1
|
Iguchi K, Yamamoto Y, Uchiyama M, Masaoka H, Nakamura M, Shizuka H, Imazuru T, Shimokawa T. Graft protective effects and donor-specific antibody suppression by CD4 +CD25 +Foxp3 + regulatory T cell induced by HMG-CoA reductase inhibitor rosuvastatin in a murine heart transplant model. J Cardiothorac Surg 2024; 19:368. [PMID: 38918849 PMCID: PMC11197312 DOI: 10.1186/s13019-024-02888-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/15/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND We previously demonstrated that the hydroxymethylglutaryl-CoA (HMG-CoA) reductase inhibitor (statins) play an important role in the regulation of alloimmune responses. However, little is known regarding the effects of statin on allograft protection or donor-specific antibodies (DSA). In this study, we investigated the graft-protective and immunomodulatory effects of rosuvastatin in a model of fully major histocompatibility complex-mismatched murine cardiac allograft transplantation. METHODS CBA mice underwent transplantation of C57BL/6 (B6) hearts and received 50 and 500 μg/kg/day of rosuvastatin from the day of transplantation until seven days after the completion of transplantation. To confirm the requirement for regulatory T cells (Tregs), we administered an anti-interleukin-2 receptor alpha antibody (PC-61) to rosuvastatin-treated CBA recipients. Additionally, histological and fluorescent staining, cell proliferation analysis, flow cytometry, and DSA measurements were performed. RESULTS CBA recipients with no treatment rejected B6 cardiac graft acutely (median survival time [MST], 7 days). CBA mice treated with 500 μg/kg/day of rosuvastatin prolonged allograft survival (MSTs, 77 days). Fluorescent staining studies showed that rosuvastatin-treated recipients had strong aggregation of CD4+Foxp3+ cells in the myocardium and around the coronary arteries of cardiac allografts two weeks after grafting. Flow cytometry studies performed two weeks after transplantation showed an increased number of splenic CD4+CD25+Foxp3+ T cells in rosuvastatin-treated recipients. The addition of rosuvastatin to mixed leukocyte cultures suppressed cell proliferation by increasing the number of CD4+CD25+Foxp3+ Tregs. Additionally, Tregs suppressed DSA production in rosuvastatin-treated recipients. CONCLUSION Rosuvastatin treatment may be a complementary graft-protective strategy for suppressing DSA production in the acute phase, driven by the promotion of splenic and graft-infiltrating CD4+CD25+Foxp3+ Tregs.
Collapse
Affiliation(s)
- Kazuhito Iguchi
- Department of Cardiovascular Surgery, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Yasuto Yamamoto
- Department of Cardiovascular Surgery, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Masateru Uchiyama
- Department of Cardiovascular Surgery, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.
| | - Hisanori Masaoka
- Department of Cardiovascular Surgery, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Masahiro Nakamura
- Department of Cardiovascular Surgery, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Hiroyuki Shizuka
- Department of Cardiovascular Surgery, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Tomohiro Imazuru
- Department of Cardiovascular Surgery, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Tomoki Shimokawa
- Department of Cardiovascular Surgery, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| |
Collapse
|
2
|
Misrani A, Tabassum S, Wang T, Huang H, Jiang J, Diao H, Zhao Y, Huang Z, Tan S, Long C, Yang L. Vibration-reduced anxiety-like behavior relies on ameliorating abnormalities of the somatosensory cortex and medial prefrontal cortex. Neural Regen Res 2024; 19:1351-1359. [PMID: 37905885 PMCID: PMC11467954 DOI: 10.4103/1673-5374.385840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/30/2023] [Accepted: 07/19/2023] [Indexed: 11/02/2023] Open
Abstract
Tibetan singing bowls emit low-frequency sounds and produce perceptible harmonic tones and vibrations through manual tapping. The sounds the singing bowls produce have been shown to enhance relaxation and reduce anxiety. However, the underlying mechanism remains unclear. In this study, we used chronic restraint stress or sleep deprivation to establish mouse models of anxiety that exhibit anxiety-like behaviors. We then supplied treatment with singing bowls in a bottomless cage placed on the top of a cushion. We found that unlike in humans, the combination of harmonic tones and vibrations did not improve anxiety-like behaviors in mice, while individual vibration components did. Additionally, the vibration of singing bowls increased the level of N-methyl-D-aspartate receptor 1 in the somatosensory cortex and prefrontal cortex of the mice, decreased the level of γ-aminobutyric acid A (GABA) receptor α 1 subtype, reduced the level of CaMKII in the prefrontal cortex, and increased the number of GABAergic interneurons. At the same time, electrophysiological tests showed that the vibration of singing bowls significantly reduced the abnormal low-frequency gamma oscillation peak frequency in the medial prefrontal cortex caused by stress restraint pressure and sleep deprivation. Results from this study indicate that the vibration of singing bowls can alleviate anxiety-like behaviors by reducing abnormal molecular and electrophysiological events in somatosensory and medial prefrontal cortex.
Collapse
Affiliation(s)
- Afzal Misrani
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, Guangdong Province, China
- School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Sidra Tabassum
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, Guangdong Province, China
- School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Tintin Wang
- Guangzhou Hongai Cultural Development, Inc., Guangzhou, Guangdong Province, China
- Yinguo Health Management Team, Guangzhou, Guangdong Province, China
| | - Huixian Huang
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, Guangdong Province, China
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Jinxiang Jiang
- School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Hongjun Diao
- Guangzhou Hongai Cultural Development, Inc., Guangzhou, Guangdong Province, China
- Yinguo Health Management Team, Guangzhou, Guangdong Province, China
| | - Yanping Zhao
- College of Biophotonics, South China Normal University, Guangzhou, Guangdong Province, China
| | - Zhen Huang
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, Guangdong Province, China
| | - Shaohua Tan
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, Guangdong Province, China
| | - Cheng Long
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, Guangdong Province, China
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Li Yang
- School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
| |
Collapse
|
3
|
Masaoka H, Yamamoto Y, Uchiyama M, Iguchi K, Nakamura M, Yagita H, Imazuru T, Shimokawa T. Graft Protective and Intercellular Immunomodulatory Effects by Adoptive Transfer of an Agonistic Anti-BTLA mAb (3C10) Induced CD4 +CD25 + Regulatory T Cells in Murine Cardiac Allograft Transplant Model. Transplant Proc 2024; 56:692-700. [PMID: 38360464 DOI: 10.1016/j.transproceed.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND We demonstrated that an agonistic anti-B and T lymphocyte attenuator antibody (3C10) prolonged cardiac survival by inducing regulatory T cells (Treg). However, the mechanisms of immune tolerance in the recipients remained unclear. In this study, we investigated the graft-protective and intercellular immunomodulatory effects of adoptive transfer (AT) of 3C10-induced Tregs in a murine cardiac allograft transplant model. METHODS Thirty days after transplantation of a C57BL/6 heart into the primary 3C10-treated CBA recipients, splenic CD4+CD25+ cells from these recipients (3C10/AT group) or naïve CBA mice (no-treatment group) were adoptively transferred into secondary CBA recipients with a C57BL/6 heart. To confirm the requirement for 3C10-induced Tregs, we administered an anti-interleukin-2 receptor alpha antibody (PC-61) to secondary CBA recipients. Additionally, histologic and fluorescent staining, cell proliferation analysis, flow cytometry, and donor-specific antibody (DSA) measurements were performed. RESULTS 3C10/AT-treated CBA recipients resulted in significantly prolonged allograft survival (median survival time [MST], >50 days). Allografts displayed prolonged function with preservation of vessel structure by maintaining high numbers of splenic CD4+CD25+Foxp3+ Treg and intramyocardial CD4+Foxp3+ cells. DSA levels were suppressed in 3C10/AT-treated CBA recipients. Moreover, PC-61 administration resulted in a shorter MSTs of cardiac allograft survivals, a detrimental increase in DSA production, and enhanced expression of programmed cell death (PD)-1. CONCLUSION AT of 3C10-induced Tregs may be a promising graft-protective strategy to prolong allograft survival and suppress DSA production, driven by the promotion of splenic and graft-infiltrating Tregs and collaboration with PD-1+ T cells and Treg.
Collapse
Affiliation(s)
- Hisanori Masaoka
- Department of Cardiovascular Surgery, Teikyo University, Tokyo, Japan
| | - Yasuto Yamamoto
- Department of Cardiovascular Surgery, Teikyo University, Tokyo, Japan
| | - Masateru Uchiyama
- Department of Cardiovascular Surgery, Teikyo University, Tokyo, Japan.
| | - Kazuhito Iguchi
- Department of Cardiovascular Surgery, Teikyo University, Tokyo, Japan
| | - Masahiro Nakamura
- Department of Cardiovascular Surgery, Teikyo University, Tokyo, Japan
| | - Hideo Yagita
- Department of Immunology, Juntendo University, Tokyo, Japan
| | - Tomohiro Imazuru
- Department of Cardiovascular Surgery, Teikyo University, Tokyo, Japan
| | - Tomoki Shimokawa
- Department of Cardiovascular Surgery, Teikyo University, Tokyo, Japan
| |
Collapse
|
4
|
Moschonas EH, Ranellone TS, Vozzella VJ, Rennerfeldt PL, Bondi CO, Annas EM, Bittner RA, Tamura DM, Reddy RI, Eleti RR, Cheng JP, Jarvis JM, Fink EL, Kline AE. Efficacy of a music-based intervention in a preclinical model of traumatic brain injury: An initial foray into a novel and non-pharmacological rehabilitative therapy. Exp Neurol 2023; 369:114544. [PMID: 37726048 PMCID: PMC10591861 DOI: 10.1016/j.expneurol.2023.114544] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/29/2023] [Accepted: 09/16/2023] [Indexed: 09/21/2023]
Abstract
Traumatic brain injury (TBI) causes neurobehavioral and cognitive impairments that negatively impact life quality for millions of individuals. Because of its pernicious effects, numerous pharmacological interventions have been evaluated to attenuate the TBI-induced deficits or to reinstate function. While many such pharmacotherapies have conferred benefits in the laboratory, successful translation to the clinic has yet to be achieved. Given the individual, medical, and societal burden of TBI, there is an urgent need for alternative approaches to attenuate TBI sequelae and promote recovery. Music based interventions (MBIs) may hold untapped potential for improving neurobehavioral and cognitive recovery after TBI as data in normal, non-TBI, rats show plasticity and augmented cognition. Hence, the aim of this study was to test the hypothesis that providing a MBI to adult rats after TBI would improve cognition, neurobehavior, and histological endpoints. Adult male rats received a moderate-to-severe controlled cortical impact injury (2.8 mm impact at 4 m/s) or sham surgery (n = 10-12 per group) and 24 h later were randomized to classical Music or No Music (i.e., ambient room noise) for 3 h/day from 19:00 to 22:00 h for 30 days (last day of behavior). Motor (beam-walk), cognitive (acquisition of spatial learning and memory), anxiety-like behavior (open field), coping (shock probe defensive burying), as well as histopathology (lesion volume), neuroplasticity (BDNF), and neuroinflammation (Iba1, and CD163) were assessed. The data showed that the MBI improved motor, cognitive, and anxiety-like behavior vs. No Music (p's < 0.05). Music also reduced cortical lesion volume and activated microglia but increased resting microglia and hippocampal BDNF expression. These findings support the hypothesis and provide a compelling impetus for additional preclinical studies utilizing MBIs as a potential efficacious rehabilitative therapy for TBI.
Collapse
Affiliation(s)
- Eleni H Moschonas
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Tyler S Ranellone
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Vincent J Vozzella
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Piper L Rennerfeldt
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Corina O Bondi
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Ellen M Annas
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Rachel A Bittner
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Dana M Tamura
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Rithika I Reddy
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Rithik R Eleti
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Jeffrey P Cheng
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Jessica M Jarvis
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Ericka L Fink
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Anthony E Kline
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Psychology, University of Pittsburgh, Pittsburgh, PA 15213, United States of America.
| |
Collapse
|
5
|
Saireito (TJ-114) Suppressed Donor-Specific Antibody Through Immunomodulatory Effects and Regulatory T Cell Induction in a Murine Heart Transplant Model. Transplant Proc 2022; 54:482-486. [DOI: 10.1016/j.transproceed.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/03/2022] [Accepted: 01/07/2022] [Indexed: 11/17/2022]
|
6
|
Yamamoto Y, Ikeda T, Uchiyama M, Iguchi K, Imazuru T, Shimokawa T. Effects of Each Domain in Recombinant Human Soluble Thrombomodulin on Prolongation of Murine Cardiac Allograft Survival. Transplant Proc 2022; 54:487-491. [DOI: 10.1016/j.transproceed.2021.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 12/29/2021] [Indexed: 10/19/2022]
|
7
|
Yamamoto Y, Uchiyama M, Iguchi K, Kawai K, Imazuru T, Kawamura M, Shimokawa T. Effects of Glycyrrhizic Acid in Licorice on Prolongation of Murine Cardiac Allograft Survival. Transplant Proc 2022; 54:476-481. [DOI: 10.1016/j.transproceed.2021.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/02/2021] [Accepted: 12/27/2021] [Indexed: 11/29/2022]
|
8
|
Zhang A, Zou T, Guo D, Wang Q, Shen Y, Hu H, Ye B, Xiang M. The Immune System Can Hear Noise. Front Immunol 2021; 11:619189. [PMID: 33679706 PMCID: PMC7930229 DOI: 10.3389/fimmu.2020.619189] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/31/2020] [Indexed: 11/28/2022] Open
Abstract
As a stressor widely existing in daily life, noise can cause great alterations to the immune system and result in many physical and mental disorders, including noise-induced deafness, sleep disorders, cardiovascular diseases, endocrine diseases and other problems. The immune system plays a major role in maintaining homeostasis by recognizing and removing harmful substances in the body. Many studies have shown that noise may play vital roles in the occurrence and development of some immune diseases. In humans, both innate immunity and specific immunity can be influenced by noise, and different exposure durations and intensities of noise may exert various effects on the immune system. Short-term or low-intensity noise can enhance immune function, while long-term or high-intensity noise suppresses it. Noise can lead to the occurrence of noise-induced hearing loss (NIHL) through the production of autoantibodies such as anti-Hsp70 and anti-Hsp60 and exert adverse effects related to other immune-related diseases such as some autoimmune diseases and non-Hodgkin lymphoma. The neuroendocrine system, mainly including the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic-adrenal-medullary (SAM) system, is involved in the mechanisms of immune-related diseases induced by noise and gut microbiota dysfunction. In addition, noise exposure during pregnancy may be harmful to the immune system of the fetus. On the other hand, some studies have shown that music can improve immune function and alleviate the adverse effects caused by noise.
Collapse
Affiliation(s)
- Andi Zhang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyuan Zou
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongye Guo
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Quan Wang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yilin Shen
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haixia Hu
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Ye
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingliang Xiang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
TERZİOGLU-USAK S, DAL A, YANIK H, ELİBOL B. Müziğin strese bağlı indüklenen hormonlar ve oksidatif stres üzerine etkisi. CUKUROVA MEDICAL JOURNAL 2020. [DOI: 10.17826/cumj.735738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
10
|
Kühlmann AYR, de Rooij A, Hunink MGM, De Zeeuw CI, Jeekel J. Music Affects Rodents: A Systematic Review of Experimental Research. Front Behav Neurosci 2019; 12:301. [PMID: 30618659 PMCID: PMC6302112 DOI: 10.3389/fnbeh.2018.00301] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 11/20/2018] [Indexed: 01/01/2023] Open
Abstract
Background: There is rapidly emerging interest in music interventions in healthcare. Music interventions are widely applicable, inexpensive, without side effects, and easy to use. It is not precisely known how they exert positive effects on health outcomes. Experimental studies in animal models might reveal more about the pathophysiological mechanisms of music interventions. Methods: We performed a systematic review of experimental research in rodents. The electronic databases EMBASE, Medline(ovidSP), Web-Of-Science, PsycINFO, Cinahl, PubMed publisher, Cochrane, and Google scholar were searched for publications between January 1st 1960 and April 22nd 2017. Eligible were English-written, full-text publications on experimental research in rodents comparing music vs. a control situation. Outcomes were categorized in four domains: brain structure and neuro-chemistry; behavior; immunology; and physiology. Additionally, an overview was generated representing the effects of various types of music on outcomes. Bias in studies was assessed with the SYRCLE Risk of Bias tool. A meta-analysis was not feasible due to heterogeneous outcomes and lack of original outcome data. Results: Forty-two studies were included. Music-exposed rodents showed statistically significant increases in neuro-chemistry, such as higher BDNF levels, as well as an enhanced propensity for neurogenesis and neuroplasticity. Furthermore, music exposure was linked with statistically significantly improved spatial and auditory learning, reduced anxiety-related behavior, and increased immune responses. Various statistically significant changes occurred in physiological parameters such as blood pressure and (para)sympathetic nerve activity following music interventions. The majority of studies investigated classical music interventions, but other types of music exerted positive effects on outcomes as well. The SYRCLE risk of bias assessment revealed unclear risk of bias in all studies. Conclusions: Music interventions seem to improve brain structure and neuro-chemistry; behavior; immunology; and physiology in rodents. Further research is necessary to explore and optimize the effect of music interventions, and to evaluate its effects in humans.
Collapse
Affiliation(s)
- A Y Rosalie Kühlmann
- Department of Pediatric Surgery, Erasmus University Medical Center - Sophia Children's Hospital, Rotterdam, Netherlands
| | - Aniek de Rooij
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - M G Myriam Hunink
- Department of Radiology and Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, Netherlands.,Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts & Sciences, Amsterdam, Netherlands
| | - Johannes Jeekel
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
11
|
Yin E, Uchiyama M, Jin X, Kawai K, Takao M, Niimi M. More Hippocampal Weight and Cells in Cardiac Allograft Transplanted Mice. Transplant Proc 2018; 50:2798-2803. [PMID: 30401400 DOI: 10.1016/j.transproceed.2018.03.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/27/2018] [Accepted: 03/15/2018] [Indexed: 10/17/2022]
Abstract
The hippocampus is a brain structure that plays a fundamental role in memory and learning. Many animal studies have demonstrated that the structure of the hippocampus has evolved through exercise and play. However, little is known on the relationship between the brain and immunological reaction. In this study, we investigated the correlation between the weight of the hippocampus and transplant immunology in a murine heart transplant model. Fully vascularized heterotopic hearts from CBA (H2k, allogeneic group) or C57BL/6 (H2b, syngeneic group) donors were transplanted into C57BL/6 recipients by using microsurgical techniques. The weights of the whole brain and hippocampus from syngeneic and allogeneic groups were recorded 1, 2, and 4 weeks after grafting, and histologic assessments were performed. The syngeneic group maintained beating cardiac grafts for over 30 days, but the allogeneic group rejected CBA cardiac allografts acutely within 8 days. The average weight of whole brain from syngeneic and allogeneic group 1, 2, and 4 weeks had no significant differences. However, the average weight of hippocampus at 2 and 4 weeks was considerably increased in the allogeneic group compared with the syngeneic group. Histologic assessments with hematoxylin-eosin and Kluver-Barrera staining of hippocampus from allogeneic group 1 week after grafting demonstrated a greater number of granule and pyramidal cells in the hippocampus. Alloimmune responses in our model increase the weight of hippocampus.
Collapse
Affiliation(s)
- E Yin
- Department of Surgery, Teikyo University, Tokyo, Japan; Department of Cardiovascular Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - M Uchiyama
- Department of Surgery, Teikyo University, Tokyo, Japan; Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
| | - X Jin
- Department of Surgery, Teikyo University, Tokyo, Japan; Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - K Kawai
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - M Takao
- Department of Neurology, Saitama International Medical Center, Saitama Medical College, Saitama, Japan
| | - M Niimi
- Department of Surgery, Teikyo University, Tokyo, Japan
| |
Collapse
|
12
|
Seven Japanese Herbals Prolonged Cardiac Allograft Survival. Transplant Proc 2018; 50:2789-2793. [PMID: 30401398 DOI: 10.1016/j.transproceed.2018.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/16/2018] [Accepted: 04/06/2018] [Indexed: 01/24/2023]
Abstract
Japanese herbal medicines have long been used as alternative therapy because of their immunomodulatory effects. In recent years, use herbal medicines is rapidly increasing worldwide. In this study, we investigated the effect of 17 components of traditional Japanese herbal medicines on alloimmune responses in a murine model of cardiac allograft transplantation. Fully vascularized heterotopic hearts from C57BL/6 donors were transplanted into CBA mice by using microsurgical techniques. Artemisiae capillaris herba (Inchinko) was given to CBA recipients at a dosage of 1 g/kg/day from the day of transplantation until 7 days afterward. The other 16 components were given at a dosage of 2 g/kg/day for the same time period. Naïve CBA mice rejected C57BL/6 cardiac grafts acutely (median survival time [MST] of 7 days). CBA transplant recipients given 2 g/kg/day of Glycyrrhizae radix (Kanzou), Poria sclerotium (Bukuryo), Pinellia tuber (Hange), Cnidii rhizome (Senkyu), Paeoniae radix (Shakuyaku), and Scutellariae radix (Ogon) had prolonged C57BL/6 allograft survival significantly (MSTs were 18, 18, 17, 14, 12, and 12 days, respectively). Moreover, CBA transplant recipients given 1g/kg/day of Artemisiae capillaris herba had prolonged C57BL/6 allograft survival (MST >100 days); however, none of other 10 components prolonged allograft survival. In conclusion, administration of 7 components of traditional Japanese herbal medicines might induce prolongation of fully major histocompatibility complex-mismatched cardiac allografts.
Collapse
|
13
|
Barcellos HHA, Koakoski G, Chaulet F, Kirsten KS, Kreutz LC, Kalueff AV, Barcellos LJG. The effects of auditory enrichment on zebrafish behavior and physiology. PeerJ 2018; 6:e5162. [PMID: 30057858 PMCID: PMC6061163 DOI: 10.7717/peerj.5162] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/13/2018] [Indexed: 12/22/2022] Open
Abstract
Environmental enrichment is widely used to improve welfare and behavioral performance of animal species. It ensures housing of laboratory animals in environments with space and complexity that enable the expression of their normal behavioral repertoire. Auditory enrichment by exposure to classical music decreases abnormal behaviors and endocrine stress responses in humans, non-humans primates, and rodents. However, little is known about the role of auditory enrichment in laboratory zebrafish. Given the growing importance of zebrafish for neuroscience research, such studies become critical. To examine whether auditory enrichment by classical music can affect fish behavior and physiology, we exposed adult zebrafish to 2 h of Vivaldi’s music (65–75 dB) twice daily, for 15 days. Overall, zebrafish exposed to such auditory stimuli were less anxious in the novel tank test and less active, calmer in the light-dark test, also affecting zebrafish physiological (immune) biomarkers, decreasing peripheral levels of pro-inflammatory cytokines and increasing the activity of some CNS genes, without overt effects on whole-body cortisol levels. In summary, we report that twice-daily exposure to continuous musical sounds may provide benefits over the ongoing 50–55 dB background noise of equipment in the laboratory setting. Overall, our results support utilizing auditory enrichment in laboratory zebrafish to reduce stress and improve welfare in this experimental aquatic organism.
Collapse
Affiliation(s)
- Heloísa H A Barcellos
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil.,Faculdade de Agronomia e Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Gessi Koakoski
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo (UPF), Passo Fundo, Rio Grande do Sul, Brazil
| | - Fabiele Chaulet
- Programa de Pós-Graduação em Ciências Ambientais, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Karina S Kirsten
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo (UPF), Passo Fundo, Rio Grande do Sul, Brazil
| | - Luiz C Kreutz
- Faculdade de Agronomia e Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil.,Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo (UPF), Passo Fundo, Rio Grande do Sul, Brazil
| | - Allan V Kalueff
- School of Pharmacy, Chongqing University, Chongqing, China.,Institute of Translational Biomedicine, St. Petersburg State University, Saint Petersburg, Russia.,The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA.,Research Institute for Marine Drugs and Nutrition, Guangdong Ocean University (GDOU), Guangdong, China.,Ural Federal University, Ekaterinburg, Russia.,ZENEREI Research Center, Slidell, LA, USA.,Institute of Experimental Medicine, Almazov National Medical Research Center, St. Petersburg, Russia.,Russian Research Center for Radiology and Surgical Technologies, Pesochny, Russia.,Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | - Leonardo J G Barcellos
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil.,Faculdade de Agronomia e Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil.,Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo (UPF), Passo Fundo, Rio Grande do Sul, Brazil.,Programa de Pós-Graduação em Ciências Ambientais, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil.,Institute of Translational Biomedicine, St. Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
14
|
Yin E, Matsuyama S, Uchiyama M, Kawai K, Niimi M. Graft protective effect and induction of CD4 +Foxp3 + cell by Thrombomodulin on allograft arteriosclerosis in mice. J Cardiothorac Surg 2018; 13:48. [PMID: 29783997 PMCID: PMC5963069 DOI: 10.1186/s13019-018-0731-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/09/2018] [Indexed: 11/12/2022] Open
Abstract
Background Thrombomodulin (TM) is a promising therapeutic natural anti-coagulant, which exerts the effects to control disseminated intravascular coagulation. However, little is known whether TM on micro-vessels could play an important role in the regulation of intimal hyperplasia. We investigated the vessel-protective effect of TM in the survival of fully major histocompatibility complex (MHC)-mismatched murine cardiac allograft transplantation. Methods CBA recipients transplanted with a C57BL/6 heart received intraperitoneal administration of normal saline or 0.2, 2.0, and 20.0 μg/day of TM for 7 days (n = 5, 7, 11, and 11, respectively). Immunohistochemical and fluorescent staining studies were performed to determine whether CD4+Foxp3+ regulatory T cell were generated at 2 and 4 weeks after grafting. Morphometric analysis for neointimal formation in the coronary arteries of the transplanted allograft was conducted at 2 and 4 weeks after grafting. Results Untreated CBA recipients rejected C57BL/6 cardiac grafts acutely (median survival time [MST], 7 days). CBA recipients exposed with the above doses had significantly prolonged allograft survival (MSTs, 17, 24 and 50 days, respectively). Morphometric assessment showed that intimal hyperplasia was clearly suppressed in the left and right coronary arteries or allografts from TM-exposed recipients 2 and 4 weeks. Immunohistochemical studies at 2 weeks showed more CD4+Foxp3+ cells and lower myocardial damage in the allografts from TM-exposed recipients. Notably, fluorescent staining studies demonstrated that TM-exposed recipients 4 weeks post-engraftment had strong aggregation of CD4+Foxp3+ cells in the intima of the coronary arteries of the cardiac allografts. Conclusions TM may prolong the survival of fully MHC-mismatched cardiac allografts through suppressing intimal hyperplasia and inducing the accumulation of regulatory CD4+Foxp3+ cells within coronary arteries.
Collapse
Affiliation(s)
- Enzhi Yin
- Department of Surgery, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.,Department of Cardiovascular Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shigefumi Matsuyama
- Department of Cardiovascular Surgery, New Tokyo Hospital, Chiba, Japan.,Department of Cardiovascular Surgery, Teikyo University, Tokyo, Japan
| | - Masateru Uchiyama
- Department of Surgery, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan. .,Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| | - Kento Kawai
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Masanori Niimi
- Department of Surgery, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| |
Collapse
|
15
|
Yin E, Uchiyama M, Niimi M. Induction of Regulatory CD4 + Cells and Prolongation of Fully Major Histocompatibility Complex Mismatched Murine Cardiac Allograft by Shigyakusan. Transplant Proc 2018; 50:274-282. [PMID: 29407322 DOI: 10.1016/j.transproceed.2017.12.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 11/19/2017] [Accepted: 12/12/2017] [Indexed: 11/16/2022]
Abstract
Shigyakusan (also known as Tsumura Japan [TJ]-35) is composed of peony, bitter orange, licorice, and Bupleuri radix is used for cholecystitis and gastritis as an anti-inflammatory agent. We investigated the effect of TJ-35 on alloimmune response in a murine heart transplantation model. CBA mice that underwent transplantation of a C57BL/6 (B6) heart were assigned to four groups: no treatment, TJ-35-exposed, each component-exposed, or each component missing-exposed. The four groups above each received oral administration of TJ-35, each component, or TJ-35 with each component missing from the day of transplantation until 7 days, respectively. Untreated CBA recipients rejected B6 cardiac grafts acutely (median survival time [MST], 7 days). TJ-35-exposed CBA recipients had significantly prolonged B6 allograft survival (MST, 20.5 days). However, MSTs of CBA recipients that had been administered each component and TJ-35 with each component missing did not reach that of TJ-35-exposed recipients. Adoptive transfer of CD4+ splenocytes from TJ-35-exposed primary allograft recipients resulted in significant prolonged allograft survival in naïve secondary recipients (MST, 63 days). Flow cytometry studies showed that the percentage of CD4+CD25+Foxp3+ cell population was increased in TJ-35-exposed CBA recipients. In conclusion, TJ-35-induced prolongation of fully allogeneic cardiac allografts and may generate regulatory CD4+CD25+Foxp3+ cells in our model. The effect seemed to require all components of TJ-35.
Collapse
Affiliation(s)
- E Yin
- Department of Surgery, Teikyo University, Tokyo, Japan; Department of Cardiovascular Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - M Uchiyama
- Department of Surgery, Teikyo University, Tokyo, Japan.
| | - M Niimi
- Department of Surgery, Teikyo University, Tokyo, Japan
| |
Collapse
|
16
|
Yogurt Feeding Induced the Prolongation of Fully Major Histocompatibility Complex-Mismatched Murine Cardiac Graft Survival by Induction of CD4 +Foxp3 + Cells. Transplant Proc 2017; 49:1477-1482. [PMID: 28736026 DOI: 10.1016/j.transproceed.2017.03.092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/11/2017] [Accepted: 03/30/2017] [Indexed: 01/09/2023]
Abstract
Yogurt is a nutrient-rich food and the beneficial effects of yogurt on both health and immunomodulatory effects are well documented. In this pilot study, we investigated the effects of commercially produced yogurt R-1 on alloimmune responses in a murine cardiac transplantation model. The R-1 is produced by Meiji Co., Ltd., and contains live and active lactic acid bacteria (lactobacillus bulgaricus OLL1073R-1) mainly. CBA (H2k) mice underwent transplantation of a C57BL/6 (H2b; B6) heart and received oral administration of 1 mL, 0.1 mL, and 0.01 mL of R-1 from the day of transplantation until 7 days afterward. Additionally, we prepared one group of CBA recipients given 1 mL of R-1 sterilized by microwave for 7 days. Histological and immunohistochemical studies were performed. Naïve CBA mice rejected B6 cardiac graft acutely (median survival time [MST]: 7 days). CBA recipients given of 1 mL of R-1 had significantly prolonged B6 allograft survival (MST, 27 days). However, other doses of 0.1 mL and 0.01 mL of R-1 did not prolonged allograft survival (MSTs, 9 days and 8.5 days, respectively). Also, CBA recipients administered microwaved R-1 had no prolongation of B6 allograft (MST, 9 days). Histological and immunohistochemical studies showed the cardiac allograft from R-1-exposed CBA recipients had preserved graft and vessel structure and the number of infiltrated CD4+, CD8+, and Foxp3+ cells in R-1-exposed CBA recipients increased, respectively. In conclusion, our findings imply that yogurt containing active lactic acid bacteria could change alloimmune responses partially and induce the prolongation of cardiac allograft survival via CD4+Foxp3+ regulatory cells.
Collapse
|
17
|
Efectos de la musicoterapia sobre el nivel de ansiedad del adulto cardiópata sometido a resonancia magnética. ENFERMERÍA UNIVERSITARIA 2017. [DOI: 10.1016/j.reu.2017.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
18
|
Skulachev MV, Severin FF, Skulachev VP. Receptor regulation of senile phenoptosis. BIOCHEMISTRY (MOSCOW) 2014; 79:994-1003. [PMID: 25519059 DOI: 10.1134/s0006297914100022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Here we present a concept that considers organism aging as an additional facultative function promoting evolution, but counterproductive for an individual. We hypothesize that aging can be inhibited or even arrested when full mobilization of all resources is needed for the survival of an individual. We believe that the organism makes such a decision based on the analysis of signals of special receptors that monitor a number of parameters of the internal and external environment. The amount of available food is one of these parameters. Food restriction is perceived by the organism as a signal of coming starvation; in response to it, the organism inhibits its counterproductive programs, in particular, aging. We hypothesize that the level of protein obtained with food is estimated based on blood concentration of one of the essential amino acids (methionine), of carbohydrates - via glucose level, and fats - based on the level of one of the free fatty acids. When the amount of available food is sufficient, these receptors transmit the signal allowing aging. In case of lack of food, this signal is cancelled, and as a result aging is inhibited, i.e. age-related weakening of physiological functions is inhibited, and lifespan increases (the well-known geroprotective effect of partial food restriction). In Caenorhabditis elegans, lowering of the ambient temperature has a similar effect. This geroprotective effect is removed by the knockout of one of the cold receptors, and replacement of the C. elegans receptor by a similar human receptor restores the ability of low temperature to increase the lifespan of the nematode. A chain of events linking the receptor with the aging mechanism has been discovered in mice - for one of the pain receptors in neurons, the nerve endings of which entwine pancreas β-cells. Age-related activation of these receptors inhibits the work of insulin genes in β-cells. Problems with insulin secretion lead to oxidative stress, chronic inflammation, and type II diabetes, which can be regarded as one of the forms of senile phenoptosis. In conclusion, we consider the role of some psychological factors in the regulation of the aging program.
Collapse
Affiliation(s)
- M V Skulachev
- Biological Faculty, Lomonosov Moscow State University, Moscow, 119991, Russia
| | | | | |
Collapse
|
19
|
Smile--It's in your blood! Biochem Pharmacol 2014; 91:287-92. [PMID: 25107703 DOI: 10.1016/j.bcp.2014.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/17/2014] [Accepted: 07/17/2014] [Indexed: 01/28/2023]
Abstract
Emotions and feelings are the bricks of our social life and yet we often forget that they have a significant impact on our physical wellbeing. Indeed, a growing number of studies have shown that both an imbalanced or improved emotional state can significantly influence the way our immune system responds. In this commentary, we have summarized the most recent studies on the effects of different types of emotional states on the immune system and we have also explored the effects of mood modulator approaches on the immune response. We hope this commentary will prompt scientists and clinicians to think about the therapeutic value and potential of emotions and feelings in immune-related diseases. At the same time, we think that this commentary will shed some light on the scientific truth behind the very famous expression "It's in my blood" when we talk about feelings and personality.
Collapse
|
20
|
Jin X, Uchiyama M, Zhang Q, Harada T, Otsuka K, Shimokawa T, Niimi M. Effect of 34 kinds of traditional Japanese herbal medicines on prolongation of cardiac allograft survival. Transplant Proc 2014; 46:1175-9. [PMID: 24815154 DOI: 10.1016/j.transproceed.2014.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/27/2013] [Accepted: 01/13/2014] [Indexed: 11/24/2022]
Abstract
Herbal medicines have been used for over 3,000 years in Asian as alternative therapy for their variety effects and have recently become popular in Europe and the United States. In the last 30 years, Japanese herbal medicines were widely used for treatment of diseases after been recognized officially by Japanese government. In this study, we investigated the effect of 34 kinds of traditional Japanese herbal medicines on alloimmune responses in a murine model of cardiac allograft transplantation. CBA mice (H2(k)) underwent transplantation of a C57BL/6 (H2(b)) heart and received oral administration of 2 g/kg/d of the 34 kinds of herbal medicines from the day of transplantation until 7 days afterward. Naïve CBA mice rejected B6 cardiac grafts acutely (median survival time [MST], 7 days). CBA transplant recipients given 2 g/kg/d of Sairei-to (TJ-114) and Tokishakuyaku-san (TJ-23) had prolonged C57BL/6 allograft survival indefinitely (both MSTs > 100 days). Moreover, CBA transplant recipients given Seisinrensiin (TJ-111), Tokishigyakukagoshuyushokyoto (TJ-38), Rikkunshito (TJ-43), Maobushisaishinto (TJ-127), Ninjin-yoei-to (TJ-108), Ryokan-kyomi-shinge-nin-to (TJ-119), Inchingorei-san (TJ-117), Hochuekkito (TJ-41), Kihi-to (TJ-65), and Sinbu-to (TJ-30) had also prolonged C57BL/6 allograft survival significantly (MSTs of 28, 22, 16, 14, 14, 13, 12, 9.5, 9 and 9 days, respectively). However, none of other 22 kinds of herbal medicines could prolong the allograft survival. Furthermore, oral administration of 2 g/kg/d of Daikenchuto (TJ-100) induced sudden death (within 1 minute) in CBA mice. In conclusion, 12 kinds of Japanese herbal medicines prolonged allograft survival and one showed toxic effect in mice.
Collapse
Affiliation(s)
- X Jin
- Department of Surgery, Teikyo University, Tokyo, Japan; Department of Cardiovascular and Thoracic Surgery, the 4th Affiliated Hospital of Harbin Medical University, Harbin, China
| | - M Uchiyama
- Department of Surgery, Teikyo University, Tokyo, Japan; Department of Cardiovascular Surgery, Teikyo University, Tokyo, Japan
| | - Q Zhang
- Department of Surgery, Teikyo University, Tokyo, Japan; Department of Dermatology, Huashan Hospital of Fudan University, Shanghai, China
| | - T Harada
- Department of Cardiovascular Surgery, Teikyo University, Tokyo, Japan
| | - K Otsuka
- Department of Cardiovascular Surgery, Teikyo University, Tokyo, Japan
| | - T Shimokawa
- Department of Cardiovascular Surgery, Teikyo University, Tokyo, Japan
| | - M Niimi
- Department of Surgery, Teikyo University, Tokyo, Japan.
| |
Collapse
|
21
|
Jin X, Uchiyama M, Zhang Q, Niimi M. Fox smell abrogates the effect of herbal odor to prolong mouse cardiac allograft survival. J Cardiothorac Surg 2014; 9:82. [PMID: 24886081 PMCID: PMC4026832 DOI: 10.1186/1749-8090-9-82] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 04/17/2014] [Indexed: 01/30/2023] Open
Abstract
Background Herbal medicines have unique odors, and the act of smelling may have modulatory effects on the immune system. We investigated the effect of olfactory exposure to Tokishakuyaku-san (TJ-23), a Japanese herbal medicine, on alloimmune responses in a murine model of cardiac allograft transplantation. Methods Naïve or olfactory-dysfunctional CBA mice underwent transplantation of a C57BL/6 heart and were exposed to the odor of TJ-23 until rejection. Some naïve CBA recipients of an allograft were given olfactory exposure to Sairei-to (TJ-114), trimethylthiazoline (TMT), individual components of TJ-23, or a TJ-23 preparation lacking one component. Adoptive transfer studies were performed to determine whether regulatory cells were generated. Results Untreated CBA mice rejected their C57BL/6 allografts acutely, as did olfactory-dysfunctional CBA mice exposed to the odor of TJ-23. CBA recipients of a C57BL/6 heart given olfactory exposure to TJ-23 had significantly prolonged allograft survival, whereas those exposed to the odor of TJ-114, TMT, one component of TJ-23, or TJ-23 lacking a component did not. Secondary allograft recipients that were given, at 30 days after transplantation, either whole splenocytes, CD4+ cells, or CD4+CD25+ cells from primary recipients exposed to the odor of TJ-23 had indefinitely prolonged allograft survival. Conclusions Prolonged survival of cardiac allografts and generation of regulatory cells was associated with exposure to the odor of TJ-23 in our model. The olfactory area of the brain may have a role in the modulation of immune responses.
Collapse
Affiliation(s)
| | | | | | - Masanori Niimi
- Department of Surgery, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| |
Collapse
|
22
|
Regaçone SF, Lima DD, Banzato MS, Gução AC, Valenti VE, Frizzo AC. Association between central auditory processing mechanism and cardiac autonomic regulation. Int Arch Med 2014; 7:21. [PMID: 24834128 PMCID: PMC4022404 DOI: 10.1186/1755-7682-7-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 04/28/2014] [Indexed: 11/10/2022] Open
Abstract
Background This study was conducted to describe the association between central auditory processing mechanism and the cardiac autonomic regulation. Methods It was researched papers on the topic addressed in this study considering the following data bases: Medline, Pubmed, Lilacs, Scopus and Cochrane. The key words were: “auditory stimulation, heart rate, autonomic nervous system and P300”. Results The findings in the literature demonstrated that auditory stimulation influences the autonomic nervous system and has been used in conjunction with other methods. It is considered a promising step in the investigation of therapeutic procedures for rehabilitation and quality of life of several pathologies. Conclusion The association between auditory stimulation and the level of the cardiac autonomic nervous system has received significant contributions in relation to musical stimuli.
Collapse
Affiliation(s)
- Simone F Regaçone
- Departamento de Fonoaudiologia, Faculdade de Filosofia e Ciências, UNESP, Av. Hygino Muzzi Filho, 737. 17525-900 Marília, SP, Brasil
| | - Daiane Db Lima
- Departamento de Fonoaudiologia, Faculdade de Filosofia e Ciências, UNESP, Av. Hygino Muzzi Filho, 737. 17525-900 Marília, SP, Brasil
| | - Mariana S Banzato
- Departamento de Fonoaudiologia, Faculdade de Filosofia e Ciências, UNESP, Av. Hygino Muzzi Filho, 737. 17525-900 Marília, SP, Brasil
| | - Ana Cb Gução
- Departamento de Fonoaudiologia, Faculdade de Filosofia e Ciências, UNESP, Av. Hygino Muzzi Filho, 737. 17525-900 Marília, SP, Brasil
| | - Vitor E Valenti
- Departamento de Fonoaudiologia, Faculdade de Filosofia e Ciências, UNESP, Av. Hygino Muzzi Filho, 737. 17525-900 Marília, SP, Brasil
| | - Ana Cf Frizzo
- Departamento de Fonoaudiologia, Faculdade de Filosofia e Ciências, UNESP, Av. Hygino Muzzi Filho, 737. 17525-900 Marília, SP, Brasil
| |
Collapse
|
23
|
Combination of paeoniae radix and cnidii rhizoma prolonged survival of fully mismatched cardiac allografts and generated regulatory cells in mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:841408. [PMID: 24772184 PMCID: PMC3977559 DOI: 10.1155/2014/841408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 01/31/2014] [Accepted: 02/16/2014] [Indexed: 11/17/2022]
Abstract
In previous studies, we have demonstrated that Tokishakuyakusan (TJ-23) can prolong the survival of allogeneic cardiac grafts and induce regulatory T cells. In this study we investigated the effects of Paeoniae radix and Cnidii rhizoma, two components of TJ-23, on alloimmune responses in a murine cardiac transplantation model and whether the two agents have synergistic effect. CBA mice underwent transplantation of a C57BL/6 heart and received oral administration of 2 g/kg/day of Paeoniae radix, Cnidii rhizoma, or the mixture of two agents from the day of transplantation until 7 days afterward. Naïve CBA mice rejected C57BL/6 cardiac graft acutely (median survival time (MST): 7 days). Paeoniae radix and Cnidii rhizoma prolonged C57BL/6 allograft survival (MSTs: 13.5 and 15.5 days, resp.). However, the mixture of two agents prolonged C57BL/6 allograft survival indefinitely (MST > 100 days). Secondary CBA recipients given whole splenocytes from primary combination-treated CBA recipients with B6 cardiac allografts 30 days after grafting had prolonged survival of B6 hearts (MST: 33 days). Flow cytometry studies showed that the CD4+CD25+Foxp3+ regulatory cell population was increased in combination-treated recipients. Combination of Paeoniae radix and Cnidii rhizoma induced hyporesponsiveness to fully allogeneic cardiac allografts and may generate CD4+CD25+Foxp3+ regulatory cells in our model.
Collapse
|
24
|
An agonistic anti-BTLA mAb (3C10) induced generation of IL-10-dependent regulatory CD4+ T cells and prolongation of murine cardiac allograft. Transplantation 2014; 97:301-9. [PMID: 24448587 DOI: 10.1097/01.tp.0000438204.96723.8b] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The co-inhibitory receptor B and T lymphocyte attenuator (BTLA) has been implicated in the regulation of autoimmunity and may potentially play an important role in allograft tolerance. This study investigated the effect of an agonistic anti-BTLA mAb (3C10) in the fully major histocompatibility complex-mismatched murine cardiac transplantation. METHODS CBA mice underwent transplantation of C57BL/6 hearts and received one dose of 3C10 on the day of transplantation (day 0) or four doses of 3C10 on day 0, 3, 6, and 9. Adoptive transfer studies were performed to determine whether regulatory cells were generated. Moreover, to confirm the requirement for regulatory T cell and Th-2 cytokines, anti-interleukin (IL)-2 receptor alpha antibody (PC-61) or anti-IL-10 antibody (JES-2A5) was administered to a 3C10-treated CBA recipient. RESULTS CBA mice treated with one and four doses of 3C10 prolonged allograft survival (median survival times [MSTs], 43 and >100 days, respectively). Secondary CBA recipients given whole splenocytes or CD4 cells from primary 3C10-treated CBA recipients had significantly prolonged survival of C57BL/6 hearts (MSTs, >100 in both). Also, flow cytometry studies showed an increased CD4CD25Foxp3 cell population in 3C10-treated mice. Additionally, IL-2 and interferon-γ production were suppressed in 3C10-treated mice, and IL-4 and IL-10 from 3C10-treated CBA mice increased. Moreover, 3C10 directly suppressed alloproliferation in a mixed leukocyte culture. However, administration of PC-61 or JES-2A5 clearly attenuated prolonged survival of 3C10-treated mice (MSTs, 15.5 and 13.5 days, respectively). CONCLUSION 3C10 could control acute rejection by its suppressive effect on alloreactive T cells and induction of IL-10-dependent regulatory CD4 T cells.
Collapse
|
25
|
Roth K. Chemie zum Heulen. CHEM UNSERER ZEIT 2013. [DOI: 10.1002/ciuz.201300647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|