1
|
Lim H, Denison MIJ, Natarajan S, Lee K, Oh C, Park D. GAPDH Gene Family in Populus deltoides: Genome-Wide Identification, Structural Analysis, and Expression Analysis Under Drought Stress. Int J Mol Sci 2025; 26:335. [PMID: 39796191 PMCID: PMC11720025 DOI: 10.3390/ijms26010335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an enzyme widely involved in glycolysis in animal cells and in non-metabolic processes, including apoptosis and the regulation of gene expression. GAPDH is a ubiquitous protein that plays a pivotal role in plant metabolism and handling of stress responses. However, its function in plant stress resistance remains unknown. Identification and systematic analysis of the GAPDH family in Populus deltoides (P. deltoides) have not been performed. Bioinformatics methods were used to analyze the physicochemical characteristics, structural characteristics, phylogenetic relationships, gene structure, motif analysis, and expression of GAPDH gene family members in P. deltoides. We identified 12 GAPDH members in P. deltoides. Five types of PdGAPDH were identified: GAPA, GAPB, GAPC1, GAPC2, and GAPCp. PdGAPDH genes were differentially expressed in leaves, stems, and roots of 1-year-old poplar seedlings. PdGAPDH gene transcripts showed that PdGAPDH2 and PdGAPDH4 were highly expressed in the leaves. In the roots, seven genes-PdGAPDH01, PdGAPDH05, PdGAPDH06, PdGAPDH07, PdGAPDH08, PdGAPDH09, and PdGAPDH12-showed significantly high expression levels. PdGAPDH02, PdGAPDH03, PdGAPDH04, and PdGAPDH11 showed decreased expression under drought conditions and recovered after re-watering. These results lay the foundation for further studies on the drought stress mechanisms of P. deltoides.
Collapse
Affiliation(s)
- Hyemin Lim
- Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Republic of Korea; (K.L.); (C.O.); (D.P.)
| | | | | | - Kyungmi Lee
- Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Republic of Korea; (K.L.); (C.O.); (D.P.)
| | - Changyoung Oh
- Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Republic of Korea; (K.L.); (C.O.); (D.P.)
| | - Danbe Park
- Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Republic of Korea; (K.L.); (C.O.); (D.P.)
| |
Collapse
|
2
|
Hao X, Tang J, Chen Y, Huang C, Zhang W, Liu Y, Yue C, Wang L, Ding C, Dai W, Yang Y, Horvath DP, Wang X. CsCBF1/CsZHD9-CsMADS27, a critical gene module controlling dormancy and bud break in tea plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17165. [PMID: 39621558 DOI: 10.1111/tpj.17165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/08/2024] [Accepted: 11/04/2024] [Indexed: 01/11/2025]
Abstract
Tea plants are perennial evergreen woody crops that originated in low latitudes but have spread to high latitudes. Bud dormancy is an important adaptation mechanism to low temperatures, and its timing is economically significant for tea production. However, the core molecular networks regulating dormancy and bud break in tea plants remain unclear. In the present study, a MADS-box transcription factor CsMADS27 was identified in tea plants. Gene and phenotype characterizations following ectopic overexpression and endogenous silencing experiments are consistent with a role for CsMADS27 in dormancy and sprouting in different tea cultivars. Furthermore, CsDJC23 was found to be a downstream target of CsMADS27 and implicated in bud sprouting. Based on yeast one-hybrid screening and comprehensive verification, CsCBF1 and CsZHD9 were identified as upstream transcriptional inhibitors and activators of CsMADS27, respectively, with the two proteins showing direct interactions and competitive binding effects. Histone acetylation (H3K27Ac) in the first exon and intron regions of CsMADS27 was associated with a positive role in CsMADS27 expression. These results revealed that CsMADS27 is a key transcription factor involved in the regulation of dormancy and bud break. Furthermore, the CsCBF1/CsZHD9-CsMADS27 module plays a critical role in sensing environmental factors and accurately regulating the growth and development of overwintering buds in tea plants.
Collapse
Affiliation(s)
- Xinyuan Hao
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs/National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Junwei Tang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs/National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Yao Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs/National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing, China
| | - Chao Huang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs/National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Weifu Zhang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs/National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Ying Liu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs/National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Chuan Yue
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing, China
| | - Lu Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs/National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Changqing Ding
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs/National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Wenhao Dai
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Yajun Yang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs/National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - David P Horvath
- Edward T. Schafer Agricultural Research Center, Sunflower and Plant Biology Research Unit, USDA-Agricultural Research Service, Fargo, North Dakota, USA
| | - Xinchao Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs/National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Leng X, Wang H, Cao L, Chang R, Zhang S, Xu C, Yu J, Xu X, Qu C, Xu Z, Liu G. Overexpressing GLUTAMINE SYNTHETASE 1;2 maintains carbon and nitrogen balance under high-ammonium conditions and results in increased tolerance to ammonium toxicity in hybrid poplar. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4052-4073. [PMID: 38497908 DOI: 10.1093/jxb/erae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/16/2024] [Indexed: 03/19/2024]
Abstract
The glutamine synthetase/glutamic acid synthetase (GS/GOGAT) cycle plays important roles in N metabolism, growth, development, and stress resistance in plants. Excess ammonium (NH4+) restricts growth, but GS can help to alleviate its toxicity. In this study, the 84K model clone of hybrid poplar (Populus alba × P. tremula var. glandulosa), which has reduced biomass accumulation and leaf chlorosis under high-NH4+ stress, showed less severe symptoms in transgenic lines overexpressing GLUTAMINE SYNTHETASE 1;2 (GS1;2-OE), and more severe symptoms in RNAi lines (GS1;2-RNAi). Compared with the wild type, the GS1;2-OE lines had increased GS and GOGAT activities and higher contents of free amino acids, soluble proteins, total N, and chlorophyll under high-NH4+ stress, whilst the antioxidant and NH4+ assimilation capacities of the GS1;2-RNAi lines were decreased. The total C content and C/N ratio in roots and leaves of the overexpression lines were higher under stress, and there were increased contents of various amino acids and sugar alcohols, and reduced contents of carbohydrates in the roots. Under high-NH4+ stress, genes related to amino acid biosynthesis, sucrose and starch degradation, galactose metabolism, and the antioxidant system were significantly up-regulated in the roots of the overexpression lines. Thus, overexpression of GS1;2 affected the carbon and amino acid metabolism pathways under high-NH4+ stress to help maintain the balance between C and N metabolism and alleviate the symptoms of toxicity. Modification of the GS/GOGAT cycle by genetic engineering is therefore a potential strategy for improving the NH4+ tolerance of cultivated trees.
Collapse
Affiliation(s)
- Xue Leng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- College of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132109, China
| | - Hanzeng Wang
- College of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132109, China
| | - Lina Cao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Ruhui Chang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Shuang Zhang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Caifeng Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jiajie Yu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xiuyue Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Chunpu Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- College of Forestry, Guizhou University, Guiyang 550025, China
| | - Zhiru Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Guanjun Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
4
|
Bustin SA. Improving the quality of quantitative polymerase chain reaction experiments: 15 years of MIQE. Mol Aspects Med 2024; 96:101249. [PMID: 38290180 DOI: 10.1016/j.mam.2024.101249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/02/2024] [Accepted: 01/15/2024] [Indexed: 02/01/2024]
Abstract
The quantitative polymerase chain reaction (qPCR) is fundamental to molecular biology. It is not just a laboratory technique, qPCR is a bridge between research and clinical practice. Its theoretical foundations guide the design of experiments, while its practical implications extend to diagnostics, treatment, and research advancements in the life sciences, human and veterinary medicine, agriculture, and forensics. However, the accuracy, reliability and reproducibility of qPCR data face challenges arising from various factors associated with experimental design, execution, data analysis and inadequate reporting details. Addressing these concerns, the Minimum Information for the Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines have emerged as a cohesive framework offering a standardised set of recommendations that describe the essential information required for assessing qPCR experiments. By emphasising the importance of methodological rigour, the MIQE guidelines have made a major contribution to improving the trustworthiness, consistency, and transparency of many published qPCR results. However, major challenges related to awareness, resources, and publication pressures continue to affect their consistent application.
Collapse
Affiliation(s)
- Stephen A Bustin
- Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, Essex, CM1 1SQ, UK.
| |
Collapse
|
5
|
Alique D, Redondo López A, González Schain N, Allona I, Wabnik K, Perales M. Core clock genes adjust growth cessation time to day-night switches in poplar. Nat Commun 2024; 15:1784. [PMID: 38413620 PMCID: PMC10899572 DOI: 10.1038/s41467-024-46081-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/14/2024] [Indexed: 02/29/2024] Open
Abstract
Poplar trees use photoperiod as a precise seasonal indicator, synchronizing plant phenology with the environment. Daylength cue determines FLOWERING LOCUS T 2 (FT2) daily expression, crucial for shoot apex development and establishment of the annual growing period. However, limited evidence exists for the molecular factors controlling FT2 transcription and the conservation with the photoperiodic control of Arabidopsis flowering. We demonstrate that FT2 expression mediates growth cessation response quantitatively, and we provide a minimal data-driven model linking core clock genes to FT2 daily levels. GIGANTEA (GI) emerges as a critical inducer of the FT2 activation window, time-bound by TIMING OF CAB EXPRESSION (TOC1) and LATE ELONGATED HYPOCOTYL (LHY2) repressions. CRISPR/Cas9 loss-of-function lines validate these roles, identifying TOC1 as a long-sought FT2 repressor. Additionally, model simulations predict that FT2 downregulation upon daylength shortening results from a progressive narrowing of this activation window, driven by the phase shift observed in the preceding clock genes. This circadian-mediated mechanism enables poplar to exploit FT2 levels as an accurate daylength-meter.
Collapse
Affiliation(s)
- Daniel Alique
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Arturo Redondo López
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Nahuel González Schain
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
- Instituto de Biología Molecular y Celular de Rosario, CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Isabel Allona
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, 28040, Spain
| | - Krzysztof Wabnik
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain.
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, 28040, Spain.
| | - Mariano Perales
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain.
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, 28040, Spain.
| |
Collapse
|
6
|
Kim TL, Lim H, Denison MIJ, Oh C. Transcriptomic and Physiological Analysis Reveals Genes Associated with Drought Stress Responses in Populus alba × Populus glandulosa. PLANTS (BASEL, SWITZERLAND) 2023; 12:3238. [PMID: 37765403 PMCID: PMC10535988 DOI: 10.3390/plants12183238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
Drought stress affects plant productivity by altering plant responses at the morphological, physiological, and molecular levels. In this study, we identified physiological and genetic responses in Populus alba × Populus glandulosa hybrid clones 72-30 and 72-31 after 12 days of exposure to drought treatment. After 12 days of drought treatment, glucose, fructose, and sucrose levels were significantly increased in clone 72-30 under drought stress. The Fv/Fo and Fv/Fm values in both clones also decreased under drought stress. The changes in proline, malondialdehyde, and H2O2 levels were significant and more pronounced in clone 72-30 than in clone 72-31. The activities of antioxidant-related enzymes, such as catalase and ascorbate peroxidase, were significantly higher in the 72-31 clone. To identify drought-related genes, we conducted a transcriptomic analysis in P. alba × P. glandulosa leaves exposed to drought stress. We found 883 up-regulated and 305 down-regulated genes in the 72-30 clone and 279 and 303 in the 72-31 clone, respectively. These differentially expressed genes were mainly in synthetic pathways related to proline, abscisic acid, and antioxidants. Overall, clone 72-31 showed better drought tolerance than clone 72-30 under drought stress, and genetic changes also showed different patterns.
Collapse
Affiliation(s)
- Tae-Lim Kim
- Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Republic of Korea; (T.-L.K.); (C.O.)
| | - Hyemin Lim
- Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Republic of Korea; (T.-L.K.); (C.O.)
| | | | - Changyoung Oh
- Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Republic of Korea; (T.-L.K.); (C.O.)
| |
Collapse
|
7
|
Abundance, efficiency, and stability of reference transcript expression in a seasonal rodent: The Siberian hamster. PLoS One 2022; 17:e0275263. [PMID: 36190976 PMCID: PMC9529152 DOI: 10.1371/journal.pone.0275263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/13/2022] [Indexed: 11/04/2022] Open
Abstract
Quantitative PCR (qPCR) is a common molecular tool to analyse the expression of transcripts in non-traditional animal models. Most animals experience tissue-specific seasonal changes in cell structure, growth, and cellular function. As a consequence, the choice of reference or 'house-keeping' genes is essential to standardize expression levels of target transcripts of interest for qPCR analyses. This study aimed to determine the abundance, efficiency and stability of several reference genes commonly used for normalisation of qPCR analyses in a model of seasonal biology: the Siberian hamster (Phodopus sungorus). Liver, brown-adipose tissue (BAT), white adipose tissue (WAT), testes, spleen, kidney, the hypothalamic arcuate nucleus, and the pituitary gland from either long or short photoperiod Siberian hamsters were dissected to test tissue-specific and photoperiod effects on reference transcripts. qPCR was conducted for common reference genes including 18s ribosomal RNA (18s), glyceraldehyde 3-phosphate dehydrogenase (Gapdh), hypoxanthine-guanine phosphoribosyltransferase (Hprt), and actin-β (Act). Cycling time (Ct), efficiency (E) and replicate variation of Ct and E measured by percent coefficient of variance (CV%) was determined using PCR miner. Measures of stability were assessed using a combined approach of NormFinder and BestKeeper. 18s and Act did not vary in Ct across photoperiod conditions. Splenic, WAT and BAT Gapdh Ct was higher in long compared to short photoperiod. Splenic Hprt Ct was higher in long photoperiods. There was no significant effect of photoperiod, tissue or interaction on measures of efficiency, Ct CV%, or efficiency CV%. NormFinder and BestKeeper confirmed that 18s, Gapdh and Hprt were highly stable, while Act showed low stability. These findings suggest that 18s and Hprt show the most reliable stability, efficiency, and abundance across the tissues. Overall, the study provides a comprehensive and standardised approach to assess multiple reference genes in the Siberian hamster and help to inform molecular assays used in studies of photoperiodism.
Collapse
|
8
|
Karannagoda N, Spokevicius A, Hussey S, Cassan-Wang H, Grima-Pettenati J, Bossinger G. Eucalyptus grandis AUX/INDOLE-3-ACETIC ACID 13 (EgrIAA13) is a novel transcriptional regulator of xylogenesis. PLANT MOLECULAR BIOLOGY 2022; 109:51-65. [PMID: 35292886 PMCID: PMC9072461 DOI: 10.1007/s11103-022-01255-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Our Induced Somatic Sector Analysis and protein-protein interaction experiments demonstrate that Eucalyptus grandis IAA13 regulates xylem fibre and vessel development, potentially via EgrIAA13 modules involving ARF2, ARF5, ARF6 and ARF19. Auxin is a crucial phytohormone regulating multiple aspects of plant growth and differentiation, including regulation of vascular cambium activity, xylogenesis and its responsiveness towards gravitropic stress. Although the regulation of these biological processes greatly depends on auxin and regulators of the auxin signalling pathway, many of their specific functions remain unclear. Therefore, the present study aims to functionally characterise Eucalyptus grandis AUX/INDOLE-3-ACETIC ACID 13 (EgrIAA13), a member of the auxin signalling pathway. In Eucalyptus and Populus, EgrIAA13 and its orthologs are preferentially expressed in the xylogenic tissues and downregulated in tension wood. Therefore, to further investigate EgrIAA13 and its function during xylogenesis, we conducted subcellular localisation and Induced Somatic Sector Analysis experiments using overexpression and RNAi knockdown constructs of EgrIAA13 to create transgenic tissue sectors on growing stems of Eucalyptus and Populus. Since Aux/IAAs interact with Auxin Responsive Factors (ARFs), in silico predictions of IAA13-ARF interactions were explored and experimentally validated via yeast-2-hybrid experiments. Our results demonstrate that EgrIAA13 localises to the nucleus and that downregulation of EgrIAA13 impedes Eucalyptus xylem fibre and vessel development. We also observed that EgrIAA13 interacts with Eucalyptus ARF2, ARF5, ARF6 and ARF19A. Based on these results, we conclude that EgrIAA13 is a regulator of Eucalyptus xylogenesis and postulate that the observed phenotypes are likely to result from alterations in the auxin-responsive transcriptome via IAA13-ARF modules such as EgrIAA13-EgrARF5. Our results provide the first insights into the regulatory role of EgrIAA13 during xylogenesis.
Collapse
Affiliation(s)
- Nadeeshani Karannagoda
- School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, VIC, 3363, Australia.
- Centre for AgriBioscience, Agriculture Victoria, AgriBio, Bundoora, Victoria, 3083, Australia.
| | - Antanas Spokevicius
- School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, VIC, 3363, Australia
| | - Steven Hussey
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - Hua Cassan-Wang
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse III, CNRS, UPS, UMR 5546, 24 Chemin de Borde Rouge, 31320, Castanet-Tolosan, France
| | - Jacqueline Grima-Pettenati
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse III, CNRS, UPS, UMR 5546, 24 Chemin de Borde Rouge, 31320, Castanet-Tolosan, France
| | - Gerd Bossinger
- School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, VIC, 3363, Australia
| |
Collapse
|
9
|
Chemical and Molecular Characterization of Wound-Induced Suberization in Poplar (Populus alba × P. tremula) Stem Bark. PLANTS 2022; 11:plants11091143. [PMID: 35567144 PMCID: PMC9102228 DOI: 10.3390/plants11091143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022]
Abstract
Upon mechanical damage, plants produce wound responses to protect internal tissues from infections and desiccation. Suberin, a heteropolymer found on the inner face of primary cell walls, is deposited in specific tissues under normal development, enhanced under abiotic stress conditions and synthesized by any tissue upon mechanical damage. Wound-healing suberization of tree bark has been investigated at the anatomical level but very little is known about the molecular mechanisms underlying this important stress response. Here, we investigated a time course of wound-induced suberization in poplar bark. Microscopic changes showed that polyphenolics accumulate 3 days post wounding, with aliphatic suberin deposition observed 5 days post wounding. A wound periderm was formed 9 days post wounding. Chemical analyses of the suberin polyester accumulated during the wound-healing response indicated that suberin monomers increased from 0.25 to 7.98 mg/g DW for days 0 to 28, respectively. Monomer proportions varied across the wound-healing process, with an overall ratio of 2:1 (monomers:glycerol) found across the first 14 days post wounding, with this ratio increasing to 7:2 by day 28. The expression of selected candidate genes of poplar suberin metabolism was investigated using qRT-PCR. Genes queried belonging to lipid polyester and phenylpropanoid metabolism appeared to have redundant functions in native and wound-induced suberization. Our data show that, anatomically, the wounding response in poplar bark is similar to that described in periderms of other species. It also provides novel insight into this process at the chemical and molecular levels, which have not been previously studied in trees.
Collapse
|
10
|
Gómez-Soto D, Allona I, Perales M. FLOWERING LOCUS T2 Promotes Shoot Apex Development and Restricts Internode Elongation via the 13-Hydroxylation Gibberellin Biosynthesis Pathway in Poplar. FRONTIERS IN PLANT SCIENCE 2022; 12:814195. [PMID: 35185961 PMCID: PMC8853612 DOI: 10.3389/fpls.2021.814195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/22/2021] [Indexed: 06/11/2023]
Abstract
The adaptation and survival of boreal and temperate perennials relies on the precise demarcation of the growing season. Seasonal growth and development are defined by day length and temperature signals. Under long-day conditions in spring, poplar FLOWERING LOCUS T2 (FT2) systemically induces shoot growth. In contrast, FT2 downregulation induced by autumnal short days triggers growth cessation and bud set. However, the molecular role of FT2 in local and long-range signaling is not entirely understood. In this study, the CRISPR/Cas9 editing tool was used to generate FT2 loss of function lines of hybrid poplar. Results indicate that FT2 is essential to promote shoot apex development and restrict internode elongation under conditions of long days. The application of bioactive gibberellins (GAs) to apical buds in FT2 loss of function lines was able to rescue bud set. Expression analysis of GA sensing and metabolic genes and hormone quantification revealed that FT2 boosts the 13-hydroxylation branch of the GA biosynthesis pathway in the shoot apex. Paclobutrazol treatment of WT leaves led to limited internode growth in the stem elongation zone. In mature leaves, FT2 was found to control the GA 13-hydroxylation pathway by increasing GA2ox1 and reducing GA3ox2 expression, causing reduced GA1 levels. We here show that in poplar, the FT2 signal promotes shoot apex development and restricts internode elongation through the GA 13-hydroxylation pathway.
Collapse
Affiliation(s)
- Daniela Gómez-Soto
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, CNINIA (CSIC), Madrid, Spain
| | - Isabel Allona
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, CNINIA (CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Mariano Perales
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, CNINIA (CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
11
|
Evaluation of reference genes and characterization of the MYBs in xylem radial change of Chinese fir stem. Sci Rep 2022; 12:258. [PMID: 34997161 PMCID: PMC8741804 DOI: 10.1038/s41598-021-04406-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
The radial change (RC) of tree stem is the process of heartwood formation involved in complex molecular mechanism. Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.), an evergreen species, is an important fast-growing timber tree in southern China. In this study, the top four stable genes (IDH, UBC2, RCA and H2B) were selected in RC tissues of 15 years old Chinese fir stem (RC15) and the genes (H2B, 18S, TIP41 and GAPDH) were selected in RC tissues of 30 years old Chinese fir stem (RC30). The stability of the reference genes is higher in RC30 than in RC15. Sixty-one MYB transcripts were obtained on the PacBio Sequel platform from woody tissues of one 30 years old Chinese fir stem. Based on the number of MYB DNA-binding domain and phylogenetic relationships, the ClMYB transcripts contained 21 transcripts of MYB-related proteins (1R-MYB), 39 transcripts of R2R3-MYB proteins (2R-MYB), one transcript of R1R2R3-MYB protein (3R-MYB) belonged to 18 function-annotated clades and two function-unknown clades. In RC woody tissues of 30 years old Chinese fir stem, ClMYB22 was the transcript with the greatest fold change detected by both RNA-seq and qRT-PCR. Reference genes selected in this study will be helpful for further verification of transcript abundance patterns during the heartwood formation of Chinese fir.
Collapse
|
12
|
Genome Identification and Expression Profiles in Response to Nitrogen Treatment Analysis of the Class I CCoAOMT Gene Family in Populus. Biochem Genet 2021; 60:656-675. [PMID: 34410559 DOI: 10.1007/s10528-021-10112-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
Lignin is essential for the characteristics and quality of timber. Nitrogen has significant effects on lignin contents in plants. Nitrogen has been found to affect wood quality in plantations and lignin content in plants. Caffeoyl-CoA 3-O-methyltransferase (CCoAOMT) is an important methyltransferase in lignin biosynthesis. However, the classification of woody plant CCoAOMT gene family members and the regulation mechanism of nitrogen are not clear. Bioinformatics methods were used to predict the members, classification, and transcriptional distribution of the CCoAOMT gene family in Populus trichocarpa. The results showed that there were five PtCCoAOMTs identified, and they could be divided into three sub-groups according to their structural and phylogenetic features. The results of tissue expression specificity analysis showed that: PtCCoAOMT1 was highly expressed in roots and internodes; PtCCoAOMT2 was highly expressed in roots, nodes, and internodes, PtCCoAOMT3 was highly expressed in stems; PtCCoAOMT4 was highly expressed in young leaves, and, PtCCoAOMT5 was highly expressed in roots. Different forms and concentrations of nitrogen had varying effects on the expression patterns of genes in different plant tissue types. The results of real-time PCR showed that the expression levels of PtCCoAOMT1 and PtCCoAOMT2 in stems increased significantly under different forms of nitrogen. PtCCoAOMT3 and PtCCoAOMT4 were induced by nitrate nitrogen in upper stems and lower leaves, respectively. PtCCoAOMT4 and PtCCoAOMT5 were induced by different concentrations of nitrate nitrogen in lower stems and roots, respectively. These results could provide valuable information for revealing the differences between functions and expression patterns of the various CCoAOMT gene family members under different forms and concentrations of exogenous nitrogen in poplar.
Collapse
|
13
|
Lawrence EH, Leichty AR, Doody EE, Ma C, Strauss SH, Poethig RS. Vegetative phase change in Populus tremula × alba. THE NEW PHYTOLOGIST 2021; 231:351-364. [PMID: 33660260 PMCID: PMC8353317 DOI: 10.1111/nph.17316] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/17/2021] [Indexed: 05/24/2023]
Abstract
Plants transition through juvenile and adult phases of vegetative development in a process known as vegetative phase change (VPC). In poplars (genus Populus) the differences between these stages are subtle, making it difficult to determine when this transition occurs. Previous studies of VPC in poplars have relied on plants propagated in vitro, leaving the natural progression of this process unknown. We examined developmental morphology of seed-grown and in vitro derived Populus tremula × alba (clone 717-1B4), and compared the phenotype of these to transgenics with manipulated miR156 expression, the master regulator of VPC. In seed-grown plants, most traits changed from node-to-node during the first 3 months of development but remained constant after node 25. Many traits remained unchanged in clones over-expressing miR156, or were enhanced when miR156 was lowered, demonstrating their natural progression is regulated by the miR156/SPL pathway. The characteristic leaf fluttering of Populus is one of these miR156-regulated traits. Vegetative development in plants grown from culture mirrored that of seed-grown plants, allowing direct comparison between plants often used in research and those found in nature. These results provide a foundation for further research on the role of VPC in the ecology and evolution of this economically important genus.
Collapse
Affiliation(s)
- Erica H. Lawrence
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aaron R. Leichty
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Erin E. Doody
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cathleen Ma
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331, USA
| | - Steven H. Strauss
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331, USA
| | - R. Scott Poethig
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Identification and validation of miRNA reference genes in poplar under pathogen stress. Mol Biol Rep 2021; 48:3357-3366. [PMID: 33948852 DOI: 10.1007/s11033-021-06369-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Quantitative real time polymerase chain reaction (qRT-PCR) is a common method to analyze gene expression. Due to differences in RNA quantity, quality, and reverse transcription efficiency between qRT-PCR samples, reference genes are used as internal standards to normalize gene expression. However, few universal genes, especially miRNAs, have been identified as reference so far. Therefore, it is essential to identify reference genes that can be used across various experimental conditions, stress treatments, or tissues. In this study, 14 microRNAs (miRNAs) and 5.8S rRNA were assessed for expression stability in poplar trees infected with canker pathogen. Using geNorm, NormFinder and Bestkeeper reference gene analysis programs, we found that miR156g and miR156a exhibited stable expression throughout the infection process. miR156g, miR156a and 5.8S rRNA were then tested as internal standards to measure the expression of miR1447 and miR171c, and the results were compared to small RNA sequencing (RNA-seq) data. We found that when miR156a and 5.8S rRNA were used as the reference gene, the expression of miR1447 and miR171c were consistent with the small RNA-seq expression profiles. Therefore, miR156a was the most stable miRNAs examined in this study, and could be used as a reference gene in poplar under canker pathogen stress, which should enable comprehensive comparisons of miRNAs expression and avoid the bias caused by different length between detected miRNAs and traditional reference genes. The present study has expanded the miRNA reference genes available for gene expression studies in trees under biotic stress.
Collapse
|
15
|
Kulasekaran S, Cerezo-Medina S, Harflett C, Lomax C, de Jong F, Rendour A, Ruvo G, Hanley SJ, Beale MH, Ward JL. A willow UDP-glycosyltransferase involved in salicinoid biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1634-1648. [PMID: 33249501 DOI: 10.1093/jxb/eraa562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 11/24/2020] [Indexed: 05/25/2023]
Abstract
The salicinoids are phenolic glycosides that are characteristic secondary metabolites of the Salicaceae, particularly willows and poplars. Despite the well-known pharmacology of salicin, that led to the development of aspirin >100 years ago, the biosynthetic pathways leading to salicinoids have yet to be defined. Here, we describe the identification, cloning, and biochemical characterization of SpUGT71L2 and SpUGT71L3-isozymic glycosyltransferases from Salix purpurea-that function in the glucosylation of ortho-substituted phenols. The best substrate in vitro was salicyl-7-benzoate. Its product, salicyl-7-benzoate glucoside, was shown to be endogenous in poplar and willow. Together they are inferred to be early intermediates in the biosynthesis of salicortin and related metabolites in planta. The role of this UDP-glycosyltransferase was confirmed via the metabolomic analysis of transgenic plants produced by RNAi knockdown of the poplar orthologue (UGT71L1) in the hybrid clone Populus tremula×P. alba, INRA 717-1B4.
Collapse
Affiliation(s)
- Satish Kulasekaran
- Computational and Analytical Sciences Department, Rothamsted Research, West Common, Harpenden, Hertfordshire, UK
| | - Sergio Cerezo-Medina
- Computational and Analytical Sciences Department, Rothamsted Research, West Common, Harpenden, Hertfordshire, UK
| | - Claudia Harflett
- Computational and Analytical Sciences Department, Rothamsted Research, West Common, Harpenden, Hertfordshire, UK
| | - Charlotte Lomax
- Computational and Analytical Sciences Department, Rothamsted Research, West Common, Harpenden, Hertfordshire, UK
| | - Femke de Jong
- Computational and Analytical Sciences Department, Rothamsted Research, West Common, Harpenden, Hertfordshire, UK
| | - Amelie Rendour
- Computational and Analytical Sciences Department, Rothamsted Research, West Common, Harpenden, Hertfordshire, UK
| | - Gianluca Ruvo
- Computational and Analytical Sciences Department, Rothamsted Research, West Common, Harpenden, Hertfordshire, UK
| | - Steven J Hanley
- Computational and Analytical Sciences Department, Rothamsted Research, West Common, Harpenden, Hertfordshire, UK
| | - Michael H Beale
- Computational and Analytical Sciences Department, Rothamsted Research, West Common, Harpenden, Hertfordshire, UK
| | - Jane L Ward
- Computational and Analytical Sciences Department, Rothamsted Research, West Common, Harpenden, Hertfordshire, UK
| |
Collapse
|
16
|
Identification and Characterization of the APX Gene Family and Its Expression Pattern under Phytohormone Treatment and Abiotic Stress in Populus trichocarpa. Genes (Basel) 2021; 12:genes12030334. [PMID: 33668872 PMCID: PMC7996185 DOI: 10.3390/genes12030334] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Ascorbate peroxidase (APX) is a member of class I of the heme-containing peroxidase family. The enzyme plays important roles in scavenging reactive oxygen species for protection against oxidative damage and maintaining normal plant growth and development, as well as in biotic stress responses. In this study, we identified 11 APX genes in the Populus trichocarpa genome using bioinformatic methods. Phylogenetic analysis revealed that the PtrAPX proteins were classifiable into three clades and the members of each clade shared similar gene structures and motifs. The PtrAPX genes were distributed on six chromosomes and four segmental-duplicated gene pairs were identified. Promoter cis-elements analysis showed that the majority of PtrAPX genes contained a variety of phytohormone- and abiotic stress-related cis-elements. Tissue-specific expression profiles indicated that the PtrAPX genes primarily function in roots and leaves. Real-time quantitative PCR (RT-qPCR) analysis indicated that PtrAPX transcription was induced in response to drought, salinity, high ammonium concentration, and exogenous abscisic acid treatment. These results provide important information on the phylogenetic relationships and functions of the APX gene family in P. trichocarpa.
Collapse
|
17
|
Li G, Lin R, Egekwu C, Blakeslee J, Lin J, Pettengill E, Murphy AS, Peer WA, Islam N, Babst BA, Gao F, Komarov S, Tai YC, Coleman GD. Seasonal nitrogen remobilization and the role of auxin transport in poplar trees. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4512-4530. [PMID: 32161967 PMCID: PMC7382381 DOI: 10.1093/jxb/eraa130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 03/06/2020] [Indexed: 05/31/2023]
Abstract
Seasonal nitrogen (N) cycling in Populus, involves bark storage proteins (BSPs) that accumulate in bark phloem parenchyma in the autumn and decline when shoot growth resumes in the spring. Little is known about the contribution of BSPs to growth or the signals regulating N remobilization from BSPs. Knockdown of BSP accumulation via RNAi and N sink manipulations were used to understand how BSP storage influences shoot growth. Reduced accumulation of BSPs delayed bud break and reduced shoot growth following dormancy. Further, 13N tracer studies also showed that BSP accumulation is an important factor in N partitioning from senescing leaves to bark. Thus, BSP accumulation has a role in N remobilization during N partitioning both from senescing leaves to bark and from bark to expanding shoots once growth commences following dormancy. The bark transcriptome during BSP catabolism and N remobilization was enriched in genes associated with auxin transport and signaling, and manipulation of the source of auxin or auxin transport revealed a role for auxin in regulating BSP catabolism and N remobilization. Therefore, N remobilization appears to be regulated by auxin produced in expanding buds and shoots that is transported to bark where it regulates protease gene expression and BSP catabolism.
Collapse
Affiliation(s)
- Gen Li
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, USA
| | - Rongshoung Lin
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, USA
| | - Chioma Egekwu
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, USA
| | - Joshua Blakeslee
- OARDC Metabolite Analysis Center, Department of Horticulture and Crop Science, The Ohio State University, Wooster, USA
| | - Jinshan Lin
- OARDC Metabolite Analysis Center, Department of Horticulture and Crop Science, The Ohio State University, Wooster, USA
| | - Emily Pettengill
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, USA
| | - Angus S Murphy
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, USA
| | - Wendy A Peer
- Department of Environmental Science and Technology, University of Maryland, College Park, USA
| | - Nazrul Islam
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, USA
| | - Benjamin A Babst
- College of Forestry, Agriculture and Natural Resources, University of Arkansas at Monticello, Monticello, USA
| | - Fei Gao
- College of Forestry, Agriculture and Natural Resources, University of Arkansas at Monticello, Monticello, USA
| | - Sergey Komarov
- Department of Radiology, Washington University in St. Louis, St. Louis, USA
| | - Yuan-Chuan Tai
- Department of Radiology, Washington University in St. Louis, St. Louis, USA
| | - Gary D Coleman
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, USA
| |
Collapse
|
18
|
Xu Z, Huang J, Qu C, Chang R, Chen J, Wang Q, Xi Q, Song Y, Sun Q, Yang C, Liu G. Functional characterization and expression patterns of PnATX genes under different abiotic stress treatments in Populus. TREE PHYSIOLOGY 2020; 40:520-537. [PMID: 32031640 DOI: 10.1093/treephys/tpaa008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/25/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
The copper chaperone ATX1 has been investigated previously in the herbaceous plants Arabidopsis and rice. However, the molecular mechanisms of ATX1 underlying copper transport and functional characteristics in the woody plant Populus are poorly understood. In this study, PnATX1 and PnATX2 of Populus simonii × P. nigra were identified and characterized. Sequence analysis showed that PnATXs contained the metal-binding motif MXCXXC in the N-terminus and a lysine-rich region. Phylogenetic analysis of ATX protein sequences revealed that PnATXs were clustered in the same group as AtATX1. PnATX proteins were localized in the cytoplasm and nucleus. Tissue-specific expression analysis showed that PnATX1 and PnATX2 were expressed in all analyzed tissues and, in particular, expressed to a higher relative expression level in young leaves. Quantitative real-time PCR analysis indicated that each PnATX gene was differentially expressed in different tissues under treatments with copper, zinc, iron, jasmonate and salicylic acid (SA). The copper-response element GTAC, methyl jasmonate and salicylic acid responsiveness elements and other cis-acting elements were identified in the PnATX1 and PnATX2 promoters. Expression of β-glucuronidase driven by the PnATX1 promoter was observed in the apical meristem of 7-day-old Arabidopsis transgenic seedlings, and the signal strength was not influenced by deficient or excessive copper conditions. Both PnATX1 and PnATX2 functionally rescued the defective phenotypes of yeast atx1Δ and sod1Δ strains. Under copper excess and deficiency conditions, transgenic Arabidopsis atx1 mutants harboring 35S::PnATX constructs exhibited root length and fresh weight similar to those of the wild type and higher than those of Arabidopsis atx1 mutants. Superoxide dismutase activity decreased in transgenic lines compared with that of atx1 mutants, whereas peroxidase and catalase activities increased significantly under excess copper. The results provide a basis for elucidating the role of Populus PnATX genes in copper homeostasis.
Collapse
Affiliation(s)
- Zhiru Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jiahuan Huang
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Chunpu Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
- School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Ruhui Chang
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Jinyuan Chen
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Qi Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
- School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Qi Xi
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
- School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Yang Song
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Qi Sun
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
- School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Chuanping Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
- School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Guanjun Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
- School of Forestry, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
19
|
Chen J, Qu C, Chang R, Suo J, Yu J, Sun X, Liu G, Xu Z. Genome-wide identification of BXL genes in Populus trichocarpa and their expression under different nitrogen treatments. 3 Biotech 2020; 10:57. [PMID: 32015953 PMCID: PMC6975742 DOI: 10.1007/s13205-020-2061-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/06/2020] [Indexed: 01/22/2023] Open
Abstract
β-d-xylosidase (BXL) hydrolyzes xylobiose and xylo-oligosaccharides into xylose monomers, and is a rate-limiting enzyme in the degradation of hemicellulose in the cell wall. In this study, ten genes encoding putative BXL proteins were identified in the Populus trichocarpa genome by bioinformatics methods. In the phylogenetic analysis, the PtBXLs formed two subfamilies. PtBXL8 and PtBXL9 were closely related to AtBXL1, an important enzyme in the normal development of the Arabidopsis cell wall structure. Chromosomal distribution and genome synteny analyses revealed two tandem-duplicated gene pairs PtBXL3/4 and PtBXL6/7 on chromosomes II and V, respectively, and six segmental-duplicated gene pairs on chromosomes II, V, VIII, X, and XIV among the PtBXL gene family. Tissue-specific expression data from PlantGenIE indicated that PtBXL2, 4, 5, and 10 were highly expressed in stems. Quantitative real-time RT-PCR analyses revealed that PtBXL4, 5, and 9 were up-regulated in the upper stem in response to the low and high ammonium and nitrate treatments. The influence of nitrogen on the expression of PtBXL4, 5, and 9 genes may affect the formation of the plant secondary cell wall. This comprehensive analysis of the BXL family in poplar provides new insights into their regulation by nitrogen and increases our understanding of the roles of BXLs in hemicellulose metabolism in the secondary cell wall and during plant development.
Collapse
Affiliation(s)
- Jinyuan Chen
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040 People’s Republic of China
- College of Life Science, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Chunpu Qu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- School of Forestry, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Ruhui Chang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040 People’s Republic of China
- College of Life Science, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Juanfang Suo
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040 People’s Republic of China
- College of Life Science, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Jiajie Yu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- School of Forestry, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Xue Sun
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- School of Forestry, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Guanjun Liu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- School of Forestry, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Zhiru Xu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040 People’s Republic of China
- College of Life Science, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| |
Collapse
|
20
|
Ambroise V, Legay S, Guerriero G, Hausman JF, Cuypers A, Sergeant K. Selection of Appropriate Reference Genes for Gene Expression Analysis under Abiotic Stresses in Salix viminalis. Int J Mol Sci 2019; 20:ijms20174210. [PMID: 31466254 PMCID: PMC6747362 DOI: 10.3390/ijms20174210] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/08/2019] [Accepted: 08/22/2019] [Indexed: 11/16/2022] Open
Abstract
Salix viminalis is a fast growing willow species with potential as a plant used for biomass feedstock or for phytoremediation. However, few reference genes (RGs) for quantitative real-time polymerase chain reaction (qPCR) are available in S. viminalis, thereby limiting gene expression studies. Here, we investigated the expression stability of 14 candidate reference genes (RGs) across various organs exposed to five abiotic stresses (cold, heat, drought, salt, and poly-metals). Four RGs ranking algorithms, namely geNormPLUS, BestKeeper, NormFinder, and GrayNorm were applied to analyze the qPCR data and the outputs were merged into consensus lists with RankAggreg, a rank aggregation algorithm. In addition, the optimal RG combinations were determined with geNormPLUS and GrayNorm. The genes that were the most stable in the roots were TIP41 and CDC2. In the leaves, TIP41 was the most stable, followed by EF1b and ARI8, depending on the condition tested. Conversely, GAPDH and β-TUB, two genes commonly used for qPCR data normalization were the least stable across all organs. Nevertheless, both geNormPLUS and GrayNorm recommended the use of a combination of genes rather than a single one. These results are valuable for research of transcriptomic responses in different S. viminalis organs.
Collapse
Affiliation(s)
- Valentin Ambroise
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST) 5 Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek, Belgium
| | - Sylvain Legay
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST) 5 Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg
| | - Gea Guerriero
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST) 5 Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg
| | - Jean-Francois Hausman
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST) 5 Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg
| | - Ann Cuypers
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek, Belgium
| | - Kjell Sergeant
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST) 5 Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg.
| |
Collapse
|
21
|
Ramos-Sánchez JM, Triozzi PM, Alique D, Geng F, Gao M, Jaeger KE, Wigge PA, Allona I, Perales M. LHY2 Integrates Night-Length Information to Determine Timing of Poplar Photoperiodic Growth. Curr Biol 2019; 29:2402-2406.e4. [PMID: 31257141 DOI: 10.1016/j.cub.2019.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/06/2019] [Accepted: 06/03/2019] [Indexed: 12/18/2022]
Abstract
Day length is a key indicator of seasonal information that determines major patterns of behavior in plants and animals. Photoperiodism has been described in plants for about 100 years, but the underlying molecular mechanisms of day length perception and signal transduction in many systems are not well understood. In trees, photoperiod perception plays a major role in growth cessation during the autumn as well as activating the resumption of shoot growth in the spring, both processes controlled by FLOWERING LOCUS T2 (FT2) expression levels and critical for the survival of perennial plants over winter [1-4]. It has been shown that the conserved role of poplar orthologs to Arabidopsis CONSTANS (CO) directly activates FT2 expression [1, 5]. Overexpression of poplar CO is, however, not sufficient to sustain FT2 expression under short days [5], pointing to the presence of an additional short-day-dependent FT2 repression pathway in poplar. We find that night length information is transmitted via the expression level of a poplar clock gene, LATE ELONGATED HYPOCOTYL 2 (LHY2), which controls FT2 expression. Repression of FT2 is a function of the night extension and LHY2 expression level. We show that LHY2 is necessary and sufficient to activate night length repressive signaling. We propose that the photoperiodic control of shoot growth in poplar involves a balance between FT2 activating and repressing pathways. Our results show that poplar relies on night length measurement to determine photoperiodism through interaction between light signaling pathways and the circadian clock.
Collapse
Affiliation(s)
- José M Ramos-Sánchez
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Pozuelo de Alarcón, Madrid 28223, Spain
| | - Paolo M Triozzi
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Pozuelo de Alarcón, Madrid 28223, Spain
| | - Daniel Alique
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Pozuelo de Alarcón, Madrid 28223, Spain
| | - Feng Geng
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Mingjun Gao
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Katja E Jaeger
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK; Leibniz-Institut für Gemüse- und Zierpflanzenbau, Großbeeren 14979, Germany
| | - Philip A Wigge
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK; Leibniz-Institut für Gemüse- und Zierpflanzenbau, Großbeeren 14979, Germany; Institute of Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
| | - Isabel Allona
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Pozuelo de Alarcón, Madrid 28223, Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid 28040, Spain.
| | - Mariano Perales
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Pozuelo de Alarcón, Madrid 28223, Spain.
| |
Collapse
|
22
|
Tang F, Chu L, Shu W, He X, Wang L, Lu M. Selection and validation of reference genes for quantitative expression analysis of miRNAs and mRNAs in Poplar. PLANT METHODS 2019; 15:35. [PMID: 30996729 PMCID: PMC6451301 DOI: 10.1186/s13007-019-0420-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) is a rapid and sensitive approach to identify miRNA and protein-coding gene expression in plants. However, because of the specially designated reverse transcription and shorter PCR products, very few reference genes have been identified for the quantitative analysis of miRNA expression in plants, and different internal reference genes are needed to normalize the expression of miRNAs and mRNA genes respectively. Therefore, it is particularly important to select the suitable common reference genes for normalization of quantitative PCR of miRNA and mRNA. RESULTS In this study, a modified reverse transcription PCR protocol was adopted for selecting and validating universal internal reference genes of mRNAs and miRNAs. Eight commonly used reference genes, four stably expressed novel genes in Populus tremula, three small noncoding RNAs and three conserved miRNAs were selected as candidate genes, and the stability of their expression was examined across a set of 38 tissue samples from four developmental stages of poplar clone 84K (Populus alba × Populus glandulosa). The expression stability of these candidate genes was evaluated systematically by four algorithms: geNorm, NormFinder, Bestkeeper and DeltaCt. The results showed that Eukaryotic initiation factor 4A III (EIF4A) and U6-2 were suitable for samples of the callus stage; U6-1 and U6-2 were best for the seedling stage; Protein phosphatase 2A-2 (PP2A-2) and U6-1 were best for the plant stage; and Protein phosphatase 2A-2 (PP2A-2) and Oligouridylate binding protein 1B (UBP) were the best reference genes in the adventitious root (AR) regeneration stage. CONCLUSIONS The purpose of this study was to identify the most appropriate reference genes for qRT-PCR of miRNAs and mRNAs in different tissues at several developmental stages in poplar. U6-1, EIF4A and PP2A-2 were the three most appropriate reference genes for qRT-PCR normalization of miRNAs and mRNAs during the plant regeneration process, and PP2A-2 and UBP represent the best reference genes in the AR regeneration stage of poplar. This work will benefit future studies of expression and function analysis of miRNAs and their target genes in poplar.
Collapse
Affiliation(s)
- Fang Tang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
| | - Liwei Chu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 China
| | - Wenbo Shu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 China
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Xuejiao He
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 China
| | - Lijuan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
| | - Mengzhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
| |
Collapse
|
23
|
Identification and Analysis of microRNAs in the SAM and Leaves of Populus tomentosa. FORESTS 2019. [DOI: 10.3390/f10020130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The shoot apical meristem (SAM) is a crucial tissue located at the tops of plants which can continually grow and differentiate to develop into all aboveground parts. SAM development is controlled by a series of complicated molecular regulation networks, among which microRNAs (miRNAs) and their target genes play key roles. However, little is known about these miRNAs in woody plants. In this study, we used small RNA (sRNA) sequencing to build four libraries derived from shoot tips and mature leaf tissues of Populus tomentosa, and identified 99 known miRNA families. In addition, 193 known miRNAs, including phytohormone-, developmental-, and cellular process-related miRNAs, showed significant differential expression. Interestingly, quantitative real-time reverse transcription polymerase chain reaction (PCR) analysis of miR172, miR164, and miR393 expression showed marked changes in expression patterns during the development of shoot tips. The target genes of these miRNAs were involved in the regulation of hormone responses and stem cell function. In particular, the miR172 target APETALA2 (AP2), involved in the maintenance of stem cells in the shoot apex, was expressed specifically during the initial active stage of development. These findings provide new insights into the regulatory mechanisms of miRNAs involved in SAM development and differentiation in tree species.
Collapse
|
24
|
He T, Huang Y, Chak JC, Klar RM. Recommendations for improving accuracy of gene expression data in bone and cartilage tissue engineering. Sci Rep 2018; 8:14874. [PMID: 30291289 PMCID: PMC6173755 DOI: 10.1038/s41598-018-33242-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/26/2018] [Indexed: 12/15/2022] Open
Abstract
Autogenous tissue grafting remains the gold standard in the treatment of critical sized bone and certain cartilage defects, while the translation of tissue engineered osteogenesis or chondrogenesis from the lab bench into clinical practice, utilizing natural or synthetic biomimetic devices, remains challenging. One of the crucial underestimated reasons for non-translatability could be the imprecision and inconsistency of generated gene expression profiles, utilizing improperly optimized and standardized quantitative gene assays. Utilizing GeNorm for downstream qRT-PCR applications, the stability of reference genes in relation to optimal cDNA amounts was assessed on human bone marrow-derived mesenchymal and adipose-derived stem cells neat and made to differentiate into chondrocytes including normal human derived chondrocytes and muscle tissue from rats. Results showed that reference genes can vary substantially across separately and/or combined cell lines and/or tissue types including treatment parameters. The recommendations to all bone and cartilage tissue engineers utilizing qRT-PCR is not to assume that reference gene stability and quantity remain conserved across cell lines or tissue types but to always determine, for each new experiment, the stability and normalization quantity of reference genes anew.
Collapse
Affiliation(s)
- Tao He
- Laboratory of Biomechanics and Experimental Orthopaedics, Department of Orthopaedic Surgery, Physical Medicine and Rehabilitation, University Hospital of Munich (LMU), Munich, Germany.,Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yijiang Huang
- Laboratory of Biomechanics and Experimental Orthopaedics, Department of Orthopaedic Surgery, Physical Medicine and Rehabilitation, University Hospital of Munich (LMU), Munich, Germany
| | - Juy Chi Chak
- Laboratory of Biomechanics and Experimental Orthopaedics, Department of Orthopaedic Surgery, Physical Medicine and Rehabilitation, University Hospital of Munich (LMU), Munich, Germany
| | - Roland Manfred Klar
- Laboratory of Biomechanics and Experimental Orthopaedics, Department of Orthopaedic Surgery, Physical Medicine and Rehabilitation, University Hospital of Munich (LMU), Munich, Germany.
| |
Collapse
|
25
|
Rains MK, Gardiyehewa de Silva ND, Molina I. Reconstructing the suberin pathway in poplar by chemical and transcriptomic analysis of bark tissues. TREE PHYSIOLOGY 2018; 38:340-361. [PMID: 28575526 DOI: 10.1093/treephys/tpx060] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 05/18/2017] [Indexed: 05/09/2023]
Abstract
The tree bark periderm confers the first line of protection against pathogen invasion and abiotic stresses. The phellogen (cork cambium) externally produces cork (phellem) cells that are dead at maturity; while metabolically active, these tissues synthesize cell walls, as well as cell wall modifications, namely suberin and waxes. Suberin is a heteropolymer with aliphatic and aromatic domains, composed of acylglycerols, cross-linked polyphenolics and solvent-extractable waxes. Although suberin is essentially ubiquitous in vascular plants, the biochemical functions of many enzymes and the genetic regulation of its synthesis are poorly understood. We have studied suberin and wax composition in four developmental stages of hybrid poplar (Populus tremula x Populus alba) stem periderm. The amounts of extracellular ester-linked acyl lipids per unit area increased with tissue age, a trend not observed with waxes. We used RNA-Seq deep-sequencing technology to investigate the cork transcriptome at two developmental stages. The transcript analysis yielded 455 candidates for the biosynthesis and regulation of poplar suberin, including genes with proven functions in suberin metabolism, genes highlighted as candidates in other plant species and novel candidates. Among these, a gene encoding a putative lipase/acyltransferase of the GDSL-motif family emerged as a suberin polyester synthase candidate, and specific isoforms of peroxidase and laccase genes were preferentially expressed in cork, suggesting that their corresponding proteins may be involved in cross-linking aromatics to form lignin-like polyphenolics. Many transcriptional regulators with possible roles in meristem identity, cork differentiation and acyl-lipid metabolism were also identified. Our work provides the first large-scale transcriptomic dataset on the suberin-synthesizing tissue of poplar bark, contributing to our understanding of tree bark development at the molecular level. Based on these data, we have proposed a number of hypotheses that can be used in future research leading to novel biological insights into suberin biosynthesis and its physiological function.
Collapse
Affiliation(s)
- Meghan K Rains
- Department of Biology, Biosciences Complex, Queen's University, 116 Barrie St., Kingston, ON, Canada K7L 3N6
- Department of Biology, Essar Convergence Centre, Algoma University, 1520 Queen Street East, Sault Ste Marie, ON, Canada P6A 2G4
| | - Nayana Dilini Gardiyehewa de Silva
- Department of Biology and Institute of Biochemistry, Nesbitt Biology Building, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6
| | - Isabel Molina
- Department of Biology, Biosciences Complex, Queen's University, 116 Barrie St., Kingston, ON, Canada K7L 3N6
- Department of Biology, Essar Convergence Centre, Algoma University, 1520 Queen Street East, Sault Ste Marie, ON, Canada P6A 2G4
| |
Collapse
|
26
|
Zhao J, Yang F, Feng J, Wang Y, Lachenbruch B, Wang J, Wan X. Genome-Wide Constitutively Expressed Gene Analysis and New Reference Gene Selection Based on Transcriptome Data: A Case Study from Poplar/Canker Disease Interaction. FRONTIERS IN PLANT SCIENCE 2017; 8:1876. [PMID: 29163601 PMCID: PMC5671478 DOI: 10.3389/fpls.2017.01876] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/16/2017] [Indexed: 05/27/2023]
Abstract
A number of transcriptome datasets for differential expression (DE) genes have been widely used for understanding organismal biology, but these datasets also contain untapped information that can be used to develop more precise analytical tools. With the use of transcriptome data generated from poplar/canker disease interaction system, we describe a methodology to identify candidate reference genes from high-throughput sequencing data. This methodology will improve the accuracy of RT-qPCR and will lead to better standards for the normalization of expression data. Expression stability analysis from xylem and phloem of Populus bejingensis inoculated with the fungal canker pathogen Botryosphaeria dothidea revealed that 729 poplar transcripts (1.11%) were stably expressed, at a threshold level of coefficient of variance (CV) of FPKM < 20% and maximum fold change (MFC) of FPKM < 2.0. Expression stability and bioinformatics analysis suggested that commonly used house-keeping (HK) genes were not the most appropriate internal controls: 70 of the 72 commonly used HK genes were not stably expressed, 45 of the 72 produced multiple isoform transcripts, and some of their reported primers produced unspecific amplicons in PCR amplification. RT-qPCR analysis to compare and evaluate the expression stability of 10 commonly used poplar HK genes and 20 of the 729 newly-identified stably expressed transcripts showed that some of the newly-identified genes (such as SSU_S8e, LSU_L5e, and 20S_PSU) had higher stability ranking than most of commonly used HK genes. Based on these results, we recommend a pipeline for deriving reference genes from transcriptome data. An appropriate candidate gene should have a unique transcript, constitutive expression, CV value of expression < 20% (or possibly 30%) and MFC value of expression <2, and an expression level of 50-1,000 units. Lastly, when four of the newly identified HK genes were used in the normalization of expression data for 20 differential expressed genes, expression analysis gave similar values to Cufflinks output. The methods described here provide an alternative pathway for the normalization of transcriptome data, a process that is essential for integrating analyses of transcriptome data across environments, laboratories, sequencing platforms, and species.
Collapse
Affiliation(s)
- Jiaping Zhao
- State Key Laboratory of Tree Genetics and Breeding, Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing, China
| | - Fan Yang
- State Key Laboratory of Tree Genetics and Breeding, Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing, China
- Department of Forestry, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Jinxia Feng
- State Key Laboratory of Tree Genetics and Breeding, Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing, China
| | - Yanli Wang
- Department of Horticulture, School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
| | - Barbara Lachenbruch
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States
| | - Jiange Wang
- Department of Forestry, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Xianchong Wan
- State Key Laboratory of Tree Genetics and Breeding, Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
27
|
Xu Z, Gao L, Tang M, Qu C, Huang J, Wang Q, Yang C, Liu G, Yang C. Genome-wide identification and expression profile analysis of CCH gene family in Populus. PeerJ 2017; 5:e3962. [PMID: 29085758 PMCID: PMC5661435 DOI: 10.7717/peerj.3962] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/05/2017] [Indexed: 11/20/2022] Open
Abstract
Copper plays key roles in plant physiological activities. To maintain copper cellular homeostasis, copper chaperones have important functions in binding and transporting copper to target proteins. Detailed characterization and function analysis of a copper chaperone, CCH, is presently limited to Arabidopsis. This study reports the identification of 21 genes encoding putative CCH proteins in Populus trichocarpa. Besides sharing the conserved metal-binding motif MXCXXC and forming a βαββαβ secondary structure at the N-terminal, all the PtCCHs possessed the plant-exclusive extended C-terminal. Based on their gene structure, conserved motifs, and phylogenetic analysis, the PtCCHs were divided into three subgroups. Our analysis indicated that whole-genome duplication and tandem duplication events likely contributed to expansion of the CCH gene family in Populus. Tissue-specific data from PlantGenIE revealed that PtCCH genes had broad expression patterns in different tissues. Quantitative real-time RT-PCR (qRT-PCR) analysis revealed that PnCCH genes of P. simonii × P. nigra also had different tissue-specific expression traits, as well as different inducible-expression patterns in response to copper stresses (excessive and deficiency). In summary, our study of CCH genes in the Populus genome provides a comprehensive analysis of this gene family, and lays an important foundation for further investigation of their roles in copper homeostasis of poplar.
Collapse
Affiliation(s)
- Zhiru Xu
- College of Life Science, Northeast Forestry University, HarBin, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, HarBin, China
| | - Liying Gao
- College of Life Science, Northeast Forestry University, HarBin, China
| | - Mengquan Tang
- College of Life Science, Northeast Forestry University, HarBin, China
| | - Chunpu Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, HarBin, China
- School of Forestry, Northeast Forestry University, HarBin, China
| | - Jiahuan Huang
- College of Life Science, Northeast Forestry University, HarBin, China
| | - Qi Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, HarBin, China
- School of Forestry, Northeast Forestry University, HarBin, China
| | - Chuanping Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, HarBin, China
- School of Forestry, Northeast Forestry University, HarBin, China
| | - Guanjun Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, HarBin, China
- School of Forestry, Northeast Forestry University, HarBin, China
| | - Chengjun Yang
- School of Forestry, Northeast Forestry University, HarBin, China
| |
Collapse
|
28
|
Baldacci-Cresp F, Sacré PY, Twyffels L, Mol A, Vermeersch M, Ziemons E, Hubert P, Pérez-Morga D, El Jaziri M, de Almeida Engler J, Baucher M. Poplar-Root Knot Nematode Interaction: A Model for Perennial Woody Species. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:560-572. [PMID: 27135257 DOI: 10.1094/mpmi-01-16-0015-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Plant root-knot nematode (RKN) interaction studies are performed on several host plant models. Though RKN interact with trees, no perennial woody model has been explored so far. Here, we show that poplar (Populus tremula × P. alba) grown in vitro is susceptible to Meloidogyne incognita, allowing this nematode to penetrate, to induce feeding sites, and to successfully complete its life cycle. Quantitative reverse transcription-polymerase chain reaction analysis was performed to study changes in poplar gene expression in galls compared with noninfected roots. Three genes (expansin A, histone 3.1, and asparagine synthase), selected as gall development marker genes, followed, during poplar-nematode interaction, a similar expression pattern to what was described for other plant hosts. Downregulation of four genes implicated in the monolignol biosynthesis pathway was evidenced in galls, suggesting a shift in the phenolic profile within galls developed on poplar roots. Raman microspectroscopy demonstrated that cell walls of giant cells were not lignified but mainly composed of pectin and cellulose. The data presented here suggest that RKN exercise conserved strategies to reproduce and to invade perennial plant species and that poplar is a suitable model host to study specific traits of tree-nematode interactions.
Collapse
Affiliation(s)
- Fabien Baldacci-Cresp
- 1 Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
| | - Pierre-Yves Sacré
- 2 University of Liege, CIRM, Department of Pharmacy, Laboratory of Analytical Chemistry, CHU, B36, B-4000 Liege, Belgium
| | - Laure Twyffels
- 3 Center for Microscopy and Molecular Imaging-CMMI, Université libre de Bruxelles
| | - Adeline Mol
- 1 Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
| | - Marjorie Vermeersch
- 3 Center for Microscopy and Molecular Imaging-CMMI, Université libre de Bruxelles
| | - Eric Ziemons
- 2 University of Liege, CIRM, Department of Pharmacy, Laboratory of Analytical Chemistry, CHU, B36, B-4000 Liege, Belgium
| | - Philippe Hubert
- 2 University of Liege, CIRM, Department of Pharmacy, Laboratory of Analytical Chemistry, CHU, B36, B-4000 Liege, Belgium
| | - David Pérez-Morga
- 3 Center for Microscopy and Molecular Imaging-CMMI, Université libre de Bruxelles
- 4 Laboratoire de Parasitologie Moléculaire, Université libre de Bruxelles; and
| | - Mondher El Jaziri
- 1 Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
| | - Janice de Almeida Engler
- 5 INRA, Université Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, F-06900 Sophia Antipolis, France
| | - Marie Baucher
- 1 Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
| |
Collapse
|
29
|
Enhancing digestibility and ethanol yield of Populus wood via expression of an engineered monolignol 4-O-methyltransferase. Nat Commun 2016; 7:11989. [PMID: 27349324 PMCID: PMC4931242 DOI: 10.1038/ncomms11989] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 05/18/2016] [Indexed: 11/16/2022] Open
Abstract
Producing cellulosic biofuels and bio-based chemicals from woody biomass is impeded by the presence of lignin polymer in the plant cell wall. Manipulating the monolignol biosynthetic pathway offers a promising approach to improved processability, but often impairs plant growth and development. Here, we show that expressing an engineered 4-O-methyltransferase that chemically modifies the phenolic moiety of lignin monomeric precursors, thus preventing their incorporation into the lignin polymer, substantially alters hybrid aspens' lignin content and structure. Woody biomass derived from the transgenic aspens shows a 62% increase in the release of simple sugars and up to a 49% increase in the yield of ethanol when the woody biomass is subjected to enzymatic digestion and yeast-mediated fermentation. Moreover, the cell wall structural changes do not affect growth and biomass production of the trees. Our study provides a useful strategy for tailoring woody biomass for bio-based applications. The efficiency of cellulosic biofuel production from woody biomass is limited by the presence of lignin that impedes efficient processing. Here the authors show that transgenic modification of aspen to depress lignin polymerization can increase ethanol yield without affecting tree growth.
Collapse
|
30
|
Validation of Reference Genes for Gene Expression by Quantitative Real-Time RT-PCR in Stem Segments Spanning Primary to Secondary Growth in Populus tomentosa. PLoS One 2016; 11:e0157370. [PMID: 27300480 PMCID: PMC4907450 DOI: 10.1371/journal.pone.0157370] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 05/28/2016] [Indexed: 11/19/2022] Open
Abstract
The vertical segments of Populus stems are an ideal experimental system for analyzing the gene expression patterns involved in primary and secondary growth during wood formation. Suitable internal control genes are indispensable to quantitative real time PCR (qRT-PCR) assays of gene expression. In this study, the expression stability of eight candidate reference genes was evaluated in a series of vertical stem segments of Populus tomentosa. Analysis through software packages geNorm, NormFinder and BestKeeper showed that genes ribosomal protein (RP) and tubulin beta (TUBB) were the most unstable across the developmental stages of P. tomentosa stems, and the combination of the three reference genes, eukaryotic translation initiation factor 5A (eIF5A), Actin (ACT6) and elongation factor 1-beta (EF1-beta) can provide accurate and reliable normalization of qRT-PCR analysis for target gene expression in stem segments undergoing primary and secondary growth in P. tomentosa. These results provide crucial information for transcriptional analysis in the P. tomentosa stem, which may help to improve the quality of gene expression data in these vertical stem segments, which constitute an excellent plant system for the study of wood formation.
Collapse
|
31
|
Hoenicka H, Lehnhardt D, Briones V, Nilsson O, Fladung M. Low temperatures are required to induce the development of fertile flowers in transgenic male and female early flowering poplar (Populus tremula L.). TREE PHYSIOLOGY 2016; 36:667-77. [PMID: 27052434 PMCID: PMC4886290 DOI: 10.1093/treephys/tpw015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 01/31/2016] [Indexed: 05/03/2023]
Abstract
Until now, artificial early flowering poplar systems have mostly led to the development of sterile flowers. In this study, several strategies aimed at inducting fertile flowers in pHSP::AtFT transgenic poplar were evaluated, in particular the influence of temperature and photoperiod. Our results provide evidence that temperature, and not photoperiod, is the key factor required for the development of fertile flowers in early flowering poplar. Fertile flowers were only obtained when a cold treatment phase of several weeks was used after the heat treatment phase. Heat treatments induced AtFT gene activity through activation of the heat-shock promoter (pHSP). Photoperiod did not show a similar influence on flower fertility as pollen grains were obtained under both long- and short-day conditions. Fertility was confirmed in flowers of both male and female plants. For the first time, crosses were successfully performed with transgenic female early flowering poplar. All mature flowers obtained after 8 weeks of inductive treatments were fertile. Gene expression studies also confirmed that cold temperatures influenced expression of poplar genes homologous to 'pollen development genes' from Arabidopsis thaliana (L.) Heynh. Homology and expression patterns suggested a role for PtTDF1, PtBAM1, PtSERK1/2 and PtMS1 on anther and pollen development in poplar flowers. The system developed in this study allows a fast and very reliable induction of fertile poplar flowers in a very short period of time. The non-reproductive phase, usually 7-10 years, can now be shortened to 6-10 months, and fertile flowers can be obtained independently of the season. This system is a reliable tool for breeding purposes (high-speed breeding technology), genomics and biosafety research.
Collapse
Affiliation(s)
- Hans Hoenicka
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany
| | - Denise Lehnhardt
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany
| | - Valentina Briones
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany Universidad Nacional de la Plata, 1900 La Plata, Argentina
| | - Ove Nilsson
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S-90183 Umeå, Sweden
| | - Matthias Fladung
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany
| |
Collapse
|
32
|
de Jong F, Hanley SJ, Beale MH, Karp A. Characterisation of the willow phenylalanine ammonia-lyase (PAL) gene family reveals expression differences compared with poplar. PHYTOCHEMISTRY 2015; 117:90-97. [PMID: 26070140 PMCID: PMC4560161 DOI: 10.1016/j.phytochem.2015.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 06/01/2015] [Accepted: 06/02/2015] [Indexed: 05/23/2023]
Abstract
Willow is an important biomass crop for the bioenergy industry, and therefore optimal growth with minimal effects of biotic and abiotic stress is essential. The phenylpropanoid pathway is responsible for the biosynthesis of not only lignin but also of flavonoids, condensed tannins, benzenoids and phenolic glycosides which all have a role in protecting the plant against biotic and abiotic stress. All products of the phenylpropanoid pathway are important for the healthy growth of short rotation cropping species such as willow. However, the phenylpropanoid pathway in willow remains largely uncharacterised. In the current study we identified and characterised five willow phenylalanine ammonia-lyase (PAL) genes, which encode enzymes that catalyse the deamination of l-phenylalanine to form trans-cinnamic acid, the entry point into the phenylpropanoid pathway. Willow PAL1, PAL2, PAL3 and PAL4 genes were orthologous to the poplar genes. However no orthologue of PAL5 appears to be present in willow. Moreover, two tandemly repeated PAL2 orthologues were identified in a single contig. Willow PALs show similar sub-cellular localisation to the poplar genes. However, the enzyme kinetics and gene expression of the willow PAL genes differed slightly, with willow PAL2 being more widely expressed than its poplar orthologues implying a wider role for PALs in the production of flavonoids, condensed tannins, benzenoids, and phenolic glycosides, in willow.
Collapse
Affiliation(s)
- Femke de Jong
- AgroEcology Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom.
| | - Steven J Hanley
- AgroEcology Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom.
| | - Michael H Beale
- Plant Biology and Crop Sciences Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom.
| | - Angela Karp
- AgroEcology Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom.
| |
Collapse
|
33
|
Baldacci-Cresp F, Moussawi J, Leplé JC, Van Acker R, Kohler A, Candiracci J, Twyffels L, Spokevicius AV, Bossinger G, Laurans F, Brunel N, Vermeersch M, Boerjan W, El Jaziri M, Baucher M. PtaRHE1, a Populus tremula × Populus alba RING-H2 protein of the ATL family, has a regulatory role in secondary phloem fibre development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:978-990. [PMID: 25912812 DOI: 10.1111/tpj.12867] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/21/2015] [Accepted: 04/21/2015] [Indexed: 06/04/2023]
Abstract
REALLY INTERESTING NEW GENE (RING) proteins play important roles in the regulation of many processes by recognizing target proteins for ubiquitination. Previously, we have shown that the expression of PtaRHE1, encoding a Populus tremula × Populus alba RING-H2 protein with E3 ubiquitin ligase activity, is associated with tissues undergoing secondary growth. To further elucidate the role of PtaRHE1 in vascular tissues, we have undertaken a reverse genetic analysis in poplar. Within stem secondary vascular tissues, PtaRHE1 and its corresponding protein are expressed predominantly in the phloem. The downregulation of PtaRHE1 in poplar by artificial miRNA triggers alterations in phloem fibre patterning, characterized by an increased portion of secondary phloem fibres that have a reduced cell wall thickness and a change in lignin composition, with lower levels of syringyl units as compared with wild-type plants. Following an RNA-seq analysis, a biological network involving hormone stress signalling, as well as developmental processes, could be delineated. Several candidate genes possibly associated with the altered phloem fibre phenotype observed in amiRPtaRHE1 poplar were identified. Altogether, our data suggest a regulatory role for PtaRHE1 in secondary phloem fibre development.
Collapse
Affiliation(s)
- Fabien Baldacci-Cresp
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles (ULB), 6041, Gosselies, Belgium
| | - Jihad Moussawi
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles (ULB), 6041, Gosselies, Belgium
| | - Jean-Charles Leplé
- Unité de Recherche Amélioration Génétique et Physiologie Forestières (UR0588), Institut National de la Recherche Agronomique (INRA), 45075, Orléans Cedex 02, France
| | - Rebecca Van Acker
- Department of Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
| | - Annegret Kohler
- Unité Mixte de Recherche 1136, Interactions Arbres-Microorganismes, Laboratory of Excellence ARBRE, INRA, 54280, Champenoux, France
- Unité Mixte de Recherche 1136, Interactions Arbres-Microorganismes, Laboratory of Excellence ARBRE, Lorraine University, 54500, Vandoeuvre-lès-Nancy, France
| | - Julie Candiracci
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles (ULB), 6041, Gosselies, Belgium
| | - Laure Twyffels
- Center for Microscopy and Molecular Imaging-CMMI, Université Libre de Bruxelles (ULB), 6041, Gosselies, Belgium
| | - Antanas V Spokevicius
- School of Ecosystem and Forest Sciences, The University of Melbourne, Water Street, Creswick, Vic., 3363, Australia
| | - Gerd Bossinger
- School of Ecosystem and Forest Sciences, The University of Melbourne, Water Street, Creswick, Vic., 3363, Australia
| | - Françoise Laurans
- Unité de Recherche Amélioration Génétique et Physiologie Forestières (UR0588), Institut National de la Recherche Agronomique (INRA), 45075, Orléans Cedex 02, France
| | - Nicole Brunel
- UMR A547 PIAF, Clermont Université, Université Blaise Pascal, BP 10448, 63000, Clermont-Ferrand, France
- UMR A547 PIAF, INRA, 63100, Clermont-Ferrand, France
| | - Marjorie Vermeersch
- Center for Microscopy and Molecular Imaging-CMMI, Université Libre de Bruxelles (ULB), 6041, Gosselies, Belgium
- Laboratoire de Parasitologie Moléculaire, IBMM, Université Libre de Bruxelles (ULB), 6041, Gosselies, Belgium
| | - Wout Boerjan
- Department of Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
| | - Mondher El Jaziri
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles (ULB), 6041, Gosselies, Belgium
| | - Marie Baucher
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles (ULB), 6041, Gosselies, Belgium
| |
Collapse
|
34
|
Phylogenetic and stress-responsive expression analysis of 20 WRKY genes in Populus simonii × Populus nigra. Gene 2015; 565:130-9. [PMID: 25843624 DOI: 10.1016/j.gene.2015.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 01/21/2015] [Accepted: 04/01/2015] [Indexed: 11/24/2022]
Abstract
WRKY transcription factors play important roles in regulating biotic and abiotic stress responses in plants. Although a plethora of studies have revealed the functions and mechanisms of some WRKYs in various plants, the studies of WRKYs in woody plants especially tree species under different abiotic and biotic stress conditions are still not well characterized. In this study, we selected 20 Populus simonii×Populus nigra WRKY genes based on our previous transcriptome study, and characterized these genes by phylogenetic analysis to investigate their evolutionary relations, then studied their expression patterns under NaCl, NaHCO3, PEG6000, CdCl2 and Alternaria alternata (Fr.) Keissl treatments that mimic the salt, alkalinity, drought, heavy metal and fungal infection conditions. The phylogenetic analysis showed that these 20 genes can be divided into five clades (Groups I, IIa, IIb, IIc and III) and all of their WRKY domains are conserved except for an N-terminal single amino acid mutation in PsnWRKY8. Before conducting quantitative real time PCR calculation, we evaluated five candidate reference genes under different stress treatments, and chose At4g33380-like as the reference gene for salt stress, Actin for alkalinity stress, UBQ for drought stress, TUA for heavy metal stress, and 18S rRNA for pathogen infection stress. The final qRT-PCR analysis indicated that 20/20, 20/20, and 15/20 PsnWRKYs were downregulated under salt, alkali and drought stresses, and 14/20 and 19/20 PsnWRKYs were upregulated under heavy metal and pathogen stresses. Members from the same clade tended to present similar expression patterns. In addition, we observed noticeable changes in the expression of PsnWRKY11 (increased by 41 times) and PsnWRKY20 (increased by 141 times) under pathogen infection condition, implying that these two genes are potentially important for the disease resistance of P. simonii × P. nigra.
Collapse
|
35
|
Islam N, Li G, Garrett WM, Lin R, Sriram G, Cooper B, Coleman GD. Proteomics of Nitrogen Remobilization in Poplar Bark. J Proteome Res 2014; 14:1112-26. [DOI: 10.1021/pr501090p] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Nazrul Islam
- Department
of Plant Sciences and Landscape Architecture, University of Maryland, College
Park, Maryland 20742, United States
| | - Gen Li
- Department
of Plant Sciences and Landscape Architecture, University of Maryland, College
Park, Maryland 20742, United States
| | - Wesley M. Garrett
- Animal
Biosciences and Biotechnology Laboratory, USDA-ARS, Beltsville, Maryland 20705, United States
| | - Rongshuang Lin
- Department
of Plant Sciences and Landscape Architecture, University of Maryland, College
Park, Maryland 20742, United States
| | - Ganesh Sriram
- Department
of Chemical and Biomolecular Engineering, University of Maryland, College
Park, Maryland 20742, United States
| | - Bret Cooper
- Soybean
Genomics and Improvement Laboratory, USDA-ARS, Beltsville, Maryland 20705, United States
| | - Gary D. Coleman
- Department
of Plant Sciences and Landscape Architecture, University of Maryland, College
Park, Maryland 20742, United States
| |
Collapse
|
36
|
Leitão MDCG, Coimbra EC, de Lima RDCP, Guimarães MDL, Heráclio SDA, Silva Neto JDC, de Freitas AC. Quantifying mRNA and microRNA with qPCR in cervical carcinogenesis: a validation of reference genes to ensure accurate data. PLoS One 2014; 9:e111021. [PMID: 25365304 PMCID: PMC4217744 DOI: 10.1371/journal.pone.0111021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 09/23/2014] [Indexed: 01/17/2023] Open
Abstract
A number of recent studies have catalogued global gene expression patterns in a panel of normal, tumoral cervical tissues so that potential biomarkers can be identified. The qPCR has been one of the most widely used technologies for detecting these potential biomarkers. However, few studies have investigated a correct strategy for the normalization of data in qPCR assays for cervical tissues. The aim of this study was to validate reference genes in cervical tissues to ensure accurate quantification of mRNA and miRNA levels in cervical carcinogenesis. For this purpose, some issues for obtaining reliable qPCR data were evaluated such as the following: geNorm analysis with a set of samples which meet all of the cervical tissue conditions (Normal + CIN1 + CIN2 + CIN3 + Cancer); the use of individual Ct values versus pooled Ct values; and the use of a single (or multiple) reference genes to quantify mRNA and miRNA expression levels. Two different data sets were put on the geNorm to assess the expression stability of the candidate reference genes: the first dataset comprised the quantities of the individual Ct values; and the second dataset comprised the quantities of the pooled Ct values. Moreover, in this study, all the candidate reference genes were analyzed as a single “normalizer”. The normalization strategies were assessed by measuring p16INK4a and miR-203 transcripts in qPCR assays. We found that the use of pooled Ct values, can lead to a misinterpretation of the results, which suggests that the maintenance of inter-individual variability is a key factor in ensuring the reliability of the qPCR data. In addition, it should be stressed that a proper validation of the suitability of the reference genes is required for each experimental setting, since the indiscriminate use of a reference gene can also lead to discrepant results.
Collapse
Affiliation(s)
- Maria da Conceição Gomes Leitão
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Center for Biological Sciences, Federal University of Pernambuco, Pernambuco, Brazil
| | - Eliane Campos Coimbra
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Center for Biological Sciences, Federal University of Pernambuco, Pernambuco, Brazil
| | - Rita de Cássia Pereira de Lima
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Center for Biological Sciences, Federal University of Pernambuco, Pernambuco, Brazil
| | | | | | - Jacinto da Costa Silva Neto
- Molecular and Cytological Research Laboratory, Department of Histology, Federal University of Pernambuco, Pernambuco, Brazil
| | - Antonio Carlos de Freitas
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Center for Biological Sciences, Federal University of Pernambuco, Pernambuco, Brazil
- * E-mail:
| |
Collapse
|
37
|
Reference genes in real-time PCR. J Appl Genet 2014; 54:391-406. [PMID: 24078518 PMCID: PMC3825189 DOI: 10.1007/s13353-013-0173-x] [Citation(s) in RCA: 639] [Impact Index Per Article: 58.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 09/09/2013] [Accepted: 09/11/2013] [Indexed: 10/31/2022]
Abstract
This paper aims to discuss various aspects of the use of reference genes in qPCR technique used in the thousands of present studies. Most frequently, these are housekeeping genes and they must meet several criteria so that they can lay claim to the name. Lots of papers report that in different conditions, for different organisms and even tissues the basic assumption—the constant level of the expression is not maintained for many genes that seem to be perfect candidates. Moreover, their transcription can not be affected by experimental factors. Sounds simple and clear but a great number of designed protocols and lack of consistency among them brings confusion on how to perform experiment properly. Since during selection of the most stable normalizing gene we can not use any reference gene, different ways and algorithms for their selection were developed. Such methods, including examples of best normalizing genes in some specific cases and possible mistakes are presented based on available sources. Numerous examples of reference genes applications, which are usually in too few numbers in relevant articles not allowing to make a solid fundament for a reader, will be shown along with instructive compilations to make an evidence for presented statements and an arrangement of future qPCR experiments. To include all the pitfalls and problems associated with the normalization methods there is no way not to begin from sample preparation and its storage going through candidate gene selection, primer design and statistical analysis. This is important because numerous short reviews available cover the topic only in lesser extent at the same time giving the reader false conviction of complete topic recognition.
Collapse
|
38
|
Imai T, Ubi BE, Saito T, Moriguchi T. Evaluation of reference genes for accurate normalization of gene expression for real time-quantitative PCR in Pyrus pyrifolia using different tissue samples and seasonal conditions. PLoS One 2014; 9:e86492. [PMID: 24466117 PMCID: PMC3899261 DOI: 10.1371/journal.pone.0086492] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 12/11/2013] [Indexed: 12/21/2022] Open
Abstract
We have evaluated suitable reference genes for real time (RT)-quantitative PCR (qPCR) analysis in Japanese pear (Pyrus pyrifolia). We tested most frequently used genes in the literature such as β-Tubulin, Histone H3, Actin, Elongation factor-1α, Glyceraldehyde-3-phosphate dehydrogenase, together with newly added genes Annexin, SAND and TIP41. A total of 17 primer combinations for these eight genes were evaluated using cDNAs synthesized from 16 tissue samples from four groups, namely: flower bud, flower organ, fruit flesh and fruit skin. Gene expression stabilities were analyzed using geNorm and NormFinder software packages or by ΔCt method. geNorm analysis indicated three best performing genes as being sufficient for reliable normalization of RT-qPCR data. Suitable reference genes were different among sample groups, suggesting the importance of validation of gene expression stability of reference genes in the samples of interest. Ranking of stability was basically similar between geNorm and NormFinder, suggesting usefulness of these programs based on different algorithms. ΔCt method suggested somewhat different results in some groups such as flower organ or fruit skin; though the overall results were in good correlation with geNorm or NormFinder. Gene expression of two cold-inducible genes PpCBF2 and PpCBF4 were quantified using the three most and the three least stable reference genes suggested by geNorm. Although normalized quantities were different between them, the relative quantities within a group of samples were similar even when the least stable reference genes were used. Our data suggested that using the geometric mean value of three reference genes for normalization is quite a reliable approach to evaluating gene expression by RT-qPCR. We propose that the initial evaluation of gene expression stability by ΔCt method, and subsequent evaluation by geNorm or NormFinder for limited number of superior gene candidates will be a practical way of finding out reliable reference genes.
Collapse
Affiliation(s)
- Tsuyoshi Imai
- Plant Physiology and Fruit Chemistry Division, NARO Institute of Fruit Tree Science, Tsukuba, Ibaraki, Japan
- * E-mail:
| | - Benjamin E. Ubi
- Plant Physiology and Fruit Chemistry Division, NARO Institute of Fruit Tree Science, Tsukuba, Ibaraki, Japan
- Biotechnology Research & Development Centre, Ebonyi State University, Abakaliki, Ebonyi State, Nigeria
| | - Takanori Saito
- Plant Physiology and Fruit Chemistry Division, NARO Institute of Fruit Tree Science, Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takaya Moriguchi
- Plant Physiology and Fruit Chemistry Division, NARO Institute of Fruit Tree Science, Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|