1
|
Nan N, Yang N, Liu Y, Hao HQ. Chinese Medicine Combined with Adipose Tissue-Derived Mesenchymal Stem Cells: A New Promising Aspect of Integrative Medicine. Chin J Integr Med 2025:10.1007/s11655-025-4208-z. [PMID: 39809966 DOI: 10.1007/s11655-025-4208-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 01/16/2025]
Abstract
Adipose tissue-derived mesenchymal stem cells (ADSCs) are crucially involved in various biological processes because of their self-renewal, multi-differentiation, and immunomodulatory activities. Some ADSC's characteristics have been associated with the basic theory of Chinese medicine (CM), especially the Meridian theory. CM can improve the biological properties of ADSCs to facilitate their use in injury treatment, restore immune homeostasis, and inhibit inflammatory responses. Therefore, the combination of CM and ADSCs may be a new promising research direction in integrative medicine of China. This review summarizes the association between CM and ADSCs to assess the potential application value of their combination against various diseases.
Collapse
Affiliation(s)
- Nan Nan
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
- Engineering Research Center of Cross Innovation for Chinese Traditional Medicine of Shanxi Province, Jinzhong, Shanxi Province, 030619, China
| | - Na Yang
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
- Engineering Research Center of Cross Innovation for Chinese Traditional Medicine of Shanxi Province, Jinzhong, Shanxi Province, 030619, China
| | - Yang Liu
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
- Engineering Research Center of Cross Innovation for Chinese Traditional Medicine of Shanxi Province, Jinzhong, Shanxi Province, 030619, China
| | - Hui-Qin Hao
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China.
- Engineering Research Center of Cross Innovation for Chinese Traditional Medicine of Shanxi Province, Jinzhong, Shanxi Province, 030619, China.
| |
Collapse
|
2
|
Fodor Duric L, Basic Jukic N, Vujicic B. Comparison of Autologous and Allogeneic Adipose-Derived Stem Cells in Kidney Transplantation: Immunological Considerations and Therapeutic Efficacy. J Clin Med 2024; 13:5763. [PMID: 39407823 PMCID: PMC11476955 DOI: 10.3390/jcm13195763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/18/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
Regenerative medicine shows significant potential in treating kidney diseases through the application of various types of stem and progenitor cells, including mesenchymal stem cells (MSCs), renal stem/progenitor cells, embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs). Stem cells possess the unique ability to repair injured organs and improve impaired functions, making them a key element in the research of therapies for kidney tissue repair and organ regeneration. In kidney transplantation, reperfusion injury can cause tissue destruction, leading to an initially low glomerular filtration rate and long-term impact on function by creating irreversible interstitial fibrosis. MSCs have proven useful in repairing early tissue injury in animal models of kidney, lung, heart, and intestine transplantation. The use of stem cell therapies in solid organ transplantation raises the question of whether autologous or allogeneic cells should be preferred. Adipose-derived stem cells (ASCs), characterized by the lack of HLA Class II molecules and low expression of HLA Class I and co-stimulatory signals, are considered immune-privileged. However, the actual risk of graft rejection associated with allogeneic ASCs remains unclear. It has been demonstrated that donor-derived ASCs can promote the development of Treg cells in vitro, and some degree of tolerance induction has been observed in vivo. Nevertheless, a study comparing the efficacy of autologous and allogeneic ASCs in a rat model with a total MHC mismatch for kidney transplantation showed that donor-derived administration of ASCs did not improve the grafts' survival and was associated with increased mortality through an immunologically mediated mechanism. Given the lack of data, autologous ASCs appear to be a safer option in this research context. The aim of this review was to examine the differences between autologous and allogeneic ASCs in the context of their application in kidney transplantation therapies, considering potential immune reactions and therapeutic efficacy. Some have argued that ASCs harvested from end-stage renal disease (ESRD) patients may have lower regenerative potential due to the toxic effects of uremia, potentially limiting their use in transplantation settings. However, evidence suggests that the beneficial properties of ASCs are not affected by uremia or dialysis. Indeed, some investigators have demonstrated that ASCs harvested from chronic kidney disease (CKD) patients exhibit normal characteristics and function, maintaining consistent proliferative capacity and genetic stability over time, even after prolonged exposure to uremic serum Furthermore, no differences were observed in the response of ASCs to immune activation or their inhibitory effect on the proliferation of alloantigen-activated peripheral blood mononuclear cells between patients with normal or impaired renal function. This review presents the current achievements in stem cell research aimed at treating kidney diseases, highlighting significant progress and ongoing efforts in the development of stem cell-based therapies. Despite the encouraging results, further research is needed to overcome the current limitations and fully realize the potential of these innovative treatments. Advances in this field are crucial for developing effective therapies that can address the complex challenges associated with kidney damage and failure.
Collapse
Affiliation(s)
- Ljiljana Fodor Duric
- Medicol Polyclinic, School of Medicine, Croatian Catholic Unoversity, 10000 Zagreb, Croatia
| | - Nikolina Basic Jukic
- Department of Nephrology, Dialysis and Kidney Transplantation, Clinical Hospital Center Zagreb, Faculty of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Bozidar Vujicic
- Department of Nephrology, Dialysis and Kidney Transplantation, Clinical Hospital Center Rijeka, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| |
Collapse
|
3
|
Colella A, Biondi G, Marrano N, Francioso E, Fracassi L, Crovace AM, Recchia A, Natalicchio A, Paradies P. Generation of Insulin-Producing Cells from Canine Bone Marrow-Derived Mesenchymal Stem Cells: A Preliminary Study. Vet Sci 2024; 11:380. [PMID: 39195834 PMCID: PMC11359947 DOI: 10.3390/vetsci11080380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Cell-based therapy using insulin-producing cells (IPCs) is anticipated as an alternative treatment option to insulin injection or pancreatic islet transplantation for the treatment of diabetes mellitus in both human and veterinary medicine. Several protocols were reported for the differentiation of mesenchymal stem cells (MSCs) into IPCs; to date, glucose-responsive IPCs have only been obtained from canine adipose tissue-derived MSCs (cAD-MSCs), but not from canine bone marrow-derived MSCs (cBM-MSCs). Therefore, this study aims to generate in vitro glucose-responsive IPCs from cBM-MSCs using two differentiation protocols: a two-step protocol using trichostatin (TSA) and a three-step protocol using mercaptoethanol to induce pancreatic and duodenal homeobox gene 1 (PDX-1) expression. A single experiment was carried out for each protocol. BM-MSCs from one dog were successfully cultured and expanded. Cells exposed to the two-step protocol appeared rarely grouped to form small clusters; gene expression analysis showed a slight increase in PDX-1 and insulin expression, but no insulin protein production nor secretion in the culture medium was detected either under basal conditions or following glucose stimulation. Conversely, cells exposed to the three-step protocol under a 3D culture system formed colony-like structures; insulin gene expression was upregulated compared to undifferentiated control and IPCs colonies secreted insulin in the culture medium, although insulin secretion was not enhanced by high-glucose culture conditions. The single experiment results suggest that the three-step differentiation protocol could generate IPCs from cBM-MSCs; however, further experiments are needed to confirm these data. The ability of IPCs from cBM- MSCs to produce insulin, described here for the first time, is a preliminary interesting result. Nevertheless, the IPCs' unresponsiveness to glucose, if confirmed, would affect its clinical application. Further studies are necessary to establish a differentiation protocol in this perspective.
Collapse
Affiliation(s)
- Antonella Colella
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Veterinary Clinics and Animal Production Section, University of Bari Aldo Moro, Valenzano, 70010 Bari, Italy; (A.C.); (E.F.); (L.F.); (A.R.)
| | - Giuseppina Biondi
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Internal Medicine, Endocrinology, Andrology and Metabolic Diseases Section, University of Bari Aldo Moro, 70124 Bari, Italy; (G.B.); (N.M.); (A.N.)
| | - Nicola Marrano
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Internal Medicine, Endocrinology, Andrology and Metabolic Diseases Section, University of Bari Aldo Moro, 70124 Bari, Italy; (G.B.); (N.M.); (A.N.)
| | - Edda Francioso
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Veterinary Clinics and Animal Production Section, University of Bari Aldo Moro, Valenzano, 70010 Bari, Italy; (A.C.); (E.F.); (L.F.); (A.R.)
| | - Laura Fracassi
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Veterinary Clinics and Animal Production Section, University of Bari Aldo Moro, Valenzano, 70010 Bari, Italy; (A.C.); (E.F.); (L.F.); (A.R.)
| | - Alberto M. Crovace
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy;
| | - Alessandra Recchia
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Veterinary Clinics and Animal Production Section, University of Bari Aldo Moro, Valenzano, 70010 Bari, Italy; (A.C.); (E.F.); (L.F.); (A.R.)
| | - Annalisa Natalicchio
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Internal Medicine, Endocrinology, Andrology and Metabolic Diseases Section, University of Bari Aldo Moro, 70124 Bari, Italy; (G.B.); (N.M.); (A.N.)
| | - Paola Paradies
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Veterinary Clinics and Animal Production Section, University of Bari Aldo Moro, Valenzano, 70010 Bari, Italy; (A.C.); (E.F.); (L.F.); (A.R.)
| |
Collapse
|
4
|
Voga M. Modulation of Canine Adipose-Derived Mesenchymal Stem/Medicinal Signalling Cells with Ascorbic Acid: Effect on Proliferation and Chondrogenic Differentiation on Standard Plastic and Silk Fibroin Surfaces. Bioengineering (Basel) 2024; 11:513. [PMID: 38790380 PMCID: PMC11118827 DOI: 10.3390/bioengineering11050513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Ascorbic acid (AA) plays a crucial role in both the proliferation and chondrogenic differentiation potential of mesenchymal stem/medicinal signalling cells (MSCs); these are both key aspects of their general therapeutic use and their increasing use in veterinary medicine. Current immunomodulatory therapies require efficient expansion of MSCs in the laboratory, while emerging tissue regeneration strategies, such as cartilage or bone repair, aim to use differentiated MSCs and modulate the expression of chondrogenic and hypertrophic markers. Our aim was to investigate whether the addition of AA to the growth medium enhances the proliferation of canine adipose-derived MSCs (cAMSCs) grown on standard plastic surfaces and whether it affects chondrogenic differentiation potential on silk fibroin (SF) films. We assessed cell viability with trypan blue and proliferation potential by calculating population doubling. Chondrogenic induction on SF films was assessed by Alcian blue staining and gene expression analysis of chondrogenic and hypertrophic genes. The results showed that growth medium with AA significantly enhanced the proliferation of cAMSCs without affecting cell viability and modulated the expression of chondrogenic and hypertrophic genes of cAMSCs grown on SF films. Our results suggest that AA may be used in growth medium for expansion of cAMSCs and, at the same time, provide the basis for future studies to investigate the role of AA and SF in chondrogenic differentiation of MSCs.
Collapse
Affiliation(s)
- Metka Voga
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| |
Collapse
|
5
|
Eto H, Yamazaki A, Tomo Y, Tanegashima K, Edamura K. Generation and characterization of mesenchymal stem cells from the affected femoral heads of dogs with Legg Calvé Perthes disease. Open Vet J 2024; 14:1172-1181. [PMID: 38938425 PMCID: PMC11199743 DOI: 10.5455/ovj.2024.v14.i5.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/22/2024] [Indexed: 06/29/2024] Open
Abstract
Background Canine Legg Calvé Perthes disease (LCPD) occurs during the growth period, and the cause of ischemic necrosis of the femoral head during growth remains unclear. If LCPD-affected femoral head-derived mesenchymal stem cells (LCPD-MSCs) can be generated, they can be used as a new tool for the pathophysiological analysis of canine LCPD. Aim To generate affected femoral head-derived mesenchymal stem cells (MSCs) from dogs with LCPD and investigate the mRNA expression levels of angiogenesis-related factors and osteogenic differentiation potency of LCPD-MSCs. Methods This study was performed using affected femoral heads from dogs diagnosed with LCPD and underwent femoral head and neck ostectomy. The necrotic tissue was harvested from the LCPD-affected femoral head and cultured statically (LCPD group, n = 6). Canine bone marrow-derived MSCs (BM-MSCs) were used as controls (control group, n = 6). First, the morphology of the cultured cells was observed, and the expression of CD29, CD34, CD44, CD45, CD90, and major histocompatibility complex class II was analyzed using flow cytometry. Additionally, the trilineage differentiation potency of the LCPD-affected head-derived adherent cells was examined. Furthermore, the expression levels of HIF1A, VEGFA, VEGFB, and PDGFB mRNAs and the bone differentiation potency of LCPD-affected head-derived adherent cells were investigated. Results LCPD-affected femoral head-derived adherent cells showed a fibroblast-like morphology, and the expression of cell surface antigens was similar to that of BM-MSCs. In addition, LCPD-affected femoral head-derived adherent cells showed the same trilineage differentiation potency as BM-MSCs and were consistent with MSC characteristics. Furthermore, the mRNA expression levels of angiogenesis-related factors could be objectively measured in LCPD-MSCs and those MSCs had bone differentiation potency. Conclusion In the present study, canine LCPD-MSCs were successfully generated, suggesting their usefulness as a tool for pathological analysis of LCPD in dogs.
Collapse
Affiliation(s)
- Hinano Eto
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource and Sciences, Nihon University, Fujisawa, Japan
| | - Atsushi Yamazaki
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource and Sciences, Nihon University, Fujisawa, Japan
| | - Yuma Tomo
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource and Sciences, Nihon University, Fujisawa, Japan
| | - Koji Tanegashima
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource and Sciences, Nihon University, Fujisawa, Japan
| | - Kazuya Edamura
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource and Sciences, Nihon University, Fujisawa, Japan
| |
Collapse
|
6
|
Maeta N, Iwai R, Takemitsu H, Akashi N, Miyabe M, Funayama-Iwai M, Nakayama Y. Evaluation of Skin Wound Healing with Biosheets Containing Somatic Stem Cells in a Dog Model: A Pilot Study. Bioengineering (Basel) 2024; 11:435. [PMID: 38790301 PMCID: PMC11118178 DOI: 10.3390/bioengineering11050435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/20/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
The administration of mesenchymal stem cells (MSCs) has a positive effect on wound healing; however, the lack of adequate MSC engraftment at the wound site is a major limiting factor in current MSC-based therapies. In this study, a biosheet prepared using in-body tissue architecture (iBTA) was used as a material to address these problems. This study aimed to assess and evaluate whether biosheets containing somatic stem cells would affect the wound healing process in dogs. Biosheets were prepared by subcutaneously embedding molds in beagles. These were then evaluated grossly and histologically, and the mRNA expression of inflammatory cytokines, interleukins, and Nanog was examined in some biosheets. Skin defects were created on the skin of the beagles to which the biosheets were applied. The wound healing processes of the biosheet and control (no biosheet application) groups were compared for 8 weeks. Nanog mRNA was expressed in the biosheets, and SSEA4/CD105 positive cells were observed histologically. Although the wound contraction rates differed significantly in the first week, the biosheet group tended to heal faster than the control group. This study revealed that biosheets containing somatic stem cells may have a positive effect on wound healing.
Collapse
Affiliation(s)
- Noritaka Maeta
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoi-no-Oka, Imabari 794-8555, Ehime, Japan
| | - Ryosuke Iwai
- Institute of Frontier Science and Technology, Okayama University of Science, 1-1 Ridaicho, Kita-ku 700-0005, Okayama, Japan
| | - Hiroshi Takemitsu
- Department of Comparative Animal Science, College of Life Science, Kurashiki University of Science and the Arts, 2640 Nishinoura, Tsurajima, Kurashiki 712-8505, Okayama, Japan
| | - Natsuki Akashi
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoi-no-Oka, Imabari 794-8555, Ehime, Japan
| | - Masahiro Miyabe
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoi-no-Oka, Imabari 794-8555, Ehime, Japan
| | - Marina Funayama-Iwai
- Institute of Frontier Science and Technology, Okayama University of Science, 1-1 Ridaicho, Kita-ku 700-0005, Okayama, Japan
- Japan Society for the Promotion of Science, 1-1 Ridaicho, Kita-ku 700-0005, Okayama, Japan
| | - Yasuhide Nakayama
- Osaka Laboratory, Biotube Co., Ltd., 3-10-1 Senriyama-Higashi, Osaka 565-0842, Suita, Japan
| |
Collapse
|
7
|
Teshima T. Heterogeneity of mesenchymal stem cells as a limiting factor in their clinical application to inflammatory bowel disease in dogs and cats. Vet J 2024; 304:106090. [PMID: 38417670 DOI: 10.1016/j.tvjl.2024.106090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
Inflammatory bowel disease (IBD) is a major subtype of chronic enteropathies in dogs and cats. Conventional drugs such as immunomodulatory medicines as glucocorticoids and/or other anti-inflammatory are mainly applied for treatment. However, these drugs are not always effective to maintain remission from IBD and are limited by unacceptable side effects. Hence, more effective and safe therapeutic options need to be developed. Mesenchymal stem cells (MSCs) are multipotent stem cells with a self-renewal capacity, and have immunomodulatory, anti-inflammatory, anti-fibrotic, and tissue repair properties. Therefore, the application of MSCs as an alternative therapy for IBD has great potential in veterinary medicine. The efficacy of adipose tissue-derived MSC (ADSC) therapy for IBD in dogs and cats has been reported, including numerous studies in animal models. However, treatment outcomes in clinical trials of human IBD patients have not been consistent with preclinical studies. MSC-based therapy for various diseases has received widespread attention, but various problems in such therapy remain, among which no consensus has been reached on the preparation and treatment procedures for MSCs, and cellular heterogeneity of MSCs may be an issue. This review describes the current status of ADSC therapy for canine and feline IBD and summarizes the cellular heterogeneity of canine ADSCs, to highlight the necessity for further reduction or elimination of MSCs heterogeneity and standardization of MSC-based therapies.
Collapse
Affiliation(s)
- Takahiro Teshima
- Laboratory of Veterinary Internal Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Japan; Research Center for Animal Life Science, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan.
| |
Collapse
|
8
|
Ferreira-Baptista C, Ferreira R, Fernandes MH, Gomes PS, Colaço B. Influence of the Anatomical Site on Adipose Tissue-Derived Stromal Cells' Biological Profile and Osteogenic Potential in Companion Animals. Vet Sci 2023; 10:673. [PMID: 38133224 PMCID: PMC10747344 DOI: 10.3390/vetsci10120673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Adipose tissue-derived stromal cells (ADSCs) have generated considerable interest in the field of veterinary medicine, particularly for their potential in therapeutic strategies focused on bone regeneration. These cells possess unique biological characteristics, including their regenerative capacity and their ability to produce bioactive molecules. However, it is crucial to recognize that the characteristics of ADSCs can vary depending on the animal species and the site from which they are derived, such as the subcutaneous and visceral regions (SCAT and VAT, respectively). Thus, the present work aimed to comprehensively review the different traits of ADSCs isolated from diverse anatomical sites in companion animals, i.e., dogs, cats, and horses, in terms of immunophenotype, morphology, proliferation, and osteogenic differentiation potential. The findings indicate that the immunophenotype, proliferation, and osteogenic potential of ADSCs differ according to tissue origin and species. Generally, the proliferation rate is higher in VAT-derived ADSCs in dogs and horses, whereas in cats, the proliferation rate appears to be similar in both cells isolated from SCAT and VAT regions. In terms of osteogenic differentiation potential, VAT-derived ADSCs demonstrate the highest capability in cats, whereas SCAT-derived ADSCs exhibit superior potential in horses. Interestingly, in dogs, VAT-derived cells appear to have greater potential than those isolated from SCAT. Within the VAT, ADSCs derived from the falciform ligament and omentum show increased osteogenic potential, compared to cells isolated from other anatomical locations. Consequently, considering these disparities, optimizing isolation protocols becomes pivotal, tailoring them to the specific target species and therapeutic aims, and judiciously selecting the anatomical site for ADSC isolation. This approach holds promise to enhance the efficacy of ADSCs-based bone regenerative therapies.
Collapse
Affiliation(s)
- Carla Ferreira-Baptista
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (M.H.F.); (P.S.G.)
- REQUIMTE/LAQV, University of Porto, 4100-007 Porto, Portugal
- REQUIMTE/LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Rita Ferreira
- REQUIMTE/LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Maria Helena Fernandes
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (M.H.F.); (P.S.G.)
- REQUIMTE/LAQV, University of Porto, 4100-007 Porto, Portugal
| | - Pedro Sousa Gomes
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (M.H.F.); (P.S.G.)
- REQUIMTE/LAQV, University of Porto, 4100-007 Porto, Portugal
| | - Bruno Colaço
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- REQUIMTE/LAQV, University of Porto, 4100-007 Porto, Portugal
- CECAV—Animal and Veterinary Research Centre UTAD, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| |
Collapse
|
9
|
Domaniza M, Hluchy M, Cizkova D, Humenik F, Slovinska L, Hudakova N, Hornakova L, Vozar J, Trbolova A. Two Amnion-Derived Mesenchymal Stem-Cells Injections to Osteoarthritic Elbows in Dogs-Pilot Study. Animals (Basel) 2023; 13:2195. [PMID: 37443993 DOI: 10.3390/ani13132195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
The aim of the study was to investigate the potential of cell-based regenerative therapy for elbow joints affected by osteoarthritis. Interest was focused on two intra-articular applications of amnion-derived mesenchymal stem cells (A-MSCs) to a group of different breeds of dogs with elbow osteoarthritis (13 joints). Two injections were performed 14 days apart. We evaluated synovial fluid biomarkers, such as IFN-γ, IL-6, IL-15, IL-10, MCP-1, TNF-α, and GM-CSF, by multiplex fluorescent micro-bead immunoassay in the treated group of elbows (n = 13) (day 0, day 14, and day 28) and in the control group of elbows (n = 9). Kinematic gait analysis determined the joint range of motion (ROM) before and after each A-MSCs application. Kinematic gait analysis was performed on day 0, day 14, and day 28. Kinematic gait analysis pointed out improvement in the average range of motion of elbow joints from day 0 (38.45 ± 5.74°), day 14 (41.7 ± 6.04°), and day 28 (44.78 ± 4.69°) with statistical significance (p < 0.05) in nine elbows. Correlation analyses proved statistical significance (p < 0.05) in associations between ROM (day 0, day 14, and day 28) and IFN-γ, IL-6, IL-15, MCP-1, TNF-α, and GM-CSF concentrations (day 0, day 14, and day 28). IFN-γ, IL-6, IL-15, MCP-1, GM-CSF, and TNF- α showed negative correlation with ROM at day 0, day 14, and day 28, while IL-10 demonstrated positive correlation with ROM. As a consequence of A-MSC application to the elbow joint, we detected a statistically significant (p < 0.05) decrease in concentration levels between day 0 and day 28 for IFN-γ, IL-6, and TNF-α and statistically significant increase for IL-10. Statistical significance (p < 0.05) was detected in TNF-α, IFN-γ, and GM-CSF concentrations between day 14 and the control group as well as at day 28 and the control group. IL-6 concentrations showed statistical significance (p < 0.05) between day 14 and the control group.
Collapse
Affiliation(s)
- Michal Domaniza
- Small Animal Hospital, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Marian Hluchy
- Small Animal Hospital, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Dasa Cizkova
- Centre of Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy, Komenskeho 68/73, 041 81 Kosice, Slovakia
| | - Filip Humenik
- Centre of Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy, Komenskeho 68/73, 041 81 Kosice, Slovakia
| | - Lucia Slovinska
- Associated Tissue Bank, Faculty of Medicine, P.J. Safarik University and L.Pasteur University Hospital, Trieda SNP 1, 040 11 Kosice, Slovakia
| | - Nikola Hudakova
- Centre of Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy, Komenskeho 68/73, 041 81 Kosice, Slovakia
| | - Lubica Hornakova
- Small Animal Hospital, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Juraj Vozar
- Centre of Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy, Komenskeho 68/73, 041 81 Kosice, Slovakia
| | - Alexandra Trbolova
- Small Animal Hospital, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| |
Collapse
|
10
|
Salari Sedigh H, Saffarpour A, Jamshidi S, Ashouri M, Nassiri SM, Dehghan MM, Ranjbar E, Shafieian R. In vitro investigation of canine periodontal ligament-derived mesenchymal stem cells: A possibility of promising tool for periodontal regeneration. J Oral Biol Craniofac Res 2023; 13:403-411. [PMID: 37113531 PMCID: PMC10127137 DOI: 10.1016/j.jobcr.2023.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/09/2023] [Accepted: 03/15/2023] [Indexed: 04/29/2023] Open
Abstract
Objectives Recent investigations indicate that canine periodontal ligament-derived stem cells (cPDLSCs) may reveal a reliable strategy for repair of periodontal tissues via cell-based tissue engineering approaches. Due to limited research, this study aimed to demonstrate the phenotypic characterization of cPDLSc in comparison with canine bone marrow-derived mesenchymal stem cells (cBMSCs) in vitro. Methods Mesenchymal stem cells (MSCs) were obtained from PDL and BM of five male adult Mongrel dogs. In vitro isolation and expansion as well as biologic characterization including colony unit formation (CFU), osteogenic and adipogenic differentiation, flow cytometric analysis of CD34 and CD44, and RT-PCR of alkaline phosphatase (ALP), osteocalcin (OCN), periostin (POSTN) and S100A4 were performed. Furthermore, electron microscopy analysis was done to complement the comparative research. Results CFU assay revealed that colonies of cPDLSCs presented 70% confluency with a more finite lifespan than BM-MSCs, showing a significant increase in cPDLSCs. Both types of MSCs showed osteogenic and adipogenic phenotypic characterized with clusters of mineralized depositions and lipid vacuoles, respectively. Both types of MSCs expressed CD44 with limited expression of CD34. RT-PCR of cPDLSCs revealed that expression of ALP, POSTN, OCN and S100A4 genes were significantly higher than those of BMSCs. In addition, comparison of SEM and revealed that cPDLSCs expressed more extracellular collagen fibers. Conclusions The current study indicated that cPDLSCs show potency as a novel cellular therapy for periodontal regeneration a large animal model.
Collapse
Affiliation(s)
- Hamideh Salari Sedigh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Anna Saffarpour
- Department of Periodontology, Tehran University of Medical Sciences, International Campus, Tehran, Iran
| | - Shahram Jamshidi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mahdi Ashouri
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Shahed University of Medical Sciences, Tehran, Iran
| | - Seyed Mahdi Nassiri
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Mehdi Dehghan
- Department of Surgery & Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Esmail Ranjbar
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhaneh Shafieian
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Stem Cell and Regenerative Medicine Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Scattini G, Pellegrini M, Severi G, Cagiola M, Pascucci L. The Stromal Vascular Fraction from Canine Adipose Tissue Contains Mesenchymal Stromal Cell Subpopulations That Show Time-Dependent Adhesion to Cell Culture Plastic Vessels. Animals (Basel) 2023; 13:ani13071175. [PMID: 37048431 PMCID: PMC10093060 DOI: 10.3390/ani13071175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Adipose-derived mesenchymal stromal cells (MSCs) are extensively studied in both human and veterinary medicine. Their isolation is usually performed by collagenase digestion followed by filtration and removal of nonadherent tissue remnants 48 h after seeding. We observed that waste tissue fragments contain cells that adhere belatedly to the plastic. We aimed to investigate their basic properties to speculate on the possible existence of MSC subpopulations. Adipose tissue from three dogs was enzymatically digested. Three cell populations that adhered to the culture plastic 48, 96, and 144 h after seeding were obtained. After expansion, they were analyzed by flow cytometry for MSC-positive (CD90, CD44, and CD29) and -negative (CD14, MHCII, and CD45) markers as well as for endothelial, pericyte, and smooth muscle cell markers (CD31, CD146, and alpha-SMA). Furthermore, cells were assessed for viability, doubling time, and trilineage differentiation ability. No significant differences were found between the three subpopulations. As a result, this procedure has proven to be a valuable method for dramatically improving MSCs yield. As a consequence of cell recovery optimization, the amount of tissue harvested could be reduced, and the time required to obtain sufficient cells for clinical applications could be shortened. Further studies are needed to uncover possible different functional properties.
Collapse
Affiliation(s)
- Gabriele Scattini
- Department of Veterinary Medicine, University of Perugia, 06123 Perugia, Italy
| | - Martina Pellegrini
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy
- Correspondence: (M.P.); (L.P.); Tel.: +39-075-3431 (M.P.); +39-075-585-7632 (L.P.)
| | - Giulio Severi
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy
| | - Monica Cagiola
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy
| | - Luisa Pascucci
- Department of Veterinary Medicine, University of Perugia, 06123 Perugia, Italy
- Correspondence: (M.P.); (L.P.); Tel.: +39-075-3431 (M.P.); +39-075-585-7632 (L.P.)
| |
Collapse
|
12
|
Ivanovska A, Wang M, Arshaghi TE, Shaw G, Alves J, Byrne A, Butterworth S, Chandler R, Cuddy L, Dunne J, Guerin S, Harry R, McAlindan A, Mullins RA, Barry F. Manufacturing Mesenchymal Stromal Cells for the Treatment of Osteoarthritis in Canine Patients: Challenges and Recommendations. Front Vet Sci 2022; 9:897150. [PMID: 35754551 PMCID: PMC9230578 DOI: 10.3389/fvets.2022.897150] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/14/2022] [Indexed: 12/28/2022] Open
Abstract
The recent interest in advanced biologic therapies in veterinary medicine has opened up opportunities for new treatment modalities with considerable clinical potential. Studies with mesenchymal stromal cells (MSCs) from animal species have focused on in vitro characterization (mostly following protocols developed for human application), experimental testing in controlled studies and clinical use in veterinary patients. The ability of MSCs to interact with the inflammatory environment through immunomodulatory and paracrine mechanisms makes them a good candidate for treatment of inflammatory musculoskeletal conditions in canine species. Analysis of existing data shows promising results in the treatment of canine hip dysplasia, osteoarthritis and rupture of the cranial cruciate ligament in both sport and companion animals. Despite the absence of clear regulatory frameworks for veterinary advanced therapy medicinal products, there has been an increase in the number of commercial cell-based products that are available for clinical applications, and currently the commercial use of veterinary MSC products has outpaced basic research on characterization of the cell product. In the absence of quality standards for MSCs for use in canine patients, their safety, clinical efficacy and production standards are uncertain, leading to a risk of poor product consistency. To deliver high-quality MSC products for veterinary use in the future, there are critical issues that need to be addressed. By translating standards and strategies applied in human MSC manufacturing to products for veterinary use, in a collaborative effort between stem cell scientists and veterinary researchers and surgeons, we hope to facilitate the development of quality standards. We point out critical issues that need to be addressed, including a much higher level of attention to cell characterization, manufacturing standards and release criteria. We provide a set of recommendations that will contribute to the standardization of cell manufacturing methods and better quality assurance.
Collapse
Affiliation(s)
- Ana Ivanovska
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, Galway, Ireland
| | - Mengyu Wang
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, Galway, Ireland
| | - Tarlan Eslami Arshaghi
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, Galway, Ireland
| | - Georgina Shaw
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, Galway, Ireland
| | | | | | | | - Russell Chandler
- Orthopaedic Referral Service, Alphavet Veterinary Centre, Newport, United Kingdom
| | - Laura Cuddy
- Small Animal Surgery, Canine Sports Medicine and Rehabilitation, Veterinary Specialists Ireland, Summerhill, Ireland
| | - James Dunne
- Knocknacarra Veterinary Clinic, Ark Vets Galway, Galway, Ireland
| | - Shane Guerin
- Small Animal Surgery, Gilabbey Veterinary Hospital, Cork, Ireland
| | | | - Aidan McAlindan
- Northern Ireland Veterinary Specialists, Hillsborough, United Kingdom
| | - Ronan A Mullins
- Department of Small Animal Surgery, School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Frank Barry
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
13
|
Shi M, Gao Y, Lee L, Song T, Zhou J, Yan L, Li Y. Adaptive Gelatin Microspheres Enhanced Stem Cell Delivery and Integration With Diabetic Wounds to Activate Skin Tissue Regeneration. Front Bioeng Biotechnol 2022; 10:813805. [PMID: 35433645 PMCID: PMC9011108 DOI: 10.3389/fbioe.2022.813805] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/16/2022] [Indexed: 12/18/2022] Open
Abstract
The delayed and complicated diabetic wound healing raises clinical and social concerns. The application of stem cells along with hydrogels is an attractive therapeutic approach. However, low cell retention and integration hindered the performance. Herein, gelatin microspheres were fabricated for local delivery of adipose-derived stem cells (from rats, rADSCs), and the effect of rADSCs with microspheres on diabetic wound healing was examined. Uniform, well-dispersed microspheres were fabricated using the microfluidic technique. Due to geometry differences, the proteinase degradation rate for microspheres was four times that of the bulk hydrogel. The obtained gelatin microspheres supported cell's adhesion and proliferation and provided a suitable microenvironment for rADSC survival. For in vivo animal tests, rADSCs were labeled with CM-Dil for tracking purposes. Microspheres were well embedded in the regenerated tissue and demonstrated good biocompatibility and an adaptive biodegradation rate. Histological examination revealed rADSC-loaded gelatin microspheres that significantly accelerated wound healing via promoting M2 macrophage polarization, collagen deposition, angiogenesis associated with peripheral nerve recovery, and hair follicle formation. Notably, the relative fluorescence intensity around the hair follicle was 17-fold higher than that of the blank group, indicating rADSC participated in the healing process via exosomes. Taken together, the rADSC-laden gelatin microspheres provided a promising strategy for local stem cell delivery to improve diabetic wound healing.
Collapse
Affiliation(s)
- Ming Shi
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, Sun Yat-sen University, Guangzhou, China
- Department of Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yunfen Gao
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, Sun Yat-sen University, Guangzhou, China
| | - Lim Lee
- Department of Plastic and Cosmetic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ting Song
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, Sun Yat-sen University, Guangzhou, China
| | - Jianhua Zhou
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, Sun Yat-sen University, Guangzhou, China
| | - Ling Yan
- Department of Plastic and Cosmetic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Li
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Yan Li,
| |
Collapse
|
14
|
Horcharoensuk P, Yang-en S, Narkwichean A, Rungsiwiwut R. Proline-based solution maintains cell viability and stemness of canine adipose-derived mesenchymal stem cells after hypothermic storage. PLoS One 2022; 17:e0264773. [PMID: 35231072 PMCID: PMC8887718 DOI: 10.1371/journal.pone.0264773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/17/2022] [Indexed: 11/18/2022] Open
Abstract
Transportation of mesenchymal stem cells (MSCs) under hypothermic conditions in 0.9% normal saline solution (NSS) might increase cell death and alter the stemness of MSCs. The present study aimed to evaluate the effect of proline-based solution (PL-BS) on cell viability and the stemness of newly established canine adipose-derived mesenchymal stem cells (cAD-MSCs) under hypothermic conditions. Characterized cAD-MSCs were stored in 1, 10, and 100 mM PL-BS or NSS at 4°C for 6, 9, and 12 hours prior to an evaluation. The results demonstrated that storage in 1 mM PL-BS for 6 hours decreased cell apoptosis and proliferation ability, but improved cell viability and mitochondrial membrane potential. cAD-MSCs maintained their high expression of CD44 and CD90, but had a low expression of CD34 and MHC class II. Trilineage differentiation ability of cAD-MSCs was not affected by storage in 1 mM PL-BS. Gene expression analysis demonstrated that immunomodulatory genes, including IDO, HGF, PGE-2, and IL-6, were upregulated in cAD-MSCs stored in 1 mM PL-BS. In conclusion, PL-BS can be effectively applied for storing cAD-MSCs under hypothermic conditions. These findings provide a new solution for effective handling of cAD-MSCs which might be promising for clinical applications.
Collapse
Affiliation(s)
| | - Sunantha Yang-en
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
| | - Amarin Narkwichean
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Srinakharinwirot University, Nakhon Nayok, Thailand
| | - Ruttachuk Rungsiwiwut
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
15
|
Wang N, Gan G, Yang J, Wang L. Barbaloin Promotes Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells: Involvement of Wnt/β-catenin Signaling Pathway. Curr Med Chem 2022; 29:6100-6111. [PMID: 35770399 DOI: 10.2174/0929867329666220629150656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/08/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Barbaloin, found in Aloe vera, exerts broad pharmacological activities, including antioxidant, anti-inflammatory, and anti-cancer. This study aims to investigate the effects of barbaloin on the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). METHODS Osteogenic induction of hBMSCs was performed in the presence or absence of barbaloin. Cell viability was determined by using the CCK-8 assay. The characteristic of hBMSCs was identified by using flow cytometry. Intracellular alkaline phosphatase (ALP) staining was performed to evaluate the ALP activity in hBMSCs. Alizarin Red S staining was performed to evaluate the matrix mineralization. The mRNA and protein levels of target genes were determined using qRT-PCR and western blotting, respectively. RESULTS Treatment with barbaloin (10 and 20 μg/mL) significantly increased cell viability of hBMSCs after 72 hours. In addition, treatment with barbaloin increased the mRNA expression levels of ALP and its activities. Treatment with barbaloin also increased matrix mineralization and the mRNA and protein levels of late-differentiated osteoblast marker genes BMP2, RUNX2, and SP7 in hBMSCs. The underlying mechanisms revealed that barbaloin increased the protein expressions of Wnt/β-catenin pathway-related biomarkers. CONCLUSION Barbaloin promotes osteogenic differentiation of hBMSCs by the regulation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Nan Wang
- Department of Emergency Surgery, the First Affiliated Hospital of Zhengzhou University; Henan Medical Key Laboratory of Emergency and Trauma Research; No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China
| | - Guoli Gan
- Department of Emergency Surgery, the First Affiliated Hospital of Zhengzhou University; Henan Medical Key Laboratory of Emergency and Trauma Research; No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China
| | - Jihao Yang
- Department of Emergency Surgery, the First Affiliated Hospital of Zhengzhou University; Henan Medical Key Laboratory of Emergency and Trauma Research; No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China
| | - Luyao Wang
- Stomatological Center, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China
| |
Collapse
|
16
|
Rashid U, Yousaf A, Yaqoob M, Saba E, Moaeen-Ud-Din M, Waseem S, Becker SK, Sponder G, Aschenbach JR, Sandhu MA. Characterization and differentiation potential of mesenchymal stem cells isolated from multiple canine adipose tissue sources. BMC Vet Res 2021; 17:388. [PMID: 34922529 PMCID: PMC8684202 DOI: 10.1186/s12917-021-03100-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 11/29/2021] [Indexed: 12/16/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) are undifferentiated cells that can give rise to a mesoderm lineage. Adipose-derived MSCs are an easy and accessible source for MSCs isolation, although each source of MSC has its own advantages and disadvantages. Our study identifies a promising source for the isolation and differentiation of canines MSCs. For this purpose, adipose tissue from inguinal subcutaneous (SC), perirenal (PR), omental (OM), and infrapatellar fat pad (IPFP) was isolated and processed for MSCs isolation. In the third passage, MSCs proliferation/metabolism, surface markers expression, in vitro differentiation potential and quantitative reverse transcription PCR (CD73, CD90, CD105, PPARγ, FabP4, FAS, SP7, Osteopontin, and Osteocalcin) were evaluated. Results Our results showed that MSCs derived from IPFP have a higher proliferation rate, while OM-derived MSCs have higher cell metabolism. In addition, MSCs from all adipose tissue sources showed positive expression of CD73 (NT5E), CD90 (THY1), CD105 (ENDOGLIN), and very low expression of CD45. The isolated canine MSCs were successfully differentiated into adipogenic and osteogenic lineages. The oil-red-O quantification and adipogenic gene expression (FAS, FabP4, and PPARγ) were higher in OM-derived cells, followed by IPFP-MSCs. Similarly, in osteogenic differentiation, alkaline phosphatase activity and osteogenic gene (SP7 and Osteocalcin) expression were higher in OM-derived MSCs, while osteopontin expression was higher in PR-derived MSCs. Conclusion In summary, among all four adipose tissue sources, OM-derived MSCs have better differentiation potential toward adipo- and osteogenic lineages, followed by IPFP-MSCs. Interestingly, among all adipose tissue sources, MSCs derived from IPFP have the maximum proliferation potential. The characterization and differentiation potential of canine MSCs isolated from four different adipose tissue sources are useful to assess their potential for application in regenerative medicine.
Collapse
Affiliation(s)
- Usman Rashid
- Department of Clinical Studies, Faculty of Veterinary and Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - Arfan Yousaf
- Department of Clinical Studies, Faculty of Veterinary and Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - Muhammad Yaqoob
- Department of Clinical Studies, Faculty of Veterinary and Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - Evelyn Saba
- Department of Veterinary Biomedical Sciences, Faculty of Veterinary and Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - Muhammad Moaeen-Ud-Din
- Department of Animal Breeding and Genetics, Faculty of Veterinary and Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | | | - Sandra K Becker
- Institute of Veterinary-Physiology, Freie Universität Berlin, Berlin, Germany
| | - Gerhard Sponder
- Institute of Veterinary-Physiology, Freie Universität Berlin, Berlin, Germany
| | - Jörg R Aschenbach
- Institute of Veterinary-Physiology, Freie Universität Berlin, Berlin, Germany
| | - Mansur Abdullah Sandhu
- Department of Veterinary Biomedical Sciences, Faculty of Veterinary and Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi, 46300, Pakistan.
| |
Collapse
|
17
|
Jeyaraman M, Muthu S, Ganie PA. Does the Source of Mesenchymal Stem Cell Have an Effect in the Management of Osteoarthritis of the Knee? Meta-Analysis of Randomized Controlled Trials. Cartilage 2021; 13:1532S-1547S. [PMID: 32840122 PMCID: PMC8808923 DOI: 10.1177/1947603520951623] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
STUDY DESIGN Meta-analysis. OBJECTIVES To compare the efficacy and safety of bone marrow(BM)-derived mesenchymal stem cell(MSCs) and adipose-derived(AD) MSCs in the management of osteoarthritis of knee from randomized controlled trials(RCTs) available in the literature. MATERIALS AND METHODS We conducted electronic database searche from PubMed, Embase, and Cochrane Library till May 2020 for RCTs analyzing the efficacy and safety of MSCs in management of osteoarthritis of knee. Visual Analog Score(VAS) for Pain, Western Ontario McMaster Universities Osteoarthritis Index(WOMAC), Lysholm Knee Scale(Lysholm), Whole-Organ Magnetic Resonance Imaging Score(WORMS), Knee Osteoarthritis Outcome Score(KOOS), and adverse events were the outcomes analyzed. Analysis was performed in R platform using OpenMeta[Analyst] software. RESULTS Nineteen studies involving 811 patients were included for analysis. None of the studies compared the source of MSCs for osteoarthritis of knee and results were obtained by pooled data analysis of both sources. At 6 months, AD-MSCs showed significantly better VAS(P<0.001,P=0.069) and WOMAC(P=0.134,P=0.441) improvement than BM-MSCs, respectively, compared to controls. At 1 year, AD-MSCs outperformed BM-MSCs compared to their control in measures like WOMAC(P=0.007,P=0.150), KOOS(P<0.001;P=0.658), and WORMS(P<0.001,P=0.041), respectively. Similarly at 24 months, AD-MSCs showed significantly better Lysholm score(P=0.037) than BM-MSCs(P=0.807) although VAS improvement was better with BM-MSCs at 24 months(P<0.001). There were no significant adverse events with either of the MSCs compared to their controls. CONCLUSION Our analysis establishes the efficacy, safety, and superiority of AD-MSC transplantation, compared to BM-MSC, in the management of osteoarthritis of knee from available literature. Further RCTs are needed to evaluate them together with standardized doses.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, School of
Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh,
India
| | - Sathish Muthu
- Government Hospital, Velayuthampalayam,
Karur, Tamil Nadu, India
| | - Parvez Ahmad Ganie
- Department of Orthopaedics, School of
Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh,
India
| |
Collapse
|
18
|
Purwaningrum M, Jamilah NS, Purbantoro SD, Sawangmake C, Nantavisai S. Comparative characteristic study from bone marrow-derived mesenchymal stem cells. J Vet Sci 2021; 22:e74. [PMID: 34697921 PMCID: PMC8636658 DOI: 10.4142/jvs.2021.22.e74] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 11/29/2022] Open
Abstract
Tissue engineering has been extensively investigated and proffered to be a potential platform for novel tissue regeneration. The utilization of mesenchymal stem cells (MSCs) from various sources has been widely explored and compared. In this regard, MSCs derived from bone marrow have been proposed and described as a promising cell resource due to their high yield of isolated cells with colony-forming potential, self-renewal capacity, MSC surface marker expression, and multi-lineage differentiation capacities in vitro. However, there is evidence for bone marrow MSCs (BM-MSCs) both in vitro and in vivo from different species presenting identical and distinct potential stemness characteristics. In this review, the fundamental knowledge of the growth kinetics and stemness properties of BM-MSCs in different animal species and humans are compared and summarized. Finally, to provide a full perspective, this review will procure results of current information studies focusing on the use of BM-MSCs in clinical practice.
Collapse
Affiliation(s)
- Medania Purwaningrum
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.,Department of Biochemistry, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Nabila Syarifah Jamilah
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Steven Dwi Purbantoro
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chenphop Sawangmake
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.,Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.,Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sirirat Nantavisai
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.,Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
19
|
Meesuwan S, Ketpun D, Piyaviriyakul P, Rattanapinyopituk K, Theewasutrakul P, Sailasuta A. Immunohistochemical and molecular profiling of CD 117, Oct-4, and Sox-2 in canine cutaneous mast cell tumor of the crossbred dogs in Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand. Vet World 2021; 14:2646-2654. [PMID: 34903921 PMCID: PMC8654761 DOI: 10.14202/vetworld.2021.2646-2654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND AIM CD 117 (c-KIT) internal tandem duplication (ITD), octamer-binding transcription factor 4 (Oct-4), and sex-determining region Y-box 2 (Sox-2) may govern the oncogenicity and aggressiveness of canine cutaneous mast cell tumor (MCT) in the crossbred dogs. Thus, a comprehension of this matter may help us establishing a novel platform to treat the disease in those dogs. However, evidence has lacked so far. Thus, this study aimed to survey CD 117 ITD, Oct-4, and Sox-2 expressions and their relations to the 2-tier grading in a group of Thai crossbreed dogs. The study was done using polymerase chain reaction (PCR), Reverse transcription PCR (RT-PCR), and immunohistochemistry. MATERIALS AND METHODS Thirty-three MCT specimens graded by the 2-tier histopathology grading were collected from the crossbred and purebred dogs. CD 117 ITD was detected by conventional PCR and immunohistochemistry. While, Oct-4 and Sox-2 expression levels were determined at the protein and mRNA levels by immunohistochemistry and RT-PCR, respectively. The expression magnitude of each parameter was then related to the grades and breeds. RESULTS About 60.61% of specimens were low grade, while 39.39% were high grade. CD 117 ITD was not detected in all specimens. A significant increase of Oct-4 expression was found in the high-grade, crossbred dogs. Meanwhile, Sox-2 expressions were increased both in the purebred and crossbred dogs with high-grade MCT. CONCLUSION The study finding has indicated that the level of Sox-2 expression may be a useful tumorigenic and prognostic biomarker because it correlates to the 2-tier grades but not dog breeds.
Collapse
Affiliation(s)
- Sirilak Meesuwan
- Veterinary Pathobiology Program, Graduate School, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330 Thailand
- Companion Animal Cancer Research Unit, CAC-RU, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Dettachai Ketpun
- Companion Animal Cancer Research Unit, CAC-RU, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Veterinary Pathology and Diagnosis Centre, Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
- One Health Research Centre, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Prapruddee Piyaviriyakul
- Companion Animal Cancer Research Unit, CAC-RU, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Physiology, Biochemistry Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kasem Rattanapinyopituk
- Companion Animal Cancer Research Unit, CAC-RU, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pattharakrit Theewasutrakul
- Companion Animal Cancer Research Unit, CAC-RU, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Oncology Clinic, Small Animal Teaching Hospital, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Achariya Sailasuta
- Companion Animal Cancer Research Unit, CAC-RU, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
20
|
Wysong A, Ortiz P, Bittel D, Ott L, Karanu F, Filla M, Stehno-Bittel L. Viability, yield and expansion capability of feline MSCs obtained from subcutaneous and reproductive organ adipose depots. BMC Vet Res 2021; 17:244. [PMID: 34266445 PMCID: PMC8281647 DOI: 10.1186/s12917-021-02948-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 06/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The source of multipotent stromal cells (MSC) can have a significant influence on the health and expansion capacity of the cells. As the applications for allogeneic MSCs in the treatment of feline diseases increase, the location of the initial donor tissue must be analyzed. To date, comparisons have only been made between feline MSCs collected from bone marrow or abdominal fat. This is the first report to compare cells obtained from different adipose depots in the cat with a focus on clinically relevant donor tissues. The tissue was collected from 34 healthy cats undergoing spaying (fat around the ovaries and uterine horn) or subcutaneous fat collected during surgical procedures. RESULTS The amount of starting material is essential to isolate sufficient MSCs. The total tissue yield from the subcutaneous fat was significantly greater than could be obtained from around the reproductive organs, leading to 3 times more MSCs per donor. However, the concentration of MSCs obtained from reproductive fat was higher than from subcutaneous fat. In addition, the viability of the MSCs from the reproductive fat was significantly higher than the subcutaneous fat. Since most spaying occurs in young cats (under 18 months) reproductive fat was collected from adult cats during spaying, illustrating that age did not alter the yield or viability of the MSCs. When sufficient tissue was collected, it was digested either mechanically or enzymatically. Mechanical digestion further decreased the viability and yield of MSCs from subcutaneous fat compared to enzymatic digestion. Biomarkers of stem cell characterization, expansion capacity and function were detected using qPCR. CD70, CD90 and CD105 were all expressed in high levels in the 3 groups. However, the reproductive fat had higher levels of CD73 with the mechanically digested subcutaneous fat having the least. Gata6 was detected in all samples while Sox2 and Sox17 were also detected with higher quantities found in the enzymatically digested subcutaneous fat. Negative control genes of Gata4 and Pdx1 showed no detection prior to 50 cycles. During the first three passages, age of the donor, location of the donor tissue, or digestion protocol had no effect on cell culture doubling times or cell viability. CONCLUSIONS While MSCs from reproductive fat had superior cells/tissue weight and initial viability, there were still dramatically fewer cells obtained compared to subcutaneous fat due to the limited amount of tissue surrounding the reproductive organs. Further, in P1-P3 cultures there were no differences noted in doubling time or cell viability between tissue obtained from reproductive or subcutaneous fat depots.
Collapse
Affiliation(s)
- Amy Wysong
- College of Biology, Kansas City University, 1750 Independence Ave, Kansas City, MO, USA
| | | | - Douglas Bittel
- College of Biology, Kansas City University, 1750 Independence Ave, Kansas City, MO, USA
| | - Lindsey Ott
- Likarda LLC, 10330 Hickman Mills Drive, Kansas City, MO, USA
| | - Francis Karanu
- Likarda LLC, 10330 Hickman Mills Drive, Kansas City, MO, USA
| | - Michael Filla
- College of Biology, Kansas City University, 1750 Independence Ave, Kansas City, MO, USA
| | - Lisa Stehno-Bittel
- Likarda LLC, 10330 Hickman Mills Drive, Kansas City, MO, USA.
- Department of Rehabilitation Science, University of Kansas Medical Center, 3901 Rainbow Blvd, KS, 66160, Kansas City, USA.
| |
Collapse
|
21
|
Krešić N, Prišlin M, Vlahović D, Kostešić P, Ljolje I, Brnić D, Turk N, Musulin A, Habrun B. The Expression Pattern of Surface Markers in Canine Adipose-Derived Mesenchymal Stem Cells. Int J Mol Sci 2021; 22:ijms22147476. [PMID: 34299095 PMCID: PMC8303761 DOI: 10.3390/ijms22147476] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
The influence of cultivation on the expression pattern of canine adipose-derived mesenchymal stem cells (cAD-MSCs) surface markers, contributing to, among others, the promotion of growth, proliferation, differentiation and immunomodulatory mechanisms of an excellent therapeutic, is still unknown. To fill the gap, we investigated CD90, CD44, CD73, CD29, CD271, CD105, CD45 and CD14 patterns of expression at the protein level with flow cytometry and mRNA level using a real-time polymerase chain reaction array. Gentle variations of expression occurred during cultivation, along with increased CD90, CD44 and CD29 expression, low and decreasing CD271 and CD73 expression and a decrease of initially high CD105. As expected, CD45 and CD14 were not expressed by cAD-MSCs. Interestingly, we discovered a significant decrease of CD73 expression, compared to early (P1–P3) to late (P4–P6) passages, although the CD73 gene expression was found to be stable. The percentage of positive cells was found to be higher for all positive markers up to P4. As CD73′s one important feature is a modulation from a pro-inflammatory environment to an anti-inflammatory milieu, the expression of CD73 in our conditions indicate the need to consider the time cells spend in vitro before being transplanted into patients, since it could impact their favourable therapeutical properties.
Collapse
Affiliation(s)
- Nina Krešić
- Virology Department, Croatian Veterinary Institute, Savska Cesta 143, 10 000 Zagreb, Croatia; (M.P.); (D.B.)
- Correspondence:
| | - Marina Prišlin
- Virology Department, Croatian Veterinary Institute, Savska Cesta 143, 10 000 Zagreb, Croatia; (M.P.); (D.B.)
| | - Dunja Vlahović
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia;
| | - Petar Kostešić
- Surgery, Orthopaedics and Ophthalmology Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia; (P.K.); (A.M.)
| | - Ivana Ljolje
- Veterinary Clinic for Small Animals Buba, Dore Pfanove 11, 10 000 Zagreb, Croatia;
| | - Dragan Brnić
- Virology Department, Croatian Veterinary Institute, Savska Cesta 143, 10 000 Zagreb, Croatia; (M.P.); (D.B.)
| | - Nenad Turk
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia;
| | - Andrija Musulin
- Surgery, Orthopaedics and Ophthalmology Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia; (P.K.); (A.M.)
| | - Boris Habrun
- Department for Bacteriology and Parasitology, Croatian Veterinary Institute, Savska Cesta 143, 10 000 Zagreb, Croatia;
| |
Collapse
|
22
|
Measurement of the Adipose Stem Cells Cell Sheets Transmittance. Bioengineering (Basel) 2021; 8:bioengineering8070093. [PMID: 34356200 PMCID: PMC8301134 DOI: 10.3390/bioengineering8070093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
In the field of cell therapy, the interest in cell sheet technology is increasing. To determine the cell sheet harvesting time requires experience and practice, and different factors could change the harvesting time (variability among donors and culture media, between cell culture dishes, initial cell seeding density). We have developed a device that can measure the transmittance of the multilayer cell sheets, using a light emitting diode and a light detector, to estimate the harvesting time. The transmittance of the adipose stromal cells cell sheets (ASCCS) was measured every other day as soon as the cells were confluent, up to 12 days. The ASCCS, from three different initial seeding densities, were harvested at 8, 10, and 12 days after seeding. Real-time PCR and immunostaining confirmed the expression of specific cell markers (CD29, CD73, CD90, CD105, HLA-A, HLA-DR), but less than the isolated adipose stromal cells. The number of cells per cell sheets, the average thickness per cell sheet, and the corresponding transmittance showed no correlation. Decrease of the transmittance seems to be correlated with the cell sheet maturation. For the first time, we are reporting the success development of a device to estimate ASCCS harvesting time based on their transmittance.
Collapse
|
23
|
Maeta N, Tamura K, Ezuka F, Takemitsu H. Comparative analysis of canine mesenchymal stem cells and bone marrow-derived mononuclear cells. Vet World 2021; 14:1028-1037. [PMID: 34083956 PMCID: PMC8167527 DOI: 10.14202/vetworld.2021.1028-1037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/16/2021] [Indexed: 12/16/2022] Open
Abstract
Background and aim: Mesenchymal stem cells (MSCs), which have multi-lineage differentiation potentials, are a promising source for regenerative medicine. However, the focus of study of MSCs is shifting from the characterization of the differentiation potential to their secretion potential for cell transplantation. Tissue regeneration and the attenuation of immune responses are thought to be affected by the secretion of multiple growth factors and cytokines by MSCs. However, the secretion potential of MSCs profiling remains incompletely characterized. In this study, we focused on the secretion ability related and protein mRNA expression of dog adipose tissue-derived MSCs (AT-MSC), bone marrow (BM)-derived MSCs, and BM-derived mononuclear cells (BM-MNC). Materials and Methods: Real-time polymerase chain reaction analyses revealed mRNA expression of nine growth factors and seven interleukins in these types of cells and three growth factors protein expression were determined using Enzyme-linked immunosorbent assay. Results: For the BM-MNC growth factors, the mRNA expression of transforming growth factor-β (TGF-β) was the highest. For the BM-derived MSC (BM-MSC) and AT-MSC growth factors, the mRNA expression of vascular endothelial growth factor (VEGF) was highest. BM-MSCs and AT-MSCs showed similar expression profiles. In contrast, BM-MNCs showed unique expression profiles for hepatocyte growth factor and epidermal growth factor. The three types of cells showed a similar expression of TGF-β. Conclusion: We conclude that expression of cytokine proteins and mRNAs suggests involvement in tissue repair and protection.
Collapse
Affiliation(s)
- Noritaka Maeta
- Aikouishida Animal Hospital, Isehara, 1195-4 Takamori, Isehara, Kanagawa, 259-1114, Japan.,Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime, 794-8555, Japan
| | - Katsutoshi Tamura
- Aikouishida Animal Hospital, Isehara, 1195-4 Takamori, Isehara, Kanagawa, 259-1114, Japan
| | - Fuuna Ezuka
- Science and Humanities Master's Programme, Graduate School of Science and the Humanities, Kurashiki University of Science and The Arts, 2640 Nishinoura Tsurajima Kurashiki Okayama, 712-8505, Japan
| | - Hiroshi Takemitsu
- Science and Humanities Master's Programme, Graduate School of Science and the Humanities, Kurashiki University of Science and The Arts, 2640 Nishinoura Tsurajima Kurashiki Okayama, 712-8505, Japan.,Department of Comparative Animal Science, College of Life Science, Kurashiki University of Science and The Arts, 2640 Nishinoura Tsurajima Kurashiki Okayama, 712-8505, Japan
| |
Collapse
|
24
|
Wright A, Arthaud-Day ML, Weiss ML. Therapeutic Use of Mesenchymal Stromal Cells: The Need for Inclusive Characterization Guidelines to Accommodate All Tissue Sources and Species. Front Cell Dev Biol 2021; 9:632717. [PMID: 33665190 PMCID: PMC7921162 DOI: 10.3389/fcell.2021.632717] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Following their discovery over 50 years ago, mesenchymal stromal cells (MSCs) have become one of the most studied cellular therapeutic products by both academia and industry due to their regenerative potential and immunomodulatory properties. The promise of MSCs as a therapeutic modality has been demonstrated by preclinical data yet has not translated to consistent, successful clinical trial results in humans. Despite the disparities across the field, MSC shareholders are unified under one common goal-to use MSCs as a therapeutic modality to improve the quality of life for those suffering from a malady in which the standard of care is suboptimal or no longer effective. Currently, there is no Food and Drug Administration (FDA)-approved MSC therapy on the market in the United States although several MSC products have been granted regulatory approval in other countries. In this review, we intend to identify hurdles that are impeding therapeutic progress and discuss strategies that may aid in accomplishing this universal goal of widespread therapeutic use.
Collapse
Affiliation(s)
- Adrienne Wright
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, United States
| | - Marne L Arthaud-Day
- Department of Management, Kansas State University, Manhattan, KS, United States
| | - Mark L Weiss
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, United States.,Midwest Institute of Comparative Stem Cell Biotechnology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
25
|
Shahsavari A, Weeratunga P, Ovchinnikov DA, Whitworth DJ. Pluripotency and immunomodulatory signatures of canine induced pluripotent stem cell-derived mesenchymal stromal cells are similar to harvested mesenchymal stromal cells. Sci Rep 2021; 11:3486. [PMID: 33568729 PMCID: PMC7875972 DOI: 10.1038/s41598-021-82856-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/25/2021] [Indexed: 01/30/2023] Open
Abstract
With a view towards harnessing the therapeutic potential of canine mesenchymal stromal cells (cMSCs) as modulators of inflammation and the immune response, and to avoid the issues of the variable quality and quantity of harvested cMSCs, we examined the immunomodulatory properties of cMSCs derived from canine induced pluripotent stem cells (ciMSCs), and compared them to cMSCs harvested from adipose tissue (cAT-MSC) and bone marrow (cBM-MSC). A combination of deep sequencing and quantitative RT-PCR of the ciMSC transcriptome confirmed that ciMSCs express more genes in common with cBM-MSCs and cAT-MSCs than with the ciPSCs from which they were derived. Both ciMSCs and harvested cMSCs express a range of pluripotency factors in common with the ciPSCs including NANOG, POU5F1 (OCT-4), SOX-2, KLF-4, LIN-28A, MYC, LIF, LIFR, and TERT. However, ESRRB and PRDM-14, both factors associated with naïve, rather than primed, pluripotency were expressed only in the ciPSCs. CXCR-4, which is essential for the homing of MSCs to sites of inflammation, is also detectable in ciMSCs, cAT- and cBM-MSCs, but not ciPSCs. ciMSCs constitutively express the immunomodulatory factors iNOS, GAL-9, TGF-β1, PTGER-2α and VEGF, and the pro-inflammatory mediators COX-2, IL-1β and IL-8. When stimulated with the canine pro-inflammatory cytokines tumor necrosis factor-α (cTNF-α), interferon-γ (cIFN-γ), or a combination of both, ciMSCs upregulated their expression of IDO, iNOS, GAL-9, HGF, TGF-β1, PTGER-2α, VEGF, COX-2, IL-1β and IL-8. When co-cultured with mitogen-stimulated lymphocytes, ciMSCs downregulated their expression of iNOS, HGF, TGF-β1 and PTGER-2α, while increasing their expression of COX-2, IDO and IL-1β. Taken together, these findings suggest that ciMSCs possess similar immunomodulatory capabilities as harvested cMSCs and support further investigation into their potential use for the management of canine immune-mediated and inflammatory disorders.
Collapse
Affiliation(s)
- Arash Shahsavari
- grid.1003.20000 0000 9320 7537School of Veterinary Science, University of Queensland, Gatton, QLD 4343 Australia
| | - Prasanna Weeratunga
- grid.1003.20000 0000 9320 7537School of Veterinary Science, University of Queensland, Gatton, QLD 4343 Australia
| | - Dmitry A. Ovchinnikov
- grid.1003.20000 0000 9320 7537Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD 4067 Australia
| | - Deanne J. Whitworth
- grid.1003.20000 0000 9320 7537School of Veterinary Science, University of Queensland, Gatton, QLD 4343 Australia ,grid.1003.20000 0000 9320 7537Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD 4067 Australia
| |
Collapse
|
26
|
Voga M, Kovač V, Majdic G. Comparison of Canine and Feline Adipose-Derived Mesenchymal Stem Cells/Medicinal Signaling Cells With Regard to Cell Surface Marker Expression, Viability, Proliferation, and Differentiation Potential. Front Vet Sci 2021; 7:610240. [PMID: 33521084 PMCID: PMC7838367 DOI: 10.3389/fvets.2020.610240] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/26/2020] [Indexed: 12/23/2022] Open
Abstract
Remarkable immunomodulatory abilities of mesenchymal stem cells, also called multipotent mesenchymal stromal cells or medicinal signaling cells (MSCs), have entailed significant advances in veterinary regenerative medicine in recent years. Despite positive outcomes from MSC therapies in various diseases in dogs and cats, differences in MSC characteristics between small animal veterinary patients are not well-known. We performed a comparative study of cells' surface marker expression, viability, proliferation, and differentiation capacity of adipose-derived MSCs (ADMSCs) from dogs and domestic cats. The same growth media and methods were used to isolate, characterize, and culture canine and feline ADMSCs. Adipose tissue was collected from 11 dogs and 8 cats of both sexes. The expression of surface markers CD44, CD90, and CD34 was detected by flow cytometry. Viability at passage 3 was measured with the hemocytometer and compared to the viability measured by flow cytometry after 1 day of handling. The proliferation potential of MSCs was measured by calculating cell doubling and cell doubling time from second to eighth passage. Differentiation potential was determined at early and late passages by inducing cells toward adipogenic, osteogenic, and chondrogenic differentiation using commercial media. Our study shows that the percentage of CD44+CD90+ and CD34−/− cells is higher in cells from dogs than in cells from cats. The viability of cells measured by two different methods at passage 3 differed between the species, and finally, canine ADMSCs possess greater proliferation and differentiation potential in comparison to the feline ADMSCs.
Collapse
Affiliation(s)
- Metka Voga
- Veterinary Faculty, Institute for Preclinical Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Valerija Kovač
- Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Gregor Majdic
- Veterinary Faculty, Institute for Preclinical Sciences, University of Ljubljana, Ljubljana, Slovenia.,Medical Faculty, Institute for Physiology, University of Maribor, Maribor, Slovenia
| |
Collapse
|
27
|
Camara BOS, Ocarino NM, Bertassoli BM, Malm C, Araújo FR, Reis AMS, Jorge EC, Alves EGL, Serakides R. Differentiation of canine adipose mesenchymal stem cells into insulin-producing cells: comparison of different culture medium compositions. Domest Anim Endocrinol 2021; 74:106572. [PMID: 33039930 DOI: 10.1016/j.domaniend.2020.106572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 12/25/2022]
Abstract
The aim of this study was to differentiate canine adipose-derived mesenchymal stem cells (ADMSCs) into insulin-producing cells by using culture media with different compositions to determine the most efficient media. Stem cells isolated from the fat tissues close to the bitch uterus were distributed into 6 groups: (1) Dulbecco's modified Eagle medium (DMEM)-high glucose (HG), β-mercaptoethanol, and nicotinamide; (2) DMEM-HG, β-mercaptoethanol, nicotinamide, and exendin-4; (3) DMEM-HG, β-mercaptoethanol, nicotinamide, exendin-4, B27, nonessential amino acids, and l-glutamine; (4) DMEM-HG, β-mercaptoethanol, and nicotinamide (for the initial 8-d period), and DMEM-HG, β-mercaptoethanol, nicotinamide, exendin-4, B27, nonessential amino acids, l-glutamine, and basic fibroblast growth factor (for the remaining 8-d period); (5) DMEM-HG and fetal bovine serum; and (6) DMEM-low glucose and fetal bovine serum (standard control group). Adipose-derived mesenchymal stem cells from groups 1 to 5 gradually became round in shape and gathered in clusters. These changes differed between the groups. In group 3, the cell clusters were apparently more in numbers and gathered as bigger aggregates. Dithizone staining showed that groups 3 and 4 were similar in terms of the mean area of each aggregate stained for insulin. However, only in group 4, the number of insulin aggregates and the total area of aggregates stained were significantly bigger than in the other groups. The mRNA expression of PDX1, BETA2, MafA, and Insulin were also confirmed in all the groups. We conclude that by manipulating the composition of the culture medium it is possible to induce canine ADMSCs into insulin-producing cells, and the 2-staged protocol that was used promoted the best differentiation.
Collapse
Affiliation(s)
- B O S Camara
- Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - N M Ocarino
- Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - B M Bertassoli
- Universidade de Uberaba (UNIUBE), Uberaba, Minas Gerais, Brazil
| | - C Malm
- Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - F R Araújo
- Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - A M S Reis
- Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - E C Jorge
- Laboratório de Biologia Oral e do Desenvolvimento, Departamento de Morfologia do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - E G L Alves
- Universidade de Uberaba (UNIUBE), Uberaba, Minas Gerais, Brazil
| | - R Serakides
- Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
28
|
Gupta RC, Kalidindi SR, Doss RB, Lall R, Srivastava A, Sinha A. Nutraceuticals in arthritis. NUTRACEUTICALS 2021:193-214. [DOI: 10.1016/b978-0-12-821038-3.00014-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
29
|
Weeratunga P, Shahsavari A, Fennis E, Wolvetang EJ, Ovchinnikov DA, Whitworth DJ. Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells from the Tasmanian Devil ( Sarcophilus harrisii) Express Immunomodulatory Factors and a Tropism Toward Devil Facial Tumor Cells. Stem Cells Dev 2020; 29:25-37. [PMID: 31709909 DOI: 10.1089/scd.2019.0203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Marsupials have long attracted scientific interest because of their unique biological features and their position in mammalian evolution. Mesenchymal stem cells (MSCs) are of considerable research interest in translational medicine due to their immunomodulatory, anti-inflammatory, and regenerative properties. MSCs have been harvested from various tissues in numerous eutherian species; however, there are no descriptions of MSCs derived from a marsupial. In this study, we have generated Tasmanian devil (Sarcophilus harrisii) MSCs from devil induced pluripotent stem cells (iPSCs), thus providing an unlimited source of devil MSCs and circumventing the need to harvest tissues from live animals. Devil iPSCs were differentiated into MSCs (iMSCs) through both embryoid body formation assays (EB-iMSCs) and through inhibition of the transforming growth factor beta/activin signaling pathway (SB-iMSCs). Both EB-iMSCs and SB-iMSCs are highly proliferative and express the MSC-specific surface proteins CD73, CD90, and CD105, in addition to the pluripotency transcription factors OCT4/POU5F1, SOX2, and NANOG. Expression of the marsupial pluripotency factor POU5F3, a paralogue of OCT4/POU5F1, is significantly reduced in association with the transition from pluripotency to multipotency. Devil iMSCs readily differentiate along the adipogenic, osteogenic, and chondrogenic pathways in vitro, confirming their trilineage differentiation potential. Importantly, in vitro teratoma assays confirmed their multipotency, rather than pluripotency, since the iMSCs only formed derivatives of the mesodermal germ layer. Devil iMSCs show a tropism toward medium conditioned by devil facial tumor cells and express a range of immunomodulatory and anti-inflammatory factors. Therefore, devil iMSCs will be a valuable tool for further studies on marsupial biology and may facilitate the development of an MSC-based treatment strategy against Devil Facial Tumor Disease.
Collapse
Affiliation(s)
- Prasanna Weeratunga
- School of Veterinary Science, The University of Queensland, Gatton, Australia
| | - Arash Shahsavari
- School of Veterinary Science, The University of Queensland, Gatton, Australia
| | - Evelien Fennis
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Ernst J Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Australia
| | - Dmitry A Ovchinnikov
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Australia.,StemCore, The University of Queensland, St. Lucia, Australia
| | - Deanne J Whitworth
- School of Veterinary Science, The University of Queensland, Gatton, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Australia
| |
Collapse
|
30
|
Suelzu CM, Conti V, Khalidy Y, Montagna S, Strusi G, Di Lecce R, Berni P, Basini G, Ramoni R, Grolli S. Xenobiotic-Free Medium Guarantees Expansion of Adipose Tissue-Derived Canine Mesenchymal Stem Cells Both in 3D Fibrin-Based Matrices and in 2D Plastic Surface Cultures. Cells 2020; 9:cells9122578. [PMID: 33276432 PMCID: PMC7759956 DOI: 10.3390/cells9122578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/22/2020] [Accepted: 11/28/2020] [Indexed: 01/22/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been recently introduced in veterinary medicine as a potential therapeutic tool for several pathologies. The large-scale in vitro expansion needed to ensure the preparation of a suitable number of MSCs for clinical application usually requires the use of xenogeneic supplements like the fetal bovine serum (FBS). The substitution of FBS with species-specific supplements would improve the safety of implanted cells, reducing the risk of undesired immune responses following cell therapy. We have evaluated the effectiveness of canine adipose tissue-derived stromal vascular fraction (SVF) and MSCs (ADMSCs) expansion in the presence of canine blood-derived supplements. Cells were cultured on traditional plastic surface and inside a 3D environment derived from the jellification of different blood-derived products, i.e., platelet-poor plasma (PPP), platelet-rich plasma (PRP), or platelet lysate (PL). PPP, PRP, and PL can contribute to canine ADMSCs in vitro expansion. Both allogeneic and autologous PPP and PL can replace FBS for ADMSCs culture on a plastic surface, exhibiting either a similar (PPP) or a more effective (PL) stimulus to cell replication. Furthermore, the 3D environment based on homospecific blood-derived products polymerization provides a strong stimulus to ADMSCs replication, producing a higher number of cells in comparison to the plastic surface environment. Allogeneic or autologous blood products behave similarly. The work suggests that canine ADMSCs can be expanded in the absence of xenogeneic supplements, thus increasing the safety of cellular preparations. Furthermore, the 3D fibrin-based matrices could represent a simple, readily available environments for effective in vitro expansion of ADMSCs using allogeneic or autologous blood-products.
Collapse
Affiliation(s)
- Caterina M. Suelzu
- Dipartimento di Scienze Mediche Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy; (V.C.); (Y.K.); (S.M.); (R.D.L.); (P.B.); (G.B.); (R.R.)
- Norwich Medical School, University of East Anglia, Norwich, Norfolk NR4 7UQ, UK;
- Correspondence: (C.M.S.); (S.G.)
| | - Virna Conti
- Dipartimento di Scienze Mediche Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy; (V.C.); (Y.K.); (S.M.); (R.D.L.); (P.B.); (G.B.); (R.R.)
| | - Youssef Khalidy
- Dipartimento di Scienze Mediche Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy; (V.C.); (Y.K.); (S.M.); (R.D.L.); (P.B.); (G.B.); (R.R.)
| | - Sara Montagna
- Dipartimento di Scienze Mediche Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy; (V.C.); (Y.K.); (S.M.); (R.D.L.); (P.B.); (G.B.); (R.R.)
| | - Gabriele Strusi
- Norwich Medical School, University of East Anglia, Norwich, Norfolk NR4 7UQ, UK;
| | - Rosanna Di Lecce
- Dipartimento di Scienze Mediche Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy; (V.C.); (Y.K.); (S.M.); (R.D.L.); (P.B.); (G.B.); (R.R.)
| | - Priscilla Berni
- Dipartimento di Scienze Mediche Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy; (V.C.); (Y.K.); (S.M.); (R.D.L.); (P.B.); (G.B.); (R.R.)
| | - Giuseppina Basini
- Dipartimento di Scienze Mediche Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy; (V.C.); (Y.K.); (S.M.); (R.D.L.); (P.B.); (G.B.); (R.R.)
| | - Roberto Ramoni
- Dipartimento di Scienze Mediche Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy; (V.C.); (Y.K.); (S.M.); (R.D.L.); (P.B.); (G.B.); (R.R.)
| | - Stefano Grolli
- Dipartimento di Scienze Mediche Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy; (V.C.); (Y.K.); (S.M.); (R.D.L.); (P.B.); (G.B.); (R.R.)
- Correspondence: (C.M.S.); (S.G.)
| |
Collapse
|
31
|
Conditioned Medium from Canine Amniotic Membrane-Derived Mesenchymal Stem Cells Improved Dog Sperm Post-Thaw Quality-Related Parameters. Animals (Basel) 2020; 10:ani10101899. [PMID: 33081332 PMCID: PMC7603003 DOI: 10.3390/ani10101899] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Mesenchymal stem cells and their derivatives are used in clinical studies for their anti-apoptotic, anti-oxidant, immunomodulatory, and regenerative properties. Their use in reproductive medicine is increasing as they have been proved to be beneficial for infertility treatment. Mesenchymal stem cells can secrete factors that influence biological processes in target tissues or cells; these factors are either directly secreted by the cells or mediated through their derivatives. Although the amniotic membrane is easy to obtain and is a good source of stem cells, clinical trials using amniotic membrane-derived mesenchymal stem cells are still uncommon, especially in reproductive medicine or artificial reproductive technologies. The objective of the present study was to demonstrate the effects of conditioned medium prepared from amniotic membrane-derived stem cells on dog sperm cryopreservation. Our results showed that 10% of the conditioned medium enhanced the quality-related parameters of frozen–thawed sperm cells because of the presence of antioxidants and growth factors in the medium, which probably protected spermatozoa during the freeze–thaw process. These results suggest that conditioned media prepared from amniotic membrane-derived mesenchymal stem cells might have clinical applications in assisted reproductive technologies. Abstract This study investigated the effects of conditioned medium (CM) from canine amniotic membrane-derived MSCs (cAMSCs) on dog sperm cryopreservation. For this purpose, flow cytometry analysis was performed to characterize cAMSCs. The CM prepared from cAMSCs was subjected to proteomic analysis for the identification of proteins present in the medium. Sperm samples were treated with freezing medium supplemented with 0%, 5%, 10%, and 15% of the CM, and kinetic parameters were evaluated after 4–6 h of chilling at 4 °C to select the best concentration before proceeding to cryopreservation. Quality-related parameters of frozen–thawed sperm were investigated, including motility; kinetic parameters; viability; integrity of the plasma membrane, chromatin, and acrosome; and mitochondrial activity. The results showed that 10% of the CM significantly enhanced motility, viability, mitochondrial activity, and membrane integrity (p < 0.05); however, the analysis of chromatin and acrosome integrity showed no significant differences between the treatment and control groups. Therefore, we concluded that the addition of 10% CM derived from cAMSC in the freezing medium protected dog sperm during the cryopreservation process.
Collapse
|
32
|
Understanding of tumourigenesis in canine mammary tumours based on cancer stem cell research. Vet J 2020; 265:105560. [PMID: 33129557 DOI: 10.1016/j.tvjl.2020.105560] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 11/21/2022]
Abstract
Mammary tumours occur frequently in female dogs, where such tumours exhibit complexity when examined histologically. These tumours are composed not only of proliferative luminal epithelial cells, but also of myoepithelial cells and/or mesenchymal cells with cartilage and osseous tissues in a solitary mass. The origin of this complexed histogenesis remains speculative, but cancer stem cells (CSCs) are likely involved. CSCs possess self-renewing capacity, differentiation potential, high tumourigenicity in immunodeficient mice, and resistance to chemotherapy and radiation. These cells are at the apex of a hierarchy in cancer tissues and are involved in tumour initiation, recurrence, and metastasis. For these reasons, understanding the properties of CSCs is of paramount importance. Analysis of the characteristics of CSCs may contribute to the elucidation of the histogenesis underlying canine mammary tumours, formulation of novel CSC-targeted therapeutic strategies, and development of biomarkers for early diagnostic and prognostic applications. Here, we review research on CSCs in canine mammary tumours, focusing on: (1) identification and properties of CSCs; (2) hypotheses regarding hierarchal structures in simple type, complex type and mixed tumours of the canine mammary gland; and (3) current and prospective studies of CSC metabolism.
Collapse
|
33
|
Maki CB, Beck A, Wallis CBCC, Choo J, Ramos T, Tong R, Borjesson DL, Izadyar F. Intra-articular Administration of Allogeneic Adipose Derived MSCs Reduces Pain and Lameness in Dogs With Hip Osteoarthritis: A Double Blinded, Randomized, Placebo Controlled Pilot Study. Front Vet Sci 2020; 7:570. [PMID: 33110913 PMCID: PMC7489271 DOI: 10.3389/fvets.2020.00570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/16/2020] [Indexed: 01/07/2023] Open
Abstract
This study was conducted to investigate the therapeutic effect of allogeneic adipose-derived MSCs on dogs with hip osteoarthritis (OA). Twenty dogs with bilateral osteoarthritis of the coxofemoral (hip) joint, diagnosed by a veterinarian through physical examination and radiographs were randomly allocated into four groups. Group 1 served as a placebo control and were injected with 0.9% sodium chloride (saline) (n = 4). Group 2 were injected with a single dose of 5 million MSCs (n = 5). Group 3 received a single dose of 25 million MSCs (n = 6) and Group 4 received a single dose of 50 million MSCs (n = 5). Intra-articular administration of allogeneic MSCs into multiple joints did not result in any serious adverse events. The average lameness score of the dogs in the placebo control group (−0.31) did not show improvement after 90 days of intra-articular saline administration. However, the average lameness score of the all MSC-treated dogs was improved 2.11 grade at this time point (P < 0.001). Overall, sixty five percent (65%) of the dogs that received various doses of MSCs showed improvement in lameness scores 90 days after intra-articular MSC administration. Our results showed that intra-articular administration of allogeneic adipose derived MSCs was well-tolerated and improved lameness scores and reduced pain in dogs associated with hip OA. All doses of MSCs were effective. Subsequent studies with more animals per group are needed to make a conclusion about the dose response. The improved lameness effect was present up to 90 days post-injection. Serum interleukin 10 was increased in a majority of the dogs that received MSCs and that also had improved lameness.
Collapse
Affiliation(s)
- Chad B Maki
- VetCell Therapeutics USA, Santa Ana, CA, United States
| | - Anthony Beck
- Doctors Beck and Stone Clinic, Discovery Bay, Hong Kong
| | | | - Justin Choo
- Doctors Beck and Stone Clinic, Discovery Bay, Hong Kong
| | - Thomas Ramos
- VetCell Therapeutics USA, Santa Ana, CA, United States
| | | | - Dori L Borjesson
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, Veterinary Institute for Regenerative Cures, University of California, Davis, Davis, CA, United States
| | | |
Collapse
|
34
|
Huňáková K, Hluchý M, Špaková T, Matejová J, Mudroňová D, Kuricová M, Rosocha J, Ledecký V. Study of bilateral elbow joint osteoarthritis treatment using conditioned medium from allogeneic adipose tissue-derived MSCs in Labrador retrievers. Res Vet Sci 2020; 132:513-520. [PMID: 32805699 DOI: 10.1016/j.rvsc.2020.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 02/08/2023]
Abstract
Canine elbow dysplasia is a common cause of forelimb lameness in dogs and can lead to development of osteoarthritis (OA). A potential alternative to pain management is the use of a safe cell-free based therapy through trophic and paracrine factors of mesenchymal stem cells (MSCs). The aim of study was to identify the profile of selected mediators of potential clinical relevance in synovial fluid (SF) samples of dogs with elbow OA and analyse the range of motion (ROM) before and after cell-free MSCs-based treatment. In this study, conditioned medium from allogeneic canine adipose tissue - derived MSC (CM-AD-MSC) was prepared and administered into both elbow joints with OA in six Labrador retriever dogs (n = 6) on day 0 and 14 without creating a control group with a placebo. The SF of the elbow joints was analysed for the presence of several biomolecules (IL-6, IL-10, IL-8, IL-2, IL-12, TNF-αIFN-γ, MMP-3TIMP-1) before and after intraarticular applications of CM-AD-MSC. Kinematic analysis was used to assess the clinical effect of CM-AD-MSC. Analyses of SF and ROM were performed on days 0, 14 and 42. Concentration levels of MMP-3, TIMP-1, IL-6 and TNF-α in SF showed significant differences before and after the treatment (P < .05). There was a significant improvement in ROM between day 0 and 42 (P < .001). No severe adverse events were observed during the study. Results support the potential supportive effect of CM-AD-MSC as a noninvasive therapeutic tool for pain management of OA elbow joints in dogs.
Collapse
Affiliation(s)
- Kristína Huňáková
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia
| | - Marián Hluchý
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia
| | - Tímea Špaková
- Associated Tissue Bank, Faculty of Medicine, P. J. Safarik University and L. Pasteur University Hospital, Trieda SNP 1, 040 11 Košice, Slovakia.
| | - Jana Matejová
- Associated Tissue Bank, Faculty of Medicine, P. J. Safarik University and L. Pasteur University Hospital, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Dagmar Mudroňová
- Institute of Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia
| | - Mária Kuricová
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia
| | - Ján Rosocha
- Associated Tissue Bank, Faculty of Medicine, P. J. Safarik University and L. Pasteur University Hospital, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Valent Ledecký
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia
| |
Collapse
|
35
|
Amorim RM, Clark KC, Walker NJ, Kumar P, Herout K, Borjesson DL, Wang A. Placenta-derived multipotent mesenchymal stromal cells: a promising potential cell-based therapy for canine inflammatory brain disease. Stem Cell Res Ther 2020; 11:304. [PMID: 32698861 PMCID: PMC7374910 DOI: 10.1186/s13287-020-01799-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 06/25/2020] [Accepted: 07/01/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Canine inflammatory brain disease (IBD) is a severe inflammatory disorder characterized by infiltration of activated immune cell subsets into the brain and spinal cord. Multipotent mesenchymal stromal cells (MSCs) are a promising therapy for IBD, based on their potent pro-angiogenic, neuroprotective, and immunomodulatory properties. The aims of this study were to compare the immunomodulatory attributes of canine adipose-derived MSCs (ASCs) and placenta-derived MSCs (PMSCs) in vitro. These data will serve as potency information to help inform the optimal MSC cell source to treat naturally occurring canine IBD. METHODS Indoleamine 2,3 dioxygenase (IDO) activity and prostaglandin E2 (PGE2) concentration at baseline and after stimulation with interferon gamma (IFNγ) and/or tumor necrosis factor alpha (TNFα) were measured from canine ASC and PMSC cultures. Leukocyte suppression assays (LSAs) were performed to compare the ability of ASCs and PMSCs to inhibit activated peripheral blood mononuclear cell (PBMC) proliferation. IDO activity and PGE2; interleukin (IL)-2, IL-6, and IL-8; TNFα; and vascular endothelial growth factor (VEGF) concentrations were also measured from co-culture supernatants. Cell cycle analysis was performed to determine how ASCs and PMSCs altered lymphocyte proliferation. RESULTS Activated canine MSCs from both tissue sources secreted high concentrations of IDO and PGE2, after direct stimulation with IFNγ and TNFα, or indirect stimulation by activated PBMCs. Both ASCs and PMSCs inhibited activated PBMC proliferation in LSA assays; however, PMSCs inhibited PBMC proliferation significantly more than ASCs. Blocking PGE2 and IDO in LSA assays determined that PGE2 is important only for ASC inhibition of PBMC proliferation. Activated ASCs increased IL-6 and VEGF secretion and decreased TNFα secretion, while activated PMSCs increased IL-6, IL-8, and VEGF secretion. ASCs inhibited lymphocyte proliferation via cell cycle arrest in the G0/G1 and PMSCs inhibited lymphocyte proliferation via induction of lymphocyte apoptosis. CONCLUSION Our results demonstrate that ASCs and PMSCs have substantial in vitro potential as a cell-based therapy for IBD; however, PMSCs more potently inhibited lymphocyte proliferation by inducing apoptosis of activated lymphocytes. These data suggest that the mechanism by which ASCs and PMSCs downregulate PBMC proliferation differs. Additional studies may elucidate additional mechanisms by which canine MSCs modulate neuroinflammatory responses.
Collapse
Affiliation(s)
- Rogério Martins Amorim
- Veterinary Institute for Regenerative Cures and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA USA
- Department of Veterinary Clinics, São Paulo State University “Julio de Mesquita Filho” – UNESP, Botucatu, SP Brazil
| | - Kaitlin C. Clark
- Veterinary Institute for Regenerative Cures and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA USA
- Surgical Bioengineering Laboratory, Department of Surgery, School of Medicine, University of California, Davis, 4625 2nd Ave., Research II, Suite 3005, Sacramento, CA 95817 USA
- Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals Pediatric Research Center, Northern California, Sacramento, CA USA
| | - Naomi J. Walker
- Veterinary Institute for Regenerative Cures and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA USA
| | - Priyadarsini Kumar
- Surgical Bioengineering Laboratory, Department of Surgery, School of Medicine, University of California, Davis, 4625 2nd Ave., Research II, Suite 3005, Sacramento, CA 95817 USA
- Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals Pediatric Research Center, Northern California, Sacramento, CA USA
| | - Kyle Herout
- Surgical Bioengineering Laboratory, Department of Surgery, School of Medicine, University of California, Davis, 4625 2nd Ave., Research II, Suite 3005, Sacramento, CA 95817 USA
| | - Dori L. Borjesson
- Veterinary Institute for Regenerative Cures and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA USA
| | - Aijun Wang
- Veterinary Institute for Regenerative Cures and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA USA
- Surgical Bioengineering Laboratory, Department of Surgery, School of Medicine, University of California, Davis, 4625 2nd Ave., Research II, Suite 3005, Sacramento, CA 95817 USA
- Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals Pediatric Research Center, Northern California, Sacramento, CA USA
- Department of Biomedical Engineering, University of California, Davis, CA USA
| |
Collapse
|
36
|
Wright A, Snyder L, Knights K, He H, Springer NL, Lillich J, Weiss ML. A Protocol for the Isolation, Culture, and Cryopreservation of Umbilical Cord-Derived Canine Mesenchymal Stromal Cells: Role of Cell Attachment in Long-Term Maintenance. Stem Cells Dev 2020; 29:695-713. [PMID: 32148170 DOI: 10.1089/scd.2019.0145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) hold great promise in the field of regenerative medicine due to their ability to create a variable localized anti-inflammatory effect in injuries such as Crohn's disease and osteoarthritis or by incorporation in tissue engineered constructs. Currently, the MSC literature uses rodents for preclinical disease models. There is growing interest in using naturally occurring disease in large animals for modeling human disease. By review of the canine MSCs literature, it appears that canine MSCs can be difficult to maintain in culture for extended passages and this greatly varies between tissue sources, compared with human and rodent MSCs, and limited lifespan is an obstacle for preclinical investigation and therapeutic use. Research using canine MSCs has been focused on cells derived from bone marrow or adipose tissue, and the differences in manufacturing MSCs between laboratories are problematic due to lack of standardization. To address these issues, here, a stepwise process was used to optimize canine MSCs isolation, expansion, and cryopreservation utilizing canine umbilical cord-derived MSCs. The culture protocol utilizes coating of tissue culture surfaces that increases cellular adherence, increases colony-forming units-fibroblast efficiency, and decreases population doubling times. Canine MSCs isolated with our protocol could be maintained longer than published canine MSCs methods before senescing. Our improved cryopreservation protocols produce on average >90% viable MSCs at thaw. These methods enable master-bank and working-bank scenarios for allogeneic MSC testing in naturally occurring disease in dogs.
Collapse
Affiliation(s)
- Adrienne Wright
- Department of Anatomy and Physiology and Kansas State University College of Veterinary Medicine, Manhattan, Kansas, USA
| | - Larry Snyder
- Department of Anatomy and Physiology and Kansas State University College of Veterinary Medicine, Manhattan, Kansas, USA
| | - Kaori Knights
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, Kansas, USA
| | - Hong He
- Department of Anatomy and Physiology and Kansas State University College of Veterinary Medicine, Manhattan, Kansas, USA
| | - Nora L Springer
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, Kansas, USA
| | - James Lillich
- Department of Anatomy and Physiology and Kansas State University College of Veterinary Medicine, Manhattan, Kansas, USA
| | - Mark L Weiss
- Department of Anatomy and Physiology and Kansas State University College of Veterinary Medicine, Manhattan, Kansas, USA.,The Midwest Institute of Comparative Stem Cell Biology, Kansas State University, College of Veterinary Medicine, Manhattan, Kansas, USA
| |
Collapse
|
37
|
Kafarnik C, McClellan A, Dziasko M, Daniels JT, Guest DJ. Canine Corneal Stromal Cells Have Multipotent Mesenchymal Stromal Cell Properties In Vitro. Stem Cells Dev 2020; 29:425-439. [PMID: 31973649 DOI: 10.1089/scd.2019.0163] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The objective of this study was to determine whether corneal stromal cells (CSCs) from the limbal and central corneal stroma in dogs have multipotent mesenchymal stem/stromal cell (MSC) properties, and whether this cell population can be differentiated into keratocyte-like cells (KDCs). Normal, donated, mesocephalic dog corneas were used to isolate CSC in vitro. Immunohistochemistry demonstrated a distinct population of CD90 expressing cells in the anterior stroma throughout the limbal and central cornea. CSC could be cultured from both the limbal and central cornea and the culture kinetics showed a progenitor cell profile. The CSC expressed stem cell markers CD90, CD73, CD105, N-cadherin, and Pax6, while CD34 was negative. Limbal and central CSC differentiated into osteoblasts, chondrocytes, and adipocytes confirming their multipotency. Coculturing allogeneic peripheral blood mononuclear cells (PBMCs) with limbal CSCs did not affect baseline PBMC proliferation indicating a degree of innate immune privilege. Limbal CSC could be differentiated into KDCs that expressed Keratocan, Lumican, and ALDH1A3 and downregulated Pax6 and N-cadherin. In conclusion, canine CSCs have multipotent MSC properties similarly described in humans and could serve as a source of cells for cell therapy and studying corneal diseases.
Collapse
Affiliation(s)
- Christiane Kafarnik
- Centre for Preventive Medicine, Animal Health Trust, Newmarket, United Kingdom.,Rescue, Repair and Regeneration Theme, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Alyce McClellan
- Centre for Preventive Medicine, Animal Health Trust, Newmarket, United Kingdom
| | - Marc Dziasko
- Rescue, Repair and Regeneration Theme, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Julie T Daniels
- Rescue, Repair and Regeneration Theme, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Deborah J Guest
- Centre for Preventive Medicine, Animal Health Trust, Newmarket, United Kingdom
| |
Collapse
|
38
|
Sepúlveda RV, Eleotério In Memorian RB, Valente FL, Araújo FR, Sabino ADP, Evangelista FCG, Reis ECC, Borges APB. Canine umbilical cord perivascular tissue: A source of stem cells for therapy and research. Res Vet Sci 2020; 129:193-202. [PMID: 32087438 DOI: 10.1016/j.rvsc.2020.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/17/2019] [Accepted: 02/12/2020] [Indexed: 12/17/2022]
Abstract
There are numerous sources of multipotent mesenchymal stromal cells (MSC) with therapeutic potential, and bone marrow is the main one. However, pain, lack of donors and comorbidities associated with harvesting stimulate the search for new sources of MSCs. The aim of this work is to obtain cells from umbilical cord (UC) perivascular tissue of dogs and characterize them as MSCs. For this, the UC was obtained from therapeutic cesarean sections and submitted to enzymatic digestion. The obtained cells were subjected to growth and proliferation tests, as well as the analysis of surface markers, differentiation test in three mesenchymal lineages and analysis of differentiation markers expression. From all the UC used in this study an adherent with fibroblastoid shape cell was obtained, with an initial number of 4.8 × 105 of cells. The growth curves showed a lag phase from 0 to 24 h, followed by a phase of growth of 24 to 168 h, and then phase of cell decay. The doubling time was kept around 15 h until the sixth passage, from which there were signs of cellular senescence. The differentiation assays demonstrated the ability of cells to differentiate into osteoblasts, adipocytes and chondrocytes when subjected to the induction mediums. The study of surface markers was positive for adhesion markers and negative for hematopoietic markers. Thus, cells obtained from canine UC perivascular tissue by enzymatic digestion are multipotent MSC and the protocol developed ensures the perivascular origin of these cells.
Collapse
Affiliation(s)
| | | | | | - Fabiana Rocha Araújo
- Veterinary Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Adriano de Paula Sabino
- Department of Clinical and Toxicological Analysis, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Brazil
| | | | | | | |
Collapse
|
39
|
Comparison of Properties of Stem Cells Isolated from Adipose Tissue and Lipomas in Dogs. Stem Cells Int 2019; 2019:1609876. [PMID: 31827523 PMCID: PMC6886319 DOI: 10.1155/2019/1609876] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/26/2019] [Accepted: 11/01/2019] [Indexed: 12/12/2022] Open
Abstract
Adipose-derived mesenchymal stem cells (ADSCs) have been suggested their benefits in regenerative medicine for various diseases. Lipomas, benign neoplasms in adipose tissue, have been reported as a potential source of stem cells. These lipoma-derived mesenchymal stem cells (LDSCs) may be useful for regenerative medicine. However, the detailed characteristics of LDSCs have not been fully elucidated. This study investigated the cellular proteomics and secretomes of canine LDSCs in addition to morphology and proliferation and differentiation capacities. Some LDSCs isolated from canine subcutaneous lipomas were morphologically different from ADSCs and showed a rounded shape instead of fibroblast-like morphology. The phenotype of cell surface markers in LDSCs was similar to those in ADSCs, but CD29 and CD90 stem cell markers were more highly expressed compared with those of ADSCs. LDSCs had noticeably high proliferation ability, but no significant differences were observed compared with ADSCs. In regard to differentiation capacity compared to ADSCs, LDSCs showed higher adipogenesis, but no differences were observed with osteogenesis. Cellular proteomic analysis using two-dimensional gel electrophoresis revealed that over 95% of protein spots showed similar expression levels between LDSCs and ADSCs. Secretome analysis was performed using iTRAQ and quantitative cytokine arrays. Over 1900 proteins were detected in conditioned medium (CM) of LDSCs and ADSCs, and 94.0% of detected proteins showed similar expression levels between CM of both cell types. Results from cytokine arrays including 20 cytokines showed no significant differences between CM of LDSCs and that of ADSCs. Our results indicate that canine LDSCs had variability in characteristics among individuals in contrast with those of ADSCs. Cellular proteomics and secretomes were similar in both LDSCs and ADSCs. These findings suggest that LDSCs may be suitable for application in regenerative medicine.
Collapse
|
40
|
Bach FS, Rebelatto CLK, Fracaro L, Senegaglia AC, Fragoso FYI, Daga DR, Brofman PRS, Pimpão CT, Engracia Filho JR, Montiani-Ferreira F, Villanova JA. Comparison of the Efficacy of Surgical Decompression Alone and Combined With Canine Adipose Tissue-Derived Stem Cell Transplantation in Dogs With Acute Thoracolumbar Disk Disease and Spinal Cord Injury. Front Vet Sci 2019; 6:383. [PMID: 31781580 PMCID: PMC6857468 DOI: 10.3389/fvets.2019.00383] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 10/16/2019] [Indexed: 11/13/2022] Open
Abstract
Paraparesis and paraplegia are common conditions in dogs, most often caused by a disc herniation in the thoracolumbar spinal segments (T3-L3), which is a neurological emergency. Surgical decompression should be performed as soon as possible when spinal compression is revealed by myelography, computed tomography, or magnetic resonance imaging. Mesenchymal stem-cell therapy is a promising adjunct treatment for spinal cord injury. This study sought to compare the effects of surgical decompression alone and combined with an allogeneic transplantation of canine adipose tissue-derived mesenchymal stem cells (cAd-MSCs) in the treatment of dogs with acute paraplegia. Twenty-two adult dogs of different breeds with acute paraplegia resulting from a Hansen type I disc herniation in the thoracolumbar region (T3-L3) were evaluated using computed tomography. All dogs had grade IV or V lesions and underwent surgery within 7 days after symptom onset. They were randomly assigned into two groups, 11 dogs in each. The dogs in Group I underwent hemilaminectomy, and those in Group II underwent hemilaminectomy and cAd-MSC epidural transplantation. In both groups, all dogs with grade IV lesions recovered locomotion. The median locomotion recovery period was 7 days for Group II and 21 days for Group I, and this difference was statistically significant (p < 0.05). Moreover, the median length of hospitalization after the surgery was statistically different between the two groups (Group I, 4 days; Group II, 3 days; p < 0.05). There were no statistically significant between-group differences regarding the number of animals with grade IV or V lesions that recovered locomotion and nociception. In conclusion, compared with surgical decompression alone, the use of epidural cAd-MSC transplantation with surgical decompression may contribute to faster locomotor recovery in dogs with acute paraplegia and reduce the length of post-surgery hospitalization.
Collapse
Affiliation(s)
| | | | - Leticia Fracaro
- Nucleus of Cellular Technology, Pontifical Catholic University of Paraná, Curitiba, Brazil
| | | | | | - Debora Regina Daga
- Nucleus of Cellular Technology, Pontifical Catholic University of Paraná, Curitiba, Brazil
| | | | - Claudia Turra Pimpão
- Postgraduate Program in Animal Science, Pontifical Catholic University of Paraná, Curitiba, Brazil
| | | | | | - José Ademar Villanova
- Postgraduate Program in Animal Science, Pontifical Catholic University of Paraná, Curitiba, Brazil
| |
Collapse
|
41
|
DePompeo CM, Giassetti MI, Elnaggar MM, Oatley JM, Davis WC, Fransson BA. Isolation of canine adipose-derived mesenchymal stem cells from falciform tissue obtained via laparoscopic morcellation: A pilot study. Vet Surg 2019; 49 Suppl 1:O28-O37. [PMID: 31222769 DOI: 10.1111/vsu.13267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/22/2019] [Accepted: 05/25/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To evaluate the feasibility of stem cell isolation from falciform fat harvested via laparoscopic morcellation. STUDY DESIGN Pilot study. ANIMALS Eleven client-owned dogs. METHODS Falciform was harvested traditionally via laparotomy and laparoscopically via tissue morcellation. Harvested tissue was processed with a commercially available adipose tissue dissociation kit to obtain a stromal vascular fraction (SVF). Cells were subsequently labeled for CD90, CD45, and CD44 cell surface antigens by using magnetic-activated cell sorting (MACS) and fluorescence-activated cell sorting flow cytometry. CD90+ cells were quantitated, and their viability was assessed with a hemocytometer and a trypan blue exclusion test of cell viability. RESULTS No perioperative complications occurred in dogs undergoing laparoscopic morcellation. Laparoscopically and traditionally harvested samples yielded an average of 0.39 (±0.1) × 106 and 0.33 (±0.1) × 106 CD90+ cells, respectively, per 10 million SVF cells. CD90+ cell viability after MACS was 89% (±11%) for morcellated and 86% (±7%) for traditionally harvested samples. Neither CD90+ cell quantity nor viability was different between samples obtained via traditional laparotomy vs laparoscopic morcellation (P = .38 and P = .63, respectively). Populations of CD90+ cells isolated with each harvest technique had similar CD44 and CD45 expression profiles. CONCLUSION Viable populations of CD90+ cells with similar CD44/CD45 expression profiles were isolated from laparoscopically morcellated and traditionally harvested falciform tissue. No appreciable morbidity was associated with laparoscopic falciform morcellation. CLINICAL SIGNIFICANCE Laparoscopic morcellation is a safe and effective minimally invasive approach to falciform tissue harvest for adipose-derived mesenchymal stem cell isolation.
Collapse
Affiliation(s)
- Christine M DePompeo
- Veterinary Teaching Hospital, Small Animal Surgery Department, Washington State University, Pullman, Washington
| | - Mariana Ianello Giassetti
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Mahmoud M Elnaggar
- Veterinary Microbiology and Pathology, Monoclonal Antibody Center and Flow Cytometry Facility, Washington State University, Pullman, Washington
| | - Jon M Oatley
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - William C Davis
- Veterinary Microbiology and Pathology, Monoclonal Antibody Center and Flow Cytometry Facility, Washington State University, Pullman, Washington
| | - Boel A Fransson
- Veterinary Teaching Hospital, Small Animal Surgery Department, Washington State University, Pullman, Washington
| |
Collapse
|
42
|
Sasaki A, Mizuno M, Mochizuki M, Sekiya I. Mesenchymal stem cells for cartilage regeneration in dogs. World J Stem Cells 2019; 11:254-269. [PMID: 31171954 PMCID: PMC6545524 DOI: 10.4252/wjsc.v11.i5.254] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/29/2019] [Accepted: 04/09/2019] [Indexed: 02/06/2023] Open
Abstract
Articular cartilage damage and osteoarthritis (OA) are common orthopedic diseases in both humans and dogs. Once damaged, the articular cartilage seldom undergoes spontaneous repair because of its avascular, aneural, and alymphatic state, and the damage progresses to a chronic and painful situation. Dogs have distinctive characteristics compared to other laboratory animal species in that they share an OA pathology with humans. Dogs can also require treatment for naturally developed OA; therefore, effective treatment methods for OA are desired in veterinary medicine as well as in human medicine. Recently, interest has grown in regenerative medicine that includes the use of mesenchymal stem cells (MSCs). In cartilage repair, MSCs are a promising therapeutic tool due to their self-renewal capacity, ability to differentiate into cartilage, potential for trophic factor production, and capacity for immunomodulation. The MSCs from dogs (canine MSCs; cMSCs) share various characteristics with MSCs from other animal species, but they show some deviations, particularly in their differentiation ability and surface epitope expression. In vivo studies of cMSCs have demonstrated that intraarticular cMSC injection into cartilage lesions results in excellent hyaline cartilage regeneration. In clinical situations, cMSCs have shown great therapeutic effects, including amelioration of pain and lameness in dogs suffering from OA. However, some issues remain, such as a lack of regulations or guidelines and a need for unified methods for the use of cMSCs. This review summarizes what is known about cMSCs, including their in vitro characteristics, their therapeutic effects in cartilage lesion treatment in preclinical in vivo studies, their clinical efficacy for treatment of naturally developed OA in dogs, and the current limitations of cMSC studies.
Collapse
Affiliation(s)
- Akari Sasaki
- Laboratory of Veterinary Emergency Medicine, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mitsuru Mizuno
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Manabu Mochizuki
- Laboratory of Veterinary Emergency Medicine, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8519, Japan
| |
Collapse
|
43
|
Molecular and Functional Verification of Wharton's Jelly Mesenchymal Stem Cells (WJ-MSCs) Pluripotency. Int J Mol Sci 2019; 20:ijms20081807. [PMID: 31013696 PMCID: PMC6515095 DOI: 10.3390/ijms20081807] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 12/12/2022] Open
Abstract
The properties of mesenchymal stem cells (MSCs), especially their self-renewal and ability to differentiate into different cell lines, are widely discussed. Considering the fact that MSCs isolated from perinatal tissues reveal higher differentiation capacity than most adult MSCs, we examined mesenchymal stem cells isolated from Wharton's jelly of umbilical cord (WJ-MSCs) in terms of pluripotency markers expression. Our studies showed that WJ-MSCs express some pluripotency markers-such as NANOG, OCT-4, and SSEA-4-but in comparison to iPS cells expression level is significantly lower. The level of expression can be raised under hypoxic conditions. Despite their high proliferation potential and ability to differentiate into different cells type, WJ-MSCs do not form tumors in vivo, the major caveat of iPS cells. Owing to their biological properties, high plasticity, proliferation capacity, and ease of isolation and culture, WJ-MSCs are turning out to be a promising tool of modern regenerative medicine.
Collapse
|
44
|
Bovine fetal mesenchymal stem cells exert antiproliferative effect against mastitis causing pathogen Staphylococcus aureus. Vet Res 2019; 50:25. [PMID: 30975214 PMCID: PMC6460550 DOI: 10.1186/s13567-019-0643-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/24/2019] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus aureus is the most commonly isolated pathogen from clinical bovine mastitis samples and a difficult pathogen to combat. Mesenchymal stem cells (MSC) are multipotent progenitor cells equipped with a variety of factors that inhibit bacterial growth. The aim of the present study was to evaluate the in vitro antibacterial potential against S. aureus of conditioned medium (CM) from MSC derived from fetal bovine bone marrow (BM-MSC) and adipose tissue (AT-MSC). BM-MSC, AT-MSC and fetal fibroblasts (FB) cultures were activated by infection with S. aureus. Bacterial growth was evaluated in presence of CM, concentrated CM (CCM), activated CM (ACM) and concentrated ACM (CACM) from BM-MSC, AT-MSC and FB. Gene expression of β-defensin 4A (bBD-4A), NK-lysine 1 (NK1), cathelicidin 2 (CATHL2), hepcidin (HEP) and indoleamine 2,3 dioxygenase (IDO) and protein expression of bBD-4A were determined in activated and non-activated cells. The majority of BM-MSC and AT-MSC expressed CD73, Oct4 and Nanog, and were negative for CD34. Growth of S. aureus decreased when it was exposed to CM from BM-MSC, AT-MSC and FB. Moreover, growth of S. aureus in CCM, ACM and CACM was lower compared to controls of CM from BM-MSC and AT-MSC. Activated AT-MSC increased mRNA levels of bBD4A and NK1, and protein levels of bBD4A in CM. Thus, CM from fetal bovine BM-MSC and AT-MSC has the capacity to reduce in average ~30% of S. aureus relative growth under in vitro conditions. The in vitro antibacterial effect of fetal bovine MSC may be mediated by bBD4A and NK1 activity.
Collapse
|
45
|
Gugjoo MB, Amarpal A, Sharma GT. Mesenchymal stem cell basic research and applications in dog medicine. J Cell Physiol 2019; 234:16779-16811. [PMID: 30790282 DOI: 10.1002/jcp.28348] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/13/2022]
Abstract
The stem cells, owing to their special characteristics like self-renewal, multiplication, homing, immunomodulation, anti-inflammatory, and dedifferentiation are considered to carry an "all-in-one-solution" for diverse clinical problems. However, the limited understanding of cellular physiology currently limits their definitive therapeutic use. Among various stem cell types, currently mesenchymal stem cells are extensively studied for dog clinical applications owing to their readily available sources, easy harvesting, and ability to differentiate both into mesodermal, as well as extramesodermal tissues. The isolated, culture expanded, and characterized cells have been applied both at preclinical as well as clinical settings in dogs with variable but mostly positive results. The results, though positive, are currently inconclusive and demands further intensive research on the properties and their dependence on the applications. Further, numerous clinical conditions of dog resemble to that of human counterparts and thus, if proved rewarding in the former may act as basis of therapy for the latter. The current review throws some light on dog mesenchymal stem cell properties and their potential therapeutic applications.
Collapse
Affiliation(s)
- Mudasir Bashir Gugjoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Jammu and Kashmir, India
| | - Amarpal Amarpal
- Division of Surgery, Indian Veterinary Research Institute, Izatnagar, India
| | - Gutulla Taru Sharma
- Division of Physiology and Climatology, Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
46
|
Crain SK, Robinson SR, Thane KE, Davis AM, Meola DM, Barton BA, Yang VK, Hoffman AM. Extracellular Vesicles from Wharton's Jelly Mesenchymal Stem Cells Suppress CD4 Expressing T Cells Through Transforming Growth Factor Beta and Adenosine Signaling in a Canine Model. Stem Cells Dev 2019; 28:212-226. [PMID: 30412034 DOI: 10.1089/scd.2018.0097] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are widely investigated as potential therapeutic agents due to their potent immunomodulatory capacity. Although specific mechanisms by which MSC acts on immune cells are emerging, many questions remain, including the potential of extracellular vesicles (EVs) to mediate biological activities. Canine MSCs are of interest for both veterinary and comparative models of disease and have been shown to suppress CD4pos T cell proliferation. The aim of this study was to determine whether EV isolated from canine Wharton's jelly-derived MSC (WJ-MSC EV) suppresses CD4pos T cell proliferation using biochemical mechanisms previously ascribed to soluble mediators [transforming growth factor beta (TGF-β) and adenosine]. WJ-MSC EV exhibited mode of 125 nm diameter, low buoyant density (1.1 g/mL), and expression of EV proteins Alix and TSG101. Functionally, EVs inhibited CD4pos T cell proliferation in a dose-dependent manner, which was absent in EV-depleted samples and EVs from non-MSC fibroblasts. EV suppression of CD4pos T cell proliferation was inhibited by a TGF-βRI antagonist, neutralizing antibodies to TGF-β, or A2A adenosine receptor blockade. TGF-β was present on EVs as latent complexes most likely tethered to EV membrane by betaglycan. These data demonstrate that canine WJ-MSC EV utilizes TGF-β and adenosine signaling to suppress proliferation of CD4pos T cell and will enable further investigation into mechanisms of immune cell modulation, as well as refinement of WJ-MSC and their EVs for therapeutic application.
Collapse
Affiliation(s)
- Sarah K Crain
- 1 Regenerative Medicine Laboratory, Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts
| | - Sally R Robinson
- 1 Regenerative Medicine Laboratory, Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts
| | - Kristen E Thane
- 1 Regenerative Medicine Laboratory, Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts
| | - Airiel M Davis
- 1 Regenerative Medicine Laboratory, Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts
| | - Dawn M Meola
- 1 Regenerative Medicine Laboratory, Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts
| | - Bruce A Barton
- 2 Department of Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Vicky K Yang
- 1 Regenerative Medicine Laboratory, Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts
| | - Andrew M Hoffman
- 1 Regenerative Medicine Laboratory, Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts
| |
Collapse
|
47
|
Comparative analysis and characterization of soluble factors and exosomes from cultured adipose tissue and bone marrow mesenchymal stem cells in canine species. Vet Immunol Immunopathol 2018; 208:6-15. [PMID: 30712794 DOI: 10.1016/j.vetimm.2018.12.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 01/08/2023]
Abstract
The two main sources of mesenchymal stem cell (MSCs) in the canine species are bone marrow (cBM-MSCs) and adipose tissue (cAd-MSCs). The secretion of multitude bioactive molecules, included under the concept of secretome and found in the cultured medium, play a predominant role in the mechanism of action of these cells on tissue regeneration. Although certain features of its characterization are well documented, their secretory profiles remain unknown. We described and compared, for the first time, the secretory profile and exosomes characterization in standard monolayer culture of MSCs from both sources of the same donor as well as its immunomodulatory potential. We found that despite the similarity in surface immunophenotyping and trilineage differentiation, there are several differences in terms of proliferation rate and secretory profile. cAd-MSCs have advantages in proliferative capacity, whereas cBM-MSCs showed a significantly higher secretory production of some soluble factors (IL-10, IL-2, IL-6, IL-8, IL-12p40, IFN-γ, VEGF-A, NGF-β, TGF-β, NO and PGE2) and exosomes under the same standard culture conditions. Proteomics analysis confirm that cBM-MSCs exosomes have a greater number of characterized proteins involved in metabolic processes and in the regulation of biological processes compared to cAd-MSCs. On the other hand, secretome from both sources demonstrate similar immunomodulatory capacity when tested in mitogen stimulated lymphocyte reaction, but not in their exosomes at the dose used. Considering that the use of secretome open as a new therapeutic strategy for different diseases, without the need to implant cells, those biological differences should be considered, when choosing the MSCs source, for either cellular implantation or direct use of secretome for a specific clinical application.
Collapse
|
48
|
Therapeutic Potential of Autologous Adipose-Derived Stem Cells for the Treatment of Liver Disease. Int J Mol Sci 2018; 19:ijms19124064. [PMID: 30558283 PMCID: PMC6321531 DOI: 10.3390/ijms19124064] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/30/2018] [Accepted: 12/12/2018] [Indexed: 12/14/2022] Open
Abstract
Currently, the most effective therapy for liver diseases is liver transplantation, but its use is limited by organ donor shortage, economic reasons, and the requirement for lifelong immunosuppression. Mesenchymal stem cell (MSC) transplantation represents a promising alternative for treating liver pathologies in both human and veterinary medicine. Interestingly, these pathologies appear with a common clinical and pathological profile in the human and canine species; as a consequence, dogs may be a spontaneous model for clinical investigations in humans. The aim of this work was to characterize canine adipose-derived MSCs (cADSCs) and compare them to their human counterpart (hADSCs) in order to support the application of the canine model in cell-based therapy of liver diseases. Both cADSCs and hADSCs were successfully isolated from adipose tissue samples. The two cell populations shared a common fibroblast-like morphology, expression of stemness surface markers, and proliferation rate. When examining multilineage differentiation abilities, cADSCs showed lower adipogenic potential and higher osteogenic differentiation than human cells. Both cell populations retained high viability when kept in PBS at controlled temperature and up to 72 h, indicating the possibility of short-term storage and transportation. In addition, we evaluated the efficacy of autologous ADSCs transplantation in dogs with liver diseases. All animals exhibited significantly improved liver function, as evidenced by lower liver biomarkers levels measured after cells transplantation and evaluation of cytological specimens. These beneficial effects seem to be related to the immunomodulatory properties of stem cells. We therefore believe that such an approach could be a starting point for translating the results to the human clinical practice in future.
Collapse
|
49
|
Sasaki A, Mizuno M, Ozeki N, Katano H, Otabe K, Tsuji K, Koga H, Mochizuki M, Sekiya I. Canine mesenchymal stem cells from synovium have a higher chondrogenic potential than those from infrapatellar fat pad, adipose tissue, and bone marrow. PLoS One 2018; 13:e0202922. [PMID: 30138399 PMCID: PMC6107231 DOI: 10.1371/journal.pone.0202922] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 08/10/2018] [Indexed: 01/17/2023] Open
Abstract
Osteoarthritis (OA), a common chronic joint disorder in both humans and canines, is characterized by a progressive loss of articular cartilage. Canines can serve as an animal model of OA for human medicine, and this research can simultaneously establish effective veterinary treatments for canine OA. One attractive treatment that can lead to cartilage regeneration is the use of mesenchymal stem cells (MSCs). However, for canine OA, little information is available regarding the best source of MSCs. The purpose of this study was to identify a promising MSC source for canine cartilage regeneration. We collected synovial, infrapatellar fat pad, inguinal adipose, and bone marrow tissues from six canines and then conducted a donor-matched comparison of the properties of MSCs derived from these four tissues. We examined the surface epitope expression, proliferation capacity, and trilineage differentiation potential of all four populations. Adherent cells derived from all four tissue sources exhibited positivity for CD90 and CD44 and negativity for CD45 and CD11b. The positive rate for CD90 was higher for synovium-derived than for adipose-derived and bone marrow-derived MSCs. Synovium-derived and infrapatellar fat pad-derived MSCs displayed substantial proliferation ability, and all four populations underwent trilineage differentiation. During chondrogenesis, the wet weight was heavier for cartilage pellets derived from synovium MSCs than from the other three sources. The synovium is therefore a promising source for MSCs for canine cartilage regeneration. Our findings provide useful information about canine MSCs that may be applicable to regenerative medicine for treatment of OA.
Collapse
Affiliation(s)
- Akari Sasaki
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Veterinary Medical Sciences, the University of Tokyo, Tokyo, Japan
| | - Mitsuru Mizuno
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nobutake Ozeki
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hisako Katano
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koji Otabe
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kunikazu Tsuji
- Department of Cartilage Regeneration, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hideyuki Koga
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Manabu Mochizuki
- Department of Veterinary Medical Sciences, the University of Tokyo, Tokyo, Japan
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
50
|
Yaneselli KM, Kuhl CP, Terraciano PB, de Oliveira FS, Pizzato SB, Pazza K, Magrisso AB, Torman V, Rial A, Moreno M, Llambí S, Cirne-Lima E, Maisonnave J. Comparison of the characteristics of canine adipose tissue-derived mesenchymal stem cells extracted from different sites and at different passage numbers. J Vet Sci 2018; 19:13-20. [PMID: 28693305 PMCID: PMC5799390 DOI: 10.4142/jvs.2018.19.1.13] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/25/2017] [Accepted: 05/05/2017] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have desirable characteristics for use in therapy in animal models and veterinary medicine, due to their capacity of inducing tissue regeneration and immunomodulation. The objective of this study was to evaluate the differences between canine adipose tissue-derived MSCs (AD-MSCs) extracted from subcutaneous (Sc) and visceral (Vs) sites. Surface antigenic markers, in vitro differentiation, and mineralized matrix quantification of AD-MSCs at different passages (P4, P6, and P8) were studied. Immunophenotypic analysis showed that AD-MSCs from both sites were CD44+, CD90+, and CD45-. Moreover, they were able, in vitro, to differentiate into fat, cartilage, and bone. Sc-AD-MSCs preserve in vitro multipotentiality up to P8, but Vs-AD-MSCs only tri-differentiated up to P4. In addition, compared to Vs-AD-MSCs, Sc-AD-MSCs had greater capacity for in vitro mineralized matrix synthesis. In conclusion, Sc-AD-MSCs have advantages over Vs-AD-MSCs, as Sc AD-MSCs preserve multipotentiality during a greater number of passages, have more osteogenic potential, and require less invasive extraction.
Collapse
Affiliation(s)
- Kevin M Yaneselli
- Laboratory of Immunology, Department of Microbiological Science, Faculty of Veterinary, Universidad de la República, Montevideo 11600, Uruguay
| | - Cristiana P Kuhl
- Laboratory of Embryology and Cellular Differentiation, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-903, Brazil
| | - Paula B Terraciano
- Laboratory of Embryology and Cellular Differentiation, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-903, Brazil
| | - Fernanda S de Oliveira
- Laboratory of Embryology and Cellular Differentiation, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-903, Brazil
| | - Sabrina B Pizzato
- Laboratory of Embryology and Cellular Differentiation, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-903, Brazil
| | - Kamila Pazza
- Laboratory of Embryology and Cellular Differentiation, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-903, Brazil
| | - Alessandra B Magrisso
- Laboratory of Embryology and Cellular Differentiation, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-903, Brazil
| | - Vanessa Torman
- Biostatistics, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-903, Brazil
| | - Analía Rial
- Laboratory for Vaccine Research, Department of Biotechnology, Instituto de Higiene, Faculty of Medicine, Universidad de la República, Montevideo 11600, Uruguay
| | - María Moreno
- Laboratory for Vaccine Research, Department of Biotechnology, Instituto de Higiene, Faculty of Medicine, Universidad de la República, Montevideo 11600, Uruguay
| | - Silvia Llambí
- Laboratory of Genetics, Faculty of Veterinary, Universidad de la República, Montevideo 11600, Uruguay
| | - Elizabeth Cirne-Lima
- Laboratory of Embryology and Cellular Differentiation, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-903, Brazil
| | - Jacqueline Maisonnave
- Laboratory of Immunology, Department of Microbiological Science, Faculty of Veterinary, Universidad de la República, Montevideo 11600, Uruguay
| |
Collapse
|