1
|
Lawson LP, Parameswaran S, Panganiban RA, Constantine GM, Weirauch MT, Kottyan LC. Update on the genetics of allergic diseases. J Allergy Clin Immunol 2025:S0091-6749(25)00327-6. [PMID: 40139464 DOI: 10.1016/j.jaci.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/24/2025] [Accepted: 03/09/2025] [Indexed: 03/29/2025]
Abstract
The field of genetic etiology of allergic diseases has advanced significantly in recent years. Shared risk loci reflect the contribution of genetic factors to the sequential development of allergic conditions across the atopic march, while unique risk loci provide opportunities to understand tissue specific manifestations of allergic disease. Most identified risk variants are noncoding, indicating that they likely influence gene expression through gene regulatory mechanisms. Despite recent advances, challenges persist, particularly regarding the need for increased ancestral diversity in research populations. Further, while polygenic risk scores show promise for identifying individuals at higher genetic risk for allergic diseases, their predictive accuracy varies across different ancestries and can be difficult to translate to an individual's absolute risk of developing a disease. Methodologies, including "nearest gene," 3D chromatin interaction analysis, expression quantitative trait locus analysis, experimental screens, and integrative bioinformatic models, have established connections between genetic variants and their regulatory targets, enhancing our understanding of disease risk and phenotypic variability. In this review, we focus on the state of knowledge of allergic sensitization and 5 allergic diseases: asthma, atopic dermatitis, allergic rhinitis, food allergy, and eosinophilic esophagitis. We summarize recent progress and highlight opportunities for advancing our understanding of their genetic etiology.
Collapse
Affiliation(s)
- Lucinda P Lawson
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Ronald A Panganiban
- Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Gregory M Constantine
- Human Eosinophil Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, Md
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Leah C Kottyan
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
2
|
Solé D, Kuschnir FC, Pastorino AC, Constantino CF, Galvão C, Chong E Silva DC, Baptistella E, Goudouris ES, Sakano E, Ejzenbaum F, Matsumoto FY, Mizoguchi FM, Aarestrup FM, Wandalsen GF, Chong Neto HJ, Brito de Oliveira JV, Lubianca Neto JF, Rizzo MCV, Silva Chavarria MLF, Urrutia-Pereira M, Filho NAR, de Paula Motta Rubini N, Mion O, Piltcher OB, Ramos RT, Francesco RD, Roithmann R, Anselmo-Lima WT, Romano FR, de Mello Júnior JF. V Brazilian Consensus on Rhinitis - 2024. Braz J Otorhinolaryngol 2025; 91:101500. [PMID: 39388827 PMCID: PMC11497470 DOI: 10.1016/j.bjorl.2024.101500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 10/12/2024] Open
Abstract
Since we published the "IV Brazilian Consensus on Rhinitis", in2017, several advances have been achieved and have enabled a further understanding of the different aspects of "Rhinitis". This new guideline, developed jointly by ASBAI, SBP and SBORL, represents a relevant milestone in the updated and integrated management of the different forms of the disease, and it aims to unify evidence-based approaches to improve the diagnosis and treatment of this common and often underestimated condition. The document covers a wide range of topics, including clear definitions of the different phenotypes and endotypes of rhinitis, risk factors, updated diagnostic criteria, and recommended methods for clinical and laboratory investigation. We stress the importance of detailed clinical history and objective assessment, as well as tools for control and assessing severity tools an accurate diagnostic approach to the disease. Regarding treatment, it emphasizes the treatment customization, considering the severity of symptoms, the presence of comorbidities and the impact on the patient's quality of life. We discuss different drug treatment, in addition to non-pharmacological measures, such as environmental control and specific immunotherapy; and the possible role of immunobiological agents. Furthermore, the consensus addresses issues related to patient education, prevention and management of special situations, such as rhinitis in children, in pregnant women and in the elderly. In short, the "V Brazilian Consensus on Rhinitis" represents a comprehensive and updated guide for healthcare professionals involved in the diagnosis and management of rhinitis, aiming to improve patients' quality of life through an integrated and evidence-based approach.
Collapse
Affiliation(s)
- Dirceu Solé
- Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil; Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil
| | - Fábio Chigres Kuschnir
- Associação Brasileira de Alergia e Imunologia, São Paulo, SP, Brazil; Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Antônio Carlos Pastorino
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade de São Paulo, São Paulo, SP, Brazil
| | - Clóvis F Constantino
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade de Santo Amaro, São Paulo, SP, Brazil
| | - Clóvis Galvão
- Associação Brasileira de Alergia e Imunologia, São Paulo, SP, Brazil; Universidade de São Paulo, São Paulo, SP, Brazil
| | - Débora Carla Chong E Silva
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade Federal do Paraná́, Curitiba, PR, Brazil
| | - Eduardo Baptistella
- Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil
| | - Ekaterini Simões Goudouris
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Eulália Sakano
- Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil; Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Fábio Ejzenbaum
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, SP, Brazil
| | - Fausto Yoshio Matsumoto
- Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil; Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil
| | - Flavio Massao Mizoguchi
- Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil
| | - Fernando Monteiro Aarestrup
- Associação Brasileira de Alergia e Imunologia, São Paulo, SP, Brazil; Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Gustavo F Wandalsen
- Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil; Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil
| | - Herberto José Chong Neto
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade Federal do Paraná́, Curitiba, PR, Brazil
| | | | - José Faibes Lubianca Neto
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Fundação Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | | | | | - Marilyn Urrutia-Pereira
- Associação Brasileira de Alergia e Imunologia, São Paulo, SP, Brazil; Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Nelson Augusto Rosário Filho
- Associação Brasileira de Alergia e Imunologia, São Paulo, SP, Brazil; Universidade Federal do Paraná́, Curitiba, PR, Brazil
| | - Norma de Paula Motta Rubini
- Associação Brasileira de Alergia e Imunologia, São Paulo, SP, Brazil; Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Olavo Mion
- Universidade de São Paulo, São Paulo, SP, Brazil; Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil
| | - Otávio Bejzman Piltcher
- Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil; Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazi
| | - Regina Terse Ramos
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Renata Di Francesco
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade de São Paulo, São Paulo, SP, Brazil
| | - Renato Roithmann
- Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil; Universidade Luterana do Brasil, Canos, RS, Brazil
| | - Wilma Terezinha Anselmo-Lima
- Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil; Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Fabrizio Ricci Romano
- Universidade de São Paulo, São Paulo, SP, Brazil; Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil
| | - João Ferreira de Mello Júnior
- Universidade de São Paulo, São Paulo, SP, Brazil; Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Cheng M, Dai Q, Liu Z, Wang Y, Zhou C. New progress in pediatric allergic rhinitis. Front Immunol 2024; 15:1452410. [PMID: 39351215 PMCID: PMC11439695 DOI: 10.3389/fimmu.2024.1452410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
The prevalence of allergic rhinitis (AR) in children is steadily increasing, and its onset is closely associated with genetic factors, living environment, and exposure to allergens. In recent years, an increasing number of diagnostic methods have been employed to assist in diagnosing AR. In addition to pharmaceutical treatments, personalized approaches such as environmental control and allergen-specific immunotherapy are gradually gaining popularity. In this article, we reviewed recent research on the etiology, diagnostic classification, treatment methods, and health management of AR in children. These insights will benefit the implementation of personalized diagnosis and treatment for children with AR, promoting health management strategies that improve symptoms and quality of life.
Collapse
Affiliation(s)
- Miao Cheng
- Department of Ophthalmology and Otolaryngology, Jingmen Centra Hospital, Jingmen Central Hospital Affiliated to Jingchu University of Technology, Jingmen, Hubei, China
| | - Qianqian Dai
- Department of Infectious Disease, Jingmen Central Hospital, Jingmen Central Hospital Affiliated to Jingchu University of Technology, Jingmen, Hubei, China
| | - Zhi Liu
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yulin Wang
- Department of Pediatrics, Jingmen Central Hospital, Jingmen Central Hospital affiliated to Jingchu University of Technology, Jingmen, Hubei, China
| | - Cuiyun Zhou
- Department of Ophthalmology and Otolaryngology, Jingmen Centra Hospital, Jingmen Central Hospital Affiliated to Jingchu University of Technology, Jingmen, Hubei, China
| |
Collapse
|
4
|
Yuan H, Wang L, Wang S, Li L, Liu Q, Wang Y, Yang Y, Zhang H. Two-stage association study of mitochondrial DNA variants in allergic rhinitis. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2024; 20:16. [PMID: 38395967 PMCID: PMC10893604 DOI: 10.1186/s13223-024-00881-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Correlations between mitochondrial DNA (mtDNA) and allergic rhinitis (AR) have not been reported before. This study aimed to better understand the mitochondrial genome profile with AR and to investigate the associations between AR in China and the mitochondrial genome at a single variant and gene level. METHODS Mitochondrial sequencing was conducted on a total of 134 unrelated individual subjects (68 patients with AR, 66 healthy controls) at discovery stage. Heteroplasmy was analyzed using the Mann-Whitney U test. Sequence kernel association tests (SKAT) were conducted to study the association between mitochondrial genes and AR. Single-variant analysis was performed using logistic regression analysis and further validated in 120 subjects (69 patients with AR, 51 healthy controls). Candidate genes were further explored based on differences in mRNA and protein abundance in nasal mucosal tissue. RESULTS In the discovery stage, 886 variants, including 836 SNV and 50 indels, were identified with mitochondrial sequencing. No statistically significant differences were identified for the mitochondrial heteroplasmy or SKAT analysis between these two groups after applying a Boferroni correction. One nonsynonymous variants, rs3135028 (MT8584.G/A) in ATP6, was related to a reduced risk of AR in both the discovery and validation cohorts. Furthermore, mRNA levels of MT-ATP6 in nasal mucosal tissue were significantly lower in AR individuals than in controls (P < 0.05). CONCLUSIONS In a two-stage analysis of associations between AR and mtDNA variations, mitochondrial gene maps of Chinese patients with AR indicated that the ATP6 gene was probably associated with AR at the single-variant level.
Collapse
Affiliation(s)
- Huajie Yuan
- Department of Otolaryngology, Xinjiang Medical University Affiliated First Hospital, 137 Liyushan Avenue, Xinshi District, Urumqi, 830054, Xinjiang, China
| | - Lingling Wang
- Department of Otolaryngology, Xinjiang Medical University Affiliated First Hospital, 137 Liyushan Avenue, Xinshi District, Urumqi, 830054, Xinjiang, China
| | - Song Wang
- Department of Otolaryngology, Xinjiang Medical University Affiliated First Hospital, 137 Liyushan Avenue, Xinshi District, Urumqi, 830054, Xinjiang, China
| | - Linge Li
- Department of Otolaryngology, Xinjiang Medical University Affiliated First Hospital, 137 Liyushan Avenue, Xinshi District, Urumqi, 830054, Xinjiang, China
| | - Qingping Liu
- Department of Otolaryngology, Xinjiang Medical University Affiliated First Hospital, 137 Liyushan Avenue, Xinshi District, Urumqi, 830054, Xinjiang, China
| | - Yan Wang
- Department of Otolaryngology, Xinjiang Medical University Affiliated First Hospital, 137 Liyushan Avenue, Xinshi District, Urumqi, 830054, Xinjiang, China
| | - Yuping Yang
- Department of Otolaryngology, Xinjiang Medical University Affiliated First Hospital, 137 Liyushan Avenue, Xinshi District, Urumqi, 830054, Xinjiang, China
| | - Hua Zhang
- Department of Otolaryngology, Xinjiang Medical University Affiliated First Hospital, 137 Liyushan Avenue, Xinshi District, Urumqi, 830054, Xinjiang, China.
| |
Collapse
|
5
|
Saarentaus EC, Karjalainen J, Rämö JT, Kiiskinen T, Havulinna AS, Mehtonen J, Hautakangas H, Ruotsalainen S, Tamlander M, Mars N, Toppila-Salmi S, Pirinen M, Kurki M, Ripatti S, Daly M, Palotie T, Mäkitie A, Palotie A. Inflammatory and infectious upper respiratory diseases associate with 41 genomic loci and type 2 inflammation. Nat Commun 2023; 14:83. [PMID: 36653354 PMCID: PMC9849224 DOI: 10.1038/s41467-022-33626-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/26/2022] [Indexed: 01/19/2023] Open
Abstract
Inflammatory and infectious upper respiratory diseases (ICD-10: J30-J39), such as diseases of the sinonasal tract, pharynx and larynx, are growing health problems yet their genomic similarity is not known. We analyze genome-wide association to eight upper respiratory diseases (61,195 cases) among 260,405 FinnGen participants, meta-analyzing diseases in four groups based on an underlying genetic correlation structure. Aiming to understand which genetic loci contribute to susceptibility to upper respiratory diseases in general and its subtypes, we detect 41 independent genome-wide significant loci, distinguishing impact on sinonasal or pharyngeal diseases, or both. Fine-mapping implicated non-synonymous variants in nine genes, including three linked to immune-related diseases. Phenome-wide analysis implicated asthma and atopic dermatitis at sinonasal disease loci, and inflammatory bowel diseases and other immune-mediated disorders at pharyngeal disease loci. Upper respiratory diseases also genetically correlated with autoimmune diseases such as rheumatoid arthritis, autoimmune hypothyroidism, and psoriasis. Finally, we associated separate gene pathways in sinonasal and pharyngeal diseases that both contribute to type 2 immunological reaction. We show shared heritability among upper respiratory diseases that extends to several immune-mediated diseases with diverse mechanisms, such as type 2 high inflammation.
Collapse
Affiliation(s)
- Elmo C Saarentaus
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Juha Karjalainen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Joel T Rämö
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Tuomo Kiiskinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Aki S Havulinna
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Juha Mehtonen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Heidi Hautakangas
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sanni Ruotsalainen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Max Tamlander
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Nina Mars
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sanna Toppila-Salmi
- Skin and Allergy Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Matti Pirinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
- Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mitja Kurki
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mark Daly
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Tuula Palotie
- Orthodontics, Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Oral and Maxillofacial Diseases, Helsinki University Hospital, Helsinki, Finland
| | - Antti Mäkitie
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Analytic and Translational Genetics Unit, Department of Medicine, Department of Neurology and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
6
|
RORA polymorphisms are risk factors for allergic rhinitis susceptibility in the Shaanxi Han population. Int Immunopharmacol 2022; 108:108874. [DOI: 10.1016/j.intimp.2022.108874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 11/19/2022]
|
7
|
Choi BY, Han M, Kwak JW, Kim TH. Genetics and Epigenetics in Allergic Rhinitis. Genes (Basel) 2021; 12:2004. [PMID: 34946955 PMCID: PMC8700872 DOI: 10.3390/genes12122004] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
The pathogenesis of allergic rhinitis is associated with genetic, environmental, and epigenetic factors. Genotyping of single nucleotide polymorphisms (SNPs) is an advanced technique in the field of molecular genetics that is closely correlated with genome-wide association studies (GWASs) in large population groups with allergic diseases. Many recent studies have paid attention to the role of epigenetics, including alteration of DNA methylation, histone acetylation, and miRNA levels in the pathogenesis of allergic rhinitis. In this review article, genetics and epigenetics of allergic rhinitis, including information regarding functions and significance of previously known and newly-discovered genes, are summarized. Directions for future genetic and epigenetic studies of allergic rhinitis are also proposed.
Collapse
Affiliation(s)
| | | | | | - Tae Hoon Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul 02841, Korea; (B.Y.C.); (M.H.); (J.W.K.)
| |
Collapse
|
8
|
Cohain AT, Barrington WT, Jordan DM, Beckmann ND, Argmann CA, Houten SM, Charney AW, Ermel R, Sukhavasi K, Franzen O, Koplev S, Whatling C, Belbin GM, Yang J, Hao K, Kenny EE, Tu Z, Zhu J, Gan LM, Do R, Giannarelli C, Kovacic JC, Ruusalepp A, Lusis AJ, Bjorkegren JLM, Schadt EE. An integrative multiomic network model links lipid metabolism to glucose regulation in coronary artery disease. Nat Commun 2021; 12:547. [PMID: 33483510 PMCID: PMC7822923 DOI: 10.1038/s41467-020-20750-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 12/08/2020] [Indexed: 01/30/2023] Open
Abstract
Elevated plasma cholesterol and type 2 diabetes (T2D) are associated with coronary artery disease (CAD). Individuals treated with cholesterol-lowering statins have increased T2D risk, while individuals with hypercholesterolemia have reduced T2D risk. We explore the relationship between lipid and glucose control by constructing network models from the STARNET study with sequencing data from seven cardiometabolic tissues obtained from CAD patients during coronary artery by-pass grafting surgery. By integrating gene expression, genotype, metabolomic, and clinical data, we identify a glucose and lipid determining (GLD) regulatory network showing inverse relationships with lipid and glucose traits. Master regulators of the GLD network also impact lipid and glucose levels in inverse directions. Experimental inhibition of one of the GLD network master regulators, lanosterol synthase (LSS), in mice confirms the inverse relationships to glucose and lipid levels as predicted by our model and provides mechanistic insights.
Collapse
Affiliation(s)
- Ariella T Cohain
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - William T Barrington
- Department of Human Genetics/Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Daniel M Jordan
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Noam D Beckmann
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Carmen A Argmann
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sander M Houten
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Alexander W Charney
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Raili Ermel
- Department of Cardiac Surgery, Tartu University Hospital, Tartu, Estonia
| | | | - Oscar Franzen
- Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden
| | - Simon Koplev
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Carl Whatling
- Translational Science, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Gillian M Belbin
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jialiang Yang
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ke Hao
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eimear E Kenny
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Zhidong Tu
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jun Zhu
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Li-Ming Gan
- Early Clinical Development, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Ron Do
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Chiara Giannarelli
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Cardiovascular Research Centre, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jason C Kovacic
- Cardiovascular Research Centre, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Arno Ruusalepp
- Department of Cardiac Surgery, Tartu University Hospital, Tartu, Estonia
| | - Aldons J Lusis
- Department of Human Genetics/Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Johan L M Bjorkegren
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Clinical Gene Networks AB, Stockholm, Sweden.
| | - Eric E Schadt
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Sema4, Stamford, CT, USA.
| |
Collapse
|
9
|
Laulajainen‐Hongisto A, Lyly A, Hanif T, Dhaygude K, Kankainen M, Renkonen R, Donner K, Mattila P, Jartti T, Bousquet J, Kauppi P, Toppila‐Salmi S. Genomics of asthma, allergy and chronic rhinosinusitis: novel concepts and relevance in airway mucosa. Clin Transl Allergy 2020; 10:45. [PMID: 33133517 PMCID: PMC7592594 DOI: 10.1186/s13601-020-00347-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022] Open
Abstract
Genome wide association studies (GWASs) have revealed several airway disease-associated risk loci. Their role in the onset of asthma, allergic rhinitis (AR) or chronic rhinosinusitis (CRS), however, is not yet fully understood. The aim of this review is to evaluate the airway relevance of loci and genes identified in GWAS studies. GWASs were searched from databases, and a list of loci associating significantly (p < 10-8) with asthma, AR and CRS was created. This yielded a total of 267 significantly asthma/AR-associated loci from 31 GWASs. No significant CRS -associated loci were found in this search. A total of 170 protein coding genes were connected to these loci. Of these, 76/170 (44%) showed bronchial epithelial protein expression in stained microscopic figures of Human Protein Atlas (HPA), and 61/170 (36%) had a literature report of having airway epithelial function. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation analyses were performed, and 19 functional protein categories were found as significantly (p < 0.05) enriched among these genes. These were related to cytokine production, cell activation and adaptive immune response, and all were strongly connected in network analysis. We also identified 15 protein pathways that were significantly (p < 0.05) enriched in these genes, related to T-helper cell differentiation, virus infection, JAK-STAT signaling pathway, and asthma. A third of GWAS-level risk loci genes of asthma or AR seemed to have airway epithelial functions according to our database and literature searches. In addition, many of the risk loci genes were immunity related. Some risk loci genes also related to metabolism, neuro-musculoskeletal or other functions. Functions overlapped and formed a strong network in our pathway analyses and are worth future studies of biomarker and therapeutics.
Collapse
Affiliation(s)
- Anu Laulajainen‐Hongisto
- Department of Otorhinolaryngology–Head and Neck SurgeryUniversity of Helsinki and Helsinki University HospitalP.O.Box 263Kasarmikatu 11‐1300029 HUSHelsinkiFinland
- Laboratory of Cellular and Molecular ImmunologyInstitute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Annina Lyly
- Department of Otorhinolaryngology–Head and Neck SurgeryUniversity of Helsinki and Helsinki University HospitalP.O.Box 263Kasarmikatu 11‐1300029 HUSHelsinkiFinland
- Skin and Allergy HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | | | | | - Matti Kankainen
- HUS Diagnostic CenterHelsinki University HospitalHelsinkiFinland
- Hematology Research Unit HelsinkiDepartment of HematologyHelsinki University Hospital Comprehensive Cancer CenterHelsinkiFinland
- Translational Immunology Research Program and Department of Clinical ChemistryUniversity of HelsinkiHelsinkiFinland
| | - Risto Renkonen
- Haartman InstituteUniversity of HelsinkiHelsinkiFinland
- HUS Diagnostic CenterHelsinki University HospitalHelsinkiFinland
| | - Kati Donner
- Hematology Research Unit HelsinkiDepartment of HematologyHelsinki University Hospital Comprehensive Cancer CenterHelsinkiFinland
| | - Pirkko Mattila
- Haartman InstituteUniversity of HelsinkiHelsinkiFinland
- Hematology Research Unit HelsinkiDepartment of HematologyHelsinki University Hospital Comprehensive Cancer CenterHelsinkiFinland
| | - Tuomas Jartti
- Department of Pediatrics and Adolescent MedicineTurku University Hospital and University of TurkuTurkuFinland
| | - Jean Bousquet
- Université MontpellierMontpellierFrance
- MACVIA‐FranceMontpellierFrance
- Corporate Member of Freie Universität BerlinHumboldt‐Universität Zu BerlinBerlin Institute of HealthComprehensive Allergy CenterDepartment of Dermatology and AllergyCharité–Universitätsmedizin BerlinBerlinGermany
| | - Paula Kauppi
- Skin and Allergy HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Sanna Toppila‐Salmi
- Skin and Allergy HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
- Haartman InstituteUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
10
|
Ran H, Xiao H, Zhou X, Guo L, Lu S. Single-nucleotide polymorphisms and haplotypes in the interleukin-33 gene are associated with a risk of allergic rhinitis in the Chinese population. Exp Ther Med 2020; 20:102. [PMID: 32973951 DOI: 10.3892/etm.2020.9232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 07/23/2020] [Indexed: 11/05/2022] Open
Abstract
Allergic rhinitis (AR) is a common upper airway disease attributed to a variety of risk factors, such as environmental exposures and genetic susceptibility. The commonly observed comorbidity of asthma and AR in the clinic suggests the presence of shared genetic risk factors and biological mechanisms between these diseases. Interleukin (IL)-33 has been indicated to be an important factor driving asthma susceptibility and pathogenesis using both genome-wide association studies and functional studies in model animals. Although previous studies have reported the putative association of this gene with AR, evidence for the association of genetic variations of IL-33 with the disease is still missing. To examine whether variations in the IL-33 gene confer a genetic risk of AR, a total of 769 patients with AR and 769 age- and sex-matched healthy controls were recruited among Han Chinese residents in the Hubei province, and 14 single-nucleotide polymorphisms (SNPs) spanning the IL-33 gene were examined for their association with the risk of AR. The results indicated that five SNPs, which were in a moderate linkage disequilibrium and were located in the 5'-flanking region of IL-33, exhibited significant associations with the risk of AR, and these associations were additionally supported by genotypic and haplotypic analyses. Notably, three of the five IL-33 SNPs have been previously reported to exhibit genome-wide associations with asthma, and their alleles were also revealed to confer an increased risk of AR in the present study. In summary, the results of the current study suggested that certain variations in the IL-33 gene represent a potential risk for AR, and indicated a shared genetic basis between AR and asthma.
Collapse
Affiliation(s)
- He Ran
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital of Jingzhou, Jingzhou, Hubei 434000, P.R. China
| | - Hua Xiao
- Hubei College of Chinese Medicine, Jingzhou, Hubei 434020, P.R. China
| | - Xing Zhou
- Department of Otolaryngology Head and Neck Surgery, Shishou People's Hospital, Jingzhou, Hubei 434400, P.R. China
| | - Lijun Guo
- Hubei College of Chinese Medicine, Jingzhou, Hubei 434020, P.R. China
| | - Shuang Lu
- Hubei College of Chinese Medicine, Jingzhou, Hubei 434020, P.R. China
| |
Collapse
|
11
|
Ferreira MAR, Vonk JM, Baurecht H, Marenholz I, Tian C, Hoffman JD, Helmer Q, Tillander A, Ullemar V, Lu Y, Grosche S, Rüschendorf F, Granell R, Brumpton BM, Fritsche LG, Bhatta L, Gabrielsen ME, Nielsen JB, Zhou W, Hveem K, Langhammer A, Holmen OL, Løset M, Abecasis GR, Willer CJ, Emami NC, Cavazos TB, Witte JS, Szwajda A, Hinds DA, Hübner N, Weidinger S, Magnusson PKE, Jorgenson E, Karlsson R, Paternoster L, Boomsma DI, Almqvist C, Lee YA, Koppelman GH. Age-of-onset information helps identify 76 genetic variants associated with allergic disease. PLoS Genet 2020; 16:e1008725. [PMID: 32603359 PMCID: PMC7367489 DOI: 10.1371/journal.pgen.1008725] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 07/17/2020] [Accepted: 03/19/2020] [Indexed: 12/18/2022] Open
Abstract
Risk factors that contribute to inter-individual differences in the age-of-onset of allergic diseases are poorly understood. The aim of this study was to identify genetic risk variants associated with the age at which symptoms of allergic disease first develop, considering information from asthma, hay fever and eczema. Self-reported age-of-onset information was available for 117,130 genotyped individuals of European ancestry from the UK Biobank study. For each individual, we identified the earliest age at which asthma, hay fever and/or eczema was first diagnosed and performed a genome-wide association study (GWAS) of this combined age-of-onset phenotype. We identified 50 variants with a significant independent association (P<3x10-8) with age-of-onset. Forty-five variants had comparable effects on the onset of the three individual diseases and 38 were also associated with allergic disease case-control status in an independent study (n = 222,484). We observed a strong negative genetic correlation between age-of-onset and case-control status of allergic disease (rg = -0.63, P = 4.5x10-61), indicating that cases with early disease onset have a greater burden of allergy risk alleles than those with late disease onset. Subsequently, a multivariate GWAS of age-of-onset and case-control status identified a further 26 associations that were missed by the univariate analyses of age-of-onset or case-control status only. Collectively, of the 76 variants identified, 18 represent novel associations for allergic disease. We identified 81 likely target genes of the 76 associated variants based on information from expression quantitative trait loci (eQTL) and non-synonymous variants, of which we highlight ADAM15, FOSL2, TRIM8, BMPR2, CD200R1, PRKCQ, NOD2, SMAD4, ABCA7 and UBE2L3. Our results support the notion that early and late onset allergic disease have partly distinct genetic architectures, potentially explaining known differences in pathophysiology between individuals.
Collapse
Affiliation(s)
- Manuel A. R. Ferreira
- Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Judith M. Vonk
- University of Groningen, University Medical Center Groningen, Epidemiology, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands
| | - Hansjörg Baurecht
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Ingo Marenholz
- Max Delbrück Center (MDC) for Molecular Medicine, Berlin, Germany
- Clinic for Pediatric Allergy, Experimental and Clinical Research Center of Charité Universitätsmedizin Berlin and Max Delbrück Center, Berlin, Germany
| | - Chao Tian
- 23andMe, Inc., Mountain View, California, United States of America
| | - Joshua D. Hoffman
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
| | - Quinta Helmer
- Department Biological Psychology, Netherlands Twin Register, Vrije University, Amsterdam, The Netherlands
| | - Annika Tillander
- Department of Medical Epidemiology and Biostatistics and the Swedish Twin Registry, Karolinska Institutet, Stockholm, Sweden
| | - Vilhelmina Ullemar
- Department of Medical Epidemiology and Biostatistics and the Swedish Twin Registry, Karolinska Institutet, Stockholm, Sweden
| | - Yi Lu
- Department of Medical Epidemiology and Biostatistics and the Swedish Twin Registry, Karolinska Institutet, Stockholm, Sweden
| | - Sarah Grosche
- Max Delbrück Center (MDC) for Molecular Medicine, Berlin, Germany
- Clinic for Pediatric Allergy, Experimental and Clinical Research Center of Charité Universitätsmedizin Berlin and Max Delbrück Center, Berlin, Germany
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Raquel Granell
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Ben M. Brumpton
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, United Kingdom
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Thoracic Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Lars G. Fritsche
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Laxmi Bhatta
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Maiken E. Gabrielsen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jonas B. Nielsen
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Wei Zhou
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Arnulf Langhammer
- The HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Oddgeir L. Holmen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mari Løset
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Dermatology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Gonçalo R. Abecasis
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Cristen J. Willer
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Nima C. Emami
- Program in Biological and Medical Informatics, University of California, San Francisco, San Francisco, California, United States of America
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, United States of America
| | - Taylor B. Cavazos
- Program in Biological and Medical Informatics, University of California, San Francisco, San Francisco, California, United States of America
| | - John S. Witte
- Program in Biological and Medical Informatics, University of California, San Francisco, San Francisco, California, United States of America
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California, San Francisco, San Francisco, California, United States of America
- Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, United States of America
| | - Agnieszka Szwajda
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | | | | - David A. Hinds
- 23andMe, Inc., Mountain View, California, United States of America
| | - Norbert Hübner
- Max Delbrück Center (MDC) for Molecular Medicine, Berlin, Germany
| | - Stephan Weidinger
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Patrik KE Magnusson
- Department of Medical Epidemiology and Biostatistics and the Swedish Twin Registry, Karolinska Institutet, Stockholm, Sweden
| | - Eric Jorgenson
- Division of Research, Kaiser Permanente Northern California, Oakland, California, United States of America
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics and the Swedish Twin Registry, Karolinska Institutet, Stockholm, Sweden
| | - Lavinia Paternoster
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Dorret I. Boomsma
- Department Biological Psychology, Netherlands Twin Register, Vrije University, Amsterdam, The Netherlands
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics and the Swedish Twin Registry, Karolinska Institutet, Stockholm, Sweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Young-Ae Lee
- Max Delbrück Center (MDC) for Molecular Medicine, Berlin, Germany
- Clinic for Pediatric Allergy, Experimental and Clinical Research Center of Charité Universitätsmedizin Berlin and Max Delbrück Center, Berlin, Germany
| | - Gerard H. Koppelman
- University of Groningen, University Medical Center Groningen, Beatrix Children’s Hospital, Pediatric Pulmonology and Pediatric Allergology, and University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands
| |
Collapse
|
12
|
Guo H, An J, Yu Z. Identifying Shared Risk Genes for Asthma, Hay Fever, and Eczema by Multi-Trait and Multiomic Association Analyses. Front Genet 2020; 11:270. [PMID: 32373153 PMCID: PMC7176997 DOI: 10.3389/fgene.2020.00270] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/05/2020] [Indexed: 12/03/2022] Open
Abstract
Asthma, hay fever and eczema are three comorbid diseases with high prevalence and heritability. Their common genetic architectures have not been well-elucidated. In this study, we first conducted a linkage disequilibrium score regression analysis to confirm the strong genetic correlations between asthma, hay fever and eczema. We then integrated three distinct association analyses (metaCCA multi-trait association analysis, MAGMA genome-wide and MetaXcan transcriptome-wide gene-based tests) to identify shared risk genes based on the large-scale GWAS results in the GeneATLAS database. MetaCCA can detect pleiotropic genes associated with these three diseases jointly. MAGMA and MetaXcan were performed separately to identify candidate risk genes for each of the three diseases. We finally identified 150 shared risk genes, in which 60 genes are novel. Functional enrichment analysis revealed that the shared risk genes are enriched in inflammatory bowel disease, T cells differentiation and other related biological pathways. Our work may provide help on treatment of asthma, hay fever and eczema in clinical applications.
Collapse
Affiliation(s)
- Hongping Guo
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education and Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, Hunan, China.,School of Mathematics and Computer Science, Hanjiang Normal University, Hubei, China
| | - Jiyuan An
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| | - Zuguo Yu
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education and Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, Hunan, China.,School of Electrical Engineering and Computer Science, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
13
|
Kliebenstein DJ. Using networks to identify and interpret natural variation. CURRENT OPINION IN PLANT BIOLOGY 2020; 54:122-126. [PMID: 32413801 DOI: 10.1016/j.pbi.2020.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Studies on natural variation and network biology inherently work to summarize vast amounts of information and data. The combination of these two areas of study while creating datasets of immense complexity is critical to their mutual progress. Networks are necessary as a way to work to reduce the dimensionality inherent in natural variation with 100 s to 1000 s of genotypes. Correspondingly natural variation is essential for testing how networks may or may not be shared across individuals or species. Advances in this area of cross-fertilization including using networks directly as phenotypes and the use of networks to help in prioritizing candidate gene validation efforts. Interesting new observations on frequent presence-absence variation in gene content and adaptation is beginning to highlight the potential for natural variation in network presence-absence. This review attempts to delve into these new insights.
Collapse
Affiliation(s)
- Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA; DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark.
| |
Collapse
|
14
|
Wang Y, Li L, Yang Y, Feng J, Wang L, Zhang H. Copy Number Variation in MUC5AC and Susceptibility to Allergic Rhinitis: A Low-Coverage Whole-Genome Sequencing and Validation Cohort Study. Genet Test Mol Biomarkers 2020; 24:173-180. [PMID: 32208937 DOI: 10.1089/gtmb.2019.0166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background: The contribution of genetic copy number variations (CNVs) to allergic rhinitis (AR) remains unknown. The aim of this study was to identify genetic CNVs related to AR in the Han Chinese population. Methods: A case/parent trio of patients of Han Chinese descent affected with AR was examined using low-coverage whole-genome sequencing. Select CNVs were also explored for AR association in a validation cohort of 696 diagnosed AR patients and 528 matched controls. AccuCopy™, a multiplex fluorescence competitive polymerase chain reaction (PCR) assay, was used for genotyping of the CNV and was further validated with real-time PCR. Results: In the case/parent trio study, 67 CNVs were found in the Database of Genomic Variants and shared by patients within the family; 7 of these CNVs had a frequency higher than 0.05. A duplication at 11P15.5 was found involving three mucin-encoding genes (MUC2, MUC5AC, and MUC5B) previously identified as candidate genes for asthma and other chronic inflammatory upper airway diseases. In the validation cohort, no CNVs for MUC2 or MUC5B were identified. However, in the case group, 36.21% of individuals had a duplication of MUC5AC, and 28.03% of controls had MUC5AC duplication (χ2 = 9.123; p = 0.0025). The association of MUC5AC copy number with AR was significant in a multivariable logistic regression analysis after adjusting for age and sex (Padj = 0.0010; OR = 2.073; 95% CI, 1.625-2.805). Real-time PCR validation confirmed duplication of MUC5AC, and the CNV genotype detected with the AccuCopy assay was validated for 58 (96.67%) individuals. Furthermore, individuals with a high MUC5AC copy number showed enhanced total blood eosinophil counts in both the total sample group and the case group (Spearman's ρ: 0.162, p < 0.001; Spearman's ρ: 0.240, p < 0.001). Conclusions: MUC5AC copy number is associated with AR susceptibility. Additional validation and functional studies are warranted to elucidate the effect of MUC5AC CNV on gene expression and AR risk.
Collapse
Affiliation(s)
- Yan Wang
- Department of Otolaryngology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Linge Li
- Department of Otolaryngology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yuping Yang
- Department of Otolaryngology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Juan Feng
- Department of Otolaryngology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Lingling Wang
- Department of Otolaryngology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hua Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
15
|
Gao Y, Li J, Zhang Y, Zhang L. Replication study of susceptibility variants associated with allergic rhinitis and allergy in Han Chinese. Allergy Asthma Clin Immunol 2020; 16:13. [PMID: 32082391 PMCID: PMC7014941 DOI: 10.1186/s13223-020-0411-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/28/2020] [Indexed: 12/12/2022] Open
Abstract
Background Allergic rhinitis (AR) is believed to be a complex genetic disease. The last decade has been marked by the publication of more than 20 genome-wide association studies (GWASs) of AR and associated allergic phenotypes and allergic diseases, which have shown allergic diseases and traits to share a large number of genetic susceptibility loci. The aim of present study was therefore to investigate the highly replicated allergy related genes and variants as candidates for AR in Han Chinese subjects. Methods A total of 762 AR patients and 760 control subjects were recruited, and a total of 58 susceptible variants previously reported to be associated with allergic traits were choose for replication. Results Logistic regression analyses revealed that in the co-dominant-effect model as assessed by the AIC, compared with wild-type carriers, significant AR risk were associated with rs9865818 in LPP (P = 0.029, OR = 1.469 for GG vs. AA); rs6554809 in DNAH5 (P = 0.000, OR = 1.597 for TC vs. CC); rs1438673 in WDR36-CAMK4 loci (P = 0.037, OR = 1.396 for CC vs.TT), rs7775228 in HLA region (P = 0.000, OR = 1.589 for TC vs.TT), rs7203459 in CLEC16A (P = 0.025, OR = 0.731 for TC vs. TT). Conclusion We replicated Han Chinese AR-specific susceptibility loci in LPP, DNAH5, HLA, CLEC16A and WDR36-CAMK4. Further understanding the molecular mechanisms underlying these associations may provide new insights into the etiology of allergic disease.
Collapse
Affiliation(s)
- Yunbo Gao
- 1Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730 People's Republic of China
| | - Jingyun Li
- 1Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730 People's Republic of China.,2Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, No. 17, HouGouHuTong, DongCheng District, Beijing, 100005 People's Republic of China
| | - Yuan Zhang
- 1Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730 People's Republic of China.,2Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, No. 17, HouGouHuTong, DongCheng District, Beijing, 100005 People's Republic of China.,3Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730 People's Republic of China
| | - Luo Zhang
- 1Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730 People's Republic of China.,2Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, No. 17, HouGouHuTong, DongCheng District, Beijing, 100005 People's Republic of China.,3Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730 People's Republic of China
| |
Collapse
|
16
|
AATF and SMARCA2 are associated with thyroid volume in Hashimoto's thyroiditis patients. Sci Rep 2020; 10:1754. [PMID: 32019955 PMCID: PMC7000742 DOI: 10.1038/s41598-020-58457-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
Thyroid volume of Hashimoto’s thyroiditis (HT) patients varies in size over the course of disease and it may reflect changes in biological function of thyroid gland. Patients with subclinical hypothyroidism predominantly have increased thyroid volume whereas patients with more pronounced hypothyroidism have smaller thyroid volumes. Suggested mechanism for thyroid atrophy is thyrocyte death due to apoptosis. We performed the first genome-wide association study (GWAS) of thyroid volume in two groups of HT patients, depending on levothyroxine (LT4) therapy, and then meta-analysed across. Study included 345 HT patients in total and 6 007 322 common autosomal genetic variants. Underlying hypothesis was that genetic components that are involved in regulation of thyroid volume display their effect in specific pathophysiologic conditions of thyroid gland of HT patients. We additionally performed immunohistochemical analysis using thyroid tissues and analysed differences in expression levels of identified proteins and apoptotic marker between HT patients and controls. We found genome-wide significant association of two loci, both involved in apoptosis, with thyroid volume of HT patients: rs7212416 inside apoptosis-antagonizing transcription factor AATF (P = 8.95 × 10−9) and rs10738556 near chromatin-remodeling SMARCA2 (P = 2.83 × 10−8). In immunohistochemical analysis we observed that HT patients with homozygous AATF risk genotypes have decreased AATF expression (0.46-fold, P < 0.0001) and increased apoptosis (3.99-fold, P = 0.0001) in comparison to controls. HT patients with heterozygous SMARCA2 genotypes have decreased SMARCA2 expression, albeit without reaching statistical significance (1.07-fold, P = 0.5876), and significantly increased apoptosis (4.11-fold, P < 0.0001). By two lines of evidence we show that two highly plausible genetic loci, AATF and SMARCA2, may be involved in determining the thyroid volume of HT patients. The results of our study significantly add to the current knowledge of disturbed biological mechanisms in thyroid gland of HT patients.
Collapse
|
17
|
Weighill D, Tschaplinski TJ, Tuskan GA, Jacobson D. Data Integration in Poplar: 'Omics Layers and Integration Strategies. Front Genet 2019; 10:874. [PMID: 31608114 PMCID: PMC6773870 DOI: 10.3389/fgene.2019.00874] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 08/20/2019] [Indexed: 12/20/2022] Open
Abstract
Populus trichocarpa is an important biofuel feedstock that has been the target of extensive research and is emerging as a model organism for plants, especially woody perennials. This research has generated several large ‘omics datasets. However, only few studies in Populus have attempted to integrate various data types. This review will summarize various ‘omics data layers, focusing on their application in Populus species. Subsequently, network and signal processing techniques for the integration and analysis of these data types will be discussed, with particular reference to examples in Populus.
Collapse
Affiliation(s)
- Deborah Weighill
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Knoxville, TN, United States.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Timothy J Tschaplinski
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Knoxville, TN, United States.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Daniel Jacobson
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Knoxville, TN, United States.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
18
|
Lee D, Seo Y, Kim YW, Kim S, Choi J, Moon SH, Bae H, Kim HS, Kim H, Kim JH, Kim TY, Kim E, Yim S, Lim I, Bang H, Kim JH, Ko JH. Profiling of remote skeletal muscle gene changes resulting from stimulation of atopic dermatitis disease in NC/Nga mouse model. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:367-379. [PMID: 31496874 PMCID: PMC6717787 DOI: 10.4196/kjpp.2019.23.5.367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/07/2019] [Accepted: 07/09/2019] [Indexed: 01/22/2023]
Abstract
Although atopic dermatitis (AD) is known to be a representative skin disorder, it also affects the systemic immune response. In a recent study, myoblasts were shown to be involved in the immune regulation, but the roles of muscle cells in AD are poorly understood. We aimed to identify the relationship between mitochondria and atopy by genome-wide analysis of skeletal muscles in mice. We induced AD-like symptoms using house dust mite (HDM) extract in NC/Nga mice. The transcriptional profiles of the untreated group and HDM-induced AD-like group were analyzed and compared using microarray, differentially expressed gene and functional pathway analyses, and protein interaction network construction. Our microarray analysis demonstrated that immune response-, calcium handling-, and mitochondrial metabolism-related genes were differentially expressed. In the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology pathway analyses, immune response pathways involved in cytokine interaction, nuclear factor-kappa B, and T-cell receptor signaling, calcium handling pathways, and mitochondria metabolism pathways involved in the citrate cycle were significantly upregulated. In protein interaction network analysis, chemokine family-, muscle contraction process-, and immune response-related genes were identified as hub genes with many interactions. In addition, mitochondrial pathways involved in calcium signaling, cardiac muscle contraction, tricarboxylic acid cycle, oxidation-reduction process, and calcium-mediated signaling were significantly stimulated in KEGG and Gene Ontology analyses. Our results provide a comprehensive understanding of the genome-wide transcriptional changes of HDM-induced AD-like symptoms and the indicated genes that could be used as AD clinical biomarkers.
Collapse
Affiliation(s)
- Donghee Lee
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Yelim Seo
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Young-Won Kim
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Seongtae Kim
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Jeongyoon Choi
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Sung-Hee Moon
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Hyemi Bae
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Hui-Sok Kim
- Department of Medicine, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Hangyeol Kim
- Department of Medicine, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Jae-Hyun Kim
- Department of Medicine, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Tae-Young Kim
- Department of Medicine, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Eunho Kim
- Department of Medicine, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Suemin Yim
- Department of Medicine, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Inja Lim
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Hyoweon Bang
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Jung-Ha Kim
- Department of Family Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06973, Korea
| | - Jae-Hong Ko
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| |
Collapse
|
19
|
Safarova MS, Satterfield BA, Fan X, Austin EE, Ye Z, Bastarache L, Zheng N, Ritchie MD, Borthwick KM, Williams MS, Larson EB, Scrol A, Jarvik GP, Crosslin DR, Leppig K, Rasmussen-Torvik LJ, Pendergrass SA, Sturm AC, Namjou B, Shah AS, Carroll RJ, Chung WK, Wei WQ, Feng Q, Stein CM, Roden DM, Manolio TA, Schaid DJ, Denny JC, Hebbring SJ, de Andrade M, Kullo IJ. A phenome-wide association study to discover pleiotropic effects of PCSK9, APOB, and LDLR. NPJ Genom Med 2019; 4:3. [PMID: 30774981 PMCID: PMC6370860 DOI: 10.1038/s41525-019-0078-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 01/16/2019] [Indexed: 01/09/2023] Open
Abstract
We conducted an electronic health record (EHR)-based phenome-wide association study (PheWAS) to discover pleiotropic effects of variants in three lipoprotein metabolism genes PCSK9, APOB, and LDLR. Using high-density genotype data, we tested the associations of variants in the three genes with 1232 EHR-derived binary phecodes in 51,700 European-ancestry (EA) individuals and 585 phecodes in 10,276 African-ancestry (AA) individuals; 457 PCSK9, 730 APOB, and 720 LDLR variants were filtered by imputation quality (r 2 > 0.4), minor allele frequency (>1%), linkage disequilibrium (r 2 < 0.3), and association with LDL-C levels, yielding a set of two PCSK9, three APOB, and five LDLR variants in EA but no variants in AA. Cases and controls were defined for each phecode using the PheWAS package in R. Logistic regression assuming an additive genetic model was used with adjustment for age, sex, and the first two principal components. Significant associations were tested in additional cohorts from Vanderbilt University (n = 29,713), the Marshfield Clinic Personalized Medicine Research Project (n = 9562), and UK Biobank (n = 408,455). We identified one PCSK9, two APOB, and two LDLR variants significantly associated with an examined phecode. Only one of the variants was associated with a non-lipid disease phecode, ("myopia") but this association was not significant in the replication cohorts. In this large-scale PheWAS we did not find LDL-C-related variants in PCSK9, APOB, and LDLR to be associated with non-lipid-related phenotypes including diabetes, neurocognitive disorders, or cataracts.
Collapse
Affiliation(s)
- Maya S. Safarova
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905 USA
| | | | - Xiao Fan
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905 USA
| | - Erin E. Austin
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905 USA
| | - Zhan Ye
- Biomedical Informatics Research Center, Marshfield Clinic Research Foundation, Marshfield, WI 54449 USA
| | - Lisa Bastarache
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN 37235 USA
| | - Neil Zheng
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN 37235 USA
| | - Marylyn D. Ritchie
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19111 USA
| | - Kenneth M. Borthwick
- Department of Biomedical and Translational Informatics, Geisinger, Danville, PA 17821 USA
| | | | | | - Aaron Scrol
- Group Health Research Institute, Seattle, WA 98101 USA
| | - Gail P. Jarvik
- Department of Medicine (Medical Genetics), University of Washington Medical Center, Seattle, WA 98195 USA
| | - David R. Crosslin
- Department of Medicine (Medical Genetics), University of Washington Medical Center, Seattle, WA 98195 USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195 USA
| | - Kathleen Leppig
- Genetic Services, Kaiser Permanente of Washington, Seattle, WA 98122 USA
| | - Laura J. Rasmussen-Torvik
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Sarah A. Pendergrass
- Department of Biomedical and Translational Informatics, Geisinger, Danville, PA 17821 USA
| | - Amy C. Sturm
- Genomic Medicine Institute, Geisinger, Danville, PA 17822 USA
| | - Bahram Namjou
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, and Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH 45229 USA
| | - Amy Sanghavi Shah
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, OH 45229 USA
| | - Robert J. Carroll
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN 37235 USA
| | - Wendy K. Chung
- Department of Pediatrics, Columbia University, New York, NY 10032 USA
- Department of Medicine, Columbia University, New York, NY 10032 USA
| | - Wei-Qi Wei
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN 37235 USA
| | - QiPing Feng
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University, Nashville, TN 37232 USA
| | - C. Michael Stein
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University, Nashville, TN 37232 USA
| | - Dan M. Roden
- Department of Medicine, Vanderbilt University, Nashville, TN 37232 USA
| | - Teri A. Manolio
- Division of Genomic Medicine, National Human Genome Research Institute, Bethesda, MD 20892 USA
| | - Daniel J. Schaid
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905 USA
| | - Joshua C. Denny
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN 37235 USA
| | - Scott J. Hebbring
- Center for Human Genetics, Marshfield Clinic Research Foundation, Marshfield, WI 54449 USA
| | - Mariza de Andrade
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905 USA
| | - Iftikhar J. Kullo
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
20
|
Rowane M, Shilian R, Jhaveri DK, Tcheurekdjian HH, Sher TH, Hostoffer R. Familial Success in Allergen Desensitization. ALLERGY & RHINOLOGY (PROVIDENCE, R.I.) 2019; 10:2152656719890315. [PMID: 31819808 PMCID: PMC6883665 DOI: 10.1177/2152656719890315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Allergic rhinitis (AR) is a widely prevalent immunoglobulin E-mediated inflammatory nasal condition resulting from reexposure to an allergen in a sensitized individual. The genetic associations behind AR and other allergic conditions have been studied. However, familial success with AR therapies, specifically allergen desensitization through subcutaneous immunotherapy (SCIT), has never been reported in the literature. Pharmocogenetics has been gradually applied to link heritable genetic variants with drug responses, such as intergenic region variants APOBEC3B and APOBEC3C and β2-adrenergic receptor and glycoprotein ADAM33 polymorphisms as predictive biomarkers for biologic treatment response in asthma. We provide the first reported survey of familial success with SCIT. METHODS We administered a month-long, institutional review board-approved (20190493) questionnaire to 200 adult patients receiving SCIT in a suburban allergy/immunology practice. The anonymous survey inquired about demographics, target allergens for their SCIT, current symptom improvement on SCIT, and family history of allergies and SCIT management. RESULTS Twenty-six percent (52 of 200, 26%) SCIT patients reported familial success with the same allergy treatment modality. AR diagnosis and symptom improvement from SCIT was similar among previous/same (18 of 52, 38%; 26 of 52, 54%) and subsequent (10 of 52, 21%; 19 of 52, 40%) generations of family members. A combination of seasonal and perennial allergies was most prevalent (81%) among this population. CONCLUSION In a subpopulation of SCIT patients, there appears to be a familial success rate with this allergen desensitization treatment. This is the first reported pharmocogenetic evidence of assessing hereditary influence on effective AR therapy. Understanding pharmacogenetic associations involved with SCIT may improve allergists' recommendations for this treatment option.
Collapse
Affiliation(s)
- Marija Rowane
- Heritage College of Osteopathic Medicine, Ohio University,
Athens, Ohio
| | - Ryan Shilian
- Department of Pulmonary & Critical Care, University
Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Devi K. Jhaveri
- Department of Pulmonary & Critical Care, University
Hospitals Cleveland Medical Center, Cleveland, Ohio
- Allergy Immunology Associates, Inc., Mayfield Heights,
Ohio
| | | | | | - Robert Hostoffer
- Department of Pulmonary & Critical Care, University
Hospitals Cleveland Medical Center, Cleveland, Ohio
- Allergy Immunology Associates, Inc., Mayfield Heights,
Ohio
| |
Collapse
|
21
|
Schaefer RJ, Michno JM, Jeffers J, Hoekenga O, Dilkes B, Baxter I, Myers CL. Integrating Coexpression Networks with GWAS to Prioritize Causal Genes in Maize. THE PLANT CELL 2018; 30:2922-2942. [PMID: 30413654 PMCID: PMC6354270 DOI: 10.1105/tpc.18.00299] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 10/08/2018] [Accepted: 10/31/2018] [Indexed: 05/02/2023]
Abstract
Genome-wide association studies (GWAS) have identified loci linked to hundreds of traits in many different species. Yet, because linkage equilibrium implicates a broad region surrounding each identified locus, the causal genes often remain unknown. This problem is especially pronounced in nonhuman, nonmodel species, where functional annotations are sparse and there is frequently little information available for prioritizing candidate genes. We developed a computational approach, Camoco, that integrates loci identified by GWAS with functional information derived from gene coexpression networks. Using Camoco, we prioritized candidate genes from a large-scale GWAS examining the accumulation of 17 different elements in maize (Zea mays) seeds. Strikingly, we observed a strong dependence in the performance of our approach based on the type of coexpression network used: expression variation across genetically diverse individuals in a relevant tissue context (in our case, roots that are the primary elemental uptake and delivery system) outperformed other alternative networks. Two candidate genes identified by our approach were validated using mutants. Our study demonstrates that coexpression networks provide a powerful basis for prioritizing candidate causal genes from GWAS loci but suggests that the success of such strategies can highly depend on the gene expression data context. Both the software and the lessons on integrating GWAS data with coexpression networks generalize to species beyond maize.
Collapse
Affiliation(s)
- Robert J Schaefer
- Biomedical Informatics and Computational Biology Graduate Program, University of Minnesota, Minneapolis, Minnesota 55455
| | - Jean-Michel Michno
- Biomedical Informatics and Computational Biology Graduate Program, University of Minnesota, Minneapolis, Minnesota 55455
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Joseph Jeffers
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| | - Owen Hoekenga
- Cayuga Genetics Consulting Group LLC, Ithaca, New York 14850
| | - Brian Dilkes
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Ivan Baxter
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
- U.S. Department of Agriculture-Agricultural Research Service Plant Genetics Research Unit, St. Louis, Missouri 63132
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
22
|
Higher Polygenetic Predisposition for Asthma in Cow's Milk Allergic Children. Nutrients 2018; 10:nu10111582. [PMID: 30373230 PMCID: PMC6266812 DOI: 10.3390/nu10111582] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/15/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023] Open
Abstract
Cow’s milk allergy (CMA) is an early-onset allergy of which the underlying genetic factors remain largely undiscovered. CMA has been found to co-occur with other allergies and immunological hypersensitivity disorders, suggesting a shared genetic etiology. We aimed to (1) investigate and (2) validate whether CMA children carry a higher genetic susceptibility for other immunological hypersensitivity disorders using polygenic risk score analysis (PRS) and prospective phenotypic data. Twenty-two CMA patients of the Dutch EuroPrevall birth cohort study and 307 reference subjects were genotyped using single nucleotide polymorphism (SNP) array. Differentially genetic susceptibility was estimated using PRS, based on multiple P-value thresholds for SNP inclusion of previously reported genome-wide association studies (GWAS) on asthma, autism spectrum disorder, atopic dermatitis, inflammatory bowel disease and rheumatoid arthritis. These associations were validated with prospective data outcomes during a six-year follow-up in 19 patients. We observed robust and significantly higher PRSs of asthma in CMA children compared to the reference set. Association analyses using the prospective data indicated significant higher PRSs in former CMA patients suffering from asthma and related traits. Our results suggest a shared genetic etiology between CMA and asthma and a considerable predictive sensitivity potential for subsequent onset of asthma which indicates a potential use for early clinical asthma intervention programs.
Collapse
|
23
|
Ji X, Bossé Y, Landi MT, Gui J, Xiao X, Qian D, Joubert P, Lamontagne M, Li Y, Gorlov I, de Biasi M, Han Y, Gorlova O, Hung RJ, Wu X, McKay J, Zong X, Carreras-Torres R, Christiani DC, Caporaso N, Johansson M, Liu G, Bojesen SE, Le Marchand L, Albanes D, Bickeböller H, Aldrich MC, Bush WS, Tardon A, Rennert G, Chen C, Teare MD, Field JK, Kiemeney LA, Lazarus P, Haugen A, Lam S, Schabath MB, Andrew AS, Shen H, Hong YC, Yuan JM, Bertazzi PA, Pesatori AC, Ye Y, Diao N, Su L, Zhang R, Brhane Y, Leighl N, Johansen JS, Mellemgaard A, Saliba W, Haiman C, Wilkens L, Fernandez-Somoano A, Fernandez-Tardon G, van der Heijden EHFM, Kim JH, Dai J, Hu Z, Davies MPA, Marcus MW, Brunnström H, Manjer J, Melander O, Muller DC, Overvad K, Trichopoulou A, Tumino R, Doherty J, Goodman GE, Cox A, Taylor F, Woll P, Brüske I, Manz J, Muley T, Risch A, Rosenberger A, Grankvist K, Johansson M, Shepherd F, Tsao MS, Arnold SM, Haura EB, Bolca C, Holcatova I, Janout V, Kontic M, Lissowska J, Mukeria A, Ognjanovic S, Orlowski TM, Scelo G, Swiatkowska B, Zaridze D, Bakke P, Skaug V, Zienolddiny S, et alJi X, Bossé Y, Landi MT, Gui J, Xiao X, Qian D, Joubert P, Lamontagne M, Li Y, Gorlov I, de Biasi M, Han Y, Gorlova O, Hung RJ, Wu X, McKay J, Zong X, Carreras-Torres R, Christiani DC, Caporaso N, Johansson M, Liu G, Bojesen SE, Le Marchand L, Albanes D, Bickeböller H, Aldrich MC, Bush WS, Tardon A, Rennert G, Chen C, Teare MD, Field JK, Kiemeney LA, Lazarus P, Haugen A, Lam S, Schabath MB, Andrew AS, Shen H, Hong YC, Yuan JM, Bertazzi PA, Pesatori AC, Ye Y, Diao N, Su L, Zhang R, Brhane Y, Leighl N, Johansen JS, Mellemgaard A, Saliba W, Haiman C, Wilkens L, Fernandez-Somoano A, Fernandez-Tardon G, van der Heijden EHFM, Kim JH, Dai J, Hu Z, Davies MPA, Marcus MW, Brunnström H, Manjer J, Melander O, Muller DC, Overvad K, Trichopoulou A, Tumino R, Doherty J, Goodman GE, Cox A, Taylor F, Woll P, Brüske I, Manz J, Muley T, Risch A, Rosenberger A, Grankvist K, Johansson M, Shepherd F, Tsao MS, Arnold SM, Haura EB, Bolca C, Holcatova I, Janout V, Kontic M, Lissowska J, Mukeria A, Ognjanovic S, Orlowski TM, Scelo G, Swiatkowska B, Zaridze D, Bakke P, Skaug V, Zienolddiny S, Duell EJ, Butler LM, Koh WP, Gao YT, Houlston R, McLaughlin J, Stevens V, Nickle DC, Obeidat M, Timens W, Zhu B, Song L, Artigas MS, Tobin MD, Wain LV, Gu F, Byun J, Kamal A, Zhu D, Tyndale RF, Wei WQ, Chanock S, Brennan P, Amos CI. Identification of susceptibility pathways for the role of chromosome 15q25.1 in modifying lung cancer risk. Nat Commun 2018; 9:3221. [PMID: 30104567 PMCID: PMC6089967 DOI: 10.1038/s41467-018-05074-y] [Show More Authors] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 05/01/2018] [Indexed: 12/20/2022] Open
Abstract
Genome-wide association studies (GWAS) identified the chromosome 15q25.1 locus as a leading susceptibility region for lung cancer. However, the pathogenic pathways, through which susceptibility SNPs within chromosome 15q25.1 affects lung cancer risk, have not been explored. We analyzed three cohorts with GWAS data consisting 42,901 individuals and lung expression quantitative trait loci (eQTL) data on 409 individuals to identify and validate the underlying pathways and to investigate the combined effect of genes from the identified susceptibility pathways. The KEGG neuroactive ligand receptor interaction pathway, two Reactome pathways, and 22 Gene Ontology terms were identified and replicated to be significantly associated with lung cancer risk, with P values less than 0.05 and FDR less than 0.1. Functional annotation of eQTL analysis results showed that the neuroactive ligand receptor interaction pathway and gated channel activity were involved in lung cancer risk. These pathways provide important insights for the etiology of lung cancer.
Collapse
Grants
- P30 CA023108 NCI NIH HHS
- P30 CA076292 NCI NIH HHS
- U01 CA063464 NCI NIH HHS
- P50 CA070907 NCI NIH HHS
- R01 CA111703 NCI NIH HHS
- UM1 CA182876 NCI NIH HHS
- UL1 TR000117 NCATS NIH HHS
- P20 CA090578 NCI NIH HHS
- U19 CA148127 NCI NIH HHS
- P20 GM103534 NIGMS NIH HHS
- UL1 TR000445 NCATS NIH HHS
- R01 LM012012 NLM NIH HHS
- R01 CA092824 NCI NIH HHS
- R35 CA197449 NCI NIH HHS
- UM1 CA164973 NCI NIH HHS
- U01 CA167462 NCI NIH HHS
- U19 CA203654 NCI NIH HHS
- R01 CA144034 NCI NIH HHS
- P20 RR018787 NCRR NIH HHS
- S10 RR025141 NCRR NIH HHS
- R01 CA074386 NCI NIH HHS
- R01 CA176568 NCI NIH HHS
- K07 CA172294 NCI NIH HHS
- P50 CA119997 NCI NIH HHS
- G0902313 Medical Research Council
- R01 CA063464 NCI NIH HHS
- P01 CA033619 NCI NIH HHS
- R01 HL133786 NHLBI NIH HHS
- P30 CA177558 NCI NIH HHS
- P50 CA090578 NCI NIH HHS
- U01 HG004798 NHGRI NIH HHS
- R01 CA151989 NCI NIH HHS
- 001 World Health Organization
- 202849/Z/16/Z Wellcome Trust
- UM1 CA167462 NCI NIH HHS
- U01 CA164973 NCI NIH HHS
- This work was supported by National Institutes of Health (NIH) for the research of lung cancer (grant P30CA023108, P20GM103534 and R01LM012012); Trandisciplinary Research in Cancer of the Lung (TRICL) (grant U19CA148127); UICC American Cancer Society Beginning Investigators Fellowship funded by the Union for International Cancer Control (UICC) (to X.Ji). CAPUA study. This work was supported by FIS-FEDER/Spain grant numbers FIS-01/310, FIS-PI03-0365, and FIS-07-BI060604, FICYT/Asturias grant numbers FICYT PB02-67 and FICYT IB09-133, and the University Institute of Oncology (IUOPA), of the University of Oviedo and the Ciber de Epidemiologia y Salud Pública. CIBERESP, SPAIN. The work performed in the CARET study was supported by the The National Institute of Health / National Cancer Institute: UM1 CA167462 (PI: Goodman), National Institute of Health UO1-CA6367307 (PIs Omen, Goodman); National Institute of Health R01 CA111703 (PI Chen), National Institute of Health 5R01 CA151989-01A1(PI Doherty). The Liverpool Lung project is supported by the Roy Castle Lung Cancer Foundation. The Harvard Lung Cancer Study was supported by the NIH (National Cancer Institute) grants CA092824, CA090578, CA074386 The Multiethnic Cohort Study was partially supported by NIH Grants CA164973, CA033619, CA63464 and CA148127 The work performed in MSH-PMH study was supported by The Canadian Cancer Society Research Institute (020214), Ontario Institute of Cancer and Cancer Care Ontario Chair Award to R.J.H. and G.L. and the Alan Brown Chair and Lusi Wong Programs at the Princess Margaret Hospital Foundation. NJLCS was funded by the State Key Program of National Natural Science of China (81230067), the National Key Basic Research Program Grant (2011CB503805), the Major Program of the National Natural Science Foundation of China (81390543). Norway study was supported by Norwegian Cancer Society, Norwegian Research Council The Shanghai Cohort Study (SCS) was supported by National Institutes of Health R01 CA144034 (PI: Yuan) and UM1 CA182876 (PI: Yuan). The Singapore Chinese Health Study (SCHS) was supported by National Institutes of Health R01 CA144034 (PI: Yuan) and UM1 CA182876 (PI: Yuan). The work in TLC study has been supported in part the James & Esther King Biomedical Research Program (09KN-15), National Institutes of Health Specialized Programs of Research Excellence (SPORE) Grant (P50 CA119997), and by a Cancer Center Support Grant (CCSG) at the H. Lee Moffitt Cancer Center and Research Institute, an NCI designated Comprehensive Cancer Center (grant number P30-CA76292) The Vanderbilt Lung Cancer Study – BioVU dataset used for the analyses described was obtained from Vanderbilt University Medical Center’s BioVU, which is supported by institutional funding, the 1S10RR025141-01 instrumentation award, and by the Vanderbilt CTSA grant UL1TR000445 from NCATS/NIH. Dr. Aldrich was supported by NIH/National Cancer Institute K07CA172294 (PI: Aldrich) and Dr. Bush was supported by NHGRI/NIH U01HG004798 (PI: Crawford). The Copenhagen General Population Study (CGPS) was supported by the Chief Physician Johan Boserup and Lise Boserup Fund, the Danish Medical Research Council and Herlev Hospital. The NELCS study: Grant Number P20RR018787 from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH). The MDACC study was supported in part by grants from the NIH (P50 CA070907, R01 CA176568) (to X. Wu), Cancer Prevention & Research Institute of Texas (RP130502) (to X. Wu), and The University of Texas MD Anderson Cancer Center institutional support for the Center for Translational and Public Health Genomics. The study in Lodz center was partially funded by Nofer Institute of Occupational Medicine, under task NIOM 10.13: Predictors of mortality from non-small cell lung cancer - field study. Kentucky Lung Cancer Research Initiative was supported by the Department of Defense [Congressionally Directed Medical Research Program, U.S. Army Medical Research and Materiel Command Program] under award number: 10153006 (W81XWH-11-1-0781). Views and opinions of, and endorsements by the author(s) do not reflect those of the US Army or the Department of Defense. This research was also supported by unrestricted infrastructure funds from the UK Center for Clinical and Translational Science, NIH grant UL1TR000117 and Markey Cancer Center NCI Cancer Center Support Grant (P30 CA177558) Shared Resource Facilities: Cancer Research Informatics, Biospecimen and Tissue Procurement, and Biostatistics and Bioinformatics. The Resource for the Study of Lung Cancer Epidemiology in North Trent (ReSoLuCENT) study was funded by the Sheffield Hospitals Charity, Sheffield Experimental Cancer Medicine Centre and Weston Park Hospital Cancer Charity. FT was supported by a clinical PhD fellowship funded by the Yorkshire Cancer Research/Cancer Research UK Sheffield Cancer Centre. The authors would like to thank the staff at the Respiratory Health Network Tissue Bank of the FRQS for their valuable assistance with the lung eQTL dataset at Laval University. The lung eQTL study at Laval University was supported by the Fondation de l’Institut universitaire de cardiologie et de pneumologie de Québec, the Respiratory Health Network of the FRQS, the Canadian Institutes of Health Research (MOP - 123369). Y.B. holds a Canada Research Chair in Genomics of Heart and Lung Diseases. The research undertaken by M.D.T., L.V.W. and M.S.A. was partly funded by the National Institute for Health Research (NIHR). The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health. M.D.T. holds a Medical Research Council Senior Clinical Fellowship (G0902313).
Collapse
Affiliation(s)
- Xuemei Ji
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, 03750, NH, USA
| | - Yohan Bossé
- Department of Molecular Medicine, Laval University, Québec, G1V 4G5, Canada
- Institut universitaire de cardiologie et de pneumologie de Québec, Québec, G1V 4G5, Canada
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Jiang Gui
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, 03750, NH, USA
| | - Xiangjun Xiao
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, 03750, NH, USA
| | - David Qian
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, 03750, NH, USA
| | - Philippe Joubert
- Institut universitaire de cardiologie et de pneumologie de Québec, Québec, G1V 4G5, Canada
| | - Maxime Lamontagne
- Institut universitaire de cardiologie et de pneumologie de Québec, Québec, G1V 4G5, Canada
| | - Yafang Li
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, 03750, NH, USA
| | - Ivan Gorlov
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, 03750, NH, USA
| | - Mariella de Biasi
- Annenberg School of Communication, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Younghun Han
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, 03750, NH, USA
| | - Olga Gorlova
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, 03750, NH, USA
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System and University of Toronto, Toronto, M5T 3L9, Canada
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, 77030, TX, USA
| | - James McKay
- International Agency for Research on Cancer, World Health Organization, Lyon, 69372 CEDEX 08, France
| | - Xuchen Zong
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System and University of Toronto, Toronto, M5T 3L9, Canada
| | - Robert Carreras-Torres
- International Agency for Research on Cancer, World Health Organization, Lyon, 69372 CEDEX 08, France
| | - David C Christiani
- Department of Environmental Health, Harvard School of Public Health, Boston, 02115, MA, USA
- Department of Medicine, Massachusetts General Hospital, Boston, 02115, MA, USA
| | - Neil Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Mattias Johansson
- International Agency for Research on Cancer, World Health Organization, Lyon, 69372 CEDEX 08, France
| | - Geoffrey Liu
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System and University of Toronto, Toronto, M5T 3L9, Canada
| | - Stig E Bojesen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Herlev 2730, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200 København N, Denmark
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Ringvej 75, Copenhagen, Herlev 2730, Denmark
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, 96813, HI, USA
| | - Demetrios Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, Göttingen, 37073, Germany
| | - Melinda C Aldrich
- Department of Thoracic Surgery, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, 37203, TN, USA
| | - William S Bush
- Department of Thoracic Surgery, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, 37203, TN, USA
- Department of Epidemiology and Biostatistics, School of Medicine, Case Western Reserve University, Cleveland, 44106, OH, USA
| | - Adonina Tardon
- Faculty of Medicine, University of Oviedo, Oviedo, 33006, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, Campus del Cristo s/n, Oviedo, 33006, Spain
| | - Gad Rennert
- Clalit National Cancer Control Center, Carmel Medical Center, Haifa, 34361, Israel
- Faculty of Medicine, Technion, Haifa, 34361, Israel
| | - Chu Chen
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, 98109, WA, USA
| | - M Dawn Teare
- School of Health and Related Research, University of Sheffield, Sheffield, S1 4DA, UK
| | - John K Field
- Roy Castle Lung Cancer Research Programme, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX, UK
| | - Lambertus A Kiemeney
- Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, 6525 EZ, The Netherlands
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, 99210-1495, WA, USA
| | - Aage Haugen
- National Institute of Occupational Health, 0033, Gydas vei 8, 0033, Oslo, Norway
| | - Stephen Lam
- British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, V5Z1L3, Canada
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, 33612, FL, USA
| | - Angeline S Andrew
- Department of Epidemiology, Geisel School of Medicine, 1 Medical Center Drive, Hanover, 03755, NH, USA
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Nanjing, 211166, PR China
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, 1 Gwanak-ro, Gwanak-gu, Seoul, 151 742, Republic of Korea
| | - Jian-Min Yuan
- University of Pittsburgh Cancer Institute, Pittsburgh, 15232, PA, USA
| | - Pier A Bertazzi
- Department of Preventive Medicine, IRCCS Foundation Ca'Granda Ospedale Maggiore Policlinico, Milan, 20133, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, 20133, Italy
| | - Angela C Pesatori
- Department of Preventive Medicine, IRCCS Foundation Ca'Granda Ospedale Maggiore Policlinico, Milan, 20133, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, 20133, Italy
| | - Yuanqing Ye
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, 77030, TX, USA
| | - Nancy Diao
- Department of Environmental Health, Harvard School of Public Health, Boston, 02115, MA, USA
| | - Li Su
- Department of Environmental Health, Harvard School of Public Health, Boston, 02115, MA, USA
| | - Ruyang Zhang
- Department of Environmental Health, Harvard School of Public Health, Boston, 02115, MA, USA
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Nanjing, 211166, PR China
| | - Yonathan Brhane
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System and University of Toronto, Toronto, M5T 3L9, Canada
| | - Natasha Leighl
- University Health Network-The Princess Margaret Cancer Centre, 600 University Avenue, Toronto, M5G 2C4, Canada
| | - Jakob S Johansen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, 2730, Denmark
| | - Anders Mellemgaard
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, 2730, Denmark
| | - Walid Saliba
- Clalit National Cancer Control Center, Carmel Medical Center, Haifa, 34361, Israel
- Faculty of Medicine, Technion, Haifa, 34361, Israel
| | - Christopher Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, 90033, CA, USA
| | - Lynne Wilkens
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, 96813, HI, USA
| | - Ana Fernandez-Somoano
- Faculty of Medicine, University of Oviedo, Oviedo, 33006, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, Campus del Cristo s/n, Oviedo, 33006, Spain
| | - Guillermo Fernandez-Tardon
- Faculty of Medicine, University of Oviedo, Oviedo, 33006, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, Campus del Cristo s/n, Oviedo, 33006, Spain
| | - Erik H F M van der Heijden
- Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, 6525 EZ, The Netherlands
| | - Jin Hee Kim
- Department of Integrative Bioscience & Biotechnology, Sejong University, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Juncheng Dai
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Nanjing, 211166, PR China
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Nanjing, 211166, PR China
| | - Michael P A Davies
- Roy Castle Lung Cancer Research Programme, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX, UK
| | - Michael W Marcus
- Roy Castle Lung Cancer Research Programme, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX, UK
| | - Hans Brunnström
- Department of Pathology, Lund University, Lund, 222 41, Sweden
| | - Jonas Manjer
- Faculty of Medicine, Lund University, Lund, 22100, Sweden
| | - Olle Melander
- Faculty of Medicine, Lund University, Lund, 22100, Sweden
| | - David C Muller
- School of Public Health, St Mary's Campus, Imperial College London, London, W2 1PG, UK
| | - Kim Overvad
- Faculty of Medicine, Lund University, Lund, 22100, Sweden
| | | | - Rosario Tumino
- Cancer Registry and Histopathology Department, "Civic-M.P. Arezzo" Hospital, ASP, Ragusa, 97100, Italy
| | - Jennifer Doherty
- Department of Epidemiology, Geisel School of Medicine, 1 Medical Center Drive, Hanover, 03755, NH, USA
- Fred Hutchinson Cancer Research Center, Seattle, 98109-1024, WA, USA
| | - Gary E Goodman
- Fred Hutchinson Cancer Research Center, Seattle, 98109-1024, WA, USA
- Swedish Medical Group, Arnold Pavilion, Suite 200, Seattle, 98104, WA, USA
| | - Angela Cox
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2RX, UK
| | - Fiona Taylor
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2RX, UK
| | - Penella Woll
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2RX, UK
| | - Irene Brüske
- Research Unit of Molecular Epidemiology, Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, D-85764, Germany
| | - Judith Manz
- Research Unit of Molecular Epidemiology, Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, D-85764, Germany
| | - Thomas Muley
- Thoraxklinik at University Hospital Heidelberg, Heidelberg, 69126, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), Heidelberg, 69120, Germany
| | - Angela Risch
- Cancer Cluster Salzburg, University of Salzburg, Salzburg, 5020, Austria
| | - Albert Rosenberger
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, Göttingen, 37073, Germany
| | - Kjell Grankvist
- Department of Medical Biosciences, Umeå University, Umeå, 901 85, Sweden
| | - Mikael Johansson
- Department of Radiation Sciences, Umeå University, Umeå, 901 85, Sweden
| | | | | | - Susanne M Arnold
- Markey Cancer Center, University of Kentucky, First Floor, 800 Rose Street, Lexington, 40508, KY, USA
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, 33612, KY, USA
| | - Ciprian Bolca
- Institute of Pneumology "Marius Nasta", Bucharest, RO-050159, Romania
| | - Ivana Holcatova
- 1st Faculty of Medicine, Charles University, Kateřinská 32, Prague, 121 08 Praha 2, Czech Republic
| | - Vladimir Janout
- 1st Faculty of Medicine, Charles University, Kateřinská 32, Prague, 121 08 Praha 2, Czech Republic
| | - Milica Kontic
- Clinical Center of Serbia, Clinic for Pulmonology, School of Medicine, University of Belgrade, Belgrade, 11000, Serbia
| | - Jolanta Lissowska
- Department of Cancer Epidemiology and Prevention, M. Sklodowska-Curie Institute-Oncology Center, Warsaw, 02-781, Poland
| | - Anush Mukeria
- Department of Epidemiology and Prevention, Russian N.N. Blokhin Cancer Research Centre, Moscow, 115478, Russian Federation
| | - Simona Ognjanovic
- International Organization for Cancer Prevention and Research, Belgrade, 11070, Serbia
| | - Tadeusz M Orlowski
- Department of Surgery, National Tuberculosis and Lung Diseases Research Institute, Warsaw, PL-01-138, Poland
| | - Ghislaine Scelo
- International Agency for Research on Cancer, World Health Organization, Lyon, 69372 CEDEX 08, France
| | - Beata Swiatkowska
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, Lodz, 91-348, Poland
| | - David Zaridze
- Department of Epidemiology and Prevention, Russian N.N. Blokhin Cancer Research Centre, Moscow, 115478, Russian Federation
| | - Per Bakke
- Department of Clinical Science, University of Bergen, Bergen, 5021, Norway
| | - Vidar Skaug
- National Institute of Occupational Health, 0033, Gydas vei 8, 0033, Oslo, Norway
| | - Shanbeh Zienolddiny
- National Institute of Occupational Health, 0033, Gydas vei 8, 0033, Oslo, Norway
| | - Eric J Duell
- Unit of Nutrition and Cancer, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, 08908, Spain
| | - Lesley M Butler
- University of Pittsburgh Cancer Institute, Pittsburgh, 15232, PA, USA
| | - Woon-Puay Koh
- Duke-NUS Medical School, Singapore, 119077, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, 117549, Singapore
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, 2200, China
| | | | | | | | - David C Nickle
- Department of Genetics and Pharmacogenomics, Merck Research Laboratories, Boston, 02115-5727, MA, USA
| | - Ma'en Obeidat
- Centre for Heart Lung Innovation, St Paul's Hospital, The University of British Columbia, Vancouver, V6Z 1Y6, BC, Canada
| | - Wim Timens
- Department of Pathology and Medical Biology, GRIAC, University of Groningen, University Medical Center Groningen, Groningen, NL - 9713 GZ, The Netherlands
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Lei Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, 20892, MD, USA
| | - María Soler Artigas
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, LE1 7RH, UK
- Leicester Respiratory Biomedical Research Unit, National Institute for Health Research (NIHR), Glenfield Hospital, Leicester, LE3 9QP, UK
| | - Martin D Tobin
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, LE1 7RH, UK
- Leicester Respiratory Biomedical Research Unit, National Institute for Health Research (NIHR), Glenfield Hospital, Leicester, LE3 9QP, UK
| | - Louise V Wain
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, LE1 7RH, UK
- Leicester Respiratory Biomedical Research Unit, National Institute for Health Research (NIHR), Glenfield Hospital, Leicester, LE3 9QP, UK
| | - Fangyi Gu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Jinyoung Byun
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, 03750, NH, USA
| | - Ahsan Kamal
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, 03750, NH, USA
| | - Dakai Zhu
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, 03750, NH, USA
| | - Rachel F Tyndale
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, M5T 1R8, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, M6J 1H4, ON, Canada
| | - Wei-Qi Wei
- Department of Biomedical Informatics, School of Medicine, Vanderbilt University, Nashville, TN, 37235, USA
| | - Stephen Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Paul Brennan
- International Agency for Research on Cancer, World Health Organization, Lyon, 69372 CEDEX 08, France
| | - Christopher I Amos
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, 03750, NH, USA.
- The Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, 77030, TX, USA.
| |
Collapse
|
24
|
Waage J, Standl M, Curtin JA, Jessen LE, Thorsen J, Tian C, Schoettler N, Flores C, Abdellaoui A, Ahluwalia TS, Alves AC, Amaral AFS, Antó JM, Arnold A, Barreto-Luis A, Baurecht H, van Beijsterveldt CEM, Bleecker ER, Bonàs-Guarch S, Boomsma DI, Brix S, Bunyavanich S, Burchard EG, Chen Z, Curjuric I, Custovic A, den Dekker HT, Dharmage SC, Dmitrieva J, Duijts L, Ege MJ, Gauderman WJ, Georges M, Gieger C, Gilliland F, Granell R, Gui H, Hansen T, Heinrich J, Henderson J, Hernandez-Pacheco N, Holt P, Imboden M, Jaddoe VWV, Jarvelin MR, Jarvis DL, Jensen KK, Jónsdóttir I, Kabesch M, Kaprio J, Kumar A, Lee YA, Levin AM, Li X, Lorenzo-Diaz F, Melén E, Mercader JM, Meyers DA, Myers R, Nicolae DL, Nohr EA, Palviainen T, Paternoster L, Pennell CE, Pershagen G, Pino-Yanes M, Probst-Hensch NM, Rüschendorf F, Simpson A, Stefansson K, Sunyer J, Sveinbjornsson G, Thiering E, Thompson PJ, Torrent M, Torrents D, Tung JY, Wang CA, Weidinger S, Weiss S, Willemsen G, Williams LK, Ober C, Hinds DA, Ferreira MA, Bisgaard H, Strachan DP, Bønnelykke K. Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis. Nat Genet 2018; 50:1072-1080. [PMID: 30013184 DOI: 10.1038/s41588-018-0157-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 05/10/2018] [Indexed: 11/09/2022]
Abstract
Allergic rhinitis is the most common clinical presentation of allergy, affecting 400 million people worldwide, with increasing incidence in westernized countries1,2. To elucidate the genetic architecture and understand the underlying disease mechanisms, we carried out a meta-analysis of allergic rhinitis in 59,762 cases and 152,358 controls of European ancestry and identified a total of 41 risk loci for allergic rhinitis, including 20 loci not previously associated with allergic rhinitis, which were confirmed in a replication phase of 60,720 cases and 618,527 controls. Functional annotation implicated genes involved in various immune pathways, and fine mapping of the HLA region suggested amino acid variants important for antigen binding. We further performed genome-wide association study (GWAS) analyses of allergic sensitization against inhalant allergens and nonallergic rhinitis, which suggested shared genetic mechanisms across rhinitis-related traits. Future studies of the identified loci and genes might identify novel targets for treatment and prevention of allergic rhinitis.
Collapse
Affiliation(s)
- Johannes Waage
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Marie Standl
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - John A Curtin
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Leon E Jessen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan Thorsen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Chao Tian
- 23andMe, Inc., Mountain View, CA, USA
| | - Nathan Schoettler
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | | | | | - Carlos Flores
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Tenerife, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Abdel Abdellaoui
- Department of Biological Psychology, Netherlands Twin Register, VU University, Amsterdam, The Netherlands.,Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Tarunveer S Ahluwalia
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Alexessander C Alves
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment & Health, School of Public Health, Imperial College London, London, UK
| | - Andre F S Amaral
- Population Health and Occupational Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - Josep M Antó
- ISGlobal, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Andreas Arnold
- Clinic and Polyclinic of Dermatology, University Medicine Greifswald, Greifswald, Germany
| | - Amalia Barreto-Luis
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Tenerife, Spain
| | - Hansjörg Baurecht
- Department of Dermatology, Venereology and Allergology, University-Hospital Schleswig-Hostein, Campus Kiel, Kiel, Germany
| | | | - Eugene R Bleecker
- Divisions of Pharmacogenomics and Genetics, Genomics and Precision Medicine, Department of Medicine, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Sílvia Bonàs-Guarch
- Barcelona Supercomputing Center (BSC), Joint BSC-CRG-IRB Research Program in Computational Biology, Barcelona, Spain
| | - Dorret I Boomsma
- Department of Biological Psychology, Netherlands Twin Register, VU University, Amsterdam, The Netherlands.,APH Amsterdam Public Health, Amsterdam, The Netherlands
| | - Susanne Brix
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Supinda Bunyavanich
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Esteban G Burchard
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA.,Department of Bioengineering & Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Zhanghua Chen
- Department of Preventive Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Ivan Curjuric
- University of Basel, Basel, Switzerland.,Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Adnan Custovic
- Department of Paediatrics, Imperial College London, London, UK
| | - Herman T den Dekker
- The Generation R Study Group, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Pediatrics, Division of Respiratory Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Shyamali C Dharmage
- Allergy and Lung Health Unit, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Julia Dmitrieva
- Laboratory of Animal Genomics, Unit of Medical Genomics, GIGA Institute, University of Liège, Liège, Belgium
| | - Liesbeth Duijts
- The Generation R Study Group, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Pediatrics, Division of Respiratory Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Pediatrics, Division of Neonatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Markus J Ege
- LMU Munich, Dr von Hauner Children's Hospital, Munich, and German Center for Lung Research (DZL), Munich, Germany
| | - W James Gauderman
- Department of Preventive Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Michel Georges
- Laboratory of Animal Genomics, Unit of Medical Genomics, GIGA Institute, University of Liège, Liège, Belgium
| | - Christian Gieger
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.,Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Frank Gilliland
- Department of Preventive Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Raquel Granell
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Hongsheng Gui
- Center for Health Policy and Health Services Research, Henry Ford Health System, Detroit, MI, USA
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joachim Heinrich
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.,Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, University of Munich Medical Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - John Henderson
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Natalia Hernandez-Pacheco
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Tenerife, Spain.,Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Patrick Holt
- Telethon Kids Institute (TKI), Perth, Western Australia, Australia
| | - Medea Imboden
- University of Basel, Basel, Switzerland.,Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Pediatrics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment & Health, School of Public Health, Imperial College London, London, UK.,Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Unit of Primary Care, Oulu University Hospital, Oulu, Finland
| | - Deborah L Jarvis
- Population Health and Occupational Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - Kamilla K Jensen
- Department of Bio and Health Informatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ingileif Jónsdóttir
- deCODE genetics/Amgen Inc, Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Michael Kabesch
- Department of Pediatric Pneumology and Allergy, University Children's Hospital Regensburg (KUNO), Regensburg, Germany
| | - Jaakko Kaprio
- Department of Public Health, University of Helsinki, Helsinki, Finland.,Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland.,National Institute for Health and Welfare, Helsinki, Finland
| | - Ashish Kumar
- University of Basel, Basel, Switzerland.,Swiss Tropical and Public Health Institute, Basel, Switzerland.,Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Young-Ae Lee
- Max-Delbrück-Center (MDC) for Molecular Medicine, Berlin, Germany.,Clinic for Pediatric Allergy, Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Albert M Levin
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA
| | - Xingnan Li
- Divisions of Genetics, Genomics and Precision Medicine, Department of Medicine, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Fabian Lorenzo-Diaz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Sachs' Children's Hospital, Stockholm, Sweden
| | - Josep M Mercader
- Barcelona Supercomputing Center (BSC), Joint BSC-CRG-IRB Research Program in Computational Biology, Barcelona, Spain.,Programs in Metabolism and Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Deborah A Meyers
- Divisions of Pharmacogenomics and Genetics, Genomics and Precision Medicine, Department of Medicine, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Rachel Myers
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Dan L Nicolae
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Ellen A Nohr
- Institute of Clinical Research, University of Southern Denmark, Department of Obstetrics & Gynecology, Odense University Hospital, Odense, Denmark
| | - Teemu Palviainen
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | - Lavinia Paternoster
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Craig E Pennell
- School of Medicine and Public Health, Faculty of Medicine and Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden
| | - Maria Pino-Yanes
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Tenerife, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Nicole M Probst-Hensch
- University of Basel, Basel, Switzerland.,Swiss Tropical and Public Health Institute, Basel, Switzerland
| | | | - Angela Simpson
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Kari Stefansson
- deCODE genetics/Amgen Inc, Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | | | - Elisabeth Thiering
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.,Ludwig-Maximilians-University of Munich, Dr. von Hauner Children's Hospital, Division of Metabolic Diseases and Nutritional Medicine, Munich, Germany
| | - Philip J Thompson
- Institute for Respiratory Health, Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, Western Australia, Australia
| | - Maties Torrent
- Ib-Salut, Area de Salut de Menorca, Institut d'Investigacio Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - David Torrents
- Barcelona Supercomputing Center (BSC), Joint BSC-CRG-IRB Research Program in Computational Biology, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | | | - Carol A Wang
- School of Medicine and Public Health, Faculty of Medicine and Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Stephan Weidinger
- Department of Dermatology, Venereology and Allergology, University-Hospital Schleswig-Hostein, Campus Kiel, Kiel, Germany
| | - Scott Weiss
- Channing Division of Network Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Gonneke Willemsen
- Department of Biological Psychology, Netherlands Twin Register, VU University, Amsterdam, The Netherlands
| | - L Keoki Williams
- Center for Health Policy and Health Services Research, Henry Ford Health System, Detroit, MI, USA.,Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | | | - Manuel A Ferreira
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Hans Bisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - David P Strachan
- Population Health Research Institute, St George's, University of London, London, UK
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
25
|
Zhu Z, Lee PH, Chaffin MD, Chung W, Loh PR, Lu Q, Christiani DC, Liang L. A genome-wide cross-trait analysis from UK Biobank highlights the shared genetic architecture of asthma and allergic diseases. Nat Genet 2018; 50:857-864. [PMID: 29785011 PMCID: PMC5980765 DOI: 10.1038/s41588-018-0121-0] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 03/27/2018] [Indexed: 01/10/2023]
Abstract
Clinical and epidemiological data suggest that asthma and allergic
diseases are associated and may share a common genetic etiology. We analyzed
genome-wide single-nucleotide polymorphism (SNP) data for asthma and allergic
diseases in 33,593 cases and 76,768 controls of European ancestry from the UK
Biobank. Two publicly available independent genome wide association studies
(GWAS) were used for replication. We have found a strong genome-wide genetic
correlation between asthma and allergic diseases (rg
= 0.75, P =
6.84×10−62). Cross trait analysis identified 38
genome-wide significant loci, including 7 novel shared loci. Computational
analysis showed that shared genetic loci are enriched in immune/inflammatory
systems and tissues with epithelium cells. Our work identifies common genetic
architectures shared between asthma and allergy and will help to advance our
understanding of the molecular mechanisms underlying co-morbid asthma and
allergic diseases.
Collapse
Affiliation(s)
- Zhaozhong Zhu
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Phil H Lee
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Mark D Chaffin
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Wonil Chung
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Po-Ru Loh
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Quan Lu
- Program in Molecular and Integrative Physiological Sciences, Departments of Environmental Health and Genetics & Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Pulmonary and Critical Care Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Liming Liang
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA. .,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.
| |
Collapse
|
26
|
Agrahari R, Foroushani A, Docking TR, Chang L, Duns G, Hudoba M, Karsan A, Zare H. Applications of Bayesian network models in predicting types of hematological malignancies. Sci Rep 2018; 8:6951. [PMID: 29725024 PMCID: PMC5934387 DOI: 10.1038/s41598-018-24758-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 04/05/2018] [Indexed: 12/17/2022] Open
Abstract
Network analysis is the preferred approach for the detection of subtle but coordinated changes in expression of an interacting and related set of genes. We introduce a novel method based on the analyses of coexpression networks and Bayesian networks, and we use this new method to classify two types of hematological malignancies; namely, acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Our classifier has an accuracy of 93%, a precision of 98%, and a recall of 90% on the training dataset (n = 366); which outperforms the results reported by other scholars on the same dataset. Although our training dataset consists of microarray data, our model has a remarkable performance on the RNA-Seq test dataset (n = 74, accuracy = 89%, precision = 88%, recall = 98%), which confirms that eigengenes are robust with respect to expression profiling technology. These signatures are useful in classification and correctly predicting the diagnosis. They might also provide valuable information about the underlying biology of diseases. Our network analysis approach is generalizable and can be useful for classifying other diseases based on gene expression profiles. Our previously published Pigengene package is publicly available through Bioconductor, which can be used to conveniently fit a Bayesian network to gene expression data.
Collapse
Affiliation(s)
- Rupesh Agrahari
- Department of Computer Science, Texas State University, San Marcos, Texas, 78666, USA
| | - Amir Foroushani
- Department of Computer Science, Texas State University, San Marcos, Texas, 78666, USA
| | - T Roderick Docking
- Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Linda Chang
- Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Gerben Duns
- Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Monika Hudoba
- Department of Pathology and Laboratory Medicine, Vancouver General Hospital, Vancouver, British Columbia, V5Z 1M9, Canada
| | - Aly Karsan
- Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Habil Zare
- Department of Computer Science, Texas State University, San Marcos, Texas, 78666, USA. .,Department of Cell Systems & Anatomy, The University of Texas Health Science Center, San Antonio, Texas, 78229, USA.
| |
Collapse
|
27
|
McGeachie MJ, Clemmer GL, Hayete B, Xing H, Runge K, Wu AC, Jiang X, Lu Q, Church B, Khalil I, Tantisira K, Weiss S. Systems biology and in vitro validation identifies family with sequence similarity 129 member A (FAM129A) as an asthma steroid response modulator. J Allergy Clin Immunol 2018; 142:1479-1488.e12. [PMID: 29410046 DOI: 10.1016/j.jaci.2017.11.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/03/2017] [Accepted: 11/01/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Variation in response to the most commonly used class of asthma controller medication, inhaled corticosteroids, presents a serious challenge in asthma management, particularly for steroid-resistant patients with little or no response to treatment. OBJECTIVE We applied a systems biology approach to primary clinical and genomic data to identify and validate genes that modulate steroid response in asthmatic children. METHODS We selected 104 inhaled corticosteroid-treated asthmatic non-Hispanic white children and determined a steroid responsiveness endophenotype (SRE) using observations of 6 clinical measures over 4 years. We modeled each subject's cellular steroid response using data from a previously published study of immortalized lymphoblastoid cell lines under dexamethasone (DEX) and sham treatment. We integrated SRE with immortalized lymphoblastoid cell line DEX responses and genotypes to build a genome-scale network using the Reverse Engineering, Forward Simulation modeling framework, identifying 7 genes modulating SRE. RESULTS Three of these genes were functionally validated by using a stable nuclear factor κ-light-chain-enhancer of activated B cells luciferase reporter in A549 human lung epithelial cells, IL-1β cytokine stimulation, and DEX treatment. By using small interfering RNA transfection, knockdown of family with sequence similarity 129 member A (FAM129A) produced a reduction in steroid treatment response (P < .001). CONCLUSION With this systems-based approach, we have shown that FAM129A is associated with variation in clinical asthma steroid responsiveness and that FAM129A modulates steroid responsiveness in lung epithelial cells.
Collapse
Affiliation(s)
- Michael J McGeachie
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass.
| | - George L Clemmer
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Mass
| | | | - Heming Xing
- Novartis Institute for Biomedical Research, Cambridge, Mass
| | | | - Ann Chen Wu
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass; Precision Medicine Translational Research (PROMoTeR) Center, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Mass
| | - Xiaofeng Jiang
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Mass
| | - Quan Lu
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Mass
| | | | | | - Kelan Tantisira
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Scott Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| |
Collapse
|
28
|
Wise SK, Lin SY, Toskala E, Orlandi RR, Akdis CA, Alt JA, Azar A, Baroody FM, Bachert C, Canonica GW, Chacko T, Cingi C, Ciprandi G, Corey J, Cox LS, Creticos PS, Custovic A, Damask C, DeConde A, DelGaudio JM, Ebert CS, Eloy JA, Flanagan CE, Fokkens WJ, Franzese C, Gosepath J, Halderman A, Hamilton RG, Hoffman HJ, Hohlfeld JM, Houser SM, Hwang PH, Incorvaia C, Jarvis D, Khalid AN, Kilpeläinen M, Kingdom TT, Krouse H, Larenas-Linnemann D, Laury AM, Lee SE, Levy JM, Luong AU, Marple BF, McCoul ED, McMains KC, Melén E, Mims JW, Moscato G, Mullol J, Nelson HS, Patadia M, Pawankar R, Pfaar O, Platt MP, Reisacher W, Rondón C, Rudmik L, Ryan M, Sastre J, Schlosser RJ, Settipane RA, Sharma HP, Sheikh A, Smith TL, Tantilipikorn P, Tversky JR, Veling MC, Wang DY, Westman M, Wickman M, Zacharek M. International Consensus Statement on Allergy and Rhinology: Allergic Rhinitis. Int Forum Allergy Rhinol 2018; 8:108-352. [PMID: 29438602 PMCID: PMC7286723 DOI: 10.1002/alr.22073] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/01/2017] [Accepted: 12/01/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Critical examination of the quality and validity of available allergic rhinitis (AR) literature is necessary to improve understanding and to appropriately translate this knowledge to clinical care of the AR patient. To evaluate the existing AR literature, international multidisciplinary experts with an interest in AR have produced the International Consensus statement on Allergy and Rhinology: Allergic Rhinitis (ICAR:AR). METHODS Using previously described methodology, specific topics were developed relating to AR. Each topic was assigned a literature review, evidence-based review (EBR), or evidence-based review with recommendations (EBRR) format as dictated by available evidence and purpose within the ICAR:AR document. Following iterative reviews of each topic, the ICAR:AR document was synthesized and reviewed by all authors for consensus. RESULTS The ICAR:AR document addresses over 100 individual topics related to AR, including diagnosis, pathophysiology, epidemiology, disease burden, risk factors for the development of AR, allergy testing modalities, treatment, and other conditions/comorbidities associated with AR. CONCLUSION This critical review of the AR literature has identified several strengths; providers can be confident that treatment decisions are supported by rigorous studies. However, there are also substantial gaps in the AR literature. These knowledge gaps should be viewed as opportunities for improvement, as often the things that we teach and the medicine that we practice are not based on the best quality evidence. This document aims to highlight the strengths and weaknesses of the AR literature to identify areas for future AR research and improved understanding.
Collapse
Affiliation(s)
| | | | | | | | - Cezmi A. Akdis
- Allergy/Asthma, Swiss Institute of Allergy and Asthma Research, Switzerland
| | | | - Antoine Azar
- Allergy/Immunology, Johns Hopkins University, USA
| | | | | | | | | | - Cemal Cingi
- Otolaryngology, Eskisehir Osmangazi University, Turkey
| | | | | | | | | | | | | | - Adam DeConde
- Otolaryngology, University of California San Diego, USA
| | | | | | | | | | | | | | - Jan Gosepath
- Otorhinolaryngology, Helios Kliniken Wiesbaden, Germany
| | | | | | | | - Jens M. Hohlfeld
- Respiratory Medicine, Hannover Medical School, Airway Research Fraunhofer Institute for Toxicology and Experimental Medicine, German Center for Lung Research, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | - Amber U. Luong
- Otolaryngology, McGovern Medical School at the University of Texas Health Science Center Houston, USA
| | | | | | | | - Erik Melén
- Pediatric Allergy, Karolinska Institutet, Sweden
| | | | | | - Joaquim Mullol
- Otolaryngology, Universitat de Barcelona, Hospital Clinic, IDIBAPS, Spain
| | | | | | | | - Oliver Pfaar
- Rhinology/Allergy, Medical Faculty Mannheim, Heidelberg University, Center for Rhinology and Allergology, Wiesbaden, Germany
| | | | | | - Carmen Rondón
- Allergy, Regional University Hospital of Málaga, Spain
| | - Luke Rudmik
- Otolaryngology, University of Calgary, Canada
| | - Matthew Ryan
- Otolaryngology, University of Texas Southwestern, USA
| | - Joaquin Sastre
- Allergology, Hospital Universitario Fundacion Jiminez Diaz, Spain
| | | | | | - Hemant P. Sharma
- Allergy/Immunology, Children's National Health System, George Washington University School of Medicine, USA
| | | | | | | | | | | | - De Yun Wang
- Otolaryngology, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
29
|
Hui KY, Fernandez-Hernandez H, Hu J, Schaffner A, Pankratz N, Hsu NY, Chuang LS, Carmi S, Villaverde N, Li X, Rivas M, Levine AP, Bao X, Labrias PR, Haritunians T, Ruane D, Gettler K, Chen E, Li D, Schiff ER, Pontikos N, Barzilai N, Brant SR, Bressman S, Cheifetz AS, Clark LN, Daly MJ, Desnick RJ, Duerr RH, Katz S, Lencz T, Myers RH, Ostrer H, Ozelius L, Payami H, Peter Y, Rioux JD, Segal AW, Scott WK, Silverberg MS, Vance JM, Ubarretxena-Belandia I, Foroud T, Atzmon G, Pe'er I, Ioannou Y, McGovern DPB, Yue Z, Schadt EE, Cho JH, Peter I. Functional variants in the LRRK2 gene confer shared effects on risk for Crohn's disease and Parkinson's disease. Sci Transl Med 2018; 10:eaai7795. [PMID: 29321258 PMCID: PMC6028002 DOI: 10.1126/scitranslmed.aai7795] [Citation(s) in RCA: 260] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 03/31/2017] [Accepted: 07/18/2017] [Indexed: 12/28/2022]
Abstract
Crohn's disease (CD), a form of inflammatory bowel disease, has a higher prevalence in Ashkenazi Jewish than in non-Jewish European populations. To define the role of nonsynonymous mutations, we performed exome sequencing of Ashkenazi Jewish patients with CD, followed by array-based genotyping and association analysis in 2066 CD cases and 3633 healthy controls. We detected association signals in the LRRK2 gene that conferred risk for CD (N2081D variant, P = 9.5 × 10-10) or protection from CD (N551K variant, tagging R1398H-associated haplotype, P = 3.3 × 10-8). These variants affected CD age of onset, disease location, LRRK2 activity, and autophagy. Bayesian network analysis of CD patient intestinal tissue further implicated LRRK2 in CD pathogenesis. Analysis of the extended LRRK2 locus in 24,570 CD cases, patients with Parkinson's disease (PD), and healthy controls revealed extensive pleiotropy, with shared genetic effects between CD and PD in both Ashkenazi Jewish and non-Jewish cohorts. The LRRK2 N2081D CD risk allele is located in the same kinase domain as G2019S, a mutation that is the major genetic cause of familial and sporadic PD. Like the G2019S mutation, the N2081D variant was associated with increased kinase activity, whereas neither N551K nor R1398H variants on the protective haplotype altered kinase activity. We also confirmed that R1398H, but not N551K, increased guanosine triphosphate binding and hydrolyzing enzyme (GTPase) activity, thereby deactivating LRRK2. The presence of shared LRRK2 alleles in CD and PD provides refined insight into disease mechanisms and may have major implications for the treatment of these two seemingly unrelated diseases.
Collapse
Affiliation(s)
- Ken Y Hui
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | | | - Jianzhong Hu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adam Schaffner
- Departments of Neurology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nai-Yun Hsu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ling-Shiang Chuang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shai Carmi
- Braun School of Public Health and Community Medicine, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Nicole Villaverde
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xianting Li
- Departments of Neurology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Manual Rivas
- Department of Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Adam P Levine
- Centre for Molecular Medicine, Division of Medicine, University College, London WC1E 6JF, UK
| | - Xiuliang Bao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Philippe R Labrias
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Talin Haritunians
- Translational Genomics Group, F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Darren Ruane
- Department of Immunology and Inflammation, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Kyle Gettler
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Genetics, Yale University, New Haven, CT 06520, USA
| | - Ernie Chen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dalin Li
- Translational Genomics Group, F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Elena R Schiff
- Centre for Molecular Medicine, Division of Medicine, University College, London WC1E 6JF, UK
| | - Nikolas Pontikos
- Centre for Molecular Medicine, Division of Medicine, University College, London WC1E 6JF, UK
| | - Nir Barzilai
- Departments of Genetics and Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Steven R Brant
- Harvey M. and Lyn P. Meyerhoff Inflammatory Bowel Disease Center, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Susan Bressman
- Alan and Barbara Mirken Department of Neurology, Beth Israel Medical Center, New York, NY 10003, USA
| | - Adam S Cheifetz
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Lorraine N Clark
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
- Taub Institute for Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
| | - Mark J Daly
- Department of Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Taub Institute for Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Robert J Desnick
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Richard H Duerr
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| | - Seymour Katz
- New York University School of Medicine, New York City, NY 10016, USA
- North Shore University-Long Island Jewish Medical Center, Manhasset, NY, USA
- St. Francis Hospital, Roslyn, NY 11576, USA
| | - Todd Lencz
- Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Richard H Myers
- Department of Neurology, Boston University School of Medicine, Boston, MA 02114, USA
| | - Harry Ostrer
- Departments of Pathology and Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Laurie Ozelius
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Deparment of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Haydeh Payami
- Departments of Neurology and Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35805, USA
| | - Yakov Peter
- Department of Biology, Touro College, Queens, NY 10033, USA
- Department of Pulmonary Medicine, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10033, USA
| | - John D Rioux
- Research Center, Montreal Heart Institute, Montreal, Quebec H1T1C8, Canada
- Faculté de Médecine, Université de Montréal, Montreal, Quebec H1T1C8, Canada
| | - Anthony W Segal
- Centre for Molecular Medicine, Division of Medicine, University College, London WC1E 6JF, UK
| | - William K Scott
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Mark S Silverberg
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario M5T3L9, USA
- Department of Medicine, University of Toronto, Toronto, Ontario M5G1X5, Canada
| | - Jeffery M Vance
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Iban Ubarretxena-Belandia
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Gil Atzmon
- Departments of Genetics and Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Itsik Pe'er
- Center for Computational Biology and Bioinformatics, Columbia University, New York, NY 10032, USA
| | - Yiannis Ioannou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dermot P B McGovern
- Translational Genomics Group, F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Zhenyu Yue
- Departments of Neurology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Institute for Genetics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | - Judy H Cho
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics, Yale University, New Haven, CT 06520, USA
- Section of Gastroenterology and Hepatology, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Inga Peter
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- Institute for Genetics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
30
|
Watson CT, Cohain AT, Griffin RS, Chun Y, Grishin A, Hacyznska H, Hoffman GE, Beckmann ND, Shah H, Dawson P, Henning A, Wood R, Burks AW, Jones SM, Leung DYM, Sicherer S, Sampson HA, Sharp AJ, Schadt EE, Bunyavanich S. Integrative transcriptomic analysis reveals key drivers of acute peanut allergic reactions. Nat Commun 2017; 8:1943. [PMID: 29203772 PMCID: PMC5715016 DOI: 10.1038/s41467-017-02188-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 11/09/2017] [Indexed: 02/07/2023] Open
Abstract
Mechanisms driving acute food allergic reactions have not been fully characterized. We profile the dynamic transcriptome of acute peanut allergic reactions using serial peripheral blood samples obtained from 19 children before, during, and after randomized, double-blind, placebo-controlled oral challenges to peanut. We identify genes with changes in expression triggered by peanut, but not placebo, during acute peanut allergic reactions. Network analysis reveals that these genes comprise coexpression networks for acute-phase response and pro-inflammatory processes. Key driver analysis identifies six genes (LTB4R, PADI4, IL1R2, PPP1R3D, KLHL2, and ECHDC3) predicted to causally modulate the state of coregulated networks in response to peanut. Leukocyte deconvolution analysis identifies changes in neutrophil, naive CD4+ T cell, and macrophage populations during peanut challenge. Analyses in 21 additional peanut allergic subjects replicate major findings. These results highlight key genes, biological processes, and cell types that can be targeted for mechanistic study and therapeutic targeting of peanut allergy.
Collapse
Affiliation(s)
- C T Watson
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - A T Cohain
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - R S Griffin
- Department of Anesthesia, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Y Chun
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - A Grishin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - H Hacyznska
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - G E Hoffman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - N D Beckmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - H Shah
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - P Dawson
- eEmmes Corporation, Rockville, MD, 20850, USA
| | - A Henning
- eEmmes Corporation, Rockville, MD, 20850, USA
| | - R Wood
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - A W Burks
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - S M Jones
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, AS, 72202, USA
| | - D Y M Leung
- Department of Pediatrics, National Jewish Health, Denver, CO, 80206, USA
| | - S Sicherer
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - H A Sampson
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - A J Sharp
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - E E Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - S Bunyavanich
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
31
|
Kang M, Park J, Kim DC, Biswas AK, Liu C, Gao J. Multi-Block Bipartite Graph for Integrative Genomic Analysis. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2017; 14:1350-1358. [PMID: 27429442 DOI: 10.1109/tcbb.2016.2591521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Human diseases involve a sequence of complex interactions between multiple biological processes. In particular, multiple genomic data such as Single Nucleotide Polymorphism (SNP), Copy Number Variation (CNV), DNA Methylation (DM), and their interactions simultaneously play an important role in human diseases. However, despite the widely known complex multi-layer biological processes and increased availability of the heterogeneous genomic data, most research has considered only a single type of genomic data. Furthermore, recent integrative genomic studies for the multiple genomic data have also been facing difficulties due to the high-dimensionality and complexity, especially when considering their intra- and inter-block interactions. In this paper, we introduce a novel multi-block bipartite graph and its inference methods, MB2I and sMB2I, for the integrative genomic study. The proposed methods not only integrate multiple genomic data but also incorporate intra/inter-block interactions by using a multi-block bipartite graph. In addition, the methods can be used to predict quantitative traits (e.g., gene expression, survival time) from the multi-block genomic data. The performance was assessed by simulation experiments that implement practical situations. We also applied the method to the human brain data of psychiatric disorders. The experimental results were analyzed by maximum edge biclique and biclustering, and biological findings were discussed.
Collapse
|
32
|
Zhang G, Zhang D, Shi W, Sun P, Lin P. The Impact of FOXP3
Polymorphism on the Risk of Allergic Rhinitis: A Meta-Analysis. Ann Hum Genet 2017; 81:284-291. [PMID: 28741671 DOI: 10.1111/ahg.12205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 06/26/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Guimin Zhang
- Department of Otolaryngology-Head and Neck Surgery; Tianjin First Center Hospital; Tianjin People's Republic of China
| | - Di Zhang
- Department of Otolaryngology-Head and Neck Surgery; Tianjin First Center Hospital; Tianjin People's Republic of China
| | - Wenjie Shi
- Department of Otolaryngology-Head and Neck Surgery; Tianjin First Center Hospital; Tianjin People's Republic of China
| | - Peiyong Sun
- Department of Otolaryngology-Head and Neck Surgery; Tianjin First Center Hospital; Tianjin People's Republic of China
| | - Peng Lin
- Department of Otolaryngology-Head and Neck Surgery; Tianjin First Center Hospital; Tianjin People's Republic of China
| |
Collapse
|
33
|
Burghardt LT, Young ND, Tiffin P. A Guide to Genome-Wide Association Mapping in Plants. ACTA ACUST UNITED AC 2017; 2:22-38. [PMID: 31725973 DOI: 10.1002/cppb.20041] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Genome-wide association studies (GWAS) have developed into a valuable approach for identifying the genetic basis of phenotypic variation. In this article, we provide an overview of the design, analysis, and interpretation of GWAS. First, we present results from simulations that explore key elements of experimental design as well as considerations for collecting the relevant genomic and phenotypic data. Next, we outline current statistical methods and tools used for GWA analyses and discuss the inclusion of covariates to account for population structure and the interpretation of results. Given that many false positive associations will occur in any GWA analysis, we highlight strategies for prioritizing GWA candidates for further statistical and empirical validation. While focused on plants, the material we cover is also applicable to other systems. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Liana T Burghardt
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota
| | - Nevin D Young
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota
| | - Peter Tiffin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota
| |
Collapse
|
34
|
Choi H, Song WM, Zhang B. Linking childhood allergic asthma phenotypes with endotype through integrated systems biology: current evidence and research needs. REVIEWS ON ENVIRONMENTAL HEALTH 2017; 32:55-63. [PMID: 28170342 DOI: 10.1515/reveh-2016-0054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/11/2016] [Indexed: 06/06/2023]
Abstract
Asthma and other complex diseases results from a complex web of interactions involving inflammation, immunity, cell cycle, apoptosis, and metabolic perturbations across multiple organ systems. The extent to which various degrees of the age at onset, symptom severity, and the natural progression of the disease reflect multiple disease subtypes, influenced by unique process of development remains unknown. One of the most critical challenges to our understanding stems from incomplete understanding of the mechanisms. Within this review, we focus on the phenotypes of childhood allergic asthma as the basis to better understand the endotype for quantitative define subtypes of asthma. We highlight some of the known mechanistic pathways associated with the key hallmark events before the asthma onset. In particular, we examine how the recent advent of multiaxial -omics technologies and systems biology could help to clarify our current understanding of the pathway. We review how a large volume of molecular, genomic data generated by multiaxial technologies could be digested to identify cogent pathophysiologic molecular networks. We highlight some recent successes in application of these technologies within the context of other disease conditions for therapeutic interventions. We conclude by summarizing the research needs for the predictive value of preclinical biomarkers.
Collapse
|
35
|
Morin A, Laviolette M, Pastinen T, Boulet LP, Laprise C. Combining omics data to identify genes associated with allergic rhinitis. Clin Epigenetics 2017; 9:3. [PMID: 28149331 PMCID: PMC5270349 DOI: 10.1186/s13148-017-0310-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/03/2017] [Indexed: 01/26/2023] Open
Abstract
Allergic rhinitis is a common chronic disorder characterized by immunoglobulin E-mediated inflammation. To identify new genes associated with this trait, we performed genome- and epigenome-wide association studies and linked marginally significant CpGs located in genes or its promoter and SNPs located 1 Mb from the CpGs, by identifying cis methylation quantitative trait loci (mQTL). This approach relies on functional cellular aspects rather than stringent statistical correction. We were able to identify one gene with significant cis-mQTL for allergic rhinitis, caudal-type homeobox 1 (CDX1). We also identified 11 genes with marginally significant cis-mQTLs (p < 0.05) including one with both allergic rhinitis with or without asthma (RNF39). Moreover, most SNPs identified were not located closest to the gene they were linked to through cis-mQTLs counting the one linked to CDX1 located in a gene previously associated with asthma and atopic dermatitis. By combining omics data, we were able to identify new genes associated with allergic rhinitis and better assess the genes linked to associated SNPs.
Collapse
Affiliation(s)
- Andréanne Morin
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, 740 Dr. Penfield Avenue, Montréal, Québec H3A 1A5 Canada.,Département des sciences fondamentales, Université du Québec à Chicoutimi, 555 boulevard de l'Université, Saguenay, Québec G7H 2B1 Canada
| | - Michel Laviolette
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, 2725 chemin Sainte-Foy, Québec, Québec G1V 4G5 Canada
| | - Tomi Pastinen
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, 740 Dr. Penfield Avenue, Montréal, Québec H3A 1A5 Canada
| | - Louis-Philippe Boulet
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, 2725 chemin Sainte-Foy, Québec, Québec G1V 4G5 Canada
| | - Catherine Laprise
- Département des sciences fondamentales, Université du Québec à Chicoutimi, 555 boulevard de l'Université, Saguenay, Québec G7H 2B1 Canada
| |
Collapse
|
36
|
Li JY, Zhang Y, Lin XP, Ruan Y, Wang Y, Wang CS, Zhang L. Association between DNA hypomethylation at IL13 gene and allergic rhinitis in house dust mite-sensitized subjects. Clin Exp Allergy 2016; 46:298-307. [PMID: 26399722 DOI: 10.1111/cea.12647] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 08/28/2015] [Accepted: 09/16/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Allergic rhinitis (AR) is a complex disease, in which gene-environment interactions contribute to its pathogenesis. Epigenetic modifications such as DNA methylation play an important role in the regulation of gene function. As IL13, a pleiotropic cytokine, may be important in conferring susceptibility to AR, the aim of the present work was to assess the relationship between a CpG island methylation status at the upstream of IL13 gene and house dust mite (HDM)-sensitized AR in Han Chinese subjects. METHODS A total of 60 patients with HDM-sensitized AR and 65 control subjects were enrolled as two independent cohorts from Beijing and Liaoning. MassARRAY EpiTYPER and pyrosequencing was used to systematically screen the status of DNA methylation in peripheral blood leucocytes. IL13 mRNA expression was measured by real-time quantitative PCR. Electrophoretic mobility shift assay was used to assess the function of methylation site. RESULTS The mean level of methylation was decreased in the AR patient group compared with the control group (P = 0.01). Two of a total of 33 IL13CpG units analysed (CpG units 24 : 25 : 26 and 38 : 39) showed significant differences in methylation status between the AR patient group and the control group, with DNA hypomethylation at CpG38 significantly associated with higher risk of HDM-sensitized AR in both independent cohorts and a combined cohort (Beijing: OR = 1.24, 95%CI = 1.01-1.52, P = 0.036; Liaoning: OR = 1.62, 95%CI = 1.11-2.38, P = 0.013; Combined: OR = 1.31, 95%CI = 1.10-1.56, P = 0.002). Methylation level of CpG38 correlated negatively with both IL13 mRNA expression and serum total IgE level and affected the binding affinity of SP1. CONCLUSIONS DNA hypomethylation of IL13 gene may be associated with increased risk of AR from HDM sensitization.
Collapse
Affiliation(s)
- J Y Li
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Y Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal diseases, Beijing Institute of Otolaryngology, Beijing, China.,Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - X P Lin
- Center of Allergy and Immunotherapy, The General Hospital of Shenyang Military Command, Shenyang, China
| | - Y Ruan
- Beijing Key Laboratory of Nasal diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Y Wang
- Beijing Key Laboratory of Nasal diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - C S Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal diseases, Beijing Institute of Otolaryngology, Beijing, China.,Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - L Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal diseases, Beijing Institute of Otolaryngology, Beijing, China.,Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
37
|
Gupta J, Johansson E, Bernstein JA, Chakraborty R, Khurana Hershey GK, Rothenberg ME, Mersha TB. Resolving the etiology of atopic disorders by using genetic analysis of racial ancestry. J Allergy Clin Immunol 2016; 138:676-699. [PMID: 27297995 PMCID: PMC5014679 DOI: 10.1016/j.jaci.2016.02.045] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 02/09/2016] [Accepted: 02/25/2016] [Indexed: 12/23/2022]
Abstract
Atopic dermatitis (AD), food allergy, allergic rhinitis, and asthma are common atopic disorders of complex etiology. The frequently observed atopic march from early AD to asthma, allergic rhinitis, or both later in life and the extensive comorbidity of atopic disorders suggest common causal mechanisms in addition to distinct ones. Indeed, both disease-specific and shared genomic regions exist for atopic disorders. Their prevalence also varies among races; for example, AD and asthma have a higher prevalence in African Americans when compared with European Americans. Whether this disparity stems from true genetic or race-specific environmental risk factors or both is unknown. Thus far, the majority of the genetic studies on atopic diseases have used populations of European ancestry, limiting their generalizability. Large-cohort initiatives and new analytic methods, such as admixture mapping, are currently being used to address this knowledge gap. Here we discuss the unique and shared genetic risk factors for atopic disorders in the context of ancestry variations and the promise of high-throughput "-omics"-based systems biology approach in providing greater insight to deconstruct their genetic and nongenetic etiologies. Future research will also focus on deep phenotyping and genotyping of diverse racial ancestry, gene-environment, and gene-gene interactions.
Collapse
Affiliation(s)
- Jayanta Gupta
- Division of Asthma Research, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Elisabet Johansson
- Division of Asthma Research, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Jonathan A Bernstein
- Division of Immunology/Allergy Section, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Ranajit Chakraborty
- Center for Computational Genomics, Institute of Applied Genetics, Department of Molecular and Medical Genetics, University of North Texas Health Science Center, Fort Worth, Tex
| | - Gurjit K Khurana Hershey
- Division of Asthma Research, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Tesfaye B Mersha
- Division of Asthma Research, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW In this review, we summarize the latest publications on the genetic and environmental determinants of allergic rhinitis. RECENT FINDINGS Recent advances in genetic technology and bioinformatics have enabled simultaneous unbiased analysis of the entire genome regarding DNA sequence variants, epigenetic modifications and gene expression, providing functional correlates for DNA variants and phenotypes. As a result, new genes of mitochondrial and B-lymphocyte metabolism have been associated with allergic rhinitis phenotypes. Epidemiological studies recently showed an increased risk to develop allergic rhinitis in all age groups with reduction in farm exposure and in children with few older siblings. Climate changes seem to have also influenced pollen exposure and pollen-induced allergic disease. Lastly, occupational rhinitis has been increasingly recognized as a large burden to society. SUMMARY In summary, new high throughput genetics research technologies have pointed to new previously unsuspected pathways that may modulate the risk of developing allergic rhinitis such as mitochondrial metabolism. In addition, recent environmental factors found to influence the risk of developing allergic rhinitis include exposure to farm, pollution, occupational agents, and changes in climate.
Collapse
|
39
|
Nasiri R, Hirbod-Mobarakeh A, Movahedi M, Farhadi E, Ansaripour B, Amirzargar AA, Rezaei N. Gene polymorphisms of interleukin-10 and transforming growth factor beta in allergic rhinitis. Allergol Immunopathol (Madr) 2016; 44:125-30. [PMID: 26316419 DOI: 10.1016/j.aller.2015.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND Allergic rhinitis (AR) is a polygenic inflammatory disorder of the upper respiratory airway with an increasing prevalence worldwide. Interleukin-10 (IL-10) and transforming growth factor-beta (TGF-β), as two cytokines with pleiotropic effects on both innate and adaptive immunity, play important roles in allergic responses. Therefore, this study was performed to evaluate the associations of five polymorphisms of IL-10 and TGF-β genes with AR. MATERIALS AND METHODS Ninety-eight patients with AR along with 140 healthy volunteers with no history of AR and with the same ethnicity of the patients were recruited in this study. Genotyping was done for three polymorphisms in promoter region of IL-10 gene (rs1800896, rs1800871, rs1800872), and two polymorphisms in the exonic region of TGF-β1 gene (rs1982037, rs1800471) using PCR sequence-specific-primers method. RESULTS A allele and AA genotype in rs1800896 of IL-10 and TT genotype in rs1982037 in TGF-β were significantly less frequent in the patients than in controls. While the C allele and the CG genotype in rs1800471 in TGF-β1 were associated with a higher susceptibility to AR. C/C and T/C haplotypes (rs1982037, rs1800471) in TGF-β1 gene and A/C/A, A/T/C and G/C/A haplotypes (rs1800896, rs1800871, rs1800872) in IL-10 gene were found with higher frequencies in patients than controls. Patients with CC genotype in rs1800871 in Il-10 had significantly lower levels of IgE. CONCLUSION We found that certain genetic variants in IL-10 and TGF-β polymorphisms were associated with susceptibility to AR as well as some clinical parameters in the patients with AR.
Collapse
Affiliation(s)
- R Nasiri
- Department of Pediatrics, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - A Hirbod-Mobarakeh
- Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - M Movahedi
- Department of Pediatrics, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - E Farhadi
- Hematology Department, School of Allied Medical Science, Iran University of Medical Sciences, Tehran, Iran
| | - B Ansaripour
- Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - A A Amirzargar
- Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - N Rezaei
- Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
40
|
Eising E, Huisman SMH, Mahfouz A, Vijfhuizen LS, Anttila V, Winsvold BS, Kurth T, Ikram MA, Freilinger T, Kaprio J, Boomsma DI, van Duijn CM, Järvelin MRR, Zwart JA, Quaye L, Strachan DP, Kubisch C, Dichgans M, Davey Smith G, Stefansson K, Palotie A, Chasman DI, Ferrari MD, Terwindt GM, de Vries B, Nyholt DR, Lelieveldt BPF, van den Maagdenberg AMJM, Reinders MJT. Gene co-expression analysis identifies brain regions and cell types involved in migraine pathophysiology: a GWAS-based study using the Allen Human Brain Atlas. Hum Genet 2016; 135:425-439. [PMID: 26899160 PMCID: PMC4796339 DOI: 10.1007/s00439-016-1638-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/16/2016] [Indexed: 01/03/2023]
Abstract
Migraine is a common disabling neurovascular brain disorder typically characterised by attacks of severe headache and associated with autonomic and neurological symptoms. Migraine is caused by an interplay of genetic and environmental factors. Genome-wide association studies (GWAS) have identified over a dozen genetic loci associated with migraine. Here, we integrated migraine GWAS data with high-resolution spatial gene expression data of normal adult brains from the Allen Human Brain Atlas to identify specific brain regions and molecular pathways that are possibly involved in migraine pathophysiology. To this end, we used two complementary methods. In GWAS data from 23,285 migraine cases and 95,425 controls, we first studied modules of co-expressed genes that were calculated based on human brain expression data for enrichment of genes that showed association with migraine. Enrichment of a migraine GWAS signal was found for five modules that suggest involvement in migraine pathophysiology of: (i) neurotransmission, protein catabolism and mitochondria in the cortex; (ii) transcription regulation in the cortex and cerebellum; and (iii) oligodendrocytes and mitochondria in subcortical areas. Second, we used the high-confidence genes from the migraine GWAS as a basis to construct local migraine-related co-expression gene networks. Signatures of all brain regions and pathways that were prominent in the first method also surfaced in the second method, thus providing support that these brain regions and pathways are indeed involved in migraine pathophysiology.
Collapse
Affiliation(s)
- Else Eising
- Department of Human Genetics, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Sjoerd M H Huisman
- Delft Bioinformatics Lab, Department of Intelligent Systems, Delft University of Technology, 2628 CD, Delft, The Netherlands.,Division of Image Processing, Department of Radiology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Ahmed Mahfouz
- Delft Bioinformatics Lab, Department of Intelligent Systems, Delft University of Technology, 2628 CD, Delft, The Netherlands.,Division of Image Processing, Department of Radiology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Lisanne S Vijfhuizen
- Department of Human Genetics, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Verneri Anttila
- Analytical and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Bendik S Winsvold
- FORMI and Department of Neurology, Oslo University Hospital and University of Oslo, 0424, Oslo, Norway
| | - Tobias Kurth
- Institute of Public Health, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany.,Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215-1204, USA
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Centre, 3015 CE, Rotterdam, The Netherlands.,Department of Radiology, Erasmus University Medical Centre, 3015 CE, Rotterdam, The Netherlands.,Department of Neurology, Erasmus University Medical Centre, 3015 CE, Rotterdam, The Netherlands
| | - Tobias Freilinger
- Department of Neurology and Epileptology and Hertie-Institute for Clinical Brain Research, University of Tübingen, 72076, Tübingen, Germany.,Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximillians-Universität, 81377, Munich, Germany
| | - Jaakko Kaprio
- Department of Public Health, University of Helsinki, 00014, Helsinki, Finland.,Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00290, Helsinki, Finland
| | - Dorret I Boomsma
- Department of Biological Psychology, VU University, 1081 HV, Amsterdam, The Netherlands
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus University Medical Centre, 3015 CE, Rotterdam, The Netherlands
| | - Marjo-Riitta R Järvelin
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, W2 1PG, UK.,Center for Life-Course Health Research and Northern Finland Cohort Center, Faculty of Medicine, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland.,Biocenter Oulu, University of Oulu, Aapistie 5A, P.O. Box 5000, 90014, Oulu, Finland.,Unit of Primary Care, Oulu University Hospital, Kajaanintie 50, 90029 OYS, P.O. Box 20, 90220, Oulu, Finland
| | - John-Anker Zwart
- FORMI and Department of Neurology, Oslo University Hospital and University of Oslo, 0424, Oslo, Norway
| | - Lydia Quaye
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, UK
| | - David P Strachan
- Population Health Research Institute, St George's, University of London, London, SW17 0RE, UK
| | - Christian Kubisch
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximillians-Universität, 81377, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany
| | - George Davey Smith
- Medical Research Council Integrative Epidemiology Unit (IEU), School of Social and Community Medicine, University of Bristol, Bristol, BS8 2PS, UK
| | - Kari Stefansson
- deCODE Genetics, 101, Reykjavik, Iceland.,School of Medicine, University of Iceland, 101, Reykjavik, Iceland
| | - Aarno Palotie
- Analytical and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00290, Helsinki, Finland
| | - Daniel I Chasman
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215-1204, USA
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Boukje de Vries
- Department of Human Genetics, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Dale R Nyholt
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Brisbane, QLD, 4059, Australia.,Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Boudewijn P F Lelieveldt
- Delft Bioinformatics Lab, Department of Intelligent Systems, Delft University of Technology, 2628 CD, Delft, The Netherlands.,Division of Image Processing, Department of Radiology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Arn M J M van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands. .,Department of Neurology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands.
| | - Marcel J T Reinders
- Delft Bioinformatics Lab, Department of Intelligent Systems, Delft University of Technology, 2628 CD, Delft, The Netherlands.
| |
Collapse
|
41
|
Qian DC, Byun J, Han Y, Greene CS, Field JK, Hung RJ, Brhane Y, Mclaughlin JR, Fehringer G, Landi MT, Rosenberger A, Bickeböller H, Malhotra J, Risch A, Heinrich J, Hunter DJ, Henderson BE, Haiman CA, Schumacher FR, Eeles RA, Easton DF, Seminara D, Amos CI. Identification of shared and unique susceptibility pathways among cancers of the lung, breast, and prostate from genome-wide association studies and tissue-specific protein interactions. Hum Mol Genet 2015; 24:7406-20. [PMID: 26483192 PMCID: PMC4664175 DOI: 10.1093/hmg/ddv440] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/11/2015] [Accepted: 10/12/2015] [Indexed: 12/18/2022] Open
Abstract
Results from genome-wide association studies (GWAS) have indicated that strong single-gene effects are the exception, not the rule, for most diseases. We assessed the joint effects of germline genetic variations through a pathway-based approach that considers the tissue-specific contexts of GWAS findings. From GWAS meta-analyses of lung cancer (12 160 cases/16 838 controls), breast cancer (15 748 cases/18 084 controls) and prostate cancer (14 160 cases/12 724 controls) in individuals of European ancestry, we determined the tissue-specific interaction networks of proteins expressed from genes that are likely to be affected by disease-associated variants. Reactome pathways exhibiting enrichment of proteins from each network were compared across the cancers. Our results show that pathways associated with all three cancers tend to be broad cellular processes required for growth and survival. Significant examples include the nerve growth factor (P = 7.86 × 10(-33)), epidermal growth factor (P = 1.18 × 10(-31)) and fibroblast growth factor (P = 2.47 × 10(-31)) signaling pathways. However, within these shared pathways, the genes that influence risk largely differ by cancer. Pathways found to be unique for a single cancer focus on more specific cellular functions, such as interleukin signaling in lung cancer (P = 1.69 × 10(-15)), apoptosis initiation by Bad in breast cancer (P = 3.14 × 10(-9)) and cellular responses to hypoxia in prostate cancer (P = 2.14 × 10(-9)). We present the largest comparative cross-cancer pathway analysis of GWAS to date. Our approach can also be applied to the study of inherited mechanisms underlying risk across multiple diseases in general.
Collapse
Affiliation(s)
- David C Qian
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Jinyoung Byun
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Younghun Han
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Casey S Greene
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John K Field
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool Cancer Research Centre, Liverpool L69 3GA, UK
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Yonathan Brhane
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - John R Mclaughlin
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Gordon Fehringer
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Maria Teresa Landi
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Albert Rosenberger
- Department of Genetic Epidemiology, University Medical Centre Göttingen, 37099 Göttingen, Germany
| | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Centre Göttingen, 37099 Göttingen, Germany
| | - Jyoti Malhotra
- Division of Hematology and Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Angela Risch
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Joachim Heinrich
- Institute of Epidemiology I, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - David J Hunter
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Brian E Henderson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Fredrick R Schumacher
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Rosalind A Eeles
- Department of Cancer Genetics, Institute of Cancer Research, London SW7 3RP, UK and
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Daniela Seminara
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher I Amos
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA,
| |
Collapse
|
42
|
Toppila-Salmi S, van Drunen CM, Fokkens WJ, Golebski K, Mattila P, Joenvaara S, Renkonen J, Renkonen R. Molecular mechanisms of nasal epithelium in rhinitis and rhinosinusitis. Curr Allergy Asthma Rep 2015; 15:495. [PMID: 25504259 PMCID: PMC4262789 DOI: 10.1007/s11882-014-0495-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Allergic rhinitis, nonallergic rhinitis, and chronic rhinosinusitis are multifactorial upper airway diseases with high prevalence. Several genetic and environmental factors are proposed to predispose to the pathogenesis of the inflammatory upper airway diseases. Still, the molecular mechanisms leading toward the onset and progression of upper airway diseases are largely unknown. The upper airway epithelium has an important role in sensing the environment and regulating the inhaled air. As such, it links environmental insults to the host immunity. Human sinonasal epithelium serves as an excellent target for observing induced early-phase events, in vivo, and with a systems biological perspective. Actually, increasing number of investigations have provided evidence that altered homeostasis in the sinonasal epithelium might be important in the chronic upper airway inflammation.
Collapse
Affiliation(s)
- Sanna Toppila-Salmi
- Haartman Institute, University of Helsinki, Haartmaninkatu 3, P.O. Box 21, 00014, Helsinki, Finland,
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Li J, Zhang Y, Zhang L. Discovering susceptibility genes for allergic rhinitis and allergy using a genome-wide association study strategy. Curr Opin Allergy Clin Immunol 2015; 15:33-40. [PMID: 25304232 DOI: 10.1097/aci.0000000000000124] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Allergic rhinitis and allergy are complex conditions, in which both genetic and environmental factors contribute to the pathogenesis. Genome-wide association studies (GWASs) employing common single-nucleotide polymorphisms have accelerated the search for novel and interesting genes, and also confirmed the role of some previously described genes which may be involved in the cause of allergic rhinitis and allergy. The aim of this review is to provide an overview of the genetic basis of allergic rhinitis and the associated allergic phenotypes, with particular focus on GWASs. RECENT FINDINGS The last decade has been marked by the publication of more than 20 GWASs of allergic rhinitis and the associated allergic phenotypes. Allergic diseases and traits have been shown to share a large number of genetic susceptibility loci, of which IL33/IL1RL1, IL-13-RAD50 and C11orf30/LRRC32 appear to be important for more than two allergic phenotypes. GWASs have further reflected the genetic heterogeneity underlying allergic phenotypes. SUMMARY Large-scale genome-wide association strategies are underway to discover new susceptibility variants for allergic rhinitis and allergic phenotypes. Characterization of the underlying genetics provides us with an insight into the potential targets for future studies and the corresponding interventions.
Collapse
Affiliation(s)
- Jingyun Li
- aDepartment of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University bBeijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology cDepartment of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, PR China *Jingyun Li and Yuan Zhang contributed equally to the writing of this article
| | | | | |
Collapse
|
44
|
Abstract
Complex multifactorial diseases such as allergic rhinitis and asthma are not only becoming an increasing burden to healthcare systems, but especially affect the life quality of children and families suffering from their allergic symptoms. Also physicians are challenged by the multifaceted diseases as their work involves not only the often difficult decisions on case-adapted diagnostics, treatment, and monitoring, but also possible preventive measures. This review gives an outline of the latest scientific developments related to the etiology, diagnosis, and management of allergic airway diseases in childhood, as well as prenatal and early life risk factors and strategies for prevention.
Collapse
Affiliation(s)
- Stephanie Hofmaier
- Department of Paediatric Pneumology & Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
45
|
Systems biology of asthma and allergic diseases: a multiscale approach. J Allergy Clin Immunol 2014; 135:31-42. [PMID: 25468194 DOI: 10.1016/j.jaci.2014.10.015] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/10/2014] [Accepted: 10/15/2014] [Indexed: 01/15/2023]
Abstract
Systems biology is an approach to understanding living systems that focuses on modeling diverse types of high-dimensional interactions to develop a more comprehensive understanding of complex phenotypes manifested by the system. High-throughput molecular, cellular, and physiologic profiling of populations is coupled with bioinformatic and computational techniques to identify new functional roles for genes, regulatory elements, and metabolites in the context of the molecular networks that define biological processes associated with system physiology. Given the complexity and heterogeneity of asthma and allergic diseases, a systems biology approach is attractive, as it has the potential to model the myriad connections and interdependencies between genetic predisposition, environmental perturbations, regulatory intermediaries, and molecular sequelae that ultimately lead to diverse disease phenotypes and treatment responses across individuals. The increasing availability of high-throughput technologies has enabled system-wide profiling of the genome, transcriptome, epigenome, microbiome, and metabolome, providing fodder for systems biology approaches to examine asthma and allergy at a more holistic level. In this article we review the technologies and approaches for system-wide profiling, as well as their more recent applications to asthma and allergy. We discuss approaches for integrating multiscale data through network analyses and provide perspective on how individually captured health profiles will contribute to more accurate systems biology views of asthma and allergy.
Collapse
|