1
|
Park SH, Ko JR, Han J. Exercise alleviates cisplatin-induced toxicity in the hippocampus of mice by inhibiting neuroinflammation and improving synaptic plasticity. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:145-152. [PMID: 38414397 PMCID: PMC10902592 DOI: 10.4196/kjpp.2024.28.2.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/29/2024]
Abstract
Chemotherapy-induced cognitive impairment is recognized as the most typical symptom in patients with cancer that occurs during and following the chemotherapy treatment. Recently many studies focused on pharmaceutical strategies to control the chemotherapy side effects, however it is far from satisfactory. There may be a need for more effective treatment options. The aim of this study was to investigate the protective effect of exercise on cisplatin-induced neurotoxicity. Eightweek- old C57BL6 mice were separated into three group: normal control (CON, n = 8); cisplatin injection control (Cis-CON, n = 8); cisplatin with aerobic exercise (Cis-EXE, n = 8). Cisplatin was administered intraperitoneally at a dose of 3.5 mg/kg/day. The Cis-EXE group exercise by treadmill running (14-16 m/min for 45 min daily, 3 times/ week) for 12 weeks. Compared to the CON group, the cisplatin injection groups showed significant decrease in body weight and food intake, indicating successful induction of cisplatin toxicity. The Cis-CON group showed significantly increased levels of pro-inflammatory cytokines including IL-6, IL-1β, and TNF-α in the hippocampus, while the Cis-EXE group was significantly decreased in the expression of IL- 6, IL-1β, and TNF-α. In addition, compared to the CON group, the levels of synapserelated proteins including synapsin-1 and -2 were significantly reduced in the Cis- CON group, and there was a significant difference between the Cis-CON and Cis-EXE groups. Antioxidant and apoptosis factors were significantly improved in the Cis-EXE group compared with the Cis-CON group. This study suggest that exercise could be meaningful approach to prevent or improve cisplatin-induced cognitive impairment.
Collapse
Affiliation(s)
- Se Hwan Park
- Basic Research Laboratory, Department of Physiology, College of Medicine, Smart Marine Therapeutic Center, Cardiovascular and Metabolic Disease Core Research Support Center, Inje University, Busan 47392, Korea
| | - Jeong Rim Ko
- Basic Research Laboratory, Department of Physiology, College of Medicine, Smart Marine Therapeutic Center, Cardiovascular and Metabolic Disease Core Research Support Center, Inje University, Busan 47392, Korea
| | - Jin Han
- Basic Research Laboratory, Department of Physiology, College of Medicine, Smart Marine Therapeutic Center, Cardiovascular and Metabolic Disease Core Research Support Center, Inje University, Busan 47392, Korea
- Department of Health Science and Technology, College of Medicine, Inje University, Busan 47392, Korea
| |
Collapse
|
2
|
Zanetti GDO, Pessoa PWM, Vieira TS, Garcia RDA, Santos Barbosa NH, Arantes RME, Kettelhut IDC, Navegantes LCC, Wanner SP, Soares DD, Gonçalves DAP. Long-term heat acclimation training in mice: Similar metabolic and running performance adaptations despite a lower absolute intensity than training at temperate conditions. J Therm Biol 2024; 119:103797. [PMID: 38340467 DOI: 10.1016/j.jtherbio.2024.103797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/06/2023] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
This study investigated the impact of long-term heat acclimation (HA) training on mouse thermoregulation, metabolism, and running performance in temperate (T) and hot (H) environments. Male Swiss mice were divided into 1) Sedentary (SED) mice kept in T (22 °C; SED/T), 2) Endurance Trained mice (ET, 1 h/day, 5 days/week, 8 weeks, 60 % of maximum speed) in T (ET/T), 3) SED kept in H (32 °C; SED/H), and 4) ET in H (ET/H). All groups performed incremental load tests (ILT) in both environments before (pre-ET) and after four and eight weeks of ET. In the pre-ET period, H impaired (∼30 %) performance variables (maximum speed and external work) and increased (1.3 °C) maximum abdominal body temperature compared with T. In T, after four weeks, although ET/H exercised at a lower (∼30 %) absolute intensity than ET/T, performance variables and aerobic power (peak oxygen uptake, VO2peak) were similarly increased in both ET groups compared with SED/T. After eight weeks, the external work was higher in both ET groups compared with SED/T. Only ET/T significantly increased VO2peak (∼11 %) relative to its pre-ET period. In H, only after eight weeks, both ET groups improved (∼19 %) maximum speed and reduced (∼46 %) post-ILT blood lactate concentrations compared with their respective pre-ET values. Liver glycogen content increased (34 %) in both ET groups and SED/H compared with SED/T. Thus, ET/H was performed at a lower absolute intensity but promoted similar effects to ET/T on metabolism, aerobic power, and running performance. Our findings open perspectives for applying HA training as part of a training program or orthopedic and metabolic rehabilitation programs in injured or even obese animals, reducing mechanical load with equivalent or higher physiological demand.
Collapse
Affiliation(s)
- Gustavo de Oliveira Zanetti
- Exercise Physiology Laboratory (LAFISE), School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Pedro William Martins Pessoa
- Exercise Physiology Laboratory (LAFISE), School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tales Sambrano Vieira
- Exercise Physiology Laboratory (LAFISE), School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo de Almeida Garcia
- Exercise Physiology Laboratory (LAFISE), School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Nicolas Henrique Santos Barbosa
- Exercise Physiology Laboratory (LAFISE), School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rosa Maria Esteves Arantes
- Department of Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Isis do Carmo Kettelhut
- Departments of Biochemistry & Immunology, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Samuel Penna Wanner
- Exercise Physiology Laboratory (LAFISE), School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Danusa Dias Soares
- Exercise Physiology Laboratory (LAFISE), School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Dawit Albieiro Pinheiro Gonçalves
- Exercise Physiology Laboratory (LAFISE), School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Section of Sports Physiology (SFE), Sports Training Center (CTE), Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
3
|
Pelosi AC, Scariot PPM, Garbuio ALP, Kraemer MB, Priolli DG, Masselli Dos Reis IG, Messias LHD. A systematic review of exercise protocols applied to athymic mice in tumor-related experiments. Appl Physiol Nutr Metab 2023; 48:719-729. [PMID: 37384946 DOI: 10.1139/apnm-2023-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Athymic mice are unable to produce T-cells and are then characterized as immunodeficient. This characteristic makes these animals ideal for tumor biology and xenograft research. New non-pharmacological therapeutics are required owing to the exponential increase in global oncology costs over the last 10 years and the high cancer mortality rate. In this sense, physical exercise is regarded as a relevant component of cancer treatment. However, the scientific community lacks information regarding the effect of manipulating training variables on cancer in humans, and experiments with athymic mice. Therefore, this systematic review aimed to address the exercise protocols used in tumor-related experiments using athymic mice. The PubMed, Web of Science, and Scopus databases were searched without restrictions on published data. A combination of key terms such as athymic mice, nude mice, physical activity, physical exercise, and training was used. The database search retrieved 852 studies (PubMed, 245; Web of Science, 390; and Scopus, 217). After title, abstract, and full-text screening, 10 articles were eligible. Based on the included studies, this report highlights the considerable divergences in the training variables adopted for this animal model. No studies have reported the determination of a physiological marker for intensity individualization. Future studies are recommended to explore whether invasive procedures can result in pathogenic infections in athymic mice. Moreover, time-consuming tests cannot be applied to experiments with specific characteristics such as tumor implantation. In summary, non-invasive, low-cost, and time-saving approaches can suppress these limitations and improve the welfare of these animals during experiments.
Collapse
Affiliation(s)
- Andrea Corazzi Pelosi
- Research Group on Technology Applied to Exercise Physiology (GTAFE), Laboratory of Multidisciplinary Research, São Francisco University, Bragança Paulista, Brazil
| | | | - Ana Luíza Paula Garbuio
- Research Group on Technology Applied to Exercise Physiology (GTAFE), Laboratory of Multidisciplinary Research, São Francisco University, Bragança Paulista, Brazil
| | - Maurício Beitia Kraemer
- Research Group on Technology Applied to Exercise Physiology (GTAFE), Laboratory of Multidisciplinary Research, São Francisco University, Bragança Paulista, Brazil
| | - Denise Gonçalves Priolli
- Coloproctology service of the Federal University of São Paulo, São Paulo and Faculty of Health Sciences Pitágoras de Codó, Codó, Brazil
| | - Ivan Gustavo Masselli Dos Reis
- Research Group on Technology Applied to Exercise Physiology (GTAFE), Laboratory of Multidisciplinary Research, São Francisco University, Bragança Paulista, Brazil
| | - Leonardo Henrique Dalcheco Messias
- Research Group on Technology Applied to Exercise Physiology (GTAFE), Laboratory of Multidisciplinary Research, São Francisco University, Bragança Paulista, Brazil
| |
Collapse
|
4
|
Battey E, Ross JA, Hoang A, Wilson DGS, Han Y, Levy Y, Pollock RD, Kalakoutis M, Pugh JN, Close GL, Ellison-Hughes GM, Lazarus NR, Iskratsch T, Harridge SDR, Ochala J, Stroud MJ. Myonuclear alterations associated with exercise are independent of age in humans. J Physiol 2023. [PMID: 36597809 DOI: 10.1113/jp284128] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023] Open
Abstract
Age-related decline in skeletal muscle structure and function can be mitigated by regular exercise. However, the precise mechanisms that govern this are not fully understood. The nucleus plays an active role in translating forces into biochemical signals (mechanotransduction), with the nuclear lamina protein lamin A regulating nuclear shape, nuclear mechanics and ultimately gene expression. Defective lamin A expression causes muscle pathologies and premature ageing syndromes, but the roles of nuclear structure and function in physiological ageing and in exercise adaptations remain obscure. Here, we isolated single muscle fibres and carried out detailed morphological and functional analyses on myonuclei from young and older exercise-trained individuals. Strikingly, myonuclei from trained individuals were more spherical, less deformable, and contained a thicker nuclear lamina than those from untrained individuals. Complementary to this, exercise resulted in increased levels of lamin A and increased myonuclear stiffness in mice. We conclude that exercise is associated with myonuclear remodelling, independently of age, which may contribute to the preservative effects of exercise on muscle function throughout the lifespan. KEY POINTS: The nucleus plays an active role in translating forces into biochemical signals. Myonuclear aberrations in a group of muscular dystrophies called laminopathies suggest that the shape and mechanical properties of myonuclei are important for maintaining muscle function. Here, striking differences are presented in myonuclear shape and mechanics associated with exercise, in both young and old humans. Myonuclei from trained individuals were more spherical, less deformable and contained a thicker nuclear lamina than untrained individuals. It is concluded that exercise is associated with age-independent myonuclear remodelling, which may help to maintain muscle function throughout the lifespan.
Collapse
Affiliation(s)
- E Battey
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, London, UK
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - J A Ross
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, London, UK
| | - A Hoang
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, London, UK
| | - D G S Wilson
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Y Han
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Y Levy
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - R D Pollock
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - M Kalakoutis
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
- Randall Centre for Cell and Molecular Biophysics, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - J N Pugh
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - G L Close
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - G M Ellison-Hughes
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - N R Lazarus
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - T Iskratsch
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
- Randall Centre for Cell and Molecular Biophysics, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - S D R Harridge
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - J Ochala
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - M J Stroud
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, London, UK
| |
Collapse
|
5
|
Gupta P, Hodgman CF, Alvarez-Florez C, Schadler KL, Markofski MM, O’Connor DP, LaVoy EC. Comparison of three exercise interventions with and without gemcitabine treatment on pancreatic tumor growth in mice: No impact on tumor infiltrating lymphocytes. Front Physiol 2022; 13:1039988. [PMID: 36479351 PMCID: PMC9720271 DOI: 10.3389/fphys.2022.1039988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/03/2022] [Indexed: 10/06/2023] Open
Abstract
Exercise has been shown to slow pancreatic tumor growth, but whether exercise interventions of differing volume or intensity yield differential effects on tumor outcomes is unknown. In this study, we compared three exercise training interventions implemented with and without chemotherapy on pancreatic tumor growth in mice. Methods: Male C57BL/6 mice (6-8 weeks old) were subcutaneously inoculated with pancreatic ductal adenocarcinoma tumor cells (PDAC 4662). Upon tumor detection, mice received gemcitabine 15 mg/kg intraperitoneally 3 days/week and were assigned to exercise: high volume continuous exercise (HVCE), low volume continuous exercise (LVCE), high intensity interval training (HIIT), or sedentary (SED). HVCE ran at 12 m/min for 45 min and LVCE for 15 min, 5 days/week. HIIT ran 1-min at 20 m/min, followed by 1-min walking at 8 m/min for 20 total intervals, 3 days/week. SED did not run. Additional sets of inoculated mice were assigned to the exercise interventions but did not receive gemcitabine. Tumor volume was measured every other day for 2 weeks; tumor-infiltrating lymphocytes were assessed by flow cytometry 3-week post-inoculation. Results: Tumor growth did not differ between groups that received gemcitabine (F(3, 34) = 1.487; p = 0.235; η2 = 0.116). In contrast, tumor growth differed between groups not provided gemcitabine (F(3,14) = 3.364; p = 0.049, η2 = 0.419), with trends for slower growth in LVCE than SED (p = 0.088) and HIIT (p = 0.084). Groups did not differ in tumor infiltrating lymphocytes. Conclusion: Contrary to our hypotheses, the exercise interventions compared here did not further reduce pancreatic tumor growth beyond that provided by gemcitabine. However, in mice not receiving gemcitabine, there was a trend for reduced tumor growth in LVCE.
Collapse
Affiliation(s)
- Priti Gupta
- Department of Health and Human Performance, University of Houston, Houston, TX, United States
| | - Charles F. Hodgman
- Department of Health and Human Performance, University of Houston, Houston, TX, United States
| | - Claudia Alvarez-Florez
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, MD Anderson Cancer Center, Houston, TX, United States
| | - Keri L. Schadler
- Department of Pediatrics-Research, Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Melissa M. Markofski
- Department of Health and Human Performance, University of Houston, Houston, TX, United States
| | - Daniel P. O’Connor
- Department of Health and Human Performance, University of Houston, Houston, TX, United States
| | - Emily C. LaVoy
- Department of Health and Human Performance, University of Houston, Houston, TX, United States
| |
Collapse
|
6
|
Wang Y, Xiang Y, Wang R, Li X, Wang J, Yu S, Zhang Y. Sulforaphane enhances Nrf2-mediated antioxidant responses of skeletal muscle induced by exhaustive exercise in HIIT mice. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Matsumura S, Miyakita M, Miyamori H, Kyo S, Shima D, Yokokawa T, Ishikawa F, Sasaki T, Jinno T, Tanaka J, Goto T, Momma K, Ishihara K, Berdeaux R, Inoue K. Stimulation of G s signaling in MC4R cells by DREADD increases energy expenditure, suppresses food intake, and increases locomotor activity in mice. Am J Physiol Endocrinol Metab 2022; 322:E436-E445. [PMID: 35344393 DOI: 10.1152/ajpendo.00439.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The melanocortin 4 receptor (MC4R) plays an important role in the regulation of appetite and energy expenditure in humans and rodents. Impairment of MC4R signaling causes severe obesity. MC4R mainly couples to the G-protein Gs. Ligand binding to MC4R activates adenylyl cyclase resulting in increased intracellular cAMP levels. cAMP acts as a secondary messenger, regulating various cellular processes. MC4R can also couple with Gq and other signaling pathways. Therefore, the contribution of MC4R/Gs signaling to energy metabolism and appetite remains unclear. To study the effect of Gs signaling activation in MC4R cells on whole body energy metabolism and appetite, we generated a novel mouse strain that expresses a Gs-coupled designer receptors exclusively activated by designer drugs [Gs-DREADD (GsD)] selectively in MC4R-expressing cells (GsD-MC4R mice). Chemogenetic activation of the GsD by a designer drug [deschloroclozapine (DCZ); 0.01∼0.1 mg/kg body wt] in MC4R-expressing cells significantly increased oxygen consumption and locomotor activity. In addition, GsD activation significantly reduced the respiratory exchange ratio, promoting fatty acid oxidation, but did not affect core (rectal) temperature. A low dose of DCZ (0.01 mg/kg body wt) did not suppress food intake, but a high dose of DCZ (0.1 mg/kg body wt) suppressed food intake in MC4R-GsD mice, although either DCZ dose (0.01 or 0.1 mg/kg body wt) did not affect food intake in the control mice. In conclusion, the current study demonstrated that the stimulation of Gs signaling in MC4R-expressing cells increases energy expenditure and locomotor activity and suppresses appetite.NEW & NOTEWORTHY We report that Gs signaling in melanocortin 4 receptor (MC4R)-expressing cells regulates energy expenditure, appetite, and locomotor activity. These findings shed light on the mechanism underlying the regulation of energy metabolism and locomotor activity by MC4R/cAMP signaling.
Collapse
Affiliation(s)
- Shigenobu Matsumura
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Department of Clinical Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Osaka, Japan
| | - Motoki Miyakita
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Haruka Miyamori
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Satomi Kyo
- Department of Food and Nutrition, Kyoto Women's University, Kyoto, Japan
| | - Daisuke Shima
- Department of Food Sciences and Human Nutrition, Faculty of Agriculture, Ryukoku University, Shiga, Japan
| | - Takumi Yokokawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Fuka Ishikawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tsutomu Sasaki
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tomoki Jinno
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Jin Tanaka
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tsuyoshi Goto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Keiko Momma
- Department of Food and Nutrition, Kyoto Women's University, Kyoto, Japan
| | - Kengo Ishihara
- Department of Food Sciences and Human Nutrition, Faculty of Agriculture, Ryukoku University, Shiga, Japan
| | - Rebecca Berdeaux
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Kazuo Inoue
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
8
|
Wang L, Jiao XF, Wu C, Li XQ, Sun HX, Shen XY, Zhang KZ, Zhao C, Liu L, Wang M, Bu YL, Li JW, Xu F, Chang CL, Lu X, Gao W. Trimetazidine attenuates dexamethasone-induced muscle atrophy via inhibiting NLRP3/GSDMD pathway-mediated pyroptosis. Cell Death Discov 2021; 7:251. [PMID: 34537816 PMCID: PMC8449784 DOI: 10.1038/s41420-021-00648-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 01/19/2023] Open
Abstract
Skeletal muscle atrophy is one of the major side effects of high dose or sustained usage of glucocorticoids. Pyroptosis is a novel form of pro-inflammatory programmed cell death that may contribute to skeletal muscle injury. Trimetazidine, a well-known anti-anginal agent, can improve skeletal muscle performance both in humans and mice. We here showed that dexamethasone-induced atrophy, as evidenced by the increase of muscle atrophy F-box (Atrogin-1) and muscle ring finger 1 (MuRF1) expression, and the decrease of myotube diameter in C2C12 myotubes. Dexamethasone also induced pyroptosis, indicated by upregulated pyroptosis-related protein NLR family pyrin domain containing 3 (NLRP3), Caspase-1, and gasdermin-D (GSDMD). Knockdown of NLRP3 or GSDMD attenuated dexamethasone-induced myotube pyroptosis and atrophy. Trimetazidine treatment ameliorated dexamethasone-induced muscle pyroptosis and atrophy both in vivo and in vitro. Activation of NLRP3 using LPS and ATP not only increased the cleavage and activation of Caspase-1 and GSDMD, but also increased the expression levels of atrophy markers MuRF1 and Atrogin-1 in trimetazidine-treated C2C12 myotubes. Mechanically, dexamethasone inhibited the phosphorylation of PI3K/AKT/FoxO3a, which could be attenuated by trimetazidine. Conversely, co-treatment with a PI3K/AKT inhibitor, picropodophyllin, remarkably increased the expression of NLRP3 and reversed the protective effects of trimetazidine against dexamethasone-induced C2C12 myotube pyroptosis and atrophy. Taken together, our study suggests that NLRP3/GSDMD-mediated pyroptosis might be a novel mechanism for dexamethasone-induced skeletal muscle atrophy. Trimetazidine might be developed as a potential therapeutic agent for the treatment of dexamethasone-induced muscle atrophy.
Collapse
Affiliation(s)
- Li Wang
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, China
| | - Xin-Feng Jiao
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, China
| | - Cheng Wu
- Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, China.,Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Qing Li
- Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, China.,Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hui-Xian Sun
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xi-Yu Shen
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kang-Zhen Zhang
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Can Zhao
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Liu
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Man Wang
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yun-Ling Bu
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jia-Wen Li
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fan Xu
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chen-Lu Chang
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Lu
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China. .,Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Wei Gao
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China. .,Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
9
|
Nijholt KT, Meems LMG, Ruifrok WPT, Maass AH, Yurista SR, Pavez-Giani MG, Mahmoud B, Wolters AHG, van Veldhuisen DJ, van Gilst WH, Silljé HHW, de Boer RA, Westenbrink BD. The erythropoietin receptor expressed in skeletal muscle is essential for mitochondrial biogenesis and physiological exercise. Pflugers Arch 2021; 473:1301-1313. [PMID: 34142210 PMCID: PMC8302562 DOI: 10.1007/s00424-021-02577-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/16/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022]
Abstract
Erythropoietin (EPO) is a haematopoietic hormone that regulates erythropoiesis, but the EPO-receptor (EpoR) is also expressed in non-haematopoietic tissues. Stimulation of the EpoR in cardiac and skeletal muscle provides protection from various forms of pathological stress, but its relevance for normal muscle physiology remains unclear. We aimed to determine the contribution of the tissue-specific EpoR to exercise-induced remodelling of cardiac and skeletal muscle. Baseline phenotyping was performed on left ventricle and m. gastrocnemius of mice that only express the EpoR in haematopoietic tissues (EpoR-tKO). Subsequently, mice were caged in the presence or absence of a running wheel for 4 weeks and exercise performance, cardiac function and histological and molecular markers for physiological adaptation were assessed. While gross morphology of both muscles was normal in EpoR-tKO mice, mitochondrial content in skeletal muscle was decreased by 50%, associated with similar reductions in mitochondrial biogenesis, while mitophagy was unaltered. When subjected to exercise, EpoR-tKO mice ran slower and covered less distance than wild-type (WT) mice (5.5 ± 0.6 vs. 8.0 ± 0.4 km/day, p < 0.01). The impaired exercise performance was paralleled by reductions in myocyte growth and angiogenesis in both muscle types. Our findings indicate that the endogenous EPO-EpoR system controls mitochondrial biogenesis in skeletal muscle. The reductions in mitochondrial content were associated with reduced exercise capacity in response to voluntary exercise, supporting a critical role for the extra-haematopoietic EpoR in exercise performance.
Collapse
Affiliation(s)
- Kirsten T Nijholt
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, HPC AB31, 9700 RB, P.O. Box 30.001, Groningen, The Netherlands
| | - Laura M G Meems
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, HPC AB31, 9700 RB, P.O. Box 30.001, Groningen, The Netherlands
| | - Willem P T Ruifrok
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, HPC AB31, 9700 RB, P.O. Box 30.001, Groningen, The Netherlands
| | - Alexander H Maass
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, HPC AB31, 9700 RB, P.O. Box 30.001, Groningen, The Netherlands
| | - Salva R Yurista
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, HPC AB31, 9700 RB, P.O. Box 30.001, Groningen, The Netherlands
| | - Mario G Pavez-Giani
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, HPC AB31, 9700 RB, P.O. Box 30.001, Groningen, The Netherlands
| | - Belend Mahmoud
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, HPC AB31, 9700 RB, P.O. Box 30.001, Groningen, The Netherlands
| | - Anouk H G Wolters
- Department of Cell Biology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Dirk J van Veldhuisen
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, HPC AB31, 9700 RB, P.O. Box 30.001, Groningen, The Netherlands
| | - Wiek H van Gilst
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, HPC AB31, 9700 RB, P.O. Box 30.001, Groningen, The Netherlands
| | - Herman H W Silljé
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, HPC AB31, 9700 RB, P.O. Box 30.001, Groningen, The Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, HPC AB31, 9700 RB, P.O. Box 30.001, Groningen, The Netherlands
| | - B Daan Westenbrink
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, HPC AB31, 9700 RB, P.O. Box 30.001, Groningen, The Netherlands.
| |
Collapse
|
10
|
Mitochondrial Metabolism as Target of the Neuroprotective Role of Erythropoietin in Parkinson's Disease. Antioxidants (Basel) 2021; 10:antiox10010121. [PMID: 33467745 PMCID: PMC7830512 DOI: 10.3390/antiox10010121] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/30/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Existing therapies for Parkinson's disease (PD) are only symptomatic. As erythropoietin (EPO) is emerging for its benefits in neurodegenerative diseases, here, we test the protective effect driven by EPO in in vitro (SH-SY5Y cells challenged by MPP+) and in vivo (C57BL/6J mice administered with MPTP) PD models. EPO restores cell viability in both protective and restorative layouts, enhancing the dopaminergic recovery. Specifically, EPO rescues the PD-induced damage to mitochondria, as shown by transmission electron microscopy, Mitotracker assay and PINK1 expression. Moreover, EPO promotes a rescue of mitochondrial respiration while markedly enhancing the glycolytic rate, as shown by the augmented extracellular acidification rate, contributing to elevated ATP levels in MPP+-challenged cells. In PD mice, EPO intrastriatal infusion markedly improves the outcome of behavioral tests. This is associated with the rescue of dopaminergic markers and decreased neuroinflammation. This study demonstrates cellular and functional recovery following EPO treatment, likely mediated by the 37 Kda isoform of the EPO-receptor. We report for the first time, that EPO-neuroprotection is exerted through restoring ATP levels by accelerating the glycolytic rate. In conclusion, the redox imbalance and neuroinflammation associated with PD may be successfully treated by EPO.
Collapse
|
11
|
Suresh S, Rajvanshi PK, Noguchi CT. The Many Facets of Erythropoietin Physiologic and Metabolic Response. Front Physiol 2020; 10:1534. [PMID: 32038269 PMCID: PMC6984352 DOI: 10.3389/fphys.2019.01534] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/05/2019] [Indexed: 12/30/2022] Open
Abstract
In mammals, erythropoietin (EPO), produced in the kidney, is essential for bone marrow erythropoiesis, and hypoxia induction of EPO production provides for the important erythropoietic response to ischemic stress, such as during blood loss and at high altitude. Erythropoietin acts by binding to its cell surface receptor which is expressed at the highest level on erythroid progenitor cells to promote cell survival, proliferation, and differentiation in production of mature red blood cells. In addition to bone marrow erythropoiesis, EPO causes multi-tissue responses associated with erythropoietin receptor (EPOR) expression in non-erythroid cells such neural cells, endothelial cells, and skeletal muscle myoblasts. Animal and cell models of ischemic stress have been useful in elucidating the potential benefit of EPO affecting maintenance and repair of several non-hematopoietic organs including brain, heart and skeletal muscle. Metabolic and glucose homeostasis are affected by endogenous EPO and erythropoietin administration affect, in part via EPOR expression in white adipose tissue. In diet-induced obese mice, EPO is protective for white adipose tissue inflammation and gives rise to a gender specific response in weight control associated with white fat mass accumulation. Erythropoietin regulation of fat mass is masked in female mice due to estrogen production. EPOR is also expressed in bone marrow stromal cells (BMSC) and EPO administration in mice results in reduced bone independent of the increase in hematocrit. Concomitant reduction in bone marrow adipocytes and bone morphogenic protein suggests that high EPO inhibits adipogenesis and osteogenesis. These multi-tissue responses underscore the pleiotropic potential of the EPO response and may contribute to various physiological manifestations accompanying anemia or ischemic response and pharmacological uses of EPO.
Collapse
Affiliation(s)
- Sukanya Suresh
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Praveen Kumar Rajvanshi
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Constance T Noguchi
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
12
|
Wang L, Yang S, Yan L, Wei H, Wang J, Yu S, Kong ANT, Zhang Y. Hypoxia preconditioning promotes endurance exercise capacity of mice by activating skeletal muscle Nrf2. J Appl Physiol (1985) 2019; 127:1267-1277. [DOI: 10.1152/japplphysiol.00347.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Elite endurance athletes are used to train under hypoxic/high-altitude conditions, which can elicit certain stress responses in skeletal muscle and helps to improve their physical performance. Nuclear factor erythroid 2-related factor 2 (Nrf2) regulates cellular redox homeostasis and metabolism in skeletal muscle, playing important roles in adaptation to various stresses. In this study, Nrf2 knockout (KO) and wild-type (WT) mice were preconditioned to 48 h of hypoxia exposure (11.2% oxygen), and the effects of hypoxia preconditioning (HP) on exercise capacity and exercise-induced changes of antioxidant status, energetic metabolism, and mitochondrial adaptation in skeletal muscle were evaluated. Nrf2 knockout (KO) and wild-type (WT) mice were exposed to normoxia or hypoxia for 48 h before taking incremental treadmill exercise to exhaustion under hypoxia. The skeletal muscles were collected immediately after the incremental treadmill exercise to evaluate the impacts of HP and Nrf2 on the exercise-induced changes. The results indicate the absence of Nrf2 did not affect exercise capacity, although the mRNA expression of certain muscular genes involved in antioxidant, glycogen and fatty acid catabolism was decreased in Nrf2 KO mice. However, 48-h HP enhanced exercise capacity in WT mice but not in Nrf2 KO mice, and the exercise capacity of WT mice was significantly higher than that of Nrf2 KO mice. These findings suggest HP promotes exercise capacity of mice with the participation of the Nrf2 signal in skeletal muscle. NEW & NOTEWORTHY Hypoxia preconditioning (HP) activated the nuclear factor erythroid 2-related factor 2 (Nrf2) signal, which was involved in HP-elicited adaptation responses to hypoxia, oxidative, and metabolic stresses in skeletal muscle. On the other hand, Nrf2 deficiency abolished the enhanced exercise capacity after the 48-h HP. Our results indicate that Nrf2 plays an essential role in the exercise capacity-enhancing effect of HP, possibly by modulating muscular antioxidative responses, the mRNA expression of muscular genes involved in glycogen and fatty acid metabolism, as well as mitochondrial biogenesis, and through the cross talk with AMPK and hypoxia-inducible factor-1α signaling.
Collapse
Affiliation(s)
- Linjia Wang
- School of Sport Science, Beijing Sport University, Beijing, China
| | - Simin Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, China
| | - Lu Yan
- School of Sport Science, Beijing Sport University, Beijing, China
| | - Hao Wei
- School of Sport Science, Beijing Sport University, Beijing, China
| | - Jianxiong Wang
- Faculty of Health, Engineering, and Sciences, University of Southern Queensland, Toowoomba, Queensland, Australia
| | - Siwang Yu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, China
| | - Ah-Ng Tony Kong
- Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Ying Zhang
- School of Sport Science, Beijing Sport University, Beijing, China
| |
Collapse
|
13
|
Morrell MB, Alvarez Florez C, Zhang A, Kleinerman ES, Savage H, Marmonti E, Park M, Shaw A, Schadler KL. Vascular modulation through exercise improves chemotherapy efficacy in Ewing sarcoma. Pediatr Blood Cancer 2019; 66:e27835. [PMID: 31136074 PMCID: PMC6646082 DOI: 10.1002/pbc.27835] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/06/2019] [Accepted: 05/10/2019] [Indexed: 12/15/2022]
Abstract
Recent studies in mouse models of cancer have shown that exercise improves tumor vascular function, thereby improving chemotherapy delivery and efficacy. However, the mechanisms underlying this improvement remain unclear and the effect of exercise on Ewing sarcoma (ES), a pediatric bone and soft tissue cancer, is unknown. The effect of exercise on tumor vascular hyperpermeability, which inversely correlates with drug delivery to the tumor, has also not been evaluated. We hypothesized that exercise improves chemotherapy efficacy by enhancing its delivery through improving tumor vascular permeability. We treated ES-bearing mice with doxorubicin with or without moderate treadmill exercise. Exercise did not significantly alter ES tumor vessel morphology. However, compared to control mice, tumors of exercised mice had significantly reduced hyperpermeability, significantly decreased hypoxia, and higher doxorubicin penetration. Compared to doxorubicin alone, doxorubicin plus exercise inhibited tumor growth more efficiently. We evaluated endothelial cell sphingosine-1-phosphate receptors 1 and 2 (S1PR1 and S1PR2) as potential mediators of the improved vascular permeability and increased function afforded by exercise. Relative to tumors from control mice, vessels in tumors from exercised mice had increased S1PR1 and decreased S1PR2 expression. Our results support a model in which exercise remodels ES vasculature to reduce vessel hyperpermeability, potentially via modulation of S1PR1 and S1PR2, thereby improving doxorubicin delivery and inhibiting tumor growth more than doxorubicin alone does. Our data suggest moderate aerobic exercise should be tested in clinical trials as a potentially useful adjuvant to standard chemotherapy for patients with ES.
Collapse
Affiliation(s)
- Miriam B.G. Morrell
- Department of Pediatric Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Claudia Alvarez Florez
- Department of Pediatric Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aiqian Zhang
- Department of Pediatric Research, The University of Texas MD Anderson Cancer Center, Houston, Texas,Department of Gynecology, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Eugenie S. Kleinerman
- Department of Pediatric Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hannah Savage
- Department of Pediatric Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Enrica Marmonti
- Department of Pediatric Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Minjeong Park
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Angela Shaw
- Department of Pediatric Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Keri L. Schadler
- Department of Pediatric Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
14
|
He S, Li J, Wang J, Zhang Y. Hypoxia exposure alleviates impaired muscular metabolism, glucose tolerance, and aerobic capacity in apelin-knockout mice. FEBS Open Bio 2019; 9:498-509. [PMID: 30868058 PMCID: PMC6396165 DOI: 10.1002/2211-5463.12587] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/13/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022] Open
Abstract
High altitude hypoxia adaptation can improve glucose tolerance in people with metabolic syndrome and type 2 diabetes (T2D). Apelin is an endogenous ligand of the G protein-coupled receptor APJ and has possible roles in energy metabolism. Apelin-null mice have been reported to exhibit impaired insulin sensitivity, which can be reversed by supplementation of exogenous apelin. Here, we examined the effects of 4 weeks' intermittent hypoxia exposure on physiological and biochemical variables in apelin knockout (KO) mice. Apelin KO mice exhibited decreased expression of substrate metabolism-associated genes/proteins, impaired glucose tolerance, and reduced exercise capacity compared to wild-type mice, and all of these effects were rescued by hypoxia. These findings suggest that hypoxia intervention may possibly be able to alleviate metabolic conditions caused by genetic defects.
Collapse
Affiliation(s)
- Shiyi He
- School of Sport ScienceBeijing Sport UniversityChina
| | - Junping Li
- School of Sport ScienceBeijing Sport UniversityChina
| | - Jianxiong Wang
- Faculty of Health, Engineering and SciencesUniversity of Southern QueenslandToowoombaAustralia
| | - Ying Zhang
- School of Sport ScienceBeijing Sport UniversityChina
| |
Collapse
|
15
|
Ishihara K, Taniguchi H. Fat max as an index of aerobic exercise performance in mice during uphill running. PLoS One 2018; 13:e0193470. [PMID: 29474428 PMCID: PMC5825145 DOI: 10.1371/journal.pone.0193470] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 02/12/2018] [Indexed: 11/22/2022] Open
Abstract
Endurance exercise performance has been used as a representative index in experimental animal models in the field of health sciences, exercise physiology, comparative physiology, food function or nutritional physiology. The objective of the present study was to evaluate the effectiveness of Fatmax (the exercise intensity that elicits maximal fat oxidation) as an additional index of endurance exercise performance that can be measured during running at submaximal exercise intensity in mice. We measured both Fatmax and Vo2 peak of trained ICR mice that voluntary exercised for 8 weeks and compared them with a sedentary group of mice at multiple inclinations of 20, 30, 40, and 50° on a treadmill. The Vo2 at Fatmax of the training group was significantly higher than that of the sedentary group at inclinations of 30 and 40° (P < 0.001). The running speed at Fatmax of the training group was significantly higher than that of the sedentary group at inclinations of 20, 30, and 40° (P < 0.05). Blood lactate levels sharply increased in the sedentary group (7.33 ± 2.58 mM) compared to the training group (3.13 ± 1.00 mM, P < 0.01) when running speeds exceeded the Fatmax of sedentary mice. Vo2 at Fatmax significantly correlated to Vo2 peak, running time to fatigue, and lactic acid level during running (P < 0.05) although the reproducibility of Vo2 peak was higher than that of Vo2 at Fatmax. In conclusion, Fatmax can be used as a functional assessment of the endurance exercise performance of mice during submaximal exercise intensity.
Collapse
Affiliation(s)
- Kengo Ishihara
- Faculty of Agriculture, Ryukoku University, Shiga, Japan
- * E-mail:
| | | |
Collapse
|
16
|
Schadler KL, Thomas NJ, Galie PA, Bhang DH, Roby KC, Addai P, Till JE, Sturgeon K, Zaslavsky A, Chen CS, Ryeom S. Tumor vessel normalization after aerobic exercise enhances chemotherapeutic efficacy. Oncotarget 2016; 7:65429-65440. [PMID: 27589843 PMCID: PMC5323166 DOI: 10.18632/oncotarget.11748] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/25/2016] [Indexed: 12/22/2022] Open
Abstract
Targeted therapies aimed at tumor vasculature are utilized in combination with chemotherapy to improve drug delivery and efficacy after tumor vascular normalization. Tumor vessels are highly disorganized with disrupted blood flow impeding drug delivery to cancer cells. Although pharmacologic anti-angiogenic therapy can remodel and normalize tumor vessels, there is a limited window of efficacy and these drugs are associated with severe side effects necessitating alternatives for vascular normalization. Recently, moderate aerobic exercise has been shown to induce vascular normalization in mouse models. Here, we provide a mechanistic explanation for the tumor vascular normalization induced by exercise. Shear stress, the mechanical stimuli exerted on endothelial cells by blood flow, modulates vascular integrity. Increasing vascular shear stress through aerobic exercise can alter and remodel blood vessels in normal tissues. Our data in mouse models indicate that activation of calcineurin-NFAT-TSP1 signaling in endothelial cells plays a critical role in exercise-induced shear stress mediated tumor vessel remodeling. We show that moderate aerobic exercise with chemotherapy caused a significantly greater decrease in tumor growth than chemotherapy alone through improved chemotherapy delivery after tumor vascular normalization. Our work suggests that the vascular normalizing effects of aerobic exercise can be an effective chemotherapy adjuvant.
Collapse
Affiliation(s)
- Keri L. Schadler
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Abramson Family Cancer Research Institute, Philadelphia, PA 19104, USA
| | - Nicholas J. Thomas
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Abramson Family Cancer Research Institute, Philadelphia, PA 19104, USA
| | - Peter A. Galie
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dong Ha Bhang
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Abramson Family Cancer Research Institute, Philadelphia, PA 19104, USA
| | - Kerry C. Roby
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Abramson Family Cancer Research Institute, Philadelphia, PA 19104, USA
| | - Prince Addai
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Abramson Family Cancer Research Institute, Philadelphia, PA 19104, USA
| | - Jacob E. Till
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Abramson Family Cancer Research Institute, Philadelphia, PA 19104, USA
| | - Kathleen Sturgeon
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Abramson Family Cancer Research Institute, Philadelphia, PA 19104, USA
| | - Alexander Zaslavsky
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Abramson Family Cancer Research Institute, Philadelphia, PA 19104, USA
| | | | - Sandra Ryeom
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Abramson Family Cancer Research Institute, Philadelphia, PA 19104, USA
| |
Collapse
|
17
|
Ayachi M, Niel R, Momken I, Billat VL, Mille-Hamard L. Validation of a Ramp Running Protocol for Determination of the True VO2max in Mice. Front Physiol 2016; 7:372. [PMID: 27621709 PMCID: PMC5002025 DOI: 10.3389/fphys.2016.00372] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/12/2016] [Indexed: 01/11/2023] Open
Abstract
In the field of comparative physiology, it remains to be established whether the concept of VO2max is valid in the mouse and, if so, how this value can be accurately determined. In humans, VO2max is generally considered to correspond to the plateau observed when VO2 no longer rises with an increase in workload. In contrast, the concept of VO2peak tends to be used in murine studies. The objectives of the present study were to determine whether (i) a continuous ramp protocol yielded a higher VO2peak than a stepwise, incremental protocol, and (ii) the VO2peak measured in the ramp protocol corresponded to VO2max. The three protocols (based on intensity-controlled treadmill running until exhaustion with eight female FVB/N mice) were performed in random order: (a) an incremental protocol that begins at 10 m.min−1 speed and increases by 3 m.min−1 every 3 min. (b) a ramp protocol with slow acceleration (3 m.min−2), and (c) a ramp protocol with fast acceleration (12 m.min−2). Each protocol was performed with two slopes (0 and 25°). Hence, each mouse performed six exercise tests. We found that the value of VO2peak was protocol-dependent (p < 0.05) and was highest (59.0 ml.kg 0.75.min−1) for the 3 m.min−2 0° ramp protocol. In the latter, the presence of a VO2max plateau was associated with the fulfillment of two secondary criteria (a blood lactate concentration >8 mmol.l−1 and a respiratory exchange ratio >1). The total duration of the 3 m.min−2 0° ramp protocol was shorter than that of the incremental protocol. Taken as a whole, our results suggest that VO2max in the mouse is best determined by applying a ramp exercise protocol with slow acceleration and no treadmill slope.
Collapse
Affiliation(s)
- Mohamed Ayachi
- Unité de Biologie Intégrative des Adaptations à l'Exercice, Université d'Evry Val d'Essonne Evry, France
| | - Romain Niel
- Unité de Biologie Intégrative des Adaptations à l'Exercice, Université d'Evry Val d'Essonne Evry, France
| | - Iman Momken
- Unité de Biologie Intégrative des Adaptations à l'Exercice, Université d'Evry Val d'Essonne Evry, France
| | - Véronique L Billat
- Unité de Biologie Intégrative des Adaptations à l'Exercice, Université d'Evry Val d'Essonne Evry, France
| | - Laurence Mille-Hamard
- Unité de Biologie Intégrative des Adaptations à l'Exercice, Université d'Evry Val d'Essonne Evry, France
| |
Collapse
|
18
|
Monestier O, Blanquet V. WFIKKN1 and WFIKKN2: "Companion" proteins regulating TGFB activity. Cytokine Growth Factor Rev 2016; 32:75-84. [PMID: 27325460 DOI: 10.1016/j.cytogfr.2016.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/07/2016] [Accepted: 06/10/2016] [Indexed: 01/14/2023]
Abstract
The WFIKKN (WAP, Follistatin/kazal, Immunoglobulin, Kunitz and Netrin domain-containing) protein family is composed of two multidomain proteins: WFIKKN1 and WFIKKN2. They were formed by domain shuffling and are likely present in deuterostoms. The WFIKKN (also called GASP) proteins are well known for their function in muscle and skeletal tissues, namely, inhibition of certain members of the transforming growth factor beta (TGFB) superfamily such as myostatin (MSTN) and growth and differentiation factor 11 (GDF11). However, the role of the WFIKKN proteins in other tissues is still poorly understood in spite of evidence suggesting possible action in the inner ear, brain and reproduction. Further, several recent studies based on next generation technologies revealed differential expression of WFIKKN1 and WFIKKN2 in various tissues suggesting that their function is not limited to MSTN and GDF11 inhibition in musculoskeletal tissue. In this review, we summarize current knowledge about the WFIKKN proteins and propose that they are "companion" proteins for various growth factors by providing localized and sustained presentation of TGFB proteins to their respective receptors, thus regulating the balance between the activation of Smad and non-Smad pathways by TGFB.
Collapse
Affiliation(s)
- Olivier Monestier
- INRA, UR1037 Laboratory of Fish Physiology and Genomic, Growth and Flesh Quality Group, Campus de Beaulieu, 35000 Rennes, France.
| | - Véronique Blanquet
- INRA, UMR1061 Unité de Génétique Moléculaire Animale, 87060 Limoges, France; Université de Limoges, 87060 Limoges, France.
| |
Collapse
|
19
|
Pichon A, Jeton F, El Hasnaoui-Saadani R, Hagström L, Launay T, Beaudry M, Marchant D, Quidu P, Macarlupu JL, Favret F, Richalet JP, Voituron N. Erythropoietin and the use of a transgenic model of erythropoietin-deficient mice. HYPOXIA 2016; 4:29-39. [PMID: 27800506 PMCID: PMC5085313 DOI: 10.2147/hp.s83540] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Despite its well-known role in red blood cell production, it is now accepted that erythropoietin (Epo) has other physiological functions. Epo and its receptors are expressed in many tissues, such as the brain and heart. The presence of Epo/Epo receptors in these organs suggests other roles than those usually assigned to this protein. Thus, the aim of this review is to describe the effects of Epo deficiency on adaptation to normoxic and hypoxic environments and to suggest a key role of Epo on main physiological adaptive functions. Our original model of Epo-deficient (Epo-TAgh) mice allowed us to improve our knowledge of the possible role of Epo in O2 homeostasis. The use of anemic transgenic mice revealed Epo as a crucial component of adaptation to hypoxia. Epo-TAgh mice survive well in hypoxic conditions despite low hematocrit. Furthermore, Epo plays a key role in neural control of ventilatory acclimatization and response to hypoxia, in deformability of red blood cells, in cerebral and cardiac angiogenesis, and in neuro- and cardioprotection.
Collapse
Affiliation(s)
- Aurélien Pichon
- Laboratory "Hypoxia and Lung" EA 2363, University Paris 13, Sorbonne Paris Cité, Bobigny Cedex; Laboratory of Excellence GR-Ex, Paris; Laboratory MOVE EA 6314, FSS, Poitiers University, Poitiers, France
| | - Florine Jeton
- Laboratory "Hypoxia and Lung" EA 2363, University Paris 13, Sorbonne Paris Cité, Bobigny Cedex; Laboratory of Excellence GR-Ex, Paris
| | | | - Luciana Hagström
- Laboratório Interdisciplinar de Biociências, Universidade de Brasília, Brasília, Brazil
| | - Thierry Launay
- Unité de Biologie Intégrative des Adaptations à l'Exercice, University Paris Saclay and Genopole , University Sorbonne-Paris-Cité, Paris, France
| | - Michèle Beaudry
- Laboratory "Hypoxia and Lung" EA 2363, University Paris 13, Sorbonne Paris Cité, Bobigny Cedex
| | - Dominique Marchant
- Laboratory "Hypoxia and Lung" EA 2363, University Paris 13, Sorbonne Paris Cité, Bobigny Cedex
| | - Patricia Quidu
- Laboratory "Hypoxia and Lung" EA 2363, University Paris 13, Sorbonne Paris Cité, Bobigny Cedex
| | - Jose-Luis Macarlupu
- High Altitude Unit, Laboratories for Research and Development, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Fabrice Favret
- Laboratory "Mitochondrie, Stress Oxydant et Protection Musculaire" EA 3072, University of Strasbourg, Strasbourg, France
| | - Jean-Paul Richalet
- Laboratory "Hypoxia and Lung" EA 2363, University Paris 13, Sorbonne Paris Cité, Bobigny Cedex; Laboratory of Excellence GR-Ex, Paris
| | - Nicolas Voituron
- Laboratory "Hypoxia and Lung" EA 2363, University Paris 13, Sorbonne Paris Cité, Bobigny Cedex; Laboratory of Excellence GR-Ex, Paris
| |
Collapse
|
20
|
Pin F, Busquets S, Toledo M, Camperi A, Lopez-Soriano FJ, Costelli P, Argilés JM, Penna F. Combination of exercise training and erythropoietin prevents cancer-induced muscle alterations. Oncotarget 2015; 6:43202-15. [PMID: 26636649 PMCID: PMC4791226 DOI: 10.18632/oncotarget.6439] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/21/2015] [Indexed: 12/11/2022] Open
Abstract
Cancer cachexia is a syndrome characterized by loss of skeletal muscle mass, inflammation, anorexia and anemia, contributing to patient fatigue and reduced quality of life. In addition to nutritional approaches, exercise training (EX) has been proposed as a suitable tool to manage cachexia. In the present work the effect of mild exercise training, coupled to erythropoietin (EPO) administration to prevent anemia, has been tested in tumor-bearing mice. In the C26 hosts, acute exercise does not prevent and even worsens muscle wasting. Such pattern is prevented by EPO co-administration or by the adoption of a chronic exercise protocol. EX and EPO co-treatment spares oxidative myofibers from atrophy and counteracts the oxidative to glycolytic shift, inducing PGC-1α. LLC hosts are responsive to exercise and their treatment with the EX-EPO combination prevents the loss of muscle strength and the onset of mitochondrial ultrastructural alterations, while increases muscle oxidative capacity and intracellular ATP content, likely depending on PGC-1α induction and mitophagy promotion. Consistently, muscle-specific PGC-1α overexpression prevents LLC-induced muscle atrophy and Atrogin-1 hyperexpression. Overall, the present data suggest that low intensisty exercise can be an effective tool to be included in combined therapeutic approaches against cancer cachexia, provided that anemia is coincidently treated in order to enhance the beneficial action of exercise.
Collapse
MESH Headings
- Anemia/drug therapy
- Anemia/etiology
- Animals
- Blotting, Western
- Cachexia/etiology
- Cachexia/prevention & control
- Disease Models, Animal
- Epoetin Alfa/pharmacology
- Exercise Therapy/methods
- Female
- Hematinics/pharmacology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Microscopy, Electron, Transmission
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/pathology
- Muscular Atrophy/etiology
- Muscular Atrophy/prevention & control
- Neoplasms, Experimental/complications
- Physical Conditioning, Animal
- Real-Time Polymerase Chain Reaction
Collapse
Affiliation(s)
- Fabrizio Pin
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Silvia Busquets
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Miriam Toledo
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Andrea Camperi
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Francisco J. Lopez-Soriano
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Paola Costelli
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Josep M. Argilés
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Fabio Penna
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| |
Collapse
|
21
|
Rivara MB, Ikizler TA, Ellis CD, Mehrotra R, Himmelfarb J. Association of plasma F2-isoprostanes and isofurans concentrations with erythropoiesis-stimulating agent resistance in maintenance hemodialysis patients. BMC Nephrol 2015; 16:79. [PMID: 26045064 PMCID: PMC4455324 DOI: 10.1186/s12882-015-0074-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 05/21/2015] [Indexed: 12/21/2022] Open
Abstract
Background In patients undergoing maintenance hemodialysis (HD), hyporesponsiveness to erythropoiesis stimulating agents (ESAs) is associated with adverse clinical outcomes. Systemic inflammation is highly prevalent in HD patients and is associated with ESA hyporesponsiveness. Oxidative stress is also highly prevalent in HD patients, but no previous study has determined its association with ESA response. This study assessed the association of plasma markers of oxidative stress and inflammation with ESA resistance in patients undergoing maintenance HD. Methods We analyzed data from 165 patients enrolled in the Provision of Antioxidant Therapy in Hemodialysis study, a randomized controlled trial evaluating antioxidant therapy in prevalent HD patients. Linear and mixed-effects regression were used to assess the association of baseline and time-averaged high sensitivity F2-isoprostanes, isofurans, C-reactive protein (hsCRP), and interleukin-6 (IL-6) with ESA resistance index (ERI), defined as the weekly weight-adjusted ESA dose divided by blood hemoglobin level. Unadjusted models as well as models adjusted for potential confounders were examined. Predicted changes in ERI per month over study follow-up among baseline biomarker quartiles were also assessed. Results Patients with time-averaged isofurans in the highest quartile had higher adjusted mean ERI compared with patients in the lowest quartile (β = 14.9 ng/ml; 95 % CI 7.70, 22.2; reference group <0.26 ng/ml). The highest quartiles of hsCRP and IL-6 were also associated with higher adjusted mean ERI (β = 10.8 mg/l; 95 % CI 3.52, 18.1 for hsCRP; β = 10.2 pg/ml; 95 % CI 2.98, 17.5 for IL-6). No significant association of F2-isoprostanes concentrations with ERI was observed. Analyses restricted to baseline exposures and ERI showed similar results. Baseline hsCRP, IL-6, and isofurans concentrations in the highest quartiles were associated with greater predicted change in ERI over study follow-up compared to the lowest quartiles (P = 0.008, P = 0.004, and P = 0.04, respectively). There was no association between baseline F2-isoprostanes quartile and change in ERI. Conclusions In conclusion, higher concentrations of isofurans, hsCRP and IL-6, but not F2-isoprostanes, were associated with greater resistance to ESAs in prevalent HD patients. Further research is needed to test whether interventions that successfully decrease oxidative stress and inflammation in patients undergoing maintenance HD improve ESA responsiveness. Electronic supplementary material The online version of this article (doi:10.1186/s12882-015-0074-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthew B Rivara
- Division of Nephrology, Department of Medicine, University of Washington, Box 359606, 325 9th Ave., Seattle, WA, 98104, USA. .,Kidney Research Institute, Seattle, WA, USA.
| | - T Alp Ikizler
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA. .,Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Charles D Ellis
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA. .,Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Rajnish Mehrotra
- Division of Nephrology, Department of Medicine, University of Washington, Box 359606, 325 9th Ave., Seattle, WA, 98104, USA. .,Kidney Research Institute, Seattle, WA, USA.
| | - Jonathan Himmelfarb
- Division of Nephrology, Department of Medicine, University of Washington, Box 359606, 325 9th Ave., Seattle, WA, 98104, USA. .,Kidney Research Institute, Seattle, WA, USA.
| |
Collapse
|
22
|
Sturgeon K, Muthukumaran G, Ding D, Bajulaiye A, Ferrari V, Libonati JR. Moderate-intensity treadmill exercise training decreases murine cardiomyocyte cross-sectional area. Physiol Rep 2015; 3:3/5/e12406. [PMID: 25991723 PMCID: PMC4463834 DOI: 10.14814/phy2.12406] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The aim of this study was to examine the impact of moderate-intensity treadmill exercise on the structure and function of the murine heart and its associated impact on Akt–AMPK–mTOR signaling. A secondary aim was to test whether the exercise phenotype was altered following a cardiotoxic bolus dose of doxorubicin (DOX). Two-month-old C57Bl/6J female mice remained sedentary (SED, n = 12) or were progressively trained with treadmill running for 2 months up to 18 m/min; 60 min/day, 5 days/weeks (EX, n = 11) or EX + DOX (15 mg/kg/dose) (EX + DOX, n = 6). Following treadmill training, mice underwent graded exercise tolerance testing and echocardiography. Training improved graded exercise tolerance by 68 ± 5% relative to SED, and this effect was not altered with bolus DOX. There were no changes in relative heart size with EX or EX + DOX versus SED. Regional posterior wall thickening was improved in EX and abrogated in EX + DOX. EX had a reduced cardiomyocyte cross-sectional area (CSA) relative to SED, and CSA was further attenuated with DOX. Following EX, AMPK-associated phosphorylation of ULK1(ser317) tended to be lower relative to SED. Akt-associated phosphorylation of TSC2(thr1462) and mTOR(ser2448) were also decreased relative to SED. We observed an increase in AMPK activity with DOX that was not translated to downstream AMPK phosphorylation sites. We conclude that 2 months of moderate treadmill exercise training improves regional cardiac function and exercise capacity, but does not induce relative physiologic hypertrophy in female mice. Differential responses in Akt–AMPK–mTOR signaling may mediate the observed phenotype.
Collapse
Affiliation(s)
- Kathleen Sturgeon
- School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Dennis Ding
- School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Akinyemi Bajulaiye
- School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Victor Ferrari
- School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joseph R Libonati
- School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
23
|
Christensen B, Nellemann B, Thorsen K, Nielsen MM, Pedersen SB, Ornstrup MJ, JØrgensen JOL, Jessen N. Prolonged erythropoietin treatment does not impact gene expression in human skeletal muscle. Muscle Nerve 2015; 51:554-61. [PMID: 25088500 DOI: 10.1002/mus.24355] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2014] [Indexed: 01/12/2023]
Abstract
INTRODUCTION We tested for the presence of erythropoietin receptor (Epo-R) in human skeletal muscle and alterations in gene expression after prolonged use of an erythropoiesis-stimulating agent (ESA). METHODS Nine healthy men were treated with ESA for 10 weeks (darbepoietin alfa). Muscle biopsies were collected before and after treatment. Alterations in gene expression were evaluated by gene array. Western blot and PCR analysis were used to test for Epo-R presence in human skeletal muscle. RESULTS Very low Epo-R mRNA levels were found, but a new and sensitive antibody did not identify Epo-R protein in human skeletal muscle. The between-subject variation in skeletal muscle gene expression was greater than that observed in response to prolonged ESA treatment. CONCLUSIONS Erythropoietin is unlikely to exert direct effects in human skeletal muscle due to a lack of Epo-R protein. Furthermore, prolonged ESA treatment does not seem to exert either direct or indirect effects on skeletal muscle gene expression.
Collapse
Affiliation(s)
- Britt Christensen
- Department of Endocrinology and Internal Medicine, NBG/THG, Aarhus University Hospital, Aarhus, Denmark; Medical Research Laboratories, Aarhus University, Aarhus, Denmark; Section of Sports Sciences, Institute of Public Health, Aarhus University, Aarhus, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Exercise is the archetype of physiologic demands placed on the cardiovascular system. Acute responses provide an informative assessment of cardiovascular function and fitness, while repeated exercise promotes cardiovascular health and evokes important molecular, structural, and functional changes contributing to its effects in primary and secondary prevention. Here we examine the use of exercise in murine models, both as a phenotypic assay and as a provocative intervention. We first review the advantages and limitations of exercise testing for assessing cardiac function, then highlight the cardiac structural and cellular changes elicited by chronic exercise and key molecular pathways that mediate these effects.
Collapse
Affiliation(s)
- Colin Platt
- Cardiovascular Division of the Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215
| | - Nicholas Houstis
- Cardiovascular Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115
| | - Anthony Rosenzweig
- Cardiovascular Division of the Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215.,Cardiovascular Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115
| |
Collapse
|
25
|
Bishop-Bailey D. Mechanisms governing the health and performance benefits of exercise. Br J Pharmacol 2014; 170:1153-66. [PMID: 24033098 DOI: 10.1111/bph.12399] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 07/18/2013] [Accepted: 07/23/2013] [Indexed: 12/18/2022] Open
Abstract
Humans are considered among the greatest if not the greatest endurance land animals. Over the last 50 years, as the population has become more sedentary, rates of cardiovascular disease and its associated risk factors such as obesity, type 2 diabetes and hypertension have all increased. Aerobic fitness is considered protective for all-cause mortality, cardiovascular disease, a variety of cancers, joint disease and depression. Here, I will review the emerging mechanisms that underlie the response to exercise, focusing on the major target organ the skeletal muscle system. Understanding the mechanisms of action of exercise will allow us to develop new therapies that mimic the protective actions of exercise.
Collapse
Affiliation(s)
- D Bishop-Bailey
- Comparative Biomedical Sciences, The Royal Veterinary College, London, UK
| |
Collapse
|
26
|
Benech PD, Patatian A. From experimental design to functional gene networks: DNA microarray contribution to skin ageing research. Int J Cosmet Sci 2014; 36:516-26. [PMID: 25066132 DOI: 10.1111/ics.12155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 06/28/2014] [Indexed: 12/21/2022]
Abstract
There is no doubt that the DNA microarray-based technology contributed to increase our knowledge of a wide range of processes. However, integrating genes into functional networks, rather than terms describing generic characteristics, remains an important challenge. The highly context-dependent function of a given gene and feedback mechanisms complexify greatly the interpretation of the data. Moreover, it is difficult to determine whether changes in gene expression are the result or the cause of pathologies or physiological events. In both cases, the difficulty relies on the involvement of processes that, at an early stage, can be protective and later on, deleterious because of their runaway. Each individual cell has its own transcription profile that determines its behaviour and its relationships with its neighbours. This is particularly true when a mechanism such as cell cycle is concerned. Another issue concerns the analyses from samples of different donors. Whereas the statistical tools lead to determine common features among groups, they tend to smooth the overall data and consequently, the selected values represent the 'tip of the iceberg'. There is a significant overlap in the set of genes identified in the different studies on skin ageing processes described in the present review. The reason of this overlap is because most of these genes belong to the basic machinery controlling cell growth and arrest. To get a more full picture of these processes, a hard work has still to be done to determine the precise mechanisms conferring the cell type specificity of ageing. Integrative biology applied to the huge amount of existing microarray data should fulfil gaps, through the characterization of additional actors accounting for the activation of specific signalling pathways at crossing points. Furthermore, computational tools have to be developed taking into account that expression values among similar groups may not vary 'by chance' but may reflect, along with other subtle changes, specific features of one given donor. Through a better stratification, these tools will allow to recover genes from the 'bottom of the iceberg'. Identifying these genes should contribute to understand how skin ages among individuals, thus paving the way for personalized skin care.
Collapse
Affiliation(s)
- P D Benech
- UMR 7259 (NICN) CNRS - Aix-Marseille Université, Faculté de Médecine Secteur Nord, CS80011, 51 Bd Pierre Dramard, Marseille CEDEX 15, 13344, France
| | | |
Collapse
|
27
|
Landel V, Baranger K, Virard I, Loriod B, Khrestchatisky M, Rivera S, Benech P, Féron F. Temporal gene profiling of the 5XFAD transgenic mouse model highlights the importance of microglial activation in Alzheimer's disease. Mol Neurodegener 2014; 9:33. [PMID: 25213090 PMCID: PMC4237952 DOI: 10.1186/1750-1326-9-33] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/27/2014] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The 5XFAD early onset mouse model of Alzheimer's disease (AD) is gaining momentum. Behavioral, electrophysiological and anatomical studies have identified age-dependent alterations that can be reminiscent of human AD. However, transcriptional changes during disease progression have not yet been investigated. To this end, we carried out a transcriptomic analysis on RNAs from the neocortex and the hippocampus of 5XFAD female mice at the ages of one, four, six and nine months (M1, M4, M6, M9). RESULTS Our results show a clear shift in gene expression patterns between M1 and M4. At M1, 5XFAD animals exhibit region-specific variations in gene expression patterns whereas M4 to M9 mice share a larger proportion of differentially expressed genes (DEGs) that are common to both regions. Analysis of DEGs from M4 to M9 underlines the predominance of inflammatory and immune processes in this AD mouse model. The rise in inflammation, sustained by the overexpression of genes from the complement and integrin families, is accompanied by an increased expression of transcripts involved in the NADPH oxidase complex, phagocytic processes and IFN-γ related pathways. CONCLUSIONS Overall, our data suggest that, from M4 to M9, sustained microglial activation becomes the predominant feature and point out that both detrimental and neuroprotective mechanisms appear to be at play in this model. Furthermore, our study identifies a number of genes already known to be altered in human AD, thus confirming the use of the 5XFAD strain as a valid model for understanding AD pathogenesis and for screening potential therapeutic molecules.
Collapse
Affiliation(s)
- Véréna Landel
- Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France
| | - Kévin Baranger
- Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France
- APHM, Hôpitaux de la Timone, Service de Neurologie et Neuropsychologie, 13385 Marseille, France
| | - Isabelle Virard
- Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France
| | - Béatrice Loriod
- Aix Marseille Université, TAGC UMR 1090, 13288 Marseille, France
- INSERM, TAGC UMR 1090, 13288 Marseille, France
| | | | - Santiago Rivera
- Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France
| | - Philippe Benech
- Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France
| | - François Féron
- Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France
| |
Collapse
|
28
|
Morawin B, Turowski D, Naczk M, Siatkowski I, Zembron-Lacny A. THE COMBINATION OF α-LIPOIC ACID INTAKE WITH ECCENTRIC EXERCISE MODULATES ERYTHROPOIETIN RELEASE. Biol Sport 2014; 31:179-85. [PMID: 25177095 PMCID: PMC4135061 DOI: 10.5604/20831862.1111435] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2014] [Indexed: 12/19/2022] Open
Abstract
The generation of reactive nitrogen/oxygen species (RN/OS) represents an important mechanism in erythropoietin (EPO) expression and skeletal muscle adaptation to physical and metabolic stress. RN/OS generation can be modulated by intense exercise and nutrition supplements such as α-lipoic acid, which demonstrates both anti- and pro-oxidative action. The study was designed to show the changes in the haematological response through the combination of α-lipoic acid intake with running eccentric exercise. Sixteen healthy young males participated in the randomised and placebo-controlled study. The exercise trial involved a 90-min run followed by a 15-min eccentric phase at 65% VO2max (-10% gradient). It significantly increased serum concentrations of nitric oxide (NO), hydrogen peroxide (H2O2) and pro-oxidative products such as 8-isoprostanes (8-iso), lipid peroxides (LPO) and protein carbonyls (PC). α-Lipoic acid intake (Thiogamma: 1200 mg daily for 10 days prior to exercise) resulted in a 2-fold elevation of serum H2O2 concentration before exercise, but it prevented the generation of NO, 8-iso, LPO and PC at 20 min, 24 h, and 48 h after exercise. α-Lipoic acid also elevated serum EPO level, which highly correlated with NO/H2O2 ratio (r = 0.718, P < 0.01). Serum total creatine kinase (CK) activity, as a marker of muscle damage, reached a peak at 24 h after exercise (placebo 732 ± 207 IU · L-1, α-lipoic acid 481 ± 103 IU · L-1), and correlated with EPO (r = 0.478, P < 0.01) in the α-lipoic acid group. In conclusion, the intake of high α-lipoic acid modulates RN/OS generation, enhances EPO release and reduces muscle damage after running eccentric exercise.
Collapse
Affiliation(s)
- B Morawin
- University School of Physical Education in Poznan, Poland
| | - D Turowski
- Department of Biochemistry, Institute of Sport, Warsaw, Poland
| | - M Naczk
- University School of Physical Education in Poznan, Poland
| | - I Siatkowski
- Department of Mathematical and Statistical Methods, Poznan University of Life Sciences, Poland
| | - A Zembron-Lacny
- Department of Biology Basis of Physical Education and Sport, University of Zielona Gora, Poland
| |
Collapse
|
29
|
Efficacy of a Botanical Supplement with Concentrated Echinacea purpurea for Increasing Aerobic Capacity. ISRN NUTRITION 2014; 2014:149549. [PMID: 24967264 PMCID: PMC4045287 DOI: 10.1155/2014/149549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/03/2013] [Indexed: 12/28/2022]
Abstract
The present investigation evaluated the efficacy of a botanical supplement that delivered a concentrated dose of Echinacea purpurea (8 grams day−1). The participants were 13 apparently healthy, recreationally active college students (VO2 max: 51 mL O2/kg∗min). The participants were provided with a 30-day supplementation regime. Data regarding maximum aerobic capacity was collected through pre- and posttesting surrounding the 30-day supplementation regime. The participants were instructed to maintain normal levels of physical activity and exercise during the experimental period. The levels of physical activity and exercise were monitored via the Leisure and Physical Activity Survey. The participants did not report any significant increases in aerobic physical activity or exercise during the supplementation period. Paired samples t-test analysis did not reveal a significant difference in maximum aerobic capacity, t(12) = 0.67, P = .516. Presupplementation maximum aerobic capacity (M = 51.0, SD = 6.8) was similar to postsupplementation values (M = 51.8, SD = 6.5). This study suggests that botanical supplements containing a concentrated dose of Echinacea purpurea is not an effective intervention to increase aerobic capacity of recreationally active individuals.
Collapse
|
30
|
Campen MJ, Paffett ML, Colombo ES, Lucas SN, Anderson T, Nysus M, Norenberg JP, Gershman B, Hesterman J, Hoppin J, Willis M. Muscle RING finger-1 promotes a maladaptive phenotype in chronic hypoxia-induced right ventricular remodeling. PLoS One 2014; 9:e97084. [PMID: 24811453 PMCID: PMC4014601 DOI: 10.1371/journal.pone.0097084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/14/2014] [Indexed: 11/18/2022] Open
Abstract
Exposure to chronic hypoxia (CH) induces elevated pulmonary artery pressure/resistance, leading to an eventual maladaptive right ventricular hypertrophy (RVH). Muscle RING finger-1 (MuRF1) is a muscle-specific ubiquitin ligase that mediates myocyte atrophy and has been shown to play a role in left ventricular hypertrophy and altered cardiac bioenergetics in pressure overloaded hearts. However, little is known about the contribution of MuRF1 impacting RVH in the setting of CH. Therefore, we hypothesized that MuRF1 deletion would enhance RVH compared to their wild-type littermates, while cardiac-specific overexpression would reduce hypertrophy following CH-induced pulmonary hypertension. We assessed right ventricular systolic pressure (RVSP), right ventricle to left ventricle plus septal weight ratio (RV/LV+S) and hematocrit (Hct) following a 3-wk isobaric CH exposure. Additionally, we conducted dual-isotope SPECT/CT imaging with cardiac function agent 201Tl-chloride and cell death agent 99mTc-annexin V. Predictably, CH induced pulmonary hypertension, measured by increased RVSP, RV/LV+S and Hct in WT mice compared to normoxic WT mice. Normoxic WT and MuRF1-null mice exhibited no significant differences in RVSP, RV/LV+S or Hct. CH-induced increases in RVSP were also similar between WT and MuRF1-null mice; however, RV/LV+S and Hct were significantly elevated in CH-exposed MuRF1-null mice compared to WT. In cardiac-specific MuRF1 overexpressing mice, RV/LV+S increased significantly due to CH exposure, even greater than in WT mice. This remodeling appeared eccentric, maladaptive and led to reduced systemic perfusion. In conclusion, these results are consistent with an atrophic role for MuRF1 regulating the magnitude of right ventricular hypertrophy following CH-induction of pulmonary hypertension.
Collapse
Affiliation(s)
- Matthew J. Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
- * E-mail:
| | - Michael L. Paffett
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - E. Sage Colombo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Selita N. Lucas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Tamara Anderson
- Radiopharmaceutical Sciences Program, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Monique Nysus
- Radiopharmaceutical Sciences Program, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Jeffrey P. Norenberg
- Radiopharmaceutical Sciences Program, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Ben Gershman
- inviCRO, LLC., Boston, Massachusetts, United States of America
| | - Jacob Hesterman
- inviCRO, LLC., Boston, Massachusetts, United States of America
| | - Jack Hoppin
- inviCRO, LLC., Boston, Massachusetts, United States of America
| | - Monte Willis
- McAllister Heart Institute and Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
31
|
Lamon S, Russell AP. The role and regulation of erythropoietin (EPO) and its receptor in skeletal muscle: how much do we really know? Front Physiol 2013; 4:176. [PMID: 23874302 PMCID: PMC3710958 DOI: 10.3389/fphys.2013.00176] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 06/22/2013] [Indexed: 12/22/2022] Open
Abstract
Erythropoietin (EPO) primarily activates erythroid cell proliferation and growth and is active in several types of non-hematopoietic cells via its interaction with the EPO-receptor (EPO-R). This review focuses on the role of EPO in skeletal muscle. The EPO-R is expressed in skeletal muscle cells and EPO may promote myoblast differentiation and survival via the activation of the same signaling cascades as in hematopoietic cells, such as STAT5, MAPK and Akt. Inconsistent results exist with respect to the detection of the EPO-R mRNA and protein in muscle cells, tissue and across species and the use of non-specific EPO-R antibodies contributes to this problem. Additionally, the inability to reproducibly detect an activation of the known EPO-induced signaling pathways in skeletal muscle questions the functionality of the EPO-R in muscle in vivo. These equivocal findings make it difficult to distinguish between a direct effect of EPO on skeletal muscle, via the activation of its receptor, and an indirect effect resulting from a better oxygen supply to the muscle. Consequently, the precise role of EPO in skeletal muscle and its regulatory mechanism/s remain to be elucidated. Further studies are required to comprehensively establish the importance of EPO and its function in skeletal muscle health.
Collapse
Affiliation(s)
- Séverine Lamon
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University Burwood, VIC, Australia
| | | |
Collapse
|