1
|
Sulaiman F, Khyriem C, Dsouza S, Abdul F, Alkhnbashi O, Faraji H, Farooqi M, Al Awadi F, Hassanein M, Ahmed F, Alsharhan M, Tawfik AR, Khamis AH, Bayoumi R. Characterizing Circulating microRNA Signatures of Type 2 Diabetes Subtypes. Int J Mol Sci 2025; 26:637. [PMID: 39859351 PMCID: PMC11766090 DOI: 10.3390/ijms26020637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/04/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Type 2 diabetes (T2D) is a heterogeneous disease influenced by both genetic and environmental factors. Recent studies suggest that T2D subtypes may exhibit distinct gene expression profiles. In this study, we aimed to identify T2D cluster-specific miRNA expression signatures for the previously reported five clinical subtypes that characterize the underlying pathophysiology of long-standing T2D: severe insulin-resistant diabetes (SIRD), severe insulin-deficient diabetes (SIDD), mild age-related diabetes (MARD), mild obesity-related diabetes (MOD), and mild early-onset diabetes (MEOD). We analyzed the circulating microRNAs (miRNAs) in 45 subjects representing the five T2D clusters and 7 non-T2D healthy controls by single-end small RNA sequencing. Bioinformatic analyses identified a total of 430 known circulating miRNAs and 13 previously unreported novel miRNAs. Of these, 71 were upregulated and 37 were downregulated in either controls or individual clusters. Each T2D subtype was associated with a specific dysregulated miRNA profile, distinct from that of healthy controls. Specifically, 3 upregulated miRNAs were unique to SIRD, 1 to MARD, 9 to MOD, and 18 to MEOD. Among the downregulated miRNAs, 11 were specific to SIRD, 9 to SIDD, 2 to MARD, and 1 to MEOD. Our study confirms the heterogeneity of T2D, represented by distinguishable subtypes both clinically and epigenetically and highlights the potential of miRNAs as markers for distinguishing the pathophysiology of T2D subtypes.
Collapse
Affiliation(s)
- Fatima Sulaiman
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates; (F.S.); (C.K.); (S.D.); (F.A.); (H.F.)
| | - Costerwell Khyriem
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates; (F.S.); (C.K.); (S.D.); (F.A.); (H.F.)
| | - Stafny Dsouza
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates; (F.S.); (C.K.); (S.D.); (F.A.); (H.F.)
| | - Fatima Abdul
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates; (F.S.); (C.K.); (S.D.); (F.A.); (H.F.)
| | - Omer Alkhnbashi
- Center for Applied and Translational Genomics, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates;
| | - Hanan Faraji
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates; (F.S.); (C.K.); (S.D.); (F.A.); (H.F.)
| | - Muhammad Farooqi
- Dubai Diabetes Center, Dubai Health, Dubai P.O. Box 7272, United Arab Emirates;
| | - Fatheya Al Awadi
- Endocrinology Department, Dubai Hospital, Dubai Health, Dubai P.O. Box 7272, United Arab Emirates; (F.A.A.); (M.H.)
| | - Mohammed Hassanein
- Endocrinology Department, Dubai Hospital, Dubai Health, Dubai P.O. Box 7272, United Arab Emirates; (F.A.A.); (M.H.)
| | - Fayha Ahmed
- Pathology Department, Dubai Hospital, Dubai Health, Dubai P.O. Box 7272, United Arab Emirates; (F.A.); (M.A.)
| | - Mouza Alsharhan
- Pathology Department, Dubai Hospital, Dubai Health, Dubai P.O. Box 7272, United Arab Emirates; (F.A.); (M.A.)
| | - Abdel Rahman Tawfik
- Hamdan Bin Mohammed College of Dental Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates; (A.R.T.); (A.H.K.)
| | - Amar Hassan Khamis
- Hamdan Bin Mohammed College of Dental Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates; (A.R.T.); (A.H.K.)
| | - Riad Bayoumi
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates; (F.S.); (C.K.); (S.D.); (F.A.); (H.F.)
| |
Collapse
|
2
|
Jebessa E, Bello SF, Guo L, Tuli MD, Hanotte O, Nie Q. MicroRNA expression profile of chicken jejunum in different time points Eimeria maxima infection. Front Immunol 2024; 14:1331532. [PMID: 38288128 PMCID: PMC10823020 DOI: 10.3389/fimmu.2023.1331532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/22/2023] [Indexed: 01/31/2024] Open
Abstract
Coccidiosis stands as a protozoan disease of notable economic impact, characterized by an intracellular parasite that exerts substantial influence over poultry production. This invasion disrupts the integrity of the enteric mucosa, leading to the emergence of severe lesions and diminishing the efficiency of feed utilization in chickens. MicroRNA (miRNA) are short, non-coding RNA molecules with approximately 21-24 nucleotides long in size that play essential roles in various infectious diseases and inflammatory responses. However, the miRNA's expression patterns and roles in the context of Eimeria maxima infection of chicken intestines remain unclear. miRNA sequencing was employed to assess the miRNA expression profile in chicken jejunum during E. maxima infection. In this study, we analyzed miRNA expression profiles related to the host's immune response in the chicken jejunum during E. maxima infection. At 4 days infection and control (J4I versus J4C), 21 differentially expressed miRNAs in the jejunum were identified, comprising 9 upregulated and 12 downregulated miRNAs. Furthermore, in the jejunum, at 7 days infection and control (J7I versus J7C) groups, a total of 35 significantly differentially expressed miRNAs were observed, with 13 upregulated and 22 downregulated miRNAs. The regulatory networks were constructed between differentially expressed miRNA and mRNAs to offer insight into the interaction mechanisms between chickens and E. maxima coccidian infection. Furthermore, within the comparison group, we obtained 946, 897, and 281 GO terms that exhibited significant enrichment associated with host immunity in the following scenarios, J4I vs. J4C, J7I vs. J7C, and J4I vs. J7I, respectively. The KEGG pathway analysis indicated notable enrichment of differentially expressed miRNAs in the jejunum, particularly in J4I vs. J4C; enriched pathways included metabolic pathways, endocytosis, MAPK signaling pathway, regulation of actin cytoskeleton, and cytokine-cytokine receptor interaction. Moreover, in J7I vs. J7C, the KEGG pathway was significantly enriched, including metabolic pathways, protein processing in the endoplasmic reticulum, ubiquitin-mediated proteolysis, and FoxO signaling pathway. A comprehensive understanding of the host genetic basis of resistance with a combination of time-dependent infection to the Eimeria parasite is crucial for pinpointing resistance biomarkers for poultry production.
Collapse
Affiliation(s)
- Endashaw Jebessa
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
- LiveGene-Centre for Tropical Livestock Genetics and Health (CTLGH), International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Semiu Folaniyi Bello
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Lijin Guo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Merga Daba Tuli
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Olivier Hanotte
- LiveGene-Centre for Tropical Livestock Genetics and Health (CTLGH), International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
- School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| |
Collapse
|
3
|
Gager GM, Eyileten C, Postuła M, Nowak A, Gąsecka A, Jilma B, Siller-Matula JM. Expression Patterns of MiR-125a and MiR-223 and Their Association with Diabetes Mellitus and Survival in Patients with Non-ST-Segment Elevation Acute Coronary Syndrome. Biomedicines 2023; 11:biomedicines11041118. [PMID: 37189736 DOI: 10.3390/biomedicines11041118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
Background: MicroRNAs (miRNA, miR) are small, non-coding RNAs which have become increasingly relevant as diagnostic and prognostic biomarkers. The objective of this study was the investigation of blood-derived miRNAs and their link to long-term all-cause mortality in patients who suffered from non-ST-segment elevation acute coronary syndrome (NSTE-ACS). Methods: This study was an observational prospective study, which included 109 patients with NSTE-ACS. Analysis of the expression of miR-125a and miR-223 was conducted by polymerase chain reaction (PCR). The follow-up period comprised a median of 7.5 years. Long-term all-cause mortality was considered as the primary endpoint. Adjusted Cox-regression analysis was performed for prediction of events. Results: Increased expression of miR-223 (>7.1) at the time point of the event was related to improved long-term all-cause survival (adjusted (adj.) hazard ratio (HR) = 0.09, 95% confidence interval (95%CI): 0.01-0.75; p = 0.026). The receiver operating characteristic (ROC) analysis provided sufficient c-statistics (area under the curve (AUC) = 0.73, 95%CI: 0.58-0.86; p = 0.034; negative predictive value of 98%) for miR-223 to predict long-term all-cause survival. The Kaplan-Meier time to event analysis showed a separation of the survival curves between the groups at an early stage (log rank p = 0.015). Higher plasma miR-125a levels were found in patients with diabetes mellitus vs. in those without (p = 0.010). Furthermore, increased miR-125a expression was associated with an elevated HbA1c concentration. Conclusions: In this hypothesis-generating study, higher values of miR-223 were related to improved long-term survival in patients after NSTE-ACS. Larger studies are required in order to evaluate whether miR-223 can be used as a suitable predictor for long-term all-cause mortality.
Collapse
Affiliation(s)
- Gloria M Gager
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Ceren Eyileten
- Centre for Preclinical Research and Technology (CEPT), Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, 02-091 Warsaw, Poland
- Genomics Core Facility, Center of New Technologies (CeNT), University of Warsaw, 00-927 Warsaw, Poland
| | - Marek Postuła
- Centre for Preclinical Research and Technology (CEPT), Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Anna Nowak
- Centre for Preclinical Research and Technology (CEPT), Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, 02-091 Warsaw, Poland
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Aleksandra Gąsecka
- Department of Cardiology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Jolanta M Siller-Matula
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
4
|
Abstract
Type 2 diabetes mellitus (T2DM) is a worldwide disease with rapidly increasing prevalence. This complex disorder caused by interplay between genetic predisposition factors, early developmental elements, diet and inactive lifestyle. Several researches have shown impact of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in the pathogenesis of this disorder. Several miRNAs such as miR-126, miR-222-3p, miR-182, let-7b-5p, and miR-1-3p have been down-regulated in different biological sources of patients with T2DM. Some other miRNAs including miR-21, miR-30d, miR-148a-3p, miR-146b and miR-486 have the opposite trends. In addition, a number of lncRNAs such as LY86-AS, HCG27_201, VIM-AS1, CTBP1-AS2, CASC2, GAS5, LINC-PINT, and MALAT1 have been altered in the peripheral blood, serum samples or tissues obtained from patients with T2DM. Taken together, both miRNAs and lncRNAs contribute to the development of T2DM and might be applied as markers or therapeutic molecules for this disorder.
Collapse
Affiliation(s)
- Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhane Eghtedarian
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mir Davood Omrani
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Dinesen S, El-Faitarouni A, Frisk NLS, Sørensen AE, Dalgaard LT. Circulating microRNA as Biomarkers for Gestational Diabetes Mellitus-A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:6186. [PMID: 37047159 PMCID: PMC10094234 DOI: 10.3390/ijms24076186] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is a severe pregnancy complication for both the woman and the child. Women who suffer from GDM have a greater risk of developing Type 2 diabetes mellitus (T2DM) later in life. Identification of any potential biomarkers for the early prediction of gestational diabetes can help prevent the disease in women with a high risk. Studies show microRNA (miRNA) as a potential biomarker for the early discovery of GDM, but there is a lack of clarity as to which miRNAs are consistently altered in GDM. This study aimed to perform a systematic review and meta-analysis to investigate miRNAs associated with GDM by comparing GDM cases with normoglycemic controls. The systematic review was performed according to PRISMA guidelines with searches in PubMed, Web of Science, and ScienceDirect. The primary search resulted in a total of 849 articles, which were screened according to the prior established inclusion and exclusion criteria. Following the screening of articles, the review was based on the inclusion of 35 full-text articles, which were evaluated for risk of bias and estimates of quality, after which data were extracted and relative values for miRNAs were calculated. A meta-analysis was performed for the miRNA species investigated in three or more studies: MiR-29a, miR-330, miR-134, miR-132, miR-16, miR-223, miR-155, miR-122, miR-17, miR-103, miR-125, miR-210, and miR-222. While some miRNAs showed considerable between-study variability, miR-29a, miR-330, miR-134, miR-16, miR-223, and miR-17 showed significant overall upregulation in GDM, while circulating levels of miR-132 and miR-155 were decreased among GDM patients, suggesting further studies of these as biomarkers for early GDM discovery.
Collapse
Affiliation(s)
- Sofie Dinesen
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Alisar El-Faitarouni
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | | | - Anja Elaine Sørensen
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
- Roskilde Hospital, Region Zealand, 4000 Roskilde, Denmark
| | - Louise Torp Dalgaard
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| |
Collapse
|
6
|
Dalgaard LT, Sørensen AE, Hardikar AA, Joglekar MV. The microRNA-29 family - role in metabolism and metabolic disease. Am J Physiol Cell Physiol 2022; 323:C367-C377. [PMID: 35704699 DOI: 10.1152/ajpcell.00051.2022] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The microRNA-29a family members miR-29a-3p, miR-29b-3p and miR-29c-3p are ubiquitously expressed and consistently increased in various tissues and cell types in conditions of metabolic disease; obesity, insulin resistance and type 2 diabetes. In pancreatic beta cells, miR-29a is required for normal exocytosis, but increased levels are associated with impaired beta cell function. Similarly, in liver miR-29 species are higher in models of insulin resistance and type 2 diabetes, and either knock-out or depletion using a microRNA inhibitor improves hepatic insulin resistance. In skeletal muscle, miR-29 upregulation is associated with insulin resistance and altered substrate oxidation, and similarly, in adipocytes over-expression of miR-29a leads to insulin resistance. Blocking miR-29a using nucleic acid antisense therapeutics show promising results in preclinical animal models of obesity and type 2 diabetes, although the widespread expression pattern of miR-29 family members complicates the exploration of single target tissues. However, in fibrotic diseases, such as in late complications of diabetes and metabolic disease (diabetic kidney disease, non-alcoholic steatohepatitis), miR-29 expression is suppressed by TGFβ allowing increased extracellular matrix collagen to form. In the clinical setting circulating levels of miR-29a and miR-29b are consistently increased in type 2 diabetes and in gestational diabetes, and are also possible prognostic markers for deterioration of glucose tolerance. In conclusion, miR-29 plays an essential role in various organs relevant to intermediary metabolism and its upregulation contribute to impaired glucose metabolism, while it suppresses fibrosis development. Thus, a correct balance of miR-29a levels seems important for cellular and organ homeostasis in metabolism.
Collapse
Affiliation(s)
- Louise T Dalgaard
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Anja E Sørensen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Anandwardhan A Hardikar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Mugdha V Joglekar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Sydney, NSW, Australia
| |
Collapse
|
7
|
Thamotharan S, Ghosh S, James-Allan L, Lei MYY, Janzen C, Devaskar SU. Circulating extracellular vesicles exhibit a differential miRNA profile in gestational diabetes mellitus pregnancies. PLoS One 2022; 17:e0267564. [PMID: 35613088 PMCID: PMC9132306 DOI: 10.1371/journal.pone.0267564] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/11/2022] [Indexed: 11/27/2022] Open
Abstract
We undertook a prospective temporal study collecting blood samples from consenting pregnant women, to test the hypothesis that circulating extracellular vesicles (EVs) carrying specific non-coding microRNA signatures can underlie gestational diabetes mellitus (GDM). To test this hypothesis, miRNA cargo of isolated and characterized EVs revealed contributions from the placenta and differential expression at all three trimesters and at delivery between pregnant and non-pregnant states. Many miRNAs originate from the placental-specific chromosome 19 microRNA cluster (19MC) and chromosome 14 microRNA cluster (14MC). Further a positive correlation emerged between third trimester and at delivery EVs containing miRNAs and those expressed by the corresponding post-parturient placentas (R value = 0.63 to 0.69, p value = 2.2X10-16), in normal and GDM. In addition, distinct differences at all trimesters emerged between women who subsequently developed GDM. Analysis by logistic regression with leave-one-out-cross validation revealed the optimal combination of miRNAs using all the circulating miRNAs (miR-92a-3p, miR-192-5p, miR-451a, miR-122-5p), or using only the differentially expressed miRNAs (has-miR-92a-3p, hsa-miR-92b-3p, hsa-miR-100-5p and hsa-miR-125a-3p) in GDM during the first trimester. As an initial step, both sets of miRNAs demonstrated a predictive probability with an area under the curve of 0.95 to 0.96. These miRNAs targeted genes involved in cell metabolism, proliferation and immune tolerance. In particular genes of the P-I-3-Kinase, FOXO, insulin signaling and glucogenic pathways were targeted, suggestive of placental connectivity with various maternal organs/cells, altering physiology along with pathogenic mechanisms underlying the subsequent development of GDM. We conclude that circulating EVs originating from the placenta with their miRNA cargo communicate and regulate signaling pathways in maternal organs, thereby predetermining development of GDM.
Collapse
Affiliation(s)
- Shanthie Thamotharan
- Departments of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Shubhamoy Ghosh
- Departments of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Laura James-Allan
- Departments of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Margarida Y. Y. Lei
- Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Carla Janzen
- Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Sherin U. Devaskar
- Departments of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| |
Collapse
|
8
|
Liu Y, Zhu Y, Liu S, Liu J, Li X. NORAD lentivirus shRNA mitigates fibrosis and inflammatory responses in diabetic cardiomyopathy via the ceRNA network of NORAD/miR-125a-3p/Fyn. Inflamm Res 2021; 70:1113-1127. [PMID: 34591118 DOI: 10.1007/s00011-021-01500-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVE Diabetic cardiomyopathy (DCM) is a serious complication of diabetes, but its pathogenesis is still unclear. This study investigated the mechanism of long noncoding RNA (lncRNA) NORAD in DCM. METHODS Male leptin receptor-deficient (db/db) mice and leptin control mice (db/ +) were procured. DCM model was established by subcutaneous injection of angiotensin II (ATII) in db/db mice. NORAD lentivirus shRNA or Adv-miR-125a-3p was administered to analyze cardiac function, fibrosis, serum biochemical indexes, inflammation and fibrosis. Primary cardiomyocytes were extracted and transfected with miR-125a-3p mimic. The competing endogenous RNA (ceRNA) network of NORAD/miR-125a-3p/Fyn was verified. The levels of fibrosis- and inflammation-related factors were measured. RESULTS In db/db mice treated with ATII, the body weight and serum biochemical indexes were increased, while the cardiac function was decreased, and inflammatory cell infiltration and fibrosis were induced. NORAD was upregulated in diabetic and DCM mice. The 4-week intravenous injection of NORAD lentivirus shRNA reduced body weight and serum biochemical indexes, improved cardiac function, and attenuated inflammation and fibrosis in DCM mice. NORAD acted as a sponge to adsorb miR-125a-3p, and miR-125a-3p targeted Fyn. Intravenous injection of miR-125a-3p adenovirus improved cardiac function and fibrosis and reduced inflammatory responses in DCM mice. Co-overexpression of miR-125-3p and Fyn partly reversed the improving effect of miR-125-3p overexpression on cardiac fibrosis in DCM mice. CONCLUSION NORAD lentivirus shRNA improved cardiac function and fibrosis and reduced inflammatory responses in DCM mice via the ceRNA network of NORAD/miR-125a-3p/Fyn. These findings provide a valuable and promising therapeutic target for the treatment of DCM.
Collapse
Affiliation(s)
- Ye Liu
- Department of Endocrinology, The Second Hospital of ShanXi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Yikun Zhu
- Department of Endocrinology, The Second Hospital of ShanXi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Sujun Liu
- Department of Endocrinology, The Second Hospital of ShanXi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Jiong Liu
- Department of Nuclear Medicine, The Second Hospital of ShanXi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Xing Li
- Department of Endocrinology, The Second Hospital of ShanXi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
9
|
Wang H. MicroRNAs, Parkinson's Disease, and Diabetes Mellitus. Int J Mol Sci 2021; 22:ijms22062953. [PMID: 33799467 PMCID: PMC8001823 DOI: 10.3390/ijms22062953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder that affects 1% of the population over the age of 60. Diabetes Mellitus (DM) is a metabolic disorder that affects approximately 25% of adults over the age of 60. Recent studies showed that DM increases the risk of developing PD. The link between DM and PD has been discussed in the literature in relation to different mechanisms including mitochondrial dysfunction, oxidative stress, and protein aggregation. In this paper, we review the common microRNA (miRNA) biomarkers of both diseases. miRNAs play an important role in cell differentiation, development, the regulation of the cell cycle, and apoptosis. They are also involved in the pathology of many diseases. miRNAs can mediate the insulin pathway and glucose absorption. miRNAs can also regulate PD-related genes. Therefore, exploring the common miRNA biomarkers of both PD and DM can shed a light on how these two diseases are correlated, and targeting miRNAs is a potential therapeutic opportunity for both diseases.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
10
|
Wang H. MicroRNA, Diabetes Mellitus and Colorectal Cancer. Biomedicines 2020; 8:biomedicines8120530. [PMID: 33255227 PMCID: PMC7760221 DOI: 10.3390/biomedicines8120530] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetes mellitus (DM) is an endocrinological disorder that is due to either the pancreas not producing enough insulin, or the body does not respond appropriately to insulin. There are many complications of DM such as retinopathy, nephropathy, and peripheral neuropathy. In addition to these complications, DM was reported to be associated with different cancers. In this review, we discuss the association between DM and colorectal cancer (CRC). CRC is the third most commonly diagnosed cancer worldwide that mostly affects older people, however, its incidence and mortality are rising among young people. We discuss the relationship between DM and CRC based on their common microRNA (miRNA) biomarkers. miRNAs are non-coding RNAs playing important functions in cell differentiation, development, regulation of cell cycle, and apoptosis. miRNAs can inhibit cell proliferation and induce apoptosis in CRC cells. miRNAs also can improve glucose tolerance and insulin sensitivity. Therefore, investigating the common miRNA biomarkers of both DM and CRC can shed a light on how these two diseases are correlated and more understanding of the link between these two diseases can help the prevention of both DM and CRC.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
11
|
Gjorgjieva M, Sobolewski C, Ay AS, Abegg D, Correia de Sousa M, Portius D, Berthou F, Fournier M, Maeder C, Rantakari P, Zhang FP, Poutanen M, Picard D, Montet X, Nef S, Adibekian A, Foti M. Genetic Ablation of MiR-22 Fosters Diet-Induced Obesity and NAFLD Development. J Pers Med 2020; 10:jpm10040170. [PMID: 33066497 PMCID: PMC7711493 DOI: 10.3390/jpm10040170] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
miR-22 is one of the most abundant miRNAs in the liver and alterations of its hepatic expression have been associated with the development of hepatic steatosis and insulin resistance, as well as cancer. However, the pathophysiological roles of miR-22-3p in the deregulated hepatic metabolism with obesity and cancer remains poorly characterized. Herein, we observed that alterations of hepatic miR-22-3p expression with non-alcoholic fatty liver disease (NAFLD) in the context of obesity are not consistent in various human cohorts and animal models in contrast to the well-characterized miR-22-3p downregulation observed in hepatic cancers. To unravel the role of miR-22 in obesity-associated NAFLD, we generated constitutive Mir22 knockout (miR-22KO) mice, which were subsequently rendered obese by feeding with fat-enriched diet. Functional NAFLD- and obesity-associated metabolic parameters were then analyzed. Insights about the role of miR-22 in NAFLD associated with obesity were further obtained through an unbiased proteomic analysis of miR-22KO livers from obese mice. Metabolic processes governed by miR-22 were finally investigated in hepatic transformed cancer cells. Deletion of Mir22 was asymptomatic when mice were bred under standard conditions, except for an onset of glucose intolerance. However, when challenged with a high fat-containing diet, Mir22 deficiency dramatically exacerbated fat mass gain, hepatomegaly, and liver steatosis in mice. Analyses of explanted white adipose tissue revealed increased lipid synthesis, whereas mass spectrometry analysis of the liver proteome indicated that Mir22 deletion promotes hepatic upregulation of key enzymes in glycolysis and lipid uptake. Surprisingly, expression of miR-22-3p in Huh7 hepatic cancer cells triggers, in contrast to our in vivo observations, a clear induction of a Warburg effect with an increased glycolysis and an inhibited mitochondrial respiration. Together, our study indicates that miR-22-3p is a master regulator of the lipid and glucose metabolism with differential effects in specific organs and in transformed hepatic cancer cells, as compared to non-tumoral tissue.
Collapse
Affiliation(s)
- Monika Gjorgjieva
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (M.G.); (C.S.); (A.-S.A.); (M.C.d.S.); (D.P.); (F.B.); (M.F.); (C.M.)
| | - Cyril Sobolewski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (M.G.); (C.S.); (A.-S.A.); (M.C.d.S.); (D.P.); (F.B.); (M.F.); (C.M.)
| | - Anne-Sophie Ay
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (M.G.); (C.S.); (A.-S.A.); (M.C.d.S.); (D.P.); (F.B.); (M.F.); (C.M.)
| | - Daniel Abegg
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA; (D.A.); (A.A.)
| | - Marta Correia de Sousa
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (M.G.); (C.S.); (A.-S.A.); (M.C.d.S.); (D.P.); (F.B.); (M.F.); (C.M.)
| | - Dorothea Portius
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (M.G.); (C.S.); (A.-S.A.); (M.C.d.S.); (D.P.); (F.B.); (M.F.); (C.M.)
| | - Flavien Berthou
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (M.G.); (C.S.); (A.-S.A.); (M.C.d.S.); (D.P.); (F.B.); (M.F.); (C.M.)
| | - Margot Fournier
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (M.G.); (C.S.); (A.-S.A.); (M.C.d.S.); (D.P.); (F.B.); (M.F.); (C.M.)
| | - Christine Maeder
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (M.G.); (C.S.); (A.-S.A.); (M.C.d.S.); (D.P.); (F.B.); (M.F.); (C.M.)
| | - Pia Rantakari
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, and Turku Center for Disease Modeling, University of Turku, FI-20014 Turku, Finland; (P.R.); (F.-P.Z.); (M.P.)
| | - Fu-Ping Zhang
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, and Turku Center for Disease Modeling, University of Turku, FI-20014 Turku, Finland; (P.R.); (F.-P.Z.); (M.P.)
| | - Matti Poutanen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, and Turku Center for Disease Modeling, University of Turku, FI-20014 Turku, Finland; (P.R.); (F.-P.Z.); (M.P.)
| | - Didier Picard
- Department of Cell Biology, Faculty of Science, University of Geneva, 1205 Geneva, Switzerland;
| | - Xavier Montet
- Department of Radiology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Serge Nef
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Alexander Adibekian
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA; (D.A.); (A.A.)
| | - Michelangelo Foti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (M.G.); (C.S.); (A.-S.A.); (M.C.d.S.); (D.P.); (F.B.); (M.F.); (C.M.)
- Diabetes Center, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Correspondence: ; Tel.: +41-22-37-95-204; Fax: +41-22-37-95-260
| |
Collapse
|
12
|
Li H, An X, Bao L, Li Y, Pan Y, He J, Liu L, Zhu X, Zhang J, Cheng J, Chu W. MiR-125a-3p-KLF15-BCAA Regulates the Skeletal Muscle Branched-Chain Amino Acid Metabolism in Nile Tilapia ( Oreochromis niloticus) During Starvation. Front Genet 2020; 11:852. [PMID: 32849831 PMCID: PMC7431957 DOI: 10.3389/fgene.2020.00852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
The branched-chain amino acids (BCAAs) play a key role in the energy metabolism of the muscle tissue and the Krüppel-like factor 15 (KLF15) as a transcription factor, which is a key regulator of BCAA metabolism in the skeletal muscle. This study assessed the effect of starvation for 0, 3, 7, and 15 days on BCAA metabolism in the skeletal muscle of Nile tilapia. The results showed that the expression of KLF15 showed a trend of increasing first and then decreasing during starvation, as well as the expression and activity of branched-chain aminotransferase 2 (BCAT2) and alanine aminotransferase (ALT). On the other hand, the content of BCAA was at first decreased and then upregulated, and it reached the lowest level after starvation for 3 days. In addition, through dual-luciferase reporter assay and injection experiments, it was found that KLF15 is the target gene of miR-125a-3p, which further verified that miR-125a-3p can regulate the BCAA metabolism by targeting KLF15 in the skeletal muscle. Thus, our work investigated the possible mechanisms of BCAA metabolism adapting to nutritional deficiency in the skeletal muscle of Nile tilapia and illustrated the regulation of BCAA metabolism through the miR-125a-3p-KLF15-BCAA pathway in the skeletal muscle.
Collapse
Affiliation(s)
- Honghui Li
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xiaoling An
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Lingsheng Bao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Yulong Li
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Yaxiong Pan
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Jinggang He
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Li Liu
- Hunan Fisheries Science Institute, Changsha, China
| | - Xin Zhu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Jianshe Zhang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Jia Cheng
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Wuying Chu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha, China
| |
Collapse
|
13
|
Kaur P, Kotru S, Singh S, Behera BS, Munshi A. Role of miRNAs in the pathogenesis of T2DM, insulin secretion, insulin resistance, and β cell dysfunction: the story so far. J Physiol Biochem 2020; 76:485-502. [PMID: 32749641 DOI: 10.1007/s13105-020-00760-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 07/29/2020] [Indexed: 01/24/2023]
Abstract
Diabetes, the most common endocrine disorder, also known as a silent killer disease, is characterized by uncontrolled hyperglycemia. According to the International Diabetes Federation, there were 451 million people with diabetes mellitus worldwide in 2017. It is a multifactorial syndrome caused by genetic as well as environmental factors. Noncoding RNAs, especially the miRNAs, play a significant role in the development as well as the progression of the disease. This is on account of insulin resistance or defects in β cell function. Various miRNAs including miR-7, miR-9, miR-16, miR-27, miR-24, miR-29, miR-124a, miR-135, miR-130a, miR-144, miR-181a, and miR-375 and many more have been associated with insulin resistance and other pathogenic conditions leading to the development of the disease. These miRNAs play significant roles in various pathways underlying insulin resistance such as PI3K, AKT/GSK, and mTOR. The main target genes of these miRNAs are FOXO1, FOXA2, STAT3, and PTEN. The miRNAs carry out important functions in insulin target tissues like the adipose tissue, liver, and muscle. MiRNAs miR-9, miR-375, and miR-124a, are also associated with the secretion of insulin from pancreatic cells. There is an interplay between the miRNAs and pancreatic cell growth, especially the miRNAs affecting development and proliferation of these cells. Most of the miRNAs target more than one gene which not only justifies their use as biomarkers but also their therapeutic potential. The current review has been compiled with an aim to discuss the role of various miRNAs involved in various pathogenic mechanisms including insulin resistance, insulin secretion, and the β cell dysfunction.
Collapse
Affiliation(s)
- Prabhsimran Kaur
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151001, India
| | - Sushil Kotru
- Max Endocrinology, Diabetes and Obesity Care Centre, Max Superspeciality Hospital, Bathinda, 151001, India
| | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151001, India
| | - Bidwan Sekhar Behera
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151001, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151001, India.
| |
Collapse
|
14
|
Kahn CR, Wang G, Lee KY. Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. J Clin Invest 2020; 129:3990-4000. [PMID: 31573548 DOI: 10.1172/jci129187] [Citation(s) in RCA: 406] [Impact Index Per Article: 81.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Over the past decade, great progress has been made in understanding the complexity of adipose tissue biology and its role in metabolism. This includes new insights into the multiple layers of adipose tissue heterogeneity, not only differences between white and brown adipocytes, but also differences in white adipose tissue at the depot level and even heterogeneity of white adipocytes within a single depot. These inter- and intra-depot differences in adipocytes are developmentally programmed and contribute to the wide range of effects observed in disorders with fat excess (overweight/obesity) or fat loss (lipodystrophy). Recent studies also highlight the underappreciated dynamic nature of adipose tissue, including potential to undergo rapid turnover and dedifferentiation and as a source of stem cells. Finally, we explore the rapidly expanding field of adipose tissue as an endocrine organ, and how adipose tissue communicates with other tissues to regulate systemic metabolism both centrally and peripherally through secretion of adipocyte-derived peptide hormones, inflammatory mediators, signaling lipids, and miRNAs packaged in exosomes. Together these attributes and complexities create a robust, multidimensional signaling network that is central to metabolic homeostasis.
Collapse
Affiliation(s)
- C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Guoxiao Wang
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Kevin Y Lee
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, and.,The Diabetes Institute, Ohio University, Athens, Ohio, USA
| |
Collapse
|
15
|
Release of antidiabetic peptides from Stichopus japonicas by simulated gastrointestinal digestion. Food Chem 2020; 315:126273. [DOI: 10.1016/j.foodchem.2020.126273] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/29/2019] [Accepted: 01/19/2020] [Indexed: 12/17/2022]
|
16
|
Youssef EM, Elfiky AM, BanglySoliman, Abu-Shahba N, Elhefnawi MM. Expression profiling and analysis of some miRNAs in subcutaneous white adipose tissue during development of obesity. GENES AND NUTRITION 2020; 15:8. [PMID: 32366215 PMCID: PMC7197174 DOI: 10.1186/s12263-020-00666-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/18/2020] [Indexed: 12/24/2022]
Abstract
Background MicroRNAs are emerging as new mediators in the regulation of adipocyte physiology and have been approved to play a role in obesity. Despite several studies have focused on microRNA expression profiles and functions in different metabolic tissues, little is known about their response to nutritional interventions in white adipose tissue during obesity stages, and whether they differ in this response to weight-reduction strategy is poorly understood. Our objectives were to study the dysregulation of some miRNAs in subcutaneous inguinal white adipose tissue during weight change, expansion/reduction; in response to both a high-fat diet and switching to a normal diet feeding, and to evaluate them as potential biomarkers and therapeutic targets for early obesity management Method A hundred 6-week-old male Wister rats were randomly divided into a normal diet group (N.D), a high-fat diet group (H.F.D), and a switched to a normal diet group (H.F.D/N.D). At the beginning and at intervals 2 weeks, serum lipid, hormone levels, total body fat mass, and inguinal subcutaneous white adipose tissue mass (WAT) measurements were recorded using dual-energy X-ray absorptiometry (DEXA). The expression levels of microRNAs were evaluated using real-time PCR. Results Significant alterations were observed in serum glucose, lipid profile, and adipokine hormones during the early stages of obesity development. Alteration in rno-mir 30a-5p, rno-mir 133a-5p, and rno-mir 107-5p expression levels were observed at more than one time point. While rno-let-7a-5p, rno-mir 193a-5p, and rno-mir125a-5p were downregulated and rno-mir130a-5p was upregulated at all time points within 2 to 4 weeks in response to H.F.D feeding for 10 weeks. The impact of switching to normal diet has a reversed effect on lipid profile, adipokine hormone levels, and some miRNAs. The bioinformatics results have identified a novel and important pathway related to inflammatory signalling. Conclusion Our research demonstrated significant alterations in some adipocyte-expressed miRNAs after a short time of high caloric diet consumption. This provides further evidence of the significant role of nutrition as an epigenetic factor in regulation of lipid and glucose metabolism genes by modulating of related key miRNAs. Therefore, we suggest that miRNAs could be used as biomarkers for adiposity during diet-induced obesity. Perhaps limitation in calories intake is a way to manipulate obesity and associated metabolic disorders. Further studies are needed to fully elucidate the role of microRNAs in the development of obesity
Collapse
Affiliation(s)
- Elham M Youssef
- Biochemistry Department, National Research Centre, Cairo, Egypt
| | - Asmaa M Elfiky
- Environmental and Occupational Medicine Department, Environmental Research Division, National Research Centre, Cairo, Egypt
| | - BanglySoliman
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Nourhan Abu-Shahba
- Stem Cell Research Group, Centre of Excellence for Advanced Sciences, Department of Medical Molecular Genetics, National Research Centre, Cairo, Egypt
| | - Mahmoud M Elhefnawi
- Informatics and Systems Department, Engineering Research Division, National Research Centre, Cairo, Egypt. .,Biomedical Informatics and Chemoinformatics Group, Center of Excellence for Advanced Sciences, Informatics and Systems Department, National Research Centre, Cairo, Egypt.
| |
Collapse
|
17
|
Pham TT, Ban J, Lee K, Hong Y, Lee J, Truong AD, Lillehoj HS, Hong YH. MicroRNA gga-miR-10a-mediated transcriptional regulation of the immune genes in necrotic enteritis afflicted chickens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 102:103472. [PMID: 31437523 DOI: 10.1016/j.dci.2019.103472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/18/2019] [Accepted: 08/18/2019] [Indexed: 06/10/2023]
Abstract
miRNAs are involved in both adaptive and innate immune systems of host animals; and play important roles in many immune-related pathways. The systemic biological roles of gga-miR-10a-5p chicken microRNA on immune response were investigated in two necrotic enteritis (NE) induced chicken lines, Marek's disease (MD) resistant (line 6.3) and susceptible (line 7.2). We determined the expression patterns of gga-miR-10a in the intestinal mucosal layer of chickens upon NE induction, and identified the target genes (MyD88, and SKP1) related to the host immune response to pathogens. We found that gga-miR-10a expression in the intestinal mucosal layer of MD-resistant chicken line 6.3 gga-miR-10a was significantly down-regulated (p < 0.01) during NE. Overexpression analysis of gga-miR-10a and reporter gene analysis using a wild- or mutant-type MyD88 3' untranslated region (3' UTR)-luciferase construct in chicken macrophage cell line HD11 and chicken fibroblast cell line OU2 showed that gga-miR-10a acted as a direct translational repressor of MyD88 by targeting the 3' UTR of this gene. Furthermore, miR-10a indirectly negatively influenced the expression of signaling molecules related to the MyD88-dependent pathway, including TRAF6, TAK1, and NF-κB1 at both transcriptional and translational levels. Downstream of the MyD88-dependent pathway, several proinflammatory cytokines such as IL-1β, IFN-γ, IL-12p40, TNFSF15, and LITAF were down-regulated by overexpression of gga-miR-10a. These results suggest that gga-miR-10a is an important regulator of the Toll-like receptor signaling pathway. The findings of this study improve our understanding of the biological functions of miR-10a and the mechanisms underlying the TLR signaling pathway upon NE afflicted chickens, as well improving the overall understanding of the immune system function in domestic animals.
Collapse
Affiliation(s)
- Thu Thao Pham
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Jihye Ban
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Kyungbaek Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Yeojin Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Jiae Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Anh Duc Truong
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea; Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, 100000, Viet Nam
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD, 20705, USA
| | - Yeong Ho Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
18
|
Rosado JA, Diez-Bello R, Salido GM, Jardin I. Fine-tuning of microRNAs in Type 2 Diabetes Mellitus. Curr Med Chem 2019; 26:4102-4118. [PMID: 29210640 DOI: 10.2174/0929867325666171205163944] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 11/23/2017] [Accepted: 11/23/2017] [Indexed: 12/13/2022]
Abstract
Type 2 diabetes mellitus is a metabolic disease widely spread across industrialized countries. Sedentary lifestyle and unhealthy alimentary habits lead to obesity, boosting both glucose and fatty acid in the bloodstream and eventually, insulin resistance, pancreas inflammation and faulty insulin production or secretion, all of them very well-defined hallmarks of type 2 diabetes mellitus. miRNAs are small sequences of non-coding RNA that may regulate several processes within the cells, fine-tuning protein expression, with an unexpected and subtle precision and in time-frames ranging from minutes to days. Since the discovery of miRNA and their possible implication in pathologies, several groups aimed to find a relationship between type 2 diabetes mellitus and miRNAs. Here we discuss the pattern of expression of different miRNAs in cultured cells, animal models and diabetic patients. We summarize the role of the most important miRNAs involved in pancreas growth and development, insulin secretion and liver, skeletal muscle or adipocyte insulin resistance in the context of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Juan A Rosado
- Institute of Molecular Pathology Biomarkers & Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| | - Raquel Diez-Bello
- Institute of Molecular Pathology Biomarkers & Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| | - Ginés M Salido
- Institute of Molecular Pathology Biomarkers & Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| | - Isaac Jardin
- Institute of Molecular Pathology Biomarkers & Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| |
Collapse
|
19
|
Kostyniuk DJ, Marandel L, Jubouri M, Dias K, de Souza RF, Zhang D, Martyniuk CJ, Panserat S, Mennigen JA. Profiling the rainbow trout hepatic miRNAome under diet-induced hyperglycemia. Physiol Genomics 2019; 51:411-431. [PMID: 31282806 DOI: 10.1152/physiolgenomics.00032.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Carnivorous rainbow trout exhibit prolonged postprandial hyperglycemia when fed a diet exceeding 20% carbohydrate content. This poor capacity to utilize carbohydrates has led to rainbow trout being classified as "glucose-intolerant" (GI). The metabolic phenotype has spurred research to identify the underlying cellular and molecular mechanisms of glucose intolerance, largely because carbohydrate-rich diets provide economic and ecological advantages over traditionally used fish meal, considered unsustainable for rainbow trout aquaculture operations. Evidence points to a contribution of hepatic intermediary carbohydrate and lipid metabolism, as well as upstream insulin signaling. Recently, microRNAs (miRNAs), small noncoding RNAs acting as negative posttranscriptional regulators affecting target mRNA stability and translation, have emerged as critical regulators of hepatic control of glucose-homeostasis in mammals, revealing that dysregulated hepatic miRNAs might play a role in organismal hyperglycemia in metabolic disease. To determine whether hepatic regulatory miRNA networks may contribute to GI in rainbow trout, we induced prolonged postprandial hyperglycemia in rainbow trout by using a carbohydrate-rich diet and profiled genome-wide hepatic miRNAs in hyperglycemic rainbow trout compared with fasted trout and trout fed a diet devoid of carbohydrates. Using small RNA next-generation sequencing and real-time RT-PCR validation, we identified differentially regulated hepatic miRNAs between these groups and used an in silico approach to predict bona fide mRNA targets and enriched pathways. Diet-induced hyperglycemia resulted in differential regulation of hepatic miRNAs compared with fasted fish. Some of the identified miRNAs, such as miRNA-27b-3p and miRNA-200a-3p, are known to be responsive to hyperglycemia in the liver of hyperglycemic glucose-tolerant fish and mammals, suggesting an evolutionary conserved regulation. Using Gene Ontology term-based enrichment analysis, we identify intermediate carbohydrate and lipid metabolism and insulin signaling as potential targets of posttranscriptional regulation by hyperglycemia-regulated miRNAs and provide correlative expression analysis of specific predicted miRNA-target pairs. This study identifies hepatic miRNAs in rainbow trout that exhibit differential postprandial expression in response to diets with different carbohydrate content and predicts posttranscriptionally regulated target mRNAs enriched for pathways involved in glucoregulation. Together, these results provide a framework for testable hypotheses of functional involvement of specific hepatic miRNAs in GI in rainbow trout.
Collapse
Affiliation(s)
| | - Lucie Marandel
- INRA, Université de Pau et Pays d'Adour, UMR 1419, Nutrition, Metabolism and Aquaculture, E2S UPPA, Saint Pée-sur-Nivelle, France
| | - Mais Jubouri
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Karine Dias
- INRA, Université de Pau et Pays d'Adour, UMR 1419, Nutrition, Metabolism and Aquaculture, E2S UPPA, Saint Pée-sur-Nivelle, France
| | - Robson F de Souza
- Microbiology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Dapeng Zhang
- Department of Biology, Saint Louis University, Saint Louis, Missouri
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Stéphane Panserat
- INRA, Université de Pau et Pays d'Adour, UMR 1419, Nutrition, Metabolism and Aquaculture, E2S UPPA, Saint Pée-sur-Nivelle, France
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
20
|
Massaro JD, Polli CD, Costa E Silva M, Alves CC, Passos GA, Sakamoto-Hojo ET, Rodrigues de Holanda Miranda W, Bispo Cezar NJ, Rassi DM, Crispim F, Dib SA, Foss-Freitas MC, Pinheiro DG, Donadi EA. Post-transcriptional markers associated with clinical complications in Type 1 and Type 2 diabetes mellitus. Mol Cell Endocrinol 2019; 490:1-14. [PMID: 30926524 DOI: 10.1016/j.mce.2019.03.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/08/2019] [Accepted: 03/20/2019] [Indexed: 01/10/2023]
Abstract
The delayed diagnosis and the inadequate treatment of diabetes increase the risk of chronic complications. The study of regulatory molecules such as miRNAs can provide expression profiles of diabetes and diabetes complications. We evaluated the mononuclear cell miRNA profiles of 63 Type 1 and Type 2 diabetes patients presenting or not microvascular complications, and 40 healthy controls, using massive parallel sequencing. Gene targets, enriched pathways, dendograms and miRNA-mRNA networks were performed for the differentially expressed miRNAs. Six more relevant miRNAs were validated by RT-qPCR and data mining analysis. MiRNAs associated with specific complications included: i) neuropathy (miR-873-5p, miR-125a-5p, miR-145-3p and miR-99b-5p); ii) nephropathy (miR-1249-3p, miR-193a-5p, miR-409-5p, miR-1271-5p, miR-501-3p, miR-148b-3p and miR-9-5p); and iii) retinopathy (miR-143-3p, miR-1271-5p, miR-409-5p and miR-199a-5p). These miRNAs mainly targeted gene families and specific genes associated with advanced glycation end products and their receptors. Sets of miRNAs were also defined as potential targets for diabetes/diabetes complication pathogenesis.
Collapse
Affiliation(s)
- Juliana Doblas Massaro
- Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, 14048-900, Ribeirão Preto, SP, Brazil.
| | - Claudia Danella Polli
- Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, 14048-900, Ribeirão Preto, SP, Brazil
| | - Matheus Costa E Silva
- Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, 14048-900, Ribeirão Preto, SP, Brazil
| | - Cinthia Caroline Alves
- Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, 14048-900, Ribeirão Preto, SP, Brazil
| | - Geraldo Aleixo Passos
- Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, 14048-900, Ribeirão Preto, SP, Brazil; Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, 14040-900, Ribeirão Preto, SP, Brazil
| | - Elza Tiemi Sakamoto-Hojo
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, 14040-900, Ribeirão Preto, SP, Brazil
| | - Wallace Rodrigues de Holanda Miranda
- Division of Endocrinology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, 14048-900, Ribeirão Preto, SP, Brazil
| | - Nathalia Joanne Bispo Cezar
- Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, 14048-900, Ribeirão Preto, SP, Brazil
| | - Diane Meyre Rassi
- Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, 14048-900, Ribeirão Preto, SP, Brazil
| | - Felipe Crispim
- Endocrinology and Diabetes Division, Department of Medicine, Federal University of São Paulo, 04039-032, São Paulo, SP, Brazil
| | - Sergio Atala Dib
- Endocrinology and Diabetes Division, Department of Medicine, Federal University of São Paulo, 04039-032, São Paulo, SP, Brazil
| | - Maria Cristina Foss-Freitas
- Division of Endocrinology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, 14048-900, Ribeirão Preto, SP, Brazil
| | - Daniel Guariz Pinheiro
- Department of Technology, Faculty of Agriculture and Veterinary Sciences, University of the State of São Paulo, 14884-900, Jaboticabal, SP, Brazil
| | - Eduardo Antônio Donadi
- Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, 14048-900, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
21
|
Lin X, Luo C, He D, Matro E, Chen Q, Li H, Zhou J. Urinary miRNA-29a-3p levels are associated with metabolic parameters via regulation of IGF1 in patients with metabolic syndrome. Biomed Rep 2019; 10:250-258. [PMID: 30972221 DOI: 10.3892/br.2019.1195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/19/2019] [Indexed: 12/29/2022] Open
Abstract
Circulating microRNAs (miRNAs or miRs) have been demonstrated to serve as diagnostic and prognostic biomarkers in metabolic syndrome (MetS). The role of urinary miRNAs in MetS diagnosis remains unknown. Here, elevated miR-29a-3p levels were observed in urine samples of patients with MetS compared with control subjects using a microarray analysis (n=4/group) and validation via reverse transcription-quantitative polymerase chain reaction (n=40/group). Associations between urinary miR-29a-3p levels and parameters associated with metabolism, such as adiposity, insulin resistance, lipid profiles and hepatic enzymes were further assessed. Multiple linear regression analyses revealed that urinary miR-29a-3p levels were independently correlated with fasting insulin (β=0.561; P<0.001), high density lipoprotein-cholesterol (β=0.242; P<0.001) and body mass index (β=-0.141; P<0.05). The area under the receiver operating characteristic curve was 0.776 and miR-29a-3p had a diagnostic value for MetS with 68.2% sensitivity and 77.3% specificity. Furthermore, insulin-like growth factor 1 was identified as a target of miR-29a-3p by searching bioinformatics databases and was validated by dual-luciferase reporter and western blot assays. In conclusion, elevated urinary miR-29a-3p levels were positively associated with MetS and demonstrated to have a potential value as biomarkers in the diagnosis of MetS. The findings provided a better understanding of the role of urinary miRNAs in pathogenesis of MetS.
Collapse
Affiliation(s)
- Xihua Lin
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China.,Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Cheng Luo
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Dongjuan He
- Department of Endocrinology, The Third Hospital of Quzhou, Quzhou, Zhejiang 324003, P.R. China
| | - Erik Matro
- College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Qilong Chen
- College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Hong Li
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Jiaqiang Zhou
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
22
|
Wang X, Zheng Y, Ma Y, Du L, Chu F, Gu H, Dahlgren RA, Li Y, Wang H. Lipid metabolism disorder induced by up-regulation of miR-125b and miR-144 following β-diketone antibiotic exposure to F0-zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:243-252. [PMID: 30121499 DOI: 10.1016/j.ecoenv.2018.08.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 08/05/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
β-Diketone antibiotics (DKAs) are widely used in human and veterinary medicine to prevent and treat a large variety of infectious diseases. Long-term DKA exposure to zebrafish can result in lipid metabolism disorders and liver function abnormalities. Based on our previous miRNA-seq analyses, miR-144 and miR-125b were identified as target genes regulating lipid metabolism. DKA-exposure at 12.5 and 25 mg/L significantly increased the expressions of miR-144 and miR-125b. The expression levels for the two miRNAs exhibited an inverse relationship with their lipid-metabolism-related target genes (ppardb, bcl2a, pparaa and pparda). Over-expression and inhibition of miR-144 and miR-125b were observed by micro-injection of agomir-144, agomir-125b, antagomir-144 and antagomir-125b. The over-expression of miR-144 and miR-125b enhanced lipid accumulation and further induced lipid-metabolism-disorder syndrome in F1-zebrafish. The expression of ppardb and bcl2a in whole-mount in situ hybridization was in general agreement with results from qRT-PCR and was concentration-dependent. Oil red O and H&E staining, as well as related physiological and biochemical indexes, showed that chronic DKA exposure resulted in lipid-metabolism-disorder in F0-adults, and in F1-larvae fat accumulation, increased lipid content, abnormal liver function and obesity. The abnormal levels of triglyceride (TG) and total cholesterol (TCH) in DKA-exposed zebrafish increased the risk of hyperlipidemia, atherosclerosis and coronary heart disease. These observations improve our understanding of mechanisms leading to liver disease from exposure to environmental pollution, thereby having relevant practical significance in health prevention, early intervention, and gene therapy for drug-induced diseases.
Collapse
Affiliation(s)
- Xuedong Wang
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yuansi Zheng
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Yan Ma
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Liyang Du
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Fangyu Chu
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Haidong Gu
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA
| | - Yanyan Li
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Huili Wang
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
23
|
Xu L, Li Y, Yin L, Qi Y, Sun H, Sun P, Xu M, Tang Z, Peng J. miR-125a-5p ameliorates hepatic glycolipid metabolism disorder in type 2 diabetes mellitus through targeting of STAT3. Theranostics 2018; 8:5593-5609. [PMID: 30555566 PMCID: PMC6276304 DOI: 10.7150/thno.27425] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/12/2018] [Indexed: 02/07/2023] Open
Abstract
Glycolipid metabolic disorder is an important cause for the development of type 2 diabetes mellitus (T2DM). Clarification of the molecular mechanism of metabolic disorder and exploration of drug targets are crucial for the treatment of T2DM. Methods: We examined miR-125a-5p levels in palmitic acid-induced AML12 cells and the livers of type 2 diabetic rats and mice, and then validated its target gene. Through gain- and loss-of-function studies, the effects of miR-125a-5p via targeting of STAT3 on regulating glycolipid metabolism were further illustrated in vitro and in vivo. Results: We found that miR-125a-5p was significantly decreased in the livers of diabetic mice and rats, and STAT3 was identified as the target gene of miR-125a-5p. Overexpression of miR-125a-5p in C57BL/6 mice decreased STAT3 level and downregulated the expression levels of p-STAT3 and SOCS3. Consequently, SREBP-1c-mediated lipogenesis pathway was inhibited, and PI3K/AKT pathway was activated. Moreover, silencing of miR-125a-5p significantly increased the expression levels of STAT3, p-STAT3 and SOCS3, thus activating SREBP-1c pathway and suppressing PI3K/AKT pathway. Therefore, hyperglycemia, hyperlipidemia and decreased liver glycogen appeared in C57BL/6 mice. In palmitic acid-induced AML12 cells, miR-125a-5p mimic markedly increased glucose consumption and uptake and decreased the accumulation of lipid droplets by regulating STAT3 signaling pathway. Consistently, miR-125a-5p overexpression obviously inhibited STAT3 expression in diabetic KK-Ay mice, thereby decreasing blood glucose and lipid levels, increasing hepatic glycogen content, and decreasing accumulation of hepatic lipid droplets in diabetic mice. Furthermore, inhibition of miR-125a-5p in KK-Ay mice aggravated glycolipid metabolism dysfunction through regulating STAT3. Conclusions: Our results confirmed that miR-125a-5p should be considered as a regulator of glycolipid metabolism in T2DM, which can inhibit hepatic lipogenesis and gluconeogenesis and elevate glycogen synthesis by targeting STAT3.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| |
Collapse
|
24
|
Teng W, Yin W, Zhao L, Ma C, Huang J, Ren F. Resveratrol metabolites ameliorate insulin resistance in HepG2 hepatocytes by modulating IRS-1/AMPK. RSC Adv 2018; 8:36034-36042. [PMID: 35558476 PMCID: PMC9088716 DOI: 10.1039/c8ra05092a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/26/2018] [Indexed: 11/30/2022] Open
Abstract
Resveratrol (trans-3,5,4′-trihydroxystilbene, RSV), a naturally occurring biologically active polyphenol has been observed to induce numerous beneficial effects in diabetic animals and humans. However, its protective effects are somewhat controversial due to low bioavailability and rapid clearance rate. Therefore, we in this study have tried to investigate if its main metabolites, RSV-3-O-glucuronide (R3G) and RSV-4-O-glucuronide (R4G) could ameliorate insulin resistance, similar to RSV in insulin-resistant HepG2 cells. Herein, we first established an insulin-resistant cell model by treating HepG2 cells with 1 × 10−6 mol L−1 insulin for 24 h. Subsequently, the effects of R3G and R4G on insulin resistance inhibition were evaluated in HepG2 cells. Interestingly, our data indicated that R3G and R4G treatment improved cellular glucose uptake and glycogen synthesis contents, and blocked generation of intracellular reactive oxygen species (ROS). Additionally, R3G and R4G also modulated insulin signaling and improved insulin sensitivity by modulating the IRS-1/AMPK signaling pathway. Taken together, our data provided a significant new insight into the effects and molecular mechanism of R3G and R4G on ameliorating insulin resistance in HepG2 cells. Overall, our data supported the hypothesis that despite low bioavailability in vivo, RSV biological effects could be mediated through its metabolites. RSV metabolites R3G and R4G protected HepG2 cell from insulin resistance by improving glucose uptake and glycogen synthesis, along with inhibiting ROS generation and modulating the RS-1/AMPK signaling pathway.![]()
Collapse
Affiliation(s)
- Wendi Teng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University P.O. Box 287, No. 17 Qinghua East Road Beijing 100083 China +86-10-62736344.,Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science & Nutritional Engineering, China Agricultural University Beijing China
| | - Wenjing Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University P.O. Box 287, No. 17 Qinghua East Road Beijing 100083 China +86-10-62736344.,Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science & Nutritional Engineering, China Agricultural University Beijing China
| | - Liang Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University P.O. Box 287, No. 17 Qinghua East Road Beijing 100083 China +86-10-62736344.,Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science & Nutritional Engineering, China Agricultural University Beijing China.,Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science & Nutritional Engineering, China Agricultural University Beijing China
| | - Changwei Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University P.O. Box 287, No. 17 Qinghua East Road Beijing 100083 China +86-10-62736344.,Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science & Nutritional Engineering, China Agricultural University Beijing China.,Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science & Nutritional Engineering, China Agricultural University Beijing China
| | - Jiaqiang Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University P.O. Box 287, No. 17 Qinghua East Road Beijing 100083 China +86-10-62736344.,Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science & Nutritional Engineering, China Agricultural University Beijing China.,Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science & Nutritional Engineering, China Agricultural University Beijing China
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University P.O. Box 287, No. 17 Qinghua East Road Beijing 100083 China +86-10-62736344.,Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science & Nutritional Engineering, China Agricultural University Beijing China.,Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science & Nutritional Engineering, China Agricultural University Beijing China
| |
Collapse
|
25
|
Identification of miR-9 as a negative factor of insulin secretion from beta cells. J Physiol Biochem 2018; 74:291-299. [PMID: 29470815 DOI: 10.1007/s13105-018-0615-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/13/2018] [Indexed: 12/15/2022]
Abstract
MicroRNA is a novel class of small noncoding RNA that has been implicated in a variety of physiological and pathological processes, including glucose homeostasis and diabetes mellitus. So far, a few studies have reported that miRNAs may be an important regulator in glucose-stimulated insulin secretion (GSIS) pathway. However, the role of miRNAs in this process remains unclear. The levels of miRNAs in mouse islets and MIN6 cells were determined by quantitative RT-PCR. Concentration of insulin was determined by ELISA, and the expression of the target protein was determined with western blot assay. The overexpression and downregulation of miRNAs in MIN6 were conducted using cell transfection methods. And luciferase assay was used to measure the direct interaction between miRNAs and target messenger RNAs 3'UTR. miR-9 was screened out for it was downregulated under the effects of short-term high glucose, while long-term high glucose relatively increased miR-9 expression. The Stxbp1 expression was decreased with the overexpression of miR-9 in MIN6 cells and increased when miR-9 was downregulated. Moreover, it was verified by luciferase assay that miR-9 regulated Stxbp1 gene expression by directly targeting Stxbp1 messenger RNA 3'UTR. This study suggests that the pathway consisting of miR-9 and Stxbp1 plays a key role in β-cell function, thus contributing to the network of miRNA-insulin secretion and offering a new candidate for diabetes therapy.
Collapse
|
26
|
Zhang C, Qian D, Zhao H, Lv N, Yu P, Sun Z. MiR17 improves insulin sensitivity through inhibiting expression of ASK1 and anti-inflammation of macrophages. Biomed Pharmacother 2018; 100:448-454. [PMID: 29477089 DOI: 10.1016/j.biopha.2018.02.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES MicroRNAs (miRNAs) are involved in the pathological progression of various disease including type 2 diabetes (T2D). Chronic inflammation in adipose tissue is a cause of insulin resistance and T2D. MiR-17 palys an anti-inflammatory role in many biological processes. We hypothesized that miR-17 suppressed inflammatory macrophage that is related to insulin resistance in patients with T2D. METHODS Macrophage migration and secretion of inflammatory cytokines including TNF-α, IL-6 and IL-1β were detected through transwell migration assay and enzyme-linked immunosorbent assay, respectively. Insulin-stimulated glucose uptake was tested by the radioactivity of tritium-labeled glucose in 3T3-L1 adipocytes. Dual luciferase reporter gene assay was employed to evaluate the interaction between miR-17 and 3'UTR of ASK1. RESULTS Our results showed that miR-17 inhibited macrophage infiltration and secretion of TNF-α, IL-6 and IL-1β. Moreover, insulin-stimulated glucose uptake of 3T3-L1 was suppressed by treatment with LPS-induced macrophage conditioned media (CM), whereas the opposite effect was showed after treatment with the CM of macrophages transfected with miR-17. Furthermore, we found that miR-17 directly prevented expression of ASK1 by binding to its 3'UTR. CONCLUSION miR-17 improved inflammation-induced insulin resistance by suppressing ASK1 expression in macrophages. These results indicated that miR-17 had an anti-diabetic acitivity by its anti-inflammation effect on macrophage.
Collapse
Affiliation(s)
- Chen Zhang
- Tianjin Medical University, Tianjin 300070, China; Department of Minimal Invasive Surgery, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Dong Qian
- Department of Minimal Invasive Surgery, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Hongzhi Zhao
- Department of Minimal Invasive Surgery, Tianjin Nankai Hospital, Tianjin 300100, China.
| | - Nan Lv
- Tianjin Institute of Medicine and Pharmaceutical Science, Tianjin, 300020, China
| | - Pei Yu
- Department of Endocrinology, Metabolic Disease Hospital, Tianjin Medical University,Tianjin 300070, China
| | - Zhe Sun
- Department of Minimal Invasive Surgery, Tianjin Nankai Hospital, Tianjin 300100, China
| |
Collapse
|
27
|
Song C, Yan H, Wang H, Zhang Y, Cao H, Wan Y, Kong L, Chen S, Xu H, Pan B, Zhang J, Fan G, Xin H, Liang Z, Jia W, Tian XL. AQR is a novel type 2 diabetes-associated gene that regulates signaling pathways critical for glucose metabolism. J Genet Genomics 2018; 45:111-120. [PMID: 29502958 DOI: 10.1016/j.jgg.2017.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/23/2017] [Accepted: 11/25/2017] [Indexed: 12/19/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a common metabolic disease influenced by both genetic and environmental factors. In this study, we performed an in-house genotyping and meta-analysis study using three independent GWAS datasets of T2DM and found that rs3743121, located 1 kb downstream of AQR, was a novel susceptibility SNP associated with T2DM. The risk allele C of rs3743121 was correlated with the increased expression of AQR in white blood cells, similar to that observed in T2DM models. The knockdown of AQR in HepG2 facilitated the glucose uptake, decreased the expression level of PCK2, increased the phosphorylation of GSK-3β, and restored the insulin sensitivity. Furthermore, the suppression of AQR inhibited the mTOR pathway and the protein ubiquitination process. Our study suggests that AQR is a novel type 2 diabetes-associated gene that regulates signaling pathways critical for glucose metabolism.
Collapse
Affiliation(s)
- Chun Song
- Laboratory of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Han Yan
- Laboratory of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Hanming Wang
- Laboratory of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Yan Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing 100871, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Huiqing Cao
- Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Yiqi Wan
- Human Population Genetics, Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang 330006, China
| | - Lingbao Kong
- Human Population Genetics, Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang 330006, China
| | - Shenghan Chen
- Human Population Genetics, Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang 330006, China
| | - Hong Xu
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang 330031, China
| | - Bingxing Pan
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang 330031, China
| | - Jin Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Guohuang Fan
- Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Hongbo Xin
- Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Zicai Liang
- Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Weiping Jia
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xiao-Li Tian
- Laboratory of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing 100871, China; Human Population Genetics, Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
28
|
Zhang Q, Sun X, Xiao X, Zheng J, Li M, Yu M, Ping F, Wang Z, Qi C, Wang T, Wang X. Maternal chromium restriction induces insulin resistance in adult mice offspring through miRNA. Int J Mol Med 2017; 41:1547-1559. [PMID: 29286159 PMCID: PMC5819906 DOI: 10.3892/ijmm.2017.3328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/08/2017] [Indexed: 01/22/2023] Open
Abstract
Increasing evidence suggests that undernutrition during the fetal period may lead to glucose intolerance, impair the insulin response and induce insulin resistance (IR). Considering the importance of chromium (Cr) in maintaining carbohydrate metabolism, the present study aimed to determine the effects of maternal low Cr (LC) on glucose metabolism in C57BL mice offspring, and the involved mechanisms. Weaned C57BL mice were born from mothers fed a control diet or LC diet, and were then fed a control or LC diet for 13 weeks. Subsequently, the liver microRNA (miRNA/miR) expression profile was analyzed by miRNA array analysis. A maternal LC diet increased fasting serum glucose (P<0.05) and insulin levels (P<0.05), homeostasis model assessment of IR index (P<0.01), and the area under curve for glucose concentration during oral glucose tolerance test (P<0.01). In addition, 8 upregulated and 6 downregulated miRNAs were identified in the maternal LC group (fold change ≥2, P<0.05). miRNA‑gene networks, Kyoto Encyclopedia of Genes and Genomes pathway analysis of differentially expressed miRNAs, and miRNA overexpression in HepG2 cells revealed the critical role of insulin signaling, via miR‑327, miR‑466f‑3p and miR‑223‑3p, in the effects of early life Cr restriction on glucose metabolism. In conclusion, maternal Cr restriction may irreversibly increase IR, which may involve a specific miRNA affecting the insulin signaling pathway.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Xiaofang Sun
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Jia Zheng
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Ming Li
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Miao Yu
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Fan Ping
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Zhixin Wang
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Cuijuan Qi
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Tong Wang
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Xiaojing Wang
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| |
Collapse
|
29
|
Bihoreau MT, Dumas ME, Lathrop M, Gauguier D. Genomic regulation of type 2 diabetes endophenotypes: Contribution from genetic studies in the Goto-Kakizaki rat. Biochimie 2017; 143:56-65. [DOI: 10.1016/j.biochi.2017.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/20/2017] [Indexed: 11/30/2022]
|
30
|
Schneider A, Dhahbi JM, Atamna H, Clark JP, Colman RJ, Anderson RM. Caloric restriction impacts plasma microRNAs in rhesus monkeys. Aging Cell 2017; 16:1200-1203. [PMID: 28677323 PMCID: PMC5595684 DOI: 10.1111/acel.12636] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2017] [Indexed: 01/20/2023] Open
Abstract
Caloric restriction (CR) is one of the most robust interventions shown to delay aging in diverse species, including rhesus monkeys (Macaca mulatta). Identification of factors involved in CR brings a promise of translatability to human health and aging. Here, we show that CR induced a profound change in abundance of circulating microRNAs (miRNAs) linked to growth and insulin signaling pathway, suggesting that miRNAs are involved in CR's mechanisms of action in primates. Deep sequencing of plasma RNA extracts enriched for short species revealed a total of 243 unique species of miRNAs including 47 novel species. Approximately 70% of the plasma miRNAs detected were conserved between rhesus monkeys and humans. CR induced or repressed 24 known and 10 novel miRNA species. Regression analysis revealed correlations between bodyweight, adiposity, and insulin sensitivity for 10 of the CR-regulated known miRNAs. Sequence alignment and target identification for these 10 miRNAs identify a role in signaling downstream of the insulin receptor. The highly abundant miR-125a-5p correlated positively with adiposity and negatively with insulin sensitivity and was negatively regulated by CR. Putative target pathways of CR-associated miRNAs were highly enriched for growth and insulin signaling that have previously been implicated in delayed aging. Clustering analysis further pointed to CR-induced miRNA regulation of ribosomal, mitochondrial, and spliceosomal pathways. These data are consistent with a model where CR recruits miRNA-based homeostatic mechanisms to coordinate a program of delayed aging.
Collapse
Affiliation(s)
- Augusto Schneider
- Faculdade de NutriçãoUniversidade Federal de PelotasPelotas‐RS96010‐610Brazil
- College of MedicineBurnett School of Biomedical SciencesUniversity of Central FloridaOrlandoFL32827USA
| | - Joseph M. Dhahbi
- College of MedicineCalifornia University of Science and MedicineColtonCA92324USA
| | - Hani Atamna
- College of MedicineCalifornia University of Science and MedicineColtonCA92324USA
| | - Josef P. Clark
- Department of MedicineUniversity of WisconsinMadisonWI53705USA
| | | | - Rozalyn M. Anderson
- Department of MedicineUniversity of WisconsinMadisonWI53705USA
- GRECCWilliam S. Middleton Memorial Veterans HospitalMadisonWI53705USA
| |
Collapse
|
31
|
Sliwinska A, Kasinska MA, Drzewoski J. MicroRNAs and metabolic disorders - where are we heading? Arch Med Sci 2017; 13:885-896. [PMID: 28721157 PMCID: PMC5507111 DOI: 10.5114/aoms.2017.65229] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/29/2016] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs, miRs) are short, non-coding molecules engaged in normal functioning of eukaryotic cells, as negative regulators of gene expression. Since the first discovery of miRNA in the early 1990s, hundreds of different miRNAs and their targets have been identified. A growing number of studies have aimed to search for microRNAs which have a key role in the regulation of insulin signaling and metabolic homeostasis. Recent evidence indicates that dysregulation of miRNA expression is involved in the development of various diseases, including type 2 diabetes mellitus (T2DM), obesity and cardiovascular diseases. This review summarizes the biogenesis of miRNAs and their role in pancreatic β cell biology, insulin signaling and metabolism. We also discuss recent findings of miRNAs associated with metabolic disorders and vascular diabetic complications, their diagnosis and therapeutic value. The PubMed database and published reference lists were searched for articles published between 1990 and 2016 using the following keywords: miRNA, miRNA and pancreas; miRNA and insulin; miRNA and type 2 diabetes mellitus, miRNA and obesity, and miRNA and microvascular or macrovascular diabetic complication. This review indicates that miRNA functioning is significantly different in metabolic diseases than in the normal condition.
Collapse
Affiliation(s)
- Agnieszka Sliwinska
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, Lodz, Poland
| | - Marta A Kasinska
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, Lodz, Poland
| | - Jozef Drzewoski
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
32
|
Newell-Fugate AE. The role of sex steroids in white adipose tissue adipocyte function. Reproduction 2017; 153:R133-R149. [PMID: 28115579 DOI: 10.1530/rep-16-0417] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 01/16/2017] [Accepted: 01/20/2017] [Indexed: 12/13/2022]
Abstract
With the increasing knowledge that gender influences normal physiology, much biomedical research has begun to focus on the differential effects of sex on tissue function. Sexual dimorphism in mammals is due to the combined effects of both genetic and hormonal factors. Hormonal factors are mutable particularly in females in whom the estrous cycle dominates the hormonal milieu. Given the severity of the obesity epidemic and the fact that there are differences in the obesity rates in men and women, the role of sex in white adipose tissue function is being recognized as increasingly important. Although sex differences in white adipose tissue distribution are well established, the mechanisms affecting differential function of adipocytes within white adipose tissue in males and females remain largely understudied and poorly understood. One of the largest differences in the endocrine environment in males and females is the concentration of circulating androgens and estrogens. This review examines the effects of androgens and estrogens on lipolysis/lipogenesis, adipocyte differentiation, insulin sensitivity and adipokine production in adipocytes from white adipose tissue with a specific emphasis on the sexual dimorphism of adipocyte function in white adipose tissue during both health and disease.
Collapse
Affiliation(s)
- A E Newell-Fugate
- Department of Veterinary Physiology and PharmacologyTexas A&M University, College Station, Texas, USA
| |
Collapse
|
33
|
Affiliation(s)
- Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang, China
| |
Collapse
|
34
|
Calderari S, Diawara MR, Garaud A, Gauguier D. Biological roles of microRNAs in the control of insulin secretion and action. Physiol Genomics 2016; 49:1-10. [PMID: 27815534 DOI: 10.1152/physiolgenomics.00079.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/02/2016] [Indexed: 02/03/2023] Open
Abstract
microRNAs (miRNAs) are intracellular and circulating molecular components contributing to genome expression control through binding mRNA targets, which generally results in downregulated mRNA expression. One miRNA can target several mRNAs, and one transcript can be targeted by several miRNAs, resulting in complex fine-tuning of regulation of gene networks and signaling pathways. miRNAs regulate metabolism, adipocyte differentiation, pancreatic development, β-cell mass, insulin biosynthesis, secretion, and signaling, and their role in diabetes and obesity is emerging. Their pathophysiological effects are essentially dependent on cellular coexpression with their mRNA targets, which can show tissue-specific transcriptional responses to disease conditions and environmental challenges. Current knowledge of miRNA biology and their impact on the pathogenesis of diabetes and obesity is based on experimental data documenting miRNA expression generally in single tissue types that can be correlated with expression of target mRNAs to integrate miRNA in functional pathways and gene networks. Here we present results from the most significant studies dealing with miRNA function in liver, fat, skeletal muscle, and endocrine pancreas and their implication in diabetes and obesity.
Collapse
Affiliation(s)
- Sophie Calderari
- Sorbonne Universities, University Pierre & Marie Curie, University Paris Descartes, Sorbonne Paris Cité, INSERM UMR_S 1138, Cordeliers Research Centre, Paris, France; and.,Institut National de la Recherche Agronomique, ENVA, University Paris Saclay, Jouy en Josas, France
| | - Malika R Diawara
- Sorbonne Universities, University Pierre & Marie Curie, University Paris Descartes, Sorbonne Paris Cité, INSERM UMR_S 1138, Cordeliers Research Centre, Paris, France; and
| | - Alois Garaud
- Sorbonne Universities, University Pierre & Marie Curie, University Paris Descartes, Sorbonne Paris Cité, INSERM UMR_S 1138, Cordeliers Research Centre, Paris, France; and
| | - Dominique Gauguier
- Sorbonne Universities, University Pierre & Marie Curie, University Paris Descartes, Sorbonne Paris Cité, INSERM UMR_S 1138, Cordeliers Research Centre, Paris, France; and
| |
Collapse
|
35
|
Cheung OKW, Cheng ASL. Gender Differences in Adipocyte Metabolism and Liver Cancer Progression. Front Genet 2016; 7:168. [PMID: 27703473 PMCID: PMC5029146 DOI: 10.3389/fgene.2016.00168] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/05/2016] [Indexed: 12/12/2022] Open
Abstract
Liver cancer is the third most common cancer type and the second leading cause of deaths in men. Large population studies have demonstrated remarkable gender disparities in the incidence and the cumulative risk of liver cancer. A number of emerging risk factors regarding metabolic alterations associated with obesity, diabetes and dyslipidemia have been ascribed to the progression of non-alcoholic fatty liver diseases (NAFLD) and ultimately liver cancer. The deregulation of fat metabolism derived from excessive insulin, glucose, and lipid promotes cancer-causing inflammatory signaling and oxidative stress, which eventually triggers the uncontrolled hepatocellular proliferation. This review presents the current standing on the gender differences in body fat compositions and their mechanistic linkage with the development of NAFLD-related liver cancer, with an emphasis on genetic, epigenetic and microRNA control. The potential roles of sex hormones in instructing adipocyte metabolic programs may help unravel the mechanisms underlying gender dimorphism in liver cancer and identify the metabolic targets for disease management.
Collapse
Affiliation(s)
- Otto K-W Cheung
- School of Biomedical Sciences, The Chinese University of Hong Kong Hong Kong, China
| | - Alfred S-L Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong Hong Kong, China; State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong Hong Kong, China
| |
Collapse
|
36
|
Song JJ, Wang Q, Du M, Li TG, Chen B, Mao XY. Casein glycomacropeptide-derived peptide IPPKKNQDKTE ameliorates high glucose-induced insulin resistance in HepG2 cells via activation of AMPK signaling. Mol Nutr Food Res 2016; 61. [PMID: 27506476 DOI: 10.1002/mnfr.201600301] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/26/2016] [Accepted: 08/02/2016] [Indexed: 11/05/2022]
Abstract
SCOPE Recently, casein glycomacropeptide (GMP)-derived peptide was found to possess potent antioxidant and anti-inflammatory activities. In this study, the improvement effects and underlying molecular mechanisms of GMP-derived peptide on hepatic insulin resistance were investigated. METHODS AND RESULTS The peptide IPPKKNQDKTE was identified from GMP papain hydrolysates by LC-ESI-MS/MS. Effects of IPPKKNQDKTE on glucose metabolism and expression levels of the hepatic insulin signaling proteins in high glucose-induced insulin-resistant HepG2 cells were evaluated. Results showed that IPPKKNQDKTE dose-dependently increased glucose uptake and intracellular glycogen in insulin-resistant HepG2 cells without affecting cell viability. IPPKKNQDKTE increased the phosphorylation of Akt and GSK3β and decreased the expression levels of p-GS, G6Pase and PEPCK. These IPPKKNQDKTE-mediated protection effects were reversed by PI3K/Akt inhibitor LY294002, showing the mediatory role of PI3K/Akt. Moreover, treatment with IPPKKNQDKTE reduced IRS-1 Ser307 phosphorylation and increased phosphorylation of AMPK. Knockdown AMPK using siRNA in HepG2 cells increased Ser307 phosphorylation of IRS-1 and reduced Akt phosphorylation in IPPKKNQDKTE-treated insulin-resistant cells. CONCLUSION IPPKKNQDKTE prevents high glucose-induced insulin resistance in HepG2 cells by modulating the IRS-1/PI3K/Akt signaling pathway through AMPK activation, indicating that IPPKKNQDKTE plays a potential role in the prevention and treatment of hepatic insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Jia-Jia Song
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China.,College of Food Science and Nutritional Engineering, Key Laboratory of Functional Dairy, Ministry of Education, China Agricultural University, Beijing, China
| | - Qian Wang
- College of Food Science and Nutritional Engineering, Key Laboratory of Functional Dairy, Ministry of Education, China Agricultural University, Beijing, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | - Tian-Ge Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China.,College of Food Science and Nutritional Engineering, Key Laboratory of Functional Dairy, Ministry of Education, China Agricultural University, Beijing, China
| | - Bin Chen
- Key Laboratory of Space Nutrition and Food Engineering, China Astronauts Research and Training Center, Beijing, China
| | - Xue-Ying Mao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China.,College of Food Science and Nutritional Engineering, Key Laboratory of Functional Dairy, Ministry of Education, China Agricultural University, Beijing, China
| |
Collapse
|
37
|
Wu D, Xi QY, Cheng X, Dong T, Zhu XT, Shu G, Wang LN, Jiang QY, Zhang YL. miR-146a-5p inhibits TNF-α-induced adipogenesis via targeting insulin receptor in primary porcine adipocytes. J Lipid Res 2016; 57:1360-72. [PMID: 27324794 PMCID: PMC4959853 DOI: 10.1194/jlr.m062497] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Indexed: 02/05/2023] Open
Abstract
TNF-α is a multifunctional cytokine participating in immune disorders, inflammation, and tumor development with regulatory effects on energy metabolism. Our work focused on the function of TNF-α in adipogenesis of primary porcine adipocytes. TNF-α could suppress the insulin receptor (IR) at the mRNA and protein levels. Microarray analysis of TNF-α-treated porcine adipocytes was used to screen out 29 differentially expressed microRNAs (miRNAs), 13 of which were remarkably upregulated and 16 were intensely downregulated. These 29 differentially expressed miRNAs were predicted to mainly participate in the insulin signaling pathway, adipocytokine signaling pathway, and type 2 diabetes mellitus pathway by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. miR-146a-5p, reportedly involved in immunity and cancer relevant processes, was one of the most highly differentially expressed miRNAs after TNF-α treatment. Red Oil O staining and TG assay revealed that miR-146a-5p suppressed adipogenesis. A dual-luciferase reporter and siRNA assay verified that miR-146a-5p targeted IR and could inhibit its protein expression. miR-146a-5p was also validated to be involved in the insulin signaling pathway by reducing tyrosine phosphorylation of insulin receptor substrate-1. Our study provides the first evidence of miR-146a-5p targeting IR, which facilitates future studies related to obesity and diabetes using pig models.
Collapse
Affiliation(s)
- Di Wu
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agriculture University, Guangzhou, China, 510642
| | - Qian-Yun Xi
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agriculture University, Guangzhou, China, 510642
| | - Xiao Cheng
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agriculture University, Guangzhou, China, 510642
| | - Tao Dong
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agriculture University, Guangzhou, China, 510642
| | - Xiao-Tong Zhu
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agriculture University, Guangzhou, China, 510642
| | - Gang Shu
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agriculture University, Guangzhou, China, 510642
| | - Li-Na Wang
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agriculture University, Guangzhou, China, 510642
| | - Qing-Yan Jiang
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agriculture University, Guangzhou, China, 510642
| | - Yong-Liang Zhang
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agriculture University, Guangzhou, China, 510642
| |
Collapse
|
38
|
Zeng XC, Li L, Wen H, Bi Q. MicroRNA-128 inhibition attenuates myocardial ischemia/reperfusion injury-induced cardiomyocyte apoptosis by the targeted activation of peroxisome proliferator-activated receptor gamma. Mol Med Rep 2016; 14:129-36. [PMID: 27150726 PMCID: PMC4918621 DOI: 10.3892/mmr.2016.5208] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 04/06/2016] [Indexed: 11/11/2022] Open
Abstract
The aim of the present study was to investigate the effects of microRNA (miR)-128 inhibition on the targeted activation of peroxisome proliferator-activated receptor gamma (PPARG) and on cardiomyocyte apoptosis induced by myocardial ischemia/reperfusion (I/R) injury. In vitro, the expression of PPARG was detected by reverse transcription-quantitative polymerase chain reaction and western blotting in neonatal rat ventricular myocytes (NRVMs) and HEK293 cells transfected with the mimics or inhibitors of miR-128 or control RNA. Luciferase reporter assays were used to identify whether PPARG is a direct target of miR-128. In vivo, miR-128 was knocked down via ear vein injection of antagomir-128 in a rabbit myocardial I/R injury model. Western blotting investigated the activation of Akt [phosphorylated (p)-Akt] and the expression of total-Akt, PPARG and myeloid leukemia cell differentiation protein-1 (Mcl-1) in the myocardium. Cardiomyocyte apoptosis was examined with transmission electron microscropy and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. PPARG mRNA and protein were downregulated in NRVMs transfected with miR-128 mimics, but upregulated by antagomir-128 compared with control. This indicates that PPARG is a direct miR-128 target. Activation of Akt (p-Akt), Mcl-1 and PPARG expression in the myocardium were increased by miR-128 inhibition. Furthermore, miR-128 antagomirs significantly reduced apoptosis in hearts subjected to I/R injury, which was blocked by the PPARG inhibitor GW9662. In conclusion, miR-128 inhibition attenuated I/R injury-induced cardiomyocyte apoptosis by the targeted activation of PPARG signaling.
Collapse
Affiliation(s)
- Xiao Cong Zeng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Lang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Hong Wen
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qi Bi
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
39
|
Grandjean V, Fourré S, De Abreu DAF, Derieppe MA, Remy JJ, Rassoulzadegan M. RNA-mediated paternal heredity of diet-induced obesity and metabolic disorders. Sci Rep 2015; 5:18193. [PMID: 26658372 PMCID: PMC4677355 DOI: 10.1038/srep18193] [Citation(s) in RCA: 266] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 11/16/2015] [Indexed: 12/23/2022] Open
Abstract
The paternal heredity of obesity and diabetes induced by a high-fat and/or high-sugar diet (Western-like diet) has been demonstrated through epidemiological analysis of human cohorts and experimental analysis, but the nature of the hereditary vector inducing this newly acquired phenotype is not yet well defined. Here, we show that microinjection of either testis or sperm RNA of male mice fed a Western-like diet into naive one-cell embryos leads to the establishment of the Western-like diet-induced metabolic phenotype in the resulting progenies, whereas RNAs prepared from healthy controls did not. Among multiple sequence differences between the testis transcriptomes of the sick and healthy fathers, we noted that several microRNAs had increased expression, which was of interest because this class of noncoding RNA is known to be involved in epigenetic control of gene expression. When microinjected into naive one-cell embryos, one of these small RNA, i.e., the microRNA miR19b, induced metabolic alterations that are similar to the diet-induced phenotype. Furthermore, this pathological phenotype was inherited by the offspring after crosses with healthy partners. Our results indicate that acquired food-induced trait inheritance might be enacted by RNA signalling.
Collapse
Affiliation(s)
- Valérie Grandjean
- Inserm, U1091, Nice, F-06108.,CNRS, UMR7277, F-06108, France.,University of Nice-Sophia Antipolis, UFR Sciences, Nice, F-06108
| | - Sandra Fourré
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR 6079 CNRS-UNSA, Sophia Antipolis, France
| | | | - Marie-Alix Derieppe
- Inserm, U1091, Nice, F-06108.,CNRS, UMR7277, F-06108, France.,University of Nice-Sophia Antipolis, UFR Sciences, Nice, F-06108
| | | | - Minoo Rassoulzadegan
- Inserm, U1091, Nice, F-06108.,CNRS, UMR7277, F-06108, France.,University of Nice-Sophia Antipolis, UFR Sciences, Nice, F-06108
| |
Collapse
|
40
|
Vatandoost N, Amini M, Iraj B, Momenzadeh S, Salehi R. Dysregulated miR-103 and miR-143 expression in peripheral blood mononuclear cells from induced prediabetes and type 2 diabetes rats. Gene 2015; 572:95-100. [DOI: 10.1016/j.gene.2015.07.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 06/28/2015] [Accepted: 07/01/2015] [Indexed: 12/25/2022]
|
41
|
He XM, Zheng YQ, Liu SZ, Liu Y, He YZ, Zhou XY. Altered Plasma MicroRNAs as Novel Biomarkers for Arteriosclerosis Obliterans. J Atheroscler Thromb 2015; 23:196-206. [PMID: 26370316 DOI: 10.5551/jat.30775] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Arteriosclerosis obliterans (ASO) of the lower extremities is a major cause of adult limb loss worldwide. A timely diagnosis in the early stages of the disease determines the clinical outcomes, however lacking of palpable symptoms remains the biggest obstacle. This study aimed to screen a cluster of microRNAs (miRNAs) that can be used as biomarker for the ASO in the earlier stages. METHODS Plasma from 3 patients with ASO and 3 healthy controls were profiled to screen altered miRNAs by microarray, then Real time PCR was further used to confirm the changes in 55 ASO patients and 54 controls.We also analyzed the correlation of miRNAs level with Fontaine stages and the influence of T2DM which is a common complication with ASO on the level of miRNAs. RESULT Twenty-four aberrantly expressed miRNAs were screened in the plasma of ASO patients. Real time PCR verified that the level of miR-4284 was significantly increased, while levels of miR-4463, miR-4306 and miR-221-3p were significantly decreased both in the plasma and in the sclerotic samples compared with the controls. Interestingly, we revealed a time and stage specific expression manner, as shown that expression of miR-4284 increased at the stage I of ASO and maintained the tendency to stage IV, while miR-4463 expression decreased at every stage of ASO; however, the expression of miR-4463 showed opposite changes in ASO patients with or without T2DM. CONCLUSION Altered expressions of miR-4284 and miR-4463 are novel characteristics and may serve as potential biomarkers for the early diagnosis of ASO.
Collapse
Affiliation(s)
- Xue-Mei He
- Experimental Medicine Center, Affiliated Hospital of Luzhou Medical College
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
MicroRNAs are small noncoding ribonucleotides that regulate mRNA translation or degradation and have major roles in cellular function. MicroRNA (miRNA) levels are deregulated or altered in many diseases. There is overwhelming evidence that miRNAs also play an important role in the regulation of glucose homeostasis and thereby may contribute to the establishment of diabetes. MiRNAs have been shown to affect insulin levels by regulating insulin production, insulin exocytosis, and endocrine pancreas development. Although a large number of miRNAs have been identified from pancreatic β-cells using various screens, functional studies that link most of the identified miRNAs to regulation of pancreatic β-cell function are lacking. This review focuses on miRNAs with important roles in regulation of insulin production, insulin secretion, and β-cell development, and will discuss only miRNAs with established roles in β-cell function.
Collapse
Affiliation(s)
- Sabire Ozcan
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky 40536
| |
Collapse
|
43
|
Wan SM, Yi SK, Zhong J, Nie CH, Guan NN, Chen BX, Gao ZX. Identification of MicroRNA for Intermuscular Bone Development in Blunt Snout Bream (Megalobrama amblycephala). Int J Mol Sci 2015; 16:10686-703. [PMID: 25970753 PMCID: PMC4463670 DOI: 10.3390/ijms160510686] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/17/2015] [Accepted: 05/05/2015] [Indexed: 01/08/2023] Open
Abstract
Intermuscular bone (IB), which occurs only in the myosepta of the lower teleosts, is attracting more attention of researchers due to its particular development and lack of genetic information. MicroRNAs (miRNAs) are emerging as important regulators for biological processes. In the present study, miRNAs from IBs and connective tissue (CT; encircled IBs) from six-month-old Megalobrama amblycephala were characterized and compared. The results revealed the sequences and expression levels of 218 known miRNA genes (belonging to 97 families). Of these miRNAs, 44 known microRNA sequences exhibited significant expression differences between the two libraries, with 24 and 20 differentially-expressed miRNAs exhibiting higher expression in the CT and IBs libraries, respectively. The expressions of 11 miRNAs were selected to validate in nine tissues. Among the high-ranked predicted gene targets, differentiation, cell cycle, metabolism, signal transduction and transcriptional regulation were implicated. The pathway analysis of differentially-expressed miRNAs indicated that they were abundantly involved in regulating the development and differentiation of IBs and CT. This study characterized the miRNA for IBs of teleosts for the first time, which provides an opportunity for further understanding of miRNA function in the regulation of IB development.
Collapse
Affiliation(s)
- Shi-Ming Wan
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
| | - Shao-Kui Yi
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
| | - Jia Zhong
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
| | - Chun-Hong Nie
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ning-Nan Guan
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| | - Bo-Xiang Chen
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
- Animal Husbandry and Fisheries Research Center of Haid Group Co., Ltd., Guangzhou 511400, China.
| | - Ze-Xia Gao
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
| |
Collapse
|
44
|
Zhu H, Leung SW. Identification of microRNA biomarkers in type 2 diabetes: a meta-analysis of controlled profiling studies. Diabetologia 2015; 58:900-11. [PMID: 25677225 DOI: 10.1007/s00125-015-3510-2] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/12/2015] [Indexed: 02/08/2023]
Abstract
AIMS/HYPOTHESIS The aim was to identify potential microRNA (miRNA) biomarkers of type 2 diabetes. METHODS Controlled studies were retrieved from PubMed to compare miRNA expression profiles of type 2 diabetes and nondiabetic control samples. Meta-analysis under a random effects model was conducted. Subgroup analyses examined tissue specificity and species specificity. Sensitivity analyses were also performed to explain the heterogeneity among studies. Results were represented as log odds ratios (logOR), 95% confidence intervals (CI) and p values after Bonferroni correction. RESULTS Among 343 differentially expressed miRNAs in 38 miRNA expression profiling studies published between 1993 and March 2014, only 151 miRNAs were tested by multiple studies, out of which 102 miRNAs were reported to be upregulated or downregulated. Meta-analysis identified 51 significantly dysregulated miRNAs. The top upregulated miRNA was miR-142-3p (logOR 6.4721; 95% CI 4.9537, 7.9904; adjusted p = 4.60 × 10(-16)). The top downregulated miRNA was miR-126a (logOR 7.5237; 95% CI 4.7159, 10.3316; adjusted p = 3.01 × 10(-07)). The dysregulation of two miRNAs (miR-199a-3p and miR-223) was highly pancreas-specific and liver-specific. miR-30e was downregulated in patients with type 2 diabetes, while miR-92a was downregulated in animal models of diabetes. In sensitivity analysis, 40 out of 47 miRNAs (85%) were robustly and consistently dysregulated. CONCLUSIONS/INTERPRETATION This meta-analysis confirms that 40 miRNAs are significantly dysregulated in type 2 diabetes. miR-29a, miR-34a, miR-375, miR-103, miR-107, miR-132, miR-142-3p and miR-144 are potential circulating biomarkers of type 2 diabetes. In addition, miR-199a-3p and miR-223 are potential tissue biomarkers of type 2 diabetes.
Collapse
Affiliation(s)
- Hongmei Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao, 999078, China
| | | |
Collapse
|
45
|
Panta P, Venna VR. Salivary RNA signatures in oral cancer detection. Anal Cell Pathol (Amst) 2014; 2014:450629. [PMID: 25763326 PMCID: PMC4333915 DOI: 10.1155/2014/450629] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/26/2014] [Indexed: 01/23/2023] Open
Abstract
Oral squamous cell carcinomas (OSCC) are common malignancies that affect almost a million people every year. The key issue in reducing mortality and morbidity associated with OSCC is to develop novel strategies to identify OSCC at an early stage. One such strategy is the identification of biomarkers. So far, more than 100 biomarkers are recognized in the detection of oral cancer and they range from proteins to nucleic acids (DNAs, RNAs). Detection of ribose nucleic acids in saliva is a recent trend in diagnosing oral cancer. Studies have shown statistically significant changes in the levels of salivary transcriptomes in patients with oral squamous cell carcinomas. These biomarkers have displayed high sensitivity and specificity. Also, new point-of-care platforms such as oral fluid nanosensor test are now available that will soon emerge as chair-side tools for early detection of oral cancer. The aim of this review is to highlight the importance of salivary transcriptomes in oral cancer detection.
Collapse
Affiliation(s)
- Prashanth Panta
- Department of Oral Medicine and Radiology, MNR Dental College and Hospital, Narsapur Road, Sangareddy, Telangana 502294, India
| | - Venkat Raghavender Venna
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, 1830 East Monument Street, 5th Floor, Baltimore, MD 21205, USA
| |
Collapse
|
46
|
Neuman MG, French SW, French BA, Seitz HK, Cohen LB, Mueller S, Osna NA, Kharbanda KK, Seth D, Bautista A, Thompson KJ, McKillop IH, Kirpich IA, McClain CJ, Bataller R, Nanau RM, Voiculescu M, Opris M, Shen H, Tillman B, Li J, Liu H, Thomes PG, Ganesan M, Malnick S. Alcoholic and non-alcoholic steatohepatitis. Exp Mol Pathol 2014; 97:492-510. [PMID: 25217800 PMCID: PMC4696068 DOI: 10.1016/j.yexmp.2014.09.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 09/08/2014] [Indexed: 02/08/2023]
Abstract
This paper is based upon the "Charles Lieber Satellite Symposia" organized by Manuela G. Neuman at the Research Society on Alcoholism (RSA) Annual Meetings, 2013 and 2014. The present review includes pre-clinical, translational and clinical research that characterize alcoholic liver disease (ALD) and non-alcoholic steatohepatitis (NASH). In addition, a literature search in the discussed area was performed. Strong clinical and experimental evidence lead to recognition of the key toxic role of alcohol in the pathogenesis of ALD. The liver biopsy can confirm the etiology of NASH or alcoholic steatohepatitis (ASH) and assess structural alterations of cells, their organelles, as well as inflammatory activity. Three histological stages of ALD are simple steatosis, ASH, and chronic hepatitis with hepatic fibrosis or cirrhosis. These latter stages may also be associated with a number of cellular and histological changes, including the presence of Mallory's hyaline, megamitochondria, or perivenular and perisinusoidal fibrosis. Genetic polymorphisms of ethanol metabolizing enzymes such as cytochrome p450 (CYP) 2E1 activation may change the severity of ASH and NASH. Alcohol mediated hepatocarcinogenesis, immune response to alcohol in ASH, as well as the role of other risk factors such as its co-morbidities with chronic viral hepatitis in the presence or absence of human immunodeficiency virus are discussed. Dysregulation of hepatic methylation, as result of ethanol exposure, in hepatocytes transfected with hepatitis C virus (HCV), illustrates an impaired interferon signaling. The hepatotoxic effects of ethanol undermine the contribution of malnutrition to the liver injury. Dietary interventions such as micro and macronutrients, as well as changes to the microbiota are suggested. The clinical aspects of NASH, as part of metabolic syndrome in the aging population, are offered. The integrative symposia investigate different aspects of alcohol-induced liver damage and possible repair. We aim to (1) determine the immuno-pathology of alcohol-induced liver damage, (2) examine the role of genetics in the development of ASH, (3) propose diagnostic markers of ASH and NASH, (4) examine age differences, (5) develop common research tools to study alcohol-induced effects in clinical and pre-clinical studies, and (6) focus on factors that aggravate severity of organ-damage. The intention of these symposia is to advance the international profile of the biological research on alcoholism. We also wish to further our mission of leading the forum to progress the science and practice of translational research in alcoholism.
Collapse
Affiliation(s)
- Manuela G Neuman
- In Vitro Drug Safety and Biotechnology, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | | | | | - Helmut K Seitz
- Centre of Alcohol Research, University of Heidelberg and Department of Medicine (Gastroenterology and Hepatology), Salem Medical Centre, Heidelberg, Germany
| | - Lawrence B Cohen
- Division of Gastroenterology, Sunnybrook Health Sciences Centre, Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sebastian Mueller
- Centre of Alcohol Research, University of Heidelberg and Department of Medicine (Gastroenterology and Hepatology), Salem Medical Centre, Heidelberg, Germany
| | - Natalia A Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Internal Medicine, Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Internal Medicine, Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Devanshi Seth
- Drug Health Services, Royal Prince Alfred Hospital, Centenary Institute of Cancer Medicine and Cell Biology, Camperdown, NSW 2050, Australia; Faculty of Medicine, The University of Sydney, Sydney, NSW 2006, Australia
| | - Abraham Bautista
- Office of Extramural Activities, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - Kyle J Thompson
- Department of Surgery, Carolinas Medical Center, Charlotte, NC, USA
| | - Iain H McKillop
- Department of Surgery, Carolinas Medical Center, Charlotte, NC, USA
| | - Irina A Kirpich
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine and Department of Pharmacology; Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Craig J McClain
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine and Department of Pharmacology; Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Robley Rex Veterans Medical Center, Louisville, KY, USA
| | - Ramon Bataller
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Radu M Nanau
- In Vitro Drug Safety and Biotechnology, University of Toronto, Toronto, Ontario, Canada
| | - Mihai Voiculescu
- Division of Nephrology and Internal Medicine, Fundeni Clinical Institute and University of Medicine and Pharmacy, "Carol Davila", Bucharest, Romania
| | - Mihai Opris
- In Vitro Drug Safety and Biotechnology, University of Toronto, Toronto, Ontario, Canada; Family Medicine Clinic CAR, Bucharest, Romania
| | - Hong Shen
- Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | - Jun Li
- Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Hui Liu
- Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Paul G Thomes
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Internal Medicine, Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Internal Medicine, Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Steve Malnick
- Department Internal Medicine, Kaplan Medical Centre and Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
47
|
Affiliation(s)
- Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology The Johns Hopkins University Baltimore, MD
| |
Collapse
|
48
|
Ji HL, Song CC, Li YF, He JJ, Li YL, Zheng XL, Yang GS. miR-125a inhibits porcine preadipocytes differentiation by targeting ERRα. Mol Cell Biochem 2014; 395:155-65. [PMID: 24952481 DOI: 10.1007/s11010-014-2121-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 06/02/2014] [Indexed: 10/25/2022]
Abstract
MicroRNAs are a family of small, non-coding RNAs that regulate gene expression in a sequence-specific manner. Estrogen-related receptor α (ERRα) is an orphan nuclear receptor which plays an important role in adipocyte differentiation. Our previous Solexa sequencing results indicated a high expression of miR-125a in adult pig backfat. In this study, we predicated and experimentally validated ERRα as a target of miR-125a. To explore the role of miR-125a in porcine preadipocytes differentiation, miRNA agomir and antagomir were used to perform miR-125a overexpression or knockdown, respectively. Our results showed that overexpression of miR-125a could dramatically reduce the mRNA expression of adipogenic markers PPARγ, LPL, and aP2, as well as its target gene ERRα. Western blotting showed the protein level of aP2 and ERRα was also significantly down-regulated. The overexpression of miR-125a also led to a notable reduction in lipid accumulation which was detected by Oil Red O staining. In contrast, we observed promoted differentiation of porcine preadipocytes upon miR-125a inhibition. In conclusion, we verified miR-125a inhibits porcine preadipocytes differentiation through targeting ERRα for the first time, which may provide new insights in pork quality improvement and obesity control.
Collapse
Affiliation(s)
- Hong-Lei Ji
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China,
| | | | | | | | | | | | | |
Collapse
|
49
|
Squillace N, Bresciani E, Torsello A, Bandera A, Sabbatini F, Giovannetti C, Giunta G, Rovati L, Del Bene M, Locatelli V, Gori A. Changes in subcutaneous adipose tissue microRNA expression in HIV-infected patients. J Antimicrob Chemother 2014; 69:3067-75. [PMID: 25063777 DOI: 10.1093/jac/dku264] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES We evaluated the possibility that a pattern of abnormal microRNA (miRNA) expression could be fuelling the mechanisms causing HIV-associated lipodystrophy (HAL). METHODS In this case-control study, samples of subcutaneous adipose tissue from eight consecutive HIV-infected patients on combination antiretroviral therapy with HAL (cases) were compared with those of eight HIV-negative subjects (controls). Human miRNA microarrays were used to probe the transcriptomes of the samples. Analysis of differentially expressed miRNAs was performed using DataAssist v2.0 software, applying a paired Student's t-test. RESULTS Data showed that 21 miRNAs out of 754 were overexpressed in the patient group. Ten of these (i.e. miR-186, miR-199a-3p, miR-214, miR-374a, miR-487b, miR-532-5p, miR-628-5p, miR-874, miR-125-b-1* and miR-374b*) were up-regulated to a significant degree (fold change >2.5; P < 0.01). Eleven other miRNAs (i.e. miR-let-7d, miR-24, miR-30c, miR-125a-3p, miR-149, miR-191, miR-196-b, miR-218, miR-342-3p, miR-452 and miR-454*) were 2- to 2.5-fold more expressed in HIV+ samples than in controls. Levels of mRNA for lipin 1, the target of miR-218, were significantly lower in subcutaneous adipose tissue from HIV patients. CONCLUSIONS In adipocytes of HIV-infected patients, the up-regulation of specific miRNAs could lead to an increased 'activation' that might contribute to the pathogenesis of HAL by increasing cell turnover and/or promotion of apoptosis.
Collapse
Affiliation(s)
- Nicola Squillace
- Division of Infectious Diseases, Department of Internal Medicine, San Gerardo Hospital, Monza, Italy
| | - Elena Bresciani
- Department of Health Sciences, School of Medicine, University of Milano-Bicocca, Monza, Italy
| | - Antonio Torsello
- Department of Health Sciences, School of Medicine, University of Milano-Bicocca, Monza, Italy
| | - Alessandra Bandera
- Division of Infectious Diseases, Department of Internal Medicine, San Gerardo Hospital, Monza, Italy
| | - Francesca Sabbatini
- Division of Infectious Diseases, Department of Internal Medicine, San Gerardo Hospital, Monza, Italy
| | - Chiara Giovannetti
- Department of Health Sciences, School of Medicine, University of Milano-Bicocca, Monza, Italy
| | | | - Luca Rovati
- Plastic Surgery Unit, San Gerardo Hospital, Monza, Italy
| | | | - Vittorio Locatelli
- Department of Health Sciences, School of Medicine, University of Milano-Bicocca, Monza, Italy
| | - Andrea Gori
- Division of Infectious Diseases, Department of Internal Medicine, San Gerardo Hospital, Monza, Italy Department of Health Sciences, School of Medicine, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
50
|
Abstract
Menin, the product of the MEN1 gene, functions as a tumor suppressor and was first identified in 1997 due to its causative role in the endocrine tumor disorder multiple endocrine neoplasia, type 1 (MEN1). More recently, menin has been identified as a key player in pancreatic islet biology with the observation of an inverse relationship between menin levels and pancreatic islet proliferation. However, the factors regulating menin and the MEN1 gene in the pancreas are poorly understood. Here, we describe the regulation of menin by miR-24 and demonstrate that miR-24 directly decreases menin levels and impacts downstream cell cycle inhibitors in MIN6 insulinoma cells and in βlox5 immortalized β-cells. This regulation of menin impacts cell viability and proliferation in βlox5 cells. Furthermore, our data show a feedback regulation between miR-24 and menin that is present in the pancreas, suggesting that miR-24 regulates menin levels in the pancreatic islet.
Collapse
Affiliation(s)
- Jyothi Vijayaraghavan
- Department of Genetics, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Elaine C Maggi
- Department of Genetics, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Judy S Crabtree
- Department of Genetics, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|