1
|
Matsuya Y, Sato T, Kusumoto T, Yachi Y, Seino R, Miwa M, Ishikawa M, Matsuyama S, Fukunaga H. Cell-cycle dependence on the biological effects of boron neutron capture therapy and its modification by polyvinyl alcohol. Sci Rep 2024; 14:16696. [PMID: 39030350 PMCID: PMC11271528 DOI: 10.1038/s41598-024-67041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024] Open
Abstract
Boron neutron capture therapy (BNCT) is a unique radiotherapy of selectively eradicating tumor cells using boron compounds (e.g., 4-borono-L-phenylalanine [BPA]) that are heterogeneously taken up at the cellular level. Such heterogenicity potentially reduces the curative efficiency. However, the effects of temporospatial heterogenicity on cell killing remain unclear. With the technical combination of radiation track detector and biophysical simulations, this study revealed the cell cycle-dependent heterogenicity of BPA uptake and subsequent biological effects of BNCT on HeLa cells expressing fluorescent ubiquitination-based cell cycle indicators, as well as the modification effects of polyvinyl alcohol (PVA). The results showed that the BPA concentration in the S/G2/M phase was higher than that in the G1/S phase and that PVA enhances the biological effects both by improving the uptake and by canceling the heterogenicity. These findings might contribute to a maximization of therapeutic efficacy when BNCT is combined with PVA and/or cell cycle-specific anticancer agents.
Collapse
Affiliation(s)
- Yusuke Matsuya
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Tokai, 319-1195, Japan.
- Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan.
| | - Tatsuhiko Sato
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Tokai, 319-1195, Japan
| | - Tamon Kusumoto
- National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Yoshie Yachi
- Graduate School of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Ryosuke Seino
- Graduate School of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Misako Miwa
- Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Masayori Ishikawa
- Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Shigeo Matsuyama
- Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Hisanori Fukunaga
- Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan.
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan.
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan.
| |
Collapse
|
2
|
Wang Z, Lei R, Zhang Z, Chen Z, Zhang J, Mao M, Li J, Tang H, Li M, Luo X, Yang J, Yan R, Liu Q, Lv L, Chen K, Chang YN, Yuan H, Liu T, Tong J, Zhu L, Liang T, Zhang W, Li J, Xing G. Boron-Containing MOF Nanoparticles with Stable Metabolism in U87-MG Cells Combining Microdosimetry To Evaluate Relative Biological Effectiveness of Boron Neutron Capture Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3232-3242. [PMID: 38221726 DOI: 10.1021/acsami.3c19113] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Accurate prediction of the relative biological effectiveness (RBE) of boron neutron capture therapy (BNCT) is challenging. The therapy is different from other radiotherapy; the dynamic distribution of boron-containing compounds in tumor cells affects the therapeutic outcome considerably and hampers accurate measurement of the neutron-absorbed dose. Herein, we used boron-containing metal-organic framework nanoparticles (BMOFs) with high boron content to target U87-MG cells and maintain the concentration of the 10B isotope in cells. The content of boron in the cells could maintain 90% (60 ppm) within 20 min compared with that at the beginning; therefore, the accurate RBE of BNCT can be acquired. The effects of BNCT upon cells after neutron irradiation were observed, and the neutron-absorbed dose was obtained by Monte Carlo simulations. The RBE of BMOFs was 6.78, which was 4.1-fold higher than that of a small-molecule boron-containing agent (boric acid). The energy spectrum of various particles was analyzed by Monte Carlo simulations, and the RBE was verified theoretically. Our results suggested that the use of nanoparticle-based boron carriers in BNCT may have many advantages and that maintaining a stable boron distribution within cells may significantly improve the efficiency of BNCT.
Collapse
Affiliation(s)
- Zhijie Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runhong Lei
- Department of Radiation Oncology, Peking University Third Hospital, Beijing 100191, China
| | - Zizhu Zhang
- Beijing Nuclear Industry Hospital (BNIH), Beijing Capture Technology Co. Ltd. (BCTC), Beijing 100032, China
| | - Ziteng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaxin Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meiru Mao
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiacheng Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyu Tang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengyao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianwei Luo
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingru Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruyu Yan
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuyang Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linwen Lv
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kui Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Nan Chang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Yuan
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Liu
- Beijing Nuclear Industry Hospital (BNIH), Beijing Capture Technology Co. Ltd. (BCTC), Beijing 100032, China
| | - Jianfei Tong
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Beijing 100049, China
- Spallation Neutron Source Science Center, Dongguan 523803, China
| | - Linbo Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Beijing 100049, China
- Spallation Neutron Source Science Center, Dongguan 523803, China
| | - Tianjiao Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Beijing 100049, China
- Spallation Neutron Source Science Center, Dongguan 523803, China
| | - Weihua Zhang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Juan Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gengmei Xing
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Ugwu DI, Conradie J. Anticancer properties of complexes derived from bidentate ligands. J Inorg Biochem 2023; 246:112268. [PMID: 37301166 DOI: 10.1016/j.jinorgbio.2023.112268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/09/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023]
Abstract
Cancer is the abnormal division and multiplication of cells in an organ or tissue. It is the second leading cause of death globally. There are various types of cancer such as prostate, breast, colon, lung, stomach, liver, skin, and many others depending on the tissue or organ where the abnormal growth originates. Despite the huge investment in the development of anticancer agents, the transition of research to medications that improve substantially the treatment of cancer is less than 10%. Cisplatin and its analogs are ubiquitous metal-based anticancer agents notable for the treatment of various cancerous cells and tumors but unfortunately accompanied by large toxicities due to low selectivity between cancerous and normal cells. The improved toxicity profile of cisplatin analogs bearing bidentate ligands has motivated the synthesis of vast metal complexes of bidentate ligands. Complexes derived from bidentate ligands such as β-diketones, diolefins, benzimidazoles and dithiocarbamates have been reported to possess 20 to 15,600-fold better anticancer activity, when tested on cell lines, than some known antitumor drugs currently on the market, e.g. cisplatin, oxaliplatin, carboplatin, doxorubicin, and 5-fluorouracil. This work discusses the anticancer properties of various metal complexes derived from bidentate ligands, for possible application in chemotherapy. The results discussed were evaluated by the IC50 values as obtained from cell line tests on various metal-bidentate complexes. The structure-activity relationship study of the complexes discussed, revealed that hydrophobicity is a key factor that influences anticancer properties of molecules.
Collapse
Affiliation(s)
- David Izuchukwu Ugwu
- Department of Chemistry, University of the Free State, South Africa; Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, South Africa.
| |
Collapse
|
4
|
Gattoni G, de la Haba RR, Martín J, Reyes F, Sánchez-Porro C, Feola A, Zuchegna C, Guerrero-Flores S, Varcamonti M, Ricca E, Selem-Mojica N, Ventosa A, Corral P. Genomic study and lipidomic bioassay of Leeuwenhoekiella parthenopeia: A novel rare biosphere marine bacterium that inhibits tumor cell viability. Front Microbiol 2023; 13:1090197. [PMID: 36687661 PMCID: PMC9859067 DOI: 10.3389/fmicb.2022.1090197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/09/2022] [Indexed: 01/09/2023] Open
Abstract
The fraction of low-abundance microbiota in the marine environment is a promising target for discovering new bioactive molecules with pharmaceutical applications. Phenomena in the ocean such as diel vertical migration (DVM) and seasonal dynamic events influence the pattern of diversity of marine bacteria, conditioning the probability of isolation of uncultured bacteria. In this study, we report a new marine bacterium belonging to the rare biosphere, Leeuwenhoekiella parthenopeia sp. nov. Mr9T, which was isolated employing seasonal and diel sampling approaches. Its complete characterization, ecology, biosynthetic gene profiling of the whole genus Leeuwenhoekiella, and bioactivity of its extract on human cells are reported. The phylogenomic and microbial diversity studies demonstrated that this bacterium is a new and rare species, barely representing 0.0029% of the bacterial community in Mediterranean Sea metagenomes. The biosynthetic profiling of species of the genus Leeuwenhoekiella showed nine functionally related gene cluster families (GCF), none were associated with pathways responsible to produce known compounds or registered patents, therefore revealing its potential to synthesize novel bioactive compounds. In vitro screenings of L. parthenopeia Mr9T showed that the total lipid content (lipidome) of the cell membrane reduces the prostatic and brain tumor cell viability with a lower effect on normal cells. The lipidome consisted of sulfobacin A, WB 3559A, WB 3559B, docosenamide, topostin B-567, and unknown compounds. Therefore, the bioactivity could be attributed to any of these individual compounds or due to their synergistic effect. Beyond the rarity and biosynthetic potential of this bacterium, the importance and novelty of this study is the employment of sampling strategies based on ecological factors to reach the hidden microbiota, as well as the use of bacterial membrane constituents as potential novel therapeutics. Our findings open new perspectives on cultivation and the relationship between bacterial biological membrane components and their bioactivity in eukaryotic cells, encouraging similar studies in other members of the rare biosphere.
Collapse
Affiliation(s)
- Giuliano Gattoni
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Rafael R. de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | | | | | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Antonia Feola
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Candida Zuchegna
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Shaday Guerrero-Flores
- Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México (UNAM), Morelia, Mexico
| | - Mario Varcamonti
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Ezio Ricca
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Nelly Selem-Mojica
- Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México (UNAM), Morelia, Mexico
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Paulina Corral
- Department of Biology, University of Naples Federico II, Naples, Italy,Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain,*Correspondence: Paulina Corral,
| |
Collapse
|
5
|
Buglewicz DJ, Walsh KD, Hirakawa H, Kitamura H, Fujimori A, Kato TA. Biological Effects of Monoenergetic Carbon Ions and Their Associated Secondary Particles. Front Oncol 2022; 12:788293. [PMID: 35251969 PMCID: PMC8892238 DOI: 10.3389/fonc.2022.788293] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/24/2022] [Indexed: 11/21/2022] Open
Abstract
DNA double-strand breaks (DSBs) are the main factor behind carbon-ion radiation therapy (CIRT)-induced cell death. Nuclear interactions along the beam path between the primary carbon ions and targets result in nuclear fragmentation of carbon ions and recoiled particles. These secondary particles travel further distances past the Bragg peak to the tail region, leading to unwanted biological effects that may result in cytotoxicity in critical organs and secondary induced tumors following CIRT. Here, we confirmed that the density of the DSB distributions increases as the cell survival decreases at the Bragg peak and demonstrated that by visualizing DSBs, the various LET fragmentation ions and recoiled particles produced differences in their biological effects in the post-Bragg peak tail regions. This suggests that the density of the DSBs within the high-LET track structures, rather than only their presence, is important for inducing cell death. These results are essential for CIRT treatment planning to limit the amount of healthy cell damage and reducing both the late effect and the secondary tumor-associated risk.
Collapse
Affiliation(s)
- Dylan J. Buglewicz
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Kade D. Walsh
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Hirokazu Hirakawa
- Department of Charged Particle Therapy Research, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hisashi Kitamura
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Akira Fujimori
- Department of Charged Particle Therapy Research, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Takamitsu A. Kato
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
- *Correspondence: Takamitsu A. Kato,
| |
Collapse
|
6
|
Hoke AT, Padget MR, Fabian KP, Nandal A, Gallia GL, Bilusic M, Soon-Shiong P, Hodge JW, London NR. Combinatorial Natural Killer Cell-based Immunotherapy Approaches Selectively Target Chordoma Cancer Stem Cells. CANCER RESEARCH COMMUNICATIONS 2021; 1:127-139. [PMID: 35765577 PMCID: PMC9236084 DOI: 10.1158/2767-9764.crc-21-0020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Chordoma is a rare tumor derived from notochord remnants that has a propensity to recur and metastasize despite conventional multimodal treatment. Cancer stem cells (CSC) are implicated in chordoma's resistant and recurrent behavior; thus strategies that target CSCs are of particular interest. Using in vitro cytotoxicity models, we demonstrated that anti-programmed death-ligand 1 (N-601) and anti-epidermal growth factor receptor (cetuximab) antibodies enhanced lysis of chordoma cells by healthy donor and chordoma patient NK cells through antibody-dependent cellular cytotoxicity (ADCC). Treatment of NK cells with an IL-15 superagonist complex (N-803) increased their cytotoxicity against chordoma cells, which was further enhanced by treatment with N-601 and/or cetuximab. PD-L1-targeted chimeric antigen receptor NK cells (PD-L1 t-haNKs) were also effective against chordoma cells. CSCs were preferentially vulnerable to NK cell killing in the presence of N-601 and N-803. Flow cytometric analysis of a chordoma CSC population showed that CSCs expressed significantly more NK activating ligand B7-H6 and PD-L1 than non-CSCs, thus explaining a potential mechanism of selective targeting. These data suggest that chordoma may be effectively targeted by combinatorial NK cell-mediated immunotherapeutic approaches and that the efficacy of these approaches in chordoma and other CSC-driven tumor types should be investigated further in clinical studies.
Collapse
Affiliation(s)
- Austin T.K. Hoke
- Sinonasal and Skull Base Tumor Program, National Institutes on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
- University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina
| | - Michelle R. Padget
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Kellsye P. Fabian
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Anjali Nandal
- Sinonasal and Skull Base Tumor Program, National Institutes on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
| | - Gary L. Gallia
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Marijo Bilusic
- Genitourinary Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | | | - James W. Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Nyall R. London
- Sinonasal and Skull Base Tumor Program, National Institutes on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Corresponding Author: Nyall R. London Jr., Sinonasal and Skull Base Tumor Program, National Institute on Deafness and Other Communications Disorders (NIDCD), NIH, 10 Center Drive Room #7N256, Bethesda, MD USA 20892-2320. Phone: 301-402-4216; E-mail:
| |
Collapse
|
7
|
Chen X, Lo SFL, Bettegowda C, Ryan DM, Gross JM, Hu C, Kleinberg L, Sciubba DM, Redmond KJ. High-dose hypofractionated stereotactic body radiotherapy for spinal chordoma. J Neurosurg Spine 2021; 35:674-683. [PMID: 34388713 DOI: 10.3171/2021.2.spine202199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/02/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Spinal chordoma is locally aggressive and has a high rate of recurrence, even after en bloc resection. Conventionally fractionated adjuvant radiation leads to suboptimal tumor control, and data regarding hypofractionated regimens are limited. The authors hypothesized that neoadjuvant stereotactic body radiotherapy (SBRT) may overcome its intrinsic radioresistance, improve surgical margins, and allow preservation of critical structures during surgery. The purpose of this study is to review the feasibility and early outcomes of high-dose hypofractionated SBRT, with a focus on neoadjuvant SBRT. METHODS Electronic medical records of patients with spinal chordoma treated using image-guided SBRT between 2009 and 2019 at a single institution were retrospectively reviewed. RESULTS Twenty-eight patients with 30 discrete lesions (24 in the mobile spine) were included. The median follow-up duration was 20.8 months (range 2.3-126.3 months). The median SBRT dose was 40 Gy (range 15-50 Gy) in 5 fractions (range 1-5 fractions). Seventeen patients (74% of those with newly diagnosed lesions) received neoadjuvant SBRT, of whom 15 (88%) underwent planned en bloc resection, all with negative margins. Two patients (12%) developed surgical wound-related complications after neoadjuvant SBRT and surgery, and 4 (two grade 3 and two grade 2) experienced postoperative complications unrelated to the surgical site. Of the remaining patients with newly diagnosed lesions, 5 received adjuvant SBRT for positive or close surgical margins, and 1 received SBRT alone. Seven recurrent lesions were treated with SBRT alone, including 2 after failure of prior conventional radiation. The 2-year overall survival rate was 92% (95% confidence interval [CI] 71%-98%). Patients with newly diagnosed chordoma had longer median survival (not reached) than those with recurrent lesions (27.7 months, p = 0.006). The 2-year local control rate was 96% (95% CI 74%-99%). Among patients with radiotherapy-naïve lesions, no local recurrence was observed with a biologically effective dose ≥ 140 Gy, maximum dose of the planning target volume (PTV) ≥ 47 Gy, mean dose of the PTV ≥ 39 Gy, or minimum dose to 80% of the PTV ≥ 36 Gy (5-fraction equivalent doses). All acute toxicities from SBRT were grade 1-2, and no myelopathy was observed. CONCLUSIONS Neoadjuvant high-dose, hypofractionated SBRT for spinal chordoma is safe and does not increase surgical morbidities. Early outcomes at 2 years are promising, although long-term follow-up is pending.
Collapse
Affiliation(s)
- Xuguang Chen
- Departments of1Radiation Oncology and Molecular Radiation Sciences
| | | | | | | | - John M Gross
- 4Pathology, Johns Hopkins University School of Medicine; and
| | - Chen Hu
- 5Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | | |
Collapse
|
8
|
Johnson AM, Bennett PV, Sanidad KZ, Hoang A, Jardine JH, Keszenman DJ, Wilson PF. Evaluation of Histone Deacetylase Inhibitors as Radiosensitizers for Proton and Light Ion Radiotherapy. Front Oncol 2021; 11:735940. [PMID: 34513712 PMCID: PMC8426582 DOI: 10.3389/fonc.2021.735940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 07/29/2021] [Indexed: 12/23/2022] Open
Abstract
Significant opportunities remain for pharmacologically enhancing the clinical effectiveness of proton and carbon ion-based radiotherapies to achieve both tumor cell radiosensitization and normal tissue radioprotection. We investigated whether pretreatment with the hydroxamate-based histone deacetylase inhibitors (HDACi) SAHA (vorinostat), M344, and PTACH impacts radiation-induced DNA double-strand break (DSB) induction and repair, cell killing, and transformation (acquisition of anchorage-independent growth in soft agar) in human normal and tumor cell lines following gamma ray and light ion irradiation. Treatment of normal NFF28 primary fibroblasts and U2OS osteosarcoma, A549 lung carcinoma, and U87MG glioma cells with 5–10 µM HDACi concentrations 18 h prior to cesium-137 gamma irradiation resulted in radiosensitization measured by clonogenic survival assays and increased levels of colocalized gamma-H2AX/53BP1 foci induction. We similarly tested these HDACi following irradiation with 200 MeV protons, 290 MeV/n carbon ions, and 350 MeV/n oxygen ions delivered in the Bragg plateau region. Unlike uniform gamma ray radiosensitization, effects of HDACi pretreatment were unexpectedly cell type and ion species-dependent with C-12 and O-16 ion irradiations showing enhanced G0/G1-phase fibroblast survival (radioprotection) and in some cases reduced or absent tumor cell radiosensitization. DSB-associated foci levels were similar for proton-irradiated DMSO control and SAHA-treated fibroblast cultures, while lower levels of induced foci were observed in SAHA-pretreated C-12 ion-irradiated fibroblasts. Fibroblast transformation frequencies measured for all radiation types were generally LET-dependent and lowest following proton irradiation; however, both gamma and proton exposures showed hyperlinear transformation induction at low doses (≤25 cGy). HDACi pretreatments led to overall lower transformation frequencies at low doses for all radiation types except O-16 ions but generally led to higher transformation frequencies at higher doses (>50 cGy). The results of these in vitro studies cast doubt on the clinical efficacy of using HDACi as radiosensitizers for light ion-based hadron radiotherapy given the mixed results on their radiosensitization effectiveness and related possibility of increased second cancer induction.
Collapse
Affiliation(s)
- Alicia M Johnson
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| | - Paula V Bennett
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| | - Katherine Z Sanidad
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| | - Anthony Hoang
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| | - James H Jardine
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| | - Deborah J Keszenman
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States.,Laboratorio de Radiobiología Médica y Ambiental, Grupo de Biofisicoquímica, Centro Universitario Regional Litoral Norte, Universidad de la República (UdelaR), Salto, Uruguay
| | - Paul F Wilson
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States.,Department of Radiation Oncology, University of California-Davis, Sacramento, CA, United States
| |
Collapse
|
9
|
Enhancement of Radio-Thermo-Sensitivity of 5-Iodo-2-Deoxyuridine-Loaded Polymeric-Coated Magnetic Nanoparticles Triggers Apoptosis in U87MG Human Glioblastoma Cancer Cell Line. Cell Mol Bioeng 2021; 14:365-377. [PMID: 34295445 DOI: 10.1007/s12195-021-00675-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/05/2021] [Indexed: 01/22/2023] Open
Abstract
Introduction With an emphasis on the radioresistant nature of glioblastoma cells, the aim of the present study was to evaluate the radio-thermo-sensitizing effects of PCL-PEG-coated Superparamagnetic iron oxide nanoparticles (SPIONs) as a carrier of 5-iodo-2-deoxyuridine (IUdR) in monolayer culture of U87MG human glioma cell line. Methods Following monolayer culture of U87MG cells, nanoparticle uptake was assessed using Prussian blue staining and ICP-OES method. The U87MG cells were treated with an appropriate concentration of free IUdR and PCL-PEG-coated SPIONs (MNPs) loaded with IUdR (IUdR/MNPs) for 24 h, subjected to hyperthermia (water bath and alternating magnetic field (AMF)) at 43 °C, and exposed to X-ray (2 Gy, 6 MV). The combined effects of hyperthermia with or without magnetic nanoparticles on radiosensitivity of the U87MG cells were evaluated using colony formation assay (CFA) and Flowcytometry. Results Prussian blue staining and ICP-OES showed that the nanoparticles were able to enter the cells. The results also indicated that IUdR/MNPs combined with X-ray radiation and hyperthermia significantly decreased the colony formation ability of monolayer cells (1.11, 1.41 fold) and increased the percentage of apoptotic (2.47, 4.1 fold) and necrotic cells (12.28, 29.34 fold), when compared to IUdR combined with X-ray and hyperthermia or IUdR/MNPs + X-ray. MTT results revealed that the presence of IUdR/MNPs significantly increased the toxicity of AMF hyperthermia compared to the water bath method. Conclusions Our study showed that SPIONs/PCL-PEG, as a carrier of IUdR, can enhance the cytotoxic effects of radiotherapy and hyperthermia and act as a radio-thermo-sensitizing agent. Graphic Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s12195-021-00675-y.
Collapse
|
10
|
Locquet MA, Dechaume AL, Berchard P, Abbes L, Pissaloux D, Tirode F, Ramos I, Bedoucha J, Valantin J, Karanian M, Perret R, Gille O, Blay JY, Dutour A. Aldehyde Dehydrogenase, a Therapeutic Target in Chordoma: Analysis in 3D Cellular Models. Cells 2021; 10:cells10020399. [PMID: 33672032 PMCID: PMC7919493 DOI: 10.3390/cells10020399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/29/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Chordomas are rare, slow-growing tumors of the axial skeleton. These tumors are locally aggressive and refractory to conventional therapies. Radical surgery and radiation remain the first-line treatments. Despite these aggressive treatments, chordomas often recur and second-line treatment options are limited. The mechanisms underlying chordoma radioresistance remain unknown, although several radioresistant cancer cells have been shown to respond favorably to aldehyde dehydrogenase (ALDH) inhibition. The study of chordoma has been delayed by small patient cohorts and few available models due to the scarcity of these tumors. We thus created cellular 3D models of chordoma by using low-adherence culture systems. Then, we evaluated their radiosensitivity using colony-forming and spheroid size assays. Finally, we determined whether pharmacologically inhibiting ALDH increased their radiosensitivity. We found that 3D cellular models of chordoma (derived from primary, relapse, and metastatic tumors) reproduce the histological and gene expression features of the disease. The metastatic, relapse, and primary spheroids displayed high, medium, and low radioresistance, respectively. Moreover, inhibiting ALDH decreased the radioresistance in all three models.
Collapse
Affiliation(s)
- Marie-Anaïs Locquet
- Team Cell Death and Pediatric Cancer, Cancer Initiation and Tumor Cell Identity Department, INSERM1052, CNRS5286, Cancer Research Center of Lyon, F-69008 Lyon, France; (M.-A.L.); (A.-L.D.); (P.B.); (L.A.); (I.R.); (J.B.); (J.-Y.B.)
| | - Anne-Lise Dechaume
- Team Cell Death and Pediatric Cancer, Cancer Initiation and Tumor Cell Identity Department, INSERM1052, CNRS5286, Cancer Research Center of Lyon, F-69008 Lyon, France; (M.-A.L.); (A.-L.D.); (P.B.); (L.A.); (I.R.); (J.B.); (J.-Y.B.)
| | - Paul Berchard
- Team Cell Death and Pediatric Cancer, Cancer Initiation and Tumor Cell Identity Department, INSERM1052, CNRS5286, Cancer Research Center of Lyon, F-69008 Lyon, France; (M.-A.L.); (A.-L.D.); (P.B.); (L.A.); (I.R.); (J.B.); (J.-Y.B.)
| | - Lhorra Abbes
- Team Cell Death and Pediatric Cancer, Cancer Initiation and Tumor Cell Identity Department, INSERM1052, CNRS5286, Cancer Research Center of Lyon, F-69008 Lyon, France; (M.-A.L.); (A.-L.D.); (P.B.); (L.A.); (I.R.); (J.B.); (J.-Y.B.)
| | - Daniel Pissaloux
- Department of Biopathology, Centre Leon Berard, F-69008 Lyon, France;
- Team Genetics, Epigenetics and Biology of Sarcomas, Univ Lyon, Université Claude Bernard Lyon 1, INSERM1052, CNRS5286, Cancer Research Center of Lyon, Centre Leon Berard, F-69008 Lyon, France; (F.T.); (M.K.)
| | - Franck Tirode
- Team Genetics, Epigenetics and Biology of Sarcomas, Univ Lyon, Université Claude Bernard Lyon 1, INSERM1052, CNRS5286, Cancer Research Center of Lyon, Centre Leon Berard, F-69008 Lyon, France; (F.T.); (M.K.)
| | - Inès Ramos
- Team Cell Death and Pediatric Cancer, Cancer Initiation and Tumor Cell Identity Department, INSERM1052, CNRS5286, Cancer Research Center of Lyon, F-69008 Lyon, France; (M.-A.L.); (A.-L.D.); (P.B.); (L.A.); (I.R.); (J.B.); (J.-Y.B.)
| | - Julie Bedoucha
- Team Cell Death and Pediatric Cancer, Cancer Initiation and Tumor Cell Identity Department, INSERM1052, CNRS5286, Cancer Research Center of Lyon, F-69008 Lyon, France; (M.-A.L.); (A.-L.D.); (P.B.); (L.A.); (I.R.); (J.B.); (J.-Y.B.)
| | - Julie Valantin
- Research Pathology Platform, Department of Translational Research and Innovation, Centre Leon Berard, F-69008 Lyon, France;
- Fondation Synergie Lyon Cancer, F-69008 Lyon, France
| | - Marie Karanian
- Department of Biopathology, Centre Leon Berard, F-69008 Lyon, France;
- Team Genetics, Epigenetics and Biology of Sarcomas, Univ Lyon, Université Claude Bernard Lyon 1, INSERM1052, CNRS5286, Cancer Research Center of Lyon, Centre Leon Berard, F-69008 Lyon, France; (F.T.); (M.K.)
| | - Raul Perret
- Department of Biopathology, Institut Bergonié, F-33000 Bordeaux, France;
| | - Olivier Gille
- Orthopedic Spinal Surgery Unit 1, Bordeaux University Hospital, F-33000 Bordeaux, France;
| | - Jean-Yves Blay
- Team Cell Death and Pediatric Cancer, Cancer Initiation and Tumor Cell Identity Department, INSERM1052, CNRS5286, Cancer Research Center of Lyon, F-69008 Lyon, France; (M.-A.L.); (A.-L.D.); (P.B.); (L.A.); (I.R.); (J.B.); (J.-Y.B.)
- Medical Oncology Department, Centre Leon Berard, F-69008 Lyon, France
| | - Aurélie Dutour
- Team Cell Death and Pediatric Cancer, Cancer Initiation and Tumor Cell Identity Department, INSERM1052, CNRS5286, Cancer Research Center of Lyon, F-69008 Lyon, France; (M.-A.L.); (A.-L.D.); (P.B.); (L.A.); (I.R.); (J.B.); (J.-Y.B.)
- Correspondence:
| |
Collapse
|
11
|
Han X, Wang D, Zhao P, Liu C, Hao Y, Chang L, Zhao J, Zhao W, Mu L, Wang J, Li H, Kong Q, Han J. Inference of Subpathway Activity Profiles Reveals Metabolism Abnormal Subpathway Regions in Glioblastoma Multiforme. Front Oncol 2020; 10:1549. [PMID: 33072547 PMCID: PMC7533644 DOI: 10.3389/fonc.2020.01549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 07/20/2020] [Indexed: 11/24/2022] Open
Abstract
Glioblastoma, also known as glioblastoma multiforme (GBM), is the most malignant form of glioma and represents 81% of malignant brain and central nervous system (CNS) tumors. Like most cancers, GBM causes metabolic recombination to promote cell survival, proliferation, and invasion of cancer cells. In this study, we propose a method for constructing the metabolic subpathway activity score matrix to accurately identify abnormal targets of GBM metabolism. By integrating gene expression data from different sequencing methods, our method identified 25 metabolic subpathways that were significantly abnormal in the GBM patient population, and most of these subpathways have been reported to have an effect on GBM. Through the analysis of 25 GBM-related metabolic subpathways, we found that (S)-2,3-Epoxysqualene, which was at the central region of the sterol biosynthesis subpathway, may have a greater impact on the entire pathway, suggesting a potential high association with GBM. Analysis of CCK8 cell activity indicated that (S)-2,3-Epoxysqualene can indeed inhibit the activity of U87-MG cells. By flow cytometry, we demonstrated that (S)-2,3-Epoxysqualene not only arrested the U87-MG cell cycle in the G0/G1 phase but also induced cell apoptosis. These results confirm the reliability of our proposed metabolic subpathway identification method and suggest that (S)-2,3-Epoxysqualene has potential therapeutic value for GBM. In order to make the method more broadly applicable, we have developed an R system package crmSubpathway to perform disease-related metabolic subpathway identification and it is freely available on the GitHub (https://github.com/hanjunwei-lab/crmSubpathway).
Collapse
Affiliation(s)
- Xudong Han
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, China
| | - Donghua Wang
- Department of General Surgery, General Hospital of Heilongjiang Province Land Reclamation Bureau, Harbin, China
| | - Ping Zhao
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, China
| | - Chonghui Liu
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, China
| | - Yue Hao
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, China
| | - Lulu Chang
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, China
| | - Jiarui Zhao
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, China
| | - Wei Zhao
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, China
| | - Lili Mu
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, China
| | - Jinghua Wang
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, China
| | - Hulun Li
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China
| | - Qingfei Kong
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China
| | - Junwei Han
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
12
|
In Vivo Validation of the BIANCA Biophysical Model: Benchmarking against Rat Spinal Cord RBE Data. Int J Mol Sci 2020; 21:ijms21113973. [PMID: 32492909 PMCID: PMC7312044 DOI: 10.3390/ijms21113973] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 12/25/2022] Open
Abstract
(1) Background: Cancer ion therapy is constantly growing thanks to its increased precision and, for heavy ions, its increased biological effectiveness (RBE) with respect to conventional photon therapy. The complex dependence of RBE on many factors demands biophysical modeling. Up to now, only the Local Effect Model (LEM), the Microdosimetric Kinetic Model (MKM), and the "mixed-beam" model are used in clinics. (2) Methods: In this work, the BIANCA biophysical model, after extensive benchmarking in vitro, was applied to develop a database predicting cell survival for different ions, energies, and doses. Following interface with the FLUKA Monte Carlo transport code, for the first time, BIANCA was benchmarked against in vivo data obtained by C-ion or proton irradiation of the rat spinal cord. The latter is a well-established model for CNS (central nervous system) late effects, which, in turn, are the main dose-limiting factors for head-and-neck tumors. Furthermore, these data have been considered to validate the LEM version applied in clinics. (3) Results: Although further benchmarking is desirable, the agreement between simulations and data suggests that BIANCA can predict RBE for C-ion or proton treatment of head-and-neck tumors. In particular, the agreement with proton data may be relevant if the current assumption of a constant proton RBE of 1.1 is revised. (4) Conclusions: This work provides the basis for future benchmarking against patient data, as well as the development of other databases for specific tumor types and/or normal tissues.
Collapse
|
13
|
Gatfield ER, Noble DJ, Barnett GC, Early NY, Hoole ACF, Kirkby NF, Jefferies SJ, Burnet NG. Tumour Volume and Dose Influence Outcome after Surgery and High-dose Photon Radiotherapy for Chordoma and Chondrosarcoma of the Skull Base and Spine. Clin Oncol (R Coll Radiol) 2019; 30:243-253. [PMID: 29402600 DOI: 10.1016/j.clon.2018.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/15/2017] [Accepted: 11/20/2017] [Indexed: 11/27/2022]
Abstract
AIMS To evaluate the long-term outcomes of patients with chordoma and low-grade chondrosarcoma after surgery and high-dose radiotherapy. MATERIALS AND METHODS High-dose photon radiotherapy was delivered to 28 patients at the Neuro-oncology Unit at Addenbrooke's Hospital (Cambridge, UK) between 1996 and 2016. Twenty-four patients were treated with curative intent, 17 with chordoma, seven with low-grade chondrosarcoma, with a median dose of 65 Gy (range 65-70 Gy). Local control and survival rates were calculated using the Kaplan-Meier method. RESULTS The median follow-up was 83 months (range 7-205 months). The 5 year disease-specific survival for chordoma patients treated with radical intent was 85%; the local control rate was 74%. The 5 year disease-specific survival for chondrosarcoma patients treated with radical intent was 100%; the local control rate was 83%. The mean planning target volume (PTV) was 274.6 ml (median 124.7 ml). A PTV of 110 ml or less was a good predictor of local control, with 100% sensitivity and 63% specificity. For patients treated with radical intent, this threshold of 110 ml or less for the PTV revealed a statistically significant difference when comparing local control with disease recurrence (P = 0.019, Fisher's exact test). Our data also suggest that the probability of disease control may be partly related to both target volume and radiotherapy dose. CONCLUSION Our results show that refined high-dose photon radiotherapy, following tumour resection by a specialist surgical team, is effective in the long-term control of chordoma and low-grade chondrosarcoma, even in the presence of metal reconstruction. The results presented here will provide a useful source for comparison between high-dose photon therapy and proton beam therapy in a UK setting, in order to establish best practice for the management of chordoma and low-grade chondrosarcoma.
Collapse
Affiliation(s)
- E R Gatfield
- Oncology Centre, Addenbrooke's Hospital, Cambridge, UK.
| | - D J Noble
- University of Cambridge Department of Oncology, Cambridge Biomedical Campus, Addenbrooke's Hospital, Cambridge, UK
| | - G C Barnett
- Oncology Centre, Addenbrooke's Hospital, Cambridge, UK
| | - N Y Early
- Department of Medical Physics and Clinical Engineering, Addenbrooke's Hospital, Cambridge, UK
| | - A C F Hoole
- Department of Medical Physics and Clinical Engineering, Addenbrooke's Hospital, Cambridge, UK
| | - N F Kirkby
- Division of Molecular and Clinical Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, UK; Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - S J Jefferies
- Oncology Centre, Addenbrooke's Hospital, Cambridge, UK
| | - N G Burnet
- University of Cambridge Department of Oncology, Cambridge Biomedical Campus, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
14
|
Kyroudis CA, Dionysiou DD, Kolokotroni EA, Stamatakos GS. Studying the regression profiles of cervical tumours during radiotherapy treatment using a patient-specific multiscale model. Sci Rep 2019; 9:1081. [PMID: 30705291 PMCID: PMC6355788 DOI: 10.1038/s41598-018-37155-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 12/03/2018] [Indexed: 12/24/2022] Open
Abstract
Apart from offering insight into the biomechanisms involved in cancer, many recent mathematical modeling efforts aspire to the ultimate goal of clinical translation, wherein models are designed to be used in the future as clinical decision support systems in the patient-individualized context. Most significant challenges are the integration of multiscale biodata and the patient-specific model parameterization. A central aim of this study was the design of a clinically-relevant parameterization methodology for a patient-specific computational model of cervical cancer response to radiotherapy treatment with concomitant cisplatin, built around a tumour features-based search of the parameter space. Additionally, a methodological framework for the predictive use of the model was designed, including a scoring method to quantitatively reflect the similarity and bilateral predictive ability of any two tumours in terms of their regression profile. The methodology was applied to the datasets of eight patients. Tumour scenarios in accordance with the available longitudinal data have been determined. Predictive investigations identified three patient cases, anyone of which can be used to predict the volumetric evolution throughout therapy of the tumours of the other two with very good results. Our observations show that the presented approach is promising in quantifiably differentiating tumours with distinct regression profiles.
Collapse
Affiliation(s)
- Christos A Kyroudis
- In Silico Oncology and In Silico Medicine Group, Institute of Communication and Computer Systems, School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
| | - Dimitra D Dionysiou
- In Silico Oncology and In Silico Medicine Group, Institute of Communication and Computer Systems, School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece.
| | - Eleni A Kolokotroni
- In Silico Oncology and In Silico Medicine Group, Institute of Communication and Computer Systems, School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
| | - Georgios S Stamatakos
- In Silico Oncology and In Silico Medicine Group, Institute of Communication and Computer Systems, School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
| |
Collapse
|
15
|
Schültke E, Bräuer-Krisch E, Blattmann H, Requardt H, Laissue JA, Hildebrandt G. Survival of rats bearing advanced intracerebral F 98 tumors after glutathione depletion and microbeam radiation therapy: conclusions from a pilot project. Radiat Oncol 2018; 13:89. [PMID: 29747666 PMCID: PMC5946497 DOI: 10.1186/s13014-018-1038-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 04/30/2018] [Indexed: 12/24/2022] Open
Abstract
Background Resistance to radiotherapy is frequently encountered in patients with glioblastoma multiforme. It is caused at least partially by the high glutathione content in the tumour tissue. Therefore, the administration of the glutathione synthesis inhibitor Buthionine-SR-Sulfoximine (BSO) should increase survival time. Methods BSO was tested in combination with an experimental synchrotron-based treatment, microbeam radiation therapy (MRT), characterized by spatially and periodically alternating microscopic dose distribution. One hundred thousand F98 glioma cells were injected into the right cerebral hemisphere of adult male Fischer rats to generate an orthotopic small animal model of a highly malignant brain tumour in a very advanced stage. Therapy was scheduled for day 13 after tumour cell implantation. At this time, 12.5% of the animals had already died from their disease. The surviving 24 tumour-bearing animals were randomly distributed in three experimental groups: subjected to MRT alone (Group A), to MRT plus BSO (Group B) and tumour-bearing untreated controls (Group C). Thus, half of the irradiated animals received an injection of 100 μM BSO into the tumour two hours before radiotherapy. Additional tumour-free animals, mirroring the treatment of the tumour-bearing animals, were included in the experiment. MRT was administered in bi-directional mode with arrays of quasi-parallel beams crossing at the tumour location. The width of the microbeams was ≈28 μm with a center-to-center distance of ≈400 μm, a peak dose of 350 Gy, and a valley dose of 9 Gy in the normal tissue and 18 Gy at the tumour location; thus, the peak to valley dose ratio (PVDR) was 31. Results After tumour-cell implantation, otherwise untreated rats had a mean survival time of 15 days. Twenty days after implantation, 62.5% of the animals receiving MRT alone (group A) and 75% of the rats given MRT + BSO (group B) were still alive. Thirty days after implantation, survival was 12.5% in Group A and 62.5% in Group B. There were no survivors on or beyond day 35 in Group A, but 25% were still alive in Group B. Thus, rats which underwent MRT with adjuvant BSO injection experienced the largest survival gain. Conclusions In this pilot project using an orthotopic small animal model of advanced malignant brain tumour, the injection of the glutathione inhibitor BSO with MRT significantly increased mean survival time.
Collapse
Affiliation(s)
- E Schültke
- Department of Radiooncology, Rostock University Medical Center, Südring 75, 18059, Rostock, Germany.
| | - E Bräuer-Krisch
- European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | | | - H Requardt
- European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | - J A Laissue
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - G Hildebrandt
- Department of Radiooncology, Rostock University Medical Center, Südring 75, 18059, Rostock, Germany
| |
Collapse
|
16
|
Drude N, Winz OH, Mottaghy FM, Roller M, Königs H, Möller M, Singh S, Morgenroth A. Impact of Glutathione Modulation on Stability and Pharmacokinetic Profile of Redox-Sensitive Nanogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1704093. [PMID: 29457349 DOI: 10.1002/smll.201704093] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/22/2017] [Indexed: 06/08/2023]
Abstract
Nanoparticles degradable upon external stimuli combine pharmacokinetic features of both small molecules as well as large nanoparticles. However, despite promising preclinical results, several redox responsive disulphide-linked nanoparticles failed in clinical translation, mainly due to their unexpected in vivo behavior. Glutathione (GSH) is one of the most evaluated antioxidants responsible for disulfide degradation. Herein, the impact of GSH on the in vivo behavior of redox-sensitive nanogels under physiological and modulated conditions is investigated. Labelling of nanogels with a DNA-intercalating dye and a radioisotope allows visualization of the redox responsiveness at the cellular and the systemic levels, respectively. In vitro, efficient cleavage of disulphide bonds of nanogels is achieved by manipulation of intracellular GSH concentration. While in vivo, the redox-sensitive nanogels undergo, to a certain extent, premature degradation in circulation leading to rapid renal elimination. This instability is modulated by transient inhibition of GSH synthesis with buthioninsulfoximin. Altered GSH concentration significantly changes the in vivo pharmacokinetics. Lower GSH results in higher elimination half-life and altered biodistribution of the nanogels with a different metabolite profile. These data provide strong evidence that decreased nanogel degradation in blood circulation can limit the risk of premature drug release and enhance circulation half-life of the nanogel.
Collapse
Affiliation(s)
- Natascha Drude
- Department of Nuclear Medicine, RWTH Aachen University, Aachen, 52074, Germany
- DWI - Leibniz Institute for Interactive Materials, RWTH Aachen University, Aachen, 52074, Germany
| | - Oliver H Winz
- Department of Nuclear Medicine, RWTH Aachen University, Aachen, 52074, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, RWTH Aachen University, Aachen, 52074, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, 6229, HX, The Netherlands
| | - Marion Roller
- Department of Nuclear Medicine, RWTH Aachen University, Aachen, 52074, Germany
| | - Hiltrud Königs
- Pathology-Electron Microscopy Facility, RWTH Aachen University, Aachen, 52074, Germany
| | - Martin Möller
- DWI - Leibniz Institute for Interactive Materials, RWTH Aachen University, Aachen, 52074, Germany
| | - Smriti Singh
- DWI - Leibniz Institute for Interactive Materials, RWTH Aachen University, Aachen, 52074, Germany
| | | |
Collapse
|
17
|
Harryman WL, Gard JMC, Pond KW, Simpson SJ, Heppner LH, Hernandez-Cortes D, Little AS, Eschbacher JM, Cress AE. Targeting the Cohesive Cluster Phenotype in Chordoma via β1 Integrin Increases Ionizing Radiation Efficacy. Neoplasia 2017; 19:919-927. [PMID: 28954241 PMCID: PMC5614733 DOI: 10.1016/j.neo.2017.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 08/05/2017] [Accepted: 08/14/2017] [Indexed: 01/31/2023] Open
Abstract
Chordoma is a rare, radiation-resistant, skull-base and spinal tumor with high local recurrence containing mixed cell-adhesion phenotypes. We characterized DNA damage response (DDR) signaling (γH2AX, pKAP1, pATM) and survival response to ionizing radiation (IR) in human chordoma samples (42 resections, 23 patients) to test if blocking cell adhesion sensitizes U-CH1 tumor cells to IR. U-CH1 cells expressed brachyury, YAP, and laminin adhesion receptors (CD49c, CD49f, CD44), and approximately 15% to 20% of U-CH1 cells featured an α6 integrin-dependent (CD49f) cohesive cluster phenotype, which confers therapeutic resistance and aids metastasis. DDR to IR in U-CH1 cells was compared to normal prostate epithelial (PrEC) and tumor cells (DU145). Flow cytometry showed a dose- and time-dependent increase in γH2AX and pKAP1 expression in all cell lines. However, nearly 50% of U-CH1 cells exhibited nonresponsive phenotype to IR (measured by γH2AX and pKAP1) independent of cell cycle status. Immunofluorescence microscopy verified that only 15% of U-CH1 clustered cells were γH2AX or pKAP1 positive (versus 80% of nonclustered cells) 2 hours following 2-Gy IR. Conversely, both tumor cell lines were uniformly defective in pATM response. HYD1, a synthetic ECM ligand, inhibited DDR through an unresolved γH2AX response. β1 integrin-blocking antibody (AIIB2) decreased cell survival 50% itself and approximately doubled the IR-induced cell kill at all IR doses observed at 2 and 4 weeks posttreatment. These results suggest that a heterogeneity of DDR to IR exists within a chordoma population. Blocking integrin function alone and/or as an adjuvant to IR may eradicate chordomas containing the cohesive cluster phenotype.
Collapse
Affiliation(s)
- William L Harryman
- University of Arizona Cancer Center, 1515 N. Campbell Ave., Tucson, AZ, 85724
| | - Jaime M C Gard
- University of Arizona Cancer Center, 1515 N. Campbell Ave., Tucson, AZ, 85724
| | - Kelvin W Pond
- Department of Cellular and Molecular Medicine, The University of Arizona, 1515 N. Campbell Ave., Tucson, AZ, 85724
| | - Skyler J Simpson
- University of Arizona Cancer Center, 1515 N. Campbell Ave., Tucson, AZ, 85724; Medical Student Research Program, The University of Arizona College of Medicine, 1515 N. Campbell Ave., Tucson, AZ, 85724
| | - Lucas H Heppner
- University of Arizona Cancer Center, 1515 N. Campbell Ave., Tucson, AZ, 85724
| | - Daniel Hernandez-Cortes
- Cancer Biology Research Program, The University of Arizona, 1515 N. Campbell Ave., Tucson, AZ, 85724
| | - Andrew S Little
- Barrow Neurological Institute, 350 W. Thomas Rd., Phoenix, AZ, 85013
| | | | - Anne E Cress
- University of Arizona Cancer Center, 1515 N. Campbell Ave., Tucson, AZ, 85724; Department of Cellular and Molecular Medicine, The University of Arizona, 1515 N. Campbell Ave., Tucson, AZ, 85724.
| |
Collapse
|
18
|
Shendge AK, Basu T, Chaudhuri D, Panja S, Mandal N. In vitro Antioxidant and Antiproliferative Activities of Various Solvent Fractions from Clerodendrum viscosum Leaves. Pharmacogn Mag 2017; 13:S344-S353. [PMID: 28808404 PMCID: PMC5538178 DOI: 10.4103/pm.pm_395_16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/03/2016] [Indexed: 01/31/2023] Open
Abstract
Background: Free radicals such as reactive oxygen and nitrogen species, generated in the body, play an important role in the fulfillment of various physiological functions but their imbalance in the body lead to cellular injury and various clinical disorders such as cancer, neurodegenaration, and inflammation. Objective: The objective of this study is to fight this problem, natural antioxidant from plants can be considered as possible protective agents against various diseases such as cancer which might also modify the redox microenvironment to reduce the genetic instability. This study was designed to evaluate the antioxidant and antiproliferative potential of Clerodendrum viscosum fractions against various carcinomas. Materials and Methods: In this present study, 70% methanolic extract of C. viscosum leaves have been fractionated to obtain hexane, chloroform, ethyl acetate, butanol, and water fractions, which were tested for their antioxidant and anticancer properties. Results: It was observed that chloroform and ethyl acetate fractions showed good free radical scavenging properties as well as inhibited the proliferation of human lung cancer (A459), breast (MCF-7), and brain (U87) cells. Moreover, they arrested the cell cycle at G2/M phase of breast and brain cancer. These inhibitory effects were further confirmed by bromodeoxyuridine uptake imaging. Phytochemical investigations further indicate the presence of tannic acid, quercetin, ellagic caid, gallic acid, reserpine, and methyl gallate which might be the reason for these fractions’ antioxidant and antiproliferative activities. Conclusion: Clerodendrum viscosum leaf chloroform and Clerodendrum viscosum leaf ethyl acetate fractions from C. viscosum showed good reactive oxygen species and reactive nitrogen species scavenging potential. Both the fractions arrested cell cycle at G2/M phase in MCF-7 and U87 cells which lead to induce apoptosis. SUMMARY Crude extract of Clerodendrum viscosum leaves was fractionated using different solvents Among them, chloroform and ethyl acetate fractions exhibited excellent free radical scavenging properties The same fractions inhibited the proliferation of human lung cancer (A459), breast (MCF-7), and brain (U87) cells Chloroform and ethyl acetate fractions arrested the cell cycle at G2/M phase of breast and brain cancer Phytochemical investigations further indicate the presence of several bioactive principles present in them.
Abbreviations used: CVLME: Clerodendrum viscosum leaf methanolic extract; CVLH: Clerodendrum viscosum leaf hexane; CVLC: Clerodendrum viscosum leaf chloroform; CVLE: Clerodendrum viscosum leaf ethyl acetate; CVLB: Clerodendrum viscosum leaf butanol; CVLW: Clerodendrum viscosum leaf water; BrdU: Bromodeoxyuridine; WST-1: Water soluble tetrazolium salt.
Collapse
Affiliation(s)
| | - Tapasree Basu
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Dipankar Chaudhuri
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Sourav Panja
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | | |
Collapse
|
19
|
Owen JH, Komarck CM, Wang AC, Abuzeid WM, Keep RF, McKean EL, Sullivan S, Fan X, Prince MEP. UM-Chor1: establishment and characterization of the first validated clival chordoma cell line. J Neurosurg 2017; 128:701-709. [PMID: 28430034 DOI: 10.3171/2016.10.jns16877] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Chordomas are rare malignant tumors thought to arise from remnants of the notochord. They can be located anywhere along the axial skeleton but are most commonly found in the clival and sacrococcygeal regions, where the notochord regresses during fetal development. Chordomas are resistant to many current therapies, leaving surgery as the primary method of treatment. Cancer cell lines have been useful for developing new cancer treatments in a laboratory setting that can then be transferred to the clinic, but there are only 4 validated chordoma cell lines available. The objective of this work was to establish chordoma cell lines from surgical tissue in order to expand the library of lines available for laboratory research. METHODS Chordoma tissue from the clivus was processed and sorted by flow cytometry to obtain an isolated population of chordoma cells. These cells were grown in culture and expanded until enough doublings to consider the line established. Identification of a chordoma cell line was made with known markers for chordoma, and the line was observed for ALDH (aldehyde dehydrogenase) subpopulations and tested in serum-free growth conditions as well as in vivo. RESULTS A fifth chordoma cell line, UM-Chor1, was successfully established. This is the first chordoma cell line originating from the clivus. Validation was confirmed by phenotype and positivity for the chordoma markers CD24 and brachyury. The authors also attempted to identify an ALDHhigh cell population in UM-Chor1, UCH1, and UCH2 but did not detect a distinct population. UM-Chor1 cells were able to form spheroids in serum-free culture, were successfully transduced with luciferase, and could be injected parasacrally and grown in NOD/SCID mice. CONCLUSIONS The availability of this novel clival chordoma cell line for in vitro and in vivo research provides an opportunity for developments in treatment against the disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xing Fan
- 2Neurosurgery, and.,3Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | | |
Collapse
|
20
|
Fujita N, Suzuki S, Watanabe K, Ishii K, Watanabe R, Shimoda M, Takubo K, Tsuji T, Toyama Y, Miyamoto T, Horiuchi K, Nakamura M, Matsumoto M. Chordoma-derived cell line U-CH1-N recapitulates the biological properties of notochordal nucleus pulposus cells. J Orthop Res 2016; 34:1341-50. [PMID: 27248133 PMCID: PMC5108487 DOI: 10.1002/jor.23320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/25/2016] [Indexed: 02/04/2023]
Abstract
Intervertebral disc degeneration proceeds with age and is one of the major causes of lumbar pain and degenerative lumbar spine diseases. However, studies in the field of intervertebral disc biology have been hampered by the lack of reliable cell lines that can be used for in vitro assays. In this study, we show that a chordoma-derived cell line U-CH1-N cells highly express the nucleus pulposus (NP) marker genes, including T (encodes T brachyury transcription factor), KRT19, and CD24. These observations were further confirmed by immunocytochemistry and flow cytometry. Reporter analyses showed that transcriptional activity of T was enhanced in U-CH1-N cells. Chondrogenic capacity of U-CH1-N cells was verified by evaluating the expression of extracellular matrix (ECM) genes and Alcian blue staining. Of note, we found that proliferation and synthesis of chondrogenic ECM proteins were largely dependent on T in U-CH1-N cells. In accordance, knockdown of the T transcripts suppressed the expression of PCNA, a gene essential for DNA replication, and SOX5 and SOX6, the master regulators of chondrogenesis. On the other hand, the CD24-silenced cells showed no reduction in the mRNA expression level of the chondrogenic ECM genes. These results suggest that U-CH1-N shares important biological properties with notochordal NP cells and that T plays crucial roles in maintaining the notochordal NP cell-like phenotype in this cell line. Taken together, our data indicate that U-CH1-N may serve as a useful tool in studying the biology of intervertebral disc. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 34:1341-1350, 2016.
Collapse
Affiliation(s)
- Nobuyuki Fujita
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Satoshi Suzuki
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Kota Watanabe
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Ken Ishii
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Ryuichi Watanabe
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Masayuki Shimoda
- Departments of PathologyKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Keiyo Takubo
- Department of Stem Cell BiologyResearch Institute, National Center for Global Health and Medicine1‐21‐1 ToyamaShinjuku‐kuTokyo160‐8582Japan
| | - Takashi Tsuji
- Kitasato Institute Hospital5‐9‐1 ShiroganeMinato‐kuTokyo108‐8642Japan
| | - Yoshiaki Toyama
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Takeshi Miyamoto
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Keisuke Horiuchi
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Masaya Nakamura
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Morio Matsumoto
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| |
Collapse
|
21
|
Maeda J, Cartwright IM, Haskins JS, Fujii Y, Fujisawa H, Hirakawa H, Uesaka M, Kitamura H, Fujimori A, Thamm DH, Kato TA. Relative biological effectiveness in canine osteosarcoma cells irradiated with accelerated charged particles. Oncol Lett 2016; 12:1597-1601. [PMID: 27446477 DOI: 10.3892/ol.2016.4808] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/12/2016] [Indexed: 01/30/2023] Open
Abstract
Heavy ions, characterized by high linear energy transfer (LET) radiation, have advantages compared with low LET protons and photons in their biological effects. The application of heavy ions within veterinary clinics requires additional background information to determine heavy ion efficacy. In the present study, comparison of the cell-killing effects of photons, protons and heavy ions was investigated in canine osteosarcoma (OSA) cells in vitro. A total of four canine OSA cell lines with various radiosensitivities were irradiated with 137Cs gamma-rays, monoenergetic proton beams, 50 keV/µm carbon ion spread out Bragg peak beams and 200 keV/µm iron ion monoenergetic beams. Clonogenic survival was examined using colony-forming as says, and relative biological effectiveness (RBE) values were calculated relative to gamma-rays using the D10 value, which is determined as the dose (Gy) resulting in 10% survival. For proton irradiation, the RBE values for all four cell lines were 1.0-1.1. For all four cell lines, exposure to carbon ions yielded a decreased cell survival compared with gamma-rays, with the RBE values ranging from 1.56-2.10. Iron ions yielded the lowest cell survival among tested radiation types, with RBE values ranging from 3.51-3.69 observed in the three radioresistant cell lines. The radiosensitive cell line investigated demonstrated similar cell survival for carbon and iron ion irradiation. The results of the present study suggest that heavy ions are more effective for killing radioresistant canine OSA cells when compared with gamma-rays and protons. This markedly increased efficiency of cell killing is an attractive reason for utilizing heavy ions for radioresistant canine OSA.
Collapse
Affiliation(s)
- Junko Maeda
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Ian M Cartwright
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Jeremy S Haskins
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Yoshihiro Fujii
- Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, Inashiki, Ibaraki 300-0394, Japan
| | - Hiroshi Fujisawa
- School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Hirokazu Hirakawa
- Research Center for Charged Particle Therapy, International Open Laboratory, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Mitsuru Uesaka
- School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Hisashi Kitamura
- Research Development and Support Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Akira Fujimori
- Research Center for Charged Particle Therapy, International Open Laboratory, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Douglas H Thamm
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Takamitsu A Kato
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
22
|
Held KD, Kawamura H, Kaminuma T, Paz AES, Yoshida Y, Liu Q, Willers H, Takahashi A. Effects of Charged Particles on Human Tumor Cells. Front Oncol 2016; 6:23. [PMID: 26904502 PMCID: PMC4751258 DOI: 10.3389/fonc.2016.00023] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/21/2016] [Indexed: 12/22/2022] Open
Abstract
The use of charged particle therapy in cancer treatment is growing rapidly, in large part because the exquisite dose localization of charged particles allows for higher radiation doses to be given to tumor tissue while normal tissues are exposed to lower doses and decreased volumes of normal tissues are irradiated. In addition, charged particles heavier than protons have substantial potential clinical advantages because of their additional biological effects, including greater cell killing effectiveness, decreased radiation resistance of hypoxic cells in tumors, and reduced cell cycle dependence of radiation response. These biological advantages depend on many factors, such as endpoint, cell or tissue type, dose, dose rate or fractionation, charged particle type and energy, and oxygen concentration. This review summarizes the unique biological advantages of charged particle therapy and highlights recent research and areas of particular research needs, such as quantification of relative biological effectiveness (RBE) for various tumor types and radiation qualities, role of genetic background of tumor cells in determining response to charged particles, sensitivity of cancer stem-like cells to charged particles, role of charged particles in tumors with hypoxic fractions, and importance of fractionation, including use of hypofractionation, with charged particles.
Collapse
Affiliation(s)
- Kathryn D Held
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School , Boston, MA , USA
| | - Hidemasa Kawamura
- Gunma University Heavy Ion Medical Center, Gunma, Japan; Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Takuya Kaminuma
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Gunma University Heavy Ion Medical Center, Gunma, Japan; Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan
| | | | - Yukari Yoshida
- Gunma University Heavy Ion Medical Center , Gunma , Japan
| | - Qi Liu
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School , Boston, MA , USA
| | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School , Boston, MA , USA
| | | |
Collapse
|
23
|
Maeda J, Fujii Y, Fujisawa H, Hirakawa H, Cartwright IM, Uesaka M, Kitamura H, Fujimori A, Kato TA. Hyperthermia-induced radiosensitization in CHO wild-type, NHEJ repair mutant and HR repair mutant following proton and carbon-ion exposure. Oncol Lett 2015; 10:2828-2834. [PMID: 26722249 PMCID: PMC4665357 DOI: 10.3892/ol.2015.3732] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 08/17/2015] [Indexed: 12/19/2022] Open
Abstract
The DNA repair mechanisms involved in hyperthermia-induced radiosensitization with proton and carbon ion radiation exposure were investigated in the present study. In a previous study, Chinese hamster ovary (CHO) cells were exposed to low linear energy transfer (LET) photon radiation. These cells can be sensitized by hyperthermia as a result of inhibition of homologous recombination (HR) repair. The present study used wild-type, non-homologous end joining (NHEJ) and HR repair-deficient CHO cells to define the contributions of each repair pathway to cellular lethality following hyperthermia-induced hadron radiation sensitization. The cells were exposed to ionizing radiation, followed by hyperthermia treatment (42.5°C for 1 h). Hyperthermia-induced radiosensitization was determined by the colony formation assay and thermal enhancement ratio. HR repair-deficient cells exhibited no hyper-sensitization to X-rays, protons, or low and high LET carbon ions when combined with hyperthermia. Wild-type and NHEJ repair-deficient cells exhibited significant hyperthermia-induced sensitization to low LET photon and hadron radiation. Hyperthermia-induced sensitization to high LET carbon-ion radiation was less than at low LET radiation. Relative biological effectiveness (RBE) between radiation alone and radiation combined with hyperthermia cell groups was not significantly different in any of the cell lines, with the exception of wild-type cells exposed to high LET radiation, which exhibited a lower RBE in the combined group. The present study investigated additional cell lines to confirm the lower RBE observed in DNA repair-deficient cell lines. These findings suggested that hyperthermia-induced hyper-sensitization to hadron radiation is also dependent on inhibition of HR repair, as was observed with photon radiation in a previous study.
Collapse
Affiliation(s)
- Junko Maeda
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Yoshihiro Fujii
- Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, Inashiki, Ibaraki 300-0394, Japan
| | - Hiroshi Fujisawa
- School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Hirokazu Hirakawa
- Research Center for Charged Particle Therapy, International Open Laboratory, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Ian M Cartwright
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Mitsuru Uesaka
- School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Hisashi Kitamura
- Research Development and Support Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Akira Fujimori
- Research Center for Charged Particle Therapy, International Open Laboratory, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Takamitsu A Kato
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
24
|
Abstract
Treatment options for metastatic and primary spinal tumors have expanded in recent years, in part due to the advances made in stereotactic radiosurgery. For metastatic spinal tumors, our institution utilizes the neurologic, oncologic, mechanical, and systemic (NOMS) decision framework, which provides a treatment paradigm based on the neurologic, oncologic, mechanical and systemic status of the patient. Radiosurgery as a supplement to surgical decompression has allowed for less-invasive surgical procedures carrying minimal morbidity while still providing effective local tumor control. Although wide en bloc excision has traditionally been the goal for the treatment of high-grade primary spine tumors, recent studies have shown promise for radiosurgery in providing control in tumors such as chordomas and high-grade sarcomas. Despite advances in radiosurgery, there continues to be limitations in providing effective conformational doses with minimal toxicity to critical structures. One of the ways to circumvent this and supplement external beam radiation is through the use of brachytherapy delivered by radioactive plaque or seeds.
Collapse
Affiliation(s)
- James K C Liu
- Spine Tumor Center, Department of Neurosurgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | | |
Collapse
|
25
|
Review of carbon ion radiotherapy for skull base tumors (especially chordomas). Rep Pract Oncol Radiother 2015; 21:356-60. [PMID: 27330420 DOI: 10.1016/j.rpor.2015.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 12/20/2014] [Accepted: 01/29/2015] [Indexed: 01/30/2023] Open
Abstract
AIM To review the clinical feasibility of carbon ion radiotherapy (C-ion RT) for skull base tumors, especially for chordomas which are often seen in the skull base area. BACKGROUND Skull base tumors treated by C-ion RT consist of primary chordomas and chondrosarcomas, and enormously extended head and neck cancer with a histology of adenoid cystic carcinomas, adenocarcinomas and malignant melanomas. These tumors are located on anatomically complex sites where they are close to important normal tissues and therefore demand better physical dose distribution to avoid unnecessary doses for surrounding normal tissues. These tumors are also known as radio-resistant tumors for low linear energy transfer (LET) radiotherapy and show favorable results after treatment by high LET carbon ion radiotherapy. MATERIALS AND METHODS Biological reports of C-ions for the chordoma cell line, clinical results of C-ion RT for skull base tumors, dose comparative studies between two representative facilities and tumor control probability (TCP) of chordomas by C-ion RT were reviewed. RESULTS C-ion RT for skull base tumors, especially for chordomas, shows favorable results of tumor control and acceptable complications. The C-ion dose of 57.36 gray equivalent (GyE)/16 fractions/4 weeks will deliver 90% of local control for chordomas. The limiting doses for surrounding normal tissues are clearly revealed. The dose difference between institutes was assumed within 10%. CONCLUSIONS C-ion RT is recommended for skull base tumors because of high LET characteristics and clinical results.
Collapse
|
26
|
Lu HK, Gray LR, Wightman F, Ellenberg P, Khoury G, Cheng WJ, Mota TM, Wesselingh S, Gorry PR, Cameron PU, Churchill MJ, Lewin SR. Ex vivo response to histone deacetylase (HDAC) inhibitors of the HIV long terminal repeat (LTR) derived from HIV-infected patients on antiretroviral therapy. PLoS One 2014; 9:e113341. [PMID: 25409334 PMCID: PMC4237424 DOI: 10.1371/journal.pone.0113341] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 10/22/2014] [Indexed: 01/31/2023] Open
Abstract
Histone deacetylase inhibitors (HDACi) can induce human immunodeficiency virus (HIV) transcription from the HIV long terminal repeat (LTR). However, ex vivo and in vivo responses to HDACi are variable and the activity of HDACi in cells other than T-cells have not been well characterised. Here, we developed a novel assay to determine the activity of HDACi on patient-derived HIV LTRs in different cell types. HIV LTRs from integrated virus were amplified using triple-nested Alu-PCR from total memory CD4+ T-cells (CD45RO+) isolated from HIV-infected patients prior to and following suppressive antiretroviral therapy. NL4-3 or patient-derived HIV LTRs were cloned into the chromatin forming episomal vector pCEP4, and the effect of HDACi investigated in the astrocyte and epithelial cell lines SVG and HeLa, respectively. There were no significant differences in the sequence of the HIV LTRs isolated from CD4+ T-cells prior to and after 18 months of combination antiretroviral therapy (cART). We found that in both cell lines, the HDACi panobinostat, trichostatin A, vorinostat and entinostat activated patient-derived HIV LTRs to similar levels seen with NL4-3 and all patient derived isolates had similar sensitivity to maximum HDACi stimulation. We observed a marked difference in the maximum fold induction of luciferase by HDACi in HeLa and SVG, suggesting that the effect of HDACi may be influenced by the cellular environment. Finally, we observed significant synergy in activation of the LTR with vorinostat and the viral protein Tat. Together, our results suggest that the LTR sequence of integrated virus is not a major determinant of a functional response to an HDACi.
Collapse
Affiliation(s)
- Hao K. Lu
- Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
| | - Lachlan R. Gray
- Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
| | - Fiona Wightman
- Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
| | - Paula Ellenberg
- Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
| | - Gabriela Khoury
- Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
| | - Wan-Jung Cheng
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
| | - Talia M. Mota
- Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Steve Wesselingh
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Paul R. Gorry
- Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Paul U. Cameron
- Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
- Infectious Disease Unit, Alfred Hospital, Melbourne, Victoria, Australia
| | - Melissa J. Churchill
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
- Department of Medicine, Monash University, Clayton, Victoria, Australia
| | - Sharon R. Lewin
- Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
- Infectious Disease Unit, Alfred Hospital, Melbourne, Victoria, Australia
- Peter Doherty Institute, Melbourne University, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
27
|
Safari M, Khoshnevisan A. An overview of the role of cancer stem cells in spine tumors with a special focus on chordoma. World J Stem Cells 2014; 6:53-64. [PMID: 24567788 PMCID: PMC3927014 DOI: 10.4252/wjsc.v6.i1.53] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 08/31/2013] [Accepted: 11/05/2013] [Indexed: 02/06/2023] Open
Abstract
Primary malignant tumors of the spine are relatively rare, less than 5% of all spinal column tumors. However, these lesions are often among the most difficult to treat and encompass challenging pathologies such as chordoma and a variety of invasive sarcomas. The mechanisms of tumor recurrence after surgical intervention, as well as resistance to radiation and chemotherapy, remain a pervasive and costly problem. Recent evidence has emerged supporting the hypothesis that solid tumors contain a sub-population of cancer cells that possess characteristics normally associated with stem cells. Particularly, the potential for long-term proliferation appears to be restricted to subpopulations of cancer stem cells (CSCs) functionally defined by their capacity to self-renew and give rise to differentiated cells that phenotypically recapitulate the original tumor, thereby causing relapse and patient death. These cancer stem cells present a unique opportunity to better understand the biology of solid tumors in general, as well as targets for future therapeutics. The general objective of the current study is to discuss the fundamental concepts for understanding the role of CSCs with respect to chemoresistance, radioresistance, special cell surface markers, cancer recurrence and metastasis in tumors of the osseous spine. This discussion is followed by a specific review of what is known about the role of CSCs in chordoma, the most common primary malignant osseous tumor of the spine.
Collapse
|
28
|
Fujisawa H, Genik PC, Kitamura H, Fujimori A, Uesaka M, Kato TA. Comparison of human chordoma cell-kill for 290 MeV/n carbon ions versus 70 MeV protons in vitro. Radiat Oncol 2013; 8:91. [PMID: 23587329 PMCID: PMC3643831 DOI: 10.1186/1748-717x-8-91] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 04/11/2013] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND While the pace of commissioning of new charged particle radiation therapy facilities is accelerating worldwide, biological data pertaining to chordomas, theoretically and clinically optimally suited targets for particle radiotherapy, are still lacking. In spite of the numerous clinical reports of successful treatment of these malignancies with this modality, the characterization of this malignancy remains hampered by its characteristic slow cell growth, particularly in vitro. METHODS Cellular lethality of U-CH1-N cells in response to different qualities of radiation was compared with immediate plating after radiation or as previously reported using the multilayered OptiCell™ system. The OptiCell™ system was used to evaluate cellular lethality over a broad dose-depth deposition range of particle radiation to anatomically mimic the clinical setting. Cells were irradiated with either 290 MeV/n accelerated carbon ions or 70 MeV accelerated protons and photons and evaluated through colony formation assays at a single position or at each depth, depending on the system. RESULTS There was a cell killing of approximately 20-40% for all radiation qualities in the OptiCell™ system in which chordoma cells are herein described as more radiation sensitive than regular colony formation assay. The relative biological effectiveness values were, however, similar in both in vitro systems for any given radiation quality. Relative biological effectiveness values of proton was 0.89, of 13-20 keV/μm carbon ions was 0.85, of 20-30 keV/μm carbon ions was 1.27, and >30 keV/μm carbon ions was 1.69. Carbon-ions killed cells depending on both the dose and the LET, while protons depended on the dose alone in the condition of our study. This is the first report and characterization of a direct comparison between the effects of charged particle carbon ions versus protons for a chordoma cell line in vitro. Our results support a potentially superior therapeutic value of carbon particle irradiation in chordoma patients. CONCLUSION Carbon ion therapy may have an advantage for chordoma radiotherapy because of higher cell-killing effect with high LET doses from biological observation in this study.
Collapse
|
29
|
From notochord formation to hereditary chordoma: the many roles of Brachyury. BIOMED RESEARCH INTERNATIONAL 2013; 2013:826435. [PMID: 23662285 PMCID: PMC3626178 DOI: 10.1155/2013/826435] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/22/2013] [Indexed: 12/25/2022]
Abstract
Chordoma is a rare, but often malignant, bone cancer that preferentially affects the axial skeleton and the skull base. These tumors are both sporadic and hereditary and appear to occur more frequently after the fourth decade of life; however, modern technologies have increased the detection of pediatric chordomas. Chordomas originate from remnants of the notochord, the main embryonic axial structure that precedes the backbone, and share with notochord cells both histological features and the expression of characteristic genes. One such gene is Brachyury, which encodes for a sequence-specific transcription factor. Known for decades as a main regulator of notochord formation, Brachyury has recently gained interest as a biomarker and causative agent of chordoma, and therefore as a promising therapeutic target. Here, we review the main characteristics of chordoma, the molecular markers, and the clinical approaches currently available for the early detection and possible treatment of this cancer. In particular, we report on the current knowledge of the role of Brachyury and of its possible mechanisms of action in both notochord formation and chordoma etiogenesis.
Collapse
|
30
|
Suman S, Datta K, Trani D, Laiakis EC, Strawn SJ, Fornace AJ. Relative biological effectiveness of 12C and 28Si radiation in C57BL/6J mice. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2012; 51:303-9. [PMID: 22562428 PMCID: PMC4208103 DOI: 10.1007/s00411-012-0418-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 04/12/2012] [Indexed: 05/06/2023]
Abstract
Study of heavy ion radiation-induced effects on mice could provide insight into the human health risks of space radiation exposure. The purpose of the present study is to assess the relative biological effectiveness (RBE) of (12)C and (28)Si ion radiation, which has not been reported previously in the literature. Female C57BL/6J mice (n = 15) were irradiated using 4-8 Gy of (28)Si (300 MeV/nucleon energy; LET 70 keV/μm) and 5-8 Gy of (12)C (290 MeV/nucleon energy; LET 13 keV/μm) ions. Post-exposure, mice were monitored regularly, and their survival observed for 30 days. The LD(50/30) dose (the dose at which 50 % lethality occurred by 30-day post-exposure) was calculated from the survival curve and was used to determine the RBE of (28)Si and (12)C in relation to γ radiation. The LD(50/30) for (28)Si and (12)C ion is 5.17 and 7.34 Gy, respectively, and the RBE in relation to γ radiation (LD(50/30)-7.25 Gy) is 1.4 for (28)Si and 0.99 for (12)C. Determination of RBE of (28)Si and (12)C for survival in mice is not only important for space radiation risk estimate studies, but it also has implications for HZE radiation in cancer therapy.
Collapse
Affiliation(s)
- Shubhankar Suman
- Department of Biochemistry and Molecular & Cell Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Room E504 Research Building, 3970 Reservoir Rd., NW, Washington, DC 20057-1468, USA
| | - Kamal Datta
- Department of Biochemistry and Molecular & Cell Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Room E504 Research Building, 3970 Reservoir Rd., NW, Washington, DC 20057-1468, USA
- Corresponding authors: Albert J. Fornace Jr., M.D., Department of Biochemistry and Molecular & Cell Biology and Lombardi, Comprehensive Cancer Center, Georgetown University, Room E504 Research Building, 3970 Reservoir Rd., NW, Washington, DC 20057-1468, USA, Phone: 202 687-7843, Fax: 202 687 3140, & Kamal Datta, M.D., Assistant Professor, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Research Building, Room E518, 3970 Reservoir Rd., NW, Washington, DC 20057-1468, USA; Phone: 202-687-7956;
| | - Daniela Trani
- Department of Biochemistry and Molecular & Cell Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Room E504 Research Building, 3970 Reservoir Rd., NW, Washington, DC 20057-1468, USA
| | - Evagelia C. Laiakis
- Department of Biochemistry and Molecular & Cell Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Room E504 Research Building, 3970 Reservoir Rd., NW, Washington, DC 20057-1468, USA
| | - Steven J. Strawn
- Department of Biochemistry and Molecular & Cell Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Room E504 Research Building, 3970 Reservoir Rd., NW, Washington, DC 20057-1468, USA
| | - Albert J. Fornace
- Department of Biochemistry and Molecular & Cell Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Room E504 Research Building, 3970 Reservoir Rd., NW, Washington, DC 20057-1468, USA
- Center of Excellence In Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, SA
- Corresponding authors: Albert J. Fornace Jr., M.D., Department of Biochemistry and Molecular & Cell Biology and Lombardi, Comprehensive Cancer Center, Georgetown University, Room E504 Research Building, 3970 Reservoir Rd., NW, Washington, DC 20057-1468, USA, Phone: 202 687-7843, Fax: 202 687 3140, & Kamal Datta, M.D., Assistant Professor, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Research Building, Room E518, 3970 Reservoir Rd., NW, Washington, DC 20057-1468, USA; Phone: 202-687-7956;
| |
Collapse
|