5461714 DOI: 10.1186/s12864-017-3819-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/25/2017] [Indexed: 01/29/2023] Open
Abstract
Background RNA sequencing (RNA-seq) and microarrays are two transcriptomics techniques aimed at the quantification of transcribed genes and their isoforms. Here we compare the latest Affymetrix HTA 2.0 microarray with Illumina 2000 RNA-seq for the analysis of patient samples - normal lung epithelium tissue and squamous cell carcinoma lung tumours. Protein coding mRNAs and long non-coding RNAs (lncRNAs) were included in the study. Results Both platforms performed equally well for protein-coding RNAs, however the stochastic variability was higher for the sequencing data than for microarrays. This reduced the number of differentially expressed genes and genes with predictive potential for RNA-seq compared to microarray data. Analysis of this variability revealed a lack of reads for short and low abundant genes; lncRNAs, being shorter and less abundant RNAs, were found especially susceptible to this issue. A major difference between the two platforms was uncovered by analysis of alternatively spliced genes. Investigation of differential exon abundance showed insufficient reads for many exons and exon junctions in RNA-seq while the detection on the array platform was more stable. Nevertheless, we identified 207 genes which undergo alternative splicing and were consistently detected by both techniques. Conclusions Despite the fact that the results of gene expression analysis were highly consistent between Human Transcriptome Arrays and RNA-seq platforms, the analysis of alternative splicing produced discordant results. We concluded that modern microarrays can still outperform sequencing for standard analysis of gene expression in terms of reproducibility and cost. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3819-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Petr V Nazarov
- Proteome and Genome Research Unit, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg.
| | - Arnaud Muller
- Proteome and Genome Research Unit, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Tony Kaoma
- Proteome and Genome Research Unit, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Nathalie Nicot
- Proteome and Genome Research Unit, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Cristina Maximo
- Proteome and Genome Research Unit, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | | | - Nhan L Tran
- Departments of Cancer Biology and Neurosurgery, Mayo Clinic Arizona, Phoenix, USA
| | - Gunnar Dittmar
- Proteome and Genome Research Unit, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Laurent Vallar
- Proteome and Genome Research Unit, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| |
Collapse
|
49
|
|
50
|
Kogelman LJA, Christensen RE, Pedersen SH, Bertalan M, Hansen TF, Jansen-Olesen I, Olesen J. Whole transcriptome expression of trigeminal ganglia compared to dorsal root ganglia in Rattus Norvegicus. Neuroscience 2017; 350:169-179. [PMID: 28359950 DOI: 10.1016/j.neuroscience.2017.03.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/13/2017] [Accepted: 03/16/2017] [Indexed: 12/13/2022]
Abstract
The trigeminal ganglia (TG) subserving the head and the dorsal root ganglia (DRG) subserving the rest of the body are homologous handling sensory neurons. Differences exist, as a number of signaling substances cause headache but no pain in the rest of the body. To date, very few genes involved in this difference have been identified. We aim to reveal basal gene expression levels in TG and DRG and detect genes that are differentially expressed (DE) between TG and DRG. RNA-Sequencing from six naïve rats describes the whole transcriptome expression profiles of TG and DRG. Differential expression analysis was followed by pathway analysis to identify DE processes between TG and DRG. In total, 64 genes had higher and 55 genes had lower expressed levels in TG than DRG. Higher expressed genes, including S1pr5 and Gjc2, have been related to phospholipase activity. The lower expressed genes, including several Hox genes and Slc5a7, have been related to tyrosine and phenylalanine metabolism. Tissue-specific expression was identified for Gabra6 and Gabrd in TG, and for several Hox genes in DRG. Furthermore, genes that were known to be associated with headache/migraine were mostly moderately to highly expressed in one or both tissues. We present a comprehensive overview of the expression profiles of whole tissue comparison of TG and DRG. Further, we showed DE genes/pathways between TG and DRG, including several known migraine-associated genes. This study provides a basis for further pain-related studies using TG and DRG in rats.
Collapse
Affiliation(s)
- Lisette Johanna Antonia Kogelman
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Rigshospitalet Glostrup, Glostrup, Denmark and Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Rikke Elgaard Christensen
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Rigshospitalet Glostrup, Glostrup, Denmark and Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Sara Hougaard Pedersen
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Rigshospitalet Glostrup, Glostrup, Denmark and Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Marcelo Bertalan
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, University of Copenhagen, Copenhagen, Roskilde DK 4000, Denmark
| | - Thomas Folkmann Hansen
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Rigshospitalet Glostrup, Glostrup, Denmark and Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Inger Jansen-Olesen
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Rigshospitalet Glostrup, Glostrup, Denmark and Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jes Olesen
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Rigshospitalet Glostrup, Glostrup, Denmark and Faculty of Health and Medical Sciences, University of Copenhagen, Denmark. https://www.rigshospitalet.dk/english/departments/neuroscience-centre/danish-headache-center
| |
Collapse
|